Dell Precision Optimizer
Guía del administrador
Notas, precauciones y advertencias

NOTA: Una NOTA señala información importante que lo ayuda a hacer un mejor uso de su producto.

PRECAUCIÓN: Una PRECAUCIÓN indica un potencial daño al hardware o pérdida de datos y le informa cómo evitar el problema.

AVISO: Una señal de ADVERTENCIA indica la posibilidad de sufrir daño a la propiedad, heridas personales o la muerte.
Tabla de contenido

1 **Introducción** ... 5

2 **Componentes de Dell Precision Optimizer** ... 6
 Desinstalación de Dell Precision Optimizer ... 6

3 **Rendimiento** .. 8
 Motor de procesamiento de políticas ... 8
 Herramienta de actualización de perfiles .. 8
 Opciones de actualización herramienta .. 8

4 **Realizar seguimiento y Analizar** .. 9
 Informes de análisis del sistema ... 9
 Configuración de informes ... 9
 Análisis de la carga de trabajo ... 10
 Informes de inteligencia de la CPU ... 10
 Informes de inteligencia de la GPU ... 11
 Informe de los diagnósticos del sistema .. 11
 Notificaciones de rendimiento ... 11
 Opciones de actualización ... 12

5 **Mantenimiento del sistema** .. 13

6 **Comentarios de los usuarios** .. 14

7 **Mejorar Dell Precision Optimizer** .. 15

8 **Herramientas empresariales** .. 16
 Proveedores de WMI ... 16
 DPOCMD.EXE .. 16
 Configuración de los interruptores de la línea de comandos ... 18
 SCCM .. 19
 Instrucciones para crear el paquete de programa de aplicación de Dell Precision Optimizer................................. 19
 Instrucciones para la implementación de la aplicación .. 20
 Verificación de la implementación correcta en los sistemas cliente .. 20
 Cambio del comportamiento del cliente de Dell Precision Optimizer mediante DPOCMD.EXE 20
 Informes SSRS .. 21
 KACE ... 24
 Instrucciones para la implementación de Dell Precision Optimizer con KACE ... 24
 Cambio del comportamiento del cliente de Dell Precision Optimizer mediante DPOCMD.EXE 25
 Informes personalizados .. 26

Apéndice A: **APÉNDICE A: códigos de salida de dpoCmd.exe** ... 29
Apéndice B: APÉNDICE B: archivos de definición de la clase WMI..30
Introducción

En este documento se describen herramientas, consejos y recomendaciones para los administradores de TI para administrar Dell Precision Optimizer de forma remota.
Componentes de Dell Precision Optimizer

Los cuatro componentes principales de Dell Precision Optimizer son los siguientes:

- Rendimiento
- Motor de seguimiento y análisis (TA)
- Mantenimiento del sistema (SM)
- CLI del administrador de Dell Precision Optimizer (dpcCmd.exe)

Cada uno de estos componentes se implementa como un servicio de Windows que también actúa como un servidor COM. El paquete del instalador de Dell Precision Optimizer instala el servicio junto con el DLL de asistencia, los componentes de la interfaz de usuario (IU) y los controladores de dispositivos del modo kernel de Dell Precision Optimizer, entre otros, en la carpeta de instalación POA. Además, permite instalar e iniciar una aplicación de la barra de tareas siempre que el usuario inicie sesión. Esta aplicación notifica al usuario sobre varios eventos POA, como cuando finaliza una actualización o es necesario reiniciar.

El paquete del instalador de Dell Precision Optimizador también es responsable de crear una clave de registro de software para los módulos de Dell Precision Optimizer. A continuación, se indican las rutas predeterminadas:

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Rutas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpeta de instalación:</td>
<td>C:\Program Files\Dell\PPO</td>
</tr>
<tr>
<td>Ruta de acceso del registro:</td>
<td>HKLM\Software\Dell\PPO</td>
</tr>
<tr>
<td>Datos del tiempo de ejecución:</td>
<td>C:\ProgramData\Dell\PPO</td>
</tr>
</tbody>
</table>

El paquete de instalación copia algunos perfiles y políticas predeterminados en la carpeta de instalación.

Temas:

- Desinstalación de Dell Precision Optimizer

Desinstalación de Dell Precision Optimizer

Dell Precision Optimizer se puede desinstalar del sistema a través de los pasos que se presentan a continuación:

El comando de desinstalación se puede obtener a partir del registro mediante la lectura del valor de la cadena UninstallString en la siguiente ubicación:

Tabla 2. Desinstalación de la ubicación del comando

<table>
<thead>
<tr>
<th>Nombres</th>
<th>Ubicación del comando</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para sistemas de 64 bits</td>
<td>HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall(D66A3355-FEA4-4F60-8BAF-D6CBEDB396D8)</td>
</tr>
<tr>
<td>Para sistemas de 32 bits</td>
<td>HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall{D66A3355-FEA4-4F60-8BAF-D6CBEDB396D8}</td>
</tr>
</tbody>
</table>

Se muestra un valor de ejemplo para UninstallString:

"C:\Program Files (x86)\InstallShield Installation Information\(D66A3355-FEA4-4F60-8BAF-D6CBEDB396D8)\setup.exe" -runfromtemp -10x0007 -removeonly

NOTA: En este comando, el valor -10x0007 puede ser diferente para el sistema.

En un símbolo del sistema (ejecutar como administrador), si ejecuta el comando que se mostró anteriormente, se iniciará el proceso de desinstalación de la aplicación Dell Precision Optimizer. El siguiente comando se puede modificar para ejecutar la desinstalación de manera silenciosa mediante la incorporación del siguiente comando:
Si el archivo de respuesta silenciosa (archivo .iss) se encuentra en la carpeta C:\temp y su nombre es uninst.iss, el siguiente comando ejecutará la desinstalación de manera silenciosa:

"C:\Program Files (x86)\InstallShield Installation Information\{D66A3355-FEA4-4F60-8BAF-D6CBEDB396D8}\setup.exe" -runfromtemp -10x0007 -removeonly -s -f1c:\temp\uninst.iss
El subsistema de rendimiento consta de los siguientes módulos:

- Motor de procesamiento de políticas (PPE)
- Herramienta de actualización de perfiles (profUpd.exe)
- Herramienta de opciones de actualización (upgradeOpt.exe)

Temas:

- Motor de procesamiento de políticas
- Herramienta de actualización de perfiles
- Opciones de actualización herramienta

Motor de procesamiento de políticas

El motor de procesamiento de políticas, o PPE, se implementa como un servicio de Windows que inicia la ejecución tan pronto como arranca el equipo, independientemente de si el usuario ha iniciado sesión.

En este módulo se incluye una interfaz que se puede utilizar para realizar las siguientes tareas:

- Activar o desactivar perfiles
- Enumerar parámetros de entrada y salida para permitir que se creen políticas nuevas
- Guardar y recuperar perfiles y políticas para máquinas, usuarios o aplicaciones de terceros de Dell Precision Optimizer

Herramienta de actualización de perfiles

En la IU de Dell Precision Optimizer se usa esta herramienta de línea de comandos (profUpd.exe) para verificar y actualizar los perfiles del servidor Dell. Se debe usar un archivo de configuración local para informar a Dell Precision Optimizer la dirección del servidor Dell y qué protocolo utilizar, por ejemplo, HTTP, HTTPS o FTP.

NOTA: Todos los perfiles y las políticas del servidor se firman de forma digital y se guardan cifrados mediante el algoritmo AES-256.

Opciones de actualización herramienta

La IU de Dell Precision Optimizer usa esta herramienta de línea de comandos (upgradeOpt.exe) para iniciar la URL del sitio de soporte de Dell en el explorador predeterminado. En el sitio se muestra la lista de opciones de actualización de hardware disponibles para el sistema específico.
Realizar seguimiento y Analizar

El subsistema de análisis permite generar los tipos de informes que se indican a continuación:

- Informes de análisis del sistema
- Informes de análisis de la carga de trabajo
- Informes de inteligencia de la CPU
- Informes de inteligencia de la GPU
- Informes de diagnóstico del sistema
- Notificaciones de rendimiento

Los informes de análisis del sistema proporcionan los datos que ha recopilado la aplicación Dell Data Vault (DDV) en formato .XML.

La función de Análisis de carga de trabajo permite al usuario analizar su carga de trabajo.

Temas:

- Informes de análisis del sistema
- Análisis de la carga de trabajo
- Informes de inteligencia de la CPU
- Informes de inteligencia de la GPU
- Informes de los diagnósticos del sistema
- Notificaciones de rendimiento
- Opciones de actualización

Informes de análisis del sistema

El usuario puede habilitar o deshabilitar estos informes mediante la interfaz COM de Dell Precision Optimizer. Esta interfaz permite al usuario configurar la frecuencia con la que se generan los informes de análisis del sistema para enumerar y leer los informes existentes. El archivo .XML del informe de análisis del sistema contiene los datos del informe divididos en elementos <ddv_group> y <ddv_subgroup>. Todos los datos relacionados con la misma categoría están en el mismo grupo.

Todos los datos relacionados con el termistor 0 estarán en el grupo Termistor 0 de DDV_GROUP.

Configuración de informes

Habilitación del análisis del sistema

<table>
<thead>
<tr>
<th>Detalle de los atributos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo:</td>
<td>Habilitar o deshabilitar la casilla de verificación</td>
</tr>
<tr>
<td>Predeterminado:</td>
<td>Disabled (Desactivado)</td>
</tr>
</tbody>
</table>

Esta configuración permite al subsistema DDV iniciar la recopilación de datos. Cuando está desactivada, DDV no está activa. Después de habilitar esta opción, los informes de DDV se generan periódicamente hasta que la configuración se desactiva de forma manual. Los cambios que se realicen en esta selección de categorías pueden hacer que se descarten todos los datos de DDV existentes que estén sin procesar.
Generar informe

Tabla 4. Generar informe

<table>
<thead>
<tr>
<th>Detalle de los atributos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo:</td>
<td>Selecciona una de las siguientes opciones:</td>
</tr>
<tr>
<td></td>
<td>• Después de 24 horas (diariamente)</td>
</tr>
<tr>
<td></td>
<td>• Después de 12 horas</td>
</tr>
<tr>
<td></td>
<td>• Después de 8 horas</td>
</tr>
<tr>
<td></td>
<td>• Después de 6 horas</td>
</tr>
<tr>
<td></td>
<td>• Después de 4 horas</td>
</tr>
</tbody>
</table>

Predeterminado: Diariamente

Descripción: Una vez que se haya habilitado esta opción, DDV recopila los datos sin procesar y genera informes de forma periódica. Esta configuración controla la frecuencia con la que el DDV procesa los datos sin procesar y genera con ellos un informe nuevo. Los cambios que se realicen en esta selección de categorías pueden hacer que se descarten todos los datos de DDV existentes que estén sin procesar.

Habilitación de la recopilación de datos

Tabla 5. Habilitación de la recopilación de datos

<table>
<thead>
<tr>
<th>Detalle de los atributos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo:</td>
<td>Se puede seleccionar más de una categoría de las siguientes opciones:</td>
</tr>
<tr>
<td></td>
<td>• Batería</td>
</tr>
<tr>
<td></td>
<td>• Térmico</td>
</tr>
<tr>
<td></td>
<td>• Ventilador</td>
</tr>
<tr>
<td></td>
<td>• Procesador</td>
</tr>
<tr>
<td></td>
<td>• Memoria</td>
</tr>
<tr>
<td></td>
<td>• Almacenamiento</td>
</tr>
<tr>
<td></td>
<td>• Red</td>
</tr>
</tbody>
</table>

Predeterminado: Todas las casillas de verificación están activadas

Descripción: Esta configuración le permite al usuario controlar las categorías de datos que se mostrarán en el informe.

Análisis de la carga de trabajo

Dell Precision Optimizer 5.0 y versiones posteriores permiten que el usuario clasifique sus cargas de trabajo y determine los usos de sus recursos. Cuando el usuario inicia el análisis, Dell Precision Optimizer recopila los parámetros de uso de recursos del sistema, como CPU, memoria, discos y GPU.

Informes de inteligencia de la CPU

Dell Precision Optimizer 5.0 y versiones posteriores permiten que el usuario vea información mejorada de la CPU Intel, que incluye información del procesador y datos en vivo de cada procesador lógico. En la IU de Dell Precision Optimizer se muestran datos en forma de gráficos lineales.

La IU usa la interfaz COM para obtener la siguiente información acerca del procesador:

• Nombre de la CPU
• Número de ranuras
• Número de núcleos físicos
• Estado de Hyper-Threading (habilitado/deshabilitado)
• Tamaño de la caché de L1 (KB)
• Tamaño de la caché de L2 (KB)
• Tamaño de la caché de L3 (KB)
• Uso de la CPU por procesador lógico
• Frecuencia relativa activa de la CPU por procesador lógico (para determinar la residencia del turbo)
• Longitud de la cola del procesador del sistema
• Número de subprocesos del sistema

Informes de inteligencia de la GPU

Solo en el caso de los adaptadores de GPU NVIDIA y AMD compatibles, Dell Precision Optimizer 5.0 y versiones posteriores permiten que el usuario vea GPU mejorados. Esto incluye un adaptador de GPU e información de software, y datos en vivo para cada GPU. En la IU de Dell Precision Optimizer se muestran datos en forma de gráficos lineales.

La IU utilizará la interfaz de Dell Precision Optimizer para obtener la siguiente información acerca de la GPU:

- Número de GPU
- Versión del controlador de GPU
- Nombre del adaptador de GPU (solo para la GPU 0 activa)
- Versión del BIOS de video (solo para la GPU 0 activa)
- Tamaño del búfer de fotogramas (solo para la GPU 0 activa)

Los datos en vivo de GPU están disponibles solo con los adaptadores de Nvidia y AMD cuando el usuario ha iniciado sesión.

NOTA: En algunos sistemas móviles con adaptadores de GPU AMD, es posible que los datos en vivo válidos solo se muestren cuando haya una carga activa en ejecución en el adaptador de GPU AMD.

Se recopilará la siguiente información activa para cada GPU y se visualizará en forma de gráficos de líneas.

- Utilización de la GPU
- Temperatura de la GPU
- Velocidad del ventilador #0 de la GPU (%)
- Uso de la memoria de video

Informe de los diagnósticos del sistema

Dell Precision Optimizer 5.0 y versiones posteriores permiten que el usuario ejecute informes de diagnóstico del sistema. Estos son informes estándar que proporciona Microsoft; ejemplos de ellos son los informes del sistema, informes sobre la batería o informes de fiabilidad. El usuario debe poder generar un informe nuevo o ver el último informe generado. Solo pueden usar esta opción los usuarios con privilegios de administrador.

Esta función actúa como un acceso directo a las herramientas existentes de Microsoft. Los informes siguientes están disponibles desde este panel:

- El informe de diagnóstico del sistema contiene:
 - Los resultados del diagnóstico con los errores y avisos en el sistema
 - Una descripción general del uso de recursos
- El informe de confiabilidad del sistema contiene lo siguiente:
 - Una lista de los errores de aplicaciones, Windows y otros de las últimas semanas,
 - Los eventos y avisos informativos durante ese periodo.
 - El índice de estabilidad de Windows.
- Informe de batería (esta función solo está disponible en Windows 8 y versiones posteriores):
 - Los detalles de la batería instalada.
 - El historial y el uso reciente
 - Las estimaciones de duración y de capacidad de la batería

Notificaciones de rendimiento

Dell Precision Optimizer 4.0 y versiones posteriores permiten que el usuario habilite notificaciones de rendimiento. Le permite obtener notificaciones de cualquiera de los casos que se indican a continuación:
- Uso excesivo de la CPU
- Uso excesivo de la memoria
- Operaciones excesivas de lectura o escritura en el disco

Opciones de actualización

La IU de Dell Precision Optimizer proporciona un nuevo enlace al sitio web de soporte de Dell, en el que un usuario puede ver y solicitar piezas opcionales o de actualización para una plataforma específica. La aplicación debe utilizar la etiqueta de servicio del sistema para determinar cuáles son las actualizaciones disponibles. Esta función se implementa de forma interna con la herramienta upgztdeOpt.exe.
Mantenimiento del sistema

El mantenimiento del sistema o SM de Dell Precision Optimizer permite filtrar actualizaciones que se ven o se aplican según los siguientes criterios derivados de Dell Command | Update:

- Necesidad crítica (crítico, recomendado u opcional)
- Tipo (controladores de hardware, aplicaciones, BIOS y firmware)
- Categoría (audio, conjunto de chips, entrada, red o Bluetooth, almacenamiento, video y otros)
La IU de Dell Precision Optimizer permite que el usuario envíe comentarios a Dell. La IU de Dell Precision Optimizer cuenta con un enlace o un botón que puede utilizar el usuario para proporcionar sus comentarios. La IU usa una URL en el explorador que permitirá al usuario usar un formulario estándar de Dell para proporcionar comentarios sobre Dell Precision Optimizer.
Mejorar Dell Precision Optimizer

El programa para la mejora de la experiencia del usuario de Dell Precision Optimizer permite a los clientes de Dell participar en el desarrollo de versiones futuras de Dell Precision Optimizer. Si comparte información con Dell con respecto a cómo utiliza Dell Precision Optimizer, puede contribuir con avances en futuras versiones del producto.

El Programa para la mejora de la experiencia del usuario de Dell Precision Optimizer cumple con todas las disposiciones de la política de privacidad de Dell. Los datos recopilados se limitan al uso de Dell Precision Optimizer y la etiqueta de servicio de la estación de trabajo. No se recopilará ningún dato personal. Puede unirse o abandonar el programa en cualquier momento.

Esta función está deshabilitada de manera predeterminada.
Herramientillas empresariales

Proveedores de WMI

Dell Precision Optimizer y versiones posteriores incluyen un proveedor WMI para conceder acceso a la siguiente información. Consulte el Apéndice A para obtener descripciones de MOF. Los siguientes dos archivos son parte del paquete de Dell Precision Optimizer:

- Proveedor de WMI de Dell Precision Optimizer: dpoProv.mof
- Archivo de definiciones MOF de Dell Precision Optimizer SMS: sms_def_dpo3.mof
- Informes de DDV
- Versión del producto
- Última comprobación de la fecha de actualización
- Hora de la última actualización del sistema
- Última comprobación de los perfiles
- Historial del desencadenador de perfiles o políticas
- Lista de perfiles activos
- Notificaciones de rendimiento

DPOCMD.EXE

Dell Precision Optimizer 5.0 y versiones posteriores proporcionan la herramienta CLI, dpoCmd.exe, para permitir que el administrador de TI cuente con las siguientes capacidades:

- Agregar un perfil o una política nuevos.
- Indicar todos los perfiles
- Habilitar o deshabilitar un perfil.
- Programar informes de análisis del sistema con filtros específicos
- Ejecutar la actualización del sistema de Dell Precision Optimizer con filtros.
- Comprobar las actualizaciones del sistema de Dell Precision Optimizer con filtros.
- Exportar un perfil creado por el usuario
- Importar un perfil creado por el usuario
- Actualizar a una versión premium
- Habilitar o deshabilitar las funciones de la UI con las siguientes opciones de CLI, que también se controlan mediante los nuevos interruptores de la línea de comandos del instalador de Dell Precision Optimizer:

<table>
<thead>
<tr>
<th>Control</th>
<th>Definición</th>
<th>Predeterminado</th>
<th>Interruptor de la línea de comandos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProfileControl</td>
<td>Si el valor es 0, no permite que el usuario habilite ni des habilite perfiles.</td>
<td>1</td>
<td>PROFCTRL</td>
</tr>
<tr>
<td>ProfileUpdate</td>
<td>Si el valor es 0, no permite que el usuario busque nuevos perfiles.</td>
<td>1</td>
<td>PROFUPD</td>
</tr>
<tr>
<td>SystemUpdate</td>
<td>Si el valor es 0, no permite que el usuario busque actualizaciones del sistema.</td>
<td>1</td>
<td>SYSUPD</td>
</tr>
<tr>
<td>DDVControl</td>
<td>Si el valor es 0, no permite que el usuario habilite ni des habilite informes de análisis del sistema</td>
<td>1</td>
<td>DDVCTRL</td>
</tr>
<tr>
<td>Control</td>
<td>Definición</td>
<td>Predeterminado</td>
<td>Interruptor de la línea de comandos</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>UserFeedback</td>
<td>Si el valor es 0, no permite que el usuario proporcione retroalimentación sobre Dell Precision Optimizer.</td>
<td>1</td>
<td>USRFB</td>
</tr>
<tr>
<td>UpgradeOptions</td>
<td>Si el valor es 0, no permite que el usuario compruebe las opciones de actualización.</td>
<td>1</td>
<td>UPGOPTH</td>
</tr>
<tr>
<td>WorkloadAnalysis</td>
<td>Si el valor es 0, no permite que el usuario ejecute el análisis de carga de trabajo.</td>
<td>1</td>
<td>WKLANL</td>
</tr>
<tr>
<td>GfxPlugins</td>
<td>Si el valor es 0, no muestra las opciones de GfxPlugin al usuario.</td>
<td>1</td>
<td>GFXPLUGINS</td>
</tr>
<tr>
<td>ImproveDPO</td>
<td>Si el valor es 0, no permite mostrar la configuración de Dell Precision Optimizer al usuario.</td>
<td>1</td>
<td>IMPROVEDPO</td>
</tr>
<tr>
<td>ISVCertDrv</td>
<td>Si el valor es 0, no permite que el usuario vea ni instale controladores gráficos con certificación ISV.</td>
<td>1</td>
<td>ISVCERTGFX</td>
</tr>
<tr>
<td>SmartAlerts</td>
<td>Si el valor es 0, no permite que el usuario habilite ni deshabilite alertas inteligentes.</td>
<td>1</td>
<td>SMARTALERT</td>
</tr>
</tbody>
</table>

Uso de CLI:

```
dpoCmd.exe -savePolicy <complete_dpx_path>
dpoCmd.exe -saveProfile <complete_dpx_path>
dpoCmd.exe -listProfiles

dpoCmd.exe -enableProfile <profile_guid>
dpoCmd.exe -disableProfile <profile_guid>
dpoCmd.exe -scheduleReports <numReports> <reportDuration> [-r <ddvSubSystem>] [-r <ddvSubSystem>] ...
```

- donde `<reportDuration>` puede ser 0, 4, 6, 8 o 12
 - 0 significa un informe diario
 - 4 significa un informe cada 4 horas
 - 6 significa un informe cada 6 horas, etc.
- `-r <ddvSubSystem>` eliminará ese subsistema y los datos no aparecerán en los informes de DDV que se generen.
- `<ddvSubSystem>` puede ser una de las siguientes opciones:
 - Batería
 - Térmico
 - Ventilador
 - Procesador
 - Memoria
 - Red
 - Almacenamiento

```
dpoCmd.exe -cancelReports
```

dpoCmd.exe -enableFeatures <feature> [<feature> ...], donde `<feature>` puede ser una de las siguientes opciones:

- PROFCTRL
- PROFUPD
- SYSUPD
- DDVCTRL
- USRFB
dpoCmd.exe -disableFeatures <feature> [<feature> ...], donde <feature> puede ser una de las siguientes opciones:

- PROCTRL
- PROFUPD
- SYSUPD
- DDVCTRL
- USRFB
- UPGOPT
- WKLANL
- GFXPLUGINS
- IMPROVEDPO
- ISVCERTGFX
- SMARTALERT

dpoCmd.exe -checkForUpdatesNow -criticality:CRO -filter:BDAF -device:ACMSNV <activityLogFileName>

donde -criticality: puede ser una o varias de las siguientes opciones:

- C => crítico
- R => recomendado
- O => opcional

donde -filter: puede ser una o varias de las siguientes opciones:

- B => BIOS
- D => controladores
- A => aplicaciones
- F => firmware

donde -device: puede ser una o varias de las siguientes opciones:

- A => audio
- C => conjunto de chips
- M => ratón/teclado
- S => almacenamiento
- N => red/Bluetooth
- V => vídeo

dpoCmd.exe -exportProfile <profile_guid or unique_profile_name> <dpzFileName>
dpoCmd.exe -importProfile <dpzFileName>
dpoCmd.exe -upgradeToPremium <licenseKey>

donde licenseKey es una clave alfanumérica y no un archivo que contiene la clave.

Configuración de los interruptores de la línea de comandos

El instalador de Dell Precision Optimizer 5.0 proporciona switches de línea de comandos para permitir que el administrador de TI controle ciertos comportamientos del paquete del cliente. Esta lista se menciona en la sección 8.2.
Tabla 7. Configuración de los interruptores de la línea de comandos

<table>
<thead>
<tr>
<th>Interruptores de la línea de comandos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup.exe PROFUPD=0 WKLANL=0</td>
<td>Para instalar Dell Precision Optimizer y no permitir que el usuario compruebe los nuevos perfiles ni ejecute el análisis de carga de trabajo.</td>
</tr>
</tbody>
</table>

Además, las nuevas opciones de GUI=0 permiten al administrador de TI instalar el cliente Dell Precision Optimizer sin ningún componente de la IU; por ejemplo, el modo sin periféricos. El usuario no puede controlar el software. El administrador de TI puede usar la nueva herramienta de CLI para habilitar o deshabilitar otras funciones de tiempo de ejecución.

SCCM

Este es uno de los métodos que utilizan los administradores de TI actualmente para administrar sus sistemas y aplicaciones de software de forma centralizada. En esta sección, se entregan ejemplos sobre cómo los administradores de TI pueden utilizar las herramientas de SCCM para administrar la aplicación Dell Precision Optimizer.

NOTA: Existen otros métodos y herramientas aparte de SCCM en el sector. Use los ejemplos que se indican para administrar Dell Precision Optimizer en esos entornos.

Instrucciones para crear el paquete de programa de aplicación de Dell Precision Optimizer

Siga estos pasos para crear un paquete de Dell Precision Optimizer que se pueda implementar en un sistema cliente en un entorno empresarial. Nota: Los pasos pueden variar en función de la versión de SCCM que use.

1. Descargue los archivos de Dell Precision Optimizer necesarios para la instalación.
2. En la consola Configuration Manager:
 - Abra la página de la Biblioteca de software.
 - Haga clic en la carpeta Descripción general.
 - Haga clic en Administración de aplicaciones.
 - Haga clic con el botón derecho del mouse en Aplicaciones y seleccione Crear aplicación.
3. En el asistente Crear aplicación:
 - Seleccione Manualmente y especifique la información de la aplicación.
 - Nombre la aplicación, que es Dell Precision Optimizer 5.00.02 y haga clic en Siguiente.
 - En el catálogo de aplicaciones, haga clic en Siguiente.
 - En la página Tipos de implementación, haga clic en Agregar.
 - En el asistente Crear tipo de implementación, seleccione Tipo: instalador de scripts y, a continuación, haga clic en Siguiente.
 - Asigne un nombre al tipo de implementación y haga clic en Siguiente.
 - Escriba la ubicación de los archivos de Dell Precision Optimizer en la ubicación del contenido.
 - En Programa de instalación, escriba lo siguiente: “PoaInstaller.exe” /s
 - En la pestaña Métodos de detección, haga clic en Agregar cláusula.
 - La regla de detección es la siguiente:

   ```
   Setting Type: Registry
   Hive: HKEY_LOCAL_MACHINE
   Key: Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\{D66A3355-FEA4-4F60-8BAF-D6CBEDB396D8}
   ```
 - Haga clic en Aceptar para cerrar la ventana Regla de detección y, en el asistente Crear tipo de implementación, haga clic en Siguiente.
 - Especifique las experiencias de usuario de la forma siguiente:
 - Comportamiento de la instalación: instalar para el sistema
 - Requisito de inicio de sesión: si un usuario ha iniciado sesión o no
 - Visibilidad del programa de instalación: normal
 - En la pestaña Requisitos, haga clic en Siguiente.
 - En la pestaña Dependencias, haga clic en Siguiente.
Instrucciones para la implementación de la aplicación

Una vez que se haya creado el paquete, utilice las siguientes instrucciones para implementarlo en los clientes seleccionados:

1. Haga clic con el botón derecho para implementarlo y seleccione Implementar.
2. Seleccione la colección de dispositivos en la cual desea instalar en Dell Precision Optimizer.
3. Asegúrese de que la opción Distribuir el contenido de las dependencias automáticamente esté marcada y haga clic en Siguiente.
4. En la pestaña Contenido, haga clic en Agregar para seleccionar el punto de distribución.
5. En la pestaña Configuración de la implementación, debe tener la siguiente configuración:
 - Acción: instalar
 - Objetivo: Obligatorio

Verificación de la implementación correcta en los sistemas cliente

Para verificar la implementación correcta en los sistemas cliente:

1. Abra Centro de software en el sistema cliente y compruebe si Dell Precision Optimizer está instalado.

 NOTA: La instalación puede tardar unos minutos después de implementar la aplicación

Cambio del comportamiento del cliente de Dell Precision Optimizer mediante DPOCMD.EXE

A continuación, se presentan los pasos que puede seguir para ejecutar CLI de Dell Precision Optimizer (dpoCmd.exe) en un sistema de destino y cambiar el comportamiento del software de Dell Precision Optimizer en ese sistema. En el siguiente ejemplo se muestra el uso de dpoCmd.exe para habilitar un perfil de Dell Precision Optimizer (After Effects de Adobe).

Creación de un paquete de software

Para crear un paquete de software:

1. En la consola Configuration Manager:
 a. Abra la página de la biblioteca de software.
 b. Haga clic en la pestaña Descripción general.
 c. Abra la pestaña Administración de aplicaciones.
 d. Haga clic con el botón derecho en Paquetes y seleccione Crear paquete nuevo.
2. En el asistente Crear paquete y programa:
 a. Defina el nombre: habilitar un perfil de Dell Precision Optimizer.
 b. Especifique la información del paquete y haga clic en Siguiente.
3. En la pestaña Tipo de programa, seleccione Programa estándar.
4. En la pestaña Programa estándar:
a. Nombre: habilitar Adobe After Effects
b. Línea de comandos: dpoCmd.exe –enableProfile {2F066600-FA52-4F57-890D-2621D39B0BE9})
c. Carpeta de inicio: C:\program files\dell\ppo
d. Ejecutar: normal
e. El programa puede ejecutarse: si el usuario inició sesión o no
f. Modo de ejecución: ejecutar con derechos de administrador
g. Modo de unidad: funciona con nombre de UNC
5. En la pestaña Requisitos, seleccione Este programa se puede ejecutar en cualquier plataforma.
6. Haga clic en Siguiente, revise el resumen del paquete y verifique que el paquete se haya creado correctamente.

REALICE la implementación de un paquete de software Habilitar un perfil de Dell Precision Optimizer

1. En la consola Configuration Manager:
 a. Abra la página de la biblioteca de software.
 b. Haga clic en la pestaña Descripción general.
 c. Abra la pestaña Administración de aplicaciones.
 d. Haga clic en Paquetes.
2. Haga clic con el botón derecho en el paquete de software Habilitar perfil DPO y seleccione Implementar.
3. En el asistente Implementar software:
 a. En la pestaña General, haga clic en navegar para seleccionar la colección de dispositivos y haga clic en Siguiente.
 b. En la pestaña Contenido, haga clic en Agregar para agregar un punto de distribución y, a continuación, haga clic en Siguiente.
 c. En la pestaña Configuración de la implementación, debe tener la configuración siguiente:
 • Acción: instalar
 • Objetivo: Obligatorio
 • Marque la casilla de los paquetes Enviar señales.
 d. En la pestaña Programación, seleccione la hora de la implementación y asegúrese de que la opción Volver a ejecutar el comportamiento esté en Siempre volver a ejecutar el programa. Para implementarlo, haga clic en Nuevo y seleccione Asignar inmediatamente tras este evento: lo antes posible.
 e. En la pestaña Experiencia del usuario, asegúrese de que se hayan marcado las siguientes casillas de verificación
 1. Instalación del software
 2. Reinicio del sistema (si es necesario para completar la instalación)
 3. Confirmación de cambios dentro de la fecha límite o en una ventana de mantenimiento (reinicio necesario).
 f. En la pestaña Puntos de distribución:
 1. Opciones de implementación: descargar contenido del punto de distribución y ejecutarlo de forma local.
 2. Asegúrese de que se haya marcado la opción Permitir a los clientes compartir contenido con otros clientes en la misma subred.
 3.
 g. Haga clic en Siguiente y verifique que la implementación se haya completado correctamente.

Informes SSRS

Como administrador del sistema, puede crear varios informes según los datos recopilados de los proveedores de WMI de Dell Precision Optimizer. Si lo desea, puede incluir sms_def_dpo3.mof para ampliar las definiciones de la base de datos y extraer los datos correspondientes de los sistemas de cliente de Dell Precision Optimizer. Puede seleccionar algunos o todos los elementos de datos que desee revisar. El valor predeterminado está establecido para seleccionar todos los elementos de datos de Dell Precision Optimizer.

Importación del archivo sms_def_dpo3.mof para definir las clases de inventario de hardware

1. En la consola Configuration Manager:
 a. Abra la página Administración.
 b. Haga clic en la pestaña Descripción general.
 c. Haga clic en la pestaña Configuración del sitio y seleccione Configuración de cliente.
2. Haga clic con el botón derecho en Configuración de cliente existente y seleccione las propiedades o cree una nueva configuración personalizada de cliente.

Herramientas empresariales 21
3. En la pestaña Inventario de hardware, seleccione Definir clases.
4. Seleccione Importar y vaya a la ubicación del archivo sms_def_dpo3.mof.
5. Haga clic en Aceptar para importar el archivo y cierre la ventana Clases de inventario de hardware.

Después de guardar los datos recopilados en la base de datos de SQL, puede crear otro tipo de informes de Dell Precision Optimizer. Con el software Dell Precision Optimizer se proporcionan varias muestras (*.RDL). Puede importar estos archivos RDL, conectarlos a la base de datos de SQL y ejecutar los informes.

Para importar un archivo .RDL
1. Abra SQL Server Data Tools.
2. En el explorador de soluciones, haga clic con el botón derecho en la carpeta a la que desea agregar el archivo .RDL.
 a. Seleccione Agregar un elemento existente.
 b. Seleccione el archivo .RDL.
3. Una vez que se haya importado el archivo, ábralo y seleccione la pestaña Diseño.

Para asegurarse de que el archivo .RDL usa la fuente de datos correcta
1. En el panel Datos de informe, haga clic en Conjuntos de datos y haga clic con el botón derecho en uno de los conjuntos de datos y seleccione Propiedades del conjunto de datos.
2. En la ventana Propiedades del conjunto de datos:
 a. la opción Usar un conjunto de datos integrado en mi informe está seleccionada.
 b. En origen de Datos, haga clic en Nuevo....
 c. En la ventana Propiedades del origen de datos, marque Usar referencia del origen de datos compartida y seleccione el origen de datos correcto.
 d. Haga clic en Ok.
3. Repita los pasos 1 y 2 en todos los conjuntos de datos de la carpeta Conjuntos de datos.

Información del disco en varios sistemas
Este informe muestra información del disco de varios sistemas que utilizan el último informe de análisis del sistema.

<table>
<thead>
<tr>
<th>Etiqueta de servicio</th>
<th>Lectura de bytes (MB)</th>
<th>Escritura de bytes (MB)</th>
<th>Tiempo de lectura (%)</th>
<th>Tiempo de escritura (%)</th>
<th>Tiempo de inactividad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98K94X1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>F8W4WZ1</td>
<td>0</td>
<td>460</td>
<td>0</td>
<td>0</td>
<td>98</td>
</tr>
</tbody>
</table>
Informe del disco para un solo sistema

Este informe muestra información del disco de un único sistema en varios informes.

Tabla 9. Información del disco para un solo sistema

<table>
<thead>
<tr>
<th>Fecha del informe</th>
<th>Lectura de bytes (MB)</th>
<th>Escritura de bytes (MB)</th>
<th>Tiempo de lectura (%)</th>
<th>Tiempo de escritura (%)</th>
<th>Tiempo de inactividad (%)</th>
<th>Horas de actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-07-15T11:06: 53-05:00</td>
<td>5</td>
<td>526</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>2015-07-15T07:06:53-05:00</td>
<td>16</td>
<td>606</td>
<td>0</td>
<td>1</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>2015-07-15T03:06:53-05:00</td>
<td>568</td>
<td>949</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>3,1</td>
</tr>
<tr>
<td>2015-07-14T23:06:53-05:00</td>
<td>6</td>
<td>550</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>2015-07-14T19:01:05:00</td>
<td>0</td>
<td>466</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>2015-07-14T15:46:05:00</td>
<td>0</td>
<td>447</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>3,95</td>
</tr>
<tr>
<td>2015-06-22T15:4:47-05:00</td>
<td>369</td>
<td>354</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>3,48</td>
</tr>
</tbody>
</table>
KACE

Este es uno de los métodos que utilizan los administradores de TI actualmente para administrar sus sistemas y aplicaciones de software de forma centralizada. En esta sección, se entregan ejemplos de cómo los administradores de TI pueden usar el dispositivo de KACE para administrar la aplicación de Dell Precision Optimizer.

NOTA: Los pasos siguientes se han verificado en KACE Appliance 6.4.120756 K1000. Si usa una versión de KACE diferente, es posible que los pasos reales sean ligeramente diferentes.

Instrucciones para la implementación de Dell Precision Optimizer con KACE

Los administradores de TI pueden usar el siguiente procedimiento para implementar la aplicación Dell Precision Optimizer en los sistemas de clientes seleccionados de su dominio.

Creación de un script de instalación

Desde la consola de KACE Appliance:
1. Vaya a *Scripting*-> *Scripts*-> *Elegir acción*-> *Nuevo*.
2. En la página *Información de scripts*, escriba la siguiente información:
 - **Nombre** -> Instalar DPO
 - **Habilitado** -> Marque la casilla
 - **Tipo** -> K-Script en línea
 - **Descripción** -> Este script instalará el software de cliente DPO
 - **Implementar** -> Ninguno
 - **Sistemas operativos** -> Desmarque *Seleccionar sistemas operativos específicos* y seleccione Microsoft Windows
 - **(Alternativa) Sistemas operativos** -> Seleccione sistemas operativos específicos de Windows para la implementación
 - **Ejecutar Windows como** -> Sistema local
 - **Notificar** -> Ninguno
 - **Programa** -> Ninguno
 - **Dependencias** -> Agregar todos los archivos de paquetes DPO como dependencias nuevas
 - **Tareas** -> Seleccione Nueva tarea
 - **Verificar** -> Haga clic en *Agregar*, seleccione *Iniciar un programa* e ingrese los datos siguientes:
 - **Directorio** -> $(KACE_DEPENDENCY_DIR)
 - **Archivo** -> PoaInstaller.exe
 - **Esperar la finalización** -> MARCADO
 - **Visible** -> NO ESTÁ MARCADO
 - **Parámetros** -> Logfile=c:\temp\dpo.log /s
 - **Proceso correcto** -> Ninguno
 - **Corrección** -> Ninguno
 - **Corrección con éxito** -> Ninguno
 - **Corrección con errores** -> Ninguno
 - **Tareas** -> Seleccione Nueva tarea
 - **Verificar** -> Haga clic en *Agregar*, seleccione *Verificar un archivo existente* e ingrese los datos siguientes:
 - **Directorio** -> C:\Program Files\Dell\DPO
 - **Archivo** -> dpoCmd.exe
 - **Guardar cambios**
 - **Proceso correcto** -> Ninguno
 - **Corrección** -> Ninguno
 - **Corrección con éxito** -> Ninguno
 - **Corrección con errores** -> Ninguno
 - **Haga clic en Guardar**.

Ejecución de un script de instalación en los sistemas seleccionados

Desde la consola de KACE Appliance:
1. Haga clic en *Scripting* y, a continuación, seleccione *Ejecutar ahora*.
2. Seleccione *Instalar DPO* desde el menú desplegable *Scripts*.
3. En *Etiquetas*, seleccione una etiqueta de dispositivos Windows donde desee implementar Dell Precision Optimizer O seleccione manualmente un conjunto de sistemas.
4. Haga clic en *Ejecutar ahora*.
5. Haga clic en *Guardar*.

Esto inicia la implementación del software de cliente de Dell Precision Optimizer en los sistemas seleccionados. Estos pasos también se pueden personalizar.

Cambio del comportamiento del cliente de Dell Precision Optimizer mediante DPOCMD.EXE

A continuación, se presentan los pasos que puede seguir para ejecutar CLI de Dell Precision Optimizer (dpoCmd.exe) en un sistema de destino y cambiar el comportamiento del software de Dell Precision Optimizer en ese sistema. En el ejemplo siguiente se muestra el uso de dpoCmd.exe para habilitar un perfil de Dell Precision Optimizer (After Effects de Adobe).
Creación de un script de instalación

Desde la consola de KACE Appliance:

1. Vaya a Scripting->Scripts->Elegir acción->Nuevo.
2. En la página Información de scripts, escriba la siguiente información:
 - Nombre -> Habilitar perfil DPO de After Effects
 - Habilitado -> Marque la casilla
 - Tipo -> K-Script en línea
 - Descripción -> Este script habilitará el perfil de After Effects en el software de cliente de DPO
 - Implementar -> Ninguno
 - Sistemas operativos -> Desmarque Seleccionar sistemas operativos específicos y seleccione Microsoft Windows
 - (Alternativa) Sistemas operativos -> Seleccionar sistemas operativos específicos de Windows para la implementación
 - Ejecutar Windows como -> Sistema local
 - Notificar -> Ninguno
 - Programa -> Ninguno
 - Dependencias -> Ninguno
 - Tareas -> Seleccione Nueva tarea
 - Verificar -> Haga clic en Agregar, seleccione Iniciar un programa e ingrese los datos siguientes:
 - Directorio -> C:\Program Files\Dell\PPO
 - Archivo -> dpoCmd.exe
 - Esperar la finalización -> MARCADO
 - Visible -> NO ESTÁ MARCADO
 - Parámetros -> -enableProfile {2F066600-FA52-4F57-890D-2621D39B0BE9}
 - Guarde los cambios.
 - Proceso correcto -> Ninguno
 - Corrección -> Ninguno
 - Corrección con éxito -> Ninguno
 - Corrección con errores -> Ninguno
 - Tareas -> Seleccione Nueva tarea
 - Verificar -> Haga clic en Agregar, seleccione Verificar un archivo existente e ingrese los datos siguientes:
 - Directorio -> C:\Program Files\Dell\DPO
 - Archivo -> dpoCmd.exe
 - Guardar cambios.
 - Proceso correcto -> Ninguno
 - Corrección -> Ninguno
 - Corrección con éxito -> Ninguno
 - Corrección con errores -> Ninguno
 - Haga clic en Guardar.

Ejecución de este script en los sistemas seleccionados

Desde la consola de KACE Appliance:

1. Haga clic en Scripting y, a continuación, seleccione Ejecutar ahora.
2. Seleccione Habilitar perfil DPO de After Effects desde el menú desplegable Scripts.
3. En Etiquetas, seleccione una etiqueta de dispositivos Windows donde desee implementar Dell Precision Optimizer O seleccione manualmente un conjunto de sistemas.

Informes personalizados

A continuación se muestran algunos ejemplos sobre cómo puede recopilar datos de los clientes de Dell Precision Optimizer mediante clases WMI y crear informes personalizados. Dell Precision Optimizer proporciona un gran conjunto de clases WMI para permitir que un administrador de TI cree una gran variedad de informes. En los siguientes pasos se indica cómo crear un informe de Dell Precision Optimizer. Un administrador de TI puede personalizar qué datos se deben recopilar y conocer cómo presentar esos datos.
Creación de reglas de inventario personalizadas

Desde la consola de KACE Appliance:

1. Haga clic en **Inventario** y, a continuación, seleccione **Software**.
2. Seleccione **Acción** y seleccione **Nuevo**.
3. En la página **Detalles de software**, ingrese la siguiente información:
 - **Nombre** -> Inventario de ejemplo de DPO
 - **Versión** -> v1
 - **Editor** -> Dell
 - **Sistemas operativos compatibles** -> Seleccionar sistemas operativos
 - **Regla de inventario personalizada** -> ShellCommandTextReturn(wmic /namespace:\root\cimv2\DPO Path DPO_Profiles get /ALL)
 - Haga clic en **Guardar**.
4. Haga clic en el nuevo registro de inventario personalizado y pase el cursor sobre el registro recién creado. Anote el identificador (ID#) que aparece al final de la dirección URL. La URL con el ID# aparece en la esquina inferior izquierda de la página. La necesitará más tarde para crear el informe.

Forzado de la recopilación de inventario

Desde la consola de KACE Appliance:

1. Haga clic en **Inventario** y seleccione **Dispositivos**.
2. Seleccione los dispositivos en los que está instalado Dell Precision Optimizer (puede usar una etiqueta inteligente para este fin).
3. Seleccione **Acción** y seleccione **Forzar inventario**.
4. Una vez que se haya completado el ciclo de inventario, vaya a uno de los dispositivos seleccionados en línea.
5. En la página **Detalles del dispositivo**, haga clic en **Software** y expanda **Campos de inventario personalizados**. Se mostrará una lista de perfiles y sus estados actuales.

NOTA: Ahora que ajustó la Configuración de scripts e Inventario personalizado y completó un ciclo de inventario personalizado en todos los sistemas deseados, es hora de usar las capacidades de generación de informes de K1000. Aunque puede extraer la información de Dell Precision Optimizer de K1000 mediante un informe basado en el asistente, usaremos un informe de SQL personalizado para procesar y filtrar nuestra información en un informe útil.

Crear informe

Desde la consola de KACE Appliance:

1. Haga clic en **Creación de informes** y, a continuación, seleccione **Informes**.
2. Seleccione **Acción** y luego **Nuevo (SQL)**.
3. En la página **Detalles del informe**, escriba la siguiente información:
 - **Título** -> Informe de perfil de Dell Precision Optimizer de muestra
 - **Descripción** -> Es un informe de Dell Precision Optimizer de muestra...
 - **Categoría** <cualquiera> o Nueva categoría -> Informes DPO
 - **SQL** ->

   ```sql
   SELECT
   MACHINE.NAME AS Name,
   MACHINE.IP AS Ip,
   MACHINE.USER_LOGGED AS LoggedUser,
   MACHINE.CS_MANUFACTURER AS Manufacturer,
   MACHINE.CS_MODEL AS Model,
   MACHINE_CUSTOM_INVENTORY.STR_FIELD_VALUE AS MACHINE_CUSTOM_INVENTORY_XXXX,
   COUNT(MACHINE_CUSTOM_INVENTORY.STR_FIELD_VALUE) AS Total_Devices
   FROM
   MACHINE_CUSTOM_INVENTORY
   JOIN MACHINE ON MACHINE.ID = MACHINE_CUSTOM_INVENTORY.ID
   WHERE MACHINE_CUSTOM_INVENTORY.SOFTWARE_ID = XXXX
   GROUP BY MACHINE_CUSTOM_INVENTORY.STR_FIELD_VALUE
   ORDER BY MACHINE.CS_MANUFACTURER ASC, MACHINE.CS_MODEL ASC
   ```

 Sustituya XXXX por el ID# de su inventario personalizado que recopiló anteriormente cuando se creó la regla de inventario personalizada.
4. Haga clic en **Guardar**.
Ejecución de informes

Desde la consola de KACE Appliance:

1. Haga clic en Creación de informes y, a continuación, seleccione Informes.
2. Busque DPO para ver los informes.
3. Seleccione el informe correspondiente, por ejemplo, DPO Sample Profile Report, y seleccione el formato de informe que desee, por ejemplo, HTML.
typedef enum { EXIT_CODE_SUCCESS = (int) 0,
EXIT_CODE_ERROR_GET_COMP_NAME = (int) 1,
EXIT_CODE_COINIT_FAILED = (int) 2,
EXIT_CODE_PROFILE_NOT_FOUND = (int) 3,
EXIT_CODE_ERROR = (int) 4,
EXIT_CODE_ERROR_GET_COMP_SID = (int) 5,
EXIT_CODE_COINIT_SECURITY_FAILED = (int) 6,
EXIT_CODE_MISSING_COM_INTERFACE = (int) 7,
EXIT_CODE_PROFILE_GETSTATE_FAILED = (int) 8,
EXIT_CODE_PROFILE_SETSTATE_FAILED = (int) 9,
EXIT_CODE_MISSING_STORE = (int) 40,
EXIT_CODE_NULL_STORE = (int) 41,
EXIT_CODE_READFILE_FAILED = (int) 42,
EXIT_CODE_WRITEFILE_FAILED = (int) 43,
EXIT_CODE_OUT_OF_MEM = (int) 44,
EXIT_CODE_SAVE_STORE_FAILED = (int) 45,
EXIT_CODE_ENCRYPTION_FAILED = (int) 46,
EXIT_CODE_DDV_REPORTS_ALREADY_SCHEDULED = (int) 60,
EXIT_CODE_ENABLE_DDV_FAILED = (int) 61,
EXIT_CODE_SET_DDV_FILTERS_FAILED = (int) 62,
EXIT_CODE_INVALID_DDV_REPORT_DURATION = (int) 63,
EXIT_CODE_SET_REPORT_FREQ_FAILED = (int) 64,
EXIT_CODE_SET_REPORT_NUM_FAILED = (int) 65,
EXIT_CODE_DISABLE_DDV_FAILED = (int) 66,
EXIT_CODE_ERROR_ENUM_DDV_SUBSYSTEMS = (int) 67,
EXIT_CODE_DO_UPDATE_FAILED = (int) 70,
EXIT_CODE_PREV_CHECK_FAILED = (int) 71,
EXIT_CODE_PREV_UPDATE_ACTION_IN_PROGRESS = (int) 72,
EXIT_CODE_REGISTER_EVENTS_FAILED = (int) 73,
EXIT_CODE_CHECK_UPDATE_FAILED = (int) 74,
EXIT_CODE_SET_FEATURE_FAILED = (int) 80,
EXIT_CODE_UI_IS_RUNNING = (int) 98,
EXIT_CODE_USAGE_ERROR = (int) 99
} EXIT_CODE;
APÉNDICE B: archivos de definición de la clase WMI

```csharp
#pragma autorecover
#pragma namespace(\\\.\root\cimv2) instance of __Namespace {
    Name = "DPO" ;
};
#pragma namespace(\\\.\root\cimv2\DPO)
/**************************************************************/
*DPO_HardwareInfo
There is one instance of this class for each summary file present on the system.
The instance will contain all the hardware data and the statistics from the summary file.
HardwareInfoGUID is the unique ID from the summary file.
HardwareInfoGUID associates this instance with instances of other dependent classes that may have multiple instances (eg. DPO_Monitor, DPO_BiosInternalLogs etc.)
**************************************************************/
[Description("An instance of this class contains all the hardware data and " statistics from a summary file.")]
Dynamic,Provider("DPOProv")
class DPO_HardwareInfo {
    [Description("Unique ID from the summary file.")]
    Key string HardwareInfoGUID;
    [Description("Revision of Dell Data Vault.")]
    string DDV_Revision;
    [Description("Date/time when the summary file was created.")]
    string File_Creation_Datetime;
    [Description("Date/time when Dell Data Vault began collecting the raw data.")]
    string Data_Begining_Date;
    [Description("Date/time when Dell Data Vault stopped collecting the raw data and generated the statistics.")]
    string Data_Ending_Date;
    [Description("Indicates whether this summary was created on service startup, regular timer or on demand.")]
    string Summary_Type;
    [Description("Service Tag of the system obtained from the BIOS.")]
    string System_Service_Tag;
    [Description("Customer Name 1")]
    string Customer_Name_1;
    [Description("Customer Name 2")]
    string Customer_Name_2;
    [Description("Customer Name 3")]
    string Customer_Name_3;
    [Description("Customer specific data 1")]
    string Customer_DEFINED_1;
    [Description("Customer specific data 2")]
    string Customer_DEFINED_2;
    [Description("Customer specific data 3")]
    string Customer_DEFINED_3;
```
string System_Model;
[string("ePPID of the motherboard obtained from the BIOS.")] string Motherboard_ePPID;
[string("Current BIOS Version.")] string BIOS_Version;
[string("Type of the system eg. Laptop or Desktop")] string System_Type;
[string("Serial number of the CPU.")] string Processor_Serial_Number;
[string("Processor name.")] string Processor_Information;
[string("Processor speed.")] string Processor_Speed;
[string("Average of the percentage LCD brightness when the system was on AC.")] sint16 LCD_Avg_Brightness_AC_Pct;
[string("Average of the percentage LCD brightness when the system was on battery.")] sint16 LCD_Avg_Brightness_DC_Pct;
[string("Video Controller name.")] string Video_Controller;
[string("Video controller memory size.")] sint32 Video_RAM_Bytes;
[string("Number of displays on the system.")] sint16 Number_of_Displays;
[string("Operating system, 32bit vs 64bit & system locale information.")] string Operating_System;
[string("AC adapter power (for notebooks only).")]
string AC_Adapter_Type_W;
[string("Number of hours the system was on.")] real32 Hours_On;
[string("Number of hours the system was on when powered by AC.")] real32 Hours_On_AC;
[string(" Number of hours the system was on when powered by battery (for notebooks only).”)] real32 Hours_On_Batt;
[string("Number of displays on the system.")] sint16 Number_Of_Battery_Insertions;
[string("Number of times the primary battery was inserted into the system (for notebooks only).”)]
// NameChange sint16 Num_Battery_Insertions;
[string("Number of battery sessions where the session was between 0 to 30 mins (for notebooks only).”)]
sint16 Battery_Sessions_0_30mins;
[string("Number of battery sessions where the session was between 30 mins to 1 hr(for notebooks only).”)]
sint16 Battery_Sessions_30min_1hr;
[string("Number of battery sessions where the session was between 1 to 2 hrs (for notebooks only).”)]
sint16 Battery_Sessions_1_2hr;
[string("Number of battery sessions where the session was between 2 to 3 hrs(for notebooks only).”)]
sint16 Battery_Sessions_2_3hr;
[string("Number of battery sessions where the session was between 3 to 4 hrs (for notebooks only).”)]
sint16 Battery_Sessions_3_4hr;
[string("Number of battery sessions where the session was between 4 to 6 hrs (for notebooks only).”)]
sint16 Battery_Sessions_4_6hr;
[string("Number of battery sessions where the session was between 6 to 8 hrs (for notebooks only).”)]
sint16 Battery_Sessions_6_8hr;
[string("Number of battery sessions where the session was between 8 to 12 hrs (for notebooks only).”)]
sint16 Battery_Sessions_8_12hr;
[string("Number of battery sessions where the session was greater than 12 hrs (for notebooks only).”)]
sint16 Battery_Sessions_GT12hr;
[string("Number of system shutdowns.")]
sint16 S5_Requests;
sint16 S4_Requests;
real32 S4_mins;

sint16 S4_Event_Bin_0_30_mins;

sint16 S4_Requests;
real32 S4_mins;

sint16 S4_Event_Bin_30_60_mins;

sint16 S4_Requests;
real32 S4_mins;

sint16 S4_Event_Bin_60_120_mins;

sint16 S4_Requests;
real32 S4_mins;

sint16 S4_Event_Bin_120_240_mins;

sint16 S4_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_0_30_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_30_60_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_60_120_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_120_240_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_240_480_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_Bin_480_960_mins;

sint16 S3_Requests;
real32 S3_mins;

sint16 S3_Event_GT_960_mins;

sint16 CPU_0_Pct;
real32 Avg_CPU_Consumption;

sint16 CPU_1_20_Pct;
real32 CPU_20_40_Pct;

sint16 CPU_40_60_Pct;
real32 CPU_60_80_Pct;

sint16 CPU_80_100_Pct;
real32 Avg_CPU_Throttle;

sint16 Throttle_0_Pct;
real32 Throttle_1_25_Pct;

sint16 Throttle_25_50_Pct;
real32 Throttle_25_50_Pct;
sint16 Throttle_50_75_Pct;
[Description("Number of times the CPU throttle was between 75 to 100%.")]
sint16 Throttle_75_100_Pct;
[Description("Percentage of time the processor (all processors combined) was in C1 state.")]
sint16 C1_State_Pct;
[Description("Percentage of time the processor (all processors combined) was in C2 state.")]
sint16 C2_State_Pct;
[Description("Percentage of time the processor (all processors combined) was in C3 state.")]
sint16 C3_State_Pct;
[Description("Number of LID transitions. One open-close is considered as one transition.")]
sint16 Lid_Transitions;
[Description("Number of hours the system was ON with LID open.")]
real32 Lid_Hours_Open;
[Description("Number of hours the system was ON with LID closed.")]
real32 Lid_Hours_Closed;
[Description("Number of dock events.")]
sint16 Number_Dock_Events;
[Description("Total system RAM memory.")]
string System_RAM_Bytes;
[Description("Total system RAM memory in GB.")]
real32 System_RAM_GB;
[Description("Percentage of time the system had to access hard disk to resolve page faults.")]
sint16 pgs_per_sec_pct;
[Description("Minimum number of pages read from or written to the disk to resolve hard page faults.")]
sint32 min_pgs_per_sec;
[Description("Maximum number of pages read from or written to the disk to resolve hard page faults.")]
sint32 max_pgs_per_sec;
[Description("Average number of pages read from or written to the disk to resolve hard page faults.")]
real32 avg_pgs_per_sec;
[Description("Percentage of time the system had between 0 to 256 MB of free physical memory.")]
real32 FreeMem_0_256MB_Pct;
[Description("Percentage of time the system had between 256 MB to 512 MB of free physical memory.")]
real32 FreeMem_256_512MB_Pct;
[Description("Percentage of time the system had between 512 MB to 768 MB of free physical memory.")]
real32 FreeMem_512_768MB_Pct;
[Description("Percentage of time the system had between 768 MB to 1024 MB of free physical memory.")]
real32 FreeMem_768_1024MB_Pct;
[Description("Percentage of time the system had between 1024 MB to 1280 MB of free physical memory.")]
real32 FreeMem_1024_1280MB_Pct;
[Description("Percentage of time the system had between 1280 MB to 1536 MB of free physical memory.")]
real32 FreeMem_1280_1536MB_Pct;
[Description("Percentage of time the system had between 1536 MB to 1792 MB of free physical memory.")]
real32 FreeMem_1536_1792MB_Pct;
[Description("Percentage of time the system had between 1792 MB to 2048 MB of free physical memory.")]
real32 FreeMem_1792_2048MB_Pct;
[Description("Percentage of time the system had between 2048 MB to 2304 MB of free physical memory.")]
real32 FreeMem_2048_2304MB_Pct;
[Description("Percentage of time the system had between 2304 MB to 2560 MB of free physical memory.")]
real32 FreeMem_2304_2560MB_Pct;
[Description("Percentage of time the system had between 2560 MB to 2816 MB of free physical memory.")]
real32 FreeMem_2560_2816MB_Pct;
[Description("Percentage of time the system had between 2816 MB to 3072 MB of free physical memory.")]
real32 FreeMem_2816_3072MB_Pct;
[Description("Percentage of time the system had more than 3072 MB of free physical memory.")]
real32 FreeMem_GT3072MB_Pct;
real32 AvailMem_0_256MB_Pct;
real32 AvailMem_256_512MB_Pct;
real32 AvailMem_512_768MB_Pct;
real32 AvailMem_768_1024MB_Pct;
real32 AvailMem_1024_1280MB_Pct;
real32 AvailMem_1280_1536MB_Pct;
real32 AvailMem_1536_1792MB_Pct;
real32 AvailMem_1792_2048MB_Pct;
real32 AvailMem_2048_2304MB_Pct;
real32 AvailMem_2304_2560MB_Pct;
real32 AvailMem_2560_2816MB_Pct;
real32 AvailMem_2816_3072MB_Pct;
real32 Average_PQL;
sint16 Min_PQL;
sint16 Max_PQL;
real32 PQL_0_Pct;
real32 PQL_1_Pct;
real32 PQL_2_Pct;
real32 PQL_3_Pct;
real32 PQL_4_Pct;
real32 PQL_5_Pct;
real32 PQL_6_Pct;
real32 PQL_GT20_Pct;
sint32 Average_ThreadCount;
sint64 Min_ThreadCount;
sint64 Max_ThreadCount;
class DPO_Monitor
{
 string HardwareInfoGUID;
 sint16 Index;
 string Monitor_Type;
 string Model_Name;
 string Serial;
 string Vendor_Specific_Data;
};

class DPO_HardwareInfoToMonitor
{
 DPO_HardwareInfo REF Antecedent;
 DPO_Monitor REF Dependent;
};

class DPO_BiosInternalLogs
{
 string HardwareInfoGUID;
 string Name;
 string Time;
 string LogType;
 string EventCode;
 string Descr;
};

class DPO_HardwareInfoToBiosInternalLogs
{
 DPO_HardwareInfoToBiosInternalLogs Antecedent;
 DPO_BiosInternalLogs Dependent;
};
Association : ToInstance,
Description("This class associates DPO_HardwareInfoToBiosInternalLogs" "instance(s) with an instance of DPO_HardwareInfo.")},
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
]
class DPO_HardwareInfoToBiosInternalLogs
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_BiosInternalLogs REF Dependent;
};

Association : ToInstance,
Description("This class associates DPO_WWAN instance(s) with " "an instance of DPO_HardwareInfo.")},
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
]
class DPO_HardwareInfoToWWAN
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_WWAN REF Dependent;
};

Association : ToInstance,
Description("This class associates DPO_WWAN instance(s) with " "an instance of DPO_HardwareInfo.")},
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
]
class DPO_WWAN
{
 [Description("Unique ID from the summary file.")],
 Key
 string HardwareInfoGUID;
 [Description("Device name.")]
 string Device_Name;
 [Description("IMEI number.")]
 string IMEI;
};

Association : ToInstance,
Description("This class associates DPO_WWAN instance(s) with " "an instance of DPO_HardwareInfo.")},
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
]
class DPO_Battery
{
 [Description("Unique ID from the summary file.")],
 Key
 string HardwareInfoGUID;
 [Description("Index number of the battery device starting from 1.")],
 Key
 sint16 Index;
 [Description("Manufacture date.")]
 string Manufacture_Date;
 [Description("IMEI.")]
 string IMEI;
 [Description("Serial number.")]
 string Serial_Number;
 [Description("Chemistry.")]
 string Chemistry;
}
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design_Capacity_mAH;</td>
<td>Design Capacity in mAH.</td>
</tr>
<tr>
<td>Name;</td>
<td>Battery name.</td>
</tr>
<tr>
<td>Mfg_Name;</td>
<td>Manufacturer's name.</td>
</tr>
<tr>
<td>FullChargeCapacity;</td>
<td>Full charge capacity of the battery.</td>
</tr>
<tr>
<td>Cycle_Count;</td>
<td>Battery cycle count.</td>
</tr>
<tr>
<td>Discharge_Time_mins;</td>
<td>Total time (in minutes) the battery was in discharge state.</td>
</tr>
<tr>
<td>Discharge_Depth_0_5_Pct;</td>
<td>Number of times the discharge depth was between 0 to 5%.</td>
</tr>
<tr>
<td>Discharge_Depth_5_10_Pct;</td>
<td>Number of times the discharge depth was between 5 to 10%.</td>
</tr>
<tr>
<td>Discharge_Depth_10_20_Pct;</td>
<td>Number of times the discharge depth was between 10 to 20%.</td>
</tr>
<tr>
<td>Discharge_Depth_20_40_Pct;</td>
<td>Number of times the discharge depth was between 20 to 40%.</td>
</tr>
<tr>
<td>Discharge_Depth_40_60_Pct;</td>
<td>Number of times the discharge depth was between 40 to 60%.</td>
</tr>
<tr>
<td>Discharge_Depth_60_80_Pct;</td>
<td>Number of times the discharge depth was between 60 to 80%.</td>
</tr>
<tr>
<td>Discharge_Depth_80_100_Pct;</td>
<td>Number of times the discharge depth was between 80 to 100%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_100_94_Pct;</td>
<td>Number of times the start of discharge was between 100 to 94%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_94_70_Pct;</td>
<td>Number of times the start of discharge was between 94 to 70%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_70_50_Pct;</td>
<td>Number of times the start of discharge was between 70 to 50%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_50_30_Pct;</td>
<td>Number of times the start of discharge was between 50 to 30%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_30_10_Pct;</td>
<td>Number of times the start of discharge was between 30 to 10%.</td>
</tr>
<tr>
<td>Discharge_Start_Point_0_10_Pct;</td>
<td>Number of times the start of discharge was between 10 to 0%.</td>
</tr>
<tr>
<td>Discharge_Sess_End_10_15;</td>
<td>Number discharge sessions where final RSOC was less than 15%.</td>
</tr>
<tr>
<td>Discharge_Sess_End_5_10;</td>
<td>Number discharge sessions where final RSOC was less than 10%.</td>
</tr>
<tr>
<td>Discharge_Sess_End_LT_5;</td>
<td>Number discharge sessions where final RSOC was less than 5%.</td>
</tr>
<tr>
<td>Discharge_Temp_Avg;</td>
<td>Average temperature during battery discharge.</td>
</tr>
<tr>
<td>Discharge_Temp_Std_Dev;</td>
<td>Standard deviation of temperature during battery discharge.</td>
</tr>
<tr>
<td>Discharge_Temp_Max;</td>
<td>Maximum temperature during battery discharge.</td>
</tr>
<tr>
<td>Discharge_Temp_Min;</td>
<td>Minimum temperature during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mA_Avg;</td>
<td>Average current (in mA) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mA_Std_Dev;</td>
<td>Standard deviation of current (in mA) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mA_Max;</td>
<td>Maximum current (in mA) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mA_Min;</td>
<td>Minimum current (in mA) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mV_Avg;</td>
<td>Average voltage (in mV) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mV_Max;</td>
<td>Maximum voltage (in mV) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mV_Min;</td>
<td>Minimum voltage (in mV) during battery discharge.</td>
</tr>
<tr>
<td>Discharge_mV_Std_Dev;</td>
<td>Standard deviation of voltage (in mV) during battery discharge.</td>
</tr>
<tr>
<td>Descripción</td>
<td>Tipo</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Máximo voltaje (en mV) durante descarga del batería.</td>
<td>sint32</td>
</tr>
<tr>
<td>Voltaje mínimo (en mV) durante descarga del batería.</td>
<td>sint32</td>
</tr>
<tr>
<td>Potencia promedio (en W) durante descarga del batería.</td>
<td>real32</td>
</tr>
<tr>
<td>Desviación estándar de la potencia (en W) durante descarga del batería.</td>
<td>real32</td>
</tr>
<tr>
<td>Potencia máximo (en W) durante descarga del batería.</td>
<td>sint32</td>
</tr>
<tr>
<td>Voltaje mínimo (en mV) durante descarga del batería.</td>
<td>sint32</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 0 a 5W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 5 a 10W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 10 a 15W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 15 a 20W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 20 a 25W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 25 a 30W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 30 a 40W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 40 a 50W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue entre 50 a 60W</td>
<td>sint16</td>
</tr>
<tr>
<td>Porcentaje del tiempo en que la potencia durante descarga fue mayor de 60W</td>
<td>sint16</td>
</tr>
<tr>
<td>Tiempo total (en minutos) durante el estado de carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Número de sesiones en las que la batería fue completamente cargada.</td>
<td>sint16</td>
</tr>
<tr>
<td>Número de sesiones en las que la batería fue parcialmente cargada.</td>
<td>sint16</td>
</tr>
<tr>
<td>Temperatura promedio durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Desviación estándar de la temperatura durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Temperatura máximo durante carga.</td>
<td>sint16</td>
</tr>
<tr>
<td>Temperatura mínimo durante carga.</td>
<td>sint16</td>
</tr>
<tr>
<td>Corriente promedio (en mA) durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Desviación estándar de la corriente durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Corriente máximo durante carga.</td>
<td>sint32</td>
</tr>
<tr>
<td>Corriente mínimo durante carga.</td>
<td>sint32</td>
</tr>
<tr>
<td>Voltaje promedio (en mV) durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Desviación estándar de la voltaje durante carga.</td>
<td>real32</td>
</tr>
<tr>
<td>Voltaje máximo durante carga.</td>
<td>sint32</td>
</tr>
<tr>
<td>Voltaje mínimo durante carga.</td>
<td>sint32</td>
</tr>
</tbody>
</table>

APÉNDICE B: archivos de definición de la clase WMI
sint32 Charge_mV_Min;

[Description("Average power (in W) during battery charge when RSOC was less than 60\%.")]
// NameChange real32 Charge_Pwr_RSOC_LE_60_Avg;
real32 Charge_Pwr_RSOC_LE_60_Avg;

[Description("Standard deviation of power (in W) during battery charge when RSOC was less
than 60\%.")]
// NameChange real32 Charge_Pwr_RSOC_LE_60_Std_Dv;
real32 Charge_Pwr_RSOC_LE_60_Std_Dv;

[Description("Maximum power (in W) during battery charge when RSOC was less than 60\%.")]
// NameChange sint16 Charge_Pwr_RSOC_LE_60_Max;
sint16 Charge_Pwr_RSOC_LE_60_Max;

[Description("Minimum power (in W) during battery charge when RSOC was less than 60\%.")]
// NameChange sint16 Charge_Pwr_RSOC_LE_60_Min;
sint16 Charge_Pwr_RSOC_LE_60_Min;

[Description("Average power (in W) during battery charge when RSOC was more than 60\%.")]
// NameChange real32 Charge_Pwr_RSOC_LGT_60_Avg;
real32 Charge_Pwr_RSOC_LGT_60_Avg;

[Description("Standard deviation of power (in W) during battery charge when RSOC was more
than 60\%.")]
// NameChange real32 Charge_Pwr_RSOC_LGT_60_Std_Dv;
real32 Charge_Pwr_RSOC_LGT_60_Std_Dv;

[Description("Maximum power (in W) during battery charge when RSOC was more than 60\%.")]
// NameChange sint16 Charge_Pwr_RSOC_LGT_60_Max;
sint16 Charge_Pwr_RSOC_LGT_60_Max;

[Description("Minimum power (in W) during battery charge when RSOC was more than 60\%.")]
// NameChange sint16 Charge_Pwr_RSOC_LGT_60_Min;
sint16 Charge_Pwr_RSOC_LGT_60_Min;

[Description("Total time (in minutes) the battery was in dwell state.")]
real32 Dwell_Time_mins;

[Description("Average RSOC level when the battery was in dwell state.")]
real32 Dwell_Avg_RSOC_Level;

[Description("Average temperature during battery dwell state.")]
real32 Dwell_Temp_Avg;

[Description("Standard deviation of temperature during battery dwell state.")]
real32 Dwell_Temp_Std_Dv;

[Description("Maximum temperature during battery dwell state.")]
sint32 Dwell_Temp_Max;

[Description("Minimum temperature during battery dwell state.")]
sint32 Dwell_Temp_Min;

/***
* DPO_HardwareInfoToBattery
* This class associates DPO_Battery instance(s) with an
* instance of DPO_HardwareInfo.
***/
Association : ToInstance,
Description("This class associates DPO_Battery instance(s) with an" "instance of
DPO_HardwareInfo."),
dynamic:ToInstance, PROVIDER("DPOProv"):ToInstance
] class DPO_HardwareInfoToBattery
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_Battery REF Dependent;
};
class DPO_NBFan
{
 [Description("Unique ID from the summary file.")]
 Key
 string HardwareInfoGUID;

 [Description("Notebook fan index number starting from 0.")]
 Key
 sint16 Index;

 [Description("Location where the fan is present in the system.")]
 string Location;

 [Description("Percentage of time fan rpm was non-zero.")]
 sint16 Fan_Duty_Cycle_Pct;

 [Description("Fan speed when the summary log was generated.")]
 sint32 RPM;

 [Description("Peak fan speed.")]
 sint32 Peak_Fan_RPM;

 [Description("Average fan speed.")]
 real32 Average_Fan_RPM;

 [Description("Percentage of time the fan speed was 0 RPM.")]
 sint16 RPM_0_Pct;

 [Description("Percentage of time the fan speed was between 0 and 1000 RPMs.")]
 sint16 RPM_0_1000_Pct;

 [Description("Percentage of time the fan speed was between 1000 and 1700 RPMs.")]
 sint16 RPM_1000_1700_Pct;

 [Description("Percentage of time the fan speed was between 1700 and 2200 RPMs.")]
 sint16 RPM_1700_2200_Pct;

 [Description("Percentage of time the fan speed was between 2200 and 2600 RPMs.")]
 sint16 RPM_2200_2600_Pct;

 [Description("Percentage of time the fan speed was between 2600 and 2900 RPMs.")]
 sint16 RPM_2600_2900_Pct;

 [Description("Percentage of time the fan speed was between 2900 and 3100 RPMs.")]
 sint16 RPM_2900_3100_Pct;

 [Description("Percentage of time the fan speed was between 3100 and 3300 RPMs.")]
 sint16 RPM_3100_3300_Pct;

 [Description("Percentage of time the fan speed was between 3300 and 3600 RPMs.")]
 sint16 RPM_3300_3600_Pct;

 [Description("Percentage of time the fan speed was between 3600 and 3900 RPMs.")]
 sint16 RPM_3600_3900_Pct;

 [Description("Percentage of time the fan speed was between 3900 and 4200 RPMs.")]
 sint16 RPM_3900_4200_Pct;

 [Description("Percentage of time the fan speed was between 4200 and 4600 RPMs.")]
 sint16 RPM_4200_4600_Pct;

 [Description("Percentage of time the fan speed was between 4600 and 5100 RPMs.")]
 sint16 RPM_4600_5100_Pct;

 [Description("Percentage of time the fan speed was between 5100 and 5600 RPMs.")]
 sint16 RPM_5100_5600_Pct;

 [Description("Percentage of time the fan speed was between 5600 and 6200 RPMs.")]
 sint16 RPM_5600_6200_Pct;
}
```plaintext
/* *********************************************************************** 
*    DPO_HardwareInfoToNBFan 
*    This class associates DPO_NBFan instance(s) with an 
*    instance of DPO_NBFan. 
* *********************************************************************** */

Association : ToInstance, 
Description("This class associates DPO_NBFan instance(s) " "with an instance of DPO_NBFan"), 
dynamic:ToInstance, PROVIDER("DPOProv") : ToInstance 
class DPO_HardwareInfoToNBFan 
 {
 [key] DPO_HardwareInfo REF Antecedent; 
 [key] DPO_NBFan REF Dependent; 
};

/************************************************************/ 
*    DPO_DTFan 
*    This has the desktop fan information from a summary log. There 
*    may be multiple instances of this class for each summary file. 
*    *********************************************************************** 
[Description("Desktop fan speed statistics."), 
Dynamic,Provider("DPOProv") ] class DPO_DTFan 
{
 [ ]  
 Description("Unique ID from the summary file."), Key 
}  string    HardwareInfoGUID; 

 [ Description("Desktop fan index number starting from 0.")], Key 
} sint16    Index; 

 [ Description("Location where the fan is present in the system.") ] string    Location; 

 [ Description("Percentage of time fan rpm was non-zero."), Key 
} sint16    Fan_Duty_Cycle_Pct; 

 [ Description("Fan speed when the summary log was generated.") ] sint32    RPM; 

 [ Description("Peak fan speed.") ] 
} sint32    Peak_Fan_RPM; 

 [ Description("Average fan speed."), Key 
} real32 Average_Fan_RPM; 

 [ Description("Percentage of time the fan speed was between 0 and 500 RPMs."), Key 
} sint16    RPM_0_500_Pct; 

 [ Description("Percentage of time the fan speed was between 500 and 900 RPMs."), Key 
} sint16    RPM_500_900_Pct; 

 [ Description("Percentage of time the fan speed was between 900 and 1100 RPMs."), Key 
} sint16    RPM_900_1100_Pct; 

 [ Description("Percentage of time the fan speed was between 1100 and 1300 RPMs."), Key 
} sint16    RPM_1100_1300_Pct; 

 [ Description("Percentage of time the fan speed was between 1300 and 1600 RPMs."), Key 
} sint16    RPM_1300_1600_Pct; 

 [ Description("Percentage of time the fan speed was between 1600 and 1900 RPMs."), Key 
} sint16    RPM_1600_1900_Pct; 

 [ Description("Percentage of time the fan speed was between 1900 and 2300 RPMs."), Key 
} sint16    RPM_1900_2300_Pct; 

 [ Description("Percentage of time the fan speed was between 2300 and 2700 RPMs."), Key 
} sint16    RPM_2300_2700_Pct; 
```
```csharp
sint16 RPM_2700_3100_Pct;

sint16 RPM_3100_3500_Pct;

sint16 RPM_3500_4000_Pct;

sint16 RPM_4000_4500_Pct;

sint16 RPM_4500_5000_Pct;

sint16 RPM_5000_5500_Pct;

sint16 RPM_5500_6000_Pct;

sint16 RPM_GT6000_Pct;
```

```csharp
class DPO_HardwareInfoToDTFan
{
    [key] DPO_HardwareInfo REF Antecedent;
    [key] DPO_DTFan REF Dependent;
};
```

```csharp
class DPO_Thermistor
{
    [Description("Unique ID from the summary file.")]
    Key string HardwareInfoGUID;

    [Description("Thermistor index number starting from 0.")]
    Key sint16 Index;

    [Description("Thermistor location eg CPU, Memory etc.")]
    string Location;

    [Description("Temperature read from the thermistor when the summary log was generated.")]
    sint16 Temp;

    [Description("Maximum temperature read from the thermistor.")]
    sint16 Peak_Temp;

    [Description("Average temperature read from the thermistor.")]
    real32 Avg_Temp;

    [Description("Minimum temperature read from the thermistor.")]
    sint16 Min_Temp;
}
```
real32 Std_Dev_Temp;

sint16 Temp_0_30C_Pct;

sint16 Temp_30_40C_Pct;

sint16 Temp_40_50C_Pct;

sint16 Temp_50_60C_Pct;

sint16 Temp_60_70C_Pct;

sint16 Temp_70_80C_Pct;

sint16 Temp_80_90C_Pct;

sint16 Temp_90_100C_Pct;

sint16 Temp_GT100C_Pct;

}
sint16 Avg_Utilization_Pct;
);

/******************* DPO_HardwareInfoToLogical_Processor *******************
* This class associates DPO_Logical_Processor instance(s) with an
* instance of DPO_HardwareInfo.
***************************/
[Association : ToInstance,
Description("This class associates DPO_Logical_Processor " " instance(s) with an instance of
DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
]
class DPO_HardwareInfoToLogical_Processor
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_Logical_Processor REF Dependent;
}

/******************* DPO_Disk *******************
* This has the physical disk information from a summary log. There
* may be multiple instances of this class for each summary file.
***************************/
[Description("Information for
each physical disk found on the system."), Dynamic,Provider("DPOProv")]
class DPO_Disk
{
[Description("Unique ID from the summary file.")],
Key
]
string HardwareInfoGUID;

[Description("Index of the physical disk starting from 0.")],
Key
]
sint16 Index;

[Description("Name of the disk.")]
string Name;

[Description("Disk model number.")]
string Make_Model;

[Description("Total disk size in MBs.")]
sint32 Size_MB;

[Description("Disk ePPID.")]
string ePPID;

[Description("Unique ID assigned to this disk instance.")]
string DiskGUID;

[Description("Percentage of time the disk was busy in read operations.")]
sint16 Read_Time_Pct;

[Description("Percentage of time the disk was busy in write operations.")]
sint16 Write_Time_Pct;

[Description("Percentage of time the disk was idle.")]
sint16 Idle_Time_Pct;

[Description("Total data read from the disk in MB.")]
sint32 Bytes_Read_MB;

[Description("Total data written to the disk in MB.")]
sint32 Bytes_Write_MB;
};
This class associates DPO_Disk instance(s) with an instance of DPO_HardwareInfo.

[Association : ToInstance,
Description("This class associates DPO_Disk instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv")]:ToInstance
]
class DPO_HardwareInfoToDisk
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_Disk REF Dependent;
}

/DPO_Partition
This has the logical partition information from a summary log.
There may be multiple instances of this class for each summary file.

[Description("Information for each partition found on a disk."),
Dynamic,Provider("DPOProv")]
class DPO_Partition
{
[Description("Unique ID from the summary file.")],
Key
] string HardwareInfoGUID;

[Description("Unique ID assigned to the physical disk instance to which this partition belongs.")],
Key]
string DiskGUID;

[Description("Partition index number starting from 0.")],
Key]
sint16 Index;

[Description("Partition name, eg C:.")] string Name;

[Description("Total size of the partition in MBs.")] sint32 Size_MB;
};

/DPO_DiskToPartition
This class associates DPO_Partition instance(s) with an instance of DPO_Disk.

[Association : ToInstance,
Description("This class associates DPO_Partition instance(s) with an instance of DPO_Disk"),
dynamic:ToInstance,
PROVIDER("DPOProv")]:ToInstance
]
class DPO_DiskToPartition
{
[key] DPO_Disk REF Antecedent;
[key] DPO_Partition REF Dependent;
};

/DPO_LanAdapter
This has the lan adapter information from a summary log. There may be multiple instances of this class for each summary file.
[Description("LAN adapter information and statistics.")],
Dynamic,Provider("DPOProv")
] class DPO_LanAdapter
{
 [Description("Unique ID from the summary file.")],
 Key
}
 string HardwareInfoGUID;

 [Description("LAN adapter index number starting from 0.")],
 Key
}
sint16 Index;

[Description("LAN adapter's MAC address.")]
string MAC;

[Description("Percentage of time the adapter was busy when the system was on AC.")]
sint16 ActivityAC_Pct;

[Description("Percentage of time the adapter was busy when the system was on battery.")]
sint16 ActivityDC_Pct;
};

 domingo:ToInstance,
[Association : ToInstance,
Description("This class associates DPO_LanAdapter instance(s) " " with an instance of
DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv") : ToInstance
]
class DPO_HardwareInfoToLanAdapter
{
 [key] DPO_HardwareInfo REF Antecedent;
 [key] DPO_LanAdapter REF Dependent;
};

 APÉNDICE B: archivos de definición de la clase WMI
sint16 WlanRadioOffAC_Pct;

sint16 WlanConnectedAC_Pct;

sint16 WlanDisconnectedAC_Pct;

sint16 WlanRadioOffDC_Pct;

sint16 WlanConnectedDC_Pct;

sint16 WlanDisconnectedDC_Pct;

};

/***/
/* DPO_HardwareInfoToWlanAdapter */
/* This class associates DPO_WlanAdapter instance(s) with an */
/* instance of DPO_HardwareInfo. */
/***/
[Association : ToInstance,
Description("This class associates DPO_WlanAdapter instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv") : ToInstance]
]
class DPO_HardwareInfoToWlanAdapter
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_WlanAdapter REF Dependent;
};

/***/
/* DPO_Smart */
/* This has the SMART information from a summary log. There may be multiple instances of this class for each summary file. */
/***/
[Description("SMART data from all disks (if reported by the disk.")],
Dynamic,Provider("DPOProv")]
class DPO_Smart
{
 |
 | Description("Unique ID from the summary file."),
 | Key
 | string HardwareInfoGUID;
 |
 | Description("Smart data index number starting from 0."),
 | Key
 | sint16 Index;
 |
 | Description("Name eg, SMART0.")]
 | string Name;
 |
 | Description("Disk Model number.")]
 | string Model;
 |
 | Description("Average disk temperature read using SMART.")]
 | real32 Temp_Avg;
 |
 | Description("Standard deviation of disk temperature read using SMART.")]
 | real32 Temp_Std_Dev;
}
sint16 Temp_Min;

sint16 Temp_Max;

sint16 Temp_0_30_Pct;

sint16 Temp_30_40_Pct;

sint16 Temp_40_50_Pct;

sint16 Temp_50_60_Pct;

sint16 Temp_60_70_Pct;

sint16 Temp_GT_80_Pct;

sint32 Shock_Events;

uint8 Shock_Events_Normalized;

uint8 Shock_Events_Worst;

uint8 Shock_Events_Threshold;

sint64 Blks_Read;

uint8 Blks_Read_Normalized;

uint8 Blks_Read_Worst;

uint8 Blks_Read_Threshold;

sint64 Blks_Written;

uint8 Blks_Written_Normalized;

uint8 Blks_Written_Worst;

uint8 Blks_Written_Threshold;

sint64 Start_Stop_Count;

uint8 Start_Stop_Count_Normalized;

uint8 Start_Stop_Count_Worst;

uint8 Start_Stop_Count_Threshold;
APÉNDICE B: archivos de definición de la clase WMI
sint64 Free_Fall_Count;
uint8 Free_Fall_Count_Normalized;
uint8 Free_Fall_Count_Worst;
uint8 Free_Fall_Count_Threshold;

sint64 Power_Cycle_Count;
uint8 Power_Cycle_Count_Normalized;
uint8 Power_Cycle_Count_Worst;
uint8 Power_Cycle_Count_Threshold;

sint64 Program_Fail_Count;
uint8 Program_Fail_Count_Normalized;
uint8 Program_Fail_Count_Worst;
uint8 Program_Fail_Count_Threshold;

sint64 Erase_Fail_Count;
uint8 Erase_Fail_Count_Normalized;
uint8 Erase_Fail_Count_Worst;
uint8 Erase_Fail_Count_Threshold;

sint64 Wear_Leveling_Count;
uint8 Wear_Leveling_Count_Normalized;
uint8 Wear_Leveling_Count_Worst;
uint8 Wear_Leveling_Count_Threshold;

sint64 User_Rsvd_Block_Count;
uint8 User_Rsvd_Block_Count_Normalized;
uint8 User_Rsvd_Block_Count_Worst;
uint8 User_Rsvd_Block_Count_Threshold;

sint64 User_Rsvd_Block_Count_Total;
uint8 User_Rsvd_Block_Count_Total_Normalized;
uint8 User_Rsvd_Block_Count_Total_Worst;
uint8 User_Rsvd_Block_Count_Total_Threshold;
sint64 Unused_Rsvd_Block_Count;
uint8 Unused_Rsvd_Block_Count_Normalized;
uint8 Unused_Rsvd_Block_Count_Worst;
uint8 Unused_Rsvd_Block_Count_Threshold;
sint64 Program_Fail_Count_Total;
uint8 Program_Fail_Count_Total_Normalized;
uint8 Program_Fail_Count_Total_Worst;
uint8 Program_Fail_Count_Total_Threshold;
sint64 Erase_Fail_Count_Total;
uint8 Erase_Fail_Count_Total_Normalized;
uint8 Erase_Fail_Count_Total_Worst;
uint8 Erase_Fail_Count_Total_Threshold;
sint64 Uncorrectable_Error_Count;
uint8 Uncorrectable_Error_Count_Normalized;
uint8 Uncorrectable_Error_Count_Worst;
uint8 Uncorrectable_Error_Count_Threshold;
sint64 Ecc_Rate;
uint8 Ecc_Rate_Normalized;
uint8 Ecc_Rate_Worst;
uint8 Ecc_Rate_Threshold;

/**
 * DPO_HardwareInfoToSmart
 */

APÉNDICE B: archivos de definición de la clase WMI
This class associates DPO_Smart instance(s) with an instance of DPO_HardwareInfo.

[Association : ToInstance,
Description("This class associates DPO_Smart instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance]
class DPO_HardwareInfoToSmart {
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_Smart REF Dependent;
};

DPO_DIMM
This has the DIMM information from a summary log. There may be multiple instances of this class for each summary file.

[Description("DIMM information for all DIMMs reported by the BIOS.")]
class DPO_DIMM {
[Description("Unique ID from the summary file.")],
Key
}
string HardwareInfoGUID;

[Description("DIMM index number starting from 0.")],
Key
}sint16 Index;

[Description("DIMM name.")]
string Name;

[Description("DIMM manufacturer's name.")]
string Manufacturer;

[Description("DIMM part number.")]
string Part;

[Description("DIMM location.")]
string Location;

[Description("DIMM serial number.")]
string Serial;
};

DPO_HardwareInfoToDIMM
This class associates DPO_DIMM instance(s) with an instance of DPO_HardwareInfo.

[Association : ToInstance,
Description("This class associates DPO_DIMM instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance]
class DPO_HardwareInfoToDIMM {
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_DIMM REF Dependent;
};

DPO_Logical_Drive_Info_New
This has the new logical drive information from a summary log. There
may be multiple instances of this class for each summary file.

```csharp
[Description("Logical drive information for all logical drives found on the system.")]
class DPO_Logical_Drive_Info_New
{
    [Description("Unique ID from the summary file.")]
    string HardwareInfoGUID;

    [Description("Logical drive index number starting from 0.")]
    sint16 Index;

    [Description("Logical drive name, eg. C:\.")]
    string Name;

    [Description("Total logical drive size in MBs.")]
    sint64 Size_MB;

    [Description("Total free space on the logical drive in MBs.")]
    sint64 Freespace_MB;
};
```

```csharp
[Association : ToInstance,
    Description("This class associates DPO_Logical_Drive_Info_New instance(s) with an instance of DPO_HardwareInfo")]
class DPO_HardwareInfoToLogicalDriveInfoNew
{
    [key] DPO_HardwareInfo    REF    Antecedent;
    [key] DPO_Logical_Drive_Info_NewREF    Dependent;
};
```

```csharp
[Description("System crash information from the summary log file. This information is extracted from" " Windows Event Log"),
    Dynamic,Provider("DPOProv")]
class DPO_CrashInfo
{
    [Description("Unique ID from the summary file.")]
    string HardwareInfoGUID;

    [Description("Index number, starting from 0.")]
    sint16 Index;

    [Description("Local Time stamp (with time zone) of the date/time the crash was generated.")]
    string BugCheck_Time;
}
string BugCheck_String;

string Minidump_FileName;

uint32 Minidump_DataLen;

uint8 Minidump_Data[];

string BugCheck_Stack1;

string BugCheck_Stack2;

string BugCheck_Stack3;

string BugCheck_Stack4;

string BugCheck_Stack5;

};

class DPO_HardwareInfoToCrashInfo
{
    DPO_HardwareInfo REF Antecedent;
    DPO_CrashInfo REF Dependent;
};

class DPO_FreeFall
{
    HardwareInfoGUID;
    sint16 FreeFallCount;
};

class DPO_HardwareInfoToFreeFall
{
    Antecedent;
    Dependent;
};

class DPO_FreeFall
{
    HardwareInfoGUID;
    sint16 FreeFallCount;
};
instance of DPO_HardwareInfo.
**************************************************************/
[Association : ToInstance,
Description("This class associates DPO_FreeFall instance(s) with an instance of 
DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv") : ToInstance ]
class DPO_HardwareInfoToFreeFall
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_FreeFall REF Dependent;
}
/**************************************************************/
*DPO_Cable
* This has the cable log information from a summary log. There 
* may be multiple instances of this class for each summary file.
**************************************************************/
[Description("Cable logs: List of all cables attached, required but not connected in the 
system."), Dynamic, Provider("DPOProv") ]
class DPO_Cable
{

[Description("Unique ID from the summary file.")],
Key ] string HardwareInfoGUID;

[Description("Cable index number, starting from 0.")],
Key ] sint16 Index;

[Description("Name of cable.")]
string Name;

[Description("Cable's connection status.")]
string Status;
};
/**************************************************************/
*DPO_HardwareInfoToCableLogs
* This class associates DPO_HardwareInfoToCable 
* instance(s) with an instance of DPO_HardwareInfo. 
**************************************************************/
[Association : ToInstance,
Description("This class associates DPO_HardwareInfoToCable" an instance(s) with an instance of 
DPO_HardwareInfo."),
dynamic:ToInstance,
PROVIDER("DPOProv") : ToInstance ]
class DPO_HardwareInfoToCable
{
[key] DPO_HardwareInfo REF Antecedent;
[key] DPO_Cable REF Dependent;
}
/**************************************************************/
*DPO_CableChangeHistory
* This has the cable change history information from a summary log. 
* There may be multiple instances of this class for each summary 
* file. 
**************************************************************/
[Description("Information for status change for a cable.")],
Dynamic, Provider("DPOProv") ]
class DPO_CableChangeHistory
{
[Description("Name of cable.")]
string Name;

[Description("Timestamp when the change in cable status was noted.")]
string Timestamp;
Cable's connection status.
string Status;

/*************************************************************/
* DPO_CableToCableChangeHistory
* This class associates DPO_CableChangeHistory instance(s) with an
* instance of DPO_Cable.
*************************************************************/
[Association : ToInstance,
Description("This class associates DPO_CableChangeHistory instance(s) with an
instance of DPO_Cable"),
dynamic:ToInstance,
PROVIDER("DPOProv") : ToInstance ]
class DPO_CableToCableChangeHistory
{
[key] DPO_Cable REF Antecedent;
[key] DPO_CableChangeHistory REF Dependent;
}

/*************************************************************/
* DPO_BTModule
* This has the bluetooth module information from a summary log. There
* may be multiple instances of this class for each summary file.
*************************************************************/
[Description("Bluetooth module information and statistics."),
Dynamic, Provider("DPOProv") ]
class DPO_BTModule
{
 [ Description("Unique ID from the summary file.")],
Key ]
string HardwareInfoGUID;

 [ Description("Bluetooth module index number starting from 0.")],
Key ]
sint16 Index;

[Description("Bluetooth module name.")]
string Name;

[Description("Bluetooth module's address.")]
string Address;

[Description("Percentage of time the radio was on when the system was on AC.")]
sint16 BTRadioOnAC_Pct;

[Description("Percentage of time the bluetooth module was connected when the system was on
AC.")]
sint16 BTConnectedAC_Pct;

[Description("Percentage of time the module was not connected when the system was on
AC.")]
sint16 BTDisconnectedAC_Pct;

[Description("Percentage of time the radio was on when the system was on battery.")]
sint16 BTRadioOnDC_Pct;

[Description("Percentage of time the bluetooth module was connected when the system was on
battery.")]
sint16 BTConnectedDC_Pct;

[Description("Percentage of time the module was not connected when the system was on
battery.")]
sint16 BTDisconnectedDC_Pct;
};
This class associates DPO_BTModule instance(s) with an instance of DPO_HardwareInfo.

Association : ToInstance,
Description("This class associates DPO_BTModule instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
] class DPO_HardwareInfoToBTModule { [key] DPO_HardwareInfo REF Antecedent; [key] DPO_BTModule REF Dependent; }

DPO_IntelPerf

This class has the Intel performance information from a summary log. There may be multiple instances of this class for each summary file.

Association : ToInstance,
Description("Intel performance information and statistics."),
dynamic:ToInstance,
PROVIDER("DPOProv")
] class DPO_HardwareInfoToBTModule { [key] DPO_HardwareInfo REF Antecedent; [key] DPO_BTModule REF Dependent; }

DPO_IntelPerf

This class associates DPO_IntelPerf instance(s) with an instance of DPO_HardwareInfo.

Association : ToInstance,
Description("This class associates DPO:IntelPerf instance(s) with an instance of DPO_HardwareInfo"),
dynamic:ToInstance,
PROVIDER("DPOProv"):ToInstance
] class DPO_HardwareInfoToIntelPerf { [key] DPO_HardwareInfo REF Antecedent; [key] DPO:IntelPerf REF Dependent; }
This has the graphics information from a summary log. There may be multiple instances of this class for each summary file.

```csharp
[Description("Graphics performance information and statistics.")]
class DPO_Graphics
{
 [Description("Unique ID from the summary file.")]
 string HardwareInfoGUID;

 [Description("GPU number starting from 0.")]
 sint16 Index;

 [Description("Minimum GPU utilization.")]
 sint16 Min_GpuUtilization;

 [Description("Maximum GPU utilization.")]
 sint16 Max_GpuUtilization;

 [Description("Average GPU utilization.")]
 real32 Avg_GpuUtilization;

 [Description("Percentage of time GPU was at 0% utilization.")]
 real32 GpuUtilization_0_Pct;

 [Description("Minimum graphics memory utilization.")]
 sint16 Min_MemUtilization;

 [Description("Maximum graphics memory utilization.")]
 sint16 Max_MemUtilization;

 [Description("Average graphics memory utilization.")]
 real32 Avg_MemUtilization;

 [Description("Percentage of time graphics memory was at 0% utilization.")]
 real32 MemUtilization_0_Pct;

 [Description("Minimum graphics engine utilization.")]
 sint16 Min_EngineUtilization;

 [Description("Maximum graphics engine utilization.")]
 sint16 Max_EngineUtilization;

 [Description("Average graphics engine utilization.")]
 real32 Avg_EngineUtilization;

 [Description("Percentage of time graphics engine was at 0% utilization.")]
 real32 EngineUtilization_0_Pct;

 [Description("Minimum graphics bus utilization.")]
 sint16 Min_BusUtilization;

 [Description("Maximum graphics bus utilization.")]
 sint16 Max_BusUtilization;

 [Description("Average graphics bus utilization.")]
 real32 Avg_BusUtilization;

 [Description("Percentage of time graphics bus was at 0% utilization.")]
 real32 BusUtilization_0_Pct;

 [Description("Minimum graphics fan speed. The fan speed is reported in percentage.")]
 sint16 Min_FanSpeedPct;

 [Description("Maximum graphics fan speed. The fan speed is reported in percentage.")]
 sint16 Max_FanSpeedPct;
}
```
class DPO_HardwareInfoToGraphics {
    DPO_HardwareInfo REF Antecedent;
    DPO_Graphics REF Dependent;
};

class DPO_Info {
    ProductVersion;
    LastCheckForUpdateTime;
    LastSystemUpdateTime;
    LastCheckForSystemProfileTrigger;
}
APÉNDICE B: archivos de definición de la clase WMI
class DPO_SmartAlerts {
    
    Description("Unique ID of alert"),
    Key
    string AlertGUID;

    Description("Alert Message")
    string AlertMessage;

    Description("Alert Description")
    string AlertDescr;

    Description("Guidance")
    string AlertGuidance;

    Description("Local date/time of alert")
    string AlertGeneratedAt;

};

/********************************************
* Create an instance of the provider
// Setting the HostingModel to Decoupled:Com registers the provider as a decoupled com provider,
// lowers RPC_C_IMP_LEVEL_IMPERSONATE and RPC_C_IMP_LEVEL_DELEGATE impersonation levels to
// RPC_C_IMP_LEVEL_IDENTIFY before calling into provider:

// Setting the HostingModel to Decoupled:Com:FoldIdentity(FALSE) allows original client
// impersonation level through to provider.
// This lets a decoupled provider impersonate the client and hence
// act in the role of that client. This poses a potential security risk for the client
// if the decoupled provider security identity has less rights than the original client.
// Use a strong security descriptor when using this option:
********************************************/

instance of Win32Provider as $P {
    Clsid = "{C4ABD5F1-1260-4192-BF0B-11909C172043}";

    Name = "DPOProv";
    HostingModel = "NetworkServiceHost";
}

instance of InstanceProviderRegistration {
    Provider = $P;
    SupportsGet = TRUE;
    SupportsPut = FALSE;
    SupportsDelete = FALSE;
    SupportsEnumeration = TRUE;

    // we want WMI to do query parsing QuerySupportLevels = NULL;
}

instance of MethodProviderRegistration {
    Provider = $P;
}