Notes, cautions, and warnings

NOTE: A NOTE indicates important information that helps you make better use of your computer.

CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.
4 Control and Monitoring

asset-tag

asf-mode

banner exec

banner login

banner motd

clear alarms

clear command history

clear line

configure

debag cpu-traffic-stats

debag ftpserver

disable

do

enable

enable optic-info-update interval

enable secure

end

exec-banner

exec-timeout

exit

feature unique-name

ftp-server enable

ftp-server topdir

ftp-server username

hostname

ip ftp password

ip ftp source-interface

ip ftp username

ip telnet server enable

ip telnet source-interface

ip tftp source-interface

line

login concurrent-session

login statistics

motd-banner

ping

reload

send

service timestamps

show alarms
show command-history.. 111
show cpu-traffic-stats.. 113
show debugging.. 114
show environment... 114
show inventory.. 115
show login statistics.. 117
show memory.. 120
show processes cpu... 120
show processes ipc flow-control... 124
show processes memory... 125
show software ifm... 127
show system.. 128
show tech-support... 130
telnet... 133
terminal xml.. 134
traceroute.. 135
undebug all.. 136
virtual-ip.. 136
write... 137

5802.1X... 138
dot1x.. 139
dot1x auth-fail-vlan.. 140
dot1x auth-server... 141
dot1x auth-type mab-only.. 141
dot1x authentication (Configuration).. 142
dot1x authentication (Interface).. 142
dot1x critical-vlan... 143
dot1x profile.. 144
dot1x static-mab.. 145
dot1x guest-vlan.. 146
dot1x host-mode... 147
dot1x mac-auth-bypass... 148
dot1x max-eap-req... 148
dot1x max-supplicants.. 149
dot1x port-control... 149
dot1x quiet-period... 150
dot1x reauthentication.. 150
dot1x reauth-max... 151
dot1x server-timeout.. 151
dot1x supplicant-timeout... 152
dot1x tx-period.. 153
6 Access Control Lists (ACL) .. 159
Commands Common to all ACL Types ...162
description ... 162
remark ... 162
resequence access-list .. 163
resequence prefix-list ipv4 ... 164
show config ... 165
Common IP ACL Commands ..165
access-class ... 166
clear counters ip access-group ... 167
ip access-group .. 167
show ip access-lists ... 168
show ip accounting access-list ... 169
Standard IP ACL Commands ..170
deny (for Standard IP ACLs) ...170
ip access-list standard ...172
permit (for Standard IP ACLs) ..173
seq ... 175
Extended IP ACL Commands ...177
deny (for Extended IP ACLs) ...177
deny icmp ... 180
deny tcp .. 182
deny udp .. 185
ip access-list extended ...188
permit (for Extended IP ACLs) ..189
permit icmp ... 191
permit tcp .. 193
permit udp ... 196
seq ... 199
Common MAC Access List Commands ...203
clear counters mac access-group ..203
mac access-group ..203
show mac access-lists ..204
show mac accounting access-list ..205
Standard MAC ACL Commands ..206
deny ... 206
mac access-list standard ..208
Route Map Commands

- `match ip route-source`
- `match ip route-source`
- `match metric`
- `match route-type`
- `match tag`
- `route-map`
- `set automatic-tag`
- `set metric`
- `set metric-type`
- `set tag`
- `show config`
- `show route-map`
- `deny` (for Standard IP ACLs)
- `deny` (for Extended IP ACLs)
- `seq`

IP Prefix List Commands

- `seq`
- `permit`
- `deny`
- `clear ip prefix-list`
- `show config`
- `show ip prefix-list summary`
- `show ip prefix-list detail`

Extended MAC ACL Commands

- `deny ether-type`
- `match interface`
- `continue`
- `match ip next-hop`
- `match ip route-source`
- `match metric`
- `match route-type`
- `match tag`
- `route-map`
- `set automatic-tag`
- `set metric`
- `set metric-type`
- `set tag`
- `show config`
- `show route-map`
- `deny` (for Extended MAC ACLs)
- `deny` (for Extended MAC ACLs)
- `seq`
- `deny udp`
- `deny icmp`
- `deny arp` (for Extended MAC ACLs)
- `deny icmp`
- `deny ether-type` (for Extended MAC ACLs)
- `deny`
deny...257
permit (for Standard IP ACLs)..259
permit arp..261
permit ether-type (for Extended MAC ACLs)..264
permit icmp...267
permit udp..269
permit (for Extended IP ACLs)..272
permit...274
seq..276
permit tcp...278
seq arp...282
seq ether-type..285
seq..288
seq..290
permit udp..293
permit tcp...296
permit icmp...298
permit...300
deny udp (for IPv6 ACLs)..302
deny tcp (for IPv6 ACLs)..304
deny icmp (for Extended IPv6 ACLs)...307
deny (for IPv6 ACLs)..309

7 Access Control List (ACL) VLAN Groups and Content Addressable Memory
(CAM)..311
 member vlan..311
 ip access-group...312
 show acl-vlan-group...312
 show cam-acl-vlan..314
 cam-acl-vlan..315
 show cam-usage..316
 show running config acl-vlan-group..317
 acl-vlan-group...318
 show acl-vlan-group detail..319
 description (ACL VLAN Group)...320

8 Bidirectional Forwarding Detection (BFD)...321
 bfd all-neighbors...321
 bfd disable...323
 bfd enable (Configuration)..323
 bfd enable (Interface)..324
 bfd interval...324
bfd neighbor.. 325
bfd protocol-liveness.. 326
ip route bfd... 326
ipv6 ospf bfd all-neighbors... 327
isis bfd all-neighbors... 328
neighbor bfd... 329
neighbor bfd disable... 330
show bfd neighbors.. 331
vrrp bfd neighbor... 333

9 Border Gateway Protocol IPv4 (BGPv4).. 334
BGPv4 Commands.. 334
address-family... 335
aggregate-address... 336
bgp add-path... 336
bgp always-compare-med.. 337
bgp asnotation... 337
bgp bestpath as-path ignore... 338
bgp bestpath as-path multipath-relax.. 338
bgp bestpath med confed.. 339
bgp bestpath med missing-as-best... 339
bgp bestpath router-id ignore... 340
bgp client-to-client reflection... 340
bgp cluster-id... 341
bgp confederation identifier.. 341
bgp confederation peers... 342
bgp dampening... 342
bgp default local-preference.. 343
bgp enforce-first-as... 344
bgp fast-external-failover.. 344
bgp four-octet-as-support.. 345
bgp graceful-restart... 345
bgp non-deterministic-med.. 346
bgp recursive-bgp-next-hop.. 347
bgp regex-eval-optz-disable... 348
bgp router-id... 348
bgp soft-reconfig-backup.. 349
capture bgp-pdu neighbor.. 349
capture bgp-pdu max-buffer-size... 350
clear ip bgp... 350
clear ip bgp dampening... 351
clear ip bgp flap-statistics... 351
show capture bgp-pdu neighbor.. 392
show config.. 393
show ip bgp... 393
show ip bgp cluster-list... 395
show ip bgp community... 396
show ip bgp community-list.. 398
show ip bgp dampened-paths.. 399
show ip bgp detail.. 400
show ip bgp extcommunity-list.. 402
show ip bgp filter-list... 403
show ip bgp flap-statistics.. 404
show ip bgp inconsistent-as.. 406
show ip bgp neighbors... 407
show ip bgp next-hop... 412
show ip bgp paths.. 413
show ip bgp paths as-path.. 414
show ip bgp paths community.. 415
show ip bgp peer-group... 416
show ip bgp regexp.. 418
show ip bgp summary... 420
show running-config bgp.. 423
timers bgp.. 423
MBGP Commands.. 424
debug ip bgp dampening.. 424
distance bgp... 424
show ip bgp dampened-paths.. 425
BGP Extended Communities (RFC 4360).. 426
set extcommunity rt... 426
set extcommunity soo.. 427
show ip bgp paths extcommunity... 428
show ip bgp extcommunity-list... 429
IPv6 BGP Commands... 430
bgp soft-reconfig-backup.. 430
clear ip bgp ipv6 unicast soft... 431
debug ip bgp ipv6 unicast soft-reconfiguration.. 432
ipv6 prefix-list.. 432
show ipv6 prefix-list... 433
IPv6 MBGP Commands... 434
show ipv6 mbgroutes... 434

10 Content Addressable Memory (CAM)... 435
CAM Profile Commands... 435
cam-acl (Configuration)..436
cam-optimization..438
show cam-acl..439
show cam-acl-egress...440

11 Control Plane Policing (CoPP)..442
control-plane-cpuqos...442
service-policy rate-limit-cpu-queues..442
service-policy rate-limit-protocols...443
show cpu-queue rate cp..444
show ip protocol-queue-mapping...444
show ipv6 protocol-queue-mapping..445
show mac protocol-queue-mapping..446

12 Data Center Bridging (DCB)..447
advertise dcbx-appln-tlv..448
advertise dcbx-tlv..449
bandwidth-percentage..450
dcb-enable..451
dcb-policy buffer-threshold (Global Configuration)...451
dcb-policy buffer-threshold (Interface Configuration)..452
dcbx port-role..453
dcbx version..454
debug dcbx..454
description..455
fcoe priority-bits...456
iscsi priority-bits...456
priority...457
pfc mode on...458
pfc no-drop queues...459
priority-list...460
qos-policy-output ets..460
scheduler..461
show dcb..462
show interface dcbx detail...463
show interface ets...466
show interface pfc..470
show interface pfc statistics...473
show qos priority-groups...474
show stack-unit stack-ports ets details..474
dcb pfc-shared-buffer-size...476
dcb pfc-total-buffer-size...476

13 Debugging and Diagnostics

- Offline Diagnostic Commands
 - diag stack-unit
 - offline stack-unit
 - online stack-unit
 - Hardware Commands
 - clear hardware stack-unit
 - clear hardware system-flow
 - show hardware layer2 acl
 - show hardware layer3
 - show hardware stack-unit
 - show hardware buffer interface
 - show hardware counters interface interface
 - show hardware stack-unit buffer-stats-snapshot (Total Buffer Information)
 - show hardware buffer-stats-snapshot
 - show hardware system-flow
 - show hardware drops

14 Dynamic Host Configuration Protocol (DHCP)

- Commands to Configure the System to be a DHCP Server
 - clear ip dhcp
 - debug ip dhcp server
 - debug ipv6 dhcp
 - default-router
 - disable
dns-server
 - domain-name
 - excluded-address
 - hardware-address
 - host
 - lease
15 Equal Cost Multi-Path (ECMP).. 543
 ecmp-group.. 543
 hash-algorithm... 544
 hash-algorithm ecmp.. 548
 hash-algorithm seed... 549
 ip ecmp-group... 550
 link-bundle-distribution trigger-threshold... 551
 link-bundle-monitor enable... 551
 show config.. 552
 show link-bundle distribution... 552

16 FC FLEXIO FPORT... 553
 feature fc... 554
 fc zone... 554
 fc alias... 555
 fc zoneset.. 556
 fcoe-map.. 557
 fabric.. 558
 active-zoneset .. 559
 show fc ns.. 559
 show fc switch.. 561
 show fc zoneset... 562
 show fc zone.. 563
 show fc alias.. 564
 show fcoe-map... 564

17 FIPS Cryptography... 566
 fips mode enable... 566
 show fips status.. 567
 show ip ssh.. 567
 ssh.. 568

18 FIP Snooping.. 571
 clear fip-snooping database interface vlan.. 571
 clear fip-snooping statistics... 572
 feature fip-snooping.. 572
 fip-snooping enable... 573
 fip-snooping fc-map.. 573
 fip-snooping port-mode fcf... 574
 show fip-snooping config.. 575
 show fip-snooping enode... 575
show fip-snooping fcf...576
show fip-snooping sessions...577
show fip-snooping statistics..578
show fip-snooping system...581
show fip-snooping vlan...582

19 Force10 Resilient Ring Protocol (FRRP)..................................583
clear frrp...584
description..585
disable...586
interface..587
member-vlan..588
mode..588
protocol frrp..588
show frrp...589
timer..590

20 GARP VLAN Registration (GVRP)......................................592
clear gvrp statistics..593
disable...595
garp timers..595
gvrp enable..596
gvrp registration..597
protocol gvrp..598
show config...598
show garp timers..598
show gvrp...599
clear gvrp statistics..600
show vlan..601

21 Internet Group Management Protocol (IGMP)......................603
IGMP Snooping Commands..603
ip igmp access-group...604
ip igmp group-join-limit...604
ip igmp querier-timeout...605
ip igmp query-interval...605
ip igmp query-max-resp-time...606
ip igmp version..606
ip igmp snooping enable..607
ip igmp snooping fast-leave...607
ip igmp snooping flood... 608
ip igmp snooping last-member-query-interval........................ 609
ip igmp snooping mrouter... 609
ip igmp snooping querier.. 610
show ip igmp snooping mrouter.. 611

22 Interfaces... 612
Basic Interface Commands... 613
clear counters.. 614
clear dampening.. 615
cx4-cable-length.. 616
dampening.. 617
default interface.. 618
description... 619
duplex (1000/10000 Interfaces)... 620
flowcontrol.. 621
interface.. 624
interface loopback... 625
interface ManagementEthernet... 626
interface null.. 626
interface range.. 627
interface range macro (define).. 629
interface range macro name.. 631
interface vlan... 631
intf-type cr4 autoneg.. 632
keepalive.. 633
load-balance... 633
load-balance hg.. 635
monitor interface.. 636
mtu... 638
negotiation auto.. 639
portmode hybrid.. 642
rate-interval... 643
remote-fault-signaling rx... 644
show config.. 645
show config (from INTERFACE RANGE mode)....................... 645
show interfaces.. 646
show interfaces configured.. 651
show interfaces dampening... 652
show interfaces description... 653
show interfaces stack-unit... 655
show interfaces status... 656
show interfaces switchport .. 657
show interfaces transceiver .. 659
show range .. 665
shutdown .. 665
speed (for 1000/10000/auto interfaces).. 666
stack-unit portmode ... 667
wavelength .. 668
Port Channel Commands .. 669
channel-member ... 669
group ... 671
interface port-channel ... 672
minimum-links ... 672
port-channel failover-group ... 673
show config .. 674
show interfaces port-channel .. 674
Time Domain Reflectometer (TDR) ... 678
tdr-cable-test .. 678
show tdr .. 679
UDP Broadcast ... 680
debug ip udp-helper .. 680
ip udp-broadcast-address ... 681
ip udp-helper udp-port ... 681
show ip udp-helper .. 682

23 IPv4 Routing .. 684
arp ... 685
arp learn-enable ... 686
arp retries .. 686
arp timeout .. 687
clear arp-cache ... 687
clear host .. 688
clear ip fib stack-unit ... 689
clear ip route .. 689
clear tcp statistics .. 690
debug arp .. 690
debug ip dhcp .. 691
debug ip icmp ... 692
debug ip packet ... 693
ip address .. 696
ip directed-broadcast .. 696
ip domain-list .. 697
ip domain-lookup .. 698
IPv6 Basics ... 748
 clear ipv6 fib ... 748
 clear ipv6 route ... 749
 clear ipv6 mld_host ... 749
 ipv6 address autoconfig .. 750
 ipv6 address ... 751
 ipv6 address eui64 .. 752
 ipv6 control-plane icmp error-rate-limit 752
 ipv6 flowlabel-zero .. 753
 ipv6 host ... 753
 ipv6 name-server ... 754
 ipv6 nd dad attempts .. 755
 ipv6 nd dns-server ... 755
 ipv6 nd prefix .. 756
 ipv6 route ... 757
 ipv6 unicast-routing ... 759
 show ipv6 cam stack-unit .. 760
 show ipv6 control-plane icmp .. 761
 show ipv6 fib stack-unit .. 761
 show ipv6 flowlabel-zero ... 762
 show ipv6 interface ... 762
 show ipv6 mld_host ... 765
 show ipv6 route .. 766
 trust ipv6-diffserv .. 768

IPv6 Border Gateway Protocol (IPv6 BGP) ... 770
 IPv6 BGP Commands ... 773
 address family .. 773
 aggregate-address .. 774
 bgp always-compare-med ... 775
 bgp bestpath as-path ignore .. 776
 bgp bestpath med confed ... 776
 bgp bestpath med missing-as-best 777
 bgp client-to-client reflection ... 777
neighbor fall-over... 809
neighbor filter-list... 810
neighbor maximum-prefix.. 810
neighbor X::X::X password.. 811
neighbor next-hop-self.. 812
neighbor peer-group (assigning peers).............................. 813
neighbor peer-group (creating group)............................... 814
neighbor peer-group passive... 815
neighbor remote-as.. 815
neighbor remove-private-as... 815
neighbor route-map.. 816
neighbor route-reflector-client.. 817
neighbor send-community.. 818
neighbor shutdown.. 819
neighbor soft-reconfiguration inbound.............................. 820
neighbor subnet.. 821
neighbor timers.. 821
neighbor update-source... 822
neighbor weight... 823
network.. 824
network backdoor.. 825
redistribute.. 825
redistribute isis... 826
redistribute ospf... 827
router bgp.. 828
show capture bgp-pdu neighbor.. 828
show config... 829
show ip bgp ipv6 unicast... 830
show ip bgp ipv6 unicast cluster-list................................. 830
show ip bgp ipv6 unicast community.................................. 831
show ip bgp ipv6 unicast community-list.......................... 832
show ip bgp ipv6 unicast dampened-paths.......................... 832
show ip bgp ipv6 unicast detail.. 833
show ip bgp ipv6 unicast extcommunity-list...................... 833
show ip bgp ipv6 unicast filter-list.................................... 834
show ip bgp ipv6 unicast flap-statistics.............................. 834
show ip bgp ipv6 unicast inconsistent-as............................ 835
show ip bgp ipv6 unicast neighbors.................................. 836
show ip bgp ipv6 unicast peer-group................................. 839
show ip bgp ipv6 unicast summary.................................... 840
show ip bgp next-hop... 841
show ip bgp paths.. 842
show ip bgp paths as-path .. 843
show ip bgp paths community .. 843
show ip bgp paths extcommunity 843
show ip bgp regexp .. 844
timers bgp .. 845
IPv6 MBGP Commands .. 846
address family ... 846
aggregate-address ... 846
bgp dampening ... 848
clear ip bgp ipv6 unicast ... 848
clear ip bgp ipv6 unicast dampening 849
clear ip bgp ipv6 unicast flap-statistics 849
debug ip bgp ipv6 unicast dampening 850
debug ip bgp ipv6 unicast peer-group updates 851
debug ip bgp ipv6 unicast updates 851
distance bgp ... 852
neighbor activate ... 853
neighbor advertisement-interval 854
neighbor default-originate .. 855
neighbor distribute-list .. 855
neighbor filter-list .. 856
neighbor maximum-prefix .. 857
neighbor next-hop-self ... 858
neighbor remove-private-as .. 858
neighbor route-map .. 859
neighbor route-reflector-client 860
network .. 861
redistribute .. 861
show ip bgp ipv6 unicast ... 862
show ip bgp ipv6 unicast cluster-list 863
show ip bgp ipv6 unicast community 863
show ip bgp ipv6 unicast community-list 864
show ip bgp ipv6 unicast dampened-paths 865
show ip bgp ipv6 unicast detail 865
show ip bgp ipv6 unicast filter-list 866
show ip bgp ipv6 unicast flap-statistics 866
show ip bgp ipv6 unicast inconsistent-as 868
show ip bgp ipv6 unicast neighbors 868
show ip bgp ipv6 unicast peer-group 871
show ip bgp ipv6 unicast summary 872

28 iSCSI Optimization .. 875
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>advertise dcbx-app-tlv</td>
<td>875</td>
</tr>
<tr>
<td>iscsi aging time</td>
<td>876</td>
</tr>
<tr>
<td>iscsi cos</td>
<td>876</td>
</tr>
<tr>
<td>iscsi enable</td>
<td>877</td>
</tr>
<tr>
<td>iscsi priority-bits</td>
<td>878</td>
</tr>
<tr>
<td>iscsi profile-compellant</td>
<td>878</td>
</tr>
<tr>
<td>iscsi target port</td>
<td>878</td>
</tr>
<tr>
<td>show iscsi</td>
<td>879</td>
</tr>
<tr>
<td>show iscsi session</td>
<td>880</td>
</tr>
<tr>
<td>show iscsi session detailed</td>
<td>881</td>
</tr>
<tr>
<td>show run iscsi</td>
<td>882</td>
</tr>
</tbody>
</table>

29 Intermediate System to Intermediate System (IS-IS)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency-check</td>
<td>883</td>
</tr>
<tr>
<td>advertise</td>
<td></td>
</tr>
<tr>
<td>area-password</td>
<td>885</td>
</tr>
<tr>
<td>clear config</td>
<td></td>
</tr>
<tr>
<td>clear isis</td>
<td>886</td>
</tr>
<tr>
<td>clns host</td>
<td>887</td>
</tr>
<tr>
<td>debug isis</td>
<td></td>
</tr>
<tr>
<td>debug isis adj-packets</td>
<td>888</td>
</tr>
<tr>
<td>debug isis local-updates</td>
<td>889</td>
</tr>
<tr>
<td>debug isis snp-packets</td>
<td>890</td>
</tr>
<tr>
<td>debug isis spf-triggers</td>
<td>891</td>
</tr>
<tr>
<td>debug isis update-packets</td>
<td>891</td>
</tr>
<tr>
<td>default-information originate</td>
<td>892</td>
</tr>
<tr>
<td>description</td>
<td>893</td>
</tr>
<tr>
<td>distance</td>
<td>894</td>
</tr>
<tr>
<td>distribute-list in</td>
<td>894</td>
</tr>
<tr>
<td>distribute-list out</td>
<td>895</td>
</tr>
<tr>
<td>distribute-list redistribute-override</td>
<td>896</td>
</tr>
<tr>
<td>domain-password</td>
<td>897</td>
</tr>
<tr>
<td>graceful-restart ietf</td>
<td></td>
</tr>
<tr>
<td>graceful-restart interval</td>
<td>898</td>
</tr>
<tr>
<td>graceful-restart t1</td>
<td>899</td>
</tr>
<tr>
<td>graceful-restart t2</td>
<td>899</td>
</tr>
<tr>
<td>graceful-restart t3</td>
<td>900</td>
</tr>
<tr>
<td>graceful-restart restart-wait</td>
<td>901</td>
</tr>
<tr>
<td>hello padding</td>
<td>901</td>
</tr>
<tr>
<td>hostname dynamic</td>
<td>902</td>
</tr>
<tr>
<td>ignore-lsp-errors</td>
<td>902</td>
</tr>
<tr>
<td>ip router isis</td>
<td>903</td>
</tr>
</tbody>
</table>
lacp port-priority ... 940
lacp system-priority .. 941
port-channel mode .. 941
port-channel-protocol lacp .. 942
show lacp ... 943

31 Layer 2 ... 945
MAC Addressing Commands .. 945
clear mac-address-table .. 946
mac-address-table aging-time ... 946
mac-address-table disable-learning 947
mac-address-table static ... 947
mac-address-table station-move refresh-arp 948
mac learning-limit .. 949
mac learning-limit learn-limit-violation 950
mac learning-limit station-move-violation 951
mac learning-limit reset .. 951
show cam mac stack-unit .. 952
show mac-address-table .. 953
show mac-address-table aging-time 955
show mac learning-limit .. 956
Virtual LAN (VLAN) Commands .. 957
description .. 957
default vlan-id ... 958
default-vlan disable .. 958
name ... 959
show config ... 959
show vlan ... 960
tagged .. 962
track ip ... 963
untagged ... 964

32 Link Layer Discovery Protocol (LLDP) 966
advertise dot1-tlv ... 967
advertise dot3-tlv ... 968
advertise management-tlv .. 968
clear lldp counters ... 969
clear lldp neighbors .. 969
debug lldp interface ... 970
disable ... 970
hello ... 971
mode ... 971
Multiple Spanning Tree Protocol (MSTP) ... 973
 protocol lldp (Configuration) .. 973
 protocol lldp (Interface) .. 973
 show lldp neighbors ... 974
 show lldp statistics ... 975
 show running-config lldp .. 975
 LLDP-MED Commands .. 976
 advertise med guest-voice .. 976
 advertise med guest-voice-signaling ... 977
 advertise med location-identification .. 978
 advertise med power-via-mdi .. 979
 advertise med softphone-voice .. 979
 advertise med streaming-video .. 980
 advertise med video-conferencing ... 981
 advertise med voice-signaling ... 981
 advertise med voice ... 982
 advertise med voice-signaling ... 983

33 Microsoft Network Load Balancing .. 984
 mac-address-table static (for Multicast MAC Address) 986
 ip vlan-flooding ... 988

34 Multicast Source Discovery Protocol (MSDP) .. 989
 clear ip msdp peer ... 989
 clear ip msdp sa-cache ... 990
 clear ip msdp statistic .. 990
 debug ip msdp ... 991
 ip msdp cache-rejected-sa .. 992
 ip msdp default-peer .. 992
 ip msdp log-adjacency-changes .. 993
 ip msdp mesh-group ... 993
 ip msdp originator-id ... 994
 ip msdp peer .. 995
 ip msdp redistribute .. 996
 ip msdp sa-filter .. 997
 ip msdp sa-limit .. 997
 ip msdp shutdown ... 998
 ip multicast-msdp ... 998
 show ip msdp ... 999
 show ip msdp sa-cache rejected-sa .. 1000

35 Multiple Spanning Tree Protocol (MSTP) ... 1002
show running-config track... 1032
show track... 1033
threshold metric.. 1035
track interface ip routing... 1036
track interface line-protocol... 1037
track ip route metric threshold.. 1038
track ip route reachability... 1039
track resolution ip route... 1040
IPv6 Object Tracking Commands.. 1041
show track ipv6 route.. 1041
track interface ipv6 routing.. 1043
track ipv6 route metric threshold.. 1044
track ipv6 route reachability... 1045
track resolution ipv6 route.. 1046

39 Open Shortest Path First (OSPFv2 and OSPFv3).......................... 1048
OSPFv2 Commands... 1051
area default-cost.. 1051
area nssa... 1051
area range... 1052
area stub... 1053
auto-cost... 1054
clear ip ospf... 1054
clear ip ospf statistics... 1055
default-information originate.. 1056
default-metric.. 1058
description.. 1059
distance... 1060
distance ospf... 1060
distribute-list in... 1061
distribute-list out... 1062
fast-convergence.. 1063
flood-2328.. 1064
graceful-restart grace-period... 1064
graceful-restart helper-reject.. 1065
graceful-restart mode... 1065
graceful-restart role... 1066
ip ospf auth-change-wait-time.. 1067
ip ospf authentication-key... 1067
ip ospf cost.. 1068
ip ospf dead-interval... 1068
ip ospf hello-interval...1069
ip ospf message-digest-key................................1069
ip ospf mtu-ignore...1070
ip ospf network...1071
ip ospf priority...1071
ip ospf retransmit-interval..............................1072
ip ospf transmit-delay.......................................1072
log-adjacency-changes....................................1073
maximum-paths...1073
mib-binding...1074
network area...1075
passive-interface..1075
redistribute...1077
redistribute bgp...1078
redistribute isis...1079
router-id..1080
router ospf...1081
show config..1081
show ip ospf...1082
show ip ospf asbr...1083
show ip ospf database......................................1084
show ip ospf database asbr-summary.................1085
show ip ospf database external.......................1087
show ip ospf database network......................1089
show ip ospf database nssa-external................1091
show ip ospf database opaque-area..................1092
show ip ospf database opaque-as.....................1094
show ip ospf database opaque-link..................1094
show ip ospf database router.........................1095
show ip ospf database summary......................1098
show ip ospf interface.....................................1100
show ip ospf neighbor.....................................1102
show ip ospf routes..1103
show ip ospf statistics....................................1104
show ip ospf timers rate-limit.......................1107
show ip ospf topology.....................................1108
summary-address...1109
timers spf..1110
timers throttle lsa all.....................................1111
timers throttle lsa arrival..............................1111
OSPFv3 Commands..1112
area authentication..1112
area encryption .. 1113
auto-cost .. 1115
clear ipv6 ospf process .. 1116
debug ipv6 ospf bfd .. 1117
debug ipv6 ospf .. 1118
default-information originate .. 1119
graceful-restart grace-period ... 1120
graceful-restart mode ... 1120
ipv6 ospf area .. 1121
ipv6 ospf authentication ... 1122
ipv6 ospf bfd all-neighbors .. 1123
ipv6 ospf cost .. 1124
ipv6 ospf dead-interval ... 1125
ipv6 ospf encryption .. 1125
ipv6 ospf graceful-restart helper-reject .. 1127
ipv6 ospf hello-interval ... 1128
ipv6 ospf priority ... 1128
ipv6 router ospf ... 1129
maximum-paths ... 1129
passive-interface ... 1130
redistribute ... 1131
router-id .. 1132
show crypto ipsec policy .. 1133
show crypto ipsec sa ipv6 ... 1134
show ipv6 ospf database ... 1135
show ipv6 ospf interface ... 1135
show ipv6 ospf neighbor ... 1137
timers spf .. 1137

40 Policy-based Routing (PBR) .. 1139
description ... 1139
ip redirect-group ... 1140
ip redirect-list ... 1141
permit ... 1141
redirect ... 1143
seq .. 1145
show cam pbr ... 1147
show ip redirect-list .. 1148

41 PIM-Sparse Mode (PIM-SM) ... 1149
IPv4 PIM-Sparse Mode Commands .. 1150
clear ip pim rp-mapping ... 1150
42 Port Monitoring.. 1184
 Description... 1184
 flow-based enable... 1185
 monitor session... 1186
 rate-limit.. 1187
 show config.. 1187
 show monitor session.. 1188
 show running-config monitor session.. 1188
 source (port monitoring)... 1189

43 Private VLAN (PVLAN).. 1192
 ip local-proxy-arp... 1193
 private-vlan mapping secondary-vlan... 1194
 private-vlan mode... 1195
 show interfaces private-vlan.. 1196
 show vlan private-vlan... 1197
 show vlan private-vlan mapping... 1200
 switchport mode private-vlan... 1200

44 Per-VLAN Spanning Tree Plus (PVST+).. 1202
 description.. 1202
 disable... 1203
 edge-port bpdufilter default.. 1203
 extend system-id... 1204
 protocol spanning-tree pvst.. 1205
 show spanning-tree pvst... 1206
 spanning-tree pvst.. 1209
 spanning-tree pvst err-disable... 1210
 tc-flush-standard... 1211
 vlan bridge-priority.. 1212
 vlan forward-delay... 1212
 vlan hello-time.. 1213
 vlan max-age... 1214

45 Quality of Service (QoS)... 1216
 Global Configuration Commands.. 1217
 qos-rate-adjust... 1217
 service-class dot1p-mapping... 1218
 Per-Port QoS Commands... 1218
 dot1p-priority.. 1218
rate police... 1219
rate shape.. 1220
service-class dynamic dot1p.. 1221
service-class bandwidth-percentage.. 1222
strict-priority unicast... 1223
Policy-Based QoS Commands.. 1224
bandwidth-percentage... 1224
class-map.. 1225
clear qos statistics.. 1226
crypto key zeroize rsa... 1227
ip ssh rekey.. 1227
match ip access-group... 1228
match ip vlan.. 1229
match ip vrf... 1229
description.. 1230
match ip dscp... 1231
match ip precedence... 1232
match mac access-group.. 1233
match mac dot1p... 1234
match mac vlan... 1234
policy-aggregate... 1235
policy-map-input... 1235
policy-map-output.. 1236
qos-policy-input... 1237
qos-policy-output... 1238
rate police.. 1238
rate shape.. 1239
service-policy input.. 1240
service-policy output... 1241
service-queue.. 1241
set... 1242
show qos class-map.. 1243
show qos policy-map... 1243
show qos policy-map-input... 1244
show qos policy-map-output.. 1245
show qos qos-policy-input... 1246
show qos qos-policy-output.. 1247
show qos statistics... 1247
show qos wred-profile.. 1248
test cam-usage.. 1249
trust.. 1251
wred... 1252
wred ecn.. 1253
wred-profile.. 1254
dscp... 1255
qos dscp-color-map.. 1256
qos dscp-color-policy...................................... 1257
show qos dscp-color-policy............................ 1258
show qos dscp-color-map............................... 1259

46 Routing Information Protocol (RIP)................................. 1261
auto-summary... 1262
clear ip rip.. 1262
debug ip rip.. 1262
default-information originate......................... 1263
default-metric... 1264
description.. 1265
distance... 1265
distribute-list in.. 1266
distribute-list out.. 1266
ip poison-reverse.. 1267
ip rip receive version................................... 1268
ip rip send version....................................... 1269
ip split-horizon.. 1269
maximum-paths... 1270
neighbor.. 1270
network.. 1271
offset-list.. 1272
output-delay.. 1273
passive-interface.. 1273
redistribute.. 1274
redistribute ospf... 1275
router rip... 1275
show config... 1276
show ip rip database................................... 1276
show running-config rip............................... 1278
timers basic... 1278
version... 1279

47 Remote Monitoring (RMON).. 1281
rmon alarm.. 1282
rmon collection history............................... 1283
rmon collection statistics........................... 1284
rmon event... 1284
rmon hc-alarm.. 1285
show rmon... 1286
show rmon alarms.. 1287
show rmon events.. 1288
show rmon hc-alarm.. 1289
show rmon history.. 1290
show rmon log.. 1291
show rmon statistics.. 1291

48 Rapid Spanning Tree Protocol (RSTP).......................... 1294
 bridge-priority... 1294
 debug spanning-tree rstp.................................. 1294
 description.. 1295
 disable... 1296
 forward-delay... 1296
 hello-time.. 1297
 max-age.. 1298
 edge-port bpdufilter default......................... 1298
 protocol spanning-tree rstp......................... 1299
 show config... 1300
 spanning-tree rstp....................................... 1300
 spanning-tree rstp....................................... 1302
 tc-flush-standard.. 1304

49 Security.. 1305
 AAA Accounting Commands........................... 1307
 aaa accounting.. 1307
 aaa accounting suppress.............................. 1309
 accounting.. 1309
 crypto key zeroize rsa.................................... 1310
 show accounting.. 1311
 Authorization and Privilege Commands.................. 1312
 authorization... 1312
 aaa authorization commands.......................... 1313
 aaa authorization role-only........................... 1313
 aaa authorization config-commands.................. 1315
 aaa authorization exec................................ 1315
 privilege level (CONFIGURATION mode).............. 1316
 privilege level (LINE mode).......................... 1317
 Authentication and Password Commands................ 1318
 aaa authentication enable............................ 1318
 aaa authentication login............................. 1319
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Secure DHCP Commands</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>ssh</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>sFlow</td>
<td>1374</td>
</tr>
<tr>
<td></td>
<td>sflow collector</td>
<td>1375</td>
</tr>
<tr>
<td></td>
<td>sflow enable (Global)</td>
<td>1376</td>
</tr>
<tr>
<td></td>
<td>sflow ingress-enable</td>
<td>1376</td>
</tr>
<tr>
<td></td>
<td>sflow extended-switch enable</td>
<td>1377</td>
</tr>
<tr>
<td></td>
<td>sflow max-header-size extended</td>
<td>1378</td>
</tr>
<tr>
<td></td>
<td>sflow polling-interval (Global)</td>
<td>1378</td>
</tr>
<tr>
<td></td>
<td>sflow polling-interval (Interface)</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td>sflow sample-rate (Global)</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td>sflow sample-rate (Interface)</td>
<td>1380</td>
</tr>
<tr>
<td></td>
<td>show sflow</td>
<td>1381</td>
</tr>
<tr>
<td></td>
<td>show sflow stack-unit</td>
<td>1382</td>
</tr>
<tr>
<td>51</td>
<td>Service Provider Bridging</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>debug protocol-tunnel</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>protocol-tunnel</td>
<td>1384</td>
</tr>
<tr>
<td></td>
<td>protocol-tunnel destination-mac</td>
<td>1385</td>
</tr>
</tbody>
</table>
52 Simple Network Management Protocol (SNMP) and Syslog

SNMP Commands
- clear logging auditlog
- show snmp
- show snmp engineID
- show snmp group
- show snmp user
- show snmp ifmib ifalias long
- snmp-server community
- snmp-server contact
- snmp-server trap-source
- snmp-server engineID
- snmp-server group
- snmp-server host
- snmp-server location
- snmp-server packetsize
- snmp-server trap-source
- snmp-server user
- snmp-server user (for AES128-CFB Encryption)
- snmp trap link-status
- show snmp group
- show snmp
- clear logging auditlog
- default logging buffered
- default logging console
- logging extended
- default logging monitor
- default logging trap
- logging
- logging buffered
- logging console
- logging facility
- logging history
- logging history size
- logging monitor
- logging on
- logging source-interface
- logging synchronous

Syslog Commands
logging trap ... 1420
logging version ... 1420
show logging... 1421
show logging driverlog stack-unit... 1423
show logging auditlog.. 1423
terminal monitor.. 1424

53 Stacking .. 1425
 redundancy disable-auto-reboot .. 1425
 redundancy force-failover stack-unit .. 1426
 reset stack-unit .. 1426
 show redundancy ... 1427
 show system stack-ports .. 1428
 show system stack-unit stack-group .. 1430
 stack-unit stack-group .. 1431
 stack-unit priority ... 1431
 stack-unit provision ... 1432
 stack-unit renumber .. 1432

54 Storm Control .. 1434
 show storm-control broadcast .. 1434
 show storm-control multicast .. 1435
 show storm-control unknown-unicast ... 1436
 storm-control broadcast (Configuration) .. 1437
 storm-control broadcast (Interface) .. 1437
 storm-control PFC/LLFC .. 1438
 storm-control multicast (Configuration) ... 1438
 storm-control multicast (Interface) ... 1439
 storm-control unknown-unicast (Configuration) .. 1439
 storm-control unknown-unicast (Interface) .. 1440

55 Spanning Tree Protocol (STP) .. 1441
 bridge-priority .. 1441
 debug spanning-tree ... 1442
description.. 1442
disable... 1443
forward-delay.. 1443
hello-time... 1444
max-age.. 1444
portfast bpdufilter default .. 1445
protocol spanning-tree ... 1446
show config... 1446
show spanning-tree 0... 1447
spanning-tree 0.. 1450

56 SupportAssist.. 1452
eula-consent... 1452
support-assist... 1454
support-assist activate.. 1454
support-assist activity... 1455
SupportAssist Commands... 1456
activity.. 1456
contact-company.. 1456
contact-person.. 1457
enable.. 1458
server... 1459
SupportAssist Activity Commands.. 1459
action-manifest get... 1460
action-manifest install... 1460
action-manifest remove... 1461
action-manifest show... 1462
enable.. 1463
SupportAssist Company Commands... 1463
delay.. 1463
street-address... 1464
territory... 1465
SupportAssist Person Commands.. 1466
delay.. 1466
email-address.. 1466
phone.. 1467
preferred-method.. 1467
time-zone.. 1468
SupportAssist Server Commands.. 1469
proxy-ip-address.. 1469
enable.. 1470
url.. 1471
show eula-consent... 1471
show running-config ... 1473
show support-assist status... 1474

57 System Time and Date... 1475
clock set.. 1475
clock summer-time date.. 1476
clock summer-time recurring.. 1478
clock timezone... 1479
debug ntp.. 1480
ntp authenticate... 1481
ntp authentication-key... 1482
ntp broadcast client... 1483
ntp disable... 1484
ntp multicast client... 1485
ntp master <stratum>... 1486
ntp offset-threshold... 1487
ntp server.. 1488
ntp source... 1489
ntp trusted-key.. 1490
show clock... 1491
show ntp associations.. 1492
show ntp vrf associations... 1493
show ntp status.. 1494

58 Tunneling ... 1495
 tunnel-mode.. 1496
tunnel source.. 1497
tunnel keepalive... 1498
tunnel allow-remote.. 1499
tunnel dscp... 1500
tunnel destination... 1501
tunnel flow-label... 1502
tunnel hop-limit.. 1503
ip unnumbered.. 1504
ipv6 unnumbered.. 1505

59 u-Boot... 1506
 boot change... 1507
 boot selection... 1508
 boot show net config retries.. 1509
 boot write net config retries.. 1510
 boot zero.. 1511
 default gateway.. 1512
 enable.. 1513
 help... 1514
 ignore enable password.. 1515
 enable sha256-password.. 1516
 ignore startup config... 1517
 interface management ethernet ip address... 1518
 no default-gateway.. 1519

 9.10(0.0) | 42
no interface management ethernet ip address...1505
reload...1505
show boot blc...1506
show boot selection..1506
show bootflash...1507
show bootvar...1507
show default-gateway...1508
show interface management Ethernet..1508
show interface management port config...1509
syntax help...1509

60 Uplink Failure Detection (UFD)..1511
clear ufd-disable..1511
debug uplink-state-group..1512
description..1513
downstream..1513
downstream auto-recover...1514
downstream disable links...1515
enable..1516
show running-config uplink-state-group..1516
show uplink-state-group..1517
uplink-state-group..1518
upstream..1519

61 VLAN Stacking...1521
dei enable..1522
dei honor..1522
dei mark...1523
member...1523
show interface dei-honor...1524
show interface dei-mark..1525
vlan-stack access..1525
vlan-stack compatible..1526
vlan-stack dot1p-mapping...1527
vlan-stack protocol-type...1527
vlan-stack trunk..1528

62 Virtual Link Trunking (VLT)..1531
back-up destination..1532
clear ip mroute..1532
clear ip pim tib..1533
delay-restore abort-threshold..1533
63 Virtual Router Redundancy Protocol (VRRP)................................. 1548
 advertise-interval... 1549
 authentication-type... 1549
 clear counters vrrp.. 1550
dbg vrrp.. 1551
 description... 1552
 disable... 1552
 hold-time... 1553
 preempt... 1553
 priority... 1554
 show config.. 1554
 show vrrp.. 1555
 track... 1558
 virtual-address... 1559
 vrrp delay minimum... 1559
 vrrp delay reload... 1560
 vrrp-group... 1561
 VRRP for IPv6 Commands.. 1561
 clear counters vrrp ipv6.......................... 1561
 debug vrrp ipv6.. 1562
 show vrrp ipv6.. 1563
 vrrp-ipv6-group.. 1565
64 ICMP Message Types...1568
65 SNMP Traps..1570
66 FC Flex IO Modules...1575
 FC Flex IO Modules..1575
 Data Center Bridging (DCB) for FC Flex IO Modules..1575
 NPIV Proxy Gateway for FC Flex IO Modules...1576
 description (for FCoE maps)...1576
 fabric..1577
 fabric-id vlan..1578
 fcf-priority..1579
 fc-map...1579
 fcoe-map..1580
 fka-adv-period..1582
 interface vlan (NPIV proxy gateway)..1582
 keepalive..1583
 show fcoe-map..1584
 show npiv devices...1587
This guide provides information about the Dell Networking Operating System (OS) command line interface (CLI).
This guide also includes information about the protocols and features found in the Dell OS and on the Dell Networking systems supported by the Dell OS.

References
For more information about your system, refer to the following documents:

- Dell Networking OS Configuration Guide
- Installation and Maintenance Guides for the MXL 10/40GbE Switch System
- Release Notes for the MXL 10/40GbE Switch System

Topics:

- Objectives
- Audience
- Conventions
- Information Icons

Objectives
This book is intended as a reference guide for the Dell OS CLI commands, with detailed syntax statements, along with usage information and sample output.
This guide contains an Appendix with a list of the request for comment (RFCs) and management information base files (MIBs) supported.

NOTE: For more information about when to use the CLI commands, refer to the *Dell Networking OS Configuration Guide* for your system.
Audience

This book is intended for system administrators who are responsible for configuring or maintaining networks. This guide assumes that you are knowledgeable in Layer 2 and Layer 3 networking technologies.

Conventions

This book uses the following conventions to describe command syntax.

- **Keyword**: Keywords are in Courier font and must be entered in the CLI as listed.
- **parameter**: Parameters are in italics and require a number or word to be entered in the CLI.
- **{X}**: Keywords and parameters within braces must be entered in the CLI.
- **[X]**: Keywords and parameters within brackets are optional.
- **x|y**: Keywords and parameters separated by a bar require you to choose one option.
- **x||y**: Keywords and parameters separated by a double bar allows you to choose any or all of the options.

Information Icons

This book uses the following information symbols:

- **NOTE**: The Note icon signals important operational information.
- **CAUTION**: The Caution icon signals information about situations that could result in equipment damage or loss of data.
- **WARNING**: The Warning icon signals information about hardware handling that could result in injury.
This chapter describes the command line interface (CLI) structure and command modes. The Dell operating software commands are in a text-based interface that allows you to use the launch commands, change command modes, and configure interfaces and protocols.

Topics:
- Accessing the Command Line
- Multiple Configuration Users
- Navigating the CLI
- Obtaining Help
- Using the Keyword no Command
- Filtering show Commands
- Command Modes

Accessing the Command Line

When the system boots successfully, you are positioned on the command line in EXEC mode and not prompted to log in. You can access the commands through a serial console port or a Telnet session. When you Telnet into the switch, you are prompted to enter a login name and password.

Example
```
telnet 172.31.1.53
Trying 172.31.1.53...
Connected to 172.31.1.53.
Escape character is '^]'.
Login: username
Password: Dell>
```

After you log in to the switch, the prompt provides you with the current command-level information. For example:

<table>
<thead>
<tr>
<th>Prompt</th>
<th>CLI Command Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell></td>
<td>EXEC</td>
</tr>
<tr>
<td>Dell#</td>
<td>EXEC Privilege</td>
</tr>
<tr>
<td>Dell(conf)#</td>
<td>CONFIGURATION</td>
</tr>
</tbody>
</table>

NOTE: For a list of all the command mode prompts, refer to the Command Modes section.
Multiple Configuration Users

When a user enters CONFIGURATION mode and another user is already in CONFIGURATION mode, the Dell Networking Operating System (OS) generates an alert warning message similar to the following:

Dell#conf
% Warning: The following users are currently configuring the system:
User "" on line console0
User "admin" on line vty0 (123.12.1.123)
User "admin" on line vty1 (123.12.1.123)
User "Irene" on line vty3 (123.12.1.321)
Dell#conf

When another user enters CONFIGURATION mode, the Dell Networking OS sends a message similar to the following:

% Warning: User "admin" on line vty2 "172.16.1.210" is in configuration

In this case, the user is “admin” on vty2.

Navigating the CLI

The Dell Networking Operating System (OS) displays a command line interface (CLI) prompt comprised of the host name and CLI mode.

- Host name is the initial part of the prompt and is “Dell” by default. You can change the host name with the hostname command.
- CLI mode is the second part of the prompt and reflects the current CLI mode. For a list of the Dell Networking OS command modes, refer to the command mode list in the Accessing the Command Line section.

The CLI prompt changes as you move up and down the levels of the command structure. Starting with CONFIGURATION mode, the command prompt adds modifiers to further identify the mode. For more information about command modes, refer to the Command Modes section.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>CLI Command Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell></td>
<td>EXEC</td>
</tr>
<tr>
<td>Dell#</td>
<td>EXEC Privilege</td>
</tr>
<tr>
<td>Dell(conf)#</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>Dell(conf-if-te-0/0)#</td>
<td>INTERFACE</td>
</tr>
<tr>
<td>Dell(conf-if-vl-1)#</td>
<td></td>
</tr>
</tbody>
</table>
Prompt CLI Command Mode
Dell(conf-if-ma-0/0)#
Dell(conf-if-range)#
Dell(conf-line-console)# LINE
Dell(conf-line-vty)#
Dell(conf-mon-sess)# MONITOR SESSION

Obtaining Help

As soon as you are in a command mode there are several ways to access help.

To obtain a list of keywords at any command mode: Type a ? at the prompt or after a keyword. There must always be a space before the ?.

To obtain a list of keywords with a brief functional description: Type help at the prompt.

To obtain a list of available options: Type a keyword and then type a space and a ?.

To obtain a list of partial keywords using a partial keyword: Type a partial keyword and then type a ?.

Example

The following is an example of typing ip ? at the prompt:

Dell(conf)#ip ?
igmp Internet Group Management Protocol
route Establish static routes
telnet Specify telnet options

When entering commands, you can take advantage of the following timesaving features:

• The commands are not case-sensitive.
• You can enter partial (truncated) command keywords. For example, you can enter int gig int interface for the interface gigabitethernet interface command.
• To complete keywords in commands, use the TAB key.
• To display the last enabled command, use the up Arrow key.
• Use either the Backspace key or Delete key to erase the previous character.
• To navigate left or right in the Dell Networking OS command line, use the left and right Arrow keys.

The shortcut key combinations at the Dell Networking OS command line are as follows:
<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTL-A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>CNTL-B</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>CNTL-D</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>CNTL-E</td>
<td>Moves the cursor to the end of the line.</td>
</tr>
<tr>
<td>CNTL-F</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>CNTL-I</td>
<td>Completes a keyword.</td>
</tr>
<tr>
<td>CNTL-K</td>
<td>Deletes all the characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>CNTL-L</td>
<td>Re-enters the previous command.</td>
</tr>
<tr>
<td>CNTL-N</td>
<td>Returns to the more recent commands in the history buffer after recalling commands with Ctrl-P or the up Arrow key.</td>
</tr>
<tr>
<td>CNTL-P</td>
<td>Recalls commands, beginning with the last command.</td>
</tr>
<tr>
<td>CNTL-R</td>
<td>Re-enters the previous command.</td>
</tr>
<tr>
<td>CNTL-U</td>
<td>Deletes the line.</td>
</tr>
<tr>
<td>CNTL-W</td>
<td>Deletes the previous word.</td>
</tr>
<tr>
<td>CNTL-X</td>
<td>Deletes the line.</td>
</tr>
<tr>
<td>CNTL-Z</td>
<td>Ends continuous scrolling of the command outputs.</td>
</tr>
<tr>
<td>Esc B</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td>Esc F</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>Esc D</td>
<td>Deletes all the characters from the cursor to the end of the word.</td>
</tr>
</tbody>
</table>

Using the Keyword no Command

To disable, delete or return to default values, use the no form of the commands.

For most commands, if you type the keyword no in front of the command, you disable that command or delete it from the running configuration. In this guide, the no form of the command is described in the Syntax portion of the command description. For example:

Syntax

```
no {boot | default | enable | ftp-server | hardware | hostname |
ip | line | logging | monitor | service | io-aggregator broadcast storm-control | snmp-server | username}
```

Defaults

None

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN MXL</td>
</tr>
</tbody>
</table>
Filtering show Commands

To find specific information, display certain information only or begin the command output at the first instance of a regular expression or phrase, you can filter the display output of a show command.

When you execute a show command, and then enter a pipe (|), one of the following parameters, and a regular expression, the resulting output either excludes or includes those parameters.

NOTE: The Dell Networking Operating System (OS) accepts a space before or after the pipe, no space before or after the pipe, or any combination. For example:

```
Dell#command | grep gigabit | except regular-expression | find regular-expression.
```

- **except** displays only the text that does not match the pattern (or regular expression)
- **find** searches for the first occurrence of a pattern
- **grep** displays text that matches a pattern.
- **no-more** does not paginate the display output
- **save** copies the output to a file for future use

The grep command option has an ignore-case sub-option that makes the search case-insensitive. For example, the commands:

Displaying All Output

To display the output all at once (not one screen at a time), use the no-more option after the pipe. This operation is similar to the terminal length screen-length command except that the no-more option affects the output of just the specified command. For example: Dell#show running-config|no-more.

Filtering the Command Output Multiple Times

You can filter a single command output multiple times. To filter a command output multiple times, place the save option as the last filter. For example: Dell# command | grep regular-expression | except regular-expression | grep other-regular-expression | find regular-expression | no-more | save.
Command Modes

To navigate and launch various CLI modes, use specific commands. Navigation to these modes is described in the following sections.

EXEC Mode

When you initially log in to the switch, by default, you are logged in to EXEC mode. This mode allows you to view settings and enter EXEC Privilege mode, which is used to configure the device.

When you are in EXEC mode, the > prompt is displayed following the host name prompt, which is “Dell” by default. You can change the host name prompt using the hostname command.

NOTE: Each mode prompt is preceded by the host name.

EXEC Privilege Mode

The `enable` command accesses EXEC Privilege mode. If an administrator has configured an “Enable” password, you are prompted to enter it.

EXEC Privilege mode allows you to access all the commands accessible in EXEC mode, plus other commands, such as to clear address resolution protocol (ARP) entries and IP addresses. In addition, you can access CONFIGURATION mode to configure interfaces, routes and protocols on the switch. While you are logged in to EXEC Privilege mode, the # prompt displays.

CONFIGURATION Mode

In EXEC Privilege mode, use the `configure` command to enter CONFIGURATION mode and configure routing protocols and access interfaces.

To enter CONFIGURATION mode:

1. Verify that you are logged in to EXEC Privilege mode.
2. Enter the `configure` command. The prompt changes to include (conf).

From this mode, you can enter INTERFACE mode by using the `interface` command.

INTERFACE Mode

Use INTERFACE mode to configure interfaces or IP services on those interfaces. An interface can be physical (for example, a Gigabit Ethernet port) or virtual (for example, the Null interface).

To enter INTERFACE mode:
1 Verify that you are logged in to CONFIGURATION mode.
2 Enter the interface command and then enter an interface type and interface number that is available on the switch.

The prompt changes to include the designated interface and slot/port number. For example:

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell(conf-if)#</td>
<td>INTERFACE mode</td>
</tr>
<tr>
<td>Dell(conf-if-te-0/0)#</td>
<td>Ten-Gigabit Ethernet interface then slot/port information</td>
</tr>
<tr>
<td>Dell(conf-if-fo-0/0)#</td>
<td>Forty-Gigabit Ethernet interface then slot/port information</td>
</tr>
<tr>
<td>Dell(conf-if-lo-0)#</td>
<td>Loopback interface number</td>
</tr>
<tr>
<td>Dell(conf-if-nu-0)#</td>
<td>Null Interface then zero</td>
</tr>
<tr>
<td>Dell(conf-if-po-0)#</td>
<td>Port-channel interface number</td>
</tr>
<tr>
<td>Dell(conf-if-v1-0)#</td>
<td>VLAN Interface then VLAN number (range 1–4094)</td>
</tr>
<tr>
<td>Dell(conf-if-ma-0)#</td>
<td>Management Ethernet interface then slot/port information</td>
</tr>
<tr>
<td>Dell(conf-if-range)#</td>
<td>Designated interface range (used for bulk configuration).</td>
</tr>
</tbody>
</table>

IP ACCESS LIST Mode

To enter IP ACCESS LIST mode and configure either standard or extended access control lists (ACLs), use the `ip access-list standard` or `ip access-list extended` command.

To enter IP ACCESS LIST mode:

1 Verify that you are logged in to CONFIGURATION mode.
2 Use the `ip access-list standard` or `ip access-list extended` command. Include a name for the ACL. The prompt changes to include (conf-std-nacl) or (conf-ext-nacl).

You can return to CONFIGURATION mode by using the `exit` command.

LINE Mode

To configure the console or virtual terminal parameters, use LINE mode.

To enter LINE mode:

1 Verify that you are logged in to CONFIGURATION mode.
2. Enter the `line` command. Include the keywords `console` or `vty` and their line number available on the switch. The prompt changes to include (config-line-console) or (config-line-vty).

You can exit this mode by using the `exit` command.

MAC ACCESS LIST Mode

To enter MAC ACCESS LIST mode and configure either standard or extended access control lists (ACLs), use the `mac access-list standard` or `mac access-list extended` command.

To enter MAC ACCESS LIST mode:
1. Verify that you are logged in to CONFIGURATION mode.
2. Use the `mac access-list standard` or `mac access-list extended` command. Include a name for the ACL. The prompt changes to include (conf-std-macl) or (conf-ext-macl).

You can return to CONFIGURATION mode by using the `exit` command.

MULTIPLE SPANNING TREE Mode

To enable and configure the multiple spanning tree protocol (MSTP), use MULTIPLE SPANNING TREE mode, as described in Multiple Spanning Tree Protocol (MSTP).

To enter MULTIPLE SPANNING TREE mode:
1. Verify that you are logged in to CONFIGURATION mode.
2. Enter the `protocol spanning-tree mstp` command.

You can return to CONFIGURATION mode by using the `exit` command.

Per-VLAN SPANNING TREE (PVST+) Plus Mode

To enable and configure the Per-VLAN Spanning Tree (PVST+) protocol, use PVST+ mode. For more information, refer to Per-VLAN Spanning Tree Plus (PVST+).

NOTE: The protocol name is PVST+, but the plus sign is dropped at the CLI prompt.

To enter PVST+ mode:
1. Verify that you are logged in to CONFIGURATION mode.
2. Enter the `protocol spanning-tree pvst` command. The prompt changes to include (conf-pvst).

You can return to CONFIGURATION mode by using the `exit` command.

PREFIX-LIST Mode

To configure a prefix list, use PREFIX-LIST mode.

To enter PREFIX-LIST mode:
1 Verify that you are logged in to CONFIGURATION mode.
2 Enter the `ip prefix-list` command. Include a name for the prefix list. The prompt changes to include (conf-nprefixl).

You can return to CONFIGURATION mode by using the `exit` command.

PROTOCOL GVRP Mode

To enable and configure GARP VLAN Registration Protocol (GVRP), use PROTOCOL GVRP mode. For more information, refer to [GARP VLAN Registration (GVRP)].

To enter PROTOCOL GVRP mode:

1 Verify that you are logged in to CONFIGURATION mode.
2 Enter the `protocol gvrp` command. The prompt changes to include (config-gvrp).

You can return to CONFIGURATION mode by using the `exit` command.

RAPID SPANNING TREE (RSTP) Mode

To enable and configure RSTP, use RSTP mode. For more information, refer to [Rapid Spanning Tree Protocol (RSTP)].

To enter RSTP mode:

1 Verify that you are logged in to CONFIGURATION mode.
2 Enter the `protocol spanning-tree rstp` command. The prompt changes to include (conf-rstp).

You can return to CONFIGURATION mode by using the `exit` command.

ROUTE-MAP Mode

To configure a route map, use ROUTE-MAP mode.

To enter ROUTE-MAP mode:

1 Verify that you are logged in to CONFIGURATION mode.
2 Use the `route-map map-name [permit | deny] [sequence-number]` command. The prompt changes to include (config-route-map).

You can return to CONFIGURATION mode by using the `exit` command.

ROUTER OSPF Mode

To configure OSPF, use ROUTER OSPF mode. For more information, refer to [Open Shortest Path First (OSPF)].

To enter ROUTER OSPF mode:

1 Verify that you are logged in to CONFIGURATION mode.
2. Enter the `router ospf {process-id}` command. The prompt changes to include `{conf-router_ospf-id}`.

You can switch to INTERFACE mode by using the `interface` command or you can switch to ROUTER RIP mode by using the `router rip` command.

ROUTER RIP Mode

To enable and configure Router Information Protocol (RIP), use ROUTER RIP mode. For more information, refer to Routing Information Protocol (RIP).

To enter ROUTER RIP mode:

1. Verify that you are logged in to CONFIGURATION mode.
2. Enter the `router rip` command. The prompt changes to include `{conf-router_rip}`.

You can return to CONFIGURATION mode by using the `exit` command.

SPANNING TREE Mode

To enable and configure the Spanning Tree protocol, use SPANNING TREE mode. For more information, refer to Spanning Tree Protocol (STP).

To enter SPANNING TREE mode:

1. Verify that you are logged in to CONFIGURATION mode.
2. Enter the `protocol spanning-tree stp-id` command. The prompt changes to include `{conf-stp}`.

You can return to CONFIGURATION mode by using the `exit` command.
This chapter contains command line interface (CLI) commands needed to manage the configuration files as well as other file management commands. The commands in this chapter are supported by the Dell Networking Operating System (OS).

Topics:
- boot system
- cd
- copy
- copy running-config startup-config
- delete
- format flash
- HTTP Copy via CLI
- logging coredump
- logging coredump server
- pwd
- rename
- restore factory-defaults
- show boot system
- show file
- show file-systems
- show os-version
- show running-config
- show startup-config
- show version
- upgrade boot
- upgrade system
- verify

boot system

Tell the system where to access the Dell Networking OS image used to boot the system.

Syntax

```
boot system {gateway ip-address | stack-unit {stack-unit-number | all}} {default | primary | secondary} {{system {A: | B: | bmp-boot}} | tftp: }]
```
To return to the default boot sequence, use the no boot system command.

Parameters

- **gateway**
 - Enter the IP address of the default next-hop gateway for the management subnet.

- **ip-address**
 - Enter an IP address in dotted decimal format.

- **stack-unit**
 - Enter the stack-unit number for the master switch.

- **stack-unit-number**
 - Enter the stack-unit number. The range is from 0 to 5.

- **all**
 - Enter the keyword all to apply the configuration for all stack units.

- **default**
 - Enter the keyword default to use the primary Dell Networking OS image.

- **primary**
 - Enter the keyword primary to use the primary Dell Networking OS image.

- **secondary**
 - Enter the keyword secondary to use the primary Dell Networking OS image.

- **tftp:**
 - Enter the keyword TFTP: to retrieve the image from a TFTP server. tftp://hostip/filepath.

- **A: | B:**
 - Enter A: or B: to boot one of the system partitions.

- **bmp-boot**
 - Enter the keyword bmp-boot to boot the system, when you are not sure about the partition that contains image from DHCP offer.

NOTE: In normal-reload, this keyword is not enabled.

Defaults

Not configured.

Command Modes

- CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced the support for bmp-boot on the MXL switch.</td>
</tr>
<tr>
<td>8.3.19.0</td>
<td>Introduced on the S4820T.</td>
</tr>
<tr>
<td>8.3.17.0</td>
<td>Introduced on the MXL switch.</td>
</tr>
<tr>
<td>8.3.11.1</td>
<td>Introduced on the Z9000.</td>
</tr>
<tr>
<td>8.3.7.0</td>
<td>Introduced on the S4810.</td>
</tr>
</tbody>
</table>
Usage Information
To display these changes in the show bootvar command output, save the running configuration to the startup configuration (using the copy command) and reload system.

The keyword bmp-boot is used only when the device boots up from BMP. In case of industrial standard upgraded device, the Dell networking OS stores the image partition upgraded from the DHCP offer in bmp-boot variable.

cd

Change to a different working directory.

Syntax

cd directory

Parameters

directory

(OPTIONAL) Enter the following:

- flash: (internal Flash) or any sub-directory
- usbflash: (external Flash) or any sub-directory

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.0</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

copy

Copy one file to another location. The Dell Networking Operating System (OS) supports IPv4 addressing for FTP, TFTP, and SCP (in the hostip field).

Syntax

copy source-file-url destination-file-url

Parameters

Enter the following location keywords and information:

- file-url
 - To copy a file from the internal FLASH
 - To copy the running configuration

Enter the keyword flash:// then the filename.
To copy the startup configuration

Enter the keywords `startup-config`.

To copy a file on the external FLASH

Enter the keyword `slot0://` then the filename.

Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>EXEC Privilege</th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The Dell Networking OS supports a maximum of 100 files at the root directory level, on both the internal and external Flash.

The `usbflash` commands are supported. For a list of approved USB vendors, refer to the [Dell Networking OS Release Notes](#).

When copying a file to a remote location (for example, using Secure Copy [SCP]), enter only the keywords and Dell Networking OS prompts you need for the rest of the information. For example, when using SCP, you can enter `copy running-config scp:` where `running-config` is the source and the target is specified in the ensuing prompts. The Dell Networking OS prompts you to enter any required information, as needed for the named destination—remote destination, destination filename, user ID, password, and so forth.

![NOTE:](#) Dell Networking OS imposes a length limit on the password you create for performing the secure copy operation. Your password can be no longer than 32 characters.

When you use the `copy running-config startup-config` command to copy the running configuration (the startup configuration file amended by any configuration changes made since the system was started) to the startup configuration file, the Dell Networking OS creates a backup file on the internal flash of the startup configuration.

The Dell Networking OS supports copying the running-configuration to a TFTP server or to an FTP server. For example:

- `copy running-config tftp:`
- `copy running-config ftp:`

![NOTE:](#) Dell Networking OS imposes a length limit on the password you create for accessing the FTP server. Your password can be no longer than 32 characters.

Example

```plaintext
Dell#copy running-config scp:
Address or name of remote host (): 10.10.10.1
Port number of the server (22): 99
Destination file name ([startup-config]): old_running
User name to login remote host: sburgess
```
Password to login remote host:
Password to login remote host? dilling

In this copy scp: flash: example, specifying SCP in the first position indicates that the target is to be specified in the ensuing prompts. Entering flash: in the second position indicates that the target is the internal Flash. The source is on a secure server running SSH, so you are prompted for the user datagram protocol (UDP) port of the SSH server on the remote host.

Example

Dell#copy scp: flash:
Address or name of remote host []: 10.11.199.134
Port number of the server [22]: 99
Source file name []: test.cfg
User name to login remote host: admin
Password to login remote host:
Destination file name [test.cfg]: test1.cfg

Related Commands

- **cd** – changes the working directory.

copy running-config startup-config

Copy running configuration to the startup configuration.

Syntax

```
copy running-config startup-config {duplicate}
```

Command Modes

EXEC Privilege

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 8.3.16.1 Introduced on the MxL 10/40GbE Switch IO Module.

Usage Information

This command is useful for quickly making a changed configuration on one chassis available on external flash in order to move it to another chassis.

delete

Delete a file from the flash. After deletion, files cannot be restored.

Syntax

```
delete flash: ([flash://]filepath) usbflash ([usbflash://]filepath)
```

Parameters

- **flash-url**
 - Enter the following location and keywords:
• For a file or directory on the internal Flash, enter flash:// then the filename or directory name.
• For a file or directory on an external USB drive, enter usbflash:// then the filename or directory name.

no-confirm (OPTIONAL) Enter the keywords no-confirm to specify that the Dell Networking OS does not require user input for each file prior to deletion.

Command Modes EXEC Privilege

Command History Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#dir
Directory of flash:

1 drwx 4096 Jan 01 1980 00:00:00 +00:00 .
2 drwx 2048 Mar 06 2010 00:36:21 +00:00 ..
3 drwx 4096 Feb 25 2010 23:32:50 +00:00 TRACE_LOG_DIR
4 drwx 4096 Feb 25 2010 23:32:50 +00:00 CORE_DUMP_DIR
5 d--- 4096 Feb 25 2010 23:32:50 +00:00 ADMIN_DIR
6 -rwx 72096768 Mar 05 2010 03:25:40 +00:00 6gb
dellS-XL-8-3-16-148.bin
7 -rwx 4260 Mar 03 2010 22:04:50 +00:00 prem-23-5-12
8 -rwx 31969685 Mar 05 2010 17:56:26 +00:00 dellS-XL-8-3-16-148.bin
9 -rwx 3951 Mar 06 2010 00:36:18 +00:00 startup-config

flash: 2143281152 bytes total (1389801472 bytes free)
Dell#

Related Commands

cd — Changes the working directory.

format flash

Erase all existing files and reformat the filesystem in the internal flash memory. After the filesystem is formatted, files cannot be restored.

Syntax format {flash: | usbflash:}

Defaults flash memory

Command Modes EXEC Privilege

Command History Version Description
9.9(0.0) Introduced on the FN IOM.
Version	Description
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You must include the colon (:) when entering this command.

⚠️ CAUTION: This command deletes all files, including the startup configuration file. So, after executing this command, consider saving the running config as the startup config (use the write memory command or copy run start command).

Related Commands
- `copy` — copies the current configuration to either the startup-configuration file or the terminal.
- `show file` — displays the contents of a text file in the local filesystem.
- `show file-systems` — displays information about the file systems on the system.

HTTP Copy via CLI
Copy one file to another location. Dell Networking OS supports IPv4 and IPv6 addressing for FTP, TFTP, and SCP (in the `hostip` field).

Syntax
```
```
You can copy from the server to the switch and vice-versa.

Parameters
- `copy http:` Address or name of remote host []: 10.16.206.77
- `flash:` Port number of the server [80]:
- Source file name []: sample_file
- User name to login remote host: x
- Password to login remote host:
- Destination file name [sample_file]:

Defaults
None.

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
</tbody>
</table>
Version Description

- **9.8(0.0P2)** Introduced on the S3048-ON.
- **9.3(0.1)** Introduced on the S6000, Z9000, S4810, and S4820T.

Example

```
copy http://admin:admin123@10.16.206.77/sample_file flash://sample_file
```
Enter the password type:

- Enter 0 to enter an unencrypted password.
- Enter 7 to enter a password that has already been encrypted using a Type 7 hashing algorithm.

Enter a password to access the target server.

Defaults
Crash kernel files are uploaded to flash by default.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.4.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Because flash space may be limited, using this command ensures your entire crash kernel files are uploaded successfully and completely. Only a single coredump server can be configured. Configuration of a new coredump server over-writes any previously configured server.

NOTE: You must disable `logging coredump` before you designate a new server destination for your core dumps.

Related Commands
`logging coredump` – disables the kernel coredump

pwd

Display the current working directory.

Syntax
pwd

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#pwd
flash:
Dell#
```

Related Commands
`cd` – changes the directory.
rename

Rename a file in the local file system.

Syntax

rename url url

Parameters

url

Enter the following keywords and a filename:

- For a file on the internal Flash, enter flash:// then the filename.
- For a file on an external USB drive, enter usbflash:// then the filename.

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

restore factory-defaults

Restore factory defaults.

Syntax

restore factory-defaults stack-unit {0-5 | all} {clear-all | bootvar | nvram}

Parameters

factory-defaults

Return the system to its factory default mode.

0-5

Enter the stack member unit identifier to restore only the mentioned stack-unit.

all

Enter the keyword all to restore all units in the stack.

bootvar

Enter the keyword bootvar to reset boot line.

clear-all

Enter the keywords clear-all to reset the NvRAM, boot environment variables, and the system startup configuration.

nvram

Enter the keyword nvram to reset the NvRAM only.

Command Modes

EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Added bootvar as a new parameters.</td>
</tr>
<tr>
<td>9.0.2.0</td>
<td>Introduced on the S6000.</td>
</tr>
<tr>
<td>9.0.0.0</td>
<td>Introduced on the Z9000.</td>
</tr>
<tr>
<td>8.3.19.0</td>
<td>Introduced on the S4820T.</td>
</tr>
<tr>
<td>8.3.12.0</td>
<td>Introduced on the S4810.</td>
</tr>
<tr>
<td>8.3.16.0</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Restoring factory defaults deletes the existing startup configuration and all persistent settings (stacking, fan-out, and so forth).

When restoring all units in a stack, all the units in the stack are placed into stand-alone mode.

When restoring a single unit in a stack, that unit placed in stand-alone mode. No other units in the stack are affected.

When restoring units in stand-alone mode, the units remain in stand-alone mode after the restoration. After the restore is complete, the units power cycle immediately.

⚠️ **CAUTION:** There is no undo for this command.

Following are the factory-default environment variables:

- baudrate
- primary_boot
- secondary_boot
- default_boot
- ipaddr
- gatewayip
- netmask
- macaddr
- mgmtautoneg
- mgmtspeed100
- mgmtfullduplex

Each boot path variable (primary_boot, secondary_boot, and default_boot) is further split into the following three independent variables:

- primary_server, primary_file, and primary_type
- secondary_server, secondary_file, and secondary_type
• default_server, default_file, and default_type

NOTE: For information on the default values that these variables take, refer to the Restoring Factory Default Environment Variables section in the Dell Networking OS Configuration guide.

Example (all stack units)
Dell#restore factory-defaults stack-unit all clear-all
**
* Warning - Restoring factory defaults will delete the existing *
* startup-config and all persistent settings (stacking, fanout, etc.)*
* All the units in the stack will be split into standalone units. *
* After restoration the unit(s) will be powercycled immediately. *
* Proceed with caution ! *
**
Proceed with factory settings? Confirm [yes/no]:yes
-- Restore status --
Unit Nvram Config

0 Success Success
1 Success Success
2 Success Success
3 Not present
4 Not present
5 Not present
Power-cycling the unit(s).
Dell#

Example (single stack)
Dell#restore factory-defaults stack-unit 0 clear-all
**
* Warning - Restoring factory defaults will delete the existing *
* startup-config and all persistent settings (stacking, fanout, etc.)*
* After restoration the unit(s) will be powercycled immediately. *
* Proceed with caution ! *
**
Proceed with factory settings? Confirm [yes/no]:yes
-- Restore status --
Unit Nvram Config

0 Success Success
Power-cycling the unit(s).
Dell#

Example (NvRAM all stack units)
Dell#restore factory-defaults stack-unit all nvram
**
* Warning - Restoring factory defaults will delete the existing *
* persistent settings (stacking, fanout, etc.) *
* All the units in the stack will be split into standalone units.
* After restoration the unit(s) will be powercycled immediately. *
* Proceed with caution ! *
**
Proceed with factory settings? Confirm [yes/no]:yes
-- Restore status --
Unit Nvram Config

0 Success
1 Success
2 Success
3 Not present
4 Not present
5 Not present
Power-cycling the unit(s).
Dell#

Example (NvRAM, single unit)
Dell#restore factory-defaults stack-unit lnvram
**
* Warning - Restoring factory defaults will delete the existing *
* persistent settings (stacking, fanout, etc.) *
* After restoration the unit(s) will be powercycled immediately. *
* Proceed with caution ! *
**
Proceed with factory settings? Confirm [yes/no]:yes
-- Restore status --
Unit Nvram Config

1 Success
Power-cycling the unit(s).
Dell#

show boot system

Displays information about boot images currently configured on the system.

Syntax
show boot system stack-unit {0-5 | all}

Parameters

0–5
Enter this information to display the boot image information of only the entered stack-unit.

all
Enter the keyword all to display the boot image information of all the stack-units in the stack.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show boot system stack-unit all
Current system image information in the system:
===
Type Boot Type
-------- Boot Type
A
B
Stack-unit 0 is not present.
Stack-unit 1 is not present.
Stack-unit 2 is not present.
Stack-unit 3 is not present.
Stack-unit 4 is not present.
Stack-unit 5 DOWNLOAD BOOT 9-1-0-675 9-1-0-684

show file

Display contents of a text file in the local filesystem.

Syntax

```
show file url
```

Parameters

- `url`

 Enter one of the following:

 - For a file on the internal Flash, enter `flash://` then the filename.
 - For a file on the external Flash, enter `usbflash://` then the filename.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show file flash://startup-config
! Version E8-3-16-29
! Last configuration change at Thu Apr 26 19:19:02 2012 by default
! Startup-config last updated at Thu Apr 26 19:19:04 2012 by default
! boot system stack-unit 0 primary system: A:
boot system stack-unit 0 secondary tftp://10.11.200.241/dtm1000e-5-c2
boot system gateway 10.11.209.254
!
redundancy auto-synchronize full
redundancy disable-auto-reboot stack-unit
!
redundancy disable-auto-reboot stack-unit 0
redundancy disable-auto-reboot stack-unit 1
redundancy disable-auto-reboot stack-unit 2
redundancy disable-auto-reboot stack-unit 3
redundancy disable-auto-reboot stack-unit 4
redundancy disable-auto-reboot stack-unit 5
!
service timestamps log datetime
logging coredump stack-unit all
!
```
show file-systems

Display information about the file systems on the system.

Syntax

show file-systems

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.0</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show file-systems

<table>
<thead>
<tr>
<th>Size(b)</th>
<th>Free(b)</th>
<th>Feature</th>
<th>Type</th>
<th>Flags</th>
<th>Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2143281152</td>
<td>2000936960</td>
<td>FAT32</td>
<td>USERFLASH</td>
<td>rw</td>
<td>flash:</td>
</tr>
<tr>
<td>15848660992</td>
<td>831594496</td>
<td>FAT32</td>
<td>USBFLASH</td>
<td>rw</td>
<td>usbflash:</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>network</td>
<td>network</td>
<td>rw</td>
<td>ftp:</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>network</td>
<td>network</td>
<td>rw</td>
<td>tftp:</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>network</td>
<td>network</td>
<td>rw</td>
<td>scp:</td>
</tr>
</tbody>
</table>

Command Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(b)</td>
<td>Lists the size (in bytes) of the storage location. If the location is remote, no size is listed.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Lists the available size (in bytes) of the storage location. If the location is remote, no size is listed.</td>
</tr>
<tr>
<td>Feature</td>
<td>Displays the formatted DOS version of the device.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the type of storage. If the location is remote, the word network is listed.</td>
</tr>
<tr>
<td>Flags</td>
<td>Displays the access available to the storage location. The following letters indicate the level of access:</td>
</tr>
<tr>
<td></td>
<td>• r = read access</td>
</tr>
<tr>
<td></td>
<td>• w = write access</td>
</tr>
</tbody>
</table>
show os-version

Display the release and software image version information of the image file specified.

Syntax

```plaintext
show os-version [file-url]
```

Parameters

- `file-url` (OPTIONAL) Enter the following location keywords and information:
 - For a file on the internal Flash, enter `flash://` then the filename.
 - For a file on an FTP server, enter `ftp://user:password@hostip/filepath`.
 - For a file on a TFTP server, enter `tftp://hostip/filepath`.
 - For a file on the external Flash, enter `usbflash://filepath` then the filename.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version 9.9(0.0)
Introduced on the FN IOM.

Version 8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- **NOTE:** A filepath that contains a dot (.) is not supported.

Example

```plaintext
Dell#show os-version

RELEASE IMAGE INFORMATION :
-------------------------------------------------------------------------
| Platform          | Version         | Size    | ReleaseTime          |
-------------------------------------------------------------------------
| IOM-Series: XL    | 9-1-0-848       | 31962011| Mar 20 2012 09:26:46 |
-------------------------------------------------------------------------
```
show running-config

Display the current configuration and display changes from the default values.

Syntax

 show running-config [entity] [configured] [status]

Parameters

entity

(Optional) To display that entity’s current (non-default) configuration, enter one of the following keywords:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>for the current AAA configuration</td>
</tr>
<tr>
<td>acl</td>
<td>for the current ACL configuration</td>
</tr>
<tr>
<td>arp</td>
<td>for the current static ARP configuration</td>
</tr>
<tr>
<td>boot</td>
<td>for the current boot configuration</td>
</tr>
<tr>
<td>class-map</td>
<td>for the current class-map configuration</td>
</tr>
<tr>
<td>fefd</td>
<td>for the current FEFD configuration</td>
</tr>
<tr>
<td>ftp</td>
<td>for the current FTP configuration</td>
</tr>
<tr>
<td>fvrp</td>
<td>for the current FVRP configuration</td>
</tr>
<tr>
<td>host</td>
<td>for the current host configuration</td>
</tr>
<tr>
<td>hardware-monitor</td>
<td>for hardware-monitor action-on-error settings</td>
</tr>
<tr>
<td>igmp</td>
<td>for the current IGMP configuration</td>
</tr>
<tr>
<td>interface</td>
<td>for the current interface configuration</td>
</tr>
</tbody>
</table>
configured (OPTIONAL) Enter the keyword configuration to display line card interfaces with non-default configurations only.
status (OPTIONAL) Enter the keyword status to display the checksum for the running configuration and the start-up configuration.

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show running-config
Current Configuration ...
! Version E8-3-16-29
! Last configuration change at Thu Apr 26 19:19:21 2012 by admin
! Startup-config last updated at Thu Apr 26 19:19:04 2012 by default
! boot system stack-unit 0 primary system: A:
boot system stack-unit 0 secondary tftp://10.11.200.241/dt-m1000e-5-c2
boot system gateway 10.11.209.254
!
redundancy auto-synchronize full
redundancy disable-auto-reboot stack-unit
!
redundancy disable-auto-reboot stack-unit 0
redundancy disable-auto-reboot stack-unit 1
redundancy disable-auto-reboot stack-unit 2
redundancy disable-auto-reboot stack-unit 5
!--More--
service timestamps log datetime
logging coredump stack-unit all
!
hostname FTOS
!
...

Example

Dell#show running-config status
running-config bytes 4306, checksum 0x4D55EE70
startup-config bytes 4344, checksum 0x6472C5E
Dell#

Usage Information

The status option allows you to display the size and checksum of the running configuration and the startup configuration.

show startup-config

Display the startup configuration.

Syntax show startup-config
Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show startup-config
! Version E8-3-16-29
! Last configuration change at Thu Apr 26 19:19:02 2012 by default
! Startup-config last updated at Thu Apr 26 19:19:04 2012 by default
! boot system stack-unit 0 primary system: A:
! boot system stack-unit 0 secondary tftp://10.11.200.241/
dt-m1000e-5-c2
! boot system gateway 10.11.209.254
! redundancy auto-synchronize full
! redundancy disable-auto-reboot stack-unit
! redundancy disable-auto-reboot stack-unit 0
! redundancy disable-auto-reboot stack-unit 1
! redundancy disable-auto-reboot stack-unit 2
! redundancy disable-auto-reboot stack-unit 3
--More--

Related Commands
show running-config — displays the current (running) configuration.

show version

Display the current Dell Networking OS version information on the system.

Syntax

show version

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show version
Dell Force10 Real Time Operating System Software
Dell Force10 Operating System Version: 1.0
Dell Force10 Application Software Version: E8-3-16-29
Copyright (c) 1999-2012 by Dell Inc. All Rights Reserved.
Build Time: Thu Apr 26 05:41:48 PDT 2012
Build Path: /sites/mjc/work/build/buildSpaces/build03/
E8-3-16/SW/SRC/Cp_src/
Tacacs
FTOS uptime is 13 hour(s), 29 minute(s)

System image file is "system://A"

System Type: MXL-10/40GbE
Control Processor: MIPS RMI XLP with 2147483648 bytes of memory.
256M bytes of boot flash memory.

1 34-port GE/TE/FG (XL)
48 Ten GigabitEthernet/IEEE 802.3 interface(s)
2 Forty GigabitEthernet/IEEE 802.3 interface(s)

<table>
<thead>
<tr>
<th>Command Fields</th>
<th>Lines Beginning With</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell Force10 Network...</td>
<td>Name of the operating system</td>
<td></td>
</tr>
<tr>
<td>Dell Force10 Operating...</td>
<td>OS version number</td>
<td></td>
</tr>
<tr>
<td>Dell Force10 Application...</td>
<td>Software version</td>
<td></td>
</tr>
<tr>
<td>Copyright (c)...</td>
<td>Copyright information</td>
<td></td>
</tr>
<tr>
<td>Build Time...</td>
<td>Software build’s date stamp</td>
<td></td>
</tr>
<tr>
<td>Build Path...</td>
<td>Location of the software build files loaded on the system</td>
<td></td>
</tr>
<tr>
<td>Dell Force10 uptime is...</td>
<td>Amount of time the system has been up</td>
<td></td>
</tr>
<tr>
<td>System image...</td>
<td>Image file name</td>
<td></td>
</tr>
<tr>
<td>Chassis Type:</td>
<td>Chassis type (for example, E1200, E600, E600i, E300, C300, C150, S25, S50, S55, S60, S4810)</td>
<td></td>
</tr>
<tr>
<td>Control Processor...</td>
<td>Control processor information and amount of memory on processor</td>
<td></td>
</tr>
<tr>
<td>128K bytes...</td>
<td>Amount and type of memory on system</td>
<td></td>
</tr>
<tr>
<td>1 34 Port</td>
<td>Hardware configuration of the system, including the number and type of physical interfaces available</td>
<td></td>
</tr>
</tbody>
</table>
upgrade boot

Upgrade the bootflash image or bootselector image.

Syntax

upgrade boot {all | bootflash-image | bootselector-image} stack-unit {0-5 | all} {booted | flash: | ftp: | tftp: | usbflash:} {A: | B:}

Parameters

all
Enter the keyword all to change both the bootflash and bootselector images.

bootflash-image
Enter the keywords bootflash-image to change the bootflash image.

bootselector-image
Enter the keywords bootselector-image to change the bootselector image.

0–5
Enter the keyword 0–5 to upgrade all stack-units.

all
Enter the keyword all to upgrade all the member stack-units.

booted
Enter the keyword booted to upgrade from the current image in the MXL 10/40GbE Switch.

ftp:
After entering the keyword ftp:, you can either follow it with the location of the source file in this form: //userid:password@hostip/filepath or press Enter to launch a prompt sequence.

tftp:
After entering the keyword tftp:, you can either follow it with the location of the source file in this form: //hostlocation/filepath or press Enter to launch a prompt sequence.

flash:
After entering the keyword flash:, you can either follow it with the location of the source file in this form: //filepath or press Enter to launch a prompt sequence.

usbflash:
After entering the keyword usbflash:, you can either follow it with the location of the source file in this form: //filepath or press Enter to launch a prompt sequence.

A:
Enter this keyword to upgrade the bootflash partition A.

B:
Enter this keyword to upgrade the bootflash partition B.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You must reload the Dell Networking OS after executing this command.

Example
Dell#upgrade boot ?
all Upgrade both boot flash image and selector image
bootflash-image Upgrade boot flash image
bootselector-image Upgrade boot selector image
Dell#

upgrade system
Upgrade the bootflash image or system image.

Syntax
upgrade system {flash: | ftp: | scp: | tftp: | usbflash: | stack-unit {0-5 | all} {A: | B:}}

Parameters
0–5 Enter the keyword 0–5 to upgrade only the mentioned stack-unit.
all Enter the keyword all to upgrade all the member units of the stack.
ftp After entering the keyword ftp you can either follow it with the location of the source file in this form://userid:password@hostip/filepath, or press Enter to launch a prompt sequence.
scp After entering the keyword scp you can either follow it with the location of the source file in this form://userid:password@hostip/filepath, or press Enter to launch a prompt sequence.
tftp After entering the keyword tftp you can either follow it with the location of the source file in this form://filepath, or press Enter to launch a prompt sequence.
flash After entering the keyword flash you can either follow it with the location of the source file in this form://filepath, or press Enter to launch a prompt sequence.
usbflash After entering the keyword usbflash you can either follow it with the location of the source file in this form://filepath, or press Enter to launch a prompt sequence.
A: Enter this keyword to upgrade the bootflash partition A.
B: Enter this keyword to upgrade the bootflash partition B.

Defaults
none

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Reset the card using the power-cycle option after restoring the FPGA command.

Example

Dell#upgrade system ?
flash: Copy from flash file system (flash://filepath)
ftp: Copy from remote file system, IPv4 or IPv6, (ftp://userid:password@hostip/filepath)
scp: Copy from remote file system, IPv4 or IPv6, (scp://userid:password@hostip/filepath)
stack-unit Sync image to the stack-unit
tftp: Copy from remote file system, IPv4 or IPv6, (tftp://hostip/filepath)
usbflash: Copy from usbflash file system (usbflash://filepath)
Dell#

verify

Validate the software image on the flash drive after the image has been transferred to the system, but before the image has been installed.

Syntax

verify { md5 | sha256 } [flash://] img-file [hash-value]

Parameters

- **md5**
 Enter the md5 keyword to use the MD5 message-digest algorithm.

- **sha256**
 Enter the sha256 keyword to use the SHA256 Secure Hash Algorithm

- **flash://**
 (Optional). Enter the flash:// keyword. The default is to use the flash drive. You can just enter the image file name.

- **img-file**
 Enter the name the Dell Networking software image file to validate.

- **hash-value**
 (Optional). Enter the relevant hash published on i-Support.

Defaults
flash drive

Command Modes
EXEC mode
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100–ON.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, and MXL.</td>
</tr>
</tbody>
</table>

Usage Information

You can enter this command in the following ways:

- `verify md5 flash://img-file`
- `verify md5 flash://img-file <hash-value>`
- `verify sha256 flash://img-file`
- `verify sha256 flash://img-file <hash-value>`

Example

Without Entering the Hash Value for Verification using SHA256

```
Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin
SHA256 hash for FTOS-SE-9.5.0.0.bin:
e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933
```

Entering the Hash Value for Verification using SHA256

```
Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin
    e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933
SHA256 hash VERIFIED for FTOS-SE-9.5.0.0.bin
```
The Dell Networking OS supports the following control and monitoring commands.

asset-tag

Assign and store a unique asset-tag to the stack member.

Syntax

```
asset-tag stack-unit unit-id Asset-tag ID
```

To remove the asset tag, use `no stack-unit unit-id Asset-tag ID` command.

Parameters

- `stack-unit unit-id` Enter the keywords `stack-unit` then the `unit-id` to assign a tag to the specific member. The range is from 0 to 5.
- `Asset-tag ID` Enter a unique asset-tag ID to assign to the stack member. This option accepts a maximum of 10 characters, including all special characters except double quotes. To include a space in the asset-tag, enter a space within double quotes.

Defaults

No asset-tag is assigned.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show system` — Displays the current status of all stack members or a specific member.

asf-mode

Enable alternate store and forward (ASF) mode and forward packets as soon as a threshold is reached.

Syntax

```
asf-mode stack-unit {unit-id | all} queue size
```
To return to standard Store and Forward mode, use the `no asf-mode stack unit` command.

Parameters

- **unit-id**: Enter the stack member unit identifier of the stack member to reset. The range is from 0 to 5 or `all`.
- **queue size**: Enter the queue size of the stack member. The range is from 0 to 5.

Defaults
Not configured

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You must save the configuration and reload the system to implement ASF. When you enter the command, the system sends a message stating that the new mode is enabled when the system reloads.

banner exec

Configure a message that is displayed when you enter EXEC mode.

Syntax

```
banner exec c line c
```

Parameters

- **c**: Enter the keywords `banner exec`, then enter a character delineator, represented here by the letter `c`. Press ENTER.
- **line**: Enter a text string for your banner message ending the message with your delineator. In the following example, the delineator is a percent character (`%`); the banner message is "testing, testing".

Defaults
No banner is displayed.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Optionally, use the `banner exec` command to create a text string that displays when you accesses EXEC mode. The `exec-banner` command toggles that display.
Example

Dell(conf)#banner exec ?
LINE
 c banner-text(max length 255) c, where 'c' is a delimiting character

Dell(conf)#banner exec %
Enter TEXT message. End with the character '%'.
This is the banner
Dell(conf)#end
Dell#exit
4d21h5m: %STKUNIT0-M P:CP %SEC-5-LOGOUT: Exec session is terminated for user on line console
This is the banner

Dell Force10 con0 now available
Press RETURN to get started.
This is the banner

Related Commands

banner login — sets a banner for login connections to the system.

Syntax

banner login {acknowledgement | keyboard-interactive | c line c}
Enter no banner login to delete the banner text. Enter no banner login keyboard-interactive to automatically go to the banner message prompt (does not require a carriage return).

Parameters

keyboard-interactive
 Enter the keyword keyboard-interactive to require a carriage return (CR) to get the message banner prompt.

acknowledgement
 Enter the acknowledgement keyword to require a positive acknowledgement from the user while logging in to the system.

c
 Enter a delineator character to specify the limits of the text banner. The delineator is a percent character (%).

line
 Enter a text string for your text banner message ending the message with your delineator. The delineator is a percent
Defaults

No banner is configured and the CR is required when creating a banner.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced the acknowledgement keyword.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

A login banner message displays only in EXEC Privilege mode after entering the enable command then the password. These banners do not display to users in EXEC mode.

Example

Dell(conf)#banner login?
acknowledgement Require positive acknowledgment after login prompt
keyboard-interactive Press enter key to get prompt
LINE c banner-text(max length 255) c, where 'c' is a delimiting character
Dell(conf)#no banner login?
acknowledgement Disable positive acknowledgment required after login prompt
keyboard-interactive Prompt will be displayed by default

If you configure the acknowledgement keyword, the system requires a positive acknowledgement from the user while logging in to the system.

$ telnet 10.11.178.16
Trying 10.11.178.16...
Connected to 10.11.178.16.
Escape character is '^]'.
THIS IS A LOGIN BANNER. PRESS 'Y' TO ACKNOWLEDGE. ACKNOWLEDGE?

[y/n]: y
Login: admin
Password:

Related Commands

- **banner motd** — sets a Message of the Day banner.
- **exec-banner** — enables the display of a text string when you enter EXEC mode.

banner motd

Set a message of the day (MOTD) banner.

Syntax

```
banner motd c line c
```
Parameters

| c | Enter a delineator character to specify the limits of the text banner. The delineator is a percent character (%). |
| line | Enter a text string for your message of the day banner message ending the message with your delineator. The delineator is a percent character (%). |

Defaults
No banner is configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
A MOTD banner message displays only in EXEC Privilege mode after entering the enable command then the password. These banners do not display to users in EXEC (non-privilege) mode.

Related Commands

- `banner exec` — enables the display of a text string when you enter EXEC mode.
- `banner login` — sets a banner to display after successful login to the system.

clear alarms

Clear alarms on the system.

Syntax
clear alarms

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command clears alarms that are no longer active. If an alarm situation is still active, it is seen in the system output.
clear command history

Clear the command history log.

Syntax

```
clear command history
```

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show command-history` — displays a buffered log of all the commands all users enter along with a time stamp.

clear line

Reset a terminal line.

Syntax

```
clear line {line-number | console 0 | vty number}
```

Parameters

- `line-number` Enter a number for one of the 12 terminal lines on the system. The range is from 0 to 11.
- `console 0` Enter the keywords `console 0` to reset the console port.
- `vty number` Enter the keyword `vty` then a number to clear a terminal line. The range is from 0 to 9.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

configure

Enter CONFIGURATION mode from EXEC Privilege mode.

Syntax

```
configure [terminal]
```

Control and Monitoring | 88
Parameters

terminal
(Optional) Enter the keyword `terminal` to specify that you are configuring from the terminal.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#configure
Dell(conf)#
```

debug cpu-traffic-stats

Enable the collection of computer processor unit (CPU) traffic statistics.

Syntax

```
debug cpu-traffic-stats
```

Defaults

Disabled

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command enables (and disables) the collection of CPU traffic statistics from the time this command is executed (not from system boot). However, excessive traffic a CPU receives automatically triggers (turn on) the collection of CPU traffic statics.

The following message is an indication that collection of CPU traffic is automatically turned on. To view the traffic statistics, use the `show cpu-traffic-stats` command.

If the CPU receives excessive traffic, traffic is rate controlled.

NOTE: You must enable this command before the `show cpu-traffic-stats` command displays traffic statistics. Dell Networking OS recommends disabling debugging (`no debug cpu-traffic-stats`) after troubleshooting is complete.

Related Commands

- `show cpu-traffic-stats` — displays the cpu traffic statistics.
debug ftpserver

View transactions during an FTP session when a user is logged into the FTP server.

Syntax

```
debug ftpserver
```

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

disable

Return to EXEC mode.

Syntax

```
disable [level]
```

Parameters

- **level**
 (OPTIONAL) Enter a number for a privilege level of the Dell OS. The range is from 0 to 15. The default is 1.

Defaults

1

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

do

Allows the execution of most EXEC-level commands from all CONFIGURATION levels without returning to the EXEC level.

Syntax

```
do command
```

Parameters

- **command**
 Enter an EXEC-level command.

Defaults

none
enable

Enter EXEC Privilege mode or any other privilege level configured. After entering this command, you may need to enter a password.

Syntax

```
enable [level]
```

Parameters

- **level** *(OPTIONAL)* Enter a number for a privilege level of the Dell Networking OS. The range is from 0 to 15. The default is **15**.

Defaults

- **15**

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following commands are not supported by the `do` command:

- `enable`
- `disable`
- `exit`
- `config`

Example

```
Dell(conf-if-te-3/1)#do clear counters
Clear counters on all interfaces [confirm]
Dell(conf-if-te-3/1)#
Dell(conf-if-te-3/1)#do clear logging
Clear logging buffer [confirm]
Dell(conf-if-te-3/1)#
Dell(conf-if-te-3/1)#do reload
System configuration has been modified. Save? [yes/no]: n
Proceed with reload [confirm yes/no]: n
Dell(conf-if-te-3/1)#
```
Usage Information
Users entering EXEC Privilege mode or any other configured privilege level can access configuration commands. To protect against unauthorized access, use the `enable password` command to configure a password for the `enable` command at a specific privilege level. If no privilege level is specified, the default is privilege level 15.

NOTE: If you are authorized for the EXEC privilege mode by your role, you do not need to enter an enable password.

Related Commands
- `enable password` — configures a password for the `enable` command and to access a privilege level.

enable optic-info-update interval

Enable polling intervals of optical information updates for simple network management protocol (SNMP).

Syntax
```
enable optical-info-update interval seconds
```
To disable optical power information updates, use the `no enable optical-info-update interval` command.

Parameters
- `interval seconds` Enter the keyword `interval` then the polling interval in seconds. The range is from 120 to 6000 seconds. The default is 300 seconds (5 minutes).

Defaults
Disabled

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Replaces the <code>enable xfp-power-updates</code> command.</td>
</tr>
</tbody>
</table>

Usage Information
To enable polling and to configure the polling frequency, use this command.

enable secure

Creates configurable MXL mode where Chassis Management Controller (CMC) access to MXL is bypassed for the elements critical to the security certifications.

Syntax
```
enable secure
```
To disable the secure mode, use `no enable secure` command.
end

Return to EXEC Privilege mode from other command modes (for example, CONFIGURATION or ROUTER OSPF modes).

Syntax
end

Command Modes
- CONFIGURATION
- SPANNING TREE
- MULTIPLE SPANNING TREE
- LINE
- INTERFACE
- VRRP
- ACCESS-LIST
- PREFIX-LIST
- ROUTER OSPF
- ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
exit — returns to the lower command mode.

exec-banner

Enable the display of a text string when the user enters EXEC mode.

Syntax
exec-banner
Defaults: Enabled on all lines (if configured, the banner appears).

Command Modes:
- **LINE**

Command History:
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information: Optionally, use the `banner exec` command to create a text string that is displayed when you access EXEC mode. This command toggles that display.

Related Commands:
- `banner exec` — configures a banner to display when entering EXEC mode.
- `line` — enables and configures console and virtual terminal lines to the system.

exec-timeout

Set a time interval that the system waits for input on a line before disconnecting the session.

Syntax
```
exec-timeout minutes [seconds]  
```

To return to default settings, use the `no exec-timeout` command.

Parameters

- `minutes` Enter the number of minutes of inactivity on the system before disconnecting the current session. The range is from 0 to 35791. The default is **10 minutes** for the console line and **30 minutes** for the VTY line.
- `seconds` (OPTIONAL) Enter the number of seconds. The range is from 0 to 2147483. The default is **0 seconds**.

Defaults
- **10 minutes** for console line; **30 minutes** for VTY lines; **0 seconds**

Command Modes
- **LINE**

Command History:
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To remove the time interval, use the `exec-timeout 0 0` command.

Example
```
Dell con0 is now available
Press RETURN to get started.
Dell>
```
exit

Return to the lower command mode.

Syntax

```
exit
```

Command Modes

- EXEC Privilege
- CONFIGURATION
- LINE
- INTERFACE
- PROTOCOL GVRP
- SPANNING TREE
- MULTIPLE SPANNING TREE
- MAC ACCESS LIST
- ACCESS-LIST
- PREFIX-LIST
- ROUTER OSPF
- ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

```
end — returns to EXEC Privilege mode.
```

feature unique-name

Set a unique host name for the system.

Syntax

```
feature unique-name
```

Defaults

None

Command Modes

CONFIGURATION

Supported Modes

- Standalone
- VLT
- Stacking
- PMUX
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the M I/O Aggregator, the FN IOM and MXL.</td>
</tr>
</tbody>
</table>

Usage Information

If you use the `feature unique-name` command, the system generates a host name using the platform type and system serial number. It overwrites any existing host name configured on the system using the `hostname` command. The `feature unique-name` command is also added to the running configuration.

If you disable the feature using the `no feature unique-name` command, the system reverts to the default host name of Dell.

If you use the `hostname` or the `no hostname` command after enabling the `feature unique-name` command, the system displays an error message stating that the `feature unique-name` is already enabled and provides an option to disable it.

Related Commands

`hostname`

ftp-server enable

Enable FTP server functions on the system.

Syntax

`ftp-server enable`

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
morpheus% ftp 10.31.1.111
Connected to 10.31.1.111.
220 FTOS (1.0) FTP server ready
Name (10.31.1.111:dch): dch
331 Password required
Password:
230 User logged in
ftp> pwd
257 Current directory is "flash:"
ftp> dir
200 Port set okay
150 Opening ASCII mode data connection
size  date       time name
-------- ------ ------ ----------------
512 Jul-20-2004 18:15:00 tgtimg
512 Jul-20-2004 18:15:00 diagnostic
```
Related Commands

- **ftp-server tomdir** — sets the directory to be used for incoming FTP connections.
- **ftp-server username** — sets a username and password for incoming FTP connections.

ftp-server tomdir

Specify the top-level directory to be accessed when an incoming FTP connection request is made.

Syntax

```plaintext
ftp-server tomdir directory
```

Parameters

- `directory` Enter the directory path.

Defaults

The internal flash is the default directory.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you enable FTP server functions with the `ftp-server enable` command, Dell Networking OS recommends specifying a top-level directory path. Without a top-level directory path specified, the Dell Networking OS directs users to the flash directory when logging in to the FTP server.

Related Commands

- **ftp-server enable** — enables FTP server functions on the switch.
- **ftp-server username** — sets a username and password for incoming FTP connections to the switch.

ftp-server username

Create a user name and associated password for incoming FTP server sessions.

Syntax

```plaintext
ftp-server username username password [encryption-type] password
```

Parameters

- `username` Enter a text string up to 40 characters long as the user name.
Enter the keyword password then a string up to 40 characters long as the password. Without specifying an encryption type, the password is unencrypted.

encryption-type (OPTIONAL) After the keyword password, enter one of the following numbers:

- 0 (zero) for an unencrypted (clear text) password
- 7 (seven) for a hidden text password

Defaults
Not enabled.

Command Modes CONFIGURATION

Command History
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

hostname

Set the host name of the system.

Syntax hostname name

Parameters
name Enter a text string, up to 32 characters long.

Defaults Dell

Command Modes CONFIGURATION

Command History
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The hostname is used in the prompt. You cannot specify spaces in the hostname. Starting with Dell Networking OS version 9.3(0.0), the default hostname is modified as Dell instead of FTOS on all of the supported platforms.

ip ftp password

Specify a password for outgoing FTP connections.

Syntax ip ftp password [encryption-type] password
Parameters

encryption-type
(Optionalal) Enter one of the following numbers:

- 0 (zero) for an unencrypted (clear text) password
- 7 (seven) for a hidden text password

password
Enter a string up to 40 characters as the password.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The password is listed in the configuration file; you can view the password by entering the `show running-config ftp` command in EXEC mode.

Use the `ip ftp password` command when you use the `ftp:` parameter in the `copy` command.

Related Commands
- `copy` — copy files.
- `ftp-server username` — sets the user name for the FTP sessions.

ip ftp source-interface

Specify an interface’s IP address as the source IP address for FTP connections.

Syntax
```
ip ftp source-interface interface
```

Parameters

interface
Enter the following keywords and slot/port or number information:

- For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16383.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
• For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

The IP address on the system that is closest to the Telnet address is used in the outgoing packets.

Command Modes

`CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

`copy` — copies files from and to the switch.

ip ftp username

Assign a user name for outgoing FTP connection requests.

Syntax

```
ip ftp username username
```

Parameters

`username` Enter a text string as the user name up to 40 characters long.

Defaults

No user name is configured.

Command Modes

`CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Configure a password with the `ip ftp password` command.

Related Commands

`ip ftp password` — sets the password for FTP connections.

ip telnet server enable

Enable the Telnet server on the switch.

Syntax

```
ip telnet server enable
```

`Control and Monitoring | 100`
To disable the Telnet server, use the `no ip telnet server enable` command.

Defaults
Enabled

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- `ip ssh server` — enables the secure shell (SSH) server on the system.
- `ip telnet source-interface` — Set an interface’s IP address as the source address in outgoing packets for Telnet sessions.

ip telnet source-interface

Set an interface’s IP address as the source address in outgoing packets for Telnet sessions.

Syntax

```
ip telnet source-interface interface
```

Parameters

- `interface`
 Enter the following keywords and slot/port or number information:
 - For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16383.
 - For a Port Channel, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults
The IP address on the system that is closest to the Telnet address is used in the outgoing packets.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- `telnet` — telnets to another device.
ip tftp source-interface

Assign an interface’s IP address in outgoing packets for TFTP traffic.

Syntax

```
ip tftp source-interface interface
```

Parameters

- `interface`
 - Enter the following keywords and slot/port or number information:
 - For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16383.
 - For a Port Channel, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

The IP address on the system that is closest to the Telnet address is used in the outgoing packets.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

line

Enable and configure console and virtual terminal lines to the system. This command accesses LINE mode, where you can set the access conditions for the designated line.

Syntax

```
line {console 0 | vty number [end-number]}
```

Parameters

- `console 0`
 - Enter the keyword `console 0` to configure the console port. The console option is <0-0>.
- `vty number`
 - Enter the keyword `vty` then a number from 0 to 9 to configure a virtual terminal line for Telnet sessions. The system supports 10 Telnet sessions.
(OPTIONAL) Enter a number from 1 to 9 as the last virtual terminal line to configure. You can configure multiple lines at one time.

Defaults
Not configured

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.17.0</td>
<td>Supported on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Usage Information
You cannot delete a terminal connection.

Related Commands
show memory — view current memory usage on the M I/O Aggregator.

login concurrent-session

Configures the limit of concurrent sessions for all users on console and virtual terminal lines.

Syntax

```
login concurrent-session [limit number-of-sessions | clear-line enable]

no login concurrent-session [limit number-of-sessions | clear-line enable]
```

Parameters

- **limit number-of-sessions**
 Sets the number of concurrent sessions that any user can have on console and virtual terminal lines. The range is from 1 to 12 (10 VTY lines, one console, and one AUX line).

- **clear-line enable**
 Enables you to clear your existing sessions.

Defaults
Not configured. You can use all the available sessions.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You must have either the System Administrator or Security Administrator privileges to configure login concurrent-session limit or to enable clear-line.
Use the `login concurrent-session limit number-of-sessions` command to limit the number of concurrent sessions that any user can have on console, aux, and virtual terminal lines.

If the `login concurrent-session clear-line enable` command is configured, you are provided with an option to clear any of your existing sessions after a successful login authentication. When you reach the maximum concurrent session limit, you can still login by clearing any of your existing sessions.

Example

The following example shows how to limit the number of concurrent sessions that any user can have to four:

```
Dell(conf)#login concurrent-session limit 4
Dell(conf)#
```

The following example shows how to use the `login concurrent-session clear-line enable` command.

```
Dell(conf)#login concurrent-session clear-line enable
Dell(conf)#
```

When you try to login, the following message appears with all your existing concurrent sessions, providing an option to close any one of the existing sessions:

```
$ telnet 10.11.178.14
Trying 10.11.178.14...
Connected to 10.11.178.14.
Escape character is '^]'.
Login: admin
Password:
Current sessions for user admin:
Line    Location
2  vty 0    10.14.1.97
3  vty 1    10.14.1.97
Clear existing session? [line number/Enter to cancel]:
```

When you try to create more than the permitted number of sessions, the following message appears, prompting you to close one of your existing sessions. You must close any of your existing sessions to login to the system.

```
$ telnet 10.11.178.14
Trying 10.11.178.14...
Connected to 10.11.178.14.
Escape character is '^]'.
Login: admin
Password:
Maximum concurrent sessions for the user reached.
Current sessions for user admin:
Line    Location
2  vty 0    10.14.1.97
3  vty 1    10.14.1.97
4  vty 2    10.14.1.97
5  vty 3    10.14.1.97
Clear existing session? [line number/Enter to cancel]:
```

Related Commands

- `login statistics` — Enable and configure user login statistics on console and virtual terminal lines.
show login statistics — Displays login statistics of users who have used the console or virtual terminal lines to log in to the system.

login statistics

Enable and configure user login statistics on console and virtual terminal lines.

Syntax

```
login statistics {enable | time-period days}
```

```
no login statistics {enable | time-period days}
```

Parameters

- `enable` Enables user login statistics. By default, the system displays the login statistics for the last 30 days.

- `time-period days` Sets the number of days for which the system stores the user login statistics. The range is from 1 to 30.

Defaults

Not configured

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Only the system and security administrators can configure login activity tracking and view the login activity details of other users.

If you enable user login statistics, the system displays the last successful login details of the current user and the details of any failed login attempts by others.

If you use the `login statistics time-period days` command to set a custom time period, the system only reports the login statistics during that interval.

1. **NOTE:** Login statistics is not applicable for login sessions that do not use user names for authentication. For example, the system does not report login activity for a telnet session that prompts only a password field.

Example

When you login to the system, it displays a message similar to the following:

```
$ telnet 10.11.178.14
Trying 10.11.178.14...
Connected to 10.11.178.14.
Escape character is '^]'.
```
Login: admin
Password:
There were 2 unsuccessful login attempt(s) since the last successful login.
There were 3 unsuccessful login attempt(s) for user admin in last 30 day(s).

The preceding message shows that the user had previously logged in to the system using the VTY line from 10.14.1.97. It also displays the number of unsuccessful login attempts since the last login and the number of unsuccessful login attempts in the last 30 days.

$ telnet 10.11.178.14
Trying 10.11.178.14...
Connected to 10.11.178.14.
Escape character is '^]'.
Login: admin
Password:
Last successful login: Wed Feb 5 14:05:28 IST 2015 on console
There were 2 unsuccessful login attempt(s) since the last successful login.
There were 3 unsuccessful login attempt(s) for user admin in last 12 day(s).

The preceding message shows that the user had previously logged in to the system using the console line. It also displays the number of unsuccessful login attempts since the last login and the number of unsuccessful login attempts during a custom time period.

Related Commands

login concurrent-session — Configures the limit of concurrent sessions for all users on console and virtual terminal lines.

show login statistics — Displays login statistics of users who have used the console or virtual terminal lines to log in to the system.

motd-banner

Enable a message of the day (MOTD) banner to appear when you log in to the system.

Syntax

motd-banner

Defaults

Enabled on all lines.

Command Modes

LINE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ping

Test connectivity between the system and another device by sending echo requests and waiting for replies.

Syntax

```
ping [host | ip-address | ipv6-address] [count {number | continuous}] [datagram-size] [timeout] [source (ip src-ipv4-address) | interface] [tos] [df-bit (y\|n)] [validate-reply(y\|n)] [outgoing-interface] [pattern pattern] [sweep-min-size] [sweep-max-size] [sweep-interval] [interface (ip src-ipv4-address) | interface]
```

Parameters

- **host** *(OPTIONAL)* Enter the host name of the devices to which you are testing connectivity.
- **ip-address** *(OPTIONAL)* Enter the IPv4 address of the device to which you are testing connectivity. The address must be in the dotted decimal format.
- **count** Enter the number of echo packets to be sent. The default is 5.
 - number: from 1 to 2147483647
 - continuous: transmit echo request continuously
- **datagram size** Enter the ICMP datagram size. The range is from 36 to 15360 bytes. The default is 100.
- **timeout** Enter the interval to wait for an echo reply before timing out. The range is from 0 to 3600 seconds. The default is 2 seconds.
- **source** Enter the IPv4 or IPv6 source ip address or the source interface. For IPv6 addresses, you may enter global addresses only. Enter the IP address in A.B.C.D format.
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
 - For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
- **tos** *(IPv4 only)* Enter the type of service required. The range is from 0 to 255. The default is 0.
- **df-bit** *(IPv4 only)* Enter Y or N for the "don’t fragment" bit in IPv4 header.
 - N: Do not set the "don’t fragment" bit.
• Y: Do set “don’t fragment” bit

Default is No.

validate-reply

(IPv4 only) Enter Y or N for reply validation.

• N: Do not validate reply data.
• Y: Do validate reply data.

Default is No.

pattern pattern

(IPv4 only) Enter the IPv4 data pattern. Range: 0–FFFF. Default: 0xABCD.

sweep-min-size

Enter the minimum size of datagram in sweep range. The range is from 52 to 15359 bytes.

sweep-max-size

Enter the maximum size of datagram in sweep range. The range is from 53 to 15359 bytes.

sweep-interval

Enter the incremental value for sweep size. The range is from 1 to 15308 seconds.

interface

(IPV4 only) Enter the outgoing interface for multicast packets. Enter the IP address in A.B.C.D format.

• For a Port Channel, enter the keywords port-channel then a number. The range is from 1 to 128.
• For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
• For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
• For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.

Defaults

See parameters above.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enter the ping command without specifying an IP address (Extended Ping), you are prompted for a target IP address, a repeat count, a datagram size (up to 1500 bytes), a timeout (in seconds), and for Extended Commands. For information on the ICMP message codes that return from a ping command, refer to Internet Control Message Protocol (ICMP) Message Types.

Example (IPv4)

Dell#ping 172.31.1.255

Type Ctrl-C to abort.
Sending 5, 100-byte ICMP Echos to 172.31.1.255, timeout is 2 seconds:
Reply to request 1 from 172.31.1.208 0 ms
Reply to request 1 from 172.31.1.216 0 ms
Reply to request 1 from 172.31.1.205 16 ms
Replicant: Reply to request 5 from 172.31.1.209 0 ms
Reply to request 5 from 172.31.1.66 0 ms
Reply to request 5 from 172.31.1.87 0 ms
Dell#

Example (IPv6)
Dell#ping 100::1
Type Ctrl-C to abort.
Sending 5, 100-byte ICMP Echos to 100::1, timeout is 2 seconds:
!!!!!
Success rate is 100.0 percent (5/5), round-trip min/avg/max =
0/0/0 (ms)
Dell#

reload

Reboot the Dell Networking OS.

Syntax

```
reload
```

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If there is a change in the configuration, the Dell Networking OS prompts you to save
the new configuration. Or you can save your running configuration with the **copy**
running-config command.

Related Commands

- redundancy disable-auto-reboot — Resets any designated stack member except the management unit.

send

Send messages to one or all terminal line users.

Syntax

```
send [*] | [line ] | [console] | [vty]
```

Parameters

- `*` Enter the asterisk character * to send a message to all tty lines.
line
 Send a message to a specific line. The range is from 0 to 11.

console
 Enter the keyword console to send a message to the primary terminal line.

vty
 Enter the keyword vty to send a message to the virtual terminal.

Defaults
 none

Command Modes
 EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
 Messages can contain an unlimited number of lines; however, each line is limited to 255 characters. To move to the next line, use <CR>. To send the message use CTR-Z; to abort a message, use CTR-C.

service timestamps

To debug and log messages, add time stamps. This command adds either the uptime or the current time and date.

Syntax

```
service timestamps [debug | log] [datetime [localtime] [msec] [show-timezone] | uptime]
```

Parameters

- **debug** (OPTIONAL) Enter the keyword debug to add timestamps to debug messages.
- **log** (OPTIONAL) Enter the keyword log to add timestamps to log messages with severity from 0 to 6.
- **datetime** (OPTIONAL) Enter the keyword datetime to have the current time and date added to the message.
- **localtime** (OPTIONAL) Enter the keyword localtime to include the localtime in the timestamp.
- **msec** (OPTIONAL) Enter the keyword msec to include milliseconds in the timestamp.
- **show-timezone** (OPTIONAL) Enter the keyword show-timezone to include the time zone information in the timestamp.
- **uptime** (OPTIONAL) Enter the keyword uptime to have the timestamp based on time elapsed since system reboot.

Defaults
 Not configured.
show alarms

View alarms.

Syntax

show alarms

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell# show alarms

-- Minor Alarms --
Alarm Type Duration

No minor alarms

-- Major Alarms --
Alarm Type Duration
--
No major alarms

Dell#

show command-history

Display a buffered log of all commands all users enter along with a time stamp.

Syntax

show command-history
Defaults

none

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

One trace log message is generated for each command. No password information is saved to this file.

Example

Dell# show command-history
[4/20 10:27:23]: CMD-(CLI):[enable] by default from console
[4/20 10:27:23]: CMD-(CLI):[configure terminal] by default from console
 - Repeated 1 time.
[4/20 10:27:23]: CMD-(CLI):[snmp-server community public ro] by default from console
[4/20 10:27:23]: CMD-(CLI):[logging 172.16.1.162] by default from console
[4/20 10:27:23]: CMD-(CLI):[logging 10.10.10.4] by default from console
[4/20 10:27:24]: CMD-(CLI):[logging 10.1.2.4] by default from console
[4/20 10:27:24]: CMD-(CLI):[logging 172.31.1.4] by default from console
[4/20 10:27:24]: CMD-(CLI):[logging 133.33.33.4] by default from console
[4/20 10:27:24]: CMD-(CLI):[management route 172.16.1.0 /24 10.11.209.4] by default from console
[4/20 10:27:24]: CMD-(CLI):[service timestamps log datetime] by default from console
[4/20 10:27:24]: CMD-(CLI):[line console 0] by default from console
[4/20 10:27:24]: CMD-(CLI):[exec-timeout 0] by default from console
[4/20 10:27:24]: CMD-(CLI):[exit] by default from console
[4/20 10:27:29]: CMD-(CLI):[show version] by default from console
[4/20 10:27:56]: CMD-(CLI):[show interfaces tengigabitethernet 0/1] by default from console
[4/20 10:55:8]: CMD-(CLI):[show lldp neighbors] by default from console
[4/20 15:17:6]: CMD-(CLI):[show cam-acl] by default from console
[4/20 16:34:59]: CMD-(CLI):[show running-config interface tengigabitethernet 0/1 55] by default from console
[4/20 16:38:14]: CMD-(CLI):[show vlan] by default from console
[5/4 9:11:52]: CMD-(TEL0):[show version] by admin from vty0 (10.11.68.14)
[5/4 9:12:9]: CMD-(TEL0):[show hosts] by admin from vty0 (10.11.68.14)
[5/4 9:14:38]: CMD-(TEL0):[show arp] by admin from vty0 (10.11.68.14)
[5/4 9:19:29]: CMD-(TEL0):[enable] by admin from vty0 (10.11.68.14)
[5/4 9:19:35]: CMD-(TEL0):[configure] by admin from vty0 (10.11.68.14)
Related Commands

clear command history — clears the command history log.

show cpu-traffic-stats

View the CPU traffic statistics.

Syntax

```
show cpu-traffic-stats [port number | all]
```

Parameters

- `port number` (OPTIONAL) Enter the port number to display traffic statistics on that port only. The range is from 1 to 1568.
- `all` (OPTIONAL) Enter the keyword `all` to display traffic statistics on all the interfaces receiving traffic, sorted based on the traffic.

Defaults

all

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Traffic statistics are sorted on a per-interface basis; the interface receiving the most traffic is displayed first. All CPU and port information is displayed unless a specific port or CPU is specified. Traffic information is displayed for router ports only; not for management interfaces. The traffic statistics are collected only after the debug cpu-traffic-stats command is executed; not from the system bootup.

NOTE: After debugging is complete, use the `no debug cpu-traffic-stats` command to shut off traffic statistics collection.

Example

```
Dell#show cpu-traffic-stats
Processor : CP
------------
  Received 100% traffic on TenGigabitEthernet 1/4 Total packets: 100
    LLC:0, SNAP:0, IP:100, ARP:0, other:0
    Unicast:100, Multicast:0, Broadcast:0
Dell#
```

Related Commands

default cpu-traffic-stats — enables CPU traffic statistics for debugging.
show debugging

View a list of all enabled debugging processes.

Syntax

```
show debugging
```

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show debug
Generic IP: (Access List: test)
  IP packet debugging is on for (Access List: test)
    TenGigabitEthernet 0/3
  ICMP packet debugging is on for
    TenGigabitEthernet 0/3
OSPF:
  OSPF packet debugging is on
DHCP:
  DHCP debugging is on
Dell#
```
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The following example shows the output of the show environment fan command as it appears prior to the Dell Networking OS version 7.8.1.0.

Example (all)
Dell#show environment all
 -- Unit Environment Status --
 Unit Status Temp Voltage

 * 0 online 47C ok

 * Management Unit
 -- Thermal Sensor Readings (deg C) --
 Unit Sensor0 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 Sensor7 Sensor8 Sensor9

 0 50 52 53 53 54 48 57
 57 53 56
 Dell#

Example (stack-unit)
Dell#show environment stack-unit 0
 -- Unit Environment Status --
 Unit Status Temp Voltage

 0* online 49C ok

 * Management Unit

Example (thermal-sensor)
Dell#show environment thermal-sensor
 -- Thermal Sensor Readings (deg C) --
 Unit Sensor0 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 Sensor7 Sensor8 Sensor9

 0 50 52 53 53 54 48 57
 57 53 56

 * Management Unit
 Dell#

show inventory

Display the switch type, components (including media), and Dell Networking OS version including hardware identification numbers and configured protocols.

Syntax
 show inventory [media slot]
Parameters

media slot

(Optional) Enter the keyword `media` then the stack ID of the stack member you want to display pluggable media inventory.

Defaults
none

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
If there are no fiber ports in the unit, just the header under `show inventory media` displays. If there are fiber ports but no optics inserted, the output displays "Media not present or accessible".

Example

```
Dell#show inventory
System Type      : MXL-10/40GbE
System Mode      : 1.0
Software Version : NAVASOTA-DEV-9-1-0-917
Unit Type          Serial Number   Part Number Revision
--------------------------------------------------------------
* 1  MXL-10/40GbE  TW282921F00048  ONVH81      2.0
* - Management Unit
Software Protocol Configured
--------------------------------------------------------------
  SNMP
  LLDP
Dell#
```

Example (media)

```
Dell#show inventory media
Slot  Port Type  Media          Serial Number   F10Qualid
----------------------------------------------------------
 0    33   QSFP  40GBASE-CR4-1M APF11490011J2Q  Yes
 0    37   QSFP  40GBASE-SR4  MLJ004V        No
 0    41   QSFP  40GBASE-SR4  MLJ003P        No
 0    42   QSFP  40GBASE-SR4  MLJ003P        No
 0    43   QSFP  40GBASE-SR4  MLJ003P        No
 0    44   QSFP  40GBASE-SR4  MLJ003P        No
 0    45   QSFP  40GBASE-SR4  MLJ004Y        No
 0    46   QSFP  40GBASE-SR4  MLJ004Y        No
 0    47   QSFP  40GBASE-SR4  MLJ004Y        No
 0    48   QSFP  40GBASE-SR4  MLJ004Y        No
 0    49   QSFP  40GBASE-SR4  MLJ004Y        No
 0    50       Media not present or accessible
 0    51       Media not present or accessible
 0    52       Media not present or accessible
 0    53   QSFP  40GBASE-SR4  MK50012        No
 0    54   QSFP  40GBASE-SR4  MK50012        No
 0    55   QSFP  40GBASE-SR4  MK50012        No
 0    56   QSFP  40GBASE-SR4  MK50012        No
Dell#
```

Related Commands

- `show interfaces` — displays a specific interface configuration.
show interfaces transceiver — displays the physical status and operational status of an installed transceiver. The output also displays the transceiver’s serial number.

show login statistics

Displays login statistics of users who have used the console or virtual terminal lines to log in to the system.

Syntax

```
show login statistics [all | [[successful-attempts | unsuccessful-attempts] [user login-id] [time-period days]] | user login-id]
```

Parameters

- **all**
 (Optional) Displays the login statistics of all users in the last 30 days or the custom defined time period.

- **time-period days**
 (Optional) Displays the number of failed login attempts by the current user in the specified period.

- **successful-attempts**
 (Optional) Displays the number of successful login attempts by the current user in the last 30 days or the custom defined time period.

- **unsuccessful-attempts**
 (Optional) Displays the number of failed login attempts by the current user in the last 30 days or the custom defined time period.

- **user login-id**
 (Optional) Displays the login statistics of a specific user in the last 30 days or the custom defined time period. When you use it with the unsuccessful-attempts keyword, the system displays the number of failed login attempts by a specific user in the last 30 days or the custom defined time period.

Defaults

None

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced the successful-attempts keyword.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To view the successful and failed login details of the current user in the last 30 days or the custom defined period, use the `show login statistics` command.
To view the successful and failed login details of all users in the last 30 days or the custom defined period, use the `show login statistics all` command. You can use this command only if you have system or security administrator rights.

To view the successful and failed login details of a specific user in the last 30 days or the custom defined time period, use the `show login statistics user user-id` command. If you have system or security administrator rights, you can view the login statistics of other users. If you do not have system or security administrator rights, you can view your login statistics but not the login statistics of others.

NOTE: By default, these commands display the details for the last 30 days. If you set a custom-defined time period for login statistics using the `login statistics time-period days` command, these commands display details only for that period.

Example

The following is sample output of the `show login statistics` command.

```
Dell#show login statistics

-------------------------------------
User: admin
Last login time: 12:52:01 UTC Tue Mar 22 2016
Last login location: Line vty0 ( 10.16.127.143 )
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 0
Successful login attempt(s) in last 30 day(s): 1
-------------------------------------
```

The following is sample output of the `show login statistics all` command.

```
Dell#show login statistics all

-------------------------------------
User: admin
Last login time: 08:54:28 UTC Wed Mar 23 2016
Last login location: Line vty0 ( 10.16.127.145 )
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 3
Successful login attempt(s) in last 30 day(s): 4
-------------------------------------

-------------------------------------
User: admin1
Last login time: 12:49:19 UTC Tue Mar 22 2016
Last login location: Line vty0 ( 10.16.127.145 )
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 3
Successful login attempt(s) in last 30 day(s): 2
-------------------------------------

-------------------------------------
User: admin2
Last login time: 12:49:27 UTC Tue Mar 22 2016
Last login location: Line vty0 ( 10.16.127.145 )
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 3
Successful login attempt(s) in last 30 day(s): 2
```

User: admin3
Last login time: 13:18:42 UTC Tue Mar 22 2016
Last login location: Line vty0 (10.16.127.145)
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 3
Successful login attempt(s) in last 30 day(s): 2

The following is sample output of the `show login statistics user user-id` command.

Dell# show login statistics user admin

User: admin
Last login time: 12:52:01 UTC Tue Mar 22 2016
Last login location: Line vty0 (10.16.127.143)
Unsuccessful login attempt(s) since the last successful login: 0
Unsuccessful login attempt(s) in last 30 day(s): 0
Successful login attempt(s) in last 30 day(s): 1

The following is sample output of the `show login statistics unsuccessful-attempts` command.

Dell#show login statistics unsuccessful-attempts
There were 3 unsuccessful login attempt(s) for user admin in last 30 day(s).

The following is sample output of the `show login statistics unsuccessful-attempts time-period days` command.

Dell# show login statistics unsuccessful-attempts time-period 15
There were 0 unsuccessful login attempt(s) for user admin in last 15 day(s).

The following is sample output of the `show login statistics unsuccessful-attempts user login-id command`.

Dell# show login statistics unsuccessful-attempts user admin
There were 3 unsuccessful login attempt(s) for user admin in last 12 day(s).

The following is sample output of the `show login statistics successful-attempts` command.

Dell#show login statistics successful-attempts
There were 4 successful login attempt(s) for user admin in last 30 day(s).

Related Commands

- `login statistics` — Enable and configure user login statistics on console and virtual terminal lines.
- `login concurrent-session` — Configures the limit of concurrent sessions for all users on console and virtual terminal lines.
show memory

View current memory usage on the MXL switch.

Syntax

```
show memory [stack-unit 0–5]
```

Parameters

- `stack-unit 0–5`
 (OPTIONAL) Enter the keywords `stack-unit` then the stack unit ID of the stack member to display memory information on the designated stack member.

Command Modes

- EXEC
- EXEC Privilege

Command History

```
Version Description
8.3.16.1  Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

The output for `show memory` displays the memory usage of LP part (sysdlp) of the system. The sysdlp is an aggregate task that handles all the tasks running on the CPU.

Example

```
Dell#show memory stack-unit 0
Statistics On Unit 0 Processor
===========================
Total(b)  Used(b) Free(b)   Lowest(b) Largest(b)
268435456 4010354 264425102 264375410 264425102
```

show processes cpu

Display CPU usage information based on processes running.

Syntax

```
show processes cpu [management-unit 1-99 [details] | stack-unit 0-5 | summary | ipc | memory [stack-unit 0-5]]
```

Parameters

- `management-unit 1-99 [details]`
 (OPTIONAL) Display processes running in the control processor. The 1-99 variable sets the number of tasks to display in order of the highest CPU usage in the past five (5) seconds. Add the keyword `details` to display all running processes (except sysdlp). Refer to Example (management-unit).
- `stack-unit 0-5`
 (OPTIONAL) Enter the keyword `stack-unit` then the stack member ID. The range is from 0 to 5.
As an option of the `show processes cpu` command, this option displays CPU usage for the designated stack member. Or, as an option of `memory`, this option limits the output of memory statistics to the designated stack member. Refer to Example (stack-unit).

summary

(Optional) Enter the keyword `summary` to view the CPU utilization of processes related to line card processing.

ipc

(Optional) Enter the keyword `ipc` to display interprocess communication statistics.

memory

(Optional) Enter the keyword `memory` to display memory statistics. Refer to Example (memory).

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (summary)

`Dell#show processes cpu summary
CPU utilization 5Sec 1Min 5Min

Unit0 0% 0% 0%

CPU utilization 5Sec 1Min 5Min

Unit1* 1% 0% 0%
Unit2 0% 0% 0%
Unit3 0% 0% 0%
*Mgmt Unit`

Example (management-unit)

`Dell#show proc cpu management-unit 5
CPU utilization for five seconds: 6%/0%; one minute: 6%; five minutes: 7%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY
Process
0x00000000 4650 465 10000 4.43% 4.43% 4.43% 0
system
0x00000112 56372590 5637259 10000 1.58% 1.78% 1.89% 0
sysdlp
0x00000107 9630080 963008 10000 0.79% 0.28% 0.33% 0
sysd
0x00000172 1435540 143554 10000 0.00% 0.10% 0.05% 0
igmp
0x000001fc 1366570 136657 10000 0.00% 0.08% 0.05% 0
frrp
Dell#`

Example (stack-unit)

`Dell#show process cpu stack-unit 0
CPU utilization for five seconds: 4%/0%; one minute: 3%; five minutes: 2%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY`
Example (memory)

Dell#show processes memory

Memory Statistics Of Stack Unit 0 (bytes)

<table>
<thead>
<tr>
<th>TaskName</th>
<th>TotalAllocated</th>
<th>TotalFreed</th>
<th>MaxHeld</th>
<th>CurrentHolding</th>
</tr>
</thead>
<tbody>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>ospf</td>
<td>573440</td>
<td>0</td>
<td>0</td>
<td>8716288</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>fccoecntrl</td>
<td>262144</td>
<td>0</td>
<td>0</td>
<td>7917568</td>
</tr>
<tr>
<td>dhclient</td>
<td>548864</td>
<td>0</td>
<td>0</td>
<td>1310720</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>ndpm</td>
<td>618496</td>
<td>0</td>
<td>0</td>
<td>7512064</td>
</tr>
</tbody>
</table>
Example (stack-unit)

```plaintext
Dell#show process memory stack-unit 0
Total: 2147483648, MaxUsed: 378433536, CurrentUsed: 378433536,
CurrentFree:
1769050112

<table>
<thead>
<tr>
<th>TaskName</th>
<th>TotalAllocated</th>
<th>TotalFreed</th>
<th>MaxHeld</th>
<th>CurrentHolding</th>
</tr>
</thead>
<tbody>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>ospf</td>
<td>573440</td>
<td>0</td>
<td>0</td>
<td>8716288</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>fcoecntrl</td>
<td>262144</td>
<td>0</td>
<td>0</td>
<td>7917568</td>
</tr>
<tr>
<td>dhclient</td>
<td>543864</td>
<td>0</td>
<td>0</td>
<td>1310720</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>ndpm</td>
<td>618496</td>
<td>0</td>
<td>0</td>
<td>7512064</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>vrrp</td>
<td>335872</td>
<td>0</td>
<td>0</td>
<td>8048640</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>frp</td>
<td>180224</td>
<td>0</td>
<td>0</td>
<td>7512064</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>xstp</td>
<td>2740224</td>
<td>0</td>
<td>0</td>
<td>9801728</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>pm</td>
<td>1007616</td>
<td>0</td>
<td>0</td>
<td>7757824</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>arpm</td>
<td>192512</td>
<td>0</td>
<td>0</td>
<td>7057408</td>
</tr>
</tbody>
</table>
```

Related Commands

- `show hardware layer2 acl` — displays Layer 2 ACL data for the selected stack member and stack member port-pipe.
- `show hardware layer3` — displays Layer 3 ACL or QoS data for the selected stack member and stack member port-pipe.
- `show hardware stack-unit` — displays the data plane or management plane input and output statistics of the designated component of the designated stack member.
- `show hardware system-flow` — displays Layer 3 ACL or QoS data for the selected stack member and stack member port-pipe.
- `show interfaces stack-unit` — displays information on all interfaces on a specific stack member.
show processes memory — displays CPU usage information based on processes running.

show processes ipc flow-control

Display the single window protocol queue (SWPQ) statistics.

Syntax

```
show processes ipc flow-control [cp]
```

Parameters

- `cp` (OPTIONAL) Enter the keyword `cp` to view the control processor’s SWPQ statistics.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - 8.3.16.1
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source QID /Tx Process</td>
<td>Source Service Identifier</td>
</tr>
<tr>
<td>Destination QID/Rx Process</td>
<td>Destination Service Identifier</td>
</tr>
<tr>
<td>Cur Len</td>
<td>Current number of messages enqueued</td>
</tr>
<tr>
<td>High Mark</td>
<td>Highest number of packets in the queue at any time</td>
</tr>
<tr>
<td>#of to / Timeout</td>
<td>Timeout count</td>
</tr>
<tr>
<td>#of Retr /Retries</td>
<td>Number of retransmissions</td>
</tr>
<tr>
<td>#msg Sent/Msg Sent/</td>
<td>Number of messages sent</td>
</tr>
<tr>
<td>#msg Ackd/Ack Rcvd</td>
<td>Number of messages acknowledged</td>
</tr>
<tr>
<td>Retr /Available Retra</td>
<td>Number of retries left</td>
</tr>
<tr>
<td>Total/ Max Retra</td>
<td>Number of retries allowed</td>
</tr>
</tbody>
</table>

Control and Monitoring | 124
Important Points:

- The SWP provides flow control-based reliable communication between the sending and receiving software tasks.
- A sending task enqueues messages into the SWP queue for a receiving task and waits for an acknowledgement.
- If no response is received within a defined period of time, the SWP timeout mechanism resubmits the message at the head of the FIFO queue.
- After retrying a defined number of times, the SWP-2-NOMORETIMEOUT timeout message is generated.
- In the example, a retry (Retries) value of zero indicates that the SWP mechanism reached the maximum number of retransmissions without an acknowledgement.

Example

Dell#show processes ipc flow-control

Q Statistics on CP Processor

<table>
<thead>
<tr>
<th>Process</th>
<th>RxProcess</th>
<th>Cur</th>
<th>High</th>
<th>Time</th>
<th>Retr</th>
<th>Msg</th>
<th>Ac</th>
<th>k</th>
<th>Aval</th>
<th>Max</th>
<th>Len</th>
<th>Mark</th>
<th>Out</th>
<th>ies</th>
<th>Sent</th>
<th>Rcvd</th>
<th>Retra</th>
<th>Retra</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL0</td>
<td>RTM0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL0</td>
<td>DIFFSERV0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL0</td>
<td>ICMP0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL0</td>
<td>PIM0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARPMGR0</td>
<td>MRTM0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACP0</td>
<td>IFMGR0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTM0</td>
<td>OMT0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTM0</td>
<td>OMT0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dell# show processes memory

Display memory usage information based on the running processes.

Syntax

```
show processes memory {management-unit | stack unit {0–5 | all | summary}}
```

Parameters

- **management-unit**
 - Enter the keyword management-unit for CPU memory usage of the stack management unit.
- **stack unit 0–5**
 - Enter the keyword stack unit then a stack unit ID of the member unit for which to display memory usage on the forwarding processor.
- **all**
 - Enter the keyword all for detailed memory usage on all stack members.
- **summary**
 - Enter the keyword summary for a brief summary of memory availability and usage on all stack members.

Command Modes

- EXEC
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Field	Description
Total: | Total system memory available |
MaxUsed: | Total maximum memory used ever (history indicated with time stamp) |
CurrentUsed:| Total memory currently in use |
CurrentFree:| Total system memory available |
SharedUsed: | Total used shared memory |
SharedFree: | Total free shared memory |
PID | Process ID |
Process | Process Name |
ResSize | Actual resident size of the process in memory |
Size | Process test, stack, and data size |
Allocs | Total dynamic memory allocated |
Frees | Total dynamic memory freed |
Max | Maximum dynamic memory allocated |
Current | Current dynamic memory in use |

The output for the `show processes memory` command displays the memory usage statistics running on CP part (sysd) of the system. The sysd is an aggregate task that handles all the tasks running on the MXL 10/40GbE Switch IO Module’s CP.

The output of the `show memory` command and this command differ based on which the Dell OS processes are counted.

- In the `show memory` output, the memory size is equal to the size of the application processes.
- In the output of this command, the memory size is equal to the size of the application processes plus the size of the system processes.

Example

```
Dell#show processes memory stack-unit 0
Total:2147483648, MaxUsed:378433536, CurrentUsed:378433536, CurrentFree:1769050112

<table>
<thead>
<tr>
<th>TaskName</th>
<th>TotalAllocated</th>
<th>TotalFreed</th>
<th>MaxHeld</th>
<th>CurrentHolding</th>
</tr>
</thead>
<tbody>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>ospf</td>
<td>573440</td>
<td>0</td>
<td>0</td>
<td>8716288</td>
</tr>
<tr>
<td>f10appioserv</td>
<td>225280</td>
<td>0</td>
<td>0</td>
<td>208896</td>
</tr>
<tr>
<td>fcoecntrl</td>
<td>262144</td>
<td>0</td>
<td>0</td>
<td>7917568</td>
</tr>
</tbody>
</table>
```
show software ifm

Display interface management (IFM) data.

Syntax

```
show software ifm [clients [summary] | ifagt number | ifcb interface | stack-unit unit-ID | trace-flags]
```

Parameters

- **clients**
 - Enter the keyword `clients` to display IFM client information.

- **summary**
 - (OPTIONAL) Enter the keyword `summary` to display brief information about IFM clients.

- **ifagt number**
 - Enter the keyword `ifagt` then the number of an interface agent to display software pipe and IPC statistics.

- **ifcb interface**
 - Enter the keyword `ifcb` then one of the following interface IDs then the slot/port information to display interface control block information for that interface:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10G Ethernet interface, enter the keyword `TenGigabitEthernet`.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE`.

- **stack-unit unit-ID**
 - Enter the keywords `stack-unit` then the stack member number to display IFM information for that unit. The range is from 0 to 5.
trace-flags

Enter the keyword `trace-flags` to display IFM information for internal trace flags.

Defaults

- none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```plaintext
DELL#show software ifm clients summary
ClntType Inst svcMask  subSvcMask tlvSvcMask tlvSubSvc  swp
IPM  0 x00000000 0x00000000 0x90ff71f3 0xb98784a1  22
RTM  0 x00000000 0x00000000 0x800010ff 0x0064c798  56
RIP  0 x00000000 0x00000000 0x00000000 0x00000000  0
ISIS  0 x00000002 0x00000000 0x00000000 0x00000000  0
VRRP  0 x00000000 0x00000000 0x803330f3 0x0113c480  38
L2PM  0 x00000000 0x00000000 0x87ff79ff 0xdb80c800  64
ACL  0 x00000000 0x00000000 0x867f50c3 0x0103c018  81
OSPF  0 x000000dfe 0x00000000 0x00000000 0x00000000  0
IGMP  0 x0000e07f 0x00000000 0x00000000 0x00000000  0
SNMP  0 x00000000 0x00000000 0x800002c0 0x0003c000  21
EVTTERM  0 x00000000 0x00000000 0x800002c0 0x0003c000  20
MRTM  0 x00000000 0x00000000 0x81f7103f 0xc0600000  30
DSM  0 x00000000 0x00000000 0x80771033 0x00000000  58
Mirror  0 x00000000 0x00000000 0x82770003 0x00000000  25
LACP  0 x00000000 0x00000000 0x8000383f 0x10000000  33
SDF_CP  0 x00000000 0x00000000 0x80739f33 0x00000000  24
DHCP  0 x00000000 0x00000000 0x807040f3 0x10001000  35
V6RAD  0 x00000000 0x00000000 0x80000000 0x00000000  0
Unidentified Client0 0x0000e002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
Unidentified Client0 0x6066003f 0x00000000 0x6066003f 0x00000000 95
LLDP 0 x00007f2433 0x00408c000 0x0007f2433 0x00408c000 60
```

show system

Display the current status of all stack members or a specific member.

Syntax

```
show system [brief | stack-unit unit-id]
```

Parameters

- **brief** *(OPTIONAL)* Enter the keyword `brief` to view an abbreviated list of system information.
stack-unit unit-id (OPTIONAL) Enter the keyword stack-unit then the stack member ID for information on that stack member. The range is 0 to 5.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (brief)

Dell#show system brief

Stack MAC : 00:1e:c9:f1:03:1a

Reload Type : normal-reload [Next boot : normal-reload]

-- Stack Info --

<table>
<thead>
<tr>
<th>Unit</th>
<th>UnitType</th>
<th>Status</th>
<th>ReqTyp</th>
<th>CurTyp</th>
<th>Version</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Member</td>
<td>not present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Management</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-917</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Member</td>
<td>not present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Member</td>
<td>not present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Member</td>
<td>not present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Member</td>
<td>not present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dell#

Example (stack-unit)

Dell#show system stack-unit 0

-- Unit 0 --

Unit Type : Management Unit
Status : online
Next Boot : online
Required Type : MXL-10/40GbE - 34-port GE/TE/FG (XL)
Current Type : MXL-10/40GbE - 34-port GE/TE/FG (XL)
Master priority : 0
Hardware Rev : X01
Num Ports : 56
Up Time : 3 hr, 35 min
FTOS Version : 8-3-16-160
Jumbo Capable : yes
POE Capable : no
Boot Flash : A: 4.0.1.0bt1 B: 4.0.1.0bt1 [booted]
Boot Selector : 4.0.0.0bt1
Memory Size : 2147483648 bytes
Temperature : 44C
Voltage : ok
Switch Power : GOOD
Product Name : Force10 MXL 10/40GbE
Mfg By : DELL
Mfg Date : 2012-01-05
Serial Number : DELL123456
Part Number : ONVH81X01
show tech-support

Display a collection of data from other show commands, necessary for Dell Networking OS technical support to perform troubleshooting on MXL switches.

Syntax

```
show tech-support [stack-unit unit-id | page]
```

Parameters

- **stack-unit**
 (OPTIONAL) Enter the keyword `stack-unit` to view CPU memory usage for the stack member designated by `unit-id`. The range is 0 to 7.

- **page**
 (OPTIONAL) Enter the keyword `page` to view 24 lines of text at a time. Press the SPACE BAR to view the next 24 lines. Press ENTER to view the next line of text.

Related Commands

- **asset-tag** — Assigns and stores a unique asset-tag to the stack member.

- **show version** — Displays the Dell Networking OS version.

- **show processes memory** — Displays memory usage based on running processes.

- **show system stack-ports** — Displays information about the stack ports on all switches in the stack.

- **show hardware stack-unit** — Displays the data plane and management plane input and output statistics of a particular stack member.

- **stack-unit priority** — Configures the ability of the switch to become the management unit of a stack.
When using the pipe command (|), enter one of these keywords to filter command output. For details about filtering commands, refer to CLI Basics.

save
Enter the keyword **save** to save the command output.

```
flash: Save to local flash drive (flash://filename [max 20 chars]).
```

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Without the **page** or **stack-unit** option, the command output is continuous. Use Ctrl-z to interrupt the command output.

The **save** option works with other filtering commands. This allows you to save specific information of a `show` command. The **save** entry must always be the last option. For example:

```
Dell#show tech-support |grep regular-expression |except regular-expression | find regular-expression | save flash://result
```

This display output is an accumulation of the same information that is displayed when you execute one of the following `show` commands:

- show cam
- show clock
- show environment
- show file
- show interfaces
- show inventory
- show ip protocols
- show ip route summary
- show processes cpu
- show processes memory
- show redundancy
- show running-conf
- show version

Example (partial)

```
Dell#show tech-support ?
page Page through output
stack-unit Unit Number
| Pipe through a command
<cr>
Dell#show tech-support stack-unit 1 ?
page Page through output
| Pipe through a command
<cr>
Dell#show tech-support stack-unit 1 | ?
except Show only text that does not match a pattern
```
Example (Partial)

```bash
Dell#show tech-support stack-unit 0
Required Type : -

-- Unit 5 --
Unit Type : Member Unit
Status : not present
Required Type : -

----------------------- show environment -----------------------

-- Unit Environment Status --
Unit Status Temp Voltage
---------------------------
* 1 online 41C ok

* Management Unit

-- Thermal Sensor Readings (deg C) --
Unit Sensor0 Sensor1
---------------------------
1 39 41

----------------------- show ip traffic -----------------------
IP statistics:
Rcvd: 894390 total, 415557 local destination
 0 format errors, 0 checksum errors, 0 bad hop count
 0 unknown protocol, 0 not a gateway
 15 security failures, 0 bad options
Frags: 0 reassembled, 0 timeouts, 0 too big
```
0 fragmented, 0 couldn't fragment
Bcast: 402 received, 0 sent; Mcast: 37 received, 0 sent
Sent: 468133 generated, 0 forwarded
42 encapsulation failed, 0 no route

ICMP statistics:
Rcvd: 0 format errors, 0 checksum errors, 0 redirects, 2 unreachable
 0 echo, 0 echo reply, 0 mask requests, 0 mask replies, 0 quench
 0 parameter, 0 timestamp, 0 info request, 0 other
Sent: 0 redirects, 0 unreachable, 0 echo, 0 echo reply
 0 mask requests, 0 mask replies, 0 quench, 0 timestamp
 0 info reply, 0 time exceeded, 0 parameter problem

UDP statistics:
Rcvd: 396516 total, 0 checksum errors, 0 no port
 0 short packets, 0 bad length, 28746 no port broadcasts, 0 socket full
Sent: 16460 total, 28746 forwarded broadcasts

TCP statistics:
Rcvd: 4618 total, 0 checksum errors, 0 no port
Sent: 5023 total

ARP statistics:
Rcvd: 43988 requests, 24518 replies, 10 wrong interface
Sent: 42 requests, 6 replies (0 proxy)

Related Commands

- `show version` — Displays the Dell Networking OS version.
- `show system` — Displays the current switch status.
- `show environment` — Displays the system component status.
- `show processes memory` — Displays memory usage based on running processes.

telnet

Connect through Telnet to a server. The Telnet client and server in the Dell Networking Operating System (OS) support IPv4 connections. You can establish a Telnet session directly to the router or a connection can be initiated from the router.

Syntax
```
telnet {host | ip-address} [/source-interface]
```

Parameters
- **host**
 - Enter the name of a server.
- **ip-address**
 - Enter the IPv4 address in dotted decimal format of the server.
- **source-interface**
 - (OPTIONAL) Enter the keywords `/source-interface` then the interface information to include the source interface. Enter the following keywords and slot/port or number information:
For a Loopback interface, enter the keyword `loopback` then a number from zero (0) to 16383.

For the Null interface, enter the keyword `null` then 0.

For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.

For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

Not configured.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

terminal xml

Enable XML mode in Telnet and SSH client sessions.

Syntax

```
terminal xml
```

To exit XML mode, use the `terminal no xml` command.

Defaults

Disabled

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command enables the XML input mode where you can either cut and paste XML requests or enter the XML requests line-by-line. For more information about using the XML feature, refer to the XML chapter in the *Dell Networking OS Configuration Guide*.

Control and Monitoring | 134
traceroute

View a packet’s path to a specific device.

Syntax

```
traceroute {host | ip-address}
```

Parameters

- `host` Enter the name of device.
- `ip-address` Enter the IP address of the device in dotted decimal format.

Defaults

- Timeout = 5 seconds
- Probe count = 3
- 30 hops max
- 40 byte packet size
- UDP port = 33434

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enter the `traceroute` command without specifying an IP address (Extended Traceroute), you are prompted for a target and source IP address, timeout (in seconds) (default is 5), a probe count (default is 3), minimum TTL (default is 1), maximum TTL (default is 30), and port number (default is 33434). To keep the default setting for those parameters, press the ENTER key.

Example (IPv4)

```
Dell#traceroute www.force10networks.com
Translating "www.force10networks.com"...domain server (10.11.0.1) [OK]
Type Ctrl-C to abort.

Tracing the route to www.force10networks.com (10.11.84.18), 30 hops max, 40 byte packets
```

<table>
<thead>
<tr>
<th>TTL</th>
<th>Hostname</th>
<th>Probe1</th>
<th>Probe2</th>
<th>Probe3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.11.199.190</td>
<td>001.000 ms</td>
<td>001.000 ms</td>
<td>002.000 ms</td>
</tr>
<tr>
<td>2</td>
<td>gwegress-sjc-02.force10networks.com</td>
<td>10.11.30.126</td>
<td>005.000 ms</td>
<td>001.000 ms</td>
</tr>
<tr>
<td>3</td>
<td>fw-sjc-01.force10networks.com</td>
<td>10.11.127.254</td>
<td>000.000 ms</td>
<td>000.000 ms</td>
</tr>
<tr>
<td>4</td>
<td>www.force10networks.com</td>
<td>10.11.84.18</td>
<td>000.000 ms</td>
<td>000.000 ms</td>
</tr>
</tbody>
</table>

Related Commands

ping — tests the connectivity to a device.

undebug all

Disable all debug operations on the system.

Syntax

undebug all

Defaults

none

Command Modes

EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

virtual-ip

Configure a virtual IP address for the active management interface. You can configure virtual addresses both for IPv4 independently.

Syntax

virtual-ip {ipv4-address}

Parameters

ipv4-address Enter the IP address of the active management interface in a dotted decimal format (A.B.C.D.).

Defaults

none

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Each time you issue this command, it replaces the previously configured address of the same family. The no virtual-ip command takes an address/prefix-length argument, so that the desired address only is removed. If you enter the no virtual-ip command without any specified address, the IPv4 virtual addresses are removed.
Example

Dell#virtual-ip 10.11.197.99/16

write

Copy the current configuration to either the startup-configuration file or the terminal.

Syntax

```
write {memory | terminal}
```

Parameters

- **memory**: Enter the keyword `memory` to copy the current running configuration to the startup configuration file. This command is similar to the `copy running-config startup-config` command.

- **terminal**: Enter the keyword `terminal` to copy the current running configuration to the terminal. This command is similar to the `show running-config` command.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The `write memory` command saves the running-configuration to the file labeled `startup-configuration`. When using a LOCAL CONFIG FILE other than the startup-config not named “startup-configuration,” the running-config is not saved to that file; use the `copy` command to save any running-configuration changes to that local file.
An authentication server must authenticate a client connected to an 802.1X switch port. Until the authentication, only extensible authentication protocol over LAN (EAPOL) traffic is allowed through the port to which a client is connected. After authentication is successful, normal traffic passes through the port. The Dell Networking operating software supports remote authentication dial-in service (RADIUS) and active directory environments using 802.1X Port Authentication.

Important Points to Remember

The system limits network access for certain users by using virtual local area network (VLAN) assignments. 802.1X with VLAN assignment has these characteristics when configured on the switch and the RADIUS server.

- If no VLAN is supplied by the RADIUS server or if you disable 802.1X authorization, the port configures in its access VLAN after successful authentication.
- If you enable 802.1X authorization but the VLAN information from the RADIUS server is not valid, the port returns to the Unauthorized state and remains in the configured access VLAN. This safeguard prevents ports from appearing unexpectedly in an inappropriate VLAN due to a configuration error. Configuration errors create an entry in Syslog.
- If you enable 802.1X authorization and all information from the RADIUS server is valid, the port is placed in the specified VLAN after authentication.
- If you enable port security on an 802.1X port with VLAN assignment, the port is placed in the RADIUS server assigned VLAN.
- If you disable 802.1X on the port, it returns to the configured access VLAN.
- When the port is in the Force Authorized, Force Unauthorized, or Shutdown state, it is placed in the configured access VLAN.
- If an 802.1X port is authenticated and put in the RADIUS server assigned VLAN, any change to the port access VLAN configuration does not take effect.
- The 802.1X with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VLAN membership.

Topics:

- debug dot1x
- dot1x auth-fail-vlan
- dot1x auth-server
- dot1x auth-type mab-only
- dot1x authentication (Configuration)
- dot1x authentication (Interface)
- dot1x critical-vlan
debug dot1x

Display 802.1X debugging information.

Syntax
debug dot1x [all | auth-pae-fsm | backend-fsm | eapol-pdu] [interface interface]

Parameters
- **all**: Enable all 802.1X debug messages.
- **auth-pae-fsm**: Enable authentication PAE FSM debug messages.
- **backend-fsm**: Enable backend FSM debug messages.
- **eapol-pdu**: Enable the EAPOL frame trace and related debug messages.
- **interface interface**: Restricts the debugging information to an interface.

Defaults
Disabled

Command Modes
EXEC Privilege

Command History
- **Version**
 9.9(0.0): Introduced on the FN IOM.
 9.2(0.0): Introduced on the MXL 10/40GbE Switch IO Module.
dot1x auth-fail-vlan

Configure an authentication failure VLAN for users and devices that fail 802.1X authentication.

Syntax

dot1x auth-fail-vlan vlan-id [max-attempts number]

To delete the authentication failure VLAN, use the no dot1x auth-fail-vlan vlan-id [max-attempts number] command.

Parameters

- **vlan-id**
 - Enter the VLAN Identifier. The range is from 1 to 4094.

- **max-attempts number**
 - (OPTIONAL) Enter the keywords max-attempts followed by the number of attempts desired before authentication fails. The range is from 1 to 5. The default is 3.

Defaults

3 attempts

Command Modes

CONFIGURATION (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If the host responds to 802.1X with an incorrect login/password, the login fails. The switch attempts to authenticate again until the maximum attempts configured is reached. If the authentication fails after all allowed attempts, the interface moves to the authentication failed VLAN.

After the authentication VLAN is assigned, the port-state must be toggled to restart authentication. Authentication occurs at the next reauthentication interval (dot1x reauthentication).

Related Commands

- `dot1x port-control` — Enables port control on an interface.
- `dot1x guest-vlan` — Configures a guest VLAN for limited access users or for devices that are not 802.1X capable.
- `show dot1x interface` — Displays the 802.1X configuration of an interface.
dot1x auth-server

Configure the authentication server to RADIUS.

Syntax

```
dot1x auth-server radius
```

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dot1x auth-type mab-only

To authenticate a device with MAC authentication bypass (MAB), only use the host MAC address.

Syntax

```
dot1x auth-type mab-only
```

Defaults

Disabled

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The prerequisites for enabling MAB-only authentication on a port are:

- Enable 802.1X authentication globally on the switch and on the port (the `dot1x authentication` command).
- Enable MAC authentication bypass on the port (the `dot1x mac-auth-bypass` command).

In MAB-only authentication mode, a port authenticates using the host MAC address even though 802.1x authentication is enabled. If the MAB-only authentication fails, the host is placed in the guest VLAN (if configured).

To disable MAB-only authentication on a port, enter the `no dot1x auth-type mab-only` command.
Related Commands

dot1x mac-auth-bypass — Enables MAC authentication bypass.

dot1x authentication (Configuration)

Enable dot1x globally. Enable dot1x both globally and at the interface level.

Syntax

```
dot1x authentication
```

To disable dot1x on a globally, use the `no dot1x authentication` command.

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

dot1x authentication (Interface) — Enables dot1x on an interface.

dot1x authentication (Interface)

Enable dot1x on an interface. Enable dot1x both globally and at the interface level.

Syntax

```
dot1x authentication
```

To disable dot1x on an interface, use the `no dot1x authentication` command.

Defaults

Disabled

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

dot1x authentication (Configuration) — Enable dot1x globally.
dot1x critical-vlan

Configure critical-VLAN for users or devices when authentication server is not reachable.

Syntax

```
[no] dot1x critical-vlan vlan-id
```

Parameters

- **vlan-id**

 Enter the VLAN identifier. The VLAN-ID range is from 1 to 4094.

Details

- **Defaults**

 Not Configured.

- **Command Modes**

 INTERFACE

 INTERFACE (BATCH MODE)

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S3100 series, S4048–ON, S4048–ON, S4810, S4820T, S5000, S6000, S6000–ON, the Configuration Terminal Batch mode on C9010, Z9100–ON, and Z9500.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the C9000 Series.</td>
</tr>
</tbody>
</table>

Usage Information

The `dot1x critical-vlan` command configures critical VLAN for the interface. If the authentication server is not reachable or not responding, the authenticator places the port or the supplicant in critical VLAN within the first attempt.

Use this command in Interface Batch mode to configure critical VLAN for users in a dual-homing setup.

Example

```
Dell(conf)#show dot1x interface ten gigabit ethernet 0/41

802.1x information on Te 0/41:
-------------------------------
Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: AUTHORIZED (CRITICAL-VLAN)
Re-Authentication: Enable
Untagged VLAN id: 400
Guest VLAN: Enable
Guest VLAN id: 400
Auth-Fail VLAN: Enable
Auth-Fail VLAN id: 400
Auth-Fail Max-Attempts: 3
Critical VLAN: Enable
```

802.1X | 143
Critical VLAN id: 400
Mac-Auth-Bypass: Disable
Mac-Auth-Bypass Only: Disable
Tx Period: 30 seconds
Quiet Period: 60 seconds
ReAuth Max: 2
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 60 seconds
Max-EAP-Req: 2
Host Mode: SINGLE_HOST
Auth PAE State: Authenticated
Backend State: Idle

dot1x profile

Configure a dot1x profile to define a list of trusted supplicant MAC addresses.

Syntax

```
[no] dot1x profile profile-name
```

Parameters

- `profile-name` Enter a dot1x profile-name. The profile name length is limited to 32 characters.

Defaults

None

Command Modes

- CONFIGURATION
- CONFIGURATION TERMINAL BATCH

Error Strings

NONE

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S3100 series, S4048–ON, S4048–ON, S4810, S4820T, S5000, S6000, S6000–ON, the Configuration Terminal Batch mode on C9010, Z9100–ON, and Z9500.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the C9010.</td>
</tr>
</tbody>
</table>

Usage Information

The dot1x profile command configures a dot1x profile to define a list of trusted supplicant MAC addresses. Maximum number of dot1x profiles is limited to 10. This command launches dot1x profile mode for entering profile related commands such as the mac command. The dot1x static-mab command assigns the dot1x profile to an interface.
Use this command in Configuration Terminal Batch mode to configure the dot1x profile in a dual-homing setup.

Related Commands

- dot1x static-mab
- mac

dot1x static-mab

Enable static MAC authorization bypass (MAB) and configure static MAB profile to an interface.

Syntax

```plaintext
[no] dot1x static-mab profile profile-name
```

Parameters

- **profile profile-name**

 Enter the keyword `profile` and the `profile-name` to configure the static MAB profile name. The profile name length is limited to 32 characters.

Defaults

Disabled.

Command Modes

- INTERFACE
- INTERFACE (BATCH MODE)

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S3100 series, S4048–ON, S4048–ON, S4810, S4820T, S5000, S6000, S6000–ON, the Configuration Terminal Batch mode on C9010, Z9100–ON, and Z9500.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the C9010.</td>
</tr>
</tbody>
</table>

Usage Information

The `dot1x static-mab` command enables static MAB (mac auth bypass) and configures the associated profile on a dot1x interface. Static MAB bypasses the authentication server for the supplicant MAC addresses configured in the associated profile.

Before you enable static MAB, you must do the following:

- Enable MAC authentication bypass on the port by configuring the `dot1x mac-auth-bypass` command.
- Ensure that no configured profile exists at the time of configuring the `static-mab` command.
• Use this command in Interface Batch Mode to enable static MAB in a dual-homing setup.

Example

Dell(conf)#do show dot1x interface ten gigabit ethernet 0/41
802.1x information on Te 0/41:
--
Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: AUTHORIZED (STATIC-MAB)
Re-Authentication: Enable
Untagged VLAN id: 400
Guest VLAN: Enable
Guest VLAN id: 400
Auth-Fail VLAN: Enable
Auth-Fail VLAN id: 400
Auth-Fail Max-Attempts: 3
Critical VLAN: Enable
Critical VLAN id: 400
Mac-Auth-Bypass: Disable
Mac-Auth-Bypass Only: Disable
Static-MAB: Enable
Static-MAB Profile: Sample
Tx Period: 30 seconds
Quiet Period: 60 seconds
ReAuth Max: 2
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 60 seconds
Max-EAP-Req: 2
Host Mode: SINGLE_HOST
Auth PAE State: Authenticated
Backend State: Idle

dot1x guest-vlan

Configure a guest VLAN for limited access users or for devices that are not 802.1X capable.

Syntax

dot1x guest-vlan vlan-id

To disable the guest VLAN, use the `no dot1x guest-vlan vlan-id` command.

Parameters

- **vlan-id**: Enter the VLAN Identifier. The range is from 1 to 4094.

Defaults

Not configured.

Command Modes

CONFIGURATION (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

1X authentication is enabled when an interface is connected to the switch. If the host fails to respond within a designated amount of time, the authenticator places the port in the guest VLAN.

If a device does not respond within 30 seconds, it is assumed that the device is not 802.1X capable. Therefore, a guest VLAN is allocated to the interface and authentication, for the device, occurs at the next reauthentication interval (dot1x reauthentication).

If the host fails authentication for the designated number of times, the authenticator places the port in authentication failed VLAN (dot1x auth-fail-vlan).

NOTE: You can create the Layer 3 portion of a guest VLAN and authentication fail VLANs regardless if the VLAN is assigned to an interface or not. After an interface is assigned a guest VLAN (which has an IP address), routing through the guest VLAN is the same as any other traffic. However, the interface may join/leave a VLAN dynamically.

Related Commands

- `dot1x auth-fail-vlan` — Configures an authentication failure VLAN.
- `dot1x reauthentication` — Enables periodic re-authentication of the client.
- `dot1x reauth-max` — Configure the maximum number of times to re-authenticate a port before it becomes unauthorized.

dot1x host-mode

Enable single-host or multi-host authentication.

Syntax

`dot1x host-mode {single-host | multi-host | multi-auth}`

Parameters

- `single-host` — Enable single-host authentication.
- `multi-host` — Enable multi-host authentication.
- `multi-auth` — Enable multi-supplicant authentication.

Defaults

single-host

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- Single-host mode authenticates only one host per authenticator port and drops all other traffic on the port.
- Multi-host mode authenticates the first host to respond to an Identity Request and then permits all other traffic on the port.
- Multi-supplicant mode authenticates every device attempting to connect to the network on the authenticator port.

dot1x mac-auth-bypass

Enable MAC authentication bypass. If 802.1X times out because the host did not respond to the Identity Request frame, the system attempts to authenticate the host based on its MAC address.

Syntax

```plaintext
dot1x mac-auth-bypass
```

To disable MAC authentication bypass on a port, use the

```plaintext
no dot1x mac-auth-bypass
```

Defaults

Disabled

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dot1x max-eap-req

Configure the maximum number of times an extensive authentication protocol (EAP) request is transmitted before the session times out.

Syntax

```plaintext
dot1x max-eap-req number
```

To return to the default, use the

```plaintext
no dot1x max-eap-req command.
```

Parameters

- `number`
 Enter the number of times an EAP request is transmitted before a session time-out. The range is from 1 to 10. The default is **2**.

Defaults

2

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
dot1x max-suppllicants

Restrict the number of supplicants that can be authenticated and permitted to access the network through the port. This configuration is only takes effect in Multi-Auth mode.

Syntax

```
dot1x max-supplecants number
```

Parameters

- `number` - Enter the number of supplicants that can be authenticated on a single port in Multi-Auth mode. The range is from 1 to 128. The default is 128.

Defaults

128 hosts can be authenticated on a single authenticator port.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

dot1x host-mode — Enables single-host or multi-host authentication.

dot1x port-control

Enable port control on an interface.

Syntax

```
dot1x port-control {force-authorized | auto | force-unauthorized}
```

Parameters

- `force-authorized` - Enter the keywords `force-authorized` to forcibly authorize a port.
- `auto` - Enter the keyword `auto` to authorize a port based on the 802.1X operation result.
- `force-unauthorized` - Enter the keywords `force-unauthorized` to forcibly deauthorize a port.

Defaults

none

Command Modes

Auto
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The authenticator completes authentication only when `port-control` is set to `auto`.

dot1x quiet-period

Set the number of seconds that the authenticator remains quiet after a failed authentication with a client.

Syntax

```
dot1x quiet-period seconds
```

To disable quiet time, use the `no dot1x quiet-time` command.

Parameters

- `seconds`
 - Enter the number of seconds. The range is from 1 to 65535. The default is 60.

Defaults

- 60 seconds

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dot1x reauthentication

Enable periodic reauthentication of the client.

Syntax

```
dot1x reauthentication [interval seconds]
```

To disable periodic reauthentication, use the `no dot1x reauthentication` command.

Parameters

- `interval seconds`
 - (Optional) Enter the keyword `interval` then the interval time, in seconds, after which reauthentication is initiated. The range is from 1 to 31536000 (one year). The default is 3600 (1 hour).

Defaults

- 3600 seconds (1 hour)
dot1x reauth-max

Configure the maximum number of times a port can reauthenticate before the port becomes unauthorized.

Syntax

```
dot1x reauth-max number
```

To return to the default, use the `no dot1x reauth-max` command.

Parameters

- `number` Enter the permitted number of reauthentications. The range is from 1 to 10. The default is 2.

Defaults

2

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dot1x server-timeout

Configure the amount of time after which exchanges with the server time-out.

Syntax

```
dot1x server-timeout seconds
```

To return to the default, use the `no dot1x server-timeout` command.

Parameters

- `seconds` Enter a time-out value in seconds. The range is from 1 to 300, where 300 is implementation dependant. The default is 30.

Defaults

30 seconds

Command Modes

- INTERFACE
dot1x supplicant-timeout

Configure the amount of time after which exchanges with the supplicant time-out.

Syntax

dot1x supplicant-timeout seconds

To return to the default, use the no dot1x supplicant-timeout command.

Parameters

seconds

Enter a time-out value in seconds. The range is from 1 to 300, where 300 is implementation dependant. The default is 30.

Defaults

30 seconds

Command Modes

INTERFACE

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
dot1x tx-period

Configure the intervals at which EAPOL PDUs the Authenticator PAE transmits.

Syntax

```
dot1x tx-period seconds
```

To return to the default, use the `no dot1x tx-period` command.

Parameters

- `seconds`
 Enter the interval time, in seconds, that EAPOL PDUs are transmitted. The range is from 1 to 65535. The default is 30.

Defaults

30 seconds

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

mac

Configure a list of supplicant MAC addresses for dot1x profile represented with a profile-name.

Syntax

```
[no] mac {mac-address1 mac-address2... mac-address6}
```

Parameters

- `mac-address1`
 Enter the keyword `mac` and type the 48-bit MAC addresses using the H.H.H format. A maximum of 6 MAC addresses are allowed.

Defaults

None

Command Modes

DOT1X PROFILE CONFIG (conf-dot1x-profile)

CONFIGURATION TERMINAL BATCH

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.
mac

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S3100 series, S4048–ON, S4048–ON, S4810, S4820T, S5000, S6000, S6000–ON, the Configuration Terminal Batch mode on C9010, Z9100–ON, and Z9500.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the C9010.</td>
</tr>
</tbody>
</table>

Usage Information

The `mac` command configures a list of supplicant MAC addresses for a dot1x profile represented with a profile-name. You can configure up to 6 MAC addresses in a single `mac` command. The maximum number of MAC addresses that you can configure in a single profile is limited to 100.

Use this command in Configuration Terminal Batch mode to configure a list of supplicant MAC addresses for dot1x profile in a dual-homing setup.

Example

```
Dell(conf)#dot1x profile mySupplicants
Dell(conf-dot1x-profile)#mac 00:50:56:AA:01:10 00:50:56:AA:01:11
Dell(conf-dot1x-profile)#show config
dot1x profile mySupplicants
  mac 00:50:56:aa:01:10
  mac 00:50:56:aa:01:11
Dell(conf-dot1x-profile)#
```

show dot1x cos-mapping interface

Display the CoS priority-mapping table the RADIUS server provides and applies to authenticated supplicants on an 802.1X-enabled system.

Syntax

```
show dot1x cos-mapping interface interface [mac-address mac-address]
```

Parameters

- **interface**: Enter one of the following keywords and slot/port or number information:
 - For a Ten-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40–Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- **mac-address**: (Optional) MAC address of an 802.1X-authenticated supplicant.

Defaults

```
none
```

Command Modes

- EXEC
EXEC privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To display CoS mapping information only for the specified supplicant, enter a supplicant’s MAC address using the `mac-address` option.

You can display the CoS mapping information applied to traffic from authenticated supplicants on 802.1X-enabled ports that are in Single-Hot, Multi-Host, and Multi-Supplicant authentication modes.

Example

```
Dell#show dot1x cos-mapping interface tengigabitethernet 0/1

802.1p CoS re-map table on Te 0/1:
----------------------------------
Dot1p        Remapped Dot1p
0            7
1            6
2            5
3            4
4            3
5            2
6            1
7            0
Dell#

Dell#show dot1x cos-mapping interface tengigabitethernet 0/1 mac-address 00:00:00:00:00:10
Supplicant Mac: 0 0 0 0 0 10 Lookup for Mac:

802.1p CoS re-map table on Te 0/1:
----------------------------------
802.1p CoS re-map table for Supplicant: 00:00:00:00:00:10
Dot1p        Remapped Dot1p
0            7
1            6
2            5
3            4
4            3
5            2
6            1
7            0
Dell#
```
show dot1x interface

Display the 802.1X configuration of an interface.

Syntax

```
show dot1x interface interface [mac-address mac-address]
```

Parameters

- **interface**
 - Enter one of the following keywords and slot/port or number information:
 - For a Ten-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

- **mac-address**
 - (Optional) MAC address of a supplicant.

Defaults

none

Command Modes

- EXEC
- EXEC privilege

Command History

- **Version**
 - **9.9(0.0)**: Introduced on the FN IOM.
 - **9.2(0.0)**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

If you enable 802.1X multi-supplicant authentication on a port, additional 802.1X configuration details (Port Authentication status, Untagged VLAN ID, Authentication PAE state, and Backend state) are displayed for each supplicant, as shown in the following example.

Example

```
Dell#show dot1x interface fortyGigE 0/48

802.1x information on Fo 0/48:
-----------------------------
Dot1x Status:       Enable  
Port Control:       AUTO   
Port Auth Status:   UNAUTHORIZED
Re-Authentication:  Disable 
Untagged VLAN id:   None   
Guest VLAN:         Disable 
Guest VLAN id:      NONE   
Auth-Fail VLAN:     Disable 
Auth-Fail VLAN id:  NONE   
Auth-Fail Max-Attempts:  NONE  
Mac-Auth-Bypass:    Disable 
Mac-Auth-Bypass Only: Disable 
Tx Period:          30 seconds
```
Quiet Period: 60 seconds
ReAuth Max: 2
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 2
Host Mode: SINGLE_HOST
Auth PAE State: Initialize
Backend State: Initialize

Dell#

Dell#show dot1x interface tengigabitethernet 0/32

802.1x information on Te 0/32:

Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: AUTHORIZED(MAC-AUTH-BYPASS)
Re-Authentication: Disable
Untagged VLAN id: 400
Guest VLAN: Enable
Guest VLAN id: 100
Auth-Fail VLAN: Disable
Auth-Fail VLAN id: NONE
Auth-Fail Max-Attempts: NONE
Mac-Auth-Bypass: Enable
Mac-Auth-Bypass Only: Enable
Tx Period: 3 seconds
Quiet Period: 60 seconds
ReAuth Max: 2
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 2
Host Mode: SINGLE_HOST
Auth PAE State: Authenticated
Backend State: Idle

Dell#

Dell#show dot1x interface tengigabitethernet 0/32 mac-address 00:00:00:00:00:10
Supplicant Mac: 0 0 0 0 0 10 Lookup for Mac:

802.1x information on Te 0/32:

Dot1x Status: Enable
Port Control: AUTO
Re-Authentication: Disable
Guest VLAN: Enable
Guest VLAN id: 100
Auth-Fail VLAN: Disable
Auth-Fail VLAN id: NONE
Auth-Fail Max-Attempts: NONE
Mac-Auth-Bypass: Enable
Mac-Auth-Bypass Only: Enable
Tx Period: 3 seconds
Quiet Period: 60 seconds
ReAuth Max: 2
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 2
Host Mode: MULTI_AUTH
Max-Supplicants: 128
show dot1x profile

Display all the dot1x profiles or the details of a specific profile configured in the system.

Syntax

show dot1x profile profile-name

Parameters

profile-name

Specify a static dot1x profile-name. The maximum character limit for a profile name is 32 characters.

Defaults

None

Command Modes

EXEC

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S3100 series, S4048–ON, S4048–ON, S4810, S4820T, S5000, S6000, S6000–ON, C9010, Z9100–ON, and Z9500.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the C9010.</td>
</tr>
</tbody>
</table>

Example

Dell#show dot1x profile
802.1x profile information

Dot1x Profile mySupplicants
Profile MACs
 00:50:56:aa:01:10 00:50:56:aa:01:11
Access Control Lists (ACL)

Access control lists (ACLs) are supported by the Dell Networking Operating System (OS). The Dell Networking OS supports the following types of ACL, IP prefix list, and route maps:

- Commands Common to all ACL Types
- Common IP ACL Commands
- Standard IP ACL Commands
- Extended IP ACL Commands
- Common MAC Access List Commands
- Standard MAC ACL Commands
- Extended MAC ACL Commands
- IP Prefix List Commands
- Route Map Commands

NOTE: For ACL commands that use the Trace function, refer to the Secure DHCP Commands section in the Security chapter.

Topics:

- Commands Common to all ACL Types
- description
- remark
- resequence access-list
- resequence prefix-list ipv4
- show config
- Common IP ACL Commands
- access-class
- clear counters ip access-group
- ip access-group
- show ip access-lists
- show ip accounting access-list
- Standard IP ACL Commands
- deny (for Standard IP ACLs)
- ip access-list standard
- permit (for Standard IP ACLs)
- seq
- Extended IP ACL Commands
- deny (for Extended IP ACLs)
- deny icmp
• deny tcp
• deny udp
• ip access-list extended
• permit (for Extended IP ACLs)
• permit icmp
• permit tcp
• permit udp
• seq
• Common MAC Access List Commands
• clear counters mac access-group
• mac access-group
• show mac access-lists
• show mac accounting access-list
• Standard MAC ACL Commands
• deny
• mac access-list standard
• permit
• seq
• Extended MAC ACL Commands
• deny
• mac access-list extended
• permit
• seq
• IP Prefix List Commands
• clear ip prefix-list
• deny
• ip prefix-list
• permit
• seq
• show config
• show ip prefix-list detail
• show ip prefix-list summary
• Route Map Commands
• continue
• description
• match interface
• match ip address
• match ip next-hop
• match ip route-source
• match metric
• match route-type
• match tag
• route-map
• set automatic-tag
• set metric
• set metric-type
• set tag
• show config
• show route-map
• deny (for Standard IP ACLs)
• deny (for Extended IP ACLs)
• seq
• deny tcp
• deny udp
• deny arp (for Extended MAC ACLs)
• deny icmp
• deny ether-type (for Extended MAC ACLs)
• deny
•permit (for Standard IP ACLs)
• permit arp
• permit ether-type (for Extended MAC ACLs)
• permit icmp
• permit udp
• permit (for Extended IP ACLs)
• permit
• seq
• permit tcp
• seq arp
• seq ether-type
• seq
• seq
• permit udp
• permit tcp
• permit icmp
• permit
• deny udp (for IPv6 ACLs)
• deny tcp (for IPv6 ACLs)
• deny icmp (for Extended IPv6 ACLs)
• deny (for IPv6 ACLs)
Commands Common to all ACL Types

The following commands are available within each ACL mode and do not have mode-specific options. Some commands in this chapter may use similar names, but require different options to support the different ACL types (for example, the `deny` command).

description

Configure a short text string describing the ACL.

Syntax

```plaintext
description text
```

Parameters

- `text` Enter a text string up to 80 characters long.

Defaults

Not enabled.

Command Modes

- `CONFIGURATION-IP ACCESS-LIST-STANDARD`
- `CONFIGURATION-IP ACCESS-LIST-EXTENDED`
- `CONFIGURATION-MAC ACCESS LIST-STANDARD`
- `CONFIGURATION-MAC ACCESS LIST-EXTENDED`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

remark

Enter a description for an ACL entry.

Syntax

```plaintext
remark [remark-number] [description]
```

Parameters

- `remark-number` Enter the remark number. The range is from 0 to 4294967290.

NOTE: You can use the same sequence number for the remark and an ACL rule.
description

Enter a description of up to 80 characters.

Defaults

Not configured.

Command Modes

- CONFIGURATION-IP ACCESS-LIST-STANDARD
- CONFIGURATION-IP ACCESS-LIST-EXTENDED
- CONFIGURATION-MAC ACCESS LIST-STANDARD
- CONFIGURATION-MAC ACCESS LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `remark` command is available in each ACL mode. You can configure up to 4294967290 remarks in a given ACL.

The following example shows the use of the `remark` command twice within CONFIGURATION-STANDARD-ACCESS-LIST mode. The same sequence number was used for the remark and for an associated ACL rule. The remark precedes the rule in the running-config because it is assumed that the remark is for the rule with the same sequence number, or the group of rules that follow the remark.

Example

Dell(conf-std-nacl)#remark 10 Deny rest of the traffic
Dell(conf-std-nacl)#remark 5 Permit traffic from XYZ Inc.
Dell(conf-std-nacl)#show config

```
! ip access-list standard test
remark 5 Permit traffic from XYZ Inc.
seq 5 permit 1.1.1.0/24
remark 10 Deny rest of the traffic
seq 10 Deny any
```

Related Commands

- `resequence access-list` — Re-assigns sequence numbers to entries of an existing access-list.

resequence access-list

Re-assign sequence numbers to entries of an existing access-list.

Syntax

```
resequence access-list {ipv4 | mac} {access-list-name
StartingSeqNum Step-to-Increment}
```

Parameters

- `ipv4 | mac`

Enter the keyword ipv4 or mac to identify the access list type to resequence.
access-list-name Enter the name of a configured IP access list.
StartingSeqNum Enter the starting sequence number to resequence. The range is from 0 to 4294967290.
Step-to-Increment Enter the step to increment the sequence number. The range is from 1 to 4294967290.

Defaults none
Command Modes • EXEC
• EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information When you have exhausted all the sequence numbers, this feature permits re-assigning a new sequence number to entries of an existing access-list.

Related Commands resequence prefix-list ipv4 — resequences a prefix list.

resequence prefix-list ipv4

Re-assign sequence numbers to entries of an existing prefix list.

Syntax resequence prefix-list ipv4 {prefix-list-name StartingSeqNum Step-to-increment}

Parameters

prefix-list-name Enter the name of the configured prefix list, up to 140 characters long.
StartingSeqNum Enter the starting sequence number to resequence. The range is from 0 to 65535.
Step-to-Increment Enter the step to increment the sequence number. The range is from 1 to 65535.

Defaults none
Command Modes • EXEC
• EXEC Privilege
show config

Display the current ACL configuration.

Syntax

```
show config
```

Command Modes

- CONFIGURATION-IP ACCESS-LIST-STANDARD
- CONFIGURATION-IP ACCESS-LIST-EXTENDED
- CONFIGURATION-MAC ACCESS LIST-STANDARD
- CONFIGURATION-MAC ACCESS LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(config-std-nacl)#show conf
!
ip access-list standard test
remark 5 Permit traffic from XYZ Inc.
seq 5 permit 1.1.1.0/24 count
remark 10 Deny traffic from ABC
seq 10 deny 2.1.1.0/24 count
Dell(config-std-nacl)#
```

Common IP ACL Commands

The following commands are available within both IP ACL modes (Standard and Extended) and do not have mode-specific options. When an ACL is created without a rule and then is applied to an interface, ACL behavior reflects an implicit permit.
The switch supports both Ingress and Egress IP ACLs.

NOTE: Also refer to the Commands Common to all ACL Types section.

access-class

Apply a standard ACL to a terminal line.

Syntax

```
access-class access-list-name [ipv4 | ipv6]
```

Parameters

- **access-list-name**

 Enter the name of a configured Standard ACL, up to 140 characters.

- **ipv4**

 Enter the keyword ipv4 to configure an IPv4 access class.

- **ipv6**

 Enter the keyword ipv6 to configure an IPv6 access class.

Defaults

Not configured.

Command Modes

LINE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Added the ipv4 and ipv6 parameters to the command.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you use the `access-class access-list-name` command without specifying the `ipv4` or `ipv6` attribute, both IPv4 as well as IPv6 rules that are defined in that ACL are applied to the terminal. This is a generic way of configuring access restrictions. To be able to filter access exclusively using either IPv4 or IPv6 rules, you must use either the `ipv4` or `ipv6` attribute along with the `access-class access-list-name` command. Depending on the attribute that you specify (`ipv4` or `ipv6`), the ACL processes either IPv4 or IPv6 rules, but not both. Using this configuration, you can set up two different types of access classes with each class processing either IPv4 or IPv6 rules separately.

However, if you already have configured generic IP ACL on a terminal line, then you cannot further apply IPv4 or IPv6 specific filtering on top of this configuration. Because, both IPv4 and IPv6 access classes are already configured on this terminal line. Before applying either IPv4 or IPv6 filtering, you must first undo the generic configuration using the `no access-class access-list-name` command.

Similarly, if you have configured either IPv4 or IPv6 specific filtering on a terminal line, you cannot apply generic IP ACLs on top of this configuration. Before applying the generic ACL configuration, you must first undo the existing configuration using the `no access-class access-list-name [ipv4 | ipv6]` command.
clear counters ip access-group

Erase all counters maintained for access lists.

Syntax

```
clear counters ip access-group [access-list-name]
```

Parameters

- `access-list-name` (OPTIONAL) Enter the name of a configured access-list, up to 140 characters.

Command Modes

- EXEC Privilege

Command History

```
Version                        Description
9.9(0.0)                       Introduced on the FN IOM.
8.3.16.1                       Introduced on the MXL 10/40GbE Switch IO Module.
```

ip access-group

Apply an egress IP ACL to an interface.

Syntax

```
ip access-group access-list-name {in | out} [implicit-permit] [vlan vlan-id]
```

Parameters

- `access-list-name` Enter the name of a configured access list, up to 140 characters.
- `in` Enter the keyword in to apply the ACL to incoming traffic.
- `out` Enter the keyword out to apply the ACL to the outgoing traffic.
- `implicit-permit` (OPTIONAL) Enter the keyword implicit-permit to change the default action of the ACL from implicit-deny to implicit-permit (that is, if the traffic does not match the filters in the ACL, the traffic is permitted instead of dropped).
- `vlan vlan-id` (OPTIONAL) Enter the keyword vlan then the ID numbers of the VLANs.

Defaults

Not enabled.

Command Modes

- INTERFACE

Command History

```
Version                        Description
9.9(0.0)                       Introduced on the FN IOM.
```

Access Control Lists (ACL) | 167
show ip access-lists

Display all of the IP ACLs configured in the system, whether or not they are applied to an interface, and the count of matches/mismatches against each ACL entry displayed.

Syntax

```
show ip access-lists [access-list-name] [interface interface] [in]
```

Parameters

- **access-list-name**: Enter the name of a configured MAC ACL, up to 140 characters.
- **interface interface**: Enter the keyword `interface` then the one of the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- **in**: Identify whether ACL is applied on the ingress or egress side.

Command Modes

EXEC Privilege

Command History

- **Version**: 9.9(0.0)
- **Description**: Introduced on the FN IOM.
- **Version**: 8.3.16.1
- **Description**: Introduced on the MXL 10/40GbE Switch IO Module.

Example

```
Dell#show ip access-lists test in
Standard Ingress IP access list test
```
show ip accounting access-list

Display the IP access-lists created on the switch and the sequence of filters.

Syntax

```
show ip accounting {access-list access-list-name | cam_count}
interface interface
```

Parameters

- `access-list-name` Enter the name of the ACL to be displayed.
- `cam_count` List the count of the CAM rules for this ACL.
- `interface interface` Enter the keyword `interface` then the one of the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- `show ip accounting access-list` Displays the name of the IP ACL.
- `seq 5...` Displays the filter. If the keywords `count` or `byte` were configured in the filter, the number of packets or bytes the filter processes is displayed at the end of the line.
- `order 4` Displays the QoS order of priority for the ACL entry.

Example

```plaintext
Dell#show ip accounting access-list
!
Standard Ingress IP access list test on TenGigabitEthernet 0/1
```
Total cam count 2
seq 5 permit 1.1.1.0/24 count (0 packets)
seq 10 deny 2.1.1.0/24 count (0 packets)

Standard IP ACL Commands

When you create an ACL without any rule and then apply it to an interface, the ACL behavior reflects an implicit permit.

The switch supports both Ingress and Egress IP ACLs.

NOTE: Also refer to the Commands Common to all ACL Types and Common IP ACL Commands sections.

deny (for Standard IP ACLs)

To drop packets with a certain IP address, configure a filter.

Syntax

```
deny {source | any | host {ip-address}} [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `no deny {source [mask] | any | host ip-address}` command.

Parameters

- **source**
 - Enter the IP address of the network or host from which the packets were sent.

- **any**
 - Enter the keyword any to specify that all routes are subject to the filter.

- **host ip-address**
 - Enter the keyword host then the IP address to specify a host IP address.

- **count**
 - (OPTIONAL) Enter the keyword count to count packets processed by the filter.

- **byte**
 - (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.

- **dscp**
 - Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

- **log**
 - (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.
order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-STANDARD-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.
You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `ip access-list standard` — configures a standard ACL.
- `permit` — configures a permit filter.

ip access-list standard

Create a standard IP access list (IP ACL) to filter based on IP address.

Syntax

```
ip access-list standard access-list-name
```

Parameters

- `access-list-name` Enter a string up to 140 characters long as the ACL name.

Defaults

All IP access lists contain an implicit `deny any`, that is, if no match occurs, the packet is dropped.

Command Modes

- `CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The Dell operating system supports one ingress and one egress IP ACL per interface.

The number of entries allowed per ACL is hardware-dependent. For detailed specifications on entries allowed per ACL, refer to your line card documentation.

Example

```
Dell(conf)#ip access-list standard TestList
Dell(config-std-nacl)#
```

Related Commands

- `ip access-list extended` — creates an extended access list.
permit (for Standard IP ACLs)

To permit packets from a specific source IP address to leave the switch, configure a filter.

Syntax

permit {source [mask] | any | host ip-address} [no-drop] [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter's sequence number.
- Use the no permit {source [mask] | any | host ip-address} command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>Enter the IP address in dotted decimal format of the network from which the packet was sent.</td>
</tr>
<tr>
<td>mask</td>
<td>(OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.</td>
</tr>
<tr>
<td>any</td>
<td>Enter the keyword any to specify that all routes are subject to the filter.</td>
</tr>
<tr>
<td>host ip-address</td>
<td>Enter the keyword host then the IP address to specify a host IP address or hostname.</td>
</tr>
<tr>
<td>no-drop</td>
<td>Enter the keywords no-drop to match only the forwarded packets.</td>
</tr>
<tr>
<td>count</td>
<td>(OPTIONAL) Enter the keyword count to count packets processed by the filter.</td>
</tr>
<tr>
<td>bytes</td>
<td>(OPTIONAL) Enter the keyword bytes to count bytes processed by the filter.</td>
</tr>
<tr>
<td>dscp</td>
<td>(OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.</td>
</tr>
<tr>
<td>order</td>
<td>(OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).</td>
</tr>
<tr>
<td>fragments</td>
<td>Enter the keyword fragments to use ACLs to control packet fragments.</td>
</tr>
</tbody>
</table>
log
(Optional) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count
(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes
(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor
(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
CONFIGURATION-STANDARD-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful.
when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny — assigns a IP ACL filter to deny IP packets.

ip access-list standard — creates a standard ACL.

seq

Assign a sequence number to a deny or permit filter in an extended IP access list while creating the filter.

Syntax

```
seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte] [dscp value] [order] [fragments] [threshold-in-msgs [count]]
```

Parameters

- **sequence-number**: Enter a number from 0 to 4294967290. The range is from 0 to 65534.
- **deny**: Enter the keyword deny to configure a filter to drop packets meeting this condition.
- **permit**: Enter the keyword permit to configure a filter to forward packets meeting this criteria.
- **source**: Enter an IP address in dotted decimal format of the network from which the packet was received.
- **mask**: (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**: Enter the keyword any to specify that all routes are subject to the filter.
- **count**: (OPTIONAL) Enter the keyword count to count packets the filter processes.
- **byte**: (OPTIONAL) Enter the keyword byte to count bytes the filter processes.
- **dscp**: (OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.
- **order**: (OPTIONAL) Enter the keyword order to specify the QoS order for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers
have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments
Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in-msgs count
(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
- CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The order option is relevant in the context of the Policy QoS feature only. The following applies:

- The seq sequence-number command is applicable only in an ACL group.
- The order option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The order option takes precedence over seq sequence-number.
- If sequence-number is not configured, the rules with the same order value are ordered according to their configuration order.
- If sequence-number is configured, the sequence-number is used as a tie breaker for rules with the same order.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging
only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny — configures a filter to drop packets.

permit — configures a filter to forward packets.

seq — assigns a sequence number to a deny or permit filter in an IP access list while creating the filter.

Extended IP ACL Commands

When an ACL is created without any rule and then applied to an interface, ACL behavior reflects an implicit permit.

The following commands configure extended IP ACLs, which in addition to the IP address, also examine the packet’s protocol type.

The switch supports both Ingress and Egress IP ACLs.

NOTE: Also refer to the Commands Common to all ACL Types and Common IP ACL Commands sections.

deny (for Extended IP ACLs)

Configure a filter that drops IP packets meeting the filter criteria.

Syntax

deny {ip | ip-protocol-number} {source mask | any | host ip-address} {destination mask | any | host ip-address} [count [byte]] [dscp value] [order] [monitor] [fragments] [log [interval minutes] [threshold-in-mgs [count]] [monitor]
To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny {ip | ip-protocol-number} {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**
 Enter the IP address of the network or host from which the packets were sent.

- **mask**
 Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- **any**
 Enter the keyword `any` to specify that all routes are subject to the filter.

- **host ip-address**
 Enter the keyword `host` then the IP address to specify a host IP address.

- **destination**
 Enter the IP address of the network or host to which the packets are sent.

- **count**
 (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.

- **byte**
 (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.

- **order**
 (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword `order`, the ACLs have the lowest order by default (255).

- **monitor**
 (OPTIONAL) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

- **fragments**
 Enter the keyword `fragments` to use ACLs to control packet fragments.

- **log**
 (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

- **threshold-in-msgs count**
 (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.
interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny tcp — assigns a filter to deny TCP packets.
deny udp — assigns a filter to deny UDP packets.

ip access-list extended — creates an extended ACL.

deny icmp

To drop all or specific internet control message protocol (ICMP) messages, configure a filter.

Syntax
deny icmp {source mask | any | host ip-address} {destination mask | any | host ip-address} [dscp] [count [byte]] [order] [fragments] [threshold-inmsgs] [count]

To remove this filter, you have two choices:

- Use the no seq sequence-number command, if you know the filter’s sequence number.
- Use the no deny icmp {source mask | any | host ip-address} {destination mask | any | host ip-address} command.

Parameters

- **source**
 Enter the IP address of the network or host from which the packets were sent.

- **mask**
 Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- **any**
 Enter the keyword any to specify that all routes are subject to the filter.

- **host ip-address**
 Enter the keyword host then the IP address to specify a host IP address.

- **destination**
 Enter the IP address of the network or host to which the packets are sent.

- **dscp**
 Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

- **count** (OPTIONAL)
 Enter the keyword count to count packets processed by the filter.

- **byte** (OPTIONAL)
 Enter the keyword byte to count bytes processed by the filter.

- **order** (OPTIONAL)
 Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).
fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging ACLs on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This

Access Control Lists (ACL) 181
mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

deny tcp

Configure a filter that drops transmission control protocol (TCP) packets meeting the filter criteria.

Syntax

deny tcp {source mask | any | host ip-address} [bit] [operator port [port]] {destination mask | any | host ip-address} [dscp] [bit] [operator port [port]] [count [byte] [order] [fragments] [threshold-in-msgs [count]]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter's sequence number.
- Use the no deny tcp {source mask | any | host ip-address} {destination mask | any | host ip-address} command.

Parameters

source Enter the IP address of the network or host from which the packets are sent.

mask Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any Enter the keyword any to specify that all routes are subject to the filter.

host ip-address Enter the keyword host then the IP address to specify a host IP address.

dscp Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

bit Enter a flag or combination of bits:

- ack: acknowledgement field
- fin: finish (no more data from the user)
- psh: push function
- rst: reset the connection
- syn: synchronize sequence numbers
- urg: urgent field

operator (OPTIONAL) Enter one of the following logical operand:

- eq = equal to
port port

Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535.

The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
- 169 = SNMP

destination

Enter the IP address of the network or host to which the packets are sent.

mask

Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count

(Optional) Enter the keyword count to count packets the filter processes.

byte

(Optional) Enter the keyword byte to count bytes the filter processes.

order

(Optional) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments

Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in-msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly.

The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-IP ACCESS-LIST-EXTENDED
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `order` option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the *Dell Networking OS Configuration Guide*.

You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt, or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).
Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

<table>
<thead>
<tr>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000111110100000</td>
<td>1111111111000000</td>
<td>4000</td>
<td>4031</td>
</tr>
<tr>
<td>2</td>
<td>0000111111000000</td>
<td>1111111111000000</td>
<td>4032</td>
<td>4095</td>
</tr>
<tr>
<td>3</td>
<td>0001000000000000</td>
<td>1111100000000000</td>
<td>4096</td>
<td>6143</td>
</tr>
<tr>
<td>4</td>
<td>0001100000000000</td>
<td>1111110000000000</td>
<td>6144</td>
<td>7167</td>
</tr>
<tr>
<td>5</td>
<td>0001110000000000</td>
<td>1111111000000000</td>
<td>7168</td>
<td>7679</td>
</tr>
<tr>
<td>6</td>
<td>0001111000000000</td>
<td>1111111100000000</td>
<td>7680</td>
<td>7935</td>
</tr>
<tr>
<td>7</td>
<td>0001111110000000</td>
<td>1111111111000000</td>
<td>7936</td>
<td>7999</td>
</tr>
<tr>
<td>8</td>
<td>0001111110100000</td>
<td>1111111111111111</td>
<td>8000</td>
<td>8000</td>
</tr>
</tbody>
</table>

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

<table>
<thead>
<tr>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000000000000</td>
<td>1111110000000000</td>
<td>0</td>
<td>1023</td>
</tr>
</tbody>
</table>

Total Ports: 1024

Related Commands

deny — assigns a filter to deny IP traffic.

deny udp — assigns a filter to deny UDP traffic.

deny udp

To drop user datagram protocol (UDP) packets meeting the filter criteria, configure a filter.

Syntax

deny udp {source mask | any | host ip-address} [operator port [port]] {destination mask | any | host ip-address} [dscp] [operator port [port]] [count [byte]] [order] [fragments] [threshold-in-msgs [count]]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter's sequence number.
- Use the no deny udp {source mask | any | host ip-address} {destination mask | any | host ip-address} command.

Parameters

- **source**
 - Enter the IP address of the network or host from which the packets were sent.

- **mask**
 - Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
any
Enter the keyword any to specify that all routes are subject to the filter.

host ip-address
Enter the keyword host then the IP address to specify a host IP address.

dscp
Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

operator (OPTIONAL) Enter one of the following logical operand:

- eq = equal to
- neq = not equal to
- gt = greater than
- lt = less than
- range = inclusive range of ports (you must specify two ports for the port command)

port port
Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535.

destination
Enter the IP address of the network or host to which the packets are sent.

mask
Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count (OPTIONAL) Enter the keyword count to count packets processed by the filter.

byte (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments
Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in-msgs count (OPTIONAL) Enter the threshold-in-msgs keyword then a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs are terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults
By default 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which the ACL logs are generated is five minutes.

Command Modes
CONFIGURATION-IP ACCESS-LIST-EXTENDED
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `order` option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, `gt`, `lt`, `it` or `range`) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

```
Dell# Data             Mask        From To #Covered
1 00001111110100000 1111111111111111 4000 4031 32
2 00001111111000000 1111111111111111 4032 4095 64
3 0010000000000000 1111110000000000 4096 6143 2048
4 0011000000000000 1111110000000000 6144 7167 1024
5 0011100000000000 1111110000000000 7168 7679 512
6 0011111000000000 1111111100000000 7680 7935 256
7 0011111100000000 1111111110000000 7936 7999 64
8 0011111101000000 1111111111111111 8000 8000 1
```

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

```
Dell# Data             Mask        From To #Covered
1 00000000000000000 1111111111111111 0 1023 1024
```
Related Commands

deny — assigns a filter to deny IP traffic.
deny tcp — assigns a filter to deny TCP traffic.

ip access-list-list extended

Name (or select) an extended IP access list (IP ACL) based on IP addresses or protocols.

Syntax

ip access-list extended access-list-name

To delete an access list, use the no ip access-list extended access-list-name command.

Parameters

access-list-name Enter a string up to 140 characters long as the access list name.

Defaults

All access lists contain an implicit deny any; that is, if no match occurs, the packet is dropped.

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The number of entries allowed per ACL is hardware-dependent. For detailed specification on entries allowed per ACL, refer to your line card documentation.

Example

Dell(conf)#ip access-list extended TESTListEXTEND
Dell(config-ext-nacl)#

Related Commands

ip access-list standard — configures a standard IP access list.

resequence access-list — Displays the current configuration.
permit (for Extended IP ACLs)

To pass IP packets meeting the filter criteria, configure a filter.

Syntax

```
permit {source mask | any | host ip-address} {destination mask | any | host ip-address} [count [bytes]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `no deny {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**: Enter the IP address in dotted decimal format of the network from which the packet was sent.
- **mask** (OPTIONAL): Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**: Enter the keyword any to specify that all routes are subject to the filter.
- **host ip-address**: Enter the keyword host then the IP address to specify a host IP address or hostname.
- **count** (OPTIONAL): Enter the keyword count to count packets processed by the filter.
- **bytes** (OPTIONAL): Enter the keyword bytes to count bytes processed by the filter.
- **dscp** (OPTIONAL): Enter the keyword dscp to match to the IP DCSCP values.
- **order** (OPTIONAL): Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).
- **fragments**: Enter the keyword fragments to use ACLs to control packet fragments.
- **log** (OPTIONAL): Enter the keyword log to enable the triggering of ACL log messages.
threshold-in-msgs <count> (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes <minutes> (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors)
them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `ip access-list extended` — creates an extended ACL.
- `permit tcp` — assigns a permit filter for TCP packets.
- `permit udp` — assigns a permit filter for UDP packets.

permit icmp

Configure a filter to allow all or specific ICMP messages.

Syntax

```
permit icmp {source mask | any | host ip-address} {destination mask | any | host ip-address} [dscp] [message-type] [count [byte]] [order] [fragments] [threshold-in-msgs [count]]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no permit icmp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- `source` Enter the IP address of the network or host from which the packets were sent.
- `mask` Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or noncontiguous.
- `any` Enter the keyword any to match and drop specific Ethernet traffic on the interface.
- `host ip-address` Enter the keyword host and then enter the IP address to specify a host IP address.
- `destination` Enter the IP address of the network or host to which the packets are sent.
- `dscp` Enter the keyword dscp to deny a packet based on the DSCP value. The range is 0 to 63.
- `message-type` (OPTIONAL) Enter an ICMP message type, either with the type (and code, if necessary) numbers or with the name of the message type. The range is 0 to 255 for ICMP type and 0 to 255 for ICMP code.
- `count` (OPTIONAL) Enter the keyword count to count packets the filter processes.
byte (OPTIONAL) Enter the keyword byte to count bytes the filter processes.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Defaults

Command Modes
CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.
You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

permit tcp

To pass TCP packets meeting the filter criteria, configure a filter.

Syntax

```
permit tcp {source mask | any | host ip-address} [bit] [operator port [port]] {destination mask | any | host ip-address} [bit] [dscp] [operator port [port]] {count [byte]} [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no permit tcp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**

 Enter the IP address of the network or host from which the packets were sent.

- **mask**

 Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- **any**

 Enter the keyword any to specify that all routes are subject to the filter.

- **host ip-address**

 Enter the keyword host then the IP address to specify a host IP address.

- **bit**

 Enter a flag or combination of bits:

 - **ack**: acknowledgement field
 - **fin**: finish (no more data from the user)
 - **psh**: push function
 - **rst**: reset the connection
 - **syn**: synchronize sequence numbers
- **urg**: urgent field

dscp

Enter the keyword `dscp` to deny a packet based on the DSCP value. The range is from 0 to 63.

operator (OPTIONAL)

Enter one of the following logical operand:

- `eq` = equal to
- `neq` = not equal to
- `gt` = greater than
- `lt` = less than
- `range` = inclusive range of ports (you must specify two ports for the port parameter)

port port

Enter the application layer port number. Enter two port numbers if you are using the range logical operand. The range is from 0 to 65535.

The following list includes some common TCP port numbers:

- `23 = Telnet`
- `20 and 21 = FTP`
- `25 = SMTP`
- `169 = SNMP`

destination

Enter the IP address of the network or host to which the packets are sent.

mask

Enter a network mask in `/prefix` format (`/x`) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count (OPTIONAL)

Enter the keyword `count` to count packets the filter processes.

byte (OPTIONAL)

Enter the keyword `byte` to count bytes the filter processes.

order (OPTIONAL)

Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (**255**).

fragments

Enter the keyword `fragments` to use ACLs to control packet fragments.

log (OPTIONAL)

Enter the keyword `log` to enable the triggering of ACL log messages.

threshold-in msgs count

(OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs

Access Control Lists (ACL)

194
is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The threshold range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

The **order** option is relevant in the context of the Policy QoS feature only. For more information, refer to the “Quality of Service” chapter of the Dell Networking OS Configuration Guide.

The switch cannot count both packets and bytes, so when you enter the count byte options, only bytes are incremented.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt, or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging was stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging
only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

```
Dell# Data            Mask         From To   #Covered
1 0000111110100000 1111111111100000 4000 4031 32
2 0000111111000000 1111111111000000 4032 4095 64
3 0001000000000000 1111110000000000 4096 6143 2048
4 0001100000000000 1111110000000000 6144 7167 1024
5 0001110000000000 1111111000000000 7168 7679 512
6 0001111000000000 1111111100000000 7680 7935 256
7 0001111100000000 1111111110000000 7936 7999 64
8 0001111101000000 1111111111111111 8000 8000 1
```

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

```
Dell# Data            Mask          From To   #Covered
1 0000000000000000 1111110000000000 0 1023 1024
```

Total Ports: 1024

Related Commands

- `ip access-list extended` — creates an extended ACL.
- `permit` — assigns a permit filter for IP packets.
- `permit udp` — assigns a permit filter for UDP packets.

permit udp

To pass UDP packets meeting the filter criteria, configure a filter.

Syntax

```
permit udp {source mask | any | host ip-address} [operator port [port]] {destination mask | any | host ip-address} [dscp]
```
To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no permit udp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**
 - Enter the IP address of the network or host from which the packets were sent.

- **mask**
 - Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- **any**
 - Enter the keyword `any` to specify that all routes are subject to the filter.

- **host ip-address**
 - Enter the keyword `host` and then enter the IP address to specify a host IP address.

- **dscp**
 - Enter the keyword `dscp` to deny a packet based on the DSCP value. The range is from 0 to 63.

- **operator**
 - (OPTIONAL) Enter one of the following logical operand:
 - `eq = equal to`
 - `neq = not equal to`
 - `gt = greater than`
 - `lt = less than`
 - `range = inclusive range of ports (you must specify two ports for the port parameter)`

- **port port**
 - Enter the application layer port number. Enter two port numbers if you are using the `range` logical operand. The range is 0 to 65535.

- **destination**
 - Enter the IP address of the network or host to which the packets are sent.

- **count**
 - (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.

- **byte**
 - (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.

- **order**
 - (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (255).
Enter the keyword `fragments` to use ACLs to control packet fragments.

threshold-in-msgs

(Optional) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

`CONFIGURATION-IP ACCESS-LIST-EXTENDED`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- The `order` option is relevant in the context of the Policy QoS feature only. For more information, refer to the "Quality of Service" chapter of the Dell Operating System Configuration Guide.

- You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.

- Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, `gt`, `lt`, or `range`) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

- When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

- If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

- You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress interfaces.
egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

Dell# Data Mask From To #Covered
1 000011111101000000 1111111111100000 4000 4031 32
2 000011111110000000 1111111111100000 4032 4095 64
3 000100000000000000 1111100000000000 4096 6143 2048
4 000110000000000000 1111100000000000 6144 7167 1024
5 000111000000000000 1111110000000000 7168 7679 512
6 000111100000000000 1111111000000000 7680 7935 256
7 000111110000000000 1111111100000000 7936 7999 64
8 000111111000000000 1111111110000000 7999 8000 1
Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

Dell# Data Mask From To #Covered
1 0000000000000000 1111110000000000 0 1023 1024
Total Ports: 1024

Related Commands

- `ip access-list extended` — creates an extended ACL.
- `permit` — assigns a permit filter for IP packets.
- `permit tcp` — assigns a permit filter for TCP packets.

seq

Assign a sequence number to a deny or permit filter in an extended IP access list while creating the filter.

Syntax

```
seq sequence-number {deny | permit} {ip-protocol-number | icmp | ip | tcp | udp} {source mask | any | host ip-address} {destination mask | any | host ip-address} [operator port [port]] [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

Parameters

- `sequence-number` Enter a number from 0 to 4294967290. The range is from 1 to 65534.
deny Enter the keyword deny to configure a filter to drop packets meeting this condition.

permit Enter the keyword permit to configure a filter to forward packets meeting this criteria.

ip-protocol-number Enter a number from 0 to 255 to filter based on the protocol identified in the IP protocol header.

icmp Enter the keyword icmp to configure an ICMP access list filter.

ip Enter the keyword ip to configure a generic IP access list. The keyword ip specifies that the access list permits all IP protocols.

tcp Enter the keyword tcp to configure a TCP access list filter.

udp Enter the keyword udp to configure a UDP access list filter.

source Enter an IP address in dotted decimal format of the network from which the packet was received.

mask (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any Enter the keyword any to specify that all routes are subject to the filter.

host ip-address Enter the keyword host and then enter the IP address to specify a host IP address or hostname.

operator (OPTIONAL) Enter one of the following logical operands:

- eq = equal to
- neq = not equal to
- gt = greater than
- lt = less than
- range = inclusive range of ports (you must specify two ports for the port parameter.)

port port (OPTIONAL) Enter the application layer port number. Enter two port numbers if you are using the range logical operand. The range is from 0 to 65535.

The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
- 169 = SNMP

destination Enter the IP address of the network or host to which the packets are sent.
(OPTIONAL) Enter the keyword `count` to count packets the filter processes.

```
byte
```

(Optional) Enter the keyword `byte` to count bytes the filter processes.

```
dscp
```

(Optional) Enter the keyword `dscp` to match to the IP DCSCP values.

```
order
```

(Optional) Enter the keyword `order` to specify the QoS order for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (255).

```
fragments
```

Enter the keyword `fragments` to use ACLs to control packet fragments.

```
log
```

(Optional) Enter the keyword `log` to enable the triggering of ACL log messages.

```
threshold-in msgs count
```

(Optional) Enter the `threshold-in-msgs count` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

```
interval minutes
```

(Optional) Enter the keyword `interval` followed by the time period in minutes at which the ACL logs must be generated. The interval range is from 1 to 10 minutes.

```
monitor
```

(Optional) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which the ACL logs are generated is five minutes. By default, the flow-based monitoring is not enabled.

Command Modes

`CONFIGURATION-IP ACCESS-LIST-EXTENDED`

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 9.4(0.0) Added support for the flow-based monitoring on the MXL 10/40GbE Switch IO Module.
 - 9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module.
 - 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information

The `order` option is relevant in the context of the Policy QoS feature only. The following applies:

- The `seq sequence-number` command is applicable only in an ACL group.
- The `order` option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The `order` option takes precedence over `seq sequence-number`.
- If `sequence-number` is not configured, the rules with the same order value are ordered according to their configuration order.
- If `sequence-number` is configured, the sequence-number is used as a tie breaker for rules with the same order.

If you configure the `sequence-number`, the `sequence-number` is used as a tie breaker for rules with the same order.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `deny` — Configures a filter to drop packets.
- `permit` — Configures a filter to forward packets.
Common MAC Access List Commands

The following commands are available within both MAC ACL modes (Standard and Extended) and do not have mode-specific options. These commands allow you to clear, display, and assign MAC ACL configurations. The MAC ACL can be applied on Physical, Port-channel and VLAN interfaces. As per the stipulated rules in the ACL, the traffic on the Interface/VLAN members or Port-channel members will be permitted or denied.

The switch supports both Ingress and Egress MAC ACLs.

clear counters mac access-group

Clear counters for all or a specific MAC ACL.

Syntax

```
clear counters mac access-group [mac-list-name]
```

Parameters

- **mac-list-name**: (OPTIONAL) Enter the name of a configured MAC access list.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

mac access-group

Apply a MAC ACL to traffic entering or exiting an interface. Enter into the Interface mode and apply the MAC ACL in the following manner.

Syntax

```
mac access-group access-list-name {in [vlan vlan-range] | out}
```

To delete a MAC access-group, use the no mac access-group mac-list-name command.

Parameters

- **access-list-name**: Enter the name of a configured MAC access list, up to 140 characters.
- **vlan vlan-range**: (OPTIONAL) Enter the keyword vlan and then enter a range of VLANs. The range is from 1 to 4094 (you can use IDs 1 to 4094).
NOTE: This option is available only with the keyword in option.

in Enter the keyword in to configure the ACL to filter incoming traffic.

out Enter the keyword out to configure the ACL to filter outgoing traffic.

Defaults none

Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can assign one ACL (standard or extended) to an interface.
In case of applying a MAC ACL to traffic entering or exiting a VLAN interface. Enter the VLAN interface mode and apply the mac acl in the following manner.

mac access-group access-list-name {in | out}

1 If the MAC ACL is applied on VLAN, none of the VLAN members should have an access list applied for that VLAN.
2 If the MAC ACL is applied on a Physical or Port Channel interface, the VLAN in which this port is associated should not have an access list applied.
3 If the MAC ACL is applied on a VLAN, then that VLAN should not belong to VLAN ACL group.
4 If the MAC ACL is applied on a VLAN ACL group, then none of the VLANs in that group should have an access list applied on it.

Related Commands

- `mac access-list standard` — configures a standard MAC ACL.
- `mac access-list extended` — configures an extended MAC ACL.

show mac access-lists

Display all of the Layer 2 ACLs configured in the system, whether or not they are applied to an interface, and the count of matches/mismatches against each ACL entry displayed.

Syntax

```
show mac access-lists [access-list-name] [interface interface] [in | out]
```

Parameters

- `access-list-name` Enter the name of a configured MAC ACL, up to 140 characters.
interface interface

Enter the keyword `interface` then the one of the following keywords and slot/port or number information:

- For a Port Channel interface, enter the keywords `port-channel` and then enter a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` and then enter the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` and then enter the slot/port information.
- For a VLAN interface enter the keyword `VLAN` and then the `vlan id`.

in | out

Identify whether ACL is applied on ingress or egress side.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
| 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

show mac accounting access-list

Display MAC access list configurations and counters (if configured).

Syntax

```
show mac accounting access-list access-list-name interface interface in | out
```

Parameters

- `access-list-name` Enter the name of a configured MAC ACL, up to 140 characters.
- `interface interface` Enter the keyword `interface` then the one of the following keywords and slot/port or number information:

 - For a Port Channel interface, enter the keywords `port-channel` and then enter a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` and then enter the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` and then enter the slot/port information.
 - For a VLAN interface enter the keyword `VLAN` and then the `vlan id`
in | out Identify whether ACL is applied on ingress or egress side.

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The ACL hit counters in this command increment the counters for each matching rule, not just the first matching rule.

Example
Dell#show mac accounting access-list TestMac interface
tenigigabitethernet 0/1 in
Ingress Standard mac access-list TestMac on TenGigabitEthernet 0/1
Total cam count 2
seq 5 permit aa:aa:aa:00:00 00:00:00:00:ff:ff count (0 packets)
seq 10 deny any count (20072594 packets)
Dell#

Standard MAC ACL Commands

When you create an access control list without any rule and then apply it to an interface, the ACL behavior reflects implicit permit. These commands configure standard MAC ACLs.

The switch supports both Ingress and Egress MAC ACLs.

NOTE: For more information, also refer to the Commands Common to all ACL Types and Common MAC Access List Commands sections.

deny

to drop packets with a the MAC address specified, configure a filter.

Syntax
deny {any | mac-source-address [mac-source-address-mask]} [count [byte]] [log [interval minutes] [threshold-in-msgs [count]] [monitor]

To remove this filter, you have two choices:

• Use the no seq sequence-number command if you know the filter’s sequence number.
Use the `no deny {any | mac-source-address mac-source-address-mask}` command.

Parameters

- **any**
 - Enter the keyword `any` to specify that all routes are subject to the filter.

- **mac-source-address**

- **mac-source-address-mask**
 - (OPTIONAL) Specify which bits in the MAC address must match.
 - If no mask is specified, a mask of `00:00:00:00:00:00` is applied (in other words, the filter allows only MAC addresses that match).

- **count**
 - (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.

- **byte**
 - (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.

- **log**
 - (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

- **threshold-in-msgs**
 - (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated. The threshold range is from 1 to 100.

- **interval**
 - (OPTIONAL) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The threshold range is from 1 to 10 minutes.

- **monitor**
 - (OPTIONAL) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

- `CONFIGURATION-MAC ACCESS LIST-STANDARD`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- permit — configures a MAC address filter to pass packets.
- seq — configures a MAC address filter with a specified sequence number.

mac access-list standard

To configure a standard MAC ACL, name a new or existing MAC access control list (MAC ACL) and enter MAC ACCESS LIST mode.

Syntax

```
mac access-list standard mac-list-name
```

Parameters

- **mac-list-name**: Enter a text string as the name of the standard MAC access list (140 character maximum).

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

- **Version**: 9.9(0.0)

 Description: Introduced on the FN IOM.
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The Dell operating system supports one ingress and one egress MAC ACL per interface.

The number of entries allowed per ACL is hardware-dependent. For detailed specification about entries allowed per ACL, refer to your switch documentation.

The switch supports both ingress and egress ACLs.

Example
Dell(conf)#mac-access-list access-list standard TestMAC
Dell(config-std-macl)#permit 00:00:00:00:00:00 00:00:00:00:ff:ff count
Dell(config-std-macl)#deny any count

permit

To forward packets from a specific source MAC address, configure a filter.

Syntax
permit {any | mac-source-address [mac-source-address-mask]} [count [byte]] | log [interval minutes] [threshold-in-msgs[count] [monitor]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter’s sequence number.
- Use the no permit {any | mac-source-address mac-source-address-mask} command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Enter the keyword any to forward all packets received with a MAC address.</td>
</tr>
</tbody>
</table>
| mac-source-address-mask | (OPTIONAL) Specify which bits in the MAC address must match.
If no mask is specified, a mask of 00:00:00:00:00:00 is applied (in other words, the filter allows only MAC addresses that match). |
| count | (OPTIONAL) Enter the keyword count to count packets processed by the filter. |
| byte | (OPTIONAL) Enter the keyword byte to count bytes processed by the filter. |
| log | (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages. |
threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

Not configured.

Command Modes

CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When the configured maximum threshold is exceeded, generation of logs are stopped.

When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This
mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- **deny** — configures a MAC ACL filter to drop packets.
- **seq** — configure a MAC ACL filter with a specified sequence number.

seq

To a deny or permit filter in a MAC access list while creating the filter, assign a sequence number.

Syntax

```
seq sequence-number {deny | permit} {any | mac-source-address [mac-source-address-mask]} [count [byte]] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, use the `no seq sequence-number` command.

Parameters

- **sequence-number**
 - Enter a number from 0 to 65535.

- **deny**
 - Enter the keyword `deny` to configure a filter to drop packets meeting this condition.

- **permit**
 - Enter the keyword `permit` to configure a filter to forward packets meeting this criteria.

- **any**
 - Enter the keyword `any` to filter all packets.

- **mac-source-address**

- **mac-source-address-mask**
 - (OPTIONAL) Specify which bits in the MAC address must match. If no mask is specified, a mask of 00:00:00:00:00:00 is applied (in other words, the filter allows only MAC addresses that match).

- **count**
 - (OPTIONAL) Enter the keyword `count` to count packets the filter processes.

- **byte**
 - (OPTIONAL) Enter the keyword `byte` to count bytes the filter processes.

- **log**
 - (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

- **threshold-in-msgs count**
 - (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs

Access Control Lists (ACL)

is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

```plaintext
interval minutes
```

(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

```plaintext
monitor
```

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) access lists.
them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny — configures a filter to drop packets.

permit — configures a filter to forward packets.

Extended MAC ACL Commands

When an access-list is created without any rule and then applied to an interface, ACL behavior reflects implicit permit. The following commands configure Extended MAC ACLs.

The Switch supports both Ingress and Egress MAC ACLs.

deny

To drop packets that match the filter criteria, configure a filter.

Syntax

deny {any | host mac-address | mac-source-address mac-source-address-mask} {any | host mac-address | mac-destination-address mac-destination-address-mask} [ethertype-operator] [count [byte]]

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny {any | host mac-address | mac-source-address mac-source-address-mask} {any | host mac-address | mac-destination-address mac-destination-address-mask} [ethertype-operator] [count [byte]]` command.

Parameters

- **any**: Enter the keyword any to drop all packets.
- **host mac-address**: Enter the keyword host and then enter a MAC address to drop packets with that host address.
- **mac-source-address**: Enter a MAC address in nn:nn:nn:nn:nn:nn format.
- **mac-source-address-mask**: Specify which bits in the MAC address must match.

The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.
mac-destination-address
Enter the destination MAC address and mask in nn:nn:nn:nn:nn:nn format.

mac-destination-address-mask
Specify which bits in the MAC address must match.

The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

ethertype
(Optional) To filter based on protocol type, enter one of the following Ethertypes:

- **ev2** - is the Ethernet II frame format
- **llc** - is the IEEE 802.3 frame format
- **snap** - is the IEEE 802.3 SNAP frame format

operator

count
(Optional) Enter the keyword **count** to count packets processed by the filter.

byte
(Optional) Enter the keyword **byte** to count bytes processed by the filter.

Defaults
Not configured.

Command Modes
CONFIGURATION-MAC ACCESS LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **permit** — configures a MAC address filter to pass packets.
- **seq** — configures a MAC address filter with a specified sequence number.

mac access-list extended

Name a new or existing extended MAC access control list (extended MAC ACL).

Syntax

```
mac access-list extended access-list-name [cpu-qos]
```

Parameters

- **access-list-name**
Enter a text string as the MAC access list name, up to 140 characters.

- **cpu-qos**
Enter the keyword **cpu-qos** to assign this ACL to control plane traffic only (CoPP).
Defaults
None

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The number of entries allowed per ACL is hardware-dependent. For detailed specifications on entries allowed per ACL, refer to your line card documentation.

Example
Dell(conf)#mac-access-list access-list extended TestMATExt
Dell(config-ext-macl)#seq 10 permit any any ev2 eq 800 count bytes
Dell(config-ext-macl)#remark 15 ARP
Dell(config-ext-macl)#seq 20 permit any any ev2 eq 806 count bytes
Dell(config-ext-macl)#remark 25 IPv6
Dell(config-ext-macl)#seq 30 permit any any ev2 eq 86dd count bytes
Dell(config-ext-macl)#seq 40 permit any any count bytes
Dell(config-ext-macl)#exit
Dell(conf)#do show mac accounting access-list snickers interface g0/47 in
Extended mac access-list snickers on TenGigabitEthernet 0/12
seq 10 permit any any ev2 eq 800 count bytes (559851886 packets 191402152148 bytes)
seq 20 permit any any ev2 eq 806 count bytes (74481486 packets 5031686754 bytes) seq 30 permit any any ev2 eq 86dd count bytes (7751519 packets 797843521 bytes)

Related Commands
mac access-list standard — configures a standard MAC access list.
show mac accounting access-list — displays MAC access list configurations and counters (if configured).

permit

To pass packets matching the criteria specified, configure a filter.

Syntax
permit {any | host mac-address | mac-source-address mac-source-address-mask} {any | host mac-address | mac-destination-address mac-destination-address-mask} [ethertype operator] [count [byte]]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter's sequence number.
Use the no permit {any | host mac-address | mac-source-address mac-source-address-mask} {any | mac-destination-address mac-destination-address-mask} command.

Parameters

any
Enter the keyword any to forward all packets.

host
Enter the keyword host then a MAC address to forward packets with that host address.

mac-source-address

mac-source-address-mask
(OPTIONAL) Specify which bits in the MAC address must match. The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

mac-destination-address
Enter the destination MAC address and mask in nn:nn:nn:nn:nn:nn format.

mac-destination-address-mask
Specify which bits in the MAC address must be matched. The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

ethertype
operator
(OPTIONAL) To filter based on protocol type, enter one of the following Ethertypes:

- ev2 - is the Ethernet II frame format
- llc - is the IEEE 802.3 frame format
- snap - is the IEEE 802.3 SNAP frame format

count
(OPTIONAL) Enter the keyword count to count packets the filter processes.

byte
(OPTIONAL) Enter the keyword byte to count bytes the filter processes.

Defaults
Not configured.

Command Modes
CONFIGURATION-MAC ACCESS LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
deny — configures a MAC ACL filter to drop packets.
seq — configure a MAC ACL filter with a specified sequence number.

seq

Configure a filter with a specific sequence number.

Syntax

```
seq sequence-number {deny | permit} {any | host mac-address | mac-source-address mac-source-address-mask} {any | host mac-address | mac-destination-address mac-destination-address-mask} [ethertype operator] [count [byte]]
```

Parameters

- **sequence-number**: Enter a number as the filter sequence number. The range is from zero (0) to 65535.
- **deny**: Enter the keyword `deny` to drop any traffic matching this filter.
- **permit**: Enter the keyword `permit` to forward any traffic matching this filter.
- **any**: Enter the keyword `any` to filter all packets.
- **host mac-address**: Enter the keyword `host` and then enter a MAC address to filter packets with that host address.
- **mac-source-address**: Enter a MAC address in `nn:nn:nn:nn:nn:nn` format. The MAC ACL supports an inverse mask; therefore, a mask of `ff:ff:ff:ff:ff:ff` allows entries that do not match and a mask of `00:00:00:00:00:00` only allows entries that match exactly.
- **mac-source-address-mask**: Specify which bits in the MAC address must be matched.
- **mac-destination-address**: Enter the destination MAC address and mask in `nn:nn:nn:nn:nn:nn` format.
- **mac-destination-address-mask**: Specify which bits in the MAC address must be matched. The MAC ACL supports an inverse mask; therefore, a mask of `ff:ff:ff:ff:ff:ff` allows entries that do not match and a mask of `00:00:00:00:00:00` only allows entries that match exactly.
- **ethertype operator** (OPTIONAL): To filter based on protocol type, enter one of the following Ethertypes:
 - `ev2` - is the Ethernet II frame format.
 - `llc` - is the IEEE 802.3 frame format.
 - `snap` - is the IEEE 802.3 SNAP frame format.
count
(Optionalal) Enter the keyword count to count packets the filter processes.

byte
(Optionalal) Enter the keyword byte to count bytes the filter processes.

Defaults
Not configured.

Command Modes
CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History
Version
9.9(0.0)
Introduced on the FN IOM.

8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
deny — configures a filter to drop packets.

permit — configures a filter to forward packets.

IP Prefix List Commands

When you create an access-list without any rule and then apply it to an interface, the ACL behavior reflects implicit permit.
To configure or enable IP prefix lists, use these commands.

clear ip prefix-list

Reset the number of times traffic meets the conditions (‘hit’ counters) of the configured prefix lists.

Syntax
clear ip prefix-list [prefix-name]

Parameters
prefix-name
(Optionalal) Enter the name of the configured prefix list to clear only counters for that prefix list, up to 140 characters long.

Defaults
Clears ‘hit’ counters for all prefix lists unless a prefix list is specified.

Command Modes
EXEC Privilege

Command History
Version
9.9(0.0)
Introduced on the FN IOM.

8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.
deny

To drop packets meeting the criteria specified, configure a filter.

Syntax

deny ip-prefix [ge min-prefix-length] [le max-prefix-length]

Parameters

- **ip-prefix**: Specify an IP prefix in the network/length format. For example, 35.0.0.0/8 means match the first 8 bits of address 35.0.0.0.
- **ge min-prefix-length**: (OPTIONAL) Enter the keyword ge and then enter the minimum prefix length, which is a number from zero (0) to 32.
- **le max-prefix-length**: (OPTIONAL) Enter the keyword le and then enter the maximum prefix length, which is a number from zero (0) to 32.

Defaults

Not configured.

Command Modes

PREFIX-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Sequence numbers for this filter are automatically assigned starting at sequence number 5.

If you do not use the ge or le options, only packets with an exact match to the prefix are filtered.

Related Commands

- **permit**: configures a filter to pass packets.
- **seq**: configures a drop or permit filter with a specified sequence number.

ip prefix-list

Enter the PREFIX-LIST mode and configure a prefix list.

Syntax

```
ip prefix-list prefix-name
```
Parameters

prefix-name

Enter a string up to 16 characters long as the name of the prefix list, up to 140 characters long.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Prefix lists redistribute OSPF and RIP routes meeting specific criteria.

Related Commands

show ip route list — displays IP routes in an IP prefix list.
show ip prefix-list summary — displays a summary of the configured prefix lists.

permit

Configure a filter that passes packets meeting the criteria specified.

Syntax

permit ip-prefix [ge min-prefix-length] [le max-prefix-length]

Parameters

ip-prefix

Specify an IP prefix in the network/length format. For example, 35.0.0.0/8 means match the first 8 bits of address 35.0.0.0.

ge min-prefix-length (OPTIONAL) Enter the keyword ge and then enter the minimum prefix length, which is a number from zero (0) to 32.

le max-prefix-length (OPTIONAL) Enter the keyword le and then enter the maximum prefix length, which is a number from zero (0) to 32.

Command Modes

PREFIX-LIST

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Sequence numbers for this filter are automatically assigned starting at sequence number 5.

If you do not use the ge or le options, only packets with an exact match to the prefix are filtered.
Related Commands

deny — configures a filter to drop packets.

seq — configures a drop or permit filter with a specified sequence number.

seq

To a deny or permit filter in a prefix list while configuring the filter, assign a sequence number.

Syntax

```
seq sequence-number {deny | permit} {any} | [ip-prefix /nn {ge min-prefix-length} {le max-prefix-length}] | [bitmask number]
```

Parameters

- `sequence-number` Enter a number. The range is from 1 to 4294967294.
- `deny` Enter the keyword deny to configure a filter to drop packets meeting this condition.
- `permit` Enter the keyword permit to configure a filter to forward packets meeting this condition.
- `any` (OPTIONAL) Enter the keyword any to match any packets.
- `ip-prefix /nn` (OPTIONAL) Specify an IP prefix in the network/length format. For example, 35.0.0.0/8 means match the first 8 bits of address 35.0.0.0.
- `ge min-prefix-length` (OPTIONAL) Enter the keyword ge and then enter the minimum prefix length, which is a number from zero (0) to 32.
- `le max-prefix-length` (OPTIONAL) Enter the keyword le and then enter the maximum prefix length, which is a number from zero (0) to 32.
- `bitmask number` Enter the keyword bitmask then enter a bit mask number in dotted decimal format.

Defaults

Not configured.

Command Modes

PREFIX-LIST

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

Usage Information

If you do not use the ge or le options, only packets with an exact match to the prefix are filtered.

Related Commands

deny — configures a filter to drop packets.
show config

Display the current PREFIX-LIST configurations.

Syntax

```
show config
```

Command Modes

PREFIX-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(conf-nprefixl)#show config
!
ip prefix-list snickers
Dell(conf-nprefixl)#
```

show ip prefix-list detail

Display details of the configured prefix lists.

Syntax

```
show ip prefix-list detail [prefix-name]
```

Parameters

- `prefix-name` (OPTIONAL) Enter a text string as the name of the prefix list, up to 140 characters.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip prefix-list detail
Ip Prefix-list with the last deletion/insertion: PL_OSPF_to_RIP
ip prefix-list PL_OSPF_to_RIP:
  count: 3, range entries: 1, sequences: 5 - 25
    seq 5 permit 1.1.1.0/24 (hit count: 0)
```
show ip prefix-list summary

Display a summary of the configured prefix lists.

Syntax
show ip prefix-list summary [prefix-name]

Parameters
prefix-name (OPTIONAL) Enter a text string as the name of the prefix list, up to 140 characters.

Command Modes
• EXEC
• EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show ip prefix-list summary
Ip Prefix-list with the last deletion/insertion: PL_OSPF_to_RIP
ip prefix-list PL_OSPF_to_RIP:
 count: 3, range entries: 1, sequences: 5 - 25

Route Map Commands

When you create an access-list without any rule and then applied to an interface, the ACL behavior reflects implicit permit.
To configure route maps and their redistribution criteria, use the following commands.

continue

To a route-map entry with a higher sequence number, configure a route-map.

Syntax
continue [sequence-number]
Parameters

sequence-number

(Optional) Enter the route map sequence number. The range is from 1 to 65535. The default is: no sequence number

Defaults

Not configured

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The **continue** feature allows movement from one route-map entry to a specific route-map entry (the sequence number). If you do not specify the sequence number, the **continue** feature simply moves to the next sequence number (also known as an implied continue). If a match clause exists, the **continue** feature executes only after a successful match occurs. If there are no successful matches, the **continue** feature is ignored.

Match clause with Continue clause

The **continue** feature can exist without a match clause. A continue clause without a match clause executes and jumps to the specified route-map entry.

With a match clause and a continue clause, the match clause executes first and the continue clause next in a specified route map entry. The continue clause launches only after a successful match. The behavior is:

- A successful match with a continue clause, the route map executes the set clauses and then goes to the specified route map entry upon execution of the continue clause.
- If the next route map entry contains a continue clause, the route map executes the continue clause if a successful match occurs.
- If the next route map entry does not contain a continue clause, the route map evaluates normally. If a match does not occur, the route map does not continue and falls through to the next sequence number, if one exists.

Set Clause with Continue Clause

If the route-map entry contains sets with the continue clause, set actions are performed first then the continue clause jumps to the specified route map entry.

- If a set action occurs in the first route map entry and then the same set action occurs with a different value in a subsequent route map entry, the last set of actions overrides the previous set of actions with the same `set` command.
- If `set community additive` and `set as-path prepend` are configure, the communities and AS numbers are prepended.

Related Commands

- `set metric` — Specifies a COMMUNITY attribute
- `set automatic-tag` — Configures a filter to modify the AS path
description

Add a description to this route map.

Syntax

```
description description
```

Parameters

```
description
```

Enter a description to identify the route map (80 characters maximum).

Defaults

`none`

Command Modes

`ROUTE-MAP`

Command History

```
Version          Description
9.9(0.0)          Introduced on the FN IOM.
8.3.16.1          Introduced on the MXL 10/40GbE Switch IO Module.
```

Related Commands

```
route-map — Enables a route map.
```

match interface

To match routes whose next hop is on the interface specified, configure a filter.

Syntax

```
match interface interface
```

To remove a match, use the `no match interface interface` command.

Parameters

```
interface
```

Enter the following keywords and slot/port or number information:

- For the Loopback interface, enter the keyword `loopback` then a number from zero (0) to 16383.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a Ten Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults

`Not configured.`
Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.0</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `match ip address` — redistributes routes that match an IP address.
- `match ip next-hop` — redistributes routes that match the next-hop IP address.
- `match ip route-source` — redistributes routes that match routes advertised by other routers.
- `match metric` — redistributes routes that match a specific metric.
- `match route-type` — redistributes routes that match a route type.
- `match tag` — redistributes routes that match a specific tag.

match ip address

To match routes based on IP addresses specified in an access list, configure a filter.

Syntax

```
match ip address prefix-list-name
```

Parameters

- `prefix-list-name` Enter the name of configured prefix list, up to 140 characters.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `match interface` — redistributes routes that match the next-hop interface.
- `match ip next-hop` — redistributes routes that match the next-hop IP address.
- `match ip route-source` — redistributes routes that match routes advertised by other routers.
- `match metric` — redistributes routes that match a specific metric.
match ip next-hop

To match based on the next-hop IP addresses specified in an IP access list or IP prefix list, configure a filter.

Syntax

```
machine ip next-hop {access-list | prefix-list prefix-list-name}
```

Parameters

- `access-list-name` Enter the name of a configured IP access list, up to 140 characters.
- `prefix-list prefix-list-name` Enter the keywords `prefix-list` and then enter the name of a configured prefix list, up to 140 characters.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `match interface` — redistributes routes that match the next-hop interface.
- `match ip address` — redistributes routes that match an IP address.
- `match ip route-source` — redistributes routes that match routes advertised by other routers.
- `match metric` — redistributes routes that match a specific metric.
- `match route-type` — redistributes routes that match a route type.
- `match tag` — redistributes routes that match a specific tag.

match ip route-source

To match based on the routes advertised by routes specified in IP access lists or IP prefix lists, configure a filter.

Syntax

```
machine ip route-source {access-list | prefix-list prefix-list-name}
```

Related Commands

- `match interface` — redistributes routes that match the next-hop interface.
- `match ip address` — redistributes routes that match an IP address.
- `match ip route-source` — redistributes routes that match routes advertised by other routers.
- `match metric` — redistributes routes that match a specific metric.
- `match route-type` — redistributes routes that match a route type.
- `match tag` — redistributes routes that match a specific tag.
Parameters

- **access-list-name**
 Enter the name of a configured IP access list, up to 140 characters.

- **prefix-list prefix-list-name**
 Enter the keywords `prefix-list` and then enter the name of configured prefix list, up to 140 characters.

Defaults
Not configured.

Command Modes
ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- **match interface** — redistributes routes that match the next-hop interface.
- **match ip address** — redistributes routes that match an IP address.
- **match ip next-hop** — redistributes routes that match the next-hop IP address.
- **match metric** — redistributes routes that match a specific metric.
- **match route-type** — redistributes routes that match a route type.
- **match tag** — redistributes routes that match a specific tag.

match metric

To match on a specified value, configure a filter.

Syntax

```
match metric metric-value
```

Parameters

- **metric-value**
 Enter a value to match. The range is from zero (0) to 4294967295.

Defaults
Not configured.

Command Modes
ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
match route-type

To match routes based on how the route is defined, configure a filter.

Syntax

match route-type {external [type-1 | type-2] | internal | local}

Parameters

- **external [type-1 | type-2]**: Enter the keyword external then either type-1 or type-2 to match only on OSPF Type 1 routes or OSPF Type 2 routes.
- **internal**: Enter the keyword internal to match only on routes generated within OSPF areas.
- **local**: Enter the keyword local to match only on routes generated within the switch.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- **match interface**: redistributes routes that match the next-hop interface.
- **match ip address**: redistributes routes that match an IP address.
- **match ip next-hop**: redistributes routes that match the next-hop IP address.
- **match ip route-source**: redistributes routes that match routes advertised by other routers.
- **match route-type**: redistributes routes that match a route type.
- **match tag**: redistributes routes that match a specific tag.
match tag

To redistribute only routes that match a specified tag value, configure a filter.

Syntax

```
match tag tag-value
```

Parameters

- **tag-value**

Enter a value as the tag on which to match. The range is from zero (0) to 4294967295.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `match interface` — redistributes routes that match the next-hop interface.
- `match ip address` — redistributes routes that match an IP address.
- `match ip next-hop` — redistributes routes that match the next-hop IP address.
- `match ip route-source` — redistributes routes that match routes advertised by other routers.
- `match metric` — redistributes routes that match a specific metric.
- `match route-type` — redistributes routes that match a route type.

route-map

Enable a route map statement and configure its action and sequence number. This command also places you in ROUTE-MAP mode.

Syntax

```
route-map map-name [permit | deny] [sequence-number]
```

Parameters

- **map-name**

Enter a text string of up to 140 characters to name the route map for easy identification.
permit (OPTIONAL) Enter the keyword permit to set the route map default as permit. If you do not specify a keyword, the default is permit.

deny (OPTIONAL) Enter the keyword deny to set the route map default as deny.

sequence-number (OPTIONAL) Enter a number to identify the route map for editing and sequencing with other route maps. You are prompted for a sequence number if there are multiple instances of the route map. The range is from 1 to 65535.

Defaults
Not configured.
If you do not define a keyword (permit or deny) for the route map, the permit action is the default.

Command Modes
CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module

Usage Information
Use caution when you delete route maps because if you do not specify a sequence number, all route maps with the same map-name are deleted when you use the no route-map map-name command.

Example
Dell(conf)#route-map dempsey
Dell(config-route-map)#

Related Commands
show config2 — displays the current configuration.

set automatic-tag
To automatically compute the tag value of the route, configure a filter.

Syntax
set automatic-tag
To return to the default, use the no set automatic-tag command.

Defaults
Not configured.

Command Modes
ROUTE-MAP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
set metric

To assign a new metric to redistributed routes, configure a filter.

Syntax

```
set metric [+ | -] metric-value
```

To delete a setting, use the `no set metric` command.

Parameters

- **+** (OPTIONAL) Enter + to add a metric-value to the redistributed routes.
- **-** (OPTIONAL) Enter - to subtract a metric-value from the redistributed routes.
- **metric-value** Enter a number as the new metric value. The range is from zero (0) to 4294967295.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `set automatic-tag` — computes the tag value of the route.
- `set metric-type` — specifies the route type assigned to redistributed routes.
- `set tag` — specifies the tag assigned to redistributed routes.
set metric-type

To assign a new route type for routes redistributed to OSPF, configure a filter.

Syntax

```
set metric-type {internal | external | type-1 | type-2}
```

Parameters

- **internal**
 Enter the keyword `internal` to assign the Interior Gateway Protocol metric of the next hop as the route's BGP MULTI_EXIT_DES (MED) value.

- **external**
 Enter the keyword `external` to assign the IS-IS external metric.

- **type-1**
 Enter the keyword `type-1` to assign the OSPF Type 1 metric.

- **type-2**
 Enter the keyword `type-2` to assign the OSPF Type 2 metric.

Defaults

Not configured.

Command Modes

ROUTE-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `set automatic-tag` — computes the tag value of the route.
- `set metric` — specifies the metric value assigned to redistributed routes.
- `set tag` — specifies the tag assigned to redistributed routes.

set tag

To specify a tag for redistributed routes, configure a filter.

Syntax

```
set tag tag-value
```

Parameters

- **tag-value**
 Enter a number as the tag. The range is from zero (0) to 4294967295.

Defaults

Not configured.

Command Modes

ROUTE-MAP
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `set automatic-tag` — computes the tag value of the route.
- `set metric` — specifies the metric value assigned to redistributed routes.
- `set metric-type` — specifies the route type assigned to redistributed routes.

show config

Display the current route map configuration.

Syntax

```
show config
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on MXL 10/40GbE Switch IO Module</td>
</tr>
</tbody>
</table>

Example

```
Dell(config-route-map)#show config
!
route-map hopper permit 10
Dell(config-route-map)#
```

show route-map

Display the current route map configurations.

Syntax

```
show route-map [map-name]
```

Parameters

- `map-name` (OPTIONAL) Enter the name of a configured route map, up to 140 characters.

Command Modes

- EXEC
- EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show route-map
route-map firpo, permit, sequence 10
Match clauses:
 Set clauses:
 tag 34
Dell#

Related Commands

route-map — configures a route map.

deny (for Standard IP ACLs)

To drop packets with a certain IP address, configure a filter.

Syntax

deny {source | any | host {ip-address}} [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `no deny {source [mask] | any | host ip-address}` command.

Parameters

- **source**: Enter the IP address of the network or host from which the packets were sent.
- **any**: Enter the keyword any to specify that all routes are subject to the filter.
- **host ip-address**: Enter the keyword host then the IP address to specify a host IP address.
- **count**: (OPTIONAL) Enter the keyword count to count packets processed by the filter.
- **byte**: (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.
- **dscp**: Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.
- **log**: (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.
order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority). If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-STANDARD-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.
You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `ip access-list standard` — configures a standard ACL.
- `permit` — configures a permit filter.

deny (for Extended IP ACLs)

Configure a filter that drops IP packets meeting the filter criteria.

Syntax

```plaintext
deny {ip | ip-protocol-number} {source mask | any | host ip-address} {destination mask | any | host ip-address} [count [byte]] [dscp value] [order] [monitor] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny {ip | ip-protocol-number} {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- `source` Enter the IP address of the network or host from which the packets were sent.
- `mask` Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- `any` Enter the keyword `any` to specify that all routes are subject to the filter.
- `host ip-address` Enter the keyword `host` then the IP address to specify a host IP address.
- `destination` Enter the IP address of the network or host to which the packets are sent.
count (OPTIONAL) Enter the keyword count to count packets processed by the filter.

byte (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

monitor OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

fragments Enter the keyword fragments to use ACLs to control packet fragments.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny tcp — assigns a filter to deny TCP packets.

deny udp — assigns a filter to deny UDP packets.
ip access-list extended — creates an extended ACL.

seq

Assign a sequence number to a deny or permit filter in an extended IP access list while creating the filter.

Syntax

seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte] [dscp value] [order] [fragments] [threshold-in-msgs [count]]

Parameters

- **sequence-number**: Enter a number from 0 to 4294967290. The range is from 0 to 65534.
- **deny**: Enter the keyword deny to configure a filter to drop packets meeting this condition.
- **permit**: Enter the keyword permit to configure a filter to forward packets meeting this criteria.
source
Enter an IP address in dotted decimal format of the network from which the packet was received.

mask
(OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any
Enter the keyword any to specify that all routes are subject to the filter.

count
(OPTIONAL) Enter the keyword count to count packets the filter processes.

byte
(OPTIONAL) Enter the keyword byte to count bytes the filter processes.

dscp
(OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.

order
(OPTIONAL) Enter the keyword order to specify the QoS order for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments
Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs
(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The order option is relevant in the context of the Policy QoS feature only. The following applies:
The `seq sequence-number` command is applicable only in an ACL group.

The `order` option works across ACL groups that have been applied on an interface via the QoS policy framework.

The `order` option takes precedence over `seq sequence-number`.

If `sequence-number` is not configured, the rules with the same order value are ordered according to their configuration order.

If `sequence-number` is configured, the sequence-number is used as a tie breaker for rules with the same order.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `deny` — configures a filter to drop packets.
- `permit` — configures a filter to forward packets.
- `seq` — assigns a sequence number to a deny or permit filter in an IP access list while creating the filter.

deny tcp

Configure a filter that drops transmission control protocol (TCP) packets meeting the filter criteria.

Syntax

```
deny tcp {source mask | any | host ip-address} [bit] [operator port [port]] {destination mask | any | host ip-address} [dscp]
```
[bit] [operator port [port]] [count [byte] [order] [fragments] [threshold-in-msgs [count]]

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny tcp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source** Enter the IP address of the network or host from which the packets are sent.

- **mask** Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- **any** Enter the keyword `any` to specify that all routes are subject to the filter.

- **host ip-address** Enter the keyword `host` then the IP address to specify a host IP address.

- **dscp** Enter this keyword `dscp` to deny a packet based on the DSCP value. The range is from 0 to 63.

- **bit** Enter a flag or combination of bits:
 - `ack`: acknowledgement field
 - `fin`: finish (no more data from the user)
 - `psh`: push function
 - `rst`: reset the connection
 - `syn`: synchronize sequence numbers
 - `urg`: urgent field

- **operator** (OPTIONAL) Enter one of the following logical operand:
 - `eq`: equal to
 - `neq`: not equal to
 - `gt`: greater than
 - `lt`: less than
 - `range`: inclusive range of ports (you must specify two ports for the `port` command)

- **port port** Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535.

The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
• 25 = SMTP
• 169 = SNMP

destination
Enter the IP address of the network or host to which the packets are sent.

mask
Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count
(Optional) Enter the keyword count to count packets the filter processes.

byte
(Optional) Enter the keyword byte to count bytes the filter processes.

order
(Optional) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments
Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in-msgs count
(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly.

The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.
You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt, or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

```
Dell# Data             Mask        From To #Covered
1 00001111110100000 11111111111000000 4000 4031 32
2 00001111110000000 11111111110000000 4032 4095 64
3 00010000000000000 11111100000000000 4096 6143 2048
4 00011000000000000 11111100000000000 6144 7167 1024
5 00011110000000000 11111100000000000 7168 7679 512
6 00011111100000000 11111111000000000 7680 7935 256
7 00011111110000000 11111111110000000 7936 7999 64
8 00011111111000000 11111111111100000 8000 8000 1

Total Ports: 4001
```

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

```
Dell# Data             Mask        From To #Covered
1 00000000000000000 11111111000000000 0 1023 1024
```
Total Ports: 1024

Related Commands

deny — assigns a filter to deny IP traffic.
deny udp — assigns a filter to deny UDP traffic.

deny udp

To drop user datagram protocol (UDP) packets meeting the filter criteria, configure a filter.

Syntax

deny udp {source mask | any | host ip-address} [operator port [port]] [destination mask | any | host ip-address] [dscp] [threshold-in-msgs [count]]

To remove this filter, you have two choices:

• Use the no seq sequence-number command if you know the filter's sequence number.
• Use the no deny udp {source mask | any | host ip-address} {destination mask | any | host ip-address} command.

Parameters

source Enter the IP address of the network or host from which the packets were sent.

mask Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any Enter the keyword any to specify that all routes are subject to the filter.

host ip-address Enter the keyword host then the IP address to specify a host IP address.

dscp Enter this keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

operator (OPTIONAL) Enter one of the following logical operand:

• eq = equal to
• neq = not equal to
• gt = greater than
• lt = less than
• range = inclusive range of ports (you must specify two ports for the port command)
port port

Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535.

destination

Enter the IP address of the network or host to which the packets are sent.

mask

Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count

(Optional) Enter the keyword count to count packets processed by the filter.

byte

(Optional) Enter the keyword byte to count bytes processed by the filter.

order

(Optional) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

fragments

Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword then a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs are terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults

By default 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which the ACL logs are generated is five minutes.

Command Modes

CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the *Dell Networking OS Configuration Guide*.

You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.
Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

<table>
<thead>
<tr>
<th>Dell#</th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000111110100000 1111111110000000</td>
<td>4000 4031 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0000111111110000 1111111111100000</td>
<td>4032 4095 64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0001000000000000 1111100000000000</td>
<td>4096 6143 2048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0001100000000000 1111110000000000</td>
<td>6144 7167 1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0001110000000000 1111111000000000</td>
<td>7168 7679 512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0001111000000000 1111111100000000</td>
<td>7680 7935 256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0001111110000000 1111111110000000</td>
<td>7936 7999 64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0001111111010000 1111111111100000</td>
<td>8000 8000 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

<table>
<thead>
<tr>
<th>Dell#</th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000000000000 1111111000000000</td>
<td>0 1023 1024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Ports: 1024

Related Commands

- **deny** — assigns a filter to deny IP traffic.
- **deny tcp** — assigns a filter to deny TCP traffic.
deny arp (for Extended MAC ACLs)

Configure an egress filter that drops ARP packets on egress ACL supported line cards. (For more information, refer to your line card documentation).

Syntax

```plaintext
deny arp {destination-mac-address mac-address-mask | any} vlan vlan-id {ip-address | any | opcode code-number} [count [byte]] [order] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny arp {destination-mac-address mac-address-mask | any} vlan vlan-id {ip-address | any | opcode code-number}` command.

Parameters

- **destination-mac-address mac-address-mask**
 - For the MAC address mask, specify which bits in the MAC address must match.
 - The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

- **any**
 - Enter the keyword any to match and drop any ARP traffic on the interface.

- **vlan vlan-id**
 - Enter the keyword vlan and then enter the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic, specify VLAN 1.

- **ip-address**
 - Enter an IP address in dotted decimal format (A.B.C.D) as the target IP address of the ARP.

- **opcode code-number**
 - Enter the keyword opcode and then enter the number of the ARP opcode. The range is from 1 to 23.
count (OPTIONAL) Enter the keyword count to count packets processed by the filter.

byte (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword order, the ACLs have the lowest order by default (255).

threshold-in-msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults
By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes
CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>8.2.1.0</td>
<td>Allows ACL control of fragmented packets for IP (Layer 3) ACLs.</td>
</tr>
<tr>
<td>8.1.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Added the support for the non-contiguous mask and the monitor option.</td>
</tr>
<tr>
<td>6.5.1.0</td>
<td>Expanded to include the optional QoS order priority for the ACL entry.</td>
</tr>
</tbody>
</table>

Access Control Lists (ACL) | 249
Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

The monitor option is relevant in the context of flow-based monitoring only. For more information, refer to the Port Monitoring.

When you use the log option, the CP processor logs details the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.

You cannot include IP, TCP or UDP (Layer 3) filters in an ACL configured with ARP or Ether-type (Layer 2) filters. Apply Layer 2 ACLs (ARP and Ether-type) to Layer 2 interfaces only.

NOTE: When ACL logging and byte counters are configured simultaneously, byte counters may display an incorrect value. Configure packet counters with logging instead.
deny icmp

To drop all or specific internet control message protocol (ICMP) messages, configure a filter.

Syntax

```
deny icmp {source mask | any | host ip-address} {destination mask | any | host ip-address} [dscp] [count [byte]] [order] [fragments] [threshold-in-msgs] [count]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command, if you know the filter’s sequence number.
- Use the `no deny icmp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**
 - Enter the IP address of the network or host from which the packets were sent.
- **mask**
 - Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**
 - Enter the keyword `any` to specify that all routes are subject to the filter.
- **host ip-address**
 - Enter the keyword `host` then the IP address to specify a host IP address.
- **destination**
 - Enter the IP address of the network or host to which the packets are sent.
- **dscp**
 - Enter this keyword `dscp` to deny a packet based on the DSCP value. The range is from 0 to 63.
- **count**
 - (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.
- **byte**
 - (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.
- **order**
 - (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword `order`, the ACLs have the lowest order by default (255).
- **fragments**
 - Enter the keyword `fragments` to use ACLs to control packet fragments.
- **threshold-in-msgs**
 - (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs
is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging ACLs on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).
deny ether-type (for Extended MAC ACLs)

Configure an egress filter that drops specified types of Ethernet packets on egress ACL supported line cards. (For more information, refer to your line card documentation).

Syntax

```
deny ether-type protocol-type-number {destination-mac-address mac-address-mask | any} vlan vlan-id {source-mac-address mac-address-mask | any} [count [byte]] [order] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny ether-type protocol-type-number {destination-mac-address mac-address-mask | any} vlan vlan-id {source-mac-address mac-address-mask | any}` command.

Parameters

- **protocol-type-number**
 Enter a number from 600 to FFFF as the specific Ethernet type traffic to drop.

- **destination-mac-address mac-address-mask**
 Enter a MAC address and mask in the nn:nn:nn:nn:nn format.
 For the MAC address mask, specify which bits in the MAC address must match.

 The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00 only allows entries that match exactly.

- **any**
 Enter the keyword `any` to match and drop specific Ethernet traffic on the interface.

- **vlan vlan-id**
 Enter the keyword `vlan` and then enter the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic, specify `VLAN 1`.

- **source-mac-address mac-address-mask**
 Enter a MAC address and mask in the nn:nn:nn:nn:nn format.
 For the MAC address mask, specify which bits in the MAC address must match.
The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

count (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.

byte (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.

order (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority) If you did not use the keyword `order`, the ACLs have the lowest order by default (255).

log (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs count keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The time interval range is from of 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
</tbody>
</table>

Usage Information When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval
commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

deny

To drop packets with a the MAC address specified, configure a filter.

Syntax

```plaintext
deny {any | mac-source-address [mac-source-address-mask]} [count [byte]] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `no deny {any | mac-source-address mac-source-address-mask}` command.

Parameters

- **any**
 - Enter the keyword `any` to specify that all routes are subject to the filter.

- **mac-source-address**

- **mac-source-address-mask**
 - (OPTIONAL) Specify which bits in the MAC address must match. If no mask is specified, a mask of `00:00:00:00:00:00` is applied (in other words, the filter allows only MAC addresses that match).
count (OPTIONAL) Enter the keyword count to count packets processed by the filter.
byte (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.
log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.
threshold-in-msgs (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated. The threshold range is from 1 to 100.
interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The threshold range is from 1 to 10 minutes.
monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is 5 minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.
You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `permit` — configures a MAC address filter to pass packets.
- `seq` — configures a MAC address filter with a specified sequence number.

deny

To drop packets with a certain IP address, configure a filter.

Syntax

```
deny {any | host mac-address | mac-source-address mac-source-address-mask}{any | host mac-address | mac-destination-address mac-destination-address-mask}[ethertype-operator] [count [byte]] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no deny {any | host mac-address | mac-source-address mac-source-address-mask}{any | host mac-address | mac-destination-address mac-destination-address-mask} command.

Parameters

- `source` Enter the IP address in dotted decimal format of the network from which the packet was sent.
- `mask` (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous (discontiguous).
- `any` Enter the keyword `any` to specify that all routes are subject to the filter.
- `host ip-address` Enter the keyword `host` and then enter the IP address to specify a host IP address only.
count (OPTIONAL) Enter the keyword count to count packets processed by the filter.

byte (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated, if you do not specify the threshold explicitly.

The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.4(0.0) Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module.

9.3(0.0) Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the Dell Networking OS Configuration Guide.

You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.
When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and s MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only the specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `ip access-list standard` — configures a standard ACL.
- `permit` — configures a MAC address filter to pass packets.
- `seq` — configures a MAC address filter with a specified sequence number.

permit (for Standard IP ACLs)

To permit packets from a specific source IP address to leave the switch, configure a filter.

Syntax

```
permit {source [mask] | any | host ip-address} [no-drop] [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no permit {source [mask] | any | host ip-address}` command.

Parameters

- `source` Enter the IP address in dotted decimal format of the network from which the packet was sent.
(OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any

Enter the keyword any to specify that all routes are subject to the filter.

host ip-address

Enter the keyword host then the IP address to specify a host IP address or hostname.

no-drop

Enter the keywords no-drop to match only the forwarded packets.

count

(Optional) Enter the keyword count to count packets processed by the filter.

bytes

(Optional) Enter the keyword bytes to count bytes processed by the filter.

dscp

(Optional) Enter the keyword dscp to match to the IP DCSCP values.

order

(Optional) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments

Enter the keyword fragments to use ACLs to control packet fragments.

log

(Optional) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-STANDARD-ACCESS-LIST
permit arp

Configure a filter that forwards ARP packets meeting this criteria. This command is supported only on 12-port GE line cards with SFP optics; refer to your line card documentation for specifications.

Syntax

```
permit arp {destination-mac-address mac-address-mask | any} vlan vlan-id {ip-address | any | opcode code-number} [count [byte] | log] [order] [monitor] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

deny — assigns a IP ACL filter to deny IP packets.

ip access-list standard — creates a standard ACL.
To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `{destination-mac-address mac-address-mask | any} vlan vlan-id {ip-address | any | opcode code-number}` command.

Parameters

- **destination-mac-address mac-address-mask**
 - Enter a MAC address and mask in the nn:nn:nn:nn:nn format.
 - For the MAC address mask, specify which bits in the MAC address must match.
 - The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

- **any**
 - Enter the keyword *any* to match and drop specific Ethernet traffic on the interface.

- **vlan vlan-id**
 - Enter the keyword *vlan* and then enter the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic, specify `VLAN 1`.

- **ip-address**
 - Enter an IP address in dotted decimal format (A.B.C.D) as the target IP address of the ARP.

- **opcode code-number**
 - Enter the keyword *opcode* followed by the number of the ARP opcode. The range is 1 to 16.

- **count**
 - (OPTIONAL) Enter the keyword *count* to count packets processed by the filter.

- **byte**
 - (OPTIONAL) Enter the keyword *byte* to count bytes processed by the filter.

- **log**
 - (OPTIONAL, E-Series only) Enter the keyword *log* to have the information kept in an ACL log file.

- **order**
 - (OPTIONAL) Enter the keyword *order* to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority). If you do not use the keyword *order*, the ACLs have the lowest order by default (255).

- **monitor**
 - (OPTIONAL) Enter the keyword *monitor* when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

NOTE: For more information, refer to the Flow-based Monitoring section in the Port Monitoring chapter of the *Dell Networking OS Configuration Guide.*
fragments Enter the keyword fragments to use ACLs to control packet fragments.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.2.1.0</td>
<td>Allows ACL control of fragmented packets for IP (Layer 3) ACLs.</td>
</tr>
<tr>
<td>8.1.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Added the monitor option.</td>
</tr>
<tr>
<td>6.5.10</td>
<td>Expanded to include the optional QoS order priority for the ACL entry.</td>
</tr>
</tbody>
</table>

Usage Information The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the “Quality of Service” chapter of the Dell Networking OS Configuration Guide.

When you use the log option, the CP processor logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.
The `monitor` option is relevant in the context of flow-based monitoring only. For more information, refer to Port Monitoring.

You cannot include IP, TCP, or UDP filters in an ACL configured with ARP filters.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

NOTE: When ACL logging and byte counters are configured simultaneously, byte counters may display an incorrect value. Configure packet counters with logging instead.

permit ether-type (for Extended MAC ACLs)

Configure a filter that allows traffic with specified types of Ethernet packets. This command is supported only on 12-port GE line cards with SFP optics. For specifications, refer to your line card documentation.

```
Syntax

permit ether-type protocol-type-number {destination-mac-address mac-address-mask | any} vlan vlan-id {source-mac-address mac-address-mask | any} [count [byte]] [order] [log [interval minutes] [threshold-in-msgs] [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
Use the `no permit ether-type protocol-type-number {destination-mac-address mac-address-mask | any} vlan vlan-id {source-mac-address mac-address-mask | any}` command.

Parameters

- **protocol-type-number**
 - Enter a number from 600 to FFF as the specific Ethernet type traffic to drop.

- **destination-mac-address mac-address-mask**
 - Enter a MAC address and mask in the nn:nn:nn:nn:nn format.
 - For the MAC address mask, specify which bits in the MAC address must match.
 - The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

- **any**
 - Enter the keyword `any` to match and drop specific Ethernet traffic on the interface.

- **vlan vlan-id**
 - Enter the keyword `vlan` and then enter the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic specify VLAN 1.

- **source-mac-address mac-address-mask**
 - Enter a MAC address and mask in the nn:nn:nn:nn:nn format.
 - For the MAC address mask, specify which bits in the MAC address must match.
 - The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

- **count**
 - (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.

- **byte**
 - (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.

- **order**
 - (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (255).

- **log**
 - (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

- **interval minutes**
 - (OPTIONAL) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. You can enter an interval in the range of 1-10 minutes.
threshold-in msgs count

(Optional) Enter the threshold-in msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated. With the seq, permit, or deny commands. The threshold range is from 1 to 100.

monitor

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

NOTE: For more information, refer to the Flow-based Monitoring section in the Port Monitoring chapter of the Dell Networking OS Configuration Guide.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.4(0.0) Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.

9.3(0.0) Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

8.2.1.0 Allows ACL control of fragmented packets for IP (Layer 3) ACLs.

8.1.1.0 Introduced on the E-Series ExaScale.

7.4.1.0 Added the monitor option.

6.5.10 Expanded to include the optional QoS order priority for the ACL entry.

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the “Quality of Service” chapter of the Dell Networking OS Configuration Guide.

NOTE: When ACL logging and byte counters are configured simultaneously, byte counters may display an incorrect value. Configure packet counters with logging instead.

When you use the log option, the CP processor logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.
The `monitor` option is relevant in the context of flow-based monitoring only. For more information, refer to Port Monitoring.

You cannot include IP, TCP, or UDP filters in an ACL configured with ARP filters.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

permit icmp

Configure a filter to allow all or specific ICMP messages.

Syntax

```
permit icmp {source mask | any | host ip-address} {destination mask | any | host ip-address} [dscp] [message-type] [count [byte]] [order] [fragments] [threshold-in-msgs [count]]
```

To remove this filter, you have two choices:

- **Use the** `no seq sequence-number` **command** if you know the filter's sequence number.
- **Use the** `no permit icmp {source mask | any | host ip-address} {destination mask | any | host ip-address}` **command**.

Parameters

- **source**
 Enter the IP address of the network or host from which the packets were sent.
mask Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or noncontiguous.

any Enter the keyword any to match and drop specific Ethernet traffic on the interface.

host ip-address Enter the keyword host and then enter the IP address to specify a host IP address.

destination Enter the IP address of the network or host to which the packets are sent.

dscp Enter the keyword dscp to deny a packet based on the DSCP value. The range is 0 to 63.

message-type (OPTIONAL) Enter an ICMP message type, either with the type (and code, if necessary) numbers or with the name of the message type. The range is 0 to 255 for ICMP type and 0 to 255 for ICMP code.

count (OPTIONAL) Enter the keyword count to count packets the filter processes.

byte (OPTIONAL) Enter the keyword byte to count bytes the filter processes.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Version Description

9.3(0.0)
Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The `order` option is relevant in the context of the Policy QoS feature only. For more information, refer to the Quality of Service chapter of the *Dell Networking OS Configuration Guide*.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

permit udp

To pass UDP packets meeting the filter criteria, configure a filter.

Syntax

```
permit udp {source mask | any | host ip-address} [operator port [port]] {destination mask | any | host ip-address} [dscp] [operator port [port]] [count [byte]] [order] [fragments] [threshold-in-msgs [count]]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
Use the `no permit udp {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- **source**: Enter the IP address of the network or host from which the packets were sent.
- **mask**: Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**: Enter the keyword `any` to specify that all routes are subject to the filter.
- **host ip-address**: Enter the keyword `host` and then enter the IP address to specify a host IP address.
- **dscp**: Enter the keyword `dscp` to deny a packet based on the DSCP value. The range is from 0 to 63.
- **operator**: (OPTIONAL) Enter one of the following logical operand:
 - `eq` = equal to
 - `neq` = not equal to
 - `gt` = greater than
 - `lt` = less than
 - `range` = inclusive range of ports (you must specify two ports for the `port` parameter)
- **port port**: Enter the application layer port number. Enter two port numbers if you are using the `range` logical operand. The range is 0 to 65535.
- **destination**: Enter the IP address of the network or host to which the packets are sent.
- **count**: (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.
- **byte**: (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.
- **order**: (OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (255).
- **fragments**: Enter the keyword `fragments` to use ACLs to control packet fragments.
- **threshold-in msgs count**: (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs
is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-IP ACCESS-LIST-EXTENDED

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the “Quality of Service” chapter of the Dell Operating System Configuration Guide.

You can configure either count (packets) or count (bytes). However, for an ACL with multiple rules, you can configure some ACLs with count (packets) and others as count (bytes) at any given time.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt, or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors)
them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000111110100000</td>
<td>1111111111100000</td>
<td>4000</td>
<td>4031</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>0000111111100000</td>
<td>1111111111100000</td>
<td>4032</td>
<td>4095</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>0001000000000000</td>
<td>1111110000000000</td>
<td>4096</td>
<td>6143</td>
<td>2048</td>
</tr>
<tr>
<td>4</td>
<td>0001100000000000</td>
<td>1111111000000000</td>
<td>6144</td>
<td>7167</td>
<td>1024</td>
</tr>
<tr>
<td>5</td>
<td>0001110000000000</td>
<td>1111111100000000</td>
<td>7168</td>
<td>7679</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>0001111000000000</td>
<td>1111111110000000</td>
<td>7680</td>
<td>7935</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>0001111110000000</td>
<td>1111111111000000</td>
<td>7936</td>
<td>7999</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>0001111111010000</td>
<td>1111111111111111</td>
<td>8000</td>
<td>8000</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000000000000</td>
<td>1111111000000000</td>
<td>0</td>
<td>1023</td>
<td>1024</td>
</tr>
</tbody>
</table>

Total Ports: 1024

Related Commands

- `ip access-list extended` — creates an extended ACL.
- `permit` — assigns a permit filter for IP packets.
- `permit tcp` — assigns a permit filter for TCP packets.

permit (for Extended IP ACLs)

To pass IP packets meeting the filter criteria, configure a filter.

Syntax

```
permit {source mask | any | host ip-address} {destination mask | any | host ip-address} [count [bytes]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq` `sequence-number` command if you know the filter’s sequence number.
- Use the `no deny {source mask | any | host ip-address} {destination mask | any | host ip-address}` command.

Parameters

- `source` Enter the IP address in dotted decimal format of the network from which the packet was sent.
mask (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any Enter the keyword any to specify that all routes are subject to the filter.

host ip-address Enter the keyword host then the IP address to specify a host IP address or hostname.

count (OPTIONAL) Enter the keyword count to count packets processed by the filter.

bytes (OPTIONAL) Enter the keyword bytes to count bytes processed by the filter.

dscp (OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-EXTENDED-ACCESS-LIST

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platforms.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `ip access-list extended` — creates an extended ACL.
- `permit tcp` — assigns a permit filter for TCP packets.
- `permit udp` — assigns a permit filter for UDP packets.

permit

To forward packets from a specific source MAC address, configure a filter.

Syntax

```
permit {any | mac-source-address [mac-source-address-mask]} [count [byte]] | log [interval minutes] [threshold-in msgs [count] [monitor]
```

To remove this filter, you have two choices:
• Use the `no seq sequence-number` command if you know the filter's sequence number.
• Use the `no permit {any | mac-source-address mac-source-address-mask}` command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Enter the keyword <code>any</code> to forward all packets received with a MAC address.</td>
</tr>
<tr>
<td>mac-source-address-mask</td>
<td>(OPTIONAL) Specify which bits in the MAC address must match. If no mask is specified, a mask of <code>00:00:00:00:00:00</code> is applied (in other words, the filter allows only MAC addresses that match).</td>
</tr>
<tr>
<td>count</td>
<td>(OPTIONAL) Enter the keyword <code>count</code> to count packets processed by the filter.</td>
</tr>
<tr>
<td>byte</td>
<td>(OPTIONAL) Enter the keyword <code>byte</code> to count bytes processed by the filter.</td>
</tr>
<tr>
<td>log</td>
<td>(OPTIONAL) Enter the keyword <code>log</code> to enable the triggering of ACL log messages.</td>
</tr>
<tr>
<td>threshold-in msgs count</td>
<td>(OPTIONAL) Enter the <code>threshold-in-msgs</code> keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the <code>seq</code>, <code>permit</code>, or <code>deny</code> commands. The threshold range is from 1 to 100.</td>
</tr>
<tr>
<td>interval minutes</td>
<td>(OPTIONAL) Enter the keyword <code>interval</code> followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.</td>
</tr>
<tr>
<td>monitor</td>
<td>(OPTIONAL) Enter the keyword <code>monitor</code> when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.</td>
</tr>
</tbody>
</table>

Defaults

Not configured.

Command Modes

CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

When the configured maximum threshold is exceeded, generation of logs are stopped.

When the interval at which ACL logs are configured to be recorded expires, the
subsequent, fresh interval timer is started and the packet count for that new interval
commences from zero. If ACL logging was stopped previously because the configured
threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-
enabled after the logging interval period elapses. ACL logging is supported for standard
and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging
only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs
that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the
flow-based enable command in the Monitor Session mode. When you enable this
capability, traffic with particular flows that are traversing through the ingress and egress
interfaces are examined and, appropriate ACLs can be applied in both the ingress and
egress direction. Flow-based monitoring conserves bandwidth by monitoring only
specified traffic instead all traffic on the interface. This feature is particularly useful
when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and
egress traffic. You may specify traffic using standard or extended access-lists. This
mechanism copies all incoming or outgoing packets on one port and forwards (mirrors)
them to another port. The source port is the monitored port (MD) and the destination
port is the monitoring port (MG).

Related Commands
deny — configures a MAC ACL filter to drop packets.

seq — configure a MAC ACL filter with a specified sequence number.

seq

To a deny or permit filter in a MAC access list while creating the filter, assign a sequence number.

Syntax

seq sequence-number [deny | permit] [any | mac-source-address
[mac-source-address-mask]] [count [byte]] [log [interval minutes]
[threshold-in-msgs [count]] [monitor]
To remove this filter, use the no seq sequence-number command.

Parameters

sequence-number Enter a number from 0 to 65535.
deny Enter the keyword deny to configure a filter to drop packets
meeting this condition.
permit Enter the keyword permit to configure a filter to forward
packets meeting this criteria.
any

Enter the keyword `any` to filter all packets.

mac-source-address

mac-source-address-mask

(Optional) Specify which bits in the MAC address must match. If no mask is specified, a mask of `00:00:00:00:00:00` is applied (in other words, the filter allows only MAC addresses that match).

count

(Optional) Enter the keyword `count` to count packets the filter processes.

byte

(Optional) Enter the keyword `byte` to count bytes the filter processes.

log

(Optional) Enter the keyword `log` to enable the triggering of ACL log messages.

threshold-in-msgs

(Optional) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

CONFIGURATION-MAC ACCESS LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3(16.1)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the

Access Control Lists (ACL) | 277
subsequent, fresh interval timer is started and the packet count for that new interval
commences from zero. If ACL logging was stopped previously because the configured
threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-
enabled after the logging interval period elapses. ACL logging is supported for standard
and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging
only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs
that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the
flow-based enable command in the Monitor Session mode. When you enable this
capability, traffic with particular flows that are traversing through the ingress and egress
interfaces are examined and, appropriate ACLs can be applied in both the ingress and
egress direction. Flow-based monitoring conserves bandwidth by monitoring only
specified traffic instead all traffic on the interface. This feature is particularly useful
when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and
egress traffic. You may specify traffic using standard or extended access-lists. This
mechanism copies all incoming or outgoing packets on one port and forwards (mirrors)
them to another port. The source port is the monitored port (MD) and the destination
port is the monitoring port (MG).

Related Commands

deny — configures a filter to drop packets.

permit — configures a filter to forward packets.

permit tcp

To pass TCP packets meeting the filter criteria, configure a filter.

Syntax

permit tcp {source mask | any | host ip-address} [bit] [operator
port [port]] {destination mask | any | host ip-address} [bit]
[dscp] [operator port [port]] [count [byte]] [order] [fragments]
[log [interval minutes] [threshold-in-msgs [count]] [monitor]

To remove this filter, you have two choices:

- Use the no seq sequence-number command if you know the filter’s sequence
 number.
- Use the no permit tcp {source mask | any | host ip-address}
 {destination mask | any | host ip-address} command.

Parameters

source

Enter the IP address of the network or host from which the
packets were sent.
mask Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any Enter the keyword any to specify that all routes are subject to the filter.

host ip-address Enter the keyword host then the IP address to specify a host IP address.

bit Enter a flag or combination of bits:
- ack: acknowledgement field
- fin: finish (no more data from the user)
- psh: push function
- rst: reset the connection
- syn: synchronize sequence numbers
- urg: urgent field

dscp Enter the keyword dscp to deny a packet based on the DSCP value. The range is from 0 to 63.

operator (OPTIONAL) Enter one of the following logical operand:
- eq = equal to
- neq = not equal to
- gt = greater than
- lt = less than
- range = inclusive range of ports (you must specify two ports for the port parameter)

port port Enter the application layer port number. Enter two port numbers if you are using the range logical operand. The range is from 0 to 65535.

The following list includes some common TCP port numbers:
- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
- 169 = SNMP

destination Enter the IP address of the network or host to which the packets are sent.

mask Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

count (OPTIONAL) Enter the keyword count to count packets the filter processes.
byte (OPTIONAL) Enter the keyword byte to count bytes the filter processes.

order (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

log (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The threshold range is from 1 to 10 minutes.

monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

CONFIGURATION-IP ACCESS-LIST-EXTENDED

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module platform.

The order option is relevant in the context of the Policy QoS feature only. For more information, refer to the “Quality of Service” chapter of the Dell Networking OS Configuration Guide.
The switch cannot count both packets and bytes, so when you enter the count byte options, only bytes are incremented.

Most ACL rules require one entry in the CAM. However, rules with TCP and UDP port operators (for example, gt, lt, or range) may require more than one entry. The range of ports is configured in the CAM based on bit mask boundaries; the space required depends on exactly what ports are included in the range.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Example

An ACL rule with a TCP port range of 4000–8000 uses eight entries in the CAM.

<table>
<thead>
<tr>
<th>#</th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000011111110100000</td>
<td>1111111111100000</td>
<td>4000</td>
<td>4031</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>000011111110100000</td>
<td>1111111111100000</td>
<td>4032</td>
<td>4095</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>000100000000000000</td>
<td>111110000000000000</td>
<td>4096</td>
<td>6143</td>
<td>2048</td>
</tr>
<tr>
<td>4</td>
<td>000110000000000000</td>
<td>111110000000000000</td>
<td>6144</td>
<td>7167</td>
<td>1024</td>
</tr>
<tr>
<td>5</td>
<td>000111000000000000</td>
<td>111110000000000000</td>
<td>7168</td>
<td>7679</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>000111100000000000</td>
<td>111111000000000000</td>
<td>7680</td>
<td>7935</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>000111110000000000</td>
<td>111111100000000000</td>
<td>7936</td>
<td>7999</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>000111111000000000</td>
<td>111111111111111111</td>
<td>8000</td>
<td>8000</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Ports: 4001

Example

An ACL rule with a TCP port lt 1023 uses only one entry in the CAM.

<table>
<thead>
<tr>
<th>#</th>
<th>Data</th>
<th>Mask</th>
<th>From</th>
<th>To</th>
<th>#Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000000000000</td>
<td>11111110000000000</td>
<td>0</td>
<td>1023</td>
<td>1024</td>
</tr>
</tbody>
</table>
Total Ports: 1024

Related Commands

- **ip access-list extended** — creates an extended ACL.
- **permit** — assigns a permit filter for IP packets.
- **permit udp** — assigns a permit filter for UDP packets.

seq arp

Configure an egress filter with a sequence number that filters ARP packets meeting this criteria. This command is supported only on 12-port GE line cards with SFP optics. For specifications, refer to your line card documentation.

Syntax

```
seq sequence-number {deny | permit} arp {destination-mac-address mac-address-mask | any} vlan vlan-id {ip-address | any | opcode code-number} [count [byte] [order] [log [interval minutes] [threshold-in-msgs[count]]] [monitor]
```

To remove this filter, use the no seq sequence-number command.

Parameters

- **sequence-number**

 Enter a number from 0 to 4294967290.

- **deny**

 Enter the keyword **deny** to drop all traffic meeting the filter criteria.

- **permit**

 Enter the keyword **permit** to forward all traffic meeting the filter criteria.

- **destination-mac-address mac-address-mask**

 Enter a MAC address and mask in the nn:nn:nn:nn:nn format. For the MAC address mask, specify which bits in the MAC address must match.

 The MAC ACL supports an inverse mask; therefore, a mask of ffff:fff:fff:fff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

- **any**

 Enter the keyword **any** to match and drop any ARP traffic on the interface.

- **vlan vlan-id**

 Enter the keyword **vlan** followed by the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic specify VLAN 1.
Enter an IP address in dotted decimal format (A.B.C.D) as the target IP address of the ARP.

Enter the keyword `opcode` and then enter the number of the ARP opcode. The range is 1 to 16.

(OPTIONAL) Enter the keyword `count` to count packets the filter processes.

(OPTIONAL) Enter the keyword `byte` to count bytes the filter processes.

(OPTIONAL) Enter the keyword `order` to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword `order`, the ACLs have the lowest order by default (255).

(OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

(OPTIONAL) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

(OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

(OPTIONAL) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

NOTE: For more information, refer to the Flow-based Monitoring section in the Port Monitoring chapter of the Dell Networking OS Configuration Guide.

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

- **CONFIGURATION-EXTENDED-ACCESS-LIST**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Access Control Lists (ACL)

Version Description

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.2.1.0</td>
<td>Allows ACL control of fragmented packets for IP (Layer 3) ACLs.</td>
</tr>
<tr>
<td>8.1.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Added the <code>monitor</code> option.</td>
</tr>
<tr>
<td>6.5.10</td>
<td>Expanded to include the optional <code>order</code> priority for the ACL entry.</td>
</tr>
</tbody>
</table>

Usage Information

The `monitor` option is relevant in the context of flow-based monitoring only. For more information, refer to Port Monitoring.

The `order` option is relevant in the context of the Policy QoS feature only. The following applies:

- The `seq sequence-number` command is applicable only in an ACL group.
- The `order` option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The `order` option takes precedence over `seq sequence-number`.
- If `sequence-number` is not configured, the rules with the same order value are ordered according to their configuration order.
- If `sequence-number` is configured, the sequence-number is used as a tie breaker for rules with the same order.

When you use the `log` option, the CP processor logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.

You cannot include IP, TCP, or UDP (Layer 3) filters in an ACL configured with ARP or Ether-type (Layer 2) filters. Apply Layer 2 ACLs to interfaces in Layer 2 mode.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only...
specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

NOTE: When ACL logging and byte counters are configured simultaneously, byte counters may display an incorrect value. Configure packet counters with logging instead.

seq ether-type

Configure an egress filter with a specific sequence number that filters traffic with specified types of Ethernet packets. This command is supported only on 12-port GE line cards with SFP optics. For specifications, refer to your line card documentation.

Syntax

```
seq sequence-number {deny | permit} ether-type protocol-type-number {destination-mac-address mac-address-mask | any} vlan vlan-id {source-mac-address mac-address-mask | any} [count [byte] [order] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```  

To remove this filter, use the no seq sequence-number command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence-number</td>
<td>Enter a number from 0 to 4294967290.</td>
</tr>
<tr>
<td>deny</td>
<td>Enter the keyword <code>deny</code> to drop all traffic meeting the filter criteria.</td>
</tr>
<tr>
<td>permit</td>
<td>Enter the keyword <code>permit</code> to forward all traffic meeting the filter criteria.</td>
</tr>
</tbody>
</table>
| **destination-mac-address mac-address-mask** | Enter a MAC address and mask in the nn:nn:nn:nn:nn:nn format. For the MAC address mask, specify which bits in the MAC address must match.

The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

| **any** | Enter the keyword `any` to match and drop specific Ethernet traffic on the interface. |
| **vlan vlan-id** | Enter the keyword `vlan` and then enter the VLAN ID to filter traffic associated with a specific VLAN. The range is 1 to 4094 |
and 1 to 2094 for ExaScale (you can use IDs 1 to 4094). To filter all VLAN traffic specify VLAN 1.

source-mac-address mac-address-mask

For the MAC address mask, specify which bits in the MAC address must match.

The MAC ACL supports an inverse mask; therefore, a mask of ff:ff:ff:ff:ff:ff allows entries that do not match and a mask of 00:00:00:00:00:00 only allows entries that match exactly.

count *(OPTIONAL)* Enter the keyword count to count packets the filter processes.

byte *(OPTIONAL)* Enter the keyword byte to count bytes the filter processes.

order *(OPTIONAL)* Enter the keyword order to specify the QoS priority for the ACL entry. The range is 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

log *(OPTIONAL)* Enter the keyword log to enable the triggering of ACL log messages.

interval minutes *(OPTIONAL)* Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

threshold-in msgs count *(OPTIONAL)* Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

monitor *(OPTIONAL)* Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-EXTENDED-ACCESS-LIST

NOTE: For more information, refer to the Flow-based Monitoring section in the Port Monitoring chapter of the Dell Networking OS Configuration Guide.
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.2.1.0</td>
<td>Allows ACL control of fragmented packets for IP (Layer 3) ACLs.</td>
</tr>
<tr>
<td>8.1.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Added the monitor option.</td>
</tr>
<tr>
<td>6.5.10</td>
<td>Expanded to include the optional QoS order priority for the ACL entry.</td>
</tr>
</tbody>
</table>

Usage Information

The **monitor** option is relevant in the context of flow-based monitoring only. For more information, refer to Port Monitoring.

The **order** option is relevant in the context of the Policy QoS feature only. The following applies:

- The `seq sequence-number` command is applicable only in an ACL group.
- The `order` option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The `order` option takes precedence over `seq sequence-number`.
- If `sequence-number` is not configured, the rules with the same order value are ordered according to their configuration order.
- If `sequence-number` is configured, the sequence-number is used as a tie breaker for rules with the same order.

When you use the **log** option, the CP processor logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.

You cannot include IP, TCP, or UDP (Layer 3) filters in an ACL configured with ARP or Ether-type (Layer 2) filters. Apply Layer 2 ACLs to interfaces in Layer 2 mode.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this
capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

NOTE: When ACL logging and byte counters are configured simultaneously, byte counters may display an incorrect value. Configure packet counters with logging instead.

seq

Assign a sequence number to a deny or permit filter in an extended IP access list while creating the filter.

Syntax

```
seq sequence-number {deny | permit} {source [mask] | any | host ip-address}) [count [byte] [dscp value] [order] [fragments] [threshold-in-msgs [count]
```

Parameters

- **sequence-number**: Enter a number from 0 to 4294967290. The range is from 0 to 65534.
- **deny**: Enter the keyword deny to configure a filter to drop packets meeting this condition.
- **permit**: Enter the keyword permit to configure a filter to forward packets meeting this criteria.
- **source**: Enter an IP address in dotted decimal format of the network from which the packet was received.
- **mask**: (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**: Enter the keyword any to specify that all routes are subject to the filter.
- **count**: (OPTIONAL) Enter the keyword count to count packets the filter processes.
- **byte**: (OPTIONAL) Enter the keyword byte to count bytes the filter processes.
- **dscp**: (OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.
order (OPTIONAL) Enter the keyword order to specify the QoS order for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments Enter the keyword fragments to use ACLs to control packet fragments.

threshold-in msgs (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes CONFIGURATION-IP ACCESS-LIST-STANDARD

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information The order option is relevant in the context of the Policy QoS feature only. The following applies:

- The seq sequence-number command is applicable only in an ACL group.
- The order option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The order option takes precedence over seq sequence-number.
- If sequence-number is not configured, the rules with the same order value are ordered according to their configuration order.
- If sequence-number is configured, the sequence-number is used as a tie breaker for rules with the same order.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard
and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- **deny** — configures a filter to drop packets.
- **permit** — configures a filter to forward packets.
- **seq** — assigns a sequence number to a deny or permit filter in an IP access list while creating the filter.

seq

Assign a sequence number to a deny or permit filter in an extended IP access list while creating the filter.

Syntax

```
seq sequence-number {deny | permit} {ipv6-protocol-number | icmp | ip | tcp | udp} {source mask | any | host ipv6-address} {destination mask | any | host ipv6-address} [operator port [port]] [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

Parameters

- **sequence-number**

 Enter a number from 0 to 4294967290. The range is from 1 to 65534.

- **deny**

 Enter the keyword `deny` to configure a filter to drop packets meeting this condition.

- **permit**

 Enter the keyword `permit` to configure a filter to forward packets meeting this criteria.

- **ipv6-protocol-number**

 Enter a number from 0 to 255 to filter based on the protocol identified in the IP protocol header.

- **icmp**

 Enter the keyword `icmp` to configure an ICMP access list filter.
ip Enter the keyword ip to configure a generic IP access list. The keyword ip specifies that the access list permits all IP protocols.
tcp Enter the keyword tcp to configure a TCP access list filter.
udp Enter the keyword udp to configure a UDP access list filter.
source Enter an IP address in dotted decimal format of the network from which the packet was received.
mask (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
any Enter the keyword any to specify that all routes are subject to the filter.
host ipv6-address Enter the keyword host and then enter the IPv6 address to specify a host IP address or hostname.
operator (OPTIONAL) Enter one of the following logical operands:
 • eq = equal to
 • neq = not equal to
 • gt = greater than
 • lt = less than
 • range = inclusive range of ports (you must specify two ports for the port parameter.)
port port (OPTIONAL) Enter the application layer port number. Enter two port numbers if you are using the range logical operand. The range is from 0 to 65535.
The following list includes some common TCP port numbers:
 • 23 = Telnet
 • 20 and 21 = FTP
 • 25 = SMTP
 • 169 = SNMP
destination Enter the IP address of the network or host to which the packets are sent.
count (OPTIONAL) Enter the keyword count to count packets the filter processes.
byte (OPTIONAL) Enter the keyword byte to count bytes the filter processes.
dscp (OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.
order (OPTIONAL) Enter the keyword order to specify the QoS order for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers
have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments
- Enter the keyword fragments to use ACLs to control packet fragments.

log
- (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in msgs count
- (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes
- (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which the ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor
- (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults
- By default 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which the ACL logs are generated is five minutes. By default, the flow-based monitoring is not enabled.

Command Modes
- ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for the flow-based monitoring on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The order option is relevant in the context of the Policy QoS feature only. The following applies:

- The seq sequence-number command is applicable only in an ACL group.
- The order option works across ACL groups that have been applied on an interface via the QoS policy framework.
- The order option takes precedence over seq sequence-number.
- If sequence-number is not configured, the rules with the same order value are ordered according to their configuration order.
- If sequence-number is configured, the sequence-number is used as a tie breaker for rules with the same order.
If you configure the sequence-number, the sequence-number is used as a tie breaker for rules with the same order.

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- **deny** — Configures a filter to drop packets.
- **permit** — Configures a filter to forward packets.

permit udp

Configure a filter to pass UDP packets meeting the filter criteria.

Syntax

```
permit udp {source address mask | any | host ipv6-address} [operator port [port]] {destination address | any | host ipv6-address} [operator port [port]] [count [byte]] [log [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the **no seq sequence-number** command if you know the filter’s sequence number.

```markdown
Related Commands

deny — Configures a filter to drop packets.

permit — Configures a filter to forward packets.
```
Use the `no permit udp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address}` command.

Parameters

source address
Enter the IPv6 address of the network or host from which the packets were sent in the `x:x:x:x::x` format followed by the prefix length in the `/x` format. The range is `/0` to `/128`. The `::` notation specifies successive hexadecimal fields of zero.

mask
Enter a network mask in `/prefix format (/x)`.

any
Enter the keyword `any` to specify that all routes are subject to the filter.

host ipv6-address
Enter the keyword `host` followed by the IPv6 address of the host in the `x:x:x:x::x` format. The `::` notation specifies successive hexadecimal fields of zero.

operator
(Optional) Enter one of the following logical operand:
- `eq = equal to`
- `neq = not equal to`
- `gt = greater than`
- `lt = less than`
- `range = inclusive range of ports (you must specify two port for the `port` parameter.)`

port port
(Optional) Enter the application layer port number. Enter two port numbers if using the `range` logical operand. The range is 0 to 65535.

destination address
Enter the IPv6 address of the network or host to which the packets are sent in the `x:x:x:x::x` format followed by the prefix length in the `/x` format. The range is `/0` to `/128`. The `::` notation specifies successive hexadecimal fields of zero.

count
(Optional) Enter the keyword `count` to count packets processed by the filter.

byte
(Optional) Enter the keyword `byte` to count bytes processed by the filter.

log
(Optional) Enter the keyword `log` to enable the triggering of ACL log messages.

threshold-in msgs count
(Optional) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

interval minutes
(Optional) Enter the `interval` keyword followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.
monitor

(Optionalal) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which the ACL logs are generated in five minutes. By default, flow-based monitoring is not enabled.

Command Modes

ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces. You cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `permit` — assigns a permit filter for IP packets.
- `permit tcp` — assigns a permit filter for TCP packets.
permit tcp

Configure a filter to pass TCP packets that match the filter criteria.

Syntax

```
permit tcp {source address mask | any | host ipv6-address}
[operator port [port]] {destination address | any | host ipv6-address} [bit] [operator port [port]] [count [byte]] [log
[interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
- Use the `no permit tcp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address} command.

Parameters

- **source address**

Enter the IPv6 address of the network or host from which the packets were sent in the `x:x:x::x` format followed by the prefix length in the `/x` format. The range is `/0` to `/128`. The `::` notation specifies successive hexadecimal fields of zero.

- **mask**

Enter a network mask in `/prefix format `/x`.

- **any**

Enter the keyword `any` to specify that all routes are subject to the filter.

- **host ipv6-address**

Enter the keyword `host` followed by the IPv6 address of the host in the `x:x:x::x` format. The `::` notation specifies successive hexadecimal fields of zero.

- **operator**

(Optional) Enter one of the following logical operand:

 - `eq = equal to`
 - `neq = not equal to`
 - `gt = greater than`
 - `lt = less than`
 - `range = inclusive range of ports (you must specify two port for the port parameter.)`

- **port port**

Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is 0 to 65535.

The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
169 = SNMP

destination address

Enter the IPv6 address of the network or host to which the packets are sent in the x:x:x:x format followed by the prefix length in the /x format. The range is /0 to /128. The :: notation specifies successive hexadecimal fields of zero.

bit

Enter a flag or combination of bits:
- **ack**: acknowledgement field
- **fin**: finish (no more data from the user)
- **psh**: push function
- **rst**: reset the connection
- **syn**: synchronize sequence numbers
- **urg**: urgent field

count

(Optional) Enter the keyword **count** to count packets processed by the filter.

byte

(Optional) Enter the keyword **byte** to count bytes processed by the filter.

log

(Optional) Enter the keyword **log** to enable the triggering of ACL log messages.

threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the **seq**, **permit**, or **deny** commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword **interval** followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword **monitor** when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Version | **Description**
--- | ---
9.3(0.0) | Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists.

This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `permit` – assigns a permit filter for IP packets.
- `permit udp` – assigns a permit filter for UDP packets.

permit icmp

To allow all or specific internet control message protocol (ICMP) messages, configure a filter.

Syntax

```
permit icmp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address} [message-type] [count [byte]] | [log] [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter's sequence number.
Use the `no permit icmp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address}` command.

Parameters

- **source address**: Enter the IPv6 address of the network or host from which the packets were sent in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128. The :: notation specifies successive hexadecimal fields of zero.
- **mask**: Enter a network mask in /prefix format (/x).
- **any**: Enter the keyword `any` to specify that all routes are subject to the filter.
- **host ipv6-address**: Enter the keyword `host` then the IPv6 address of the host in the x:x:x::x format. The :: notation specifies successive hexadecimal fields of zero.
- **destination address**: Enter the IPv6 address of the network or host to which the packets are sent in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128. The :: notation specifies successive hexadecimal fields of zero.
- **message-type**: (OPTIONAL) Enter an ICMP message type, either with the type (and code, if necessary) numbers or with the name of the message type. The range is from 0 to 255 for ICMP type and from 0 to 255 for ICMP code.
- **count**: (OPTIONAL) Enter the keyword `count` to count packets the filter processes.
- **byte**: (OPTIONAL) Enter the keyword `byte` to count bytes the filter processes.
- **log**: (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.
- **threshold-in-msgs count**: (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.
- **interval minutes**: (OPTIONAL) Enter the `interval` followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.
- **monitor**: (OPTIONAL) Enter the keyword `monitor` to monitor traffic on the monitoring interface specified in the flow-based monitoring session along with the filter operation.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.
permit

To configure a filter that matches the filter criteria, select an IPv6 protocol number, ICMP, IPv6, TCP, or UDP.

Syntax

permit {ipv6-protocol-number | icmp | ipv6 | tcp | udp} [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]] [monitor]

To remove this filter, you have two choices:
Use the no seq sequence-number command syntax if you know the filter's sequence number

Use the no permit {ipv6-protocol-number | icmp | ipv6 | tcp | udp} command

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-protocol-number</td>
<td>Enter an IPv6 protocol number. The range is from 0 to 255.</td>
</tr>
<tr>
<td>icmp</td>
<td>Enter the keyword icmp to filter internet Control Message Protocol version 6.</td>
</tr>
<tr>
<td>ipv6</td>
<td>Enter the keyword ipv6 to filter any internet Protocol version 6.</td>
</tr>
<tr>
<td>tcp</td>
<td>Enter the keyword tcp to filter the Transmission Control protocol.</td>
</tr>
<tr>
<td>udp</td>
<td>Enter the keyword udp to filter the User Datagram Protocol.</td>
</tr>
<tr>
<td>count</td>
<td>(OPTIONAL) Enter the keyword count to count packets the filter processes.</td>
</tr>
<tr>
<td>byte</td>
<td>(OPTIONAL) Enter the keyword byte to count bytes the filter processes.</td>
</tr>
<tr>
<td>dscp</td>
<td>(OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.</td>
</tr>
<tr>
<td>order</td>
<td>(OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).</td>
</tr>
<tr>
<td>fragments</td>
<td>Enter the keyword fragments to use ACLs to control packet fragments.</td>
</tr>
<tr>
<td>log</td>
<td>(OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.</td>
</tr>
<tr>
<td>threshold-in-msgs</td>
<td>(OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.</td>
</tr>
<tr>
<td>interval minutes</td>
<td>(OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.</td>
</tr>
<tr>
<td>monitor</td>
<td>(OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.</td>
</tr>
</tbody>
</table>

Defaults

Not configured.
deny udp (for IPv6 ACLs)

Configure a filter to drop user datagram protocol (UDP) packets meeting the filter criteria.

Syntax

```plaintext
deny udp {source address mask | any | host ipv6-address} [operator port [port]] {destination address | any | host ipv6-address} [operator port [port]] [count [byte]] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command syntax if you know the filter's sequence number
- Use the `no deny udp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address}` command

Parameters

- `source`
 Enter the IP address of the network or host from which the packets are sent.

- `mask`
 Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

- `any`
 Enter the keyword `any` to specify that all routes are subject to the filter.

- `host ipv6-address`
 Enter the keyword `host` then the IPv6 address to specify a host IP address.

- `operator`
 (OPTIONAL) Enter one of the following logical operand.
 - `eq` = equal to
 - `neq` = not equal to
 - `gt` = greater than
• \(\lt \) = less than
• range = inclusive range of ports (you must specify two ports for the `port` command)

`port` Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535. The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
- 169 = SNMP

`count` (OPTIONAL) Enter the keyword `count` to count the packets that filter the processes.

`byte` (OPTIONAL) Enter the keyword `byte` to count the bytes that filter the processes.

`log` (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.

`threshold-in msgs count` (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

`interval minutes` (OPTIONAL) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The threshold range is from 1 to 10 minutes.

`monitor` (OPTIONAL) Enter the keyword `monitor` when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

`ACCESS-LIST`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>
Version

Description

9.3(0.0)
Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs.

You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands

- `deny` – assigns a filter to deny IP traffic.
- `deny tcp` – assigns a deny filter for TCP traffic.

deny tcp (for IPv6 ACLs)

Configure a filter that drops TCP packets that match the filter criteria.

Syntax

```
deny tcp {source address mask | any | host ipv6-address} [operator port [port]] {destination address | any | host ipv6-address} [bit] [operator port [port]] [count [byte]] [log [interval minutes] [threshold-inmsgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command syntax if you know the filter’s sequence number.
• Use the no deny tcp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address} command

Parameters

source
Enter the IP address of the network or host from which the packets are sent.

mask
Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.

any
Enter the keyword any to specify that all routes are subject to the filter.

host ipv6-address
Enter the keyword host then the IPv6 address to specify a host IP address.

operator
(Optional) Enter one of the following logical operand:

- eq = equal to
- neq = not equal to
- gt = greater than
- lt = less than
- range = inclusive range of ports (you must specify two ports for the port command)

port
Enter the application layer port number. Enter two port numbers if using the range logical operand. The range is from 0 to 65535. The following list includes some common TCP port numbers:

- 23 = Telnet
- 20 and 21 = FTP
- 25 = SMTP
- 169 = SNMP

destination
Enter the IP address of the network or host to which the packets are sent.

bit
(Optional) Enter the keyword bit to count the bits that filter the processes.

count
(Optional) Enter the keyword count to count the packets that filter the processes.

byte
(Optional) Enter the keyword byte to count the bytes that filter the processes.

log
(Optional) Enter the keyword log to enable the triggering of ACL log messages.
threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

ACCESS-LIST

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This
mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

Related Commands
- **deny** – assigns a filter to deny IP traffic.
- **deny udp** – assigns a filter to deny UDP traffic.

deny icmp (for Extended IPv6 ACLs)

Configure a filter to drop all or specific ICMP messages.

Syntax
```
deny icmp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address} [count [byte]] | [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:
- Use the `no seq sequence-number` command syntax if you know the filter's sequence number
- Use the `no deny icmp {source address mask | any | host ipv6-address} {destination address | any | host ipv6-address}` command

Parameters
- **source**
 - Enter the IPv6 address of the network or host from which the packets were sent.
- **mask**
 - Enter a network mask in /prefix format (/x) or A.B.C.D. The mask, when specified in A.B.C.D format, may be either contiguous or non-contiguous.
- **any**
 - Enter the keyword any to specify that all routes are subject to the filter.
- **host ipv6-address**
 - Enter the keyword host then the IPv6 address to specify a host IP address.
- **destination**
 - Enter the IPv6 address of the network or host to which the packets are sent.
- **count**
 - (OPTIONAL) Enter the keyword count to count packets processed by the filter.
- **byte**
 - (OPTIONAL) Enter the keyword byte to count bytes processed by the filter.
- **log**
 - (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.
threshold-in msgs count

(Optional) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

ACCESS LIST

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.
9.3(0.0) Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This
A mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

deny (for IPv6 ACLs)

Configure a filter that drops IPv6 packets that match the filter criteria.

Syntax

```plaintext
deny {ipv6-protocol-number | icmp | ipv6 | tcp | udp} [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command syntax if you know the filter's sequence number
- Use the `no deny {ipv6-protocol-number | icmp | ipv6 | tcp | udp}` command

Parameters

- **count** (OPTIONAL) Enter the keyword `count` to count packets processed by the filter.
- **byte** (OPTIONAL) Enter the keyword `byte` to count bytes processed by the filter.
- **dscp** (OPTIONAL) Enter the keyword `dscp` to match to the IP DSCP values.
- **order** (OPTIONAL) Enter the keyword `order` to specify the QoS order of priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower order numbers have a higher priority). If you do not use the `order` keyword, the ACLs have the lowest order by default as 255.
- **fragments** Enter the keyword `fragments` to use ACLs to control packet fragments.
- **log** (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.
- **threshold-in-msgs count** (OPTIONAL) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated. with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.
- **interval minutes** (OPTIONAL) Enter the `interval` followed by the time period in minutes at which ACL logs must be generated. The time interval range is from 1 to 10 minutes.
monitor (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the flow-based enable command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress directions. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).
Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM)

This section describes the access control list (ACL) virtual local area network (VLAN) group, and content addressable memory (CAM) enhancements.

member vlan

Add VLAN members to an ACL VLAN group.

Syntax

```
member vlan {VLAN-range}
```

Parameters

- **VLAN-range**: Enter the member VLANs using comma-separated VLAN IDs, a range of VLAN IDs, a single VLAN ID, or a combination. For example:
 - Comma-separated: 3, 4, 6
 - Range: 5-10
 - Combination: 3, 4, 5-10, 8

Default

None

Command Modes

- CONFIGURATION (conf-acl-vl-grp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

At a maximum, there can be only 32 VLAN members in all ACL VLAN groups. A VLAN can belong to only one group at any given time.

You can create an ACL VLAN group and attach the ACL with the VLAN members. The optimization is applicable only when you create an ACL VLAN group. If you apply an ACL separately on the VLAN interface, each ACL has a mapping with the VLAN and increased CAM space utilization occurs.
Attaching an ACL individually to VLAN interfaces is similar to the behavior of ACL-VLAN mapping storage in CAM prior to the implementation of the ACL VLAN group functionality.

ip access-group

Apply an egress IP ACL to the ACL VLAN group.

Syntax

```
ip access-group {group-name} out implicit-permit
```

Parameters

- **group-name**
 - Enter the name of the ACL VLAN group where you want the egress IP ACLs applied, up to 140 characters.
- **out**
 - Enter the keyword `out` to apply the ACL to outgoing traffic.
- **implicit-permit**
 - Enter the keyword `implicit-permit` to change the default action of the ACL from implicit-deny to implicit-permit (that is, if the traffic does not match the filters in the ACL, the traffic is permitted instead of dropped).

Default

None

Command Modes

```
CONFIGURATION (conf-acl-vl-grp)
```

Command History

- **Version**
 - **9.9(0.0)**: Introduced on the FN IOM.
 - **9.3(0.0)**: Introduced on the MXL 10/40GbE Switch IO Module platform.

Usage Information

You can apply only an egress IP ACL on an ACL VLAN group.

show acl-vlan-group

Display all the ACL VLAN groups or display a specific ACL VLAN group, identified by name.

Syntax

```
show acl-vlan-group {group-name | detail}
```

Parameters

- **group-name**
 - (Optional) Display only the ACL VLAN group that is specified, up to 140 characters.
- **detail**
 - Display information in a line-by-line format to display the names in their entirety.
Without the detail option, the output displays in a table style and information may be truncated.

Default
No default behavior or values

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information
When an ACL-VLAN-Group name or the Access List Group Name contains more than 30 characters, the name is truncated in the show acl-vlan-group command output.

Examples
The following sample illustrates the output of the `show acl-vlan-group` command.

```plaintext
NOTE: Some group names and some access list names are truncated.

Dell#show running-config acl-vlan-group
acl-vlan-group Test
member vlan 1-100
ip access-group test in
Dell#show acl-vlan-group
Group Name                  Egress IP Acl               Ingress IP Acl              Ingress V6 Acl              Vlan
Members                      test
                           test                           test
                           -                                -                           1-100

The following sample output is displayed when using the `show acl-vlan-group group-name` option.

NOTE: The access list name is truncated.

Dell#show acl-vlan-group TestGroupSeventeenTwenty
Group Name                  Egress IP Acl               Ingress IP Acl              Ingress IPV6 Acl              Vlan
Members                      test
                           test                           test
                           -                                -                           1-100
Dell#

The following sample output shows the line-by-line style display when using the `show acl-vlan-group detail` option.

NOTE: No group or access list names are truncated

Dell#show acl-vlan-group detail
Group Name : Test
Egress IP Acl :
Ingress IP Acl : test
Ingress IPV6 Acl :
Vlan Members :
1-100

show cam-acl-vlan

Display the number of flow processor (FP) blocks that is allocated for the different VLAN services.

Syntax
show cam-acl-vlan

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information
After CAM configuration for ACL VLAN groups is performed, you must reboot the system to enable the settings to be stored in nonvolatile storage. During the initialization of CAM, the chassis manager reads the NVRAM and allocates the dynamic VCAP regions.

The following table describes the output fields of this show command:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Vlan Cam ACL</td>
<td>Details about the CAM blocks allocated for ACLs for various VLAN operations at a system-wide, global level.</td>
</tr>
<tr>
<td>Stack Unit &lt;number&gt;</td>
<td>Details about the CAM blocks allocated for ACLs for various VLAN operations for a particular stack unit.</td>
</tr>
<tr>
<td>Current Settings(in block sizes)</td>
<td>Information about the number of FP blocks that are currently in use or allocated.</td>
</tr>
<tr>
<td>VlanOpenFlow</td>
<td>Number of FP blocks for VLAN open flow operations.</td>
</tr>
<tr>
<td>VlanIscsi</td>
<td>Number of FP blocks for VLAN internet small computer system interface (iSCSI) counters.</td>
</tr>
<tr>
<td>VlanHp</td>
<td>Number of FP blocks for VLAN high performance processes.</td>
</tr>
<tr>
<td>VlanFcoe</td>
<td>Number of FP blocks for VLAN Fiber Channel over Ethernet (FCoE) operations.</td>
</tr>
<tr>
<td>VlanAclOpt</td>
<td>Number of FP blocks for ACL VLAN optimization feature.</td>
</tr>
</tbody>
</table>

Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM) | 314
Example

Dell#show cam-acl-vlan

-- Chassis Vlan Cam ACL --

Current Settings (in block sizes)

VlanOpenFlow : 0
VlanIscsi    : 0
VlanAclOpt   : 2
VlanHp       : 1
VlanFcoe     : 1

**cam-acl-vlan**

Allocate the number of flow processor (FP) blocks or entries for VLAN services and processes.

**Syntax**

`cam-acl-vlan [ default | vlanopenflow <0-2> | vlaniscsi <0-2> | vlanaclopt <0-2> ]`

**Parameters**

- **default**
  - Reset the number of FP blocks to default. By default, 0 groups are allocated for the ACL in VCAP. ACL VLAN groups or CAM optimization is not enabled by default, and you need to allocate the slices for CAM optimization.

- **vlanopenflow <0-2>**
  - Allocate the number of FP blocks for VLAN open flow operations.

- **vlaniscsi <0-2>**
  - Allocate the number of FP blocks for VLAN iSCSI counters.

- **vlanaclopt <0-2>**
  - Allocate the number of FP blocks for the ACL VLAN optimization feature.

**Default**

If you use the `default` keyword with the `cam-acl-vlan` command, the FP blocks allocated for VLAN processes are restored to their default values. No FP blocks or dynamic VLAN Content Aware Processor (VCAP) groups are allocated for VLAN operations by default.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

**Usage Information**

The VLAN ContentAware Processor (VCAP) application is a pre-ingress CAP that modifies the VLAN settings before packets are forwarded. To support the ACL CAM optimization functionality, the CAM carving feature is enhanced. A total of four VACP groups are present, of which two are for fixed groups and the other two are for dynamic groups. Out of the total of two dynamic groups, you can allocate zero, one, or
two flow processor (FP) blocks to iSCSI Counters, OpenFlow and ACL Optimization. You can configure only two of these features at a point in time.

**show cam-usage**

View the amount of CAM space available, used, and remaining in each partition (including IPv4Flow and Layer 2 ACL sub-partitions).

**Syntax**

```
show cam-usage [acl | router | switch]
```

**Parameters**

- **acl** (OPTIONAL) Enter the keyword `acl` to display Layer 2 and Layer 3 ACL CAM usage.
- **router** (OPTIONAL) Enter the keyword `router` to display Layer 3 CAM usage.
- **switch** (OPTIONAL) Enter the keyword `switch` to display Layer 2 CAM usage.

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

**Usage Information**

The following regions must be provided in the `show cam-usage` output:

- L3AclCam
- L2AclCam
- V6AclCam

The following describes the output fields of this `show` command:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LineCard</td>
<td>Number of the line card that contains information on ACL VLAN groups</td>
</tr>
<tr>
<td>Portpipe</td>
<td>The hardware path that packets follow through a system for ACL optimization</td>
</tr>
<tr>
<td>CAM-Region</td>
<td>Type of area in the CAM block that is used for ACL VLAN groups</td>
</tr>
</tbody>
</table>
Field | Description
---|---
Total CAM space | Total amount of space in the CAM block
Used CAM | Amount of CAM space that is currently in use
Available CAM | Amount of CAM space that is free and remaining to be allocated for ACLs

Example:
```
Dell#show cam-usage
Stackunit|Portpipe|CAM Partition|Total CAM|Used CAM|AvailableCAM
========|========|==============|=========|========|========
0 | 0 | IN-L3 ACL | 512 | 1 | 511
| | IN-V6 ACL | 0 | 0 | 0
| | IN-L2 ACL | 512 | 0 | 512
| | IN-NLB ACL| 256 | 0 | 256
| | IPMAC ACL | 0 | 0 | 0
| | OUT-L3 ACL| 158 | 6 | 152
| | OUT-V6 ACL| 158 | 1 | 157
1 | 0 | IN-L3 ACL | 512 | 1 | 511
| | IN-V6 ACL | 0 | 0 | 0
| | IN-L2 ACL | 512 | 0 | 512
| | IN-NLB ACL| 256 | 0 | 256
| | IPMAC ACL | 0 | 0 | 0
| | OUT-L3 ACL| 158 | 6 | 152
| | OUT-V6 ACL| 158 | 1 | 157

Codes: * - cam usage is above 90%.
Dell#
```

**show running config acl-vlan-group**

Display the running configuration of all or a given ACL VLAN group.

Syntax
```
show running config acl-vlan-group group name
```

Parameters

- `group-name` Display only the ACL VLAN group that is specified. The maximum group name is 140 characters.

Default | None

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version** | **Description**
- 9.9(0.0) | Introduced on the FN IOM.
- 9.3(0.0) | Introduced on the MXL 10/40GbE Switch IO Module platform.
Examples

The following sample output shows the line-by-line style display when using the `show running-config acl-vlan-group` option. Note that no group or access list names are truncated.

Dell#show running-config acl-vlan-group
!
  acl-vlan-group Test
    member vlan 1-100
    ip access-group test in

Dell#show running-config acl-vlan-group Test
!
  acl-vlan-group Test
    member vlan 1-100
    ip access-group test in

acl-vlan-group

Create an ACL VLAN group.

Syntax

    acl-vlan-group {group name}

To remove an ACL VLAN group, use the `no acl-vlan-group {group name}` command.

Parameters

    group-name          Specify the name of the ACL VLAN group. The name can contain a maximum 140 characters.

Default

    No default behavior or values

Command Modes

    CONFIGURATION

Command History

    Version    Description
    9.9(0.0)    Introduced on the FN IOM.
    9.3(0.0)    Introduced on the MXL 10/40GbE Switch IO Module platform.

Usage Information

You can have up to eight different ACL VLAN groups at any given time. When you configure an ACL VLAN group, you enter the ACL VLAN Group Configuration mode. To avoid the problem of excessive consumption of CAM area, you can configure ACL VLAN groups that combines all the VLANs that are applied with the same ACL in a single group. A unique identifier for each of ACL attached to the VLAN is used as a handle or locator in the CAM area instead of the VLAN id. This method of processing significantly reduces the number of entries in the CAM area and saves memory space in CAM.

You can create an ACL VLAN group and attach the ACL with the VLAN members. Optimization is applicable only when you create an ACL VLAN group. If you apply an
ACL separately on the VLAN interface, each ACL maps with the VLAN and increased CAM space utilization occurs.

Attaching an ACL individually to VLAN interfaces is similar to the behavior of ACL-VLAN mapping storage in CAM prior to the implementation of the ACL VLAN group functionality.

# show acl-vlan-group detail

Display all the ACL VLAN Groups or display a specific ACL VLAN Group by name. To display the names in their entirety, the output displays in a line-by-line format.

**Syntax**

```
show acl-vlan-group detail
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Display information in a line-by-line format to display the names in their entirety. Without the detail option, the output is displayed in a table style and information may be truncated.</td>
</tr>
</tbody>
</table>

**Default**

No default behavior or values

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

**Usage Information**

The output for this command displays in a line-by-line format. This allows the ACL-VLAN-Group names (or the Access List Group Names) to display in their entirety.

**Examples**

The following sample output shows the line-by-line style display when using the `show acl-vlan-group detail` option. Note that no group or access list names are truncated.

```
Dell#show acl-vlan-group detail
Group Name : Test
 Egress IP Acl : -
 Ingress IP Acl : test
 Ingress IPV6 Acl : -
```
description (ACL VLAN Group)

Add a description to the ACL VLAN group.

**Syntax**

```
description description
```

**Parameters**

- **description**
  
  Enter a description to identify the ACL VLAN group (80 characters maximum).

**Default**

No default behavior or values

**Command Modes**

CONFIGURATION (conf-acl-vl-grp)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

**Usage Information**

Enter a description for each ACL VLAN group that you create for effective and streamlined administrative and logging purposes.
Bidirectional Forwarding Detection (BFD)

Bidirectional forwarding detection (BFD) is a detection protocol that provides fast forwarding path failure detection.

The Dell Networking Operating System (OS) implementation is based on the standards specified in the IETF Draft draft-ietf-bfd-base-03 and supports BFD on all Layer 3 physical interfaces including virtual local area network (VLAN) interfaces and port-channels.

Topics:
- bfd all-neighbors
- bfd disable
- bfd enable (Configuration)
- bfd enable (Interface)
- bfd interval
- bfd neighbor
- bfd protocol-liveness
- ip route bfd
- ipv6 ospf bfd all-neighbors
- isis bfd all-neighbors
- neighbor bfd
- neighbor bfd disable
- show bfd neighbors
- vrrp bfd neighbor

**bfd all-neighbors**

Enable BFD sessions with all neighbors discovered by Layer 3 protocols intermediate system to intermediate system (IS-IS), open shortest path first (OSPF), OSPFv3, or border gateway protocol (BGP) on router interfaces, and (optionally) reconfigure the default timer values.

**Syntax**
```
[vrrp] bfd all-neighbors [interval interval min_rx min_rx multiplier value role {active | passive}]
```

**Parameters**
- `vrrp` Enter the keyword `vrrp` in INTERFACE mode to enable BFD for VRRP.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timer</td>
<td>(OPTIONAL) Enter the keyword <code>interval</code> to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is 200.</td>
</tr>
<tr>
<td>minrx</td>
<td>Enter the keyword <code>min_rx</code> to specify the minimum rate at which the local system would like to receive control packets from the remote system. The range is from 50 to 1000. The default is 200.</td>
</tr>
<tr>
<td>multiplier</td>
<td>Enter the keyword <code>multiplier</code> to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.</td>
</tr>
<tr>
<td>role [active</td>
<td>Enter the role that the local system assumes:</td>
</tr>
<tr>
<td>passive]</td>
<td>• Active — The active system initiates the BFD session. Both systems can be active for the same session.</td>
</tr>
<tr>
<td></td>
<td>• Passive — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.</td>
</tr>
</tbody>
</table>

The default is active.

**Defaults**

Refer to Parameters.

**Command Modes**

- ROUTER OSPF
- ROUTER OSPFv3
- ROUTER BGP
- ROUTER ISIS
- INTERFACE (BFD for VRRP only)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

All neighbors inherit the timer values configured with the `bfd neighbor` command except in the following cases:

- Timer values configured with the `isis bfd all-neighbors` commands in INTERFACE mode override timer values configured with the `bfd neighbor` command. Likewise, using the `no bfd neighbor` command does not disable BFD on an interface if you explicitly enable BFD using the `isis bfd all-neighbors` command.
- Neighbors that have been explicitly enabled or disabled for a BFD session with the `bfd neighbor` or `neighbor bfd disable` commands in ROUTER BGP mode do not inherit the global BFD enable/disable values configured with the `bfd`
neighbor command or configured for the peer group to which a neighbor belongs. The neighbors inherit only the global timer values (configured with the bfd neighbor command).

Related Commands

- `show bfd neighbors` — displays BFD neighbor information on all interfaces or a specified interface.
- `bfd neighbor` — explicitly enables a BFD session with a BGP neighbor or a BGP peer group.
- `neighbor bfd disable` — explicitly disables a BFD session with a BGP neighbor or a BGP peer group.

## bfd disable

Disable BFD on an interface.

**Syntax**

```
bfd disable
```

Re-enable BFD using the `no bfd disable` command.

**Defaults**

BFD is disabled by default.

**Command Modes**

INTERFACE VRRP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

## bfd enable (Configuration)

Enable BFD on all interfaces.

**Syntax**

```
bfd enable
```

Disable BFD using the `no bfd enable` command.

**Defaults**

BFD is disabled by default.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
**Version** | **Description**
--- | ---
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.

### bfd enable (Interface)

Enable BFD on an interface.

**Syntax**

```
bfd enable
```

**Defaults**

BFD is enabled on all interfaces when you enable BFD from CONFIGURATION mode.

**Command Modes**

INTERFACE

**Command History**

- **Version**
  - 9.9(0.0): Introduced on the FN IOM.
  - 9.2(0.0): Introduced on the MXL 10/40GbE Switch IO Module.

### bfd interval

Specify non-default BFD session parameters beginning with the transmission interval.

**Syntax**

```
bfd interval interval min_rx min_rx multiplier value role {active | passive}
```

**Parameters**

- **interval**
  - **milliseconds**
    - Enter the keywords `interval` to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is 200.

- **min_rx**
  - **milliseconds**
    - Enter the keywords `min_rx` to specify the minimum rate at which the local system would like to receive control packets from the remote system. The range is from 50 to 1000. The default is 200.

- **multiplier value**
  - Enter the keywords `multiplier` to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.

- **role [active | passive]**
  - Enter the role that the local system assumes:
    - **Active** — The active system initiates the BFD session. Both systems can be active for the same session.
Passive — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.

The default is Active.

Defaults

Refer to Parameters.

Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell(conf-if-gi-0/3)#bfd interval 250 min_rx 300 multiplier 4 role passive
Dell(conf-if-gi-0/3)#

**bfd neighbor**

Establish a BFD session with a neighbor.

Syntax

`bfd neighbor ip-address`

Parameters

| ip-address | Enter the IP address of the neighbor in dotted decimal format (A.B.C.D). |

Defaults

none

Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show bfd neighbors` — displays the BFD neighbor information on all interfaces or a specified interface.
### bfd protocol-liveness

Enable the BFD protocol liveness feature.

**Syntax**

```
bfd protocol-liveness
```

**Defaults**

Disabled

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Protocol Liveness is a feature that notifies the BFD Manager when a client protocol (for example, OSPF and ISIS) is disabled. When a client is disabled, all BFD sessions for that protocol are torn down. Neighbors on the remote system receive an Admin Down control packet and are placed in the Down state. Peer routers might take corrective action by choosing alternative paths for the routes that originally pointed to this router.

---

### ip route bfd

Enable BFD for all neighbors configured through static routes.

**Syntax**

```
ip route bfd [interval interval min_rx min_rx multiplier value role {active | passive}]
```

To disable BFD for all neighbors configured through static routes, use the `no ip route bfd [interval interval min_rx min_rx multiplier value role {active | passive}]` command.

**Parameters**

- `interval interval` (OPTIONAL) Enter the keywords `interval` to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is 200.
- `min_rx milliseconds` Enter the keywords `min_rx` to specify the minimum rate at which the local system receives control packets from the remote system. The range is from 50 to 1000. The default is 200.
- `multiplier value` Enter the keywords `multiplier` to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.
role [active | passive] Enter the role that the local system assumes:

- **Active** — The active system initiates the BFD session. Both systems can be active for the same session.
- **Passive** — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.

The default is **Active**.

**Defaults**

See Parameters

**Command Modes** CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Related Commands**

show bfd neighbors — displays the BFD neighbor information on all interfaces or a specified interface.

**ipv6 ospf bfd all-neighbors**

Establish BFD sessions with all OSPFv3 neighbors on a single interface or use non-default BFD session parameters.

**Syntax**

```
ipv6 ospf bfd all-neighbors [disable | [interval interval min_rx min_rx multiplier value role {active | passive}]]
```

To disable all BFD sessions on an OSPFv3 interface implicitly, use the **no ipv6 ospf bfd all-neighbors [disable | [interval interval min_rx min_rx multiplier value role {active | passive}]]** command in interface mode.

**Parameters**

- **disable** (OPTIONAL) Enter the keyword disable to disable BFD on this interface.
- **interval**
  - `milliseconds` (OPTIONAL) Enter the keyword interval to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is **200**.
- **min_rx**
  - `milliseconds` Enter the keywords min_rx to specify the minimum rate at which the local system receives control packets from the remote system. The range is from 50 to 1000. The default is **200**.
multiplier value  Enter the keyword multiplier to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.

role [active | passive]  Enter the role that the local system assumes:

- Active — The active system initiates the BFD session. Both systems can be active for the same session.
- Passive — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.

The default is Active.

Defaults  See Parameters

Command Modes  INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**isis bfd all-neighbors**

Enable BFD on all IS-IS neighbors discovered on an interface.

**Syntax**

```plaintext
isis bfd all-neighbors [disable | [interval interval min_rx min_rx multiplier value role {active | passive}]]
```

To remove all BFD sessions with IS-IS neighbors discovered on this interface, use the no isis bfd all-neighbors [disable | [interval interval min_rx min_rx multiplier value role {active | passive}]] command.

**Parameters**

- **disable**  (OPTIONAL) Enter the keyword disable to disable BFD on this interface.

- **interval**  (OPTIONAL) Enter the keywords interval to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is 200.

- **min_rx milliseconds**  Enter the keywords min_rx to specify the minimum rate at which the local system would like to receive control packets from the remote system. The range is from 50 to 1000. The default is 200.
**multiplier value**

Enter the keywords multiplier to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.

**role [active | passive]**

Enter the role that the local system assumes:

- **Active** — The active system initiates the BFD session. Both systems can be active for the same session.
- **Passive** — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.

The default is **Active**.

**Defaults**

See Parameters

**Command Modes**

INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command provides the flexibility to fine-tune the timer values based on individual interface needs when ISIS BFD is configured in CONFIGURATION mode. Any timer values specified with this command overrides timers set using the bfd all-neighbors command. Using the no form of this command does not disable BFD if BFD is configured in CONFIGURATION mode.

To disable BFD on a specific interface while BFD is configured in CONFIGURATION mode, use the keyword disable.

**neighbor bfd**

Explicitly enable a BFD session with a BGP neighbor or a BGP peer group.

**Syntax**

```
neighbor {ip-address | peer-group-name} bfd
```

**Parameters**

- **ip-address**
  
Enter the IP address of the BGP neighbor that you want to explicitly enable for BFD sessions in dotted decimal format (A.B.C.D).

- **peer-group-name**
  
Enter the name of the peer group that you want to explicitly enable for BFD sessions.

**Defaults**

none
neighbor bfd disable

Explicitly disable a BFD session with a BGP neighbor or a BGP peer group.

**Syntax**
```
neighbor {ip-address | peer-group-name} bfd disable
```

**Parameters**
- **ip-address**: Enter the IP address of the BGP neighbor that you want to explicitly disable for BFD sessions in dotted decimal format (A.B.C.D).
- **peer-group-name**: Enter the name of the peer group that you want to explicitly disable for BFD sessions.

**Defaults**
none

**Command Modes**
ROUTER BGP
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you explicitly disable a BGP neighbor for a BFD session with the `neighbor bfd disable` command:

- The neighbor does not inherit the global BFD disable values configured with the `bfd all-neighbor` command or configured for the peer group to which the neighbor belongs.
- The neighbor only inherits the global timer values configured with the `bfd all-neighbor` command: interval, min_rx, and multiplier.

When you remove the Disabled state of a BFD for a BGP session with a specified neighbor by entering the `no neighbor bfd disable` command, the BGP link with the neighbor returns to normal operation and uses the BFD session parameters globally configured with the `bfd all-neighbor` command or configured for the peer group to which the neighbor belongs.

Related Commands

- `bfd all-neighbors` — enables BFD sessions with all neighbors discovered by Layer 3 protocols.
- `bfd neighbor` — explicitly enables a BFD session with a BGP neighbor or a BGP peer group.
- `show bfd neighbors` — displays the BFD neighbor information on all interfaces or a specified interface.

**show bfd neighbors**

Display BFD neighbor information on all interfaces or a specified interface.

Syntax

```
show bfd neighbors [interface detail]
```

Parameters

- `interface`  
  Enter one of the following keywords and slot/port or number information:
  - For a 10-Gigabit Ethernet interface, enter the keyword `tengigabitethernet` then the slot/port information.
  - For a port-channel interface, enter the keyword `port-channel` then a number. The range is from 1 to 128.
  - For VLAN interfaces, enter the keyword `vlan` then a number from 1 to 4094. For ExaScale VLAN interfaces, the range is 1 to 2730 (VLAN IDs can be from 0 to 4093).
(OPTIONAL) Enter the keyword `detail` to view detailed information about BFD neighbors.

**Defaults**
none

**Command Modes**
- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

Dell#show bfd neighbors

*    - Active session role
Ad Dn - Admin Down
B    - BGP
C    - CLI
I    - ISIS
O    - OSPF
R    - Static Route (RTM)

<table>
<thead>
<tr>
<th>LocalAddr</th>
<th>RemoteAddr</th>
<th>Interface</th>
<th>State</th>
<th>Rx-int</th>
<th>Tx-int</th>
<th>Mult</th>
<th>Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.1.3.2</td>
<td>10.1.3.1</td>
<td>Gi 1/3</td>
<td>Up</td>
<td>300</td>
<td>250</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

**Example (Detail)**

Dell#show bfd neighbors detail

Session Discriminator: 1
Neighbor Discriminator: 1
Local Addr: 10.1.3.2
Local MAC Addr: 00:01:e8:02:15:0e
Remote Addr: 10.1.3.1
Remote MAC Addr: 00:01:e8:27:2b:f1
Int: GigabitEthernet 1/3
State: Up
Configured parameters:
 TX: 100ms, RX: 100ms, Multiplier: 3
Neighbor parameters:
 TX: 250ms, RX: 300ms, Multiplier: 4
Actual parameters:
 TX: 300ms, RX: 250ms, Multiplier: 3
Role: Active
Delete session on Down: False
Client Registered: CLI
Uptime: 00:02:04
Statistics:
 Number of packets received from neighbor: 376
 Number of packets sent to neighbor: 314
 Number of state changes: 2
 Number of messages from IFA about port state change: 0
 Number of messages communicated b/w Manager and Agent: 6
Dell#
Bidirectional Forwarding Detection (BFD)
For detailed information about configuring BGP, refer to the BGP chapter in the *Dell Networking OS Configuration Guide*.

This chapter contains the following sections:

- BGPv4 Commands
- MBGP Commands
- BGP Extended Communities (RFC 4360)

BGP IPv6 Commands are listed in the following sections:

- IPv6 BGP Commands
- IPv6 MBGP Commands

Topics:

- BGPv4 Commands
- address-family
- aggregate-address
- bgp add-path
- bgp always-compare-med
- bgp asnotation
- bgp bestpath as-path ignore
- bgp bestpath as-path multipath-relax
- bgp bestpath med confed
- bgp bestpath med missing-as-best
- bgp bestpath router-id ignore
- bgp client-to-client reflection
- bgp cluster-id
- bgp confederation identifier
- bgp confederation peers
- bgp dampening
- bgp default local-preference
- bgp enforce-first-as
- bgp fast-external-failover
- bgp four-octet-as-support
- bgp graceful-restart
• bgp non-deterministic-med
• bgp recursive-bgp-next-hop
• bgp regex-eval-optz-disable
• bgp router-id
• bgp soft-reconfig-backup
• capture bgp-pdu neighbor
• capture bgp-pdu max-buffer-size
• clear ip bgp
• clear ip bgp dampening
• clear ip bgp flap-statistics
• clear ip bgp peer-group
• debug ip bgp
• debug ip bgp dampening
• debug ip bgp events
• debug ip bgp keepalive
• debug ip bgp notifications
• debug ip bgp soft-reconfiguration
• debug ip bgp updates
• default-metric
• description
• max-paths
• neighbor activate
• neighbor add-path
• neighbor advertisement-interval
• neighbor advertisement-start
• neighbor allowas-in
• neighbor default-originate
• neighbor description
• neighbor distribute-list
• neighbor ebgp-multihop
• neighbor fall-over
• neighbor graceful-restart
• neighbor local-as
• neighbor maximum-prefix
• neighbor password
• neighbor peer-group (assigning peers)
• neighbor peer-group (creating group)
• neighbor peer-group passive
• neighbor remote-as
• neighbor remove-private-as
• neighbor route-map
• neighbor route-reflector-client
• neighbor shutdown
• neighbor soft-reconfiguration inbound
• neighbor timers
• neighbor update-source
• neighbor weight
• network
• network backdoor
• redistribute
• redistribute ospf
• router bgp
• show capture bgp-pdu neighbor
• show config
• show ip bgp
• show ip bgp cluster-list
• show ip bgp community
• show ip bgp community-list
• show ip bgp dampened-paths
• show ip bgp detail
• show ip bgp extcommunity-list
• show ip bgp filter-list
• show ip bgp flap-statistics
• show ip bgp inconsistent-as
• show ip bgp neighbors
• show ip bgp next-hop
• show ip bgp paths
• show ip bgp paths as-path
• show ip bgp paths community
• show ip bgp peer-group
• show ip bgp regexp
• show ip bgp summary
• show running-config bgp
• timers bgp
• MBGP Commands
• debug ip bgp dampening
• distance bgp
• show ip bgp dampened-paths
• BGP Extended Communities (RFC 4360)
• set extcommunity rt
• set extcommunity soo
• show ip bgp paths extcommunity
• show ip bgp extcommunity-list
• IPv6 BGP Commands
• bgp soft-reconfig-backup
• clear ip bgp ipv6 unicast soft
BGPv4 Commands

Border gateway protocol (BGP) is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS).

BGP version 4 (BGPv4) supports classless interdomain routing (CIDR) and the aggregation of routes and AS paths. Basically, two routers (called neighbors or peers) exchange information including full routing tables and periodically send messages to update those routing tables.

**NOTE:** Dell Networking OS Version 7.7.1 supports 2-Byte (16-bit) and 4-Byte (32-bit) format for autonomous system numbers (ASNs), where the 2-Byte format is 1-65535 and the 4-Byte format is 1-4294967295.

**NOTE:** Dell Networking OS Version 8.3.1.0 supports dotted format as well as the traditional plain format for AS numbers. Display the dot format using the `show ip bgp` command. To determine the comparable dot format for an ASN from a traditional format, use `ASN/65536`. For more information about using the 2–Byte or 4-Byte format, refer to the Dell Networking OS Configuration Guide.

### address-family

Enable the IPv4 multicast or the IPv6 address family.

**Syntax**

```
address-family [ipv4 multicast| ipv6 unicast]
```

**Parameters**

- `ipv4 multicast`: Enter BGPv4 multicast mode.
- `ipv6 unicast`: Enter BGPv6 mode.

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
aggregate-address

To minimize the number of entries in the routing table, summarize a range of prefixes.

Syntax

```
aggregate-address ip-address mask [advertise-map map-name] [as-set] [attribute-map map-name] [summary-only] [suppress-map map-name]
```

Parameters

- `ip-address mask` Enter the IP address and mask of the route to be the aggregate address. Enter the IP address in dotted decimal format (A.B.C.D) and mask in /prefix format (/x).
- `advertise-map map-name` (OPTIONAL) Enter the keywords advertise-map then the name of a configured route map to set filters for advertising an aggregate route.
- `as-set` (OPTIONAL) Enter the keyword as-set to generate path attribute information and include it in the aggregate. AS_SET includes AS_PATH and community information from the routes included in the aggregated route.
- `attribute-map map-name` (OPTIONAL) Enter the keywords attribute-map then the name of a configured route map to modify attributes of the aggregate, excluding AS_PATH and NEXT_HOP attributes.
- `summary-only` (OPTIONAL) Enter the keyword summary-only to advertise only the aggregate address. Specific routes are not advertised.
- `suppress-map map-name` (OPTIONAL) Enter the keywords suppress-map then the name of a configured route map to identify which more-specific routes in the aggregate are suppressed.

Defaults

Not configured.

Command Modes

- ROUTER BGP ADDRESS FAMILY
- ROUTER BGP ADDRESS FAMILY IPv6

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

At least one of the routes included in the aggregate address must be in the BGP routing table for the configured aggregate to become active.
If routes within the aggregate are constantly changing, do not add the \texttt{as-set} parameter to the aggregate as the aggregate flaps to keep track of the changes in the \texttt{AS\_PATH}.

In route maps used in the \texttt{suppress-map} parameter, routes meeting the \texttt{deny} clause are not suppress; in other words, they are allowed. The opposite is also true: routes meeting the \texttt{permit} clause are suppressed.

If the route is injected via the \texttt{network} command, that route still appears in the routing table if the \texttt{summary-only} parameter is configured in the \texttt{aggregate-address} command.

The \texttt{summary-only} parameter suppresses all advertisements. If you want to suppress advertisements to only specific neighbors, use the \texttt{neighbor distribute-list} command.

In the \texttt{show ip bgp} command, aggregates contain an ‘a’ in the first column and routes suppressed by the aggregate contain an ‘s’ in the first column.

### \texttt{bgp add-path}

Allow the advertisement of multiple paths for the same address prefix without the new paths replacing any previous ones.

**Syntax**

\texttt{bgp add-path [send | receive | both] path-count}

**Parameters**

- \texttt{send} Enter the keyword \texttt{send} to indicate that the system sends multiple paths to peers.
- \texttt{receive} Enter the keyword \texttt{receive} to indicate that the system accepts multiple paths from peers.
- \texttt{both} Enter the keyword \texttt{both} to indicate that the system sends and accepts multiple paths from peers.
- \texttt{path-count} Enter the number paths supported. The range is from 2 to 64.

**Defaults**

Disabled

**Command Modes**

- ROUTER BGP
- ROUTER BGP-address-family

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Related Commands

neighbor add-path — specifies that this neighbor/peer group can send/receive multiple path advertisements.

bgp always-compare-med

Allows you to enable comparison of the MULTI_EXIT_DISC (MED) attributes in the paths from different external ASs.

Syntax

```
bgp always-compare-med
```

To disable comparison of MED, enter `no bgp always-compare-med`.

Defaults

Disabled (that is, the software only compares MEDs from neighbors within the same AS).

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Any update without a MED attribute is the least preferred route.

If you enable this command, use the `clear ip bgp *` command to recompute the best path.

bnp asnotation

Allows you to implement a method for AS number representation in the command line interface (CLI).

Syntax

```
bgp asnotation [asplain | asdot+ | asdot]
```

To disable a dot or dot+ representation and return to ASPLAIN, enter the `no bgp asnotation` command.

Defaults

asplain

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

Before enabling this feature, enable the `enable bgp four-octet-as-support` command. If you disable the `four-octet-support` command after using `dot` or `dot+` format, the AS numbers revert to asplain text.

When you apply an annotation, it is reflected in the running-configuration. If you change the notation type, the running-config updates dynamically and the new notation shows.

Example

```plaintext
Dell(conf)#router bgp 1
Dell(conf-router_bgp)#bgp asnotation asdot
Dell(conf-router_bgp)#ex
Dell(conf)#do show run | grep bgp

router bgp 1
 bgp four-octet-as-support
 bgp asnotation asdot

Dell(conf)#router bgp 1
Dell(conf-router_bgp)#bgp asnotation asdot+
Dell(conf-router_bgp)#ex
Dell(conf)#do show run | grep bgp
router bgp 1
 bgp four-octet-as-support
 bgp asnotation asdot+

Dell(conf)#router bgp 1
Dell(conf-router_bgp)#bgp asnotation asplain
Dell(conf-router_bgp)#ex
Dell(conf)#do show run | grep bgp
router bgp 1
 bgp four-octet-as-support

Dell(conf)#
```

Related Commands

`bgp four-octet-as-support` — enables 4-byte support for the BGP process.

### bgp bestpath as-path ignore

Ignore the AS PATH in BGP best path calculations.

**Syntax**

```plaintext
bgp bestpath as-path ignore
```

To return to the default, enter the `no bgp bestpath as-path ignore` command.

**Defaults**

Disabled (that is, the software considers the AS_PATH when choosing a route as best).

**Command Modes**

- `ROUTER BGP`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
**bgp bestpath as-path multipath-relax**

Include prefixes received from different AS paths during multipath calculation.

**Syntax**

```
bgp bestpath as-path multipath-relax
```

To return to the default BGP routing process, use the `no bgp bestpath as-path multipath-relax` command.

**Defaults**

Disabled

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The `bestpath router bgp configuration mode command` changes the default bestpath selection algorithm. The `multipath-relax` option allows load-sharing across providers with different (but equal-length) autonomous system paths. Without this option, ECMP expects the AS paths to be identical for load-sharing.

---

**bgp bestpath med confed**

Enable MULTI_EXIT_DISC (MED) attribute comparison on paths learned from BGP confederations.

**Syntax**

```
bgp bestpath med confed
```

To disable MED comparison on BGP confederation paths, enter the `no bgp bestpath med confed` command.

**Defaults**

Disabled

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
**bgp bestpath med missing-as-best**

During path selection, indicate preference to paths with missing MED (MULTI_EXIT_DISC) over paths with an advertised MED attribute.

**Syntax**
```
bgp bestpath med missing-as-best
```

To return to the default selection, use the `no bgp bestpath med missing-as-best` command.

**Defaults**
Disabled

**Command Modes**
ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
The MED is a 4-byte unsigned integer value and the default behavior is to assume a missing MED as 4294967295. This command causes a missing MED to be treated as 0. During path selection, paths with a lower MED are preferred over paths with a higher MED.

**bgp bestpath router-id ignore**

Do not compare router-id information for external paths during best path selection.

**Syntax**
```
bgp bestpath router-id ignore
```

To return to the default selection, use the `no bgp bestpath router-id ignore` command.

**Defaults**
Disabled

**Command Modes**
ROUTER BGP
### bgp client-to-client reflection

Allows you to enable route reflection between clients in a cluster.

**Syntax**

```
bgp client-to-client reflection
```

To disable client-to-client reflection, use the `no bgp client-to-client reflection` command.

**Defaults**

Enabled when a route reflector is configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Route reflection to clients is not necessary if all client routers are fully meshed.

**Related Commands**

- `bgp cluster-id` — assigns an ID to a BGP cluster with two or more route reflectors.
- `neighbor route-reflector-client` — configures a route reflector and clients.

### bgp cluster-id

Assign a cluster ID to a BGP cluster with more than one route reflector.

**Syntax**

```
bgp cluster-id {ip-address | number}
```

To delete a cluster ID, use the `no bgp cluster-id {ip-address | number}` command.

**Parameters**

- `ip-address` Enter an IP address as the route reflector cluster ID.
number

Enter a route reflector cluster ID as a number from 1 to 4294967295.

Defaults
Not configured.

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
When a BGP cluster contains only one route reflector, the cluster ID is the route reflector’s router ID. For redundancy, a BGP cluster may contain two or more route reflectors. Assign a cluster ID with the `bgp cluster-id` command. Without a cluster ID, the route reflector cannot recognize route updates from the other route reflectors within the cluster.

The default format for displaying the cluster-id is dotted decimal, but if you enter the cluster-id as an integer, it is displayed as an integer.

Related Commands
- `bgp client-to-client reflection` — enables route reflection between the route reflector and clients.
- `neighbor route-reflector-client` — configures a route reflector and clients.
- `show ip bgp cluster-list` — views paths with a cluster ID.

### bgp confederation identifier

Configure an identifier for a BGP confederation.

**Syntax**

```
bgp confederation identifier as-number
```

To delete a BGP confederation identifier, use the `no bgp confederation identifier as-number` command.

**Parameters**

- **as-number**
  Enter the AS number. The range is from 0 to 65535 (2 byte), from 1 to 4294967295 (4 byte), or from 0.1 to 65535.65535 (dotted format).

**Defaults**
Not configured.

**Command Modes**
ROUTER BGP
bGP confederation peers

Specify the autonomous systems (ASs) that belong to the BGP confederation.

Syntax

```
bgp confederation peers as-number [...as-number]
```

To return to the default, use the `no bgp confederation peers` command.

Parameters

- `as-number` Enter the AS number. The range is from 0 to 65535 (2 byte), from 1 to 4294967295 (4 byte), or from 0.1 to 65535.65535 (dotted format).
- `...as-number` (OPTIONAL) Enter up to 16 confederation numbers. The range is from 0 to 65535 (2 byte), from 1 to 4294967295 (4 byte), or from 0.1 to 65535.65535 (dotted format).

Defaults

Not configured.

Command Modes

- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

All the routers in the Confederation must be 4 byte or 2 byte identified routers. You cannot mix them.

The autonomous systems configured in this command are visible to the EBGP neighbors. Each autonomous system is fully meshed and contains a few connections to other autonomous systems.

After specifying autonomous systems numbers for the BGP confederation, recycle the peers to update their configuration.

Related Commands

bgp confederation identifier — configures a confederation ID.

bgp four-octet-as-support — enables 4-byte support for the BGP process.

bgp dampening

Enable BGP route dampening and configure the dampening parameters.

Syntax

bgp dampening [half-life reuse suppress max-suppress-time] [route-map map-name]

To disable route dampening, use the no bgp dampening [half-life reuse suppress max-suppress-time] [route-map map-name] command.

Parameters

- **half-life** (OPTIONAL) Enter the number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half after the half-life period expires. The range is from 1 to 45. The default is 15 minutes.

- **reuse** (OPTIONAL) Enter a number as the reuse value, which is compared to the flapping route’s Penalty value. If the Penalty value is less than the reuse value, the flapping route is once again advertised (or no longer suppressed). The range is from 1 to 20000. The default is 750.

- **suppress** (OPTIONAL) Enter a number as the suppress value, which is compared to the flapping route’s Penalty value. If the Penalty value is greater than the suppress value, the flapping route is no longer advertised (that is, it is suppressed). The range is from 1 to 20000. The default is 2000.

- **max-suppress-time** (OPTIONAL) Enter the maximum number of minutes a route can be suppressed. The default is four times the half-life value. The range is from 1 to 255. The default is 60 minutes.
route-map map-name

(Optional) Enter the keyword route-map then the name of a configured route map.

Only match commands in the configured route map are supported.

Defaults

Disabled.

Command Modes

- ROUTER BGP
- ROUTER BGP-address-family

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enter the bgp dampening command, the default values for half-life, reuse, suppress, and max-suppress-time are applied. The parameters are position-dependent; therefore, if you configure one parameter, configure the parameters in the order they appear in the CLI.

Related Commands

- show ip bgp dampened-paths — views the BGP paths.

bgp default local-preference

Change the default local preference value for routes exchanged between internal BGP peers.

Syntax

bgp default local-preference value

To return to the default value, use the no bgp default local-preference command.

Parameters

value

Enter a number to assign to routes as the degree of preference for those routes. When routes are compared, the higher the degree of preference or local preference value, the more the route is preferred. The range is from 0 to 4294967295. The default is 100.

Defaults

100

Command Modes

ROUTER BGP
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

All routers apply the `bgp default local-preference` command setting within the AS. To set the local preference for a specific route, use the `set local-preference` command in ROUTE-MAP mode.

Related Commands

- `set metric` — assigns a local preference value for a specific route.

**bgp enforce-first-as**

Disable (or enable) enforce-first-as check for updates received from EBGP peers.

Syntax

```
bgp enforce-first-as
```

To turn off the default, use the `no bgp enforce-first-as` command.

Defaults

Enabled

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is enabled by default, that is for all updates received from EBGP peers, BGP ensures that the first AS of the first AS segment is always the AS of the peer. If not, the update is dropped and a counter is increments. To view the ‘failed enforce-first-as check’ counter, use the `show ip bgp neighbors` command.

If you disable the `enforce-first-as` command, it can be viewed using the `show ip protocols` command.

Related Commands

- `show ip bgp neighbors` — views the information the BGP neighbors exchange.
- `show ip protocols` — views information on routing protocols.
bgp fast-external-failover

Enable the fast external failover feature, which immediately resets the BGP session if a link to a directly connected external peer fails.

Syntax
bgp fast-external-failover
To disable fast external failover, use the no bgp fast-external-failover command.

Defaults
Enabled

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The `bgp fast-external-failover` command appears in the `show config` command output.

bgp four-octet-as-support

Enable 4-byte support for the BGP process.

Syntax
bgp four-octet-as-support
To disable fast external failover, use the no bgp four-octet-as-support command.

Defaults
Disabled (supports 2-byte format)

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Routers supporting 4-byte ASNs advertise that function in the OPEN message. The behavior of a 4-byte router is slightly different depending on whether it is speaking to a 2-byte router or a 4-byte router.
When creating Confederations, all the routers in the Confederation must be 4 byte or 2 byte identified routers. You cannot mix them.

Where the 2-byte format is from 1 to 65535, the 4-byte format is from 1 to 4294967295. Both formats are accepted and the advertisements reflect the entered format.

For more information about using the 2 byte or 4-byte format, refer to the Dell Networking OS Configuration Guide.

**bgp graceful-restart**

To support graceful restart as a receiver only, enable graceful restart on a BGP neighbor, a BGP node, or designate a local router.

**Syntax**

```
bgp graceful-restart [restart-time seconds] [stale-path-time seconds] [role receiver-only]
```

To return to the default, use the `no bgp graceful-restart` command.

**Parameters**

- **restart-time seconds**
  - Enter the keyword `restart-time` then the maximum number of seconds to restart and bring-up all the peers. The range is from 1 to 3600 seconds. The default is **120 seconds**.

- **stale-path-time seconds**
  - Enter the keyword `stale-path-time` then the maximum number of seconds to wait before restarting a peer's stale paths. The default is **360 seconds**.

- **role receiver-only**
  - Enter the keyword `role receiver-only` to designate the local router to support graceful restart as a receiver only.

**Defaults**

as above

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This feature is advertised to BGP neighbors through a capability advertisement. In Receiver Only mode, BGP saves the advertised routes of peers that support this capability when they restart.

BGP graceful restart is active only when the neighbor becomes established. Otherwise it is disabled. Graceful-restart applies to all neighbors with established adjacency.
**bgp non-deterministic-med**

Compare MEDs of paths from different autonomous systems.

**Syntax**

```
bgp non-deterministic-med
```

To return to the default, use the `no bgp non-deterministic-med` command.

**Defaults**

Disabled (that is, paths/routes for the same destination but from different ASs do not have their MEDs compared).

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

In Non-Deterministic mode, paths are compared in the order in which they arrive. This method can lead to the system choosing different best paths from a set of paths, depending on the order in which they are received from the neighbors because MED may or may not get compared between adjacent paths. In Deterministic mode (`no bgp non-deterministic-med`), the system compares MED between adjacent paths within an AS group because all paths in the AS group are from the same AS.

When you change the path selection from Deterministic to Non-Deterministic, the path selection for the existing paths remains Deterministic until you enter the `clear ip bgp` command to clear existing paths.

**bgp recursive-bgp-next-hop**

Enable next-hop resolution through other routes learned by BGP.

**Syntax**

```
bgp recursive-bgp-next-hop
```

To disable next-hop resolution, use the `no bgp recursive-bgp-next-hop` command.

**Defaults**

Enabled

**Command Modes**

ROUTER BGP
**bgp regex-eval-optz-disable**

Disables the Regex Performance engine that optimizes complex regular expression with BGP.

**Syntax**
```
bgp regex-eval-optz-disable
```

To re-enable optimization engine, use the `no bgp regex-eval-optz-disable` command.

**Defaults**
Enabled

**Command Modes**
ROUTER BGP (conf-router_bgp)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

BGP uses regular expressions (regex) to filter route information. In particular, the use of regular expressions to filter routes based on AS-PATHs and communities is common. In a large-scale configuration, filtering millions of routes based on regular expressions can be quite CPU intensive, as a regular expression evaluation involves generation and evaluation of complex finite state machines.

BGP policies, containing regular expressions to match as-path and communities, tend to use much CPU processing time, which in turn affects the BGP routing convergence. Additionally, the `show bgp` commands, which are filtered through regular expressions, use up CPU cycles particularly with large databases. The Regex Engine Performance Enhancement feature optimizes the CPU usage by caching and reusing regular
expression evaluation results. This caching and reuse may be at the expensive of RP1 processor memory.

Examples

Dell(conf-router_bgp)#no bgp regex-eval-optz-disable
Dell(conf-router_bgp)#do show ip protocols
Routing Protocol is "ospf 22222"
  Router ID is 2.2.2.2
  Area 51
      Routing for Networks
          10.10.0.0/0
Routing Protocol is "bgp 1"
  Cluster Id is set to 10.10.10.0
  Router Id is set to 10.10.10.0
  Fast-external-fallover enabled
  Regular expression evaluation optimization enabled
  Capable of ROUTE_REFRESH
  For Address Family IPv4 Unicast
      BGP table version is 0, main routing table version 0
      Distance: external 20 internal 200 local 200

Dell(conf-router_bgp)#

Related Commands

show ip protocols — views information on all routing protocols enabled and active.

bgp router-id

Assign a user-given ID to a BGP router.

Syntax

bgp router-id ip-address

To delete a user-assigned IP address, use the no bgp router-id command.

Parameters

ip-address

Enter an IP address in dotted decimal format to reset only that BGP neighbor.

Defaults

The router ID is the highest IP address of the Loopback interface or, if no Loopback interfaces are configured, the highest IP address of a physical interface on the router.

Command Modes

ROUTER BGP

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Peering sessions are reset when you change the router ID of a BGP router.
bgp soft-reconfig-backup

To avoid the peer from resending messages, use this command only when route-refresh is not negotiated.

Syntax

bgp soft-reconfig-backup
To return to the default setting, use the no bgp soft-reconfig-backup command.

Defaults
Off

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable soft-reconfiguration for a neighbor and you execute the clear ip bgp soft in command, the update database stored in the router is replayed and updates are re-evaluated. With this command, the replay and update process is triggered only if route-refresh request is not negotiated with the peer. If the request is indeed negotiated (after executing the clear ip bgp soft in command), BGP sends a route-refresh request to the neighbor and receives all of the peer's updates.

Related Commands
clear ip bgp — activates inbound policies without resetting the BGP TCP session.

capture bgp-pdu neighbor

Enable capture of an IPv4 BGP neighbor packet.

Syntax

capture bgp-pdu neighbor ipv4-address direction {both | rx | tx}
To disable capture of the IPv4 BGP neighbor packet, use the no capture bgp-pdu neighbor ipv4-address command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>Enter the IPv4 address of the target BGP neighbor.</td>
</tr>
<tr>
<td>direction</td>
<td>Enter the keyword direction and a direction — either rx for inbound, tx for outbound, or both.</td>
</tr>
</tbody>
</table>

Defaults
Not configured.

Command Modes
EXEC Privilege
**capture bgp-pdu max-buffer-size**

Set the size of the BGP packet capture buffer. This buffer size pertains to both IPv4 and IPv6 addresses.

**Syntax**

```
capture bgp-pdu max-buffer-size 100-102400000
```

**Parameters**

- `100-102400000` Enter a size for the capture buffer.

**Defaults**

40960000 bytes.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `capture bgp-pdu neighbor` — enables capture of an IPv4 BGP neighbor packet.
- `show capture bgp-pdu neighbor` — displays BGP packet capture information for an IPv6 address.

**clear ip bgp**

Reset BGP sessions. The soft parameter (BGP Soft Reconfiguration) clears the policies without resetting the TCP connection.

**Syntax**

```
clear ip bgp * | as-number | ip-address [flap-statistics | soft [in | out]]
```

**Parameters**

- `*` Enter an asterisk (*) to reset all BGP sessions.
as-number  Enter the AS number to reset all neighbors belonging to that AS. The range is from 0 to 65535 (2 byte), from 1 to 4294967295 (4 byte), or from 0.1 to 65535.65535 (dotted format).

ip-address  Enter an IP address in dotted decimal format to reset all prefixes from that neighbor.

flap-statistics  (OPTIONAL) Enter the keyword flap-statistics to reset the flap statistics on all prefixes from that neighbor.

soft  (OPTIONAL) Enter the keyword soft to configure and activate policies without resetting the BGP TCP session, that is, BGP Soft Reconfiguration.

NOTE: If you enter the clear ip bgp ip-address soft command, both inbound and outbound policies are reset.

in  (OPTIONAL) Enter the keyword in to activate only inbound policies.

out  (OPTIONAL) Enter the keyword out to activate only outbound policies.

Command Modes  EXEC Privilege

Command History  Version  Description
9.9(0.0)  Introduced on the FN IOM.
9.2(0.0)  Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands  bgp recursive-bgp-next-hop — disables next-hop resolution through other routes learned by the BGP.

bgp soft-reconfig-backup — turns on BGP Soft Reconfiguration.

clear ip bgp dampening

Clear information on route dampening and return the suppressed route to the Active state.

Syntax  clear ip bgp dampening [ip-address mask]

Parameters  ip-address mask  (OPTIONAL) Enter an IP address in dotted decimal format and the prefix mask in slash format (/x) to clear dampening information only that BGP neighbor.

Command Modes  EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you enter this command, the software deletes the history routes and returns the suppressed routes to the Active state.

clear ip bgp flap-statistics

Clear BGP flap statistics, which includes number of flaps and the time of the last flap.

Syntax

clear ip bgp flap-statistics [ip-address mask | filter-list as-path-name | regexp regular-expression]

Parameters

- **ip-address mask** (OPTIONAL) Enter an IP address in dotted decimal format and the prefix mask in slash format (/x) to reset only that prefix.
- **filter-list as-path-name** (OPTIONAL) Enter the keywords filter-list then the name of a configured AS-PATH list.
- **regexp regular-expression** (OPTIONAL) Enter the keyword regexp then regular expressions. Use one or a combination of the following:
  - . = (period) any single character (including a white space).
  - * = (asterisk) the sequences in a pattern (0 or more sequences).
  - + = (plus) the sequences in a pattern (1 or more sequences).
  - ? = (question mark) sequences in a pattern (either 0 or 1 sequences).
  - [ ] = (brackets) a range of single-character patterns.
  - ( ) = (parenthesis) groups a series of pattern elements to a single element.
  - { } = (braces) minimum and the maximum match count.
  - ^ = (caret) the beginning of the input string. If you use the caret at the beginning of a sequence or range, it matches on everything BUT the characters specified.
  - $ = (dollar sign) the end of the output string.

Command Modes

EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enter the `clear ip bgp flap-statistics` command without any parameters, all statistics are cleared.

Related Commands

- `show debugging` — views the enabled debugging operations.
- `show ip bgp flap-statistics` — views the BGP flap statistics.
- `undebug all` — disables all debugging operations.

### clear ip bgp peer-group

Reset a peer-group’s BGP sessions.

**Syntax**

```
clear ip bgp peer-group peer-group-name
```

**Parameters**

- `peer-group-name` Enter the peer group name to reset the BGP sessions within that peer group.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### debug ip bgp

Display all information on BGP, including BGP events, keepalives, notifications, and updates.

**Syntax**

```
dev bg ip bgp [ip-address | peer-group peer-group-name] [in | out]
```

To disable all BGP debugging, use the `no debug ip bgp` command.

**Parameters**

- `ip-address` Enter the IP address of the neighbor in dotted decimal format.
- `peer-group peer-group-name` Enter the keywords `peer-group` then the name of the peer group to debug.
**debug ip bgp dampening**

View information on routes being dampened.

**Syntax**

debug ip bgp dampening [in | out]

To disable debugging, use the no debug ip bgp dampening command.

**Parameters**

- **in** (OPTIONAL) Enter the keyword in to view only inbound dampened routes.
- **out** (OPTIONAL) Enter the keyword out to view only outbound dampened routes.

**Command Modes**

EXEC Privilege
**debug ip bgp events**

Display information on local BGP state changes and other BGP events.

**Syntax**

```
debug ip bgp [ip-address | peer-group peer-group-name] events [in | out]
```

To disable debugging, use the `no debug ip bgp [ip-address | peer-group peer-group-name] events` command.

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group peer-group-name** (OPTIONAL) Enter the keyword peer-group then the name of the peer group.
- **in** (OPTIONAL) Enter the keyword in to view only events on inbound BGP messages.
- **out** (OPTIONAL) Enter the keyword out to view only events on outbound BGP messages.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To remove all configured debug commands for BGP, enter the `no debug ip bgp` command.
**debug ip bgp keepalives**

Display information about BGP keepalive messages.

**Syntax**

```
debug ip bgp [ip-address | peer-group peer-group-name] keepalives [in | out]
```

To disable debugging, use the `no debug ip bgp [ip-address | peer-group peer-group-name] keepalives [in | out]` command.

**Parameters**

- `ip-address` (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- `peer-group peer-group-name` (OPTIONAL) Enter the keyword `peer-group` then the name of the peer group.
- `in` (OPTIONAL) Enter the keyword `in` to view only inbound keepalive messages.
- `out` (OPTIONAL) Enter the keyword `out` to view only outbound keepalive messages.

**Command Modes**

EXEC Privilege

**Command History**

- **Version**
  - **9.9(0.0)**: Introduced on the FN IOM.
  - **9.2(0.0)**: Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

To remove all configured debug commands for BGP, enter the `no debug ip bgp` command.

---

**debug ip bgp notifications**

Allows you to view information about BGP notifications received from neighbors.

**Syntax**

```
debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out]
```

To disable debugging, use the `no debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out]` command.
**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group peer-group-name** (OPTIONAL) Enter the keyword peer-group then the name of the peer group.
- **in** (OPTIONAL) Enter the keyword in to view BGP notifications received from neighbors.
- **out** (OPTIONAL) Enter the keyword out to view BGP notifications sent to neighbors

**Command Modes**

- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To remove all configured debug commands for BGP, enter the `no debug ip bgp` command.

### debug ip bgp soft-reconfiguration

Enable soft-reconfiguration debug.

**Syntax**

```
debug ip bgp {ip-address | peer-group-name} soft-reconfiguration
```

To disable, use the `no debug ip bgp {ip-address | peer-group-name} soft-reconfiguration` command.

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name** (OPTIONAL) Enter the name of the peer group to disable or enable all routers within the peer group.

**Defaults**

Disabled

**Command Modes**

- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Border Gateway Protocol IPv4 (BGPv4) | 363
Usage Information

This command turns on BGP soft-reconfiguration inbound debugging. If no neighbor is specified, debug turns on for all neighbors.

dev bgp updates

Allows you to view information about BGP updates.

Syntax

    debug ip bgp updates [in | out | prefix-list prefix-list-name]

To disable debugging, use the no debug ip bgp [ip-address | peer-group peer-group-name] updates [in | out] command.

Parameters

- **in** (OPTIONAL) Enter the keyword in to view only BGP updates received from neighbors.
- **out** (OPTIONAL) Enter the keyword out to view only BGP updates sent to neighbors.
- **prefix-list prefix-list-name** (OPTIONAL) Enter the keyword prefix-list then the name of an established prefix list. If the prefix list is not configured, the default is permit (to allow all routes).
- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name** (OPTIONAL) Enter the name of the peer group to disable or enable all routers within the peer group.

Command Modes

- EXEC Privilege

Command History

- **Version**

  - 9.9(0.0) Introduced on the FN IOM.
  - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To remove all configured debug commands for BGP, enter the no debug ip bgp command.
**default-metric**

Allows you to change the metric of redistributed routes to locally originated routes. Use this command with the `redistribute` command.

**Syntax**

```
default-metric number
```

To return to the default setting, use the `no default-metric` command.

**Parameters**

- `number` Enter a number as the metric to be assigned to routes from other protocols. The range is from 1 to 4294967295.

**Defaults**

0

**Command Modes**

`ROUTER BGP`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The `default-metric` command in BGP sets the value of the BGP MULTI_EXIT_DISC (MED) attribute for redistributed routes only.

**Related Commands**

- `bgp always-compare-med` — enables comparison of all BGP MED attributes.
- `redistribute` — redistributes routes from other routing protocols into BGP.

**description**

Enter a description of the BGP routing protocol.

**Syntax**

```
description {description}
```

To remove the description, use the `no description {description}` command.

**Parameters**

- `description` Enter a description to identify the BGP protocol (80 characters maximum).

**Defaults**

none

**Command Modes**

`ROUTER BGP`
max-paths

Configure the maximum number of parallel routes (multipath support) BGP supports.

Syntax

```
max-paths {ebgp | ibgp} number
```

To return to the default values, enter the `no maximum-paths` command.

Parameters

- `ebgp`: Enter the keyword `ebgp` to enable multipath support for External BGP routes.
- `ibgp`: Enter the keyword `ibgp` to enable multipath support for Internal BGP routes.
- `number`: Enter a number as the maximum number of parallel paths. The range is from 2 to 64.

Defaults

`none`

Command Modes

`ROUTER BGP`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable this command, use the `clear ip bgp *` command to recompute the best path.

neighbor activate

This command allows the specified neighbor/peer group to be enabled for the current AFI/SAFI (Address Family Identifier/Subsequent Address Family Identifier).

Syntax

```
neighbor [ip-address | peer-group-name] activate
```
To disable, use the `no neighbor [ip-address | peer-group-name] activate` command.

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name** (OPTIONAL) Enter the name of the peer group.
- **activate** Enter the keyword `activate` to enable the neighbor/peer group in the new AFI/SAFI.

**Defaults**

Disabled

**Command Modes**

CONFIGURATION-ROUTER-BGP-ADDRESS FAMILY

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

By default, when you create a neighbor/peer group configuration in the Router BGP context, this enables IPv4/Unicast AFI/SAFI. When you use `activate` in the new context, the neighbor/peer group enables for AFI/SAFI.

---

**neighbor add-path**

This command allows the specified neighbor/peer group to send/receive multiple path advertisements.

**Syntax**

```
neighbor [ip-address | peer-group-name] add-path [send | receive | both] count
```

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name** (OPTIONAL) Enter the name of the peer group.
- **send** Enter the keyword `send` to indicate that the system sends multiple paths to peers.
- **receive** Enter the keyword `receive` to indicate that the system accepts multiple paths from peers.
- **both** Enter the keyword `both` to indicate that the system sends and accepts multiple paths from peers.
- **count** Enter the number paths supported. The range is from 2 to 64.

**Defaults**

none

**Command Modes**

CONFIGURATION-ROUTER-BGP-ADDRESS FAMILY
neighbor advertisement-interval

Set the advertisement interval between BGP neighbors or within a BGP peer group.

**Syntax**

```
neighbor {ip-address | peer-group-name} advertisement-interval seconds
```

To return to the default value, use the `no neighbor {ip-address | peer-group-name} advertisement-interval` command.

**Parameters**

- `ip-address` (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- `peer-group-name` Enter the name of the peer group to set the advertisement interval for all routers in the peer group.
- `seconds` Enter a number as the time interval, in seconds, between BGP advertisements. The range is from 0 to 600 seconds. The default is 5 seconds for internal BGP peers and 30 seconds for external BGP peers.

**Defaults**

- `seconds = 5 seconds` (internal peers)
- `seconds = 30 seconds` (external peers)

**Command Modes**

ROUTER BGP

**Related Commands**

`bgp add-path` — allows the advertisement of multiple paths for the same address prefix without the new paths implicitly replacing any previous ones.

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
**neighbor advertisement-start**

To send BGP routing updates, set the minimum interval before starting.

**Syntax**

```
neighbor {ip-address} advertisement-start seconds
```

To return to the default value, use the `no neighbor {ip-address}` advertisement-start command.

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **seconds** Enter a number as the time interval, in seconds, before BGP route updates are sent. The range is from 0 to 3600 seconds.

**Defaults**

none

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**neighbor allowas-in**

Set the number of times an AS number can occur in the AS path.

**Syntax**

```
neighbor {ip-address | peer-group-name} allowas-in number
```

To return to the default value, use the `no neighbor {ip-address | peer-group-name} allowas-in` command.

**Parameters**

- **ip-address** (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name** Enter the name of the peer group to set the advertisement interval for all routers in the peer group.
- **number** Enter a number of times to allow this neighbor ID to use the AS path. The range is from 1 to 10.

**Defaults**

Not configured.
neighbor default-originate

Inject the default route to a BGP peer or neighbor.

Syntax

neighbor {ip-address | peer-group-name} default-originate [route-map map-name]

To remove a default route, use the no neighbor {ip-address | peer-group-name} default-originate command.

Parameters

- **ip-address**: (OPTIONAL) Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name**: Enter the name of the peer group to set the default route of all routers in that peer group.
- **route-map map-name**: (OPTIONAL) Enter the keyword route-map then the name of a configured route map.

Defaults

Not configured.

Command Modes

- **ROUTER BGP**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you apply a route map to a BGP peer or neighbor with the neighbor default-originate command configured, the software does not apply the set filters in the route map to that BGP peer or neighbor.
neighbor description

Assign a character string describing the neighbor or group of neighbors (peer group).

**Syntax**

```
neighbor {ip-address | peer-group-name} description text
```

To delete a description, use the no neighbor {ip-address | peer-group-name} description command.

**Parameters**

- **ip-address**
  - Enter the IP address of the neighbor in dotted decimal format.

- **peer-group-name**
  - Enter the name of the peer group.

- **text**
  - Enter a continuous text string up to 80 characters.

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor distribute-list

Distribute BGP information via an established prefix list.

**Syntax**

```
neighbor {ip-address | peer-group-name} distribute-list prefix-list-name {in | out}
```

To delete a neighbor distribution list, use the no neighbor {ip-address | peer-group-name} distribute-list prefix-list-name {in | out} command.

**Parameters**

- **ip-address**
  - Enter the IP address of the neighbor in dotted decimal format.

- **peer-group-name**
  - Enter the name of the peer group to apply the distribute list filter to all routers in the peer group.

- **prefix-list-name**
  - Enter the name of an established prefix list.

  If the prefix list is not configured, the default is permit (to allow all routes).
Enter the keyword in to distribute only inbound traffic.

Enter the keyword out to distribute only outbound traffic.

Defaults
Not configured.

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Other BGP filtering commands include: neighbor filter-list, ip as-path access-list, and neighbor route-map.

Related Commands
neighbor route-map — assigns a route map to a neighbor or peer group.

**neighbor ebgp-multihop**

Attempt and accept BGP connections to external peers on networks that are not directly connected.

**Syntax**
neighbor {ip-address | peer-group-name} ebgp-multihop [ttl]
To disallow and disconnect connections, use the no neighbor {ip-address | peer-group-name} ebgp-multihop command.

**Parameters**

- **ip-address**
  - Enter the IP address of the neighbor in dotted decimal format.

- **peer-group-name**
  - Enter the name of the peer group.

- **ttl**
  - (OPTIONAL) Enter the number of hops as the Time to Live (ttl) value. The range is from 1 to 255. The default is 255.

**Defaults**
Disabled.

**Command Modes**
ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
To prevent loops, the neighbor ebgp-multihop command does not install the default routes of the multihop peer. Networks not directly connected are not considered valid for best-path selection.
neighbor fall-over

Enable or disable fast fall-over for BGP neighbors.

Syntax

neighbor {ipv4-address | peer-group-name} fall-over

To disable, use the no neighbor {ipv4-address | peer-group-name} fall-over command.

Parameters

ipv4-address
Enter the IP address of the neighbor in dotted decimal format.

peer-group-name
Enter the name of the peer group.

Defaults

Disabled.

Command Modes

ROUTER BGP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you enable failover, BGP keeps track of IP or IPv6 ability to reach the peer remote address and the peer local address. Whenever either address becomes unreachable (for example, no active route exists in the routing table for the peer IP or IPv6 destination/local address), BGP brings down the session with the peer.

Related Commands

show ip bgp neighbors — displays information on the BGP neighbors.

neighbor graceful-restart

Enable graceful restart on a BGP neighbor.

Syntax

neighbor {ip-address | peer-group-name} graceful-restart [restart-time seconds] [stale-path-time seconds] [role receiver-only]

To return to the default, enter the no bgp graceful-restart command.

Parameters

ip-address
Enter the IP address of the neighbor in dotted decimal format.

peer-group-name
Enter the name of the peer group to apply the filter to all routers in the peer group.
**restart-time seconds**

Enter the keyword `restart-time` then the maximum number of seconds to restart and bring-up all the peers. The range is from 1 to 3600 seconds. The default is **120 seconds**.

**stale-path-time seconds**

Enter the keyword `stale-path-time` then the maximum number of seconds to wait before restarting a peer's stale paths. The default is **360 seconds**.

**role receiver-only**

Enter the keyword `role receiver-only` to designate the local router to support graceful restart as a receiver only.

**Defaults**

as above

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This feature advertises to BGP neighbors through a capability advertisement. In Receiver Only mode, BGP saves the advertised routes of peers that support this capability when they restart.

---

### neighbor local-as

To accept external routes from neighbors with a local AS number in the AS number path, configure Internal BGP (IBGP) routers.

**Syntax**

```
neighbor {ip-address | peer-group-name} local-as as-number [no-prepend]
```

To return to the default value, use the `no neighbor {ip-address | peer-group-name} local-as` command.

**Parameters**

- **ip-address**: Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name**: Enter the name of the peer group to set the advertisement interval for all routers in the peer group.
- **as-number**: Enter the AS number to reset all neighbors belonging to that AS. The range is from 0 to 65535 (2 byte), from 1 to 4294967295 (4 byte) or from 0.1 to 65535.65535 (dotted format).
- **no prepend**: Specifies that local AS values do not prepend to announcements from the neighbor.

**Defaults**

Not configured.
neighbor maximum-prefix

Control the number of network prefixes received.

Syntax
neighbor {ip-address | peer-group-name} maximum-prefix maximum [threshold] [warning-only]

To return to the default values, use the no neighbor {ip-address | peer-group-name} maximum-prefix maximum command.

Parameters
- **ip-address**: Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name**: Enter the name of the peer group.
- **maximum**: Enter a number as the maximum number of prefixes allowed for this BGP router. The range is from 1 to 4294967295.
- **threshold** (OPTIONAL): Enter a number to be used as a percentage of the maximum value. When the number of prefixes reaches this percentage of the maximum value, the software sends a message. The range is from 1 to 100 percent. The default is 75.
- **warning-only** (OPTIONAL): Enter the keyword warning-only to set the router to send a log message when the maximum value is reached. If this parameter is not set, the router stops peering when the maximum number of prefixes is reached.

Defaults
threshold = 75

Command Modes
- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you configure the neighbor maximum-prefix command and the neighbor receives more prefixes than the neighbor maximum-prefix command configuration...
allows, the neighbor goes down and the show ip bgp summary command displays (prfxd) in the State/PfxRcd column for that neighbor. The neighbor remains down until you enter the clear ip bgp command for the neighbor or the peer group to which the neighbor belongs or you enter the neighbor shutdown and neighbor no shutdown commands.

Related Commands

show ip bgp summary — displays the current BGP configuration.

neighbor password

Enable message digest 5 (MD5) authentication on the TCP connection between two neighbors.

Syntax

neighbor {ip-address | peer-group-name} password [encryption-type] password

Parameters

- ip-address: Enter the IP address of the router to be included in the peer group.
- peer-group-name: Enter the name of a configured peer group.
- encryption-type: (OPTIONAL) Enter 7 as the encryption type for the password entered. 7 means that the password is encrypted and hidden.
- password: Enter a text string up to 80 characters long. The first character of the password must be a letter.

You cannot use spaces in the password.

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Configure the same password on both BGP peers or a connection does not occur. When you configure MD5 authentication between two BGP peers, each segment of the TCP connection between them is verified and the MD5 digest is checked on every segment sent on the TCP connection.
Configuring a password for a neighbor causes an existing session to be torn down and a new one established.

If you specify a BGP peer group by using the `peer-group-name` parameter, all the members of the peer group inherit the characteristic configured with this command.

If you configure a password on one neighbor, but you have not configured a password for the neighboring router, the following message appears on the console while the routers attempt to establish a BGP session between them:

```plaintext
%RPM0-P:RP1 %KERN-6-INT: No BGP MD5 from [peer's IP address]:179 to [local router's IP address]:65524
```

Also, if you configure different passwords on the two routers, the following message appears on the console:

```plaintext
%RPM0-P:RP1 %KERN-6-INT: BGP MD5 password mismatch from [peer's IP address] : 11502 to [local router's IP address] :179
```

### neighbor peer-group (assigning peers)

Allows you to assign one peer to an existing peer group.

**Syntax**

```
neighbor ip-address peer-group peer-group-name
```

To delete a peer from a peer group, use the `no neighbor ip-address peer-group peer-group-name` command.

**Parameters**

- `ip-address` Enter the IP address of the router to be included in the peer group.
- `peer-group-name` Enter the name of a configured peer group.

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

You can assign up to 256 peers to one peer group.

When you add a peer to a peer group, it inherits all the peer group’s configured parameters. A peer cannot become part of a peer group if any of the following commands are configured on the peer:

- `neighbor advertisement-interval`
A neighbor may keep its configuration after it was added to a peer group if the neighbor's configuration is more specific than the peer group's, and the neighbor's configuration does not affect outgoing updates.

A peer group must exist before you add a peer to it. If the peer group is disabled (shutdown) the peers within the group are also disabled (shutdown).

**Related Commands**

- `clear ip bgp` — resets BGP sessions.
- `neighbor peer-group (creating group)` — creates a peer group.
- `show ip bgp peer-group` — views BGP peers.
- `show ip bgp neighbors` — views BGP neighbors configurations.

---

**neighbor peer-group (creating group)**

Allows you to create a peer group and assign it a name.

**Syntax**

```
neighbor peer-group-name peer-group
```

To delete a peer group, use the `no neighbor peer-group-name peer-group` command.

**Parameters**

- **peer-group-name**
  
  Enter a text string up to 16 characters long as the name of the peer group.

**Defaults**

Not configured.

**Command Modes**

- ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

When you create a peer group, it is disabled (Shut mode).

**Related Commands**

- `neighbor peer-group (assigning peers)` — assigns routers to a peer group.
- `neighbor remote-as` — assigns a indirectly connected AS to a neighbor or peer group.
neighbor shutdown — disables a peer or peer group.

neighbor peer-group passive

Enable passive peering on a BGP peer group, that is, the peer group does not send an OPEN message, but responds to one.

Syntax

```
neighbor peer-group-name peer-group passive [limit sessions]
```

To delete a passive peer-group, use the `no neighbor peer-group-name peer-group passive` command.

Parameters

- **peer-group-name**  
Enter a text string up to 16 characters long as the name of the peer group.

- **limit**  
(Optional) Enter the keyword `limit` to constrain the numbers of sessions for this peer-group. The range is from 2 to 256. The default is **256**.

Defaults

Not configured.

Command Modes

`ROUTER BGP`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you configure a peer group as passive, assign it a subnet using the `neighbor soft-reconfiguration inbound` command.

For passive eBGP limits, the Remote AS must be different from the AS for this neighbor.

Related Commands

- `neighbor soft-reconfiguration inbound` — assigns a subnet to a dynamically configured BGP neighbor.

- `neighbor remote-as` — assigns an indirectly connected AS to a neighbor or peer group.
neighbor remote-as

Create and specify the remote peer to the BGP neighbor.

**Syntax**

```
neighbor {ip-address | peer-group-name} remote-as number
```

To delete a remote AS entry, use the

```
no neighbor {ip-address | peer-group-name} remote-as number
```

**Parameters**

- **ip-address**
  - Enter the IP address of the neighbor to enter the remote AS in its routing table.

- **peer-group-name**
  - Enter the name of the peer group to enter the remote AS into routing tables of all routers within the peer group.

- **number**
  - Enter a number of the AS. The range is from 0 to 65535 (2 byte) or from 1 to 4294967295 (4 byte).

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To accept 4-byte formats before entering a 4 byte AS Number, configure your system.

If the `number` parameter is the same as the AS number used in the `router bgp` command, the remote AS entry in the neighbor is considered an internal BGP peer entry.

This command creates a peer and the newly created peer is disabled (Shutdown).

**Related Commands**

- `router bgp` — enters ROUTER BGP mode and configures routes in an AS.
- `bgp four-octet-as-support` — enables 4-byte support for the BGP process.

---

neighbor remove-private-as

Remove private AS numbers from the AS-PATH of outgoing updates.

**Syntax**

```
neighbor {ip-address | peer-group-name} remove-private-as
```

---

Border Gateway Protocol IPv4 (BGPv4) | 380
To return to the default, use the `no neighbor {ip-address | peer-group-name} remove-private-as` command.

**Parameters**

- **ip-address**: Enter the IP address of the neighbor to remove the private AS numbers.
- **peer-group-name**: Enter the name of the peer group to remove the private AS numbers.

**Defaults**

Disabled (that is, private AS number are not removed).

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Applies to EBGP neighbors only.

Configure your system to accept 4-byte formats before entering a 4 byte AS Number.

If the AS-PATH contains both public and private AS number or contains AS numbers of an EBGP neighbor, the private AS numbers are not removed.

If a confederation contains private AS numbers in its AS-PATH, the software removes the private AS numbers only if they follow the confederation numbers in the AS path.

Private AS numbers are from 64512 to 65535 (2 byte).

---

### neighbor route-map

Apply an established route map to either incoming or outbound routes of a BGP neighbor or peer group.

**Syntax**

```
neighbor {ip-address | peer-group-name} route-map map-name {in | out}
```

To remove the route map, use the `no neighbor {ip-address | peer-group-name} route-map map-name {in | out}` command.

**Parameters**

- **ip-address**: Enter the IP address of the neighbor in dotted decimal format.
- **peer-group-name**: Enter the name of the peer group.
- **map-name**: Enter the name of an established route map.
If the Route map is not configured, the default is **deny** (to drop all routes).

- **in**
  Enter the keyword *in* to filter inbound routes.

- **out**
  Enter the keyword *out* to filter outbound routes.

### Defaults
Not configured.

### Command Modes
**ROUTER BGP**

### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information
When you apply a route map to outbound routes, only routes that match at least one section of the route map are permitted.

If you identify a peer group by name, the peers in that peer group inherit the characteristics in the Route map used in this command. If you identify a peer by IP address, the Route map overwrites either the inbound or outbound policies on that peer.

---

## neighbor route-reflector-client

Configure the router as a route reflector and the specified neighbors as members of the cluster.

### Syntax

```plaintext
neighbor {ip-address | peer-group-name} route-reflector-client
```

To remove one or more neighbors from a cluster, use the `no neighbor {ip-address | peer-group-name} route-reflector-client` command. If you delete all members of a cluster, you also delete the route-reflector configuration on the router.

### Parameters

- **ip-address**
  Enter the IP address of the neighbor in dotted decimal format.

- **peer-group-name**
  Enter the name of the peer group.
  All routers in the peer group receive routes from a route reflector.

### Defaults
Not configured.

### Command Modes
**ROUTER BGP**
**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

A route reflector reflects routes to the neighbors assigned to the cluster. Neighbors in the cluster do not need not to be fully meshed. By default, when you use `no route reflector`, the internal BGP (IBGP) speakers in the network must be fully meshed.

The first time you enter this command, the router configures as a route reflector and the specified BGP neighbors configure as clients in the route-reflector cluster.

When you remove all clients of a route reflector using the `no neighbor route-reflector-client` command, the router no longer functions as a route reflector.

If the clients of a route reflector are fully meshed, you can configure the route reflector to not reflect routes to specified clients by using the `no bgp client-to-client reflection` command.

**Related Commands**

- `bgp client-to-client reflection` — enables route reflection between the route reflector and the clients.

---

**neighbor shutdown**

Disable a BGP neighbor or peer group.

**Syntax**

```
neighbor {ip-address | peer-group-name} shutdown
```

To enable a disabled neighbor or peer group, use the `neighbor {ip-address | peer-group-name} no shutdown` command.

**Parameters**

- `ip-address`  
  Enter the IP address of the neighbor in dotted decimal format.

- `peer-group-name`  
  Enter the name of the peer group to disable or enable all routers within the peer group.

**Defaults**

Enabled (that is, BGP neighbors and peer groups are disabled.)

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

Peers that are enabled within a peer group are disabled when their peer group is disabled.

The `neighbor shutdown` command terminates all BGP sessions on the BGP neighbor or BGP peer group. Use this command with caution as it terminates the specified BGP sessions. When a neighbor or peer group is shut down, use the `show ip bgp summary` command to confirm its status.

Related Commands

- `show ip bgp summary` — displays the current BGP configuration.
- `show ip bgp neighbors` — displays the current BGP neighbors.

neighbor soft-reconfiguration inbound

Enable soft-reconfiguration for BGP.

Syntax

```plaintext
neighbor {ip-address | peer-group-name} soft-reconfiguration inbound
To disable, use the no neighbor {ip-address | peer-group-name} soft-reconfiguration inbound command.
```

Parameters

- `ip-address` Enter the IP address of the neighbor in dotted decimal format.
- `peer-group-name` Enter the name of the peer group to disable or enable all routers within the peer group.

Defaults Disabled

Command Modes ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command enables soft-reconfiguration for the BGP neighbor specified. BGP stores all the updates the neighbor receives but does not reset the peer-session.

⚠️ CAUTION: Inbound update storage is a memory-intensive operation. The entire BGP update database from the neighbor is stored in memory regardless of the inbound policy results applied on the neighbor.

⚠️ NOTE: This command is supported in BGP Router Configuration mode for IPv4 Unicast address only.
Related Commands

- `show ip bgp neighbors` — displays routes received by a neighbor.

# neighbor timers

Set keepalive and hold time timers for a BGP neighbor or a peer group.

**Syntax**

```plaintext
neighbor {ip-address | peer-group-name} timers keepalive holdtime
```

To return to the default values, use the `no neighbor {ip-address | peer-group-name} timers` command.

**Parameters**

- `ip-address` Enter the IP address of the peer router in dotted decimal format.
- `peer-group-name` Enter the name of the peer group to set the timers for all routers within the peer group.
- `keepalive` Enter a number for the time interval, in seconds, between keepalive messages sent to the neighbor routers. The range is from 1 to 65535. The default is 60 seconds.
- `holdtime` Enter a number for the time interval, in seconds, between the last keepalive message and declaring the router dead. The range is from 3 to 65535. The default is 180 seconds.

**Defaults**

- `keepalive` = 60 seconds
- `holdtime` = 180 seconds

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Timer values configured with the `neighbor timers` command override the timer values configured with any other command.

When two neighbors, configured with different `keepalive` and `holdtime` values, negotiate for new values, the resulting values are as follows:

- the lower of the `holdtime` value is the new `holdtime` value, and
- whichever is the lower value: one-third of the new `holdtime` value, or the configured `keepalive` value, is the new `keepalive` value.
neighbor update-source

Enable the software to use Loopback interfaces for TCP connections for BGP sessions.

**Syntax**

```
neighbor {ip-address | peer-group-name} update-source interface
```

To use the closest interface, use the `no neighbor {ip-address | peer-group-name} update-source interface` command.

**Parameters**

- `ip-address` Enter the IP address of the peer router in dotted decimal format.
- `peer-group-name` Enter the name of the peer group to disable all routers within the peer group.
- `interface` Enter the keyword `loopback` then a number of the Loopback interface. The range is from 0 to 16383.

**Defaults**
Not configured.

**Command Modes**
ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
Loopback interfaces are up constantly and the BGP session may need one interface constantly up to stabilize the session. The `neighbor update-source` command is not necessary for directly connected internal BGP sessions.

neighbor weight

Assign a weight to the neighbor connection, which is used to determine the best path.

**Syntax**

```
neighbor {ip-address | peer-group-name} weight weight
```

To remove a weight value, use the `no neighbor {ip-address | peer-group-name} weight` command.

**Parameters**

- `ip-address` Enter the IP address of the peer router in dotted decimal format.
- `peer-group-name` Enter the name of the peer group to disable all routers within the peer group.
weight

Enter a number as the weight. The range is from 0 to 65535. The default is 0.

Defaults

0

Command Modes

ROUTER BGP

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

In the system best path selection process, the path with the highest weight value is preferred.

NOTE: In the system best-path selection process, the path with the highest weight value is preferred.

If you configure the set weight command in a route map applied to this neighbor, the weight set in that command overrides the weight set in the neighbor weight command.

network

Specify the networks for the BGP process and enter them in the BGP routing table.

Syntax

network ip-address mask [route-map map-name]

To remove a network, use the no network ip-address mask [route-map map-name] command.

Parameters

ip-address Enter an IP address in dotted decimal format of the network.

mask Enter the mask of the IP address in the slash prefix length format (for example, /24).

The mask appears in command outputs in dotted decimal format (A.B.C.D).

route-map map-name (OPTIONAL) Enter the keyword route-map then the name of an established route map.

Only the following ROUTE-MAP mode commands are supported:

• match ip address
If the route map is not configured, the default is **deny** (to drop all routes).

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The system software resolves the network address the `network` command configures with the routes in the main routing table to ensure that the networks are reachable using non-BGP routes and non-default routes.

**Related Commands**

`redistribute` — redistributes routes into BGP.

---

### network backdoor

Specify this IGP route as the preferred route.

**Syntax**

```
network ip-address mask backdoor
```

To remove a network, use the `no network ip-address mask backdoor` command.

**Parameters**

- **ip-address**
  - Enter an IP address in dotted decimal format of the network.

- **mask**
  - Enter the mask of the IP address in the slash prefix length format (for example, /24).
  
  The mask appears in command outputs in dotted decimal format (A.B.C.D).

**Defaults**

Not configured.

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
**Version** 9.2(0.0)  
**Description** Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**  
Although the system does not generate a route due to the backdoor config, there is an option for injecting/sourcing a local route in the presence of network backdoor config on a learned route.

## redistribute

Redistribute routes into BGP.

**Syntax**  
```
redistribute {connected | static} [route-map map-name]
```

To disable redistribution, use the `no redistribution {connected | static}` command.

**Parameters**

- **connected**  
Enter the keyword `connected` to redistribute routes from physically connected interfaces.

- **static**  
Enter the keyword `static` to redistribute manually configured routes.  
These routes are treated as incomplete routes.

- **route-map map-name**  
(Optional) Enter the keyword `route-map` then the name of an established route map.

Only the following ROUTE-MAP mode commands are supported:

- `match ip address`
- `set metric`
- `set tag`

If the route map is not configured, the default is `deny` (to drop all routes).

**Defaults** Not configured.

**Command Modes**  
ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
With the Dell Networking OS version 8.3.1.0 and later, you can use the `redistribute` command to advertise the IGP cost as the MED on redistributed routes. When you set the route-map with metric-type internal and applied outbound to an EBGP peer/peer-group, the advertised routes corresponding to those peer/peer-groups have the IGP cost set as MED.

If you do not configure the `default-metric` command, in addition to the `redistribute` command, or there is no route map to set the metric, the metric for redistributed static and connected is “0”.

To redistribute the default route (0.0.0.0/0), configure the `neighbor default-originate` command.

**Related Commands**

`neighbor default-originate` — injects the default route.

---

**redistribute ospf**

Redistribute OSPF routes into BGP.

**Syntax**

```text
redistribute ospf process-id [[match external {1 | 2}] [match internal]] [route-map map-name]
```

To stop redistribution of OSPF routes, use the `no redistribute ospf process-id` command.

**Parameters**

- **process-id**
  - Enter the number of the OSPF process. The range is from 1 to 65535.

- **match external {1 | 2}**
  - (OPTIONAL) Enter the keywords `match external` to redistribute OSPF external routes. You can specify 1 or 2 to redistribute those routes only.

- **match internal**
  - (OPTIONAL) Enter the keywords `match internal` to redistribute OSPF internal routes only.

- **route-map map-name**
  - (OPTIONAL) Enter the keywords `route-map` then the name of a configured route map.

**Defaults**

Not configured.

**Command Modes**

- `ROUTER BGP`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

With the Dell Networking OS version 8.3.1.0 and later, you can use the redistribute command to advertise the IGP cost as the MED on redistributed routes. When you set the route-map with metric-type internal and apply outbound to an EBGP peer/peer-group, the advertised routes corresponding to those peer/peer-groups have the IGP cost set as MED.

When you enter the redistribute isis process-id command without any other parameters, the system redistributes all OSPF internal routes, external type 1 routes, and external type 2 routes. RFC does not support this feature.

router bgp

To configure and enable BGP, enter ROUTER BGP mode.

Syntax

router bgp as-number

To disable BGP, use the no router bgp as-number command.

Parameters

as-number

Enter the AS number. The range is from 1 to 65535 (2 byte), from 1 to 4294967295 (4 byte), or from 0.1 to 65535.65535 (dotted format).

Defaults

Not enabled.

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

At least one interface must be in Layer 3 mode for the router bgp command to be accepted. If no interfaces are enabled for Layer 3, an error message appears:

% Error: No router id configured

Example

Dell(conf)#router bgp 3
Dell(conf-router_bgp)#
show capture bgp-pdu neighbor

Display BGP packet capture information for an IPv4 address on the system.

**Syntax**

```
show capture bgp-pdu neighbor ipv4-address
```

**Parameters**

`ipv4-address` Enter the IPv4 address (in dotted decimal format) of the BGP address to display packet information for that address.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell(conf-router_bgp)#show capture bgp-pdu neighbor 20.20.20.2
Incoming packet capture enabled for BGP neighbor 20.20.20.2
Available buffer size 40958758, 26 packet(s) captured using 680 bytes
 PDU[1] : len 101, captured 00:34:51 ago
 fffffff fffffff fffffff fffffff 00650100 00000013 00000000
 00000000 419ef06c 00000000
 00000000 00000000 00000000 00000000 0181a1e4 0181a25c 41af92c0
 00000000 00000000 00000000
 00000000 00000001 0181a1e4 0181a25c 41af9400 00000000
 PDU[2] : len 19, captured 00:34:51 ago
 fffffff fffffff fffffff fffffff 00130400
 PDU[3] : len 19, captured 00:34:51 ago
 fffffff fffffff fffffff fffffff 00130400
 [. . .]

Outgoing packet capture enabled for BGP neighbor 20.20.20.2
Available buffer size 40958758, 27 packet(s) captured using 562 bytes
 PDU[1] : len 41, captured 00:34:52 ago
 fffffff fffffff fffffff fffffff 00290104 000100b4 14141401
 0c020a01 04000100 01020080
 00000000
 PDU[2] : len 19, captured 00:34:51 ago
 fffffff fffffff fffffff fffffff 00130400
 PDU[3] : len 19, captured 00:34:50 ago
 fffffff fffffff fffffff fffffff 00130400
 [. . .]
Dell#
```

**Related Commands**

- `capture bgp-pdu max-buffer-size` — specifies a size for the capture buffer.
show config

View the current ROUTER BGP configuration.

**Syntax**

```
show config
```

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell(conf-router_bgp)#show config
!
router bgp 45
 neighbor suzanne peer-group
 neighbor suzanne no shutdown
 neighbor sara peer-group
 neighbor sara shutdown
 neighbor 13.14.15.20 peer-group suzanne
 neighbor 13.14.15.20 shutdown
 neighbor 123.34.55.123 peer-group suzanne
 neighbor 123.34.55.123 shutdown
Dell(conf-router_bgp)#
```

**Related Commands**

- `capture bgp-pdu max-buffer-size` — specifies a size for the capture buffer.

---

show ip bgp

View the current BGP IPv4 routing table for the system.

**Syntax**

```
show ip bgp [ipv4 unicast] [network [network-mask] [longer-prefixes]]
```

**Parameters**

- `ipv4 unicast` (OPTIONAL) Enter the keywords `ipv4 unicast` to view information only related to ipv4 unicast routes.
- `network` (OPTIONAL) Enter the network address (in dotted decimal format) of the BGP network to view information only on that network.
- `network-mask` (OPTIONAL) Enter the network mask (in slash prefix format) of the BGP network address.
longer-prefixes (OPTIONAL) Enter the keywords longer-prefixes to view all routes with a common prefix.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable the bgp non-deterministic-med command, the show ip bgp command output for a BGP route does not list the INACTIVE reason.

The following describes the show ip bgp command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the destination network prefix of each BGP route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the BGP route’s metric, if assigned.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>Displays the BGP LOCAL_PREF attribute for the route.</td>
</tr>
<tr>
<td>Weight</td>
<td>Displays the route’s weight.</td>
</tr>
<tr>
<td>Path</td>
<td>Lists all the ASs the route passed through to reach the destination network.</td>
</tr>
</tbody>
</table>

Example

Dell>show ip bgp
BGP table version is 847562, local router ID is 63.114.8.131
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0.0.0.0/0</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>* 3.0.0.0/8</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>209 701</td>
<td></td>
</tr>
<tr>
<td>80 i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 3.3.0.0/16</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>701 80 i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0.0.0</td>
<td>22</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63.114.8.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 4.0.0.0/8</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>701 1 i</td>
<td></td>
</tr>
<tr>
<td>* 4.2.49.12/30</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>209 i</td>
<td></td>
</tr>
<tr>
<td>* 4.17.250.0/24</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>209 1239</td>
<td></td>
</tr>
<tr>
<td>13716 i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 63.114.8.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13716 i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 4.21.132.0/23</td>
<td>63.114.8.33</td>
<td>0</td>
<td>18508</td>
<td>209 6461</td>
<td></td>
</tr>
<tr>
<td>16422 i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 63.114.8.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16422 i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Border Gateway Protocol IPv4 (BGPv4) | 394
show ip bgp cluster-list

View BGP neighbors in a specific cluster.

Syntax

```
show ip bgp [ipv4 unicast] cluster-list [cluster-id]
```

Parameters

- `ipv4 unicast` (OPTIONAL) Enter the keywords `ipv4 unicast` to view information only related to ipv4 unicast routes.
- `cluster-id` (OPTIONAL) Enter the cluster id in dotted decimal format. The range is 1 — 4294967295.

Command Modes

- EXEC
- EXEC Privilege

Command History

- Version 9.9(0.0) Introduced on the FN IOM.
- Version 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ip bgp cluster-list` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the destination network prefix of each BGP route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the BGP route's metric, if assigned.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>Displays the BGP LOCAL_PREF attribute for the route.</td>
</tr>
</tbody>
</table>
### Field Description

**Weight**
Displays the route's weight.

**Path**
Lists all the ASs the route passed through to reach the destination network.

### Example

Dell#show ip bgp cluster-list
BGP table version is 64444683, local router ID is 120.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* I 10.10.10.32</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>*&gt;I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>* I 10.19.75.32</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*&gt;I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I 10.30.1.24</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*&gt;I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>* I</td>
<td>192.68.16.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

### show ip bgp community

View information on all routes with Community attributes or view specific BGP community groups.

**Syntax**

show ip bgp [ipv4 unicast] community [community-number] [local-as] [no-export] [no-advertise]

**Parameters**

- **ipv4 unicast** (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.

- **community-number**
  Enter the community number in AA:NN format where AA is the AS number (2 bytes) and NN is a value specific to that autonomous system.

  You can specify up to eight community numbers to view information on those community groups.
local-AS

Enter the keywords local-AS to view all routes with the COMMUNITY attribute of NO_EXPORT_SUBCONFED.

All routes with the NO_EXPORT_SUBCONFED (0xFFFFFF03) community attribute must not be advertised to external BGP peers.

no-advertise

Enter the keywords no-advertise to view all routes containing the well-known community attribute of NO_ADVERTISE.

All routes with the NO_ADVERTISE (0xFFFFFF02) community attribute must not be advertised to other BGP peers.

no-export

Enter the keywords no-export to view all routes containing the well-known community attribute of NO_EXPORT.

All routes with the NO_EXPORT (0xFFFFFF01) community attribute must not be advertised outside a BGP confederation boundary.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To view the total number of COMMUNITY attributes found, use the show ip bgp summary command. The text line above the route table states the number of COMMUNITY attributes found.

The show ip bgp community command without any parameters lists BGP routes with at least one BGP community attribute and the output is the same as for the show ip bgp command output.

The following describes the show ip bgp community command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the destination network prefix of each BGP route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the BGP route’s metric, if assigned.</td>
</tr>
</tbody>
</table>
### Field Description
- **LocPrf**: Displays the BGP LOCAL_PREF attribute for the route.
- **Weight**: Displays the route’s weight.
- **Path**: Lists all the ASs the route passed through to reach the destination network.

#### Example
Dell>show ip bgp community
BGP table version is 3762622, local router ID is 63.114.8.48
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* i 3.0.0.0/8</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>701 80 i</td>
</tr>
<tr>
<td>*&gt;i 4.2.49.12/30</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>i</td>
</tr>
<tr>
<td>* i 4.21.132.0/23</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>6461 16422 i</td>
</tr>
<tr>
<td>*&gt;i 4.24.118.16/3</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>i</td>
</tr>
<tr>
<td>*&gt;i 4.24.145.0/30</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>i</td>
</tr>
<tr>
<td>*&gt;i 4.24.202.0/30</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>i</td>
</tr>
<tr>
<td>*&gt;i 4.25.88.0/30</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>3561 3908 i</td>
</tr>
<tr>
<td>*&gt;i 6.1.0.0/16</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.2.0.0/22</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.3.0.0/18</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.4.0.0/16</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.5.0.0/19</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.8.0.0/20</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.9.0.0/20</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.10.0.0/15</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.14.0.0/15</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.133.0.0/21</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
<tr>
<td>*&gt;i 6.151.0.0/1</td>
<td>205.171.0.16</td>
<td>100</td>
<td>0</td>
<td>209</td>
<td>7170 1455 i</td>
</tr>
</tbody>
</table>

--More--

### show ip bgp community-list

**View routes that a specific community list affects.**

**Syntax**
```
show ip bgp [ipv4 unicast] community-list community-list-name [exact-match]
```

**Parameters**
- **ipv4 unicast**: (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.
- **community-list-name**: Enter the name of a configured IP community list (maximum 140 characters).
- **exact-match**: Enter the keyword for an exact match of the communities.
show ip bgp community-list pass

Usage Information

The `show ip bgp community-list` command without any parameters lists BGP routes matching the Community List and the output is the same as for the `show ip bgp` command output.

The following describes the `show ip bgp community-list pass` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the destination network prefix of each BGP route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the BGP route’s metric, if assigned.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>Displays the BGP LOCAL_PREF attribute for the route.</td>
</tr>
<tr>
<td>Weight</td>
<td>Displays the route’s weight.</td>
</tr>
<tr>
<td>Path</td>
<td>Lists all the ASs the route passed through to reach the destination network.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip bgp community-list pass
BGP table version is 0, local router ID is 10.101.15.13
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
Dell#
```

Border Gateway Protocol IPv4 (BGPv4)
show ip bgp damp

Display BGP internal information for the IPv4 Unicast address family.

Syntax

```
show ip bgp [ipv4 unicast] detail
```

Defaults

```
one
```

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version** 9.9(0.0) Introduced on the FN IOM.
- **Version** 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ip bgp damp` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the network ID to which the route is dampened.</td>
</tr>
<tr>
<td>From</td>
<td>Displays the IP address of the neighbor advertising the dampened route.</td>
</tr>
<tr>
<td>Reuse</td>
<td>Displays the hour:minutes:seconds until the dampened route is available.</td>
</tr>
<tr>
<td>Path</td>
<td>Lists all the ASs the dampened route passed through to reach the destination network.</td>
</tr>
</tbody>
</table>

Example

```
Dell>show ip bgp dampened-paths
BGP table version is 210708, local router ID is 63.114.8.2
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete
Network From Reuse Path
Dell>
```
Dell#show ip bgp detail
Detail information for BGP Node
bgpNdP 0x41a17000 : NdTmrP 0x41a17000 : NdKATmrP 0x41a17014 :
NdTics 74857 :
NhLocAS 1 : NdState 2 : NdRPMPrim 1 : NdListLoc 13
NdAuto 1 : NdEqCar 1 : NdSync 0 : NdDefOrg 0
NdV6ListLoc 14 : NdDefDid 0 : NdConfLoc 0 : NdMedDefLoc 0 :
NdMedMissVal -1 :
NdIgnrIllId 0 : NdRRC2C 1 : NdClstId 33686273 : NdPaTblP
0x41a19088
NdASPTblP 0x41a19090 : NdCommTblP 0x41a19098 : NhOptTransTblP
0x41a190a0 :
NdRRC1sTblP 0x41a190a8
NdPtDirPA 0 : NhLocCBP 0x41a16f000 : NdTpMP 0x419efc80 :
NdTmpASPAP 0x41a25000 :
NdTmpCommP 0x41a25800
NdTmpRRC1P 0x41a4b000 : NdTpOptP 0x41a4b800 : NdTmpNHP :
NdOrigPAP 0
NdOrigNHP 0 : NdModPathP 0x419efcc0 : NdModASPAP 0x41a4c000 :
NdModCommP 0x41a4c800
NdModOptP 0x41a4d000 : NdModNHP 0 : NdComSortHdP 0x41a19110 :
NdComSortHdP
0x41a19d04 : NdUpdAPFMs 0 : AFRstSet 0x41a1a298 : NHopDefDxHdP
0x41a1a3e0 :
NumNhDefDx 0 :CfgHdrAFMs 0 : AFRtDamp 0 : AlwaysCmpMed 0 : LocRld
10 : LocRldRem 10 :
softReconfig 0x41a1a58c
DefMet 0 :AutoSumm 1 : NhopsP 0x41a0d100 : Starts 0 : Stops 0 :
Opens 0
Closes 0 : Fails 0 : Fatals 0 : ConnExps 0 : HldExps 0 : KeepExps
0
RxOpens 0 : RxAtpEkm 0 : RxAtpUs 0 : RxAtpNotifs 0 : TxAtpUs 0 :
TxAtpNotifs 0
BadEvts 0 : SynFails 0 : RxeCodes 0x41a1b6b8 : RxaHdrcode 0x41a1b6d4 :
RxOpCodes 0x41a1b6e4
RxUpdCodeP 0x41a1704 : TxECodeP 0x41a1734 : TxHdrcodeP
0x41a1750 : TxOpCodeP
0x41a1760
TxUpdCodeP 0x41a1780 : TrEvt 0 : LocPref 100 : tmpPathP
0x41a1b78b : LogNbrChgs 1
RecursiveNHP 1 : PgCfgId 0 : KeepAlive 0 : HldTime 0 : DioHdl 0 :
AgrValTmrP
0x41e7024
UpdNetTmrP 0 : RedistTmrP 0x41e7094 : PeerChgTmrP 0 :
CleanRibTmrP 0x41e7104
PeerUpdTmrP 0x41ee70cc : DfrdNHdP 0x41e7174 :
DfrdRtSelTmrP 0x41e713c :
FastExtFallover 1 : FastIntFallover 0 : EnforceLstAS 1
PeerIdBitsP 0x41967120 : softOutSz 16 : RibUpdCtxCBP 0
UpdPeerCtxCBP 0 : UpdPeerCtxtAFT 0 : TcpioCtxCB 0 : RedistBlk 1
NextCBPurg 11011536 : NumPeerToPurge 0 : PeerIBGPCh 0 :
NonDet 0 : DfrdPathSel 0
BGPRst 0 : NumGrCfg 1 : DfrdTmstmp 0 : SnmpTrps 0 :
IgnrBestPthASP 0
RstOn 1 : RstMod 1 : RstRole 2 : AFFalgs 7 : RstInt 120 :
MaxxorIntExt 361
FixedPartCrt 1 : VarPartCrt 1
Packet Capture max allowed length 40960000 : current length 0
Peer Grp List
show ip bgp extcommunity-list

View information on all routes with Extended Community attributes.

Syntax

```
show ip bgp [ipv4 unicast] extcommunity-list [list name]
```

Parameters

- **ipv4 unicast** (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.
- **list name** Enter the extended community list name you wish to view. The range is 140 characters.

Command Modes

- EXEC
- EXEC Privilege

Command History

**Version**	**Description**
9.9(0.0) | Introduced on the FN IOM.
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.
To view the total number of COMMUNITY attributes found, use the `show ip bgp summary` command. The text line above the route table states the number of COMMUNITY attributes found.

The `show ip bgp community` command without any parameters lists BGP routes with at least one BGP community attribute and the output is the same as for the `show ip bgp` command output.

### show ip bgp filter-list

View the routes that match the filter lists.

**Syntax**

```
show ip bgp [ipv4 unicast] filter-list as-path-name
```

**Parameters**

- **ipv4 unicast** (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.
- **as-path-name** Enter an AS-PATH access list name. The range is 140 characters.

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The following describes the `show ip bgp filter-list hello` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path source</td>
<td>Lists the path sources shown to the right of the last AS number in the Path column:</td>
</tr>
</tbody>
</table>
| codes         | • i = internal route entry  
|               | • a = aggregate route entry  
|               | • c = external confederation route entry  
|               | • n = network route entry  
|               | • r = redistributed route entry |
| Next Hop      | Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table. |
### Field Description

**Metric**
Displays the BGP route’s metric, if assigned.

**LocPrf**
Displays the BGP LOCAL_PREF attribute for the route.

**Weight**
Displays the route’s weight.

**Path**
Lists all the ASs the route passed through to reach the destination network.

### Example

Dell#show ip bgp filter-list hello
BGP table version is 80227, local router ID is 120.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* I 6.1.5.0/24</td>
<td>192.100.11.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.8.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.9.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.10.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>*&gt;I</td>
<td>6.1.5.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.6.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.20.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.6.0/24 192.100.11.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.8.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.9.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.10.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>*&gt;I</td>
<td>6.1.5.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.6.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.20.1</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>6.1.20.0/24 192.100.11.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.8.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.9.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
<tr>
<td>* I</td>
<td>192.100.10.2</td>
<td>20000</td>
<td>9999</td>
<td>0 ?</td>
<td></td>
</tr>
</tbody>
</table>

Dell#

### show ip bgp flap-statistics

View flap statistics on BGP routes.

**Syntax**

```
show ip bgp [ipv4 unicast] flap-statistics [ip-address [mask]]
[filter-list as-path-name] [regexp regular-expression]
```

**Parameters**

- **ipv4 unicast** (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.
- **ip-address** (OPTIONAL) Enter the IP address (in dotted decimal format) of the BGP network to view information only on that network.
mask  (OPTIONAL) Enter the network mask (in slash prefix (/x) format) of the BGP network address.

filter-list as-path-name  (OPTIONAL) Enter the keyword filter-list then the name of a configured AS-PATH ACL. The range is 140 characters.

regexp regular-expression  Enter a regular expression then use one or a combination of the following characters to match. The range is 256 characters.

- . = (period) any single character (including a white space).
- * = (asterisk) the sequences in a pattern (zero or more sequences).
- + = (plus) the sequences in a pattern (one or more sequences).
- ? = (question mark) sequences in a pattern (either zero or one sequences).

  NOTE: Enter an escape sequence (CTRL+v) prior to entering the ? regular expression.

- [ ] = (brackets) a range of single-character patterns.
- ( ) = (parenthesis) groups a series of pattern elements to a single element.
- { } = (braces) minimum and the maximum match count.
- ^ = (caret) the beginning of the input string. If you use the caret at the beginning of a sequence or range, it matches on everything BUT the characters specified.
- $ = (dollar sign) the end of the output string.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip bgp flap command shown in the following example.

Field  Description

Network  Displays the network ID to which the route is flapping.

From  Displays the IP address of the neighbor advertising the flapping route.

Flaps  Displays the number of times the route flapped.

Duration  Displays the hours:minutes:seconds since the route first flapped.
Field	Description
Reuse | Displays the hours:minutes:seconds until the flapped route is available.
Path | Lists all the ASs the flapping route passed through to reach the destination network.

Example

```
Dell>show ip bgp flap-statistics
BGP table version is 210851, local router ID is 63.114.8.2
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external,
r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Flaps</th>
<th>Duration</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
</table>
```

show ip bgp inconsistent-as

View routes with inconsistent originating autonomous system (AS) numbers; that is, prefixes that are announced from the same neighbor AS but with a different AS-Path.

Syntax

```
show ip bgp \[ipv4 unicast\] inconsistent-as
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip bgp inconsistent-as` command shown in the following example.

Field	Description
Network | Displays the destination network prefix of each BGP route.
Next Hop | Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then local routes exist in the routing table.
Metric | Displays the BGP route’s metric, if assigned.
LocPrf | Displays the BGP LOCAL_PREF attribute for the route.
Weight | Displays the route’s weight.
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>Lists all the ASs the route passed through to reach the destination network.</td>
</tr>
</tbody>
</table>

#### Example

```bash
dell>show ip bgp inconsistent-as
BGP table version is 280852, local router ID is 10.1.2.100
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 3.0.0.0/8</td>
<td>63.114.8.33</td>
<td>0 18508 209 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.34</td>
<td>0 18508 209 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.60</td>
<td>0 18508 209 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 3.18.135.0/24</td>
<td>63.114.8.60</td>
<td>0 18508 209 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.34</td>
<td>0 18508 209 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.33</td>
<td>0 18508 701 7018 80 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 4.0.0.0/8</td>
<td>63.114.8.60</td>
<td>0 18508 209 1 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.34</td>
<td>0 18508 209 1 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.33</td>
<td>0 18508 701 1 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 6.0.0.0/20</td>
<td>63.114.8.60</td>
<td>0 18508 209 3549 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.34</td>
<td>0 18508 209 3549 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*></td>
<td>63.114.8.33</td>
<td>0 18508 ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.33</td>
<td>0 18508 209 3549 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 9.2.0.0/16</td>
<td>63.114.8.60</td>
<td>0 18508 209 701 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>63.114.8.34</td>
<td>0 18508 209 701 i</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

#### show ip bgp neighbors

Allows you to view the information BGP neighbors exchange.

**Syntax**

```
show ip bgp [ipv4 unicast] neighbors [ip-address [advertised-routes | dampened-routes | detail | flap-statistics | routes | {received-routes [network [network-mask]]} | {denied-routes [network [network-mask]]}]
```

**Parameters**

- **ipv4 unicast** (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.
- **ip-address** (OPTIONAL) Enter the IP address of the neighbor to view only BGP information exchanged with that neighbor.
- **advertised-routes** (OPTIONAL) Enter the keywords advertised-routes to view only the routes the neighbor sent.
- **dampened-routes** (OPTIONAL) Enter the keywords dampened-routes to view information on dampened routes from the BGP neighbor.
detail (OPTIONAL) Enter the keyword detail to view neighbor-specific internal information for the IPv4 Unicast address family.

flap-statistics (OPTIONAL) Enter the keywords flap-statistics to view flap statistics on the neighbor’s routes.

routes (OPTIONAL) Enter the keyword routes to view only the neighbor’s feasible routes.

received-routes (OPTIONAL) Enter the keywords received-routes then either the network address (in dotted decimal format) or the network mask (in slash prefix format) to view all information received from neighbors.

NOTE: Configure the neighbor soft-reconfiguration inbound command prior to viewing all the information received from the neighbors.

denied-routes (OPTIONAL) Enter the keywords denied-routes then either the network address (in dotted decimal format) or the network mask (in slash prefix format) to view all information on routes denied via neighbor inbound filters.

Command Modes
- EXEC
- EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
After a peer reset, the contents of the notification log messages is displayed in hex values for debugging.

The following describes the show ip bgp neighbors command shown in the following examples.

The Lines Beginning with:

BGP neighbor Displays the BGP neighbor address and its AS number. The last phrase in the line indicates whether the link between the BGP router and its neighbor is an external or internal one. If they are located in the same AS, the link is internal; otherwise the link is external.

BGP version Displays the BGP version (always version 4) and the remote router ID.
<table>
<thead>
<tr>
<th>The Lines Beginning with:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP state</td>
<td>Displays the neighbor’s BGP state and the amount of time in hours:minutes:seconds it has been in that state.</td>
</tr>
<tr>
<td>Last read</td>
<td>This line displays the following information:</td>
</tr>
<tr>
<td></td>
<td>• last read is the time (hours:minutes:seconds) the router read a message from its neighbor</td>
</tr>
<tr>
<td></td>
<td>• hold time is the number of seconds configured between messages from its neighbor</td>
</tr>
<tr>
<td></td>
<td>• keepalive interval is the number of seconds between keepalive messages to help ensure that the TCP session is still alive.</td>
</tr>
<tr>
<td>Received messages</td>
<td>This line displays the number of BGP messages received, the number of notifications (error messages), and the number of messages waiting in a queue for processing.</td>
</tr>
<tr>
<td>Sent messages</td>
<td>The line displays the number of BGP messages sent, the number of notifications (error messages), and the number of messages waiting in a queue for processing.</td>
</tr>
<tr>
<td>Received updates</td>
<td>This line displays the number of BGP updates received and sent.</td>
</tr>
<tr>
<td>Soft reconfiguration</td>
<td>This line indicates that soft reconfiguration inbound is configured.</td>
</tr>
<tr>
<td>Minimum time</td>
<td>Displays the minimum time, in seconds, between advertisements.</td>
</tr>
<tr>
<td>(list of inbound and outbound policies)</td>
<td>Displays the policy commands configured and the names of the Route map, AS-PATH ACL, or Prefix list configured for the policy.</td>
</tr>
<tr>
<td>For address family:</td>
<td>Displays the IPv4 Unicast as the address family.</td>
</tr>
<tr>
<td>BGP table version</td>
<td>Displays which version of the primary BGP routing table the router and the neighbor are using.</td>
</tr>
<tr>
<td>accepted prefixes</td>
<td>Displays the number of network prefixes the router accepts and the amount of memory used to process those prefixes.</td>
</tr>
<tr>
<td>Prefix advertised</td>
<td>Displays the number of network prefixes advertised, the number rejected, and the number withdrawn from the BGP routing table.</td>
</tr>
<tr>
<td>Connections established</td>
<td>Displays the number of TCP connections established and dropped between the two peers to exchange BGP information.</td>
</tr>
<tr>
<td>Last reset</td>
<td>Displays the amount of time since the peering session was last reset. Also states if the peer resets the peering session. If the peering session was never reset, the word never is displayed.</td>
</tr>
</tbody>
</table>
The Lines Beginning with:

**Local host:** Displays the peering address of the local router and the TCP port number.

**Foreign host:** Displays the peering address of the neighbor and the TCP port number.

**Example**

Dell#show ip bgp neighbors
BGP neighbor is 10.10.10.1, remote AS 23456, external link
   BGP version 4, remote router ID 10.10.10.1
   BGP state ESTABLISHED, in this state for 00:00:35
   . . .
   Capabilities received from neighbor for IPv4 Unicast:
      MULTIPROTO_EXT(1)
      ROUTE_REFRESH(2)
      4_OCTECT_AS(65)
      ADD_PATH (69)
      CISCO_ROUTE_REFRESH(128)

Dell#show ip bgp neighbors
BGP neighbor is 100.10.10.2, remote AS 200, external link
   BGP version 4, remote router ID 192.168.2.101
   BGP state ESTABLISHED, in this state for 00:16:12
   Last read 00:00:12, last write 00:00:03
   Hold time is 180, keepalive interval is 60 seconds
   Received 1404 messages, 0 in queue
      3 opens, 1 notifications, 1394 updates
      6 keepalives, 0 route refresh requests
   Sent 48 messages, 0 in queue
      3 opens, 2 notifications, 0 updates
      43 keepalives, 0 route refresh requests
   Minimum time between advertisement runs is 30 seconds
   Minimum time before advertisements start is 0 seconds
   Capabilities received from neighbor for IPv4 Unicast:
      MULTIPROTO_EXT(1)
      ROUTE_REFRESH(2)
      CISCO_ROUTE_REFRESH(128)
   Capabilities advertised to neighbor for IPv4 Unicast:
      MULTIPROTO_EXT(1)
      ROUTE_REFRESH(2)
      ROUTE_REFRESH(2)
      GRACEFUL_RESTART(64)
      CISCO_ROUTE_REFRESH(128)
   Route map for incoming advertisements is test
   Maximum prefix set to 4 with threshold 75
   For address family: IPv4 Unicast
   BGP table version 34, neighbor version 34
   5 accepted prefixes consume 20 bytes
   Prefix advertised 0, denied 4, withdrawn 0
   Prefixes accepted 1 (consume 4 bytes), withdrawn 0 by peer
   Prefixes advertised 0, rejected 0, withdrawn 0 from peer
Connections established 2; dropped 1
Last reset 00:18:21, due to Maximum prefix limit reached

Dell>show ip bgp neighbors 192.14.1.5 advertised-routes

BGP table version is 74103, local router ID is 33.33.33.33
Status codes: s suppressed, S stale, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*r 1.10.1.0/24</td>
<td>0.0.0.0</td>
<td>5000</td>
<td></td>
<td>32768</td>
<td>?</td>
</tr>
<tr>
<td>*r 1.11.0.0/16</td>
<td>0.0.0.0</td>
<td>5000</td>
<td></td>
<td>32768</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*I 223.94.249.0/24</td>
<td>223.100.4.249</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*I 223.94.250.0/24</td>
<td>223.100.4.250</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*I 223.100.0.0/16</td>
<td>223.100.255.254</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

Total number of prefixes: 74102

Example
(Advertised-Routes)

Dell#

Example
(Received-Routes)

Dell#show ip bgp neighbors 120.10.10.1 received-routes

BGP table version is 13, local router ID is 120.10.10.1
Status codes: s suppressed, S stale, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r redistributed, n - network, D - denied, S - stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 70.70.21.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.22.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.23.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.24.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>*I 223.94.249.0/24</td>
<td>223.100.4.249</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*I 223.94.250.0/24</td>
<td>223.100.4.250</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>*I 223.100.0.0/16</td>
<td>223.100.255.254</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

Total number of prefixes: 74102

Example
(denied-routes)

Dell#show ip bgp neighbors 100.10.10.2 denied-routes

4 denied paths using 205 bytes of memory
BGP table version is 34, local router ID is 100.10.10.2
Status codes: s suppressed, S stale, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r redistributed, n - network, D - denied, S - stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 70.70.21.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.22.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.23.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D 70.70.24.0/24</td>
<td>100.10.10.2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Dell#
show ip bgp next-hop

View all next hops (using learned routes only) with current reachability and flap status. This command only displays one path, even if the next hop is reachable by multiple paths.

Syntax

show ip bgp next-hop

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ip bgp next-hop command shown in the following example.

Field Description

Next-hop Displays the next-hop IP address.

Via Displays the IP address and interface used to reach the next hop.

RefCount Displays the number of BGP routes using this next hop.

Cost Displays the cost associated with using this next hop.

Flaps Displays the number of times the next hop has flapped.

Time Elapsed Displays the time elapsed since the next hop was learned. If the route is down, this field displays time elapsed since the route went down.

Example

Dell>show ip bgp next-hop
Next-hop Via RefCount Cost Flaps Time Elapsed
63.114.8.33 63.114.8.33, Gi 12/22 240984 0 0 00:18:25
63.114.8.34 63.114.8.34, Gi 12/22 135152 0 0 00:18:13
63.114.8.35 63.114.8.35, Gi 12/22 1 0 0 00:18:07
63.114.8.60 63.114.8.60, Gi 12/22 135155 0 0 00:18:11
Dell>
show ip bgp paths

View all the BGP path attributes in the BGP database.

Syntax

```
show ip bgp paths [regexp regular-expression]
```

Parameters

- `regexp regular-expression` Enter a regular expression then use one or a combination of the following characters to match:
  - `. = (period) any single character (including a white space).
  - `* = (asterisk) the sequences in a pattern (zero or more sequences).
  - `+ = (plus) the sequences in a pattern (one or more sequences).
  - `? = (question mark) sequences in a pattern (either zero or one sequences).
  - `[] = (brackets) a range of single-character patterns.
  - `( ) = (parenthesis) groups a series of pattern elements to a single element.
  - `{ } = (braces) minimum and the maximum match count.
  - `^ = (caret) the beginning of the input string. If you use the caret at the beginning of a sequence or range, it matches on everything BUT the characters specified.
  - `$ = (dollar sign) the end of the output string.

**NOTE:** Enter an escape sequence (CTRL+v) prior to entering the `?` regular expression.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version	Description
9.9(0.0) | Introduced on the FN IOM.
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ip bgp path` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Displays the total number of BGP path attributes.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the internal address where the path attribute is stored.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
**Hash** | Displays the hash bucket where the path attribute is stored.
**Refcount** | Displays the number of BGP routes using this path attribute.
**Metric** | Displays the MED attribute for this path attribute.
**Path** | Displays the AS path for the route, with the origin code for the route listed last. Numbers listed between braces {} are AS_SET information.

#### Example
```
Dell#show ip bgp path
Total 16 Paths
Address Hash Refcount Metric Path
0x1efe7e5c 15 10000 32 ?
0x1efe7e1c 71 10000 23 ?
0x1efe7ddc 127 10000 22 ?
0x1efe7d9c 183 10000 43 ?
0x1efe7d5c 239 10000 42 ?
0x1efe7c9c 283 6 {102 103} ?
0x1efe7b1c 287 336 20000 ?
0x1efe7d1c 295 10000 13 ?
0x1efe7c5c 339 6 {92 93} ?
0x1efe7d3c 351 10000 12 ?
0x1efe7c1c 395 6 {82 83} ?
0x1efe7bcd 451 6 {72 73} ?
0x1efe7b5c 491 78 0 ?
0x1efe7adc 883 2 120 i
0x1efe7e9c 983 10000 33 ?
0x1efe7b9c 1003 6 0 i
Dell#
```

### show ip bgp paths as-path

View all unique AS-PATHs in the BGP database.

**Syntax**
```
show ip bgp paths as-path
```

**Command Modes**
- EXEC
- EXEC Privilege

**Command History**
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
The following describes the `show ip bgp paths as-path` command shown in the following example.
show ip bgp paths community

View all unique COMMUNITY numbers in the BGP database.

**Syntax**

```
show ip bgp paths community
```

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The following describes the `show ip bgp paths community` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Displays the internal address where the path attribute is stored.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip bgp paths as-path
Total 13 AS-Paths
Address Hash Refcount AS-Path
0x1ea3c1ec 251 1 42
0x1ea3c25c 251 1 22
0x1ea3c1b4 507 1 13
0x1ea3c304 507 1 33
0x1ea3c10c 763 1 {92 93}
0x1ea3c144 763 1 {102 103}
0x1ea3c17c 763 1 12
0x1ea3c2cc 763 1 32
0x1ea3c09c 764 1 {72 73}
0x1ea3c0d4 764 1 {82 83}
0x1ea3c224 1019 1 43
0x1ea3c294 1019 1 23
0x1ea3c02c 1021 4
Dell#
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>Displays the hash bucket where the path attribute is stored.</td>
</tr>
<tr>
<td>Refcount</td>
<td>Displays the number of BGP routes using these communities.</td>
</tr>
<tr>
<td>Community</td>
<td>Displays the community attributes in this BGP path.</td>
</tr>
</tbody>
</table>

**Example**

```
E1200-BGP>show ip bgp paths community
Total 293 Communities

<table>
<thead>
<tr>
<th>Address</th>
<th>Hash</th>
<th>Refcount</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1ec88a5c</td>
<td>3</td>
<td>4</td>
<td>209:209 209:6059 209:31272 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1e0f10ec</td>
<td>15</td>
<td>2</td>
<td>209:209 209:7193 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1c902234</td>
<td>37</td>
<td></td>
<td>209:209 209:6253 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1f588cd4</td>
<td>41</td>
<td>24</td>
<td>209:209 209:21226 286:777 286:3033</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1e805884</td>
<td>46</td>
<td></td>
<td>209:209 209:21226 286:777 286:3033</td>
</tr>
<tr>
<td>1899:3033</td>
<td>64675:21092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1e433f4c</td>
<td>46</td>
<td>8</td>
<td>209:209 209:5097 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1f173294</td>
<td>48</td>
<td>16</td>
<td>209:209 209:21226 286:40 286:777</td>
</tr>
<tr>
<td>286:3040 5606:40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12955:5606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1c9f8e24</td>
<td>50</td>
<td>6</td>
<td>209:209 209:4069 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1c9f88e4</td>
<td>53</td>
<td>4</td>
<td>209:209 209:3193 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1f58a944</td>
<td>57</td>
<td>6</td>
<td>209:209 209:2073 209:21362 3908:900</td>
</tr>
<tr>
<td>19092:300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1ce6be44</td>
<td>80</td>
<td>2</td>
<td>209:209 209:999 209:40832</td>
</tr>
<tr>
<td>0x1c6e2374</td>
<td>80</td>
<td></td>
<td>209:777 209:41528</td>
</tr>
<tr>
<td>0x1f58ad6c</td>
<td>82</td>
<td></td>
<td>46 209:209 209:41528</td>
</tr>
<tr>
<td>0x1c6e2064</td>
<td>83</td>
<td></td>
<td>2 209:777 209:40832</td>
</tr>
<tr>
<td>0x1f588ecc</td>
<td>85</td>
<td></td>
<td>570 209:209 209:40832</td>
</tr>
<tr>
<td>0x1f57cc0c</td>
<td>98</td>
<td></td>
<td>2 209:209 209:21226 286:3031</td>
</tr>
<tr>
<td>0x1d65b2ac</td>
<td>117</td>
<td></td>
<td>13646:1044 13646:1124</td>
</tr>
<tr>
<td>13646:1154</td>
<td></td>
<td></td>
<td>13646:1164 13646:1184 13646:1194 13646:1204 13646:1214</td>
</tr>
<tr>
<td>13646:1224</td>
<td></td>
<td></td>
<td>13646:1234 13646:1244 13646:1254 13646:1264 13646:3000</td>
</tr>
<tr>
<td>0x1f5854ac</td>
<td>119</td>
<td></td>
<td>18 209:209 209:21226 286:108 286:111</td>
</tr>
<tr>
<td>286:777 286:3033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>517:5104</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**show ip bgp peer-group**

Allows you to view information on the BGP peers in a peer group.

**Syntax**

```
show ip bgp [ipv4 unicast] peer-group [peer-group-name [detail | summary]]
```
Parameters

ipv4 unicast  (OPTIONAL) Enter the keywords ipv4 unicast to view information only related to ipv4 unicast routes.

peer-group-name  (OPTIONAL) Enter the name of a peer group to view information about that peer group only.

detail  (OPTIONAL) Enter the keyword detail to view detailed status information of the peers in that peer group.

summary  (OPTIONAL) Enter the keyword summary to view status information of the peers in that peer group. The output is the same as that found in the show ip bgp summary command.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version  Description
9.9(0.0)  Introduced on the FN IOM.
9.2(0.0)  Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ip bgp peer-group command shown in the following example.

Line beginning with:  Description
Peer-group  Displays the peer group’s name.
Administratively shut  Displays the peer group’s status if the peer group is not enabled. If you enable the peer group, this line is not displayed.
BGP version  Displays the BGP version supported.
Minimum time  Displays the time interval between BGP advertisements.
For address family  Displays IPv4 Unicast as the address family.
BGP neighbor  Displays the name of the BGP neighbor.
Number of peers  Displays the number of peers currently configured for this peer group.
Peer-group members:  Lists the IP addresses of the peers in the peer group. If the address is outbound optimized, an * is displayed next to the IP address.

Example

Dell#show ip bgp peer-group

Peer-group pg1
  BGP version 4
  Minimum time between advertisement runs is 30 seconds
For address family: IPv4 Unicast
BGP neighbor is pg1
Number of peers in this group 4
Update packing has 4_OCTECT_AS support enabled
Add-path support enabled
Peer-group members (* - outbound optimized):
  1.1.1.5
  1.1.1.6
  10.10.10.2*
  20.20.20.100

Example

Dell#show ip bgp peer-group

Peer-group RT-PEERS
Description: ***peering-with-RT***
BGP version 4
Minimum time between advertisement runs is 30 seconds

For address family: IPv4 Unicast
BGP neighbor is RT-PEERS
Number of peers in this group 20
Peer-group members (* - outbound optimized):
  12.1.1.2*
  12.1.1.3*
  12.1.1.4*
  12.1.1.5*
  12.1.1.6*
  12.2.1.2*
  12.2.1.3*
  12.2.1.4*
  12.2.1.5*
  12.2.1.6*
  12.3.1.2*
  12.3.1.3*
  12.3.1.4*
  12.3.1.5*
  12.3.1.6*
  12.4.1.2*
  12.4.1.3*
  12.4.1.4*
  12.4.1.5*
  12.4.1.6*

Related Commands
neighbor peer-group (assigning peers) — assigns a peer to a peer-group.
neighbor peer-group (creating group) — creates a peer group.

show ip bgp regexp

Display the subset of the BGP routing table matching the regular expressions specified.

Syntax

```
show ip bgp regexp regular-expression [character]
```
Parameters  

regular-expression [character]  
Enter a regular expression then use one or a combination of the following characters to match:

- . = (period) any single character (including a white space).
- * = (asterisk) the sequences in a pattern (zero or more sequences).
- + = (plus) the sequences in a pattern (one or more sequences).
- ? = (question mark) sequences in a pattern (either zero or one sequences).

**NOTE:** Enter an escape sequence (CTRL+v) prior to entering the ? regular expression.

- [ ] = (brackets) a range of single-character patterns.
- ( ) = (parenthesis) groups a series of pattern elements to a single element.
- { } = (braces) minimum and the maximum match count.
- ^ = (caret) the beginning of the input string. If you use the caret at the beginning of a sequence or range, it matches on everything BUT the characters specified.
- $ = (dollar sign) the end of the output string.

Command Modes  

- EXEC
- EXEC Privilege

Command History  

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information  

The following describes the show ip bgp regexp command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the destination network prefix of each BGP route.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Displays the next hop address of the BGP router. If 0.0.0.0 is listed in this column, then non-BGP routes exist in the router’s routing table.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the BGP router’s metric, if assigned.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>Displays the BGP LOCAL_PREF attribute for the route.</td>
</tr>
<tr>
<td>Weight</td>
<td>Displays the route’s weight</td>
</tr>
<tr>
<td>Path</td>
<td>Lists all the AS paths the route passed through to reach the destination network.</td>
</tr>
</tbody>
</table>
Example (S4810)

Dell#show ip bgp regexp ^2914+
BGP table version is 3700481, local router ID is 63.114.8.35
Status codes: s suppressed, S stale, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt;I 3.0.0.0/8</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 1239 80 i</td>
</tr>
<tr>
<td>*&gt;I 4.0.0.0/8</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 3356 i</td>
</tr>
<tr>
<td>*&gt;I 4.17.225.0/24</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 11853 11853 11853 6496</td>
</tr>
<tr>
<td>*&gt;I 4.17.226.0/23</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 11853 11853 11853 6496</td>
</tr>
<tr>
<td>*&gt;I 4.17.251.0/24</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 11853 11853 11853 6496</td>
</tr>
<tr>
<td>*&gt;I 4.17.252.0/23</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 11853 11853 11853 6496</td>
</tr>
<tr>
<td>*&gt;I 4.19.2.0/23</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 6167 6167 i</td>
</tr>
<tr>
<td>*&gt;I 4.19.16.0/23</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 6167 6167 i</td>
</tr>
<tr>
<td>*&gt;I 4.21.80.0/22</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 174 4200 16559 i</td>
</tr>
<tr>
<td>*&gt;I 4.21.82.0/24</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 174 4200 16559 i</td>
</tr>
<tr>
<td>*&gt;I 4.21.252.0/23</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 6389 8063 19198 i</td>
</tr>
<tr>
<td>*&gt;I 4.23.180.0/24</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 3561 6128 30576 i</td>
</tr>
<tr>
<td>*&gt;I 4.36.200.0/21</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 14742 11854 14135 i</td>
</tr>
<tr>
<td>*&gt;I 4.67.64.0/22</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 11608 19281 i</td>
</tr>
<tr>
<td>*&gt;I 4.78.32.0/21</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 3491 29748 i</td>
</tr>
<tr>
<td>*&gt;I 6.1.0.0/16</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 668 i</td>
</tr>
<tr>
<td>*&gt;I 6.2.0.0/22</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 668 i</td>
</tr>
<tr>
<td>*&gt;I 6.3.0.0/18</td>
<td>1.1.1.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2914 701 668 i</td>
</tr>
</tbody>
</table>

**show ip bgp summary**

Allows you to view the status of all BGP connections.

**Syntax**

```
show ip bgp [ipv4 unicast] summary
```

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
Usage Information

The following describes the `show ip bgp summary` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP router identifier</td>
<td>Displays the local router ID and the AS number.</td>
</tr>
<tr>
<td>BGP table version</td>
<td>Displays the BGP table version and the main routing table version.</td>
</tr>
<tr>
<td>network entries</td>
<td>Displays the number of network entries, route paths, and the amount of memory used to process those entries.</td>
</tr>
<tr>
<td>paths</td>
<td>Displays the number of paths and the amount of memory used.</td>
</tr>
<tr>
<td>denied paths</td>
<td>Displays the number of denied paths and the amount of memory used.</td>
</tr>
<tr>
<td>BGP path attribute entries</td>
<td>Displays the number of BGP path attributes and the amount of memory used to process them.</td>
</tr>
<tr>
<td>BGP AS-PATH entries</td>
<td>Displays the number of BGP AS_PATH attributes processed and the amount of memory used to process them.</td>
</tr>
<tr>
<td>BGP community entries</td>
<td>Displays the number of BGP COMMUNITY attributes processed and the amount of memory used to process them. The <code>show ip bgp community</code> command provides more details on the COMMUNITY attributes.</td>
</tr>
<tr>
<td>Dampening enabled</td>
<td>Displayed only when you enable dampening. Displays the number of paths designated as history, dampened, or penalized.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Displays the BGP neighbor address.</td>
</tr>
<tr>
<td>AS</td>
<td>Displays the AS number of the neighbor.</td>
</tr>
<tr>
<td>MsgRcvd</td>
<td>Displays the number of BGP messages that neighbor received.</td>
</tr>
<tr>
<td>MsgSent</td>
<td>Displays the number of BGP messages that neighbor sent.</td>
</tr>
<tr>
<td>TblVer</td>
<td>Displays the version of the BGP table that was sent to that neighbor.</td>
</tr>
<tr>
<td>InQ</td>
<td>Displays the number of messages from that neighbor waiting to be processed.</td>
</tr>
<tr>
<td>OutQ</td>
<td>Displays the number of messages waiting to be sent to that neighbor.</td>
</tr>
</tbody>
</table>

If a number appears in parentheses, the number represents the number of messages waiting to be sent to the peer group.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up/Down</td>
<td>Displays the amount of time that the neighbor is in the Established stage. If the neighbor has never moved into the Established stage, the word never is displayed.</td>
</tr>
<tr>
<td></td>
<td>The output format is:</td>
</tr>
<tr>
<td></td>
<td><strong>Time</strong> <strong>Established</strong> <strong>Display Example</strong></td>
</tr>
<tr>
<td>&lt; 1 day</td>
<td>00:12:23 (hours:minutes:seconds)</td>
</tr>
<tr>
<td>&lt; 1 week</td>
<td>1d21h (DaysHours)</td>
</tr>
<tr>
<td>&gt; 1 week</td>
<td>11w2d (WeeksDays)</td>
</tr>
<tr>
<td>State/Pfxrcd</td>
<td>If the neighbor is in Established stage, the number of network prefixes received.</td>
</tr>
<tr>
<td></td>
<td>If a maximum limit was configured with the neighbor maximum-prefix command, (prfxd) appears in this column.</td>
</tr>
<tr>
<td></td>
<td>If the neighbor is not in Established stage, the current stage is displayed (Idle, Connect, Active, OpenSent, OpenConfirm). When the peer is transitioning between states and clearing the routes received, the phrase (Purging) may appear in this column.</td>
</tr>
<tr>
<td></td>
<td>If the neighbor is disabled, the phrase (Admin shut) appears in this column.</td>
</tr>
</tbody>
</table>

**Example (S4810)**

```
Dell#show ip bgp summary
BGP router identifier 120.10.10.1, local AS number 100
BGP table version is 34, main routing table version 34
9 network entrie(s) using 1372 bytes of memory
5 paths using 380 bytes of memory
4 denied paths using 164 bytes of memory
BGP-RIB over all using 385 bytes of memory
2 BGP path attribute entrie(s) using 168 bytes of memory
1 BGP AS-PATH entrie(s) using 39 bytes of memory
1 BGP community entrie(s) using 43 bytes of memory
2 neighbor(s) using 7232 bytes of memory

Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx
100.10.10.2 200 46 41 34 0 0 00:14:33 5
120.10.10.2 300 40 47 34 0 0 00:37:10 0
Dell#
```
show running-config bgp

To display the current BGP configuration, use this feature.

Syntax

show running-config bgp

Defaults

none

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

timers bgp

Adjust the BGP Keep Alive and Hold Time timers.

Syntax

timers bgp keepalive holdtime

To return to the default, use the no timers bgp command.

Parameters

- **keepalive**: Enter a number for the time interval, in seconds, between keepalive messages sent to the neighbor routers. The range is from 1 to 65535. The default is 60 seconds.
- **holdtime**: Enter a number for the time interval, in seconds, between the last keepalive message and declaring the router dead. The range is from 3 to 65535. The default is 180 seconds.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
MBGP Commands

Multiprotocol BGP (MBGP) is an enhanced BGP that enables multicast routing policy throughout the internet and connecting multicast topologies between BGP and autonomous systems (ASs). MBGP is implemented as per IETF RFC 1858.

**debug ip bgp dampening**

View information on routes being dampened.

**Syntax**

debug ip bgp ipv4 multicast dampening

To disable debugging, use the no debug ip bgp ipv4 multicast dampening command.

**Parameters**

dampening  Enter the keyword dampening to clear route flap dampening information.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MxL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**distance bgp**

Define an administrative distance for routes.

**Syntax**

distance bgp external-distance internal-distance local-distance

To return to default values, use the no distance bgp command.

**Parameters**

- **external-distance**  Enter a number to assign to routes learned from a neighbor external to the AS. The range is from 1 to 255. The default is 20.
- **internal-distance**  Enter a number to assign to routes learned from a router within the AS. The range is from 1 to 255. The default is 200.
local-distance

Enter a number to assign to routes learned from networks listed in the network command. The range is from 1 to 255. The default is 200.

Defaults

- external-distance = 20
- internal-distance = 200
- local-distance = 200

Command Modes

ROUTER BGP (conf-router_bgp_af)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

⚠️ CAUTION: Dell Networking OS recommends that you do not change the administrative distance of internal routes. Changing the administrative distances may cause routing table inconsistencies.

The higher the administrative distance assigned to a route means that your confidence in that route is low. Routes assigned an administrative distance of 255 are not installed in the routing table. Routes from confederations are treated as internal BGP routes.

show ip bgp dampened-paths

View BGP routes that are dampened (non-active).

Syntax

show ip bgp [ipv4 unicast] dampened-paths

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip bgp damp command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Displays the network ID to which the route is dampened.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
From | Displays the IP address of the neighbor advertising the dampened route.
Reuse | Displays the hour:minutes:seconds until the dampened route is available.
Path | Lists all the ASs the dampened route passed through to reach the destination network.

**Example**

Dell>show ip bgp dampened-paths
BGP table version is 210708, local router ID is 63.114.8.2
Status codes: s suppressed, d damped, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### BGP Extended Communities (RFC 4360)

BGP Extended Communities, as defined in RFC 4360, is an optional transitive BGP attribute. BGP Extended Communities provides two major advantages over Standard Communities:

- The range is extended from 4-octet (AA:NN) to 8-octet (Type:Value) to provide enough number communities.
- Communities are structured using a new "Type" field (1 or 2-octets), allowing you to provide granular control/filter routing information based on the type of extended communities.

### set extcommunity rt

To set Route Origin community attributes in Route Map, use this feature.

**Syntax**

```
set extcommunity rt {as4 ASN4:NN [non-trans] | ASN:NNNN [non-trans] | IPADDR:NN [non-trans]} [additive]
```

To delete the Route Origin community, use the `no set extcommunity` command.

**Parameters**

- `as4 ASN4:NN` Enter the keyword `as4` then the 4-octet AS specific extended community number in the format ASN4:NN (4-byte AS number: 2-byte community value).
- `ASN:NNNN` Enter the 2-octet AS specific extended community number in the format ASN:NNNN (2-byte AS number:4-byte community value).
**set extcommunity soo**

To set extended community site-of-origin in Route Map, use this feature.

**Syntax**
```
set extcommunity soo {as4 ASN4:NN | ASN:NNNN | IPADDR:NN [non-trans]}
```

To delete the site-of-origin community, use the `no set extcommunity command`.

**Parameters**
- **as4 ASN4:NN**
  Enter the keyword `as4` then the 4-octet AS specific extended community number in the format ASN4:NN (4-byte AS number:2-byte community value).
- **ASN:NNNN**
  Enter the 2-octet AS specific extended community number in the format ASN:NNNN (2-byte AS number:4-byte community value).
Enter the IP address specific extended community in the format IPADDR:NN (4-byte IPv4 Unicast Address:2-byte community value).

(OPTIONAL) Enter the keywords non-trans to indicate a non-transitive BGP extended community.

Defaults

Command Modes

ROUTE MAP (config-route-map)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If the set community rt and soo are in the same route-map entry, the behavior defines as:

- If the rt option comes before soo, with or without the additive option, soo overrides the communities rt sets.
- If the rt option comes after soo, without the additive option, rt overrides the communities soo sets.
- If the rt with the additive option comes after soo, rt adds the communities soo sets.

Related Commands

set extcommunity rt — sets the extended community route origins using the route-map.

show ip bgp paths extcommunity

To display all BGP paths having extended community attributes, use this feature.

Syntax

show ip bgp paths extcommunity

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip bgp paths extcommunity command shown in the following example.
### show ip bgp extcommunity-list

View information on all routes with Extended Community attributes.

**Syntax**

```
show ip bgp [ipv4 unicast] extcommunity-list [list name]
```

**Parameters**

`ipv4 unicast`  
(IMPORTANT) Enter the keywords `ipv4 unicast` to view information only related to ipv4 unicast routes.

`list name`  
Enter the extended community list name you wish to view. The range is 140 characters.

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To view the total number of COMMUNITY attributes found, use the `show ip bgp summary` command. The text line above the route table states the number of COMMUNITY attributes found.

The `show ip bgp community` command without any parameters lists BGP routes with at least one BGP community attribute and the output is the same as for the `show ip bgp` command output.

---

**Example**

```
Dell#show ip bgp paths extcommunity
Total 1 Extended Communities
Address Hash Refcount Extended Community
0x41d57024 12272 1 RT:7:200 SoO:5:300 SoO:0.0.0.3:1285
Dell#
```
IPv6 BGP Commands

IPv6 Border Gateway Protocol (IPv6 BGP) is supported on the switch.

Border gateway protocol (BGP) is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). BGP version 4 (BGPv4) supports classless interdomain routing and the aggregation of routes and AS paths. Basically, two routers (called neighbors or peers) exchange information including full routing tables and periodically send messages to update those routing tables.

**bgp soft-reconfig-backup**

To avoid the peer from resending messages, use this command only when route-refresh is not negotiated.

**Syntax**

```
bgp soft-reconfig-backup
```

To return to the default setting, use the `no bgp soft-reconfig-backup` command.

**Defaults**

Disabled

**Command Modes**

ROUTER BGP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

When you enable soft-reconfiguration for a neighbor and you execute the `clear ip bgp soft in` command, the update database stored in the router is replayed and updates are re-evaluated. With this command, the replay and update process is triggered only if route-refresh request is not negotiated with the peer. If the request is indeed negotiated (after executing the `clear ip bgp soft in` command), BGP sends a route-refresh request to the neighbor and receives all of the peer’s updates.

**Related Commands**

- `clear ip bgp` — activates inbound policies without resetting the BGP TCP session.
clear ip bgp ipv6 unicast soft

Clear and reapply policies for IPv6 unicast routes without resetting the TCP connection; that is, perform BGP soft reconfiguration.

Syntax

```
clear ip bgp { * | as-number | ipv4-neighbor-addr | ipv6-neighbor-addr | peer-group name} ipv6 unicast soft [in | out]
```

Parameters

- `*`  
  Clear and reapply an asterisk (*) for all BGP sessions.

- `as-number`  
  Clear and reapply policies for all neighbors belonging to the AS.  
  The range is from 0 to 65535 (2 Byte), from 1 to 4294967295 (4 Byte), or from 0.1 to 0.65535.65535 (Dotted format).

- `ipv4-neighbor-addr | ipv6-neighbor-addr`  
  Clear and reapply policies for a neighbor.

- `peer-group name`  
  Clear and reapply policies for all BGP routers in the specified peer group.

- `ipv6 unicast soft`  
  Clear and reapply policies for all IPv6 unicast routes.

- `in`  
  Reapply only inbound policies.

  - **NOTE:** If you enter `soft`, without an `in` or `out` option, both inbound and outbound policies are reset.

- `out`  
  Reapply only outbound policies.

  - **NOTE:** If you enter `soft`, without an `in` or `out` option, both inbound and outbound policies are reset.

Command Modes

- EXEC Privilege

Command History

- **Version**: 9.9(0.0)  
  Introduced on the FN IOM.

- **Version**: 9.2(0.0)  
  Introduced on the MXL 10/40GbE Switch IO Module.
**debug ip bgp ipv6 unicast soft-reconfiguration**

Enable soft-reconfiguration debugging for IPv6 unicast routes.

**Syntax**

```plaintext
debug ip bgp [ipv4-address | ipv6-address | peer-group-name] ipv6 unicast soft-reconfiguration
```

To disable debugging, use the `no debug ip bgp [ipv4-address | ipv6-address | peer-group-name] ipv6 unicast soft-reconfiguration` command.

**Parameters**

- `ipv4-address` | `ipv6-address` | `peer-group-name` Enter the IP address of the neighbor on which you want to enable soft-reconfiguration debugging.
- `ipv6 unicast` Debug soft reconfiguration for IPv6 unicast routes.

**Defaults**

Disabled.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command turns on BGP soft-reconfiguration inbound debugging for IPv6 unicast routes. If no neighbor is specified, debug is turned on for all neighbors.

---

**ipv6 prefix-list**

Configure an IPv6 prefix list.

**Syntax**

```plaintext
ipv6 prefix-list prefix-list name
```

**Parameters**

- `prefix-list name` Enter the name of the prefix list.
NOTE: There is a 140-character limit for prefix list names.

Defaults
none

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

show ipv6 prefix-list — View the selected IPv6 prefix-list.

display the specified IPv6 prefix list.

Syntax

show ipv6 prefix-list detail (prefix-list name) | summary

Parameters

detail | Display a detailed description of the selected IPv6 prefix list.
detail

prefix-list name | Enter the name of the prefix list.
prefix-list name

NOTE: There is a 140-character limit for prefix list names.

summary | Display a summary of RPF routes.
summary

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

ipv6 prefix-list — configures an IPv6 prefix-list.
IPv6 MBGP Commands

Multiprotocol BGP (MBGP) is an enhanced BGP that enables multicast routing policy throughout the Internet and connecting multicast topologies between BGP and autonomous systems (AS). MBGP is implemented as per IETF RFC 1858.

show ipv6 mbgproutes

Display the selected IPv6 MBGP route or a summary of all MBGP routes in the table.

Syntax

show ipv6 mbgproutes [ipv6-address prefix-length] | summary

Parameters

ipv6-address prefix-length

(Optional) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

summary

Display a summary of RPF routes.

Command Modes

EXEC

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
Content Addressable Memory (CAM)

Content addressable memory (CAM) commands are supported on the Dell Networking operating software on the platform.

⚠️ WARNING: If you are using these features for the first time, contact Dell Networking Technical Assistance Center (TAC) for guidance.

Topics:
- CAM Profile Commands
- cam-acl (Configuration)
- cam-optimization
- show cam-acl
- show cam-acl-egress

CAM Profile Commands

The CAM profiling feature allows you to partition the CAM to best suit your application. For example:

- Configure more Layer 2 forwarding information base (FIB) entries when the system is deployed as a switch.
- Configure more Layer 3 FIB entries when the system is deployed as a router.
- Configure more access control lists (ACLs).
- Optimize the virtual local area network (VLAN) ACL Group feature, which permits group VLANs for IP egress ACLs.

Important Points to Remember

- The Dell Networking Operating System (OS) versions supports CAM allocations.
- The CAM configuration is applied to the entire system when you use the CONFIGURATION mode commands. Save the running-configuration to affect the change.
- When budgeting your CAM allocations for ACLs and quality of service (QoS) configurations, remember that ACL and QoS rules might consume more than one CAM entry depending on complexity. For example, transmission control protocol (TCP) and user datagram protocol (UDP) rules with port range options might require more than one CAM entry.
- After you install a secondary RPM, copy the running-configuration to the startup-configuration so that the new RPM has the correct CAM profile.
- You MUST save your changes and reboot the system for CAM profiling or allocations to take effect.
**cam-acl (Configuration)**

Select the default CAM allocation settings or reconfigure a new CAM allocation for Layer 2, IPv4, and IPv6 ACLs, Layer 2 and Layer 3 (IPv4) QoS, Layer 2 Protocol Tunneling (L2PT), IP and MAC source address validation for DHCP, Ethernet Connectivity Fault Management (CFM) ACLs, and Policy-based Routing (PBR).

**Syntax**

```
cam-acl {default | l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number [vman-qos | vman-qos-dual-number | vman-qos-dual-fp number] ipv4pbr number} ecfmacl number [nlbclusteracl number] fcoeacl number iscsioptacl number
```

**Parameters**

- **default**
  - Use the default CAM profile settings and set the CAM as follows:
    - L3 ACL (ipv4acl): 4
    - L2 ACL (l2acl): 5
    - IPv6 L3 ACL (ipv6acl): 0
    - L3 QoS (ipv4qos): 1
    - L2 QoS (l2qos): 1
    - L2PT (l2pt): 0
    - MAC ACL (ipmacacl): 0
    - VmanDualQos: 0
    - EcfmAcl: 0
    - nlbclusteracl: 0
    - FcoeAcl: 4
    - iscsiOptAcl: 2

- **l2acl number**
  - Enter the keyword l2acl and then the number of l2acl blocks. The range is from 1 to 8.

- **ipv4acl number**
  - Enter the keyword ipv4acl and then the number of FP blocks for IPv4. The range is from 0 to 8.

- **ipv6acl number**
  - Enter the keyword ipv6acl and then the number of FP blocks for IPv6. The range is from 0 to 4.

- **ipv4qos number**
  - Enter the keyword ipv4qos and then the number of FP blocks for IPv4. The range is from 0 to 8.

- **l2qos number**
  - Enter the keyword l2qos and then the number of FP blocks for L2 QoS. The range is from 0 to 8.

- **l2pt number**
  - Enter the keyword l2pt and then the number of FP blocks for L2 protocol tunnelling. The range is from 0 to 1.

- **ipmacacl number**
  - Enter the keyword ipmacacl and then the number of FP blocks for IP and MAC ACL. The range is from 0 to 6.
Enter the keyword `ecfmacl` and then the number of FP blocks for ECFM ACL. The range is from 0 to 5.

Enter the keyword `nlbclusteracl` and then the number of FP blocks for nlbcluster ACL. The range is from 0 to 2. By default the value is 0 and it supports eight NLB arp entries reserved for internal functionality.

NOTE: When you reconfigure CAM allocation, use the `nlbclusteracl number` command to change the number of NLB ARP entries. The range is from 0 to 2. The default value is 0. At the default value of 0, eight NLB ARP entries are available for use. This platform supports upto 256 CAM entries. Select 1 to configure 128 entries. Select 2 to configure 256 entries. Even though you can perform CAM carving to allocate the maximum number of NLB entries, Dell Networking recommends that you use a maximum of 64 NLB ARP entries.

Enter the keyword `vman-qos | vman-dual-qos number` and then the number of FP blocks for VMAN QoS. The range is from 0 to 6.

Enter the keyword `vman-dual-qos number` and then the number of FP blocks for VMAN dual QoS. The range is from 0 to 4.

Enter the keyword `ipv4pbr number` and then the number of FP blocks for ipv4pbr ACL. The range is from 0 to 8.

Enter the keyword `openflow number` and then the number of FP blocks for open flow (multiples of 4). The range is from 0 to 8.

Enter the keyword `fcoeacl number` and then the number of FP blocks for FCOE ACL. The range is from 0 to 6.

Enter the keyword `iscsioptacl number` and then the number of FP blocks for iSCSI optimization ACL. The range is from 0 to 2.

Allocate space to each CAM region.

Enter the CAM profile name then the amount of CAM space to be allotted. The total space allocated must equal 13. The range for ipv4acl is from 1 to 4. The ipv6acl range must be a factor of 2.

The total space allocated must equal 13.

The range for `ipv4acl` is 1 to 4.

The `ipv6acl` range must be a factor of 2.

The `vman-qos-dual-fp number` must be entered as a multiple of 4.
**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Added the keyword nlbcluster ACL.</td>
</tr>
<tr>
<td>9.4.(0.0)</td>
<td>Added support for PBR.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Save the new CAM settings to the startup-config (write-mem or copy run start) then reload the system for the new settings to take effect.

The total amount of space allowed is 16 FP Blocks. System flow requires three blocks; these blocks cannot be reallocated. The ipv4acl profile range is from 1 to 4.

When configuring space for IPv6 ACLs, the total number of Blocks must equal 13.

On the switch, there can be only one odd number of Blocks in the CLI configuration; the other Blocks must be in factors of two. For example, a CLI configuration of 5+4+2+1+1 Blocks is not supported; a configuration of 6+4+2+1 Blocks is supported.

Ranges for the CAM profiles are from 1 to 10, except for the ipv6acl profile which is from 0 to 10. The ipv6acl allocation must be a factor of two (2, 4, 6, 8, 10).

---

**cam-optimization**

Optimize CAM utilization for QoS Entries by minimizing require policy-map CAM space.

**Syntax**

```plaintext
cam-optimization [qos]
```

**Parameters**

- `qos` Optimize CAM usage for QoS.

**Defaults**

Disabled.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

When you enable this command, if a Policy Map containing classification rules (ACL and/or dscp/ ip-precedence rules) is applied to more than one physical interface on the same port pipe, only a single copy of the policy is written (only one FP entry is used).
NOTE: An ACL itself may still require more that a single FP entry, regardless of the number of interfaces. For more information, refer to the IP Access Control Lists, Prefix Lists, and Route-map sections in the Dell Networking Operating System Configuration Guide.

show cam-acl

Display the details of the CAM profiles on the chassis and all stack units.

Syntax

show cam-acl

Defaults

none

Command Modes

EXEC Privilege

Command History

Version 9.9(0.0) 
Introduced on the FN IOM.

Version 8.3.16.1 
Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The display reflects the settings implemented with the cam-acl command.

Example (Default)

Dell#show cam-acl

-- Chassis Cam ACL --
Current Settings(in block sizes)
1 block = 128 entries
L2Acl : 6
Ipv4Acl : 4
Ipv6Acl : 0
Ipv4Qos : 2
L2Qos : 1
L2PT : 0
IpMacAcl : 0
VmanQos : 0
VmanDualQos : 0
EcfmAcl : 0
FcoeAcl : 0
iscsiOptAcl : 0
ipv4pbr : 0
vrfv4Acl : 0
Openfloa : 0
fegovaca : 0
nlbclusteracl: 0

-- stack-unit 0 --
Current Settings(in block sizes)
1 block = 128 entries
L2Acl : 6
Ipv4Acl : 4
Ipv6Acl : 0
Ipv4Qos : 2
L2Qos : 1
L2PT : 0
show cam-acl-egress

Display the details of the FP groups allocated for the egress ACL.

Syntax

show cam-acl-egress

Defaults

none

Command Modes

Configuration

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The display reflects the settings implemented with the cam-acl-egress command.

Example

Dell#show cam-acl-egress

-- Chassis Egress Cam ACL --
Current Settings(in block sizes)
1 block = 128 entries
L2Acl : 6
Ipv4Acl : 4
Ipv6Acl : 0
Ipv4Qos : 2
L2Qos : 1
L2PT : 0
IpMacAcl : 0
VmanQos : 0
VmanDualQos : 0
EcfmAcl : 0
FcoeAcl : 0
iscsiOptAcl : 0
ipv4pbr : 0
vrfv4Acl : 0
Openflow : 0
fedgovacl : 0
nlbclusteracl: 0
Ipv4Acl :       1
Ipv6Acl :       2

-- Stack unit 0 --
Current Settings (in block sizes)
L2Acl     :       1
Ipv4Acl   :       1
Ipv6Acl   :       2

Dell#
Control Plane Policing (CoPP)

The Dell Networking OS supports the following CoPP commands.

**control-plane-cpuqos**

To manage control-plane traffic, enter control-plane mode and configure the switch.

**Syntax**

```plaintext
control-plane-cpuqos
```

**Defaults**

Not configured.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**service-policy rate-limit-cpu-queues**

Apply a policy map for the system to rate limit control traffic on a per-queue basis.

**Syntax**

```plaintext
service-policy rate-limit-cpu-queues policy-name
```

**Parameters**

- `policy-name` Enter the service-policy name, using a string up to 32 characters.

**Defaults**

Not configured.

**Command Modes**

CONTROL-PLANE-CPUQOS

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Create a policy-map by associating a queue number with the qos-policy.
Create QoS policies prior to enabling this command.

For CoPP, do not use the keywords `cpu-qos` when creating qos-policy-input.

Related Commands

- `qos-policy-input` — creates a QoS input policy map.
- `policy-map-input` — creates an input policy map.

**service-policy rate-limit-protocols**

Apply a policy for the system to rate limit control protocols on a per-protocol basis.

**Syntax**

```
service-policy rate-limit-protocols policy-name
```

**Parameters**

- `policy-name`  
  Enter the service-policy name, using a string up to 32 characters.

**Defaults**

Not configured.

**Command Modes**

CONTROL-PLANE-CPUQOS

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command applies the service-policy based on the type of protocol defined in the ACL rules.

Create ACL and QoS policies prior to enabling this command.

For CoPP, do not use the keywords `cpu-qos` when creating qos-policy-input.

Related Commands

- `ip access-list extended` — creates an extended IP ACL.
- `mac access-list extended` — creates an extended MAC ACL.
- `qos-policy-input` — creates a QoS input policy map.
- `class-map` — creates a QoS class map.
- `policy-map-input` — creates an input policy map.
show cpu-queue rate cp

Display the rates for each queue.

Syntax
show cpu-queue rate cp

Defaults
Not configured.

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command applies the service-policy based on the type of protocol defined in the ACL rules.

Create ACL and QoS policies prior to enabling this command.

Example

Dell#show cpu-queue rate cp
Service-Queue     Rate (PPS)     Burst ()
------------------ ----------- ----- ------
Q0                1300         512
Q1                300         50
Q2                300         50
Q3                400         50
Q4                2000        50
Q5                300         50
Q6                400         50
Q7                400         50
Q8                400         50
Q9                600         50
Q10               300         50
Q11               300         50

show ip protocol-queue-mapping

Display the queue mapping for each configured protocol.

Syntax
show ip protocol-queue-mapping

Defaults
Not configured.

Command Modes
EXEC Privilege
show ipv6 protocol-queue-mapping

Display the queue mapping for each configured IPv6 protocol.

**Syntax**

```
show ipv6 protocol-queue-mapping
```

**Defaults**

Not configured.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell#show ipv6 protocol-queue-mapping
Protocol Src-Port Dst-Port TcpFlag Queue EgPort Rate(kbps)
---------- --------- -------- ------ ---- ----------
TCP (BGP) any/179 179/any _ Q9 _ _ _
ICMPV6 NA any any _ Q5 _ _ _
ICMPV6 RA any any _ Q6 _ _ _
ICMPV6 NS any any _ Q5 _ _ _
ICMPV6 RS any any _ Q5 _ _ _
VRRPV6 any any _ Q10 _ _ _
Dell#
```
show mac protocol-queue-mapping

Display the queue mapping for the MAC protocols.

Syntax

show mac protocol-queue-mapping

Defaults
Not configured.

Command Modes
EXEC Privilege

Supported Modes
Full-Switch

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show mac protocol-queue-mapping
Protocol Destination Mac EtherType Queue EgPort Rate(kbps)
------ --------------- --------- ----- ------ -----
ARP any                   0x0806   Q5/Q6   CP     
FRRP 01:01:e8:00:00:10/11 any      Q7      CP     
LACP 01:80:c2:00:00:02     0x8809   Q7      CP     
LLDP any                   0x88cc   Q8      CP     
GVRP 01:80:c2:00:00:21     any      Q8      CP     
STP  01:80:c2:00:00:00     any      Q7      CP     
ISIS 01:80:c2:00:00:14/15  any      Q9      CP     
                09:00:2b:00:00:04/05  any      Q9      CP     
Dell#
Data Center Bridging (DCB)

Data center bridging (DCB) refers to a set of IEEE Ethernet enhancements that provide data centers with a single, robust, converged network to support multiple traffic types, including local area network (LAN), server, and storage traffic.

The Dell Networking Operating System (OS) commands for data center bridging features include 802.1Qbb priority-based flow control (PFC), 802.1Qaz enhanced transmission selection (ETS), and the data center bridging exchange (DCBX) protocol.

Topics:

- advertise dcbx-appln-tlv
- advertise dcbx-tlv
- bandwidth-percentage
- dcb-enable
- dcb-policy buffer-threshold (Global Configuration)
- dcb-policy buffer-threshold (Interface Configuration)
- dcbx port-role
- dcbx version
- debug dcbx
- description
- fcoe priority-bits
- iscsi priority-bits
- priority
- pfc mode on
- pfc no-drop queues
- priority-list
- qos-policy-output ets
- scheduler
- show dcb
- show interface dcbx detail
- show interface ets
- show interface pfc
- show interface pfc statistics
- show qos priority-groups
- show stack-unit stack-ports ets details
- dcb pfc-shared-buffer-size
- dcb pfc-total-buffer-size
- dcb-buffer-threshold
adVERTISE dCBx-Appln-tLv

On a DCBX port with a manual role, configure the application priority TLVs advertised on the interface to DCBX peers.

Syntax
advertise dcbx-appln-tlv {fcoe | iscsi}

To remove the application priority TLVs, use the no advertise dcbx-appln-tlv {fcoe | iscsi} command.

Parameters

{fcoe | iscsi} Enter the application priority TLVs, where:

- fcoe: enables the advertisement of FCoE in application priority TLVs.
- iscsi: enables the advertisement of iSCSI in application priority TLVs.

Defaults
Application priority TLVs are enabled to advertise FCoE and iSCSI.

Command Modes
PROTOCOL LLDP

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To disable TLV transmission, use the no form of the command; for example, no advertise dcbx-appln-tlv iscsi.
advertise dcbx-tlv

On a DCBX port with a manual role, configure the PFC and ETS TLVs advertised to DCBX peers.

Syntax

advertise dcbx-tlv {ets-conf | ets-reco | pfc} {ets-conf | ets-reco | pfc} {ets-conf | ets-reco | pfc}

To remove the advertised ETS TLVs, use the no advertise dcbx-tlv command.

Parameters

{ets-conf | ets-reco | pfc}  Enter the PFC and ETS TLVs advertised, where:

- ets-conf: enables the advertisement of ETS configuration TLVs.
- ets-reco: enables the advertisement of ETS recommend TLVs.
- pfc: enables the advertisement of PFC TLVs.

Defaults

All PFC and ETS TLVs are advertised.

Command Modes

PROTOCOL LLDP

Command History

Version 9.2(0.0)  Introduced on the M I/O Aggregator.

Version 8.3.16.1  Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You can configure the transmission of more than one TLV type at a time; for example:

advertise dcbx-tlv ets-conf ets-reco.

You can enable ETS recommend TLVs (ets-reco) only if you enable ETS configuration TLVs (ets-conf). To disable TLV transmission, use the no form of the command; for example, no advertise dcbx-tlv pfc ets-reco.

DCBX requires that you enable LLDP to advertise DCBX TLVs to peers.

Configure DCBX operation at the INTERFACE level on a switch or globally on the switch. To verify the DCBX configuration on a port, use the show interface dcbx detail command.
bandwidth-percentage

Configure the bandwidth percentage allocated to priority traffic in port queues.

Syntax

```
bandwidth-percentage percentage
```

To remove the configured bandwidth percentage, use the `no bandwidth-percentage` command.

Parameters

- **`percentage`** (Optional) Enter the bandwidth percentage. The percentage range is from 1 to 100% in units of 1%.

Defaults

none

Command Modes

QOS-POLICY-OUT-ETS

Command History

- **Version 9.2(0.0)** Introduced on the M I/O Aggregator.
- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

By default, equal bandwidth is assigned to each port queue and each dot1p priority in a priority group. To configure bandwidth amounts in associated dot1p queues, use the `bandwidth-percentage` command. When specified bandwidth is assigned to some port queues and not to others, the remaining bandwidth (100% minus assigned bandwidth amount) is equally distributed to unassigned nonstrict priority queues in the priority group. The sum of the allocated bandwidth to all queues in a priority group must be 100% of the bandwidth on the link.

ETS-assigned bandwidth allocation applies only to data queues, not to control queues.

The configuration of bandwidth allocation and strict-queue scheduling is not supported at the same time for a priority group. If you configure both, the configured bandwidth allocation is ignored for priority-group traffic when you apply the output policy on an interface.

By default, equal bandwidth is assigned to each priority group in the ETS output policy applied to an egress port if you did not configure bandwidth allocation. The sum of configured bandwidth allocation to dot1p priority traffic in all ETS priority groups must be 100%. Allocate at least 1% of the total bandwidth to each priority group and queue. If bandwidth is assigned to some priority groups but not to others, the remaining bandwidth (100% minus assigned bandwidth amount) is equally distributed to nonstrict-priority groups which have no configured scheduler.

Related Commands

- `qos-policy-output ets` — creates a QoS output policy.
- `scheduler` — schedules priority traffic in port queues.
**dcb-enable**

Enable data center bridging.

**Syntax**

```
dcb enable
```

To disable DCB, use the `no dcb enable` command.

**Defaults**

none

**Command Modes**

CONFIGURATION

**Command History**

Version 9.2(0.0)  Introduced on the M I/O Aggregator.

Version 8.3.16.1  Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

DCB is not supported if you enable link-level flow control on one or more interfaces.

**dcb-policy buffer-threshold (Global Configuration)**

Assign the dcb buffer threshold policy on the stack ports. To apply the dcb buffer threshold policy on the stack-units, use the configuration mode. To apply on front-end ports, use the interface mode.

**Syntax**

```
dcb-policy buffer-threshold stack-unit all stack-ports all profile-name
```

**Parameters**

```
dcb-buffer-threshold
profile-name
stack-unit all
stack-port all
```

- **dcb-buffer-threshold**  Configure the profile name for the DCB buffer threshold.
- **profile-name**  Enter the name of the profile, which can be a string of up to 32 characters in length.
- **stack-unit all**  Enter the stack unit identification. Indicates the specific the stack unit or units. Entering all shows the status for all stacks.
- **stack-port all**  Enter the port number of a port in a switch stack.

**Defaults**

None

**Command Modes**

CONFIGURATION mode
dcb-policy buffer-threshold (Interface Configuration)

Assign the DCB policy to the DCB buffer threshold profile on interfaces. This setting takes precedence over the global buffer-threshold setting.

Syntax
dcb-policy buffer-threshold profile-name

Parameters
- **buffer-threshold**: Configure the profile name for the DCB buffer threshold profile-name
- **profile-name**: Enter the name of the profile, which can be a string of up to 32 characters in length.

Default
None

Command Modes
INTERFACE mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information
You can configure a maximum of four lossless (PFC) queues. By configuring four lossless queues, you can configure four different priorities and assign a particular priority to each application that your network is used to process. For example, you can assign a higher priority for time-sensitive applications and a lower priority for other services, such as file transfers. You can configure the amount of buffer space for each priority and the pause or resume thresholds for the buffer. This method of configuration enables you to manage and administer the behavior of lossless queues.
method of configuration enables you to effectively manage and administer the behavior of lossless queues.

Example

Dell(conf-if-te-0/0)#dcb-policy buffer-threshold test

dcbx port-role

Configure the DCBX port role the interface uses to exchange DCB information.

Syntax
dcbx port-role {config-source | auto-downstream | auto-upstream | manual}

To remove DCBX port role, use the no dcbx port-role {config-source | auto-downstream | auto-upstream | manual} command.

Parameters

<table>
<thead>
<tr>
<th>config-source</th>
<th>auto-downstream</th>
<th>auto-upstream</th>
<th>manual</th>
</tr>
</thead>
</table>
| Enter the DCBX port role, where:
| • config-source: configures the port to serve as the configuration source on the switch.
| • auto-upstream: configures the port to receive a peer configuration. The configuration source is elected from auto-upstream ports.
| • auto-downstream: configures the port to accept the internally propagated DCB configuration from a configuration source.
| • manual: configures the port to operate only on administer-configured DCB parameters. The port does not accept a DCB configuration received form a peer or a local configuration source.

Defaults

Manual

Command Modes

INTERFACE PROTOCOL LLDP

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

DCBX requires that you enable LLDP to advertise DCBX TLVs to peers.

Configure DCBX operation at the INTERFACE level on a switch or globally on the switch. To verify the DCBX configuration on a port, use the show interface dcbx detail command.
**dcbx version**

Configure the DCBX version used on the interface.

**Syntax**

```
dcbx version {auto | cee | cin | ieee-v2.5}
```

To remove the DCBX version, use the `dcbx version {auto | cee | cin | ieee-v2.5}` command.

**Parameters**

- **auto**
  - Enter the DCBX version type used on the interface, where:
  - auto: configures the port to operate using the DCBX version received from a peer.
  - cee: configures the port to use CDD (Intel 1.01).
  - cin: configures the port to use Cisco-Intel-Nuova (DCBX 1.0).
  - ieee-v2: configures the port to use IEEE 802.1az (Draft 2.5).

**Defaults**

Auto

**Command Modes**

INTERFACE PROTOCOL LLDP

**Command History**

- **Version 9.2(0.0)**
  - Introduced on the M I/O Aggregator.

- **Version 8.3.16.1**
  - Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

DCBX requires that you enable LLDP to advertise DCBX TLVs to peers.

Configure DCBX operation at the INTERFACE level on a switch or globally on the switch. To verify the DCBX configuration on a port, use the `show interface dcbx detail` command.

### debug dcbx

Enable DCBX debugging.

**Syntax**

```
debug dcbx {all | auto-detect-timer | config-exchng | fail | mgmt | resource | sem | tlv}
```

To disable DCBX debugging, use the `no debug dcbx` command.
Parameters

Enter the type of debugging, where:

- **all**: enables all DCBX debugging operations.
- **auto-detect-timer**: enables traces for DCBX auto-detect timers.
- **config-exchng**: enables traces for DCBX configuration exchanges.
- **fail**: enables traces for DCBX failures.
- **mgmt**: enables traces for DCBX management frames.
- **resource**: enables traces for DCBX system resource frames.
- **sem**: enables traces for the DCBX state machine.
- **tlv**: enables traces for DCBX TLVs.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

description

Enter a text description of the DCB policy (PFC input or ETS output).

Syntax
description text

To remove the text description, use the no description command.

Parameters

text

Enter the description of the output policy. The maximum is 32 characters.

Defaults

none

Command Modes

- DCB INPUT POLICY
- DCB OUTPUT POLICY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>
fcoe priority-bits

Configure the FCoE priority advertised for the FCoE protocol in application priority TLVs.

Syntax

```
fcoe priority-bits priority-bitmap
```

To remove the configured FCoE priority, use the `no fcoe priority-bits` command.

Parameters

```
priority-bitmap
```
Enter the priority-bitmap range. The range is from 1 to FF.

Defaults

0x8

Command Modes

PROTOCOL LLDP

Command History

- Version 9.2(0.0) Introduced on the M I/O Aggregator.
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command is available at the global level only.

iscsi priority-bits

Configure the iSCSI priority advertised for the iSCSI protocol in application priority TLVs.

Syntax

```
iscsi priority-bits priority-bitmap
```

To remove the configured iSCSI priority, use the `no iscsi priority-bits` command.

Parameters

```
priority-bitmap
```
Enter the priority-bitmap range. The range is from 1 to FF.

Defaults

0x10

Command Modes

PROTOCOL LLDP

Command History

- Version 9.2(0.0) Introduced on the M I/O Aggregator.
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
priority

Configure the priority for the PFC threshold to be allocated to the buffer space parameters.

Syntax

```
priority value buffer-size size pause-threshold threshold-value resume-offset threshold-value shared-threshold-weight size
```

Parameters

- **priority**: Specify the priority of the queue for which the buffer space settings apply.
- **value**: Enter a number in the range of 0 to 7 to denote the priority to be allocated to the dynamic buffer control mechanism.
- **buffer-size**: Ingress buffer size.
- **size**: Size of the ingress buffer in KB. Enter a number in the range of 0 to 7787. The default is 45 KB.
- **pause-threshold**: Buffer limit for pause frames to be sent.
- **threshold-value**: Buffer limit at which the port sends the pause to peer in KB. Enter a number in the range of 0 to 7787. The default is 10 KB.
- **resume-offset**: Buffer offset limit for resuming in KB.
- **threshold-value**: Buffer offset limit at which the port resumes the peer in KB. Enter a number in the range of 1 to 7787. The default is 10 KB.
- **shared-threshold-weight**: Buffer shared threshold weight.
- **size**: Weightage of the priorities on the shared buffer size in the system. Enter a number in the range of 0 to 9. The default shared threshold weight is 10.

Default

The default size of the ingress buffer is 45 KB. The default buffer limit at which the port sends the pause to peer and recommences the sending of packets to the peer is 10 KB. The default threshold weight of the shared buffer space is 10.

Command Modes

DCB-BUFFER-THRESHOLD mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

For each priority, you can specify the shared buffer threshold limit, the ingress buffer size, buffer limit for pausing the acceptance of packets, and the buffer offset limit for resuming the acceptance of received packets. When PFC detects congestion on a
queue for a specified priority, it sends a pause frame for the 802.1p priority traffic to the transmitting device.

You can use the `priority` command to set up both the administrative and peer-related PFC priorities. For example, you can configure the intended buffer configuration for all 8 priorities. If you configure the number of lossless queues as 4 and if the administrator-configured priorities configured within the DCB input policy is applied, then the configuration for those priorities are pre-designed. However, if the peer-provided priorities are applied, although a DCB input policy is present, the peer-provided priorities become effective for buffer configuration. This method of configuration provides an easy and flexible technique to accommodate both administratively-configured and peer-configured priorities.

Example

Dell (conf-dcb-buffer-thr)#priority 0 buffer-size 52 pause-threshold 16 resume-offset 10 shared-threshold-weight 7

### pfc mode on

Enable the PFC configuration on the port so that the priorities are included in DCBX negotiation with peer PFC devices.

**Syntax**

```
pfc mode on
```

To disable the PFC configuration, use the `no pfc mode on` command.

**Defaults**
PFC mode is on.

**Command Modes**
DCB MAP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

By applying a DCB input policy with PFC enabled, you enable PFC operation on ingress port traffic. To achieve complete lossless handling of traffic, also enable PFC on all DCB egress ports or configure the dot1p priority-queue assignment of PFC priorities to lossless queues (refer to `pfc no-drop queues`).

To disable PFC operation on an interface, enter the `no pfc mode on` command in DCB Input Policy Configuration mode. PFC is enabled and disabled as global DCB operation is enabled (`dcb-enable`) or disabled (`no dcb-enable`).

You cannot enable PFC and link-level flow control at the same time on an interface.
pfc no-drop queues

Configure the port queues that still function as no-drop queues for lossless traffic.

**Syntax**

```
pfc no-drop queues queue-range
```

To remove the no-drop port queues, use the `no pfc no-drop queues` command.

**Parameters**

- `queue-range`  
Enter the queue range. Separate the queue values with a comma; specify a priority range with a dash; for example, `pfc no-drop queues 1,3` or `pfc no-drop queues 2-3`. The range is from 0 to 3.

**Defaults**

No lossless queues are configured.

**Command Modes**

INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The maximum number of lossless queues globally supported on the switch is two.

- The following lists the dot1p priority-queue assignments.

<table>
<thead>
<tr>
<th>dot1p Value in the Incoming Frame</th>
<th>Description heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
priority-list

Configure the 802.1p priorities for the traffic on which you want to apply an ETS output policy.

Syntax

priority-list value

To remove the priority list, use the no priority-list command.

Parameters

value

Enter the priority list value. Separate priority values with a comma; specify a priority range with a dash; for example, priority-list 3,5-7. The range is from 0 to 7.

Defaults

none

Command Modes

PRIORITY-GROUP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

By default:

- All 802.1p priorities are grouped in priority group 0.
- 100% of the port bandwidth is assigned to priority group 0. The complete bandwidth is equally assigned to each priority class so that each class has 12 to 13%.

NOTE: Please note that Dell Networking does not recommend to use this command as it has been deprecated in the current 9.4(0.0) release. A warning message appears when you try to run this command indicating that you have to use the dcb-map commands in the future.

qos-policy-output ets

To configure the ETS bandwidth allocation and scheduling for priority traffic, create a QoS output policy.

Syntax

qos-policy-output policy-name ets

To remove the QoS output policy, use the no qos-policy-output ets command.
Parameters

policy-name Enter the policy name. The maximum is 32 characters.

Command Modes

CONFIGURATION

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

If an error occurs in an ETS output-policy configuration, the configuration is ignored and the scheduler and bandwidth allocation settings are reset to the ETS default values (all priorities are in the same ETS priority group and bandwidth is allocated equally to each priority).

If an error occurs when a port receives a peer’s ETS configuration, the port’s configuration is reset to the previously configured ETS output policy. If no ETS output policy was previously applied, the port is reset to the default ETS parameters.

Related Commands

- scheduler — schedules the priority traffic in port queues.
- bandwidth-percentage — bandwidth percentage allocated to the priority traffic in port queues.

scheduler

Configure the method used to schedule priority traffic in port queues.

Syntax

scheduler value

To remove the configured priority schedule, use the no scheduler command.

Parameters

value Enter schedule priority value. The valid values are:

- strict: strict-priority traffic is serviced before any other queued traffic.
- werr: weighted elastic round robin (werr) provides low-latency scheduling for priority traffic on port queues.

Defaults

Weighted elastic round robin (WERR) scheduling is used to queue priority traffic.

Command Modes

POLICY-MAP-OUT-ETS

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
dot1p priority traffic on the switch is scheduled to the current queue mapping. dot1p
priorities within the same queue must have the same traffic properties and scheduling
method.

ETS-assigned scheduling applies only to data queues, not to control queues.

The configuration of bandwidth allocation and strict-queue scheduling is not
supported at the same time for a priority group. If you configure both, the configured
bandwidth allocation is ignored for priority-group traffic when you apply the output
policy on an interface.

**Related Commands**

- `qos-policy-output ets` — configures the ETS bandwidth allocation.
- `bandwidth-percentage` — bandwidth percentage allocated to priority traffic in
port queues.

### show dcb

Displays the data center bridging status, the number of PFC-enabled ports, and the number of PFC-enabled queues.

**Syntax**

```plaintext
show dcb [stack-unit unit-number]
```

**Parameters**

- `unit number` Enter the DCB unit number. The range is from 0 to 5.

**Command Modes**

- EXEC Privilege

**Command History**

- **Version 9.2(0.0)** Introduced on the M I/O Aggregator.
- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

Specify a stack-unit number on the Master switch in a stack.

**Example**

```plaintext
Dell(conf)#do show dcb
stack-unit 0 port-set 0
DCB Status :Enabled
PFC Queue Count :2
Total Buffer[lossy + lossless] (in KB):7982
PFC Total Buffer (in KB) :5872
PFC Shared Buffer (in KB) :832
PFC Available Buffer (in KB) :4860
Dell (conf)#
```
show interface dcbx detail

Displays the DCBX configuration on an interface.

Syntax

```
show interface port-type slot/port dcbx detail
```

Parameters

- **port-type**: Enter the port type.
- **slot/port**: Enter the slot/port number.

**NOTE**: This command also enables you to view information corresponding to a range of ports.

- You can specify multiple ports as `slot/port-range`. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To clear DCBX frame counters, use the `clear dcbx counters interface stack-unit/port` command.

The following describes the `show interface dcbx detail` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type with chassis slot and port number.</td>
</tr>
<tr>
<td>Port-Role</td>
<td>Configured the DCBX port role: auto-upstream, auto-downstream, config-source, or manual.</td>
</tr>
<tr>
<td>DCBX Operational Status</td>
<td>Operational status (enabled or disabled) used to elect a configuration source and internally propagate a DCB configuration. The DCBX operational status is the combination of PFC and ETS operational status.</td>
</tr>
<tr>
<td>Configuration Source</td>
<td>Specifies whether the port serves as the DCBX configuration source on the switch: true (yes) or false (no).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Local DCBX Compatibility mode</td>
<td>DCBX version accepted in a DCB configuration as compatible. In auto-upstream mode, a port can only receive a DCBX version supported on the remote peer.</td>
</tr>
<tr>
<td>Local DCBX Configured mode</td>
<td>DCBX version configured on the port: CEE, CIN, IEEE v2.5, or Auto (port auto-configures to use the DCBX version received from a peer).</td>
</tr>
<tr>
<td>Peer Operating version</td>
<td>DCBX version that the peer uses to exchange DCB parameters.</td>
</tr>
<tr>
<td>Local DCBX TLVs Transmitted</td>
<td>Transmission status (enabled or disabled) of advertised DCB TLVs (see TLV code at the top of the show command output).</td>
</tr>
<tr>
<td>Local DCBX Status: DCBX Operational Version</td>
<td>DCBX version advertised in Control TLVs.</td>
</tr>
<tr>
<td>Local DCBX Status: DCBX Max Version Supported</td>
<td>Highest DCBX version supported in Control TLVs.</td>
</tr>
<tr>
<td>Local DCBX Status: Sequence Number</td>
<td>Sequence number transmitted in Control TLVs.</td>
</tr>
<tr>
<td>Local DCBX Status: Acknowledgment Number</td>
<td>Acknowledgement number transmitted in Control TLVs.</td>
</tr>
<tr>
<td>Local DCBX Status: Protocol State</td>
<td>Current operational state of the DCBX protocol: ACK or IN-SYNC.</td>
</tr>
<tr>
<td>Peer DCBX Status: DCBX Operational Version</td>
<td>DCBX version advertised in Control TLVs received from the peer device.</td>
</tr>
<tr>
<td>Peer DCBX Status: DCBX Max Version Supported</td>
<td>Highest DCBX version supported in Control TLVs received from the peer device.</td>
</tr>
<tr>
<td>Peer DCBX Status: Sequence Number</td>
<td>Sequence number transmitted in Control TLVs received from the peer device.</td>
</tr>
<tr>
<td>Peer DCBX Status: Acknowledgment Number</td>
<td>Acknowledgement number transmitted in Control TLVs received from the peer device.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Input PFC TLV pkts</td>
<td>Number of PFC TLVs received.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>PFC TLV Statistics: Output PFC TLV pkts</td>
<td>Number of PFC TLVs transmitted.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Error PFC pkts</td>
<td>Number of PFC error packets received.</td>
</tr>
<tr>
<td>PFC TLV Statistics: PFC Pause Tx pkts</td>
<td>Number of PFC pause frames transmitted.</td>
</tr>
<tr>
<td>PFC TLV Statistics: PFC Pause Rx pkts</td>
<td>Number of PFC pause frames received.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Input PG TLV Pkts</td>
<td>Number of PG TLVs received.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Output PG TLV Pkts</td>
<td>Number of PG TLVs transmitted.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Error PG TLV Pkts</td>
<td>Number of PG error packets received.</td>
</tr>
<tr>
<td>Application Priority TLV Statistics: Input Appln Priority TLV pkts</td>
<td>Number of Application TLVs received.</td>
</tr>
<tr>
<td>Application Priority TLV Statistics: Output Appln Priority TLV pkts</td>
<td>Number of Application TLVs transmitted.</td>
</tr>
<tr>
<td>Application Priority TLV Statistics: Error Appln Priority TLV Pkts</td>
<td>Number of Application TLV error packets received</td>
</tr>
<tr>
<td>Total DCBX Frames transmitted</td>
<td>Number of DCBX frames sent from the local port.</td>
</tr>
<tr>
<td>Total DCBX Frames received</td>
<td>Number of DCBX frames received from the remote peer port.</td>
</tr>
<tr>
<td>Total DCBX Frame errors</td>
<td>Number of DCBX frames with errors received.</td>
</tr>
<tr>
<td>Total DCBX Frames unrecognized</td>
<td>Number of unrecognizable DCBX frames received.</td>
</tr>
</tbody>
</table>
show interface ets

Displays the ETS configuration applied to egress traffic on an interface, including priority groups with priorities and bandwidth allocation.

Syntax

```
show interface port-type slot/port ets {summary | detail}
```

Parameters

- `port-type slot/port ets` Enter the port-type slot and port ETS information.

Example

```plaintext
Dell(conf)# show interface tengigabitethernet 0/49 dcbx detail
Dell#show interface te 0/49 dcbx detail

E-ETS Configuration TLV enabled
 e-ETS Configuration TLV disabled
R-ETS Recommendation TLV enabled
 r-ETS Recommendation TLV disabled
P-PFC Configuration TLV enabled
 p-PFC Configuration TLV disabled
F-Application priority for FCOE enabled
 f-Application Priority for FCOE disabled
I-Application priority for iSCSI enabled
 i-Application Priority for iSCSI disabled

Interface TenGigabitEthernet 0/49
 Remote Mac Address 00:00:00:00:00:11
 Port Role is Auto-Upstream
 DCBX Operational Status is Enabled
 Is Configuration Source? TRUE

Local DCBX Compatibility mode is CEE
 Local DCBX Configured mode is CEE
 Peer Operating version is CEE
 Local DCBX TLVs Transmitted: ErPfi

Local DCBX Status

 DCBX Operational Version is 0
 DCBX Max Version Supported is 0
 Sequence Number: 2
 Acknowledgment Number: 2
 Protocol State: In-Sync

Peer DCBX Status:

 DCBX Operational Version is 0
 DCBX Max Version Supported is 255
 Sequence Number: 2
 Acknowledgment Number: 2
 Total DCBX Frames transmitted 27
 Total DCBX Frames received 6
 Total DCBX Frame errors 0
 Total DCBX Frames unrecognized 0
```
Enter the keyword `summary` for a summary list of results or enter the keyword `detail` for a full list of results.

**NOTE:** This command also enables you to view information corresponding to a range of ports.

- You can specify multiple ports as `slot/port-range`. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.

**Command Modes**

**CONFIGURATION**

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To clear ETS TLV counters, use the `clear ets counters interface port-type slot/port` command.

The following describes the `show interface summary` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type with stack-unit and port number.</td>
</tr>
<tr>
<td>Max Supported TC Group</td>
<td>Maximum number of priority groups supported.</td>
</tr>
<tr>
<td>Number of Traffic Classes</td>
<td>Number of 802.1p priorities currently configured.</td>
</tr>
<tr>
<td>Admin mode</td>
<td>ETS mode: on or off. When on, the scheduling and bandwidth allocation configured in an ETS output policy or received in a DCBX TLV from a peer can take effect on an interface.</td>
</tr>
<tr>
<td>Admin Parameters</td>
<td>ETS configuration on local port, including priority groups, assigned dot1p priorities, and bandwidth allocation.</td>
</tr>
<tr>
<td>Remote Parameters</td>
<td>ETS configuration on remote peer port, including admin mode (enabled if a valid TLV was received or disabled), priority groups, assigned dot1p priorities, and bandwidth allocation. If ETS admin mode is enabled on the remote port for DCBX exchange, the Willing bit received in ETS TLVs from the remote peer is included.</td>
</tr>
<tr>
<td>Local Parameters</td>
<td>ETS configuration on local port, including admin mode (enabled when a valid TLV is received from a peer), priority groups, assigned dot1p priorities, and bandwidth allocation.</td>
</tr>
</tbody>
</table>
### Field: Operational status (local port)

**Description:**

Port state for current operational ETS configuration:

- **Init:** Local ETS configuration parameters were exchanged with the peer.
- **Recommend:** Remote ETS configuration parameters were received from the peer.
- **Internally propagated:** ETS configuration parameters were received from the configuration source.

### ETS DCBX Oper status

**Description:**

Operational status of the ETS configuration on the local port: match or mismatch.

### State Machine Type

**Description:**

Type of state machine used for DCBX exchanges of ETS parameters: Feature — for legacy DCBX versions; Asymmetric — for an IEEE version.

### Conf TLV Tx Status

**Description:**

Status of ETS Configuration TLV advertisements: enabled or disabled.

### ETS TLV Statistic: Input Conf TLV pkts

**Description:**

Number of ETS Configuration TLVs received.

### ETS TLV Statistic: Output Conf TLV pkts

**Description:**

Number of ETS Configuration TLVs transmitted.

### ETS TLV Statistic: Error Conf TLV pkts

**Description:**

Number of ETS Error Configuration TLVs received.

### Example (Summary)

```
Dell(conf)# show interfaces te 0/0 ets summary
Interface TenGigabitEthernet 0/0
Max Supported TC Groups is 4
Number of Traffic Classes is 8
Admin mode is on
Admin Parameters:

Admin is enabled
TC-grp Priority# Bandwidth TSA
 0 0,1,2,3,4,5,6,7 100% ETS
 1 0% ETS
 2 0% ETS
 3 0% ETS
 4 0% ETS
 5 0% ETS
 6 0% ETS
 7 0% ETS
Priority# Bandwidth TSA
 0 13% ETS
 1 13% ETS
 2 13% ETS
 3 13% ETS
 4 12% ETS
 5 12% ETS
 6 12% ETS
```
Remote Parameters:  
-------------------
Remote is disabled

Local Parameters:  
------------------
Local is enabled

<table>
<thead>
<tr>
<th>TC-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3,4,5,6,7</td>
<td>100%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
</tbody>
</table>

Oper status is init
Conf TLV Tx Status is disabled
Traffic Class TLV Tx Status is disabled

Example (Detail)

```bash
Dell(conf)# show interfaces tengigabitethernet 0/0 ets detail
Interface TenGigabitEthernet 0/0
Max Supported TC Groups is 4
Number of Traffic Classes is 8
Admin mode is on
Admin Parameters:

<table>
<thead>
<tr>
<th>TC-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3,4,5,6,7</td>
<td>100%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0%</td>
<td>ETS</td>
</tr>
</tbody>
</table>

Priority# | Bandwidth | TSA |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>13%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>13%</td>
<td>ETS</td>
</tr>
<tr>
<td>3</td>
<td>13%</td>
<td>ETS</td>
</tr>
<tr>
<td>4</td>
<td>12%</td>
<td>ETS</td>
</tr>
<tr>
<td>5</td>
<td>12%</td>
<td>ETS</td>
</tr>
<tr>
<td>6</td>
<td>12%</td>
<td>ETS</td>
</tr>
<tr>
<td>7</td>
<td>12%</td>
<td>ETS</td>
</tr>
</tbody>
</table>

Remote Parameters:

Remote is disabled

Local Parameters:

Local is enabled
show interface pfc

Displays the PFC configuration applied to ingress traffic on an interface, including priorities and link delay.

Syntax

```
show interface port-type slot/port pfc {summary | detail}
```

Parameters

- `port-type slot/port pfc` : Enter the port-type slot and port PFC information.
- `{summary | detail}` : Enter the keyword `summary` for a summary list of results or enter the keyword `detail` for a full list of results.

NOTE: This command also enables you to view information corresponding to a range of ports.

- You can specify multiple ports as `slot/port-range`. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
</tbody>
</table>
Version
- **9.2(0.0)**: Introduced on the M I/O Aggregator.
- **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To clear the PFC TLV counters, use the `clear pfc counters interface port-type slot/port` command.

The following describes the `show interface pfc summary` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type with stack-unit and port number.</td>
</tr>
<tr>
<td>Admin mode is on Admin is enabled</td>
<td>PFC admin mode is on or off with a list of the configured PFC priorities. When the PFC admin mode is on, PFC advertisements are enabled to be sent and received from peers; received PFC configuration take effect. The admin operational status for a DCBX exchange of PFC configuration is enabled or disabled.</td>
</tr>
<tr>
<td>Remote is enabled, Priority list Remote Willing Status is enabled</td>
<td>Operational status (enabled or disabled) of peer device for DCBX exchange of PFC configuration with a list of the configured PFC priorities. Willing status of peer device for DCBX exchange (Willing bit received in PFC TLV): enabled or disable.</td>
</tr>
<tr>
<td>Local is enabled</td>
<td>DCBX operational status (enabled or disabled) with a list of the configured PFC priorities.</td>
</tr>
<tr>
<td>Operational status (local port)</td>
<td>Port state for current operational PFC configuration:</td>
</tr>
<tr>
<td></td>
<td>- Init: Local PFC configuration parameters were exchanged with the peer.</td>
</tr>
<tr>
<td></td>
<td>- Recommend: Remote PFC configuration parameters were received from the peer.</td>
</tr>
<tr>
<td></td>
<td>- Internally propagated: PFC configuration parameters were received from the configuration source.</td>
</tr>
<tr>
<td>PFC DCBX Oper status</td>
<td>Operational status for the exchange of the PFC configuration on the local port: match (up) or mismatch (down).</td>
</tr>
<tr>
<td>State Machine Type</td>
<td>Type of state machine used for DCBX exchanges of the PFC parameters: Feature — for legacy DCBX versions; Symmetric — for an IEEE version.</td>
</tr>
<tr>
<td>TLV Tx Status</td>
<td>Status of the PFC TLV advertisements: enabled or disabled.</td>
</tr>
<tr>
<td>PFC Link Delay</td>
<td>Link delay (in quanta) used to pause specified priority traffic.</td>
</tr>
<tr>
<td>Application Priority TLV: FCOE TLV Tx Status</td>
<td>Status of FCoE advertisements in application priority TLVs from the local DCBX port: enabled or disabled.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Application Priority TLV: SCSI TLV Tx Status</td>
<td>Status of iSCSI advertisements in application priority TLVs from the local DCBX port: enabled or disabled.</td>
</tr>
<tr>
<td>Application Priority TLV: Local FCOE Priority Map</td>
<td>Priority bitmap the local DCBX port uses in FCoE advertisements in application priority TLVs.</td>
</tr>
<tr>
<td>Application Priority TLV: Local ISCSI Priority Map</td>
<td>Priority bitmap the local DCBX port uses in iSCSI advertisements in application priority TLVs.</td>
</tr>
<tr>
<td>Application Priority TLV: Remote FCOE Priority Map</td>
<td>Status of FCoE advertisements in application priority TLVs from the remote peer port: enabled or disabled.</td>
</tr>
<tr>
<td>Application Priority TLV: Remote ISCSI Priority Map</td>
<td>Status of iSCSI advertisements in application priority TLVs from the remote peer port: enabled or disabled.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Input TLV pkts</td>
<td>Number of PFC TLVs received.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Output TLV pkts</td>
<td>Number of PFC TLVs transmitted.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Error pkts</td>
<td>Number of PFC error packets received.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Pause Tx pkts</td>
<td>Number of PFC pause frames transmitted.</td>
</tr>
<tr>
<td>PFC TLV Statistics: Pause Rx pkts</td>
<td>Number of PFC pause frames received.</td>
</tr>
</tbody>
</table>

Example (Summary)

```
Dell# show interfaces tengigabitethernet 0/49 pfc summary
Interface TenGigabitEthernet 0/49
  Admin mode is on
  Admin is enabled
  Remote is enabled, Priority list is 4
  Remote Willing Status is enabled
  Local is enabled
  Oper status is Recommended
  PFC DCBX Oper status is Up
  State Machine Type is Feature
  TLV Tx Status is enabled
  PFC Link Delay 45556 pause quantams
  Application Priority TLV Parameters :
  --------------------------------------
  FCOE TLV Tx Status is disabled
  ISCSI TLV Tx Status is disabled
  Local FCOE PriorityMap is 0x8
  Local ISCSI PriorityMap is 0x10
  Remote FCOE PriorityMap is 0x8
  Remote ISCSI PriorityMap is 0x8
```
Dell# show interfaces tengigabitethernet 0/49 pfc detail
Interface TenGigabitEthernet 0/49
Admin mode is on
Admin is enabled
Remote is enabled
Remote Willing Status is enabled
Local is enabled
Oper status is recommended
PFC DCBX Oper status is Up
State Machine Type is Feature
TLV Tx Status is enabled
PFC Link Delay 45556 pause quanta
Application Priority TLV Parameters:

FCOE TLV Tx Status is disabled
ISCSI TLV Tx Status is disabled
Local FCOE PriorityMap is 0x8
Local ISCSI PriorityMap is 0x10
Remote FCOE PriorityMap is 0x8
Remote ISCSI PriorityMap is 0x8
0 Input TLV pkts, 1 Output TLV pkts, 0 Error pkts,
0 Pause Tx pkts, 0 Pause Rx pkts

show interface pfc statistics

Displays counters for the PFC frames received and transmitted (by dot1p priority class) on an interface.

Syntax
show interface port-type slot/port pfc statistics

Parameters

<table>
<thead>
<tr>
<th>Port-type</th>
<th>Enter the port type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>Enter the slot/port number.</td>
</tr>
</tbody>
</table>

NOTE: This command also enables you to view information corresponding to a range of ports.

- You can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.

Command Modes

| Command Modes | INTERFACE |

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Example (Summary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell# show interfaces te 0/3 pfc statistics</td>
</tr>
<tr>
<td>Interface TenGigabitEthernet 0/3</td>
</tr>
</tbody>
</table>
show qos priority-groups

Displays the ETS priority groups configured on the switch, including the 802.1p priority classes and ID of each group.

Syntax
show qos priority-groups

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

NOTE: Please note that Dell Networking does not recommend to use this command as it has been deprecated in the current 9.4(0.0) release. A warning message appears when you try to run this command indicating that you have to use the dcb-map commands in the future.

Example

```
Dell#show qos priority-groups
priority-group ipc
  priority-list 4
  set-pgid 2
```

show stack-unit stack-ports ets details

Displays the ETS configuration applied to egress traffic on stacked ports, including ETS Operational mode on each unit and the configurated priority groups with dot1p priorities, bandwidth allocation, and scheduler type.

Syntax

```
show stack-unit {all | stack-unit} stack-ports {all | port-number} ets details
```
Parameters

- **stack-unit**: Enter the stack unit identification.
- **port-number**: Enter the port number.

Command Modes

- **CONFIGURATION**

Command History

- **Version 9.2(0.0)**: Introduced on the M I/O Aggregator.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell(conf)# show stack-unit all stack-ports all ets details

Stack unit 0 stack port all
Max Supported TC Groups is 4
Number of Traffic Classes is 1
Admin mode is on

Admin Parameters:

Admin is enabled
TC-grp Priority# Bandwidth TSA

0 0,1,2,3,4,5,6,7 100% ETS
1 - -
2 - -
3 - -
4 - -
5 - -
6 - -
7 - -
8 - -

Stack unit 1 stack port all
Max Supported TC Groups is 4
Number of Traffic Classes is 1
Admin mode is on
Admin Parameters:

Admin is enabled
TC-grp Priority# Bandwidth TSA

0 0,1,2,3,4,5,6,7 100% ETS
1 - -
2 - -
3 - -
4 - -
5 - -
6 - -
7 - -
8 - -
dcb pfc-shared-buffer-size

Configure the maximum amount of shared buffer size for PFC packets in kilobytes.

Syntax

```
dcb pfc-shared-buffer-size KB
```

Parameters

```
KB
```

Enter a number in the range of 0 to 7787.

Default

None.

Command Modes

CONFIGURATION mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

Configure the maximum shared buffer available for PFC traffic. You can choose to increase or decrease the shared buffer that is allocated in the system by default. Configure the shared buffer size less than the total PFC buffer size. If the buffer size and DCB buffer threshold settings are applied on one or more ports, a validation is performed to determine whether following condition is satisfied: If the shared buffer size is more than the total PFC buffer size value, the configuration is not saved and a system logging message is generated as follows:

```
Shared-pfc-buffer-size <= (Total-pfc-buffer-size — Σpfc priority <> buffer-size on each port, priority).
```

Dell(conf)#dcb pfc-shared-buffer-size 2000

%ERROR: pfc shared buffer size configured cannot accommodate existing buffer requirement in the system.

Enter a smaller value for the shared buffer size or increase the total buffer size appropriately by using the `dcb pfc-total-buffer-size` command.

Example

```
Dell(conf)#dcb pfc-shared-buffer-size 5000
```

dcb pfc-total-buffer-size

Configure the total buffer size for PFC in kilobytes.

Syntax

```
dcb pfc-total-buffer-size KB
```

Usage Information

Configure the total buffer size for PFC in kilobytes.
dcb-pfc-total-buffer-size

Configure the maximum buffer available for PFC traffic. You can choose to increase or decrease the buffer size that is allocated in the system by default. However, if you modify the PFC buffer size lower than the previously configured size, the system determines whether this reduction in size is valid without disrupting the existing configuration. In such a scenario, disable and re-enable DCB. For example, if you modify the total buffer size as 4000 KB from the previous size of 5000 KB, an error message is displayed that this reduction cannot be performed owing to existing system configuration because of queues that are being currently in process.

The lossless queue limit per port is validated based on the `dcb pfc-queues` command. PFC queue configuration identifies the maximum number of queues a port can support. Although the queue limit per port is a baseline when dynamic buffering is enabled, the limit per port for queues depends on the availability of the buffer.

Example

```
Dell(conf)#dcb pfc-total-buffer-size 5000
Dell(conf)#dcb pfc-total-buffer-size 4000
%ERROR: Total pfc buffer size configured cannot accommodate existing buffer requirement in the system.
```
dcb enable pfc-queues

Configure the number of PFC queues.

Syntax
dcb enable pfc-queues value

Parameters
value

Enter the number of PFC queues. The range is from 1 to 4. The number of ports supported based on lossless queues configured will depend on the buffer.

Command Modes
CONFIGURATION mode

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.3(0.0) Introduced on the MXL platform.

Usage Information
You can configure up to a maximum of four lossless (PFC) queues. By configuring four lossless queues, you can configure four different priorities and assign a particular priority to each application that your network is used to process. For example, you can
assign a higher priority for time-sensitive applications and a lower priority for other services, such as file transfers. You can configure the amount of buffer space to be allocated for each priority and the pause or resume thresholds for the buffer. This method of configuration enables you to effectively manage and administer the behavior of lossless queues.

Example

Dell(conf)#dcb pfc-queues 4

dcb {ets | pfc} enable

Enable priority flow control or enhanced transmission selection on interface.

Syntax
dcb {ets | pfc} enable

- To disable ETS on interface, use “no dcb ets enable” command.
- To disable PFC on interface, use “no dcb pfc enable” command.

Defaults
Enable

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3 (0.1)</td>
<td>Introduced on S6000, S4810, and S4820T.</td>
</tr>
</tbody>
</table>

Usage Information

PFC and ETS are enabled by default on the interfaces when DCB is globally enabled (refer to dcb enable). In some network topology, you may want to disable PFC on an interface and apply link level flow control; Similarly you may want to disable ETS on an interface and apply QoS bandwidth configurations.

Limitations

- “dcb-map” CLI on interface is mutually exclusive to “no dcb ets enable” and “no dcb pfc enable”.
- “pfc priority” CLI is mutually exclusive to “no dcb pfc enable” command.
- Deprecated CLI “dcb-policy input” and “no dcb pfc enable” cannot coexist at interface level.
- Deprecated CLI “dcb-policy output” and “no dcb ets enable” cannot coexist at interface level.
dcb-policy buffer-threshold (Interface Configuration)

Assign the DCB policy to the DCB buffer threshold profile on interfaces. This setting takes precedence over the global buffer-threshold setting.

Syntax

```
dcb-policy buffer-threshold profile-name
```

Parameters

- `buffer-threshold`
 - Configure the profile name for the DCB buffer threshold

- `profile-name`
 - Enter the name of the profile, which can be a string of up to 32 characters in length.

Default

None

Command Modes

INTERFACE mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure a maximum of four lossless (PFC) queues. By configuring four lossless queues, you can configure four different priorities and assign a particular priority to each application that your network is used to process. For example, you can assign a higher priority for time-sensitive applications and a lower priority for other services, such as file transfers. You can configure the amount of buffer space to be allocated for each priority and the pause or resume thresholds for the buffer. This method of configuration enables you to effectively manage and administer the behavior of lossless queues.

Example

```
Dell(conf-if-te-0/0)#dcb-policy buffer-threshold test
```

dcb-policy buffer-threshold (Global Configuration)

Assign the dcbbuffer threshold policy on the stack ports. To apply the dcbbuffer threshold policy on the stack-units, use the configuration mode. To apply on front-end ports, use the interface mode.

Syntax

```
dcb-policy buffer-threshold stack-unit all stack-ports all profile-name
```

Example

Dell(config)#dcb-policy buffer-threshold test
Parameters

- **dcb-buffer-threshold**
 Configure the profile name for the DCB buffer threshold.

- **profile-name**
 Enter the name of the profile, which can be a string of up to 32 characters in length.

- **stack-unit all**
 Enter the stack unit identification. Indicates the specific stack unit or units. Entering all shows the status for all stacks.

- **stack-port all**
 Enter the port number of a port in a switch stack.

Default

None

Command Modes

CONFIGURATION mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure up to a maximum of four lossless (PFC) queues. By configuring four lossless queues, you can configure four different priorities and assign a particular priority to each application that your network is used to process. For example, you can assign a higher priority for time-sensitive applications and a lower priority for other services, such as file transfers. You can configure the amount of buffer space for each priority and the pause or resume thresholds for the buffer. This method of configuration enables you to manage and administer the behavior of lossless queues.

Example for Configuration Mode

```bash
Dell(conf)# dcb-policy buffer-threshold stack-unit all stack-ports all test
```

Example for Interface Mode

```bash
Dell(conf-if-te-1/1)# dcb-policy buffer-threshold test
```

priority-pgid

Assign 802.1p priority traffic to a priority group in a DCB map.

FC Flex IO Modules with MXL

Syntax

```bash
priority-pgid dot1p0_group-num dot1p1_group-num dot1p2_group-num dot1p3_group-num dot1p4_group-num dot1p5_group-num dot1p6_group-num dot1p7_group-num
```

Parameters

- **dot1p0_group-num**
 Enter the priority group number for each 802.1p class of traffic in a DCB map.
dot1p1_group-num
dot1p2_group-num
dot1p3_group-num
dot1p4_group-num
dot1p5_group-num
dot1p6_group-num
dot1p7_group-num

Defaults
None

Command Modes
DCB MAP

Command History
Version 9.3(0.0) Introduced on the FC Flex IO module installed in the MXL 10/40GbE Switch module platform.

Usage Information
PFC and ETS settings are not pre-configured on Ethernet ports. You must use the dcb-map command to configure different groups of 802.1p priorities with PFC and ETS settings.

Using the priority-pgid command, you assign each 802.1p priority to one priority group. A priority group consists of 802.1p priority values that are grouped together for similar bandwidth allocation and scheduling, and that share latency and loss requirements. All 802.1p priorities mapped to the same queue must be in the same priority group. For example, the priority-pgid 0 0 0 1 2 4 4 4 command creates the following groups of 802.1p priority traffic:

- Priority group 0 contains traffic with dot1p priorities 0, 1, and 2.
- Priority group 1 contains traffic with dot1p priority 3.
- Priority group 2 contains traffic with dot1p priority 4.
- Priority group 4 contains traffic with dot1p priority 5, 6, and 7.

To remove a priority-pgid configuration from a DCB map, enter the no priority-pgid command.
Create a QoS policy buffer and enter the configuration mode to configure the no-drop queues, ingress buffer size, buffer limit for pausing, and buffer offset limit for resuming.

Syntax

```
qos-policy-buffer queue queue-num pause no-drop queue buffer-size size pause-threshold threshold-value resume-offset threshold-value shared-threshold-weight size
```

Parameters

- **policy-name**
 - Name of the QoS policy buffer that is applied to an interface for this setting to be effective in conjunction with the DCB input policy. You can specify the shared buffer threshold limit, the ingress buffer size, buffer limit for pausing the acceptance of packets, and the buffer offset limit for resuming the acceptance of received packets. This method of configuration enables different peer-provided and administrative priorities to be set up because the intended queue is directly configured instead of determining the priority to queue mapping for local and remote parameters.

- **queue 0 to queue 7**
 - Specify the queue number to which the QoS policy buffer parameters apply

- **pause**
 - Pause frames to be sent at the specified buffer limit levels and pause packet settings

- **no-drop**
 - The packets for this queue must not be dropped

- **value**
 - Enter a number in the range of 0 to 7 to denote the priority to be allocated to the dynamic buffer control mechanism

- **buffer-size**
 - Ingress buffer size

- **size**
 - Size of the ingress buffer in KB. Enter a number in the range of 0 to 7787. The default is 45 KB.

- **pause-threshold**
 - Buffer limit for pause frames to be sent

- **threshold-value**
 - Buffer limit at which the port sends the pause to peer in KB. Enter a number in the range of 0 to 7787. The default is 10 KB.

- **resume-offset**
 - Buffer offset limit for resuming in KB

- **threshold-value**
 - Buffer offset limit at which the port resumes the peer in KB. Enter a number in the range of 1 to 7787. The default is 10 KB.

- **shared-threshold-weight**
 - Buffer shared threshold weight

- **size**
 - Weightage of the priorities on the shared buffer size in the system. Enter a number in the range from 0 to 9. The default shared threshold weight is 10.
The default size of the ingress buffer is 45 KB. The default buffer limit at which the port sends the pause to peer and recommences the sending of packets to the peer is 10 KB. The default threshold weight of the shared buffer space is 10.

Command Modes

DCB-BUFFER-THRESHOLD mode

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

Usage Information

You must apply this buffer policy at the interface level for the attributes to be applicable in conjunction with the DCB input policy.

For each QoS policy buffer, you can specify the shared buffer threshold limit, the ingress buffer size, buffer limit for pausing the acceptance of packets, and the buffer offset limit for resuming the acceptance of received packets. When PFC detects congestion on a queue for a specified priority, it sends a pause frame for the 802.1p priority traffic to the transmitting device.

You can use set up both the administrative and peer-related PFC priorities. For example, you can configure the intended buffer configuration for all 8 priorities. If you configure the number of lossless queues as 4 and if the administrator-configured priorities configured within the DCB input policy is applied, then the configuration for those priorities are pre-designed. However, if the peer-provided priorities are applied, although a DCB input policy is present, the peer-provided priorities become effective for buffer configuration. This method of configuration provides an easy and flexible technique to accommodate both administratively-configured and peer-configured priorities.

Example

```bash
Dell(conf)# qos-policy-buffer test
Dell (conf-qos-policy-buffer)#queue 0 pause no-drop buffer-size 128000 pause-threshold 103360 resume-threshold 83520
Dell(conf-qos-policy-buffer)# queue 4 pause no-drop buffer-size 128000 pause-threshold 103360 resume-threshold 83520
```

service-class buffer shared-threshold-weight

Create a service class and associate the threshold weight of the shared buffer with each of the queues per port in the egress direction.

Syntax

```
[No] Service-class buffer shared-threshold-weight [[queue0 number] || [queue1 number] || [queue2 number] || [queue3 number] ||
```

Data Center Bridging (DCB) | 484
Parameters

buffer Define the shared buffer settings.
shared-threshold-weight Specify the weight of a queue for the shared buffer space.
queue 0 to queue 7 To apply the shared-threshold weight, specify the queue number.
number Enter a weight for the queue on the shared buffer as a number in the range of 1 to 11.

Default The default threshold weight on the shared buffer for each queue is 9. Therefore, each queue can consume up to 66.67 percent of available shared buffer by default.

Command Modes INTERFACE mode

Supported Modes Full-Switch

Usage Information You can configure all the data queues. You can configure queues 0–7. The following table describes the mapping between the threshold weight of the shared buffer on the queue. It also shows the percentage of the available shared buffer used by the queues for each of the corresponding threshold weights of the shared buffer:

<table>
<thead>
<tr>
<th>shared-threshold-weight on the queue</th>
<th>% of available shared buffer that can be consumed by the queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No dynamic sharing; shared buffer = 0.</td>
</tr>
<tr>
<td>1</td>
<td>0.77%</td>
</tr>
<tr>
<td>2</td>
<td>1.54%</td>
</tr>
<tr>
<td>3</td>
<td>3.03%</td>
</tr>
<tr>
<td>4</td>
<td>5.88%</td>
</tr>
<tr>
<td>5</td>
<td>11.11%</td>
</tr>
<tr>
<td>6</td>
<td>20%</td>
</tr>
<tr>
<td>7</td>
<td>33.33%</td>
</tr>
<tr>
<td>8</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>66.67%</td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
</tr>
<tr>
<td>11</td>
<td>88.89%</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>
show qos dcb-map

Display the DCB parameters configured in a specified DCB map.

FC Flex IO Modules with MXL

Syntax

`show qos dcb-map map-name`

Parameters

- **map-name**: Displays the PFC and ETS parameters configured in the specified map.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 9.3(0.0)**: Introduced on the FC Flex IO module installed in the MXL 10/40GbE Switch.

Usage Information

Use the `show qos dcb-map` command to display the enhanced transmission selection (ETS) and priority-based flow control (PFC) parameters used to configure server-facing Ethernet ports.

The following table describes the `show qos dcb-map` output shown in the example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Complete: All mandatory DCB parameters are correctly configured. In progress: The DCB map configuration is not complete. Some mandatory parameters are not configured.</td>
</tr>
<tr>
<td>PFC Mode</td>
<td>PFC configuration in DCB map: On (enabled) or Off.</td>
</tr>
<tr>
<td>PG</td>
<td>Priority group configured in the DCB map.</td>
</tr>
<tr>
<td>TSA</td>
<td>Transmission scheduling algorithm used by the priority group: Enhanced Transmission Selection (ETS).</td>
</tr>
<tr>
<td>BW</td>
<td>Percentage of bandwidth allocated to the priority group.</td>
</tr>
<tr>
<td>PFC</td>
<td>PFC setting for the priority group: On (enabled) or Off.</td>
</tr>
</tbody>
</table>

Example

```
Dell(conf-if-te-1/8)#show qos dcb-map
```

```ethernet
Example
Dell(conf-if-te-1/8)#Service-class buffer shared-threshold-weight queue5 4 queue7 6
```
### Field	Description
Priorities | 802.1p priorities configured in the priority group.

Example

Dell# show qos dcb-map dcbmap2

State : Complete
PfcMode: ON

PG:0 TSA:ETS BW:50 PFC:OFF
Priorities:0 1 2 4 5 6 7

PG:1 TSA:ETS BW:50 PFC:ON
Priorities:3

show stack-unit stack-ports pfc details

Displays the PFC configuration applied to ingress traffic on stacked ports, including PFC Operational mode on each unit with the configured priorities, link delay, and number of pause packets sent and received.

Syntax

```
show stack-unit {all | stack-unit} stack-ports {all | port-number} pfc details
```

Parameters

- `stack-unit` Enter the stack unit.
- `port-number` Enter the port number.

Command Modes
CONFIGURATION

Command History

- **Version 9.2(0.0)** Introduced on the M I/O Aggregator.
- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell(conf)# show stack-unit all stack-ports all pfc details

```
stack unit 0 stack-port all
  Admin mode is On
  Admin is enabled, Priority list is 4-5
  Local is enabled, Priority list is 4-5
  Link Delay 45556 pause quantum
  0 Pause Tx pkts, 0 Pause Rx pkts

stack unit 1 stack-port all
  Admin mode is On
  Admin is enabled, Priority list is 4-5
  Local is enabled, Priority list is 4-5
  Link Delay 45556 pause quantum
  0 Pause Tx pkts, 0 Pause Rx pkts
```
Debugging and Diagnostics

The basic debugging and diagnostic commands are supported by the Dell Networking Operating System (OS).

This chapter contains the following sections:

- Offline Diagnostic Commands
- Hardware Commands

Topics:

- Offline Diagnostic Commands
- diag stack-unit
- offline stack-unit
- online stack-unit
- Hardware Commands
- clear hardware stack-unit
- clear hardware system-flow
- show hardware layer2 acl
- show hardware layer3
- show hardware stack-unit
- show hardware buffer interface
- show hardware counters interface interface
- show hardware stack-unit buffer-stats-snapshot (Total Buffer Information)
- show hardware buffer-stats-snapshot
- show hardware system-flow
- show hardware drops

Offline Diagnostic Commands

The offline diagnostics test suite is useful for isolating faults and debugging hardware. While tests are running, the Dell operating system results are saved as a text file (TestReport-SU-X.txt) in the flash directory. This show file command is available only on master and standby.

Important Points to Remember

- Offline diagnostics can only be run when the unit is offline.
You can only run offline diagnostics on a unit to which you are connected via the console. In other words, you cannot run diagnostics on a unit to which you are connected to via a stacking link.

- Diagnostic results are printed to the screen. The Dell Networking OS does not write them to memory.
- Diagnostics only test connectivity, not the entire data path.

diag stack-unit

Run offline diagnostics on a stack unit.

Syntax

```
diag stack-unit number [alllevels | level0 | level1 | level2] verbose no-reboot
```

Parameters

- **number**
 - Enter the stack-unit number. The range is from 0 to 5.

- **alllevels**
 - Enter the keyword `alllevels` to run the complete set of offline diagnostic tests.

- **level0**
 - Enter the keyword `level0` to run Level 0 diagnostics. Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, they verify the identification registers of the components on the board.

- **level1**
 - Enter the keyword `level1` to run Level 1 diagnostics. Level 1 diagnostics is a smaller set of diagnostic tests with support for automatic partitioning. They perform status/self test for all the components on the board and test their registers for appropriate values. In addition, they perform extensive tests on memory devices (for example, SDRAM, flash, NVRAM, EEPROM, and CPLD) wherever possible. There are no tests on 10G links. At this level, stack ports are shut down automatically.

- **level2**
 - Enter the keyword `level2` to run Level 2 diagnostics. Level 2 diagnostics are a full set of diagnostic tests with no support for automatic partitioning. Level 2 diagnostics are used primarily for on-board loopback tests and more extensive component diagnostics. Various components on the board are put into Loopback mode and test packets are transmitted through those components. These diagnostics also perform snake tests using VLAN configurations. To test 10G links, physically remove the unit from the stack.

- **verbose**
 - Enter the keyword `verbose` to run the diagnostic in Verbose mode. Verbose mode gives more information in the output than Standard mode.

- **no-reboot**
 - Enter the keyword `no-reboot` to avoid automatic rebooting of the chassis after completion of diagnostic execution. Generally, this option is never used because if you run the diagnostic once
again without rebooting the chassis, it may cause an issue with the diagnostic results.

Defaults
none

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#diag stack-unit 0 level0
Warning - diagnostic execution will cause multiple link flaps on the peer side - advisable to shut directly connected ports
Proceed with Diags [confirm yes/no]: yes
FTOS#Dec 15 04:14:07: %MXL-10/40GbE:0 %DIAGAGT-6-DA_DIAG_STARTED: Starting diags on stack unit 0
00:12:10: System may take additional time for Driver Init.
00:12:10: Approximate time to complete the Diags ... 6 Mins
00:13:53: Diagnostic test results are stored on file: flash:/TestReport-SU-0.txt
Diags completed... Rebooting the system now!!!
Dec 15 04:15:54: %MXL-10/40GbE:0 %DIAGAGT-6-DA_DIAG_DONE: Diags finished on stack unit 0
syncing disks... 1 1 done
unmounting file systems...
unmounting /f10/flash (/dev/ld0e)...
unmounting /usr/pkg (/dev/ld0h)...
unmounting /usr (mfs:35)...
unmounting /lib (mfs:24)...
unmounting /f10 (mfs:21)...
unmounting /tmp (mfs:15)...
unmounting /kern (kernfs)...
unmounting / (/dev/md0a) ... done
rebooting...

offline stack-unit

Place a stack unit in the offline state.

Syntax
offline stack-unit number

Parameters
number Enter the stack-unit number. The range is from 0 to 5.

Defaults
none

Command Modes
EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The system reboots when the off-line diagnostics complete. This reboot is an automatic process. A warning message appears when the offline stack-unit command is implemented.

Warning - Diagnostic execution will cause stack-unit to reboot after completion of diags.

Proceed with Offline-Diags [confirm yes/no]:y

online stack-unit

Place a stack unit in the online state.

Syntax

```plaintext
online stack-unit number
```

Parameters

- `number`: Enter the stack-unit number. The range is from 0 to 5.

Defaults

- none

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Hardware Commands

These commands display information from a hardware sub-component or ASIC.

clear hardware stack-unit

Clear statistics from selected hardware components.

Syntax

clear hardware stack-unit 0–5 \{counters | unit 0–1 counters | cpu data-plane statistics | cpu party-bus statistics | stack-port 0–52\}

Parameters

- **stack-unit 0–5** Enter the keywords stack-unit then 0 to 5 to select a particular stack member and then enter one of the following command options to clear a specific collection of data.
- **counters** Enter the keyword counters to clear the counters on the selected stack member.
- **unit 0–0 counters** Enter the keyword unit along with a port-pipe number, from 0 to 1, then the keyword counters to clear the counters on the selected port-pipe.
- **cpu data-plane statistics** Enter the keywords cpu data-plane statistics to clear the data plane statistics.
- **cpu party-bus statistics** Enter the keywords cpu party-bus statistics to clear the management statistics.
- **stack-port 33–56** Enter the keywords stack-port then the port number of the stacking port to clear the statistics of the particular stacking port. The range is from 33 to 56.

> **NOTE:** You can identify stack port numbers by physical inspection of the rear modules. The numbering is the same as for the 10G ports. You can also inspect the output of the show system stack-ports command.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
clear hardware system-flow

Clear system-flow statistics from selected hardware components.

Syntax
```
clear hardware system-flow layer2 stack-unit 0-5 port-set 0-0 counters
```

Parameters
- `stack-unit 0-5`: Enter the keywords `stack-unit` then 0 to 5 to select a particular stack member and then enter one of the following command options to clear a specific collection of data.
- `port-set 0-0 counters`: Enter the keywords `port-set` along with a port-pipe number, then the keyword `counters` to clear the system-flow counters on the selected port-pipe.

Defaults
- none

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- `show hardware stack-unit` — displays the data plane or management plane input and output statistics of the designated component of the designated stack member.

show hardware layer2 acl

Display Layer 2 ACL or eg data for the selected stack member and stack member port-pipe.

Syntax
```
show hardware layer2 acl stack-unit 0-5 port-set 0-0
```

Parameters
- `stack-unit 0-5`: Enter the keyword `stack-unit` then 0 to 5 to select a stack ID.
- `port-set 0-0`: Enter the keywords `port-set` with a port-pipe number.

Defaults
- none
show hardware layer3

Display Layer 3 ACL or QoS data for the selected stack member and stack member port-pipe.

Syntax

```plaintext
show hardware layer3 {acl | qos} stack-unit 0–5 port-set 0–0
```

Parameters

- `acl | qos` Enter either the keyword `acl` or the keyword `qos` to select between ACL or QoS data.
- `stack-unit 0–5` Enter the keywords `stack-unit` then a numeral from 0 to 5 to select a stack ID.
- `port-set 0–0` Enter the keyword port-set with a port-pipe number.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show hardware stack-unit

Display the data plane or management plane input and output statistics of the designated component of the designated stack member.

Syntax

```plaintext
show hardware stack-unit 0–5 {buffer [ unit 0 ] total buffer | buffer unit 0 interface all queue [(0–14) | all] buffer-info}{phy-firmware-version} {cpu data-plane statistics [stack-port 0–52] | cpu party-bus statistics | cpu private-mgmt statistics | drops [unit number] | stack-port 33-56 | unit 0–0 {counters | details | port-stats [detail] | register}}
```

Debugging and Diagnostics

494
Parameters

stack-unit 0–5 (command-option)
Enter the keywords stack-unit then 0 to 5 to select a particular stack member and then enter one of the following command options to display a collection of data based on the option entered.

buffer
Enter the keyword buffer. To display buffer statistics for all interface, enter the keyword interface followed by the keyword all. Enter the keywords buffer unit then total-buffer to display the buffer details per unit and mode of allocation. To display the forwarding plane statistics containing the packet buffer usage for all interface per stack unit, enter the keywords buffer unit then interface all and the interface all, then buffer-info. To display the forwarding plane statistics containing the packet buffer statistics per COS per port, enter the keywords buffer unit, and queue (0–14 or all), and buffer-info. The buffer unit default is 1.

phy-firmware-version
Each member of the stack is updated automatically with the latest firmware while booting as well as during OIR. To dump the physical firmware version for stack units, enter the keywords phy-firmware-version.

cpu data-plane statistics
(Optional) Enter the keywords cpu data-plane statistics then the keywords stack port and its number from 0 to 52 to display the data plane statistics, which shows the High Gig (Higig) port raw input/output counter statistics to which the stacking module is connected.

cpu party-bus statistics
Enter the keywords cpu party-bus statistics, to display the Management plane input/output counter statistics of the pseudo party bus interface.

cpu private-mgmt statistics
Enter the keywords cpu private-mgmt statistics, to display the Management plane input/output counter statistics of the Private Management interface.

drops [unit 0]
Enter the keyword drops to display internal drops on the selected stack member. Optionally, use the keyword unit with 0 to select port-pipe 0.

stack-port 33–56
Enter the keywords stack-port and a stacking port number to select a stacking port for which to display statistics. Identify the stack port number as you would to identify a 10G port that was in the same place in one of the rear modules.

NOTE: You can identify stack port numbers by physical inspection of the rear modules. The numbering is the same as for the 10G ports. You can also inspect the output of the show system stack-ports command.

unit 0–0 (counters | details)
Enter the keyword unit then 0 for port-pipe 0, and then enter one of the following keywords to troubleshoot errors on the selected port-pipe and to give status on why a port is not
coming up to register level: counters, details, port-stats [detail], or register.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Replaced the keyword port with interface</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show hardware stack-unit 0 phy-firmware-version
PortNumber Status Programmed Version SW Version
==
 41 Present 01.06 01.06
 42 Present 01.06 01.06
 43 Present 01.06 01.06
 44 Present 01.06 01.06
 45 Present 01.06 01.06
 46 Present 01.06 01.06
 47 Present 01.06 01.06
 48 Present 01.06 01.06
 49 Not Present N/A
N/A

In the above example, the Status field represents presence of OPTM ports, Programmed version field represents loaded firmware version, and SW version represents the SDK version.

Example (data-plane)
Dell#show hardware stack-unit 0 cpu data-plane statistics
bc pci driver statistics for device:
rxHandle :0
noMhdr :0
noMbuf :0
noClus :0
recvd :0
dropped :0
recvToNet :0
rxError :0
rxDatapathErr :0
rxPkt(COS0) :0
rxPkt(COS1) :0
rxPkt(COS2) :0
rxPkt(COS3) :0
rxPkt(COS4) :0
rxPkt(COS5) :0
rxPkt(COS6) :0
rxPkt(COS7) :0
rxPkt(UNIT0) :0
transmitted :1696

Debugging and Diagnostics
Example

Dell#show hardware stack-unit 0 cpu party-bus statistics
Input Statistics:
 8189 packets, 8076608 bytes
 0 dropped, 0 errors
Output Statistics:
 366 packets, 133100 bytes
 0 errors
Dell#

Example (drop summary)

Dell#show hard stack-unit 0 drops unit 0

<table>
<thead>
<tr>
<th>PortNumber</th>
<th>Ingress Drops</th>
<th>IngMac Drops</th>
<th>Total</th>
<th>Mmu Drops</th>
<th>EgMac Drops</th>
<th>Egress Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dell#

Example (port-statistics)

Dell#show hardware stack-unit 0 unit 0 port-stats

<table>
<thead>
<tr>
<th>port</th>
<th>link</th>
<th>speed</th>
<th>duplex</th>
<th>scan</th>
<th>neg?</th>
<th>STP</th>
<th>state</th>
<th>pause</th>
<th>discrd</th>
<th>ops</th>
<th>face</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe0</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe1</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe2</td>
<td>up</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe3</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe4</td>
<td>down</td>
<td>10G FD</td>
<td>SW</td>
<td>Yes</td>
<td>Block</td>
<td>None</td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe5</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe6</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe7</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe8</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe9</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe10</td>
<td>down</td>
<td>10G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe11</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe12</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td>Block</td>
<td>None</td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe13</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe14</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe15</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe16</td>
<td>!ena</td>
<td>1G FD</td>
<td>SW</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dell#show hardware stack-unit 0 unit 0 register
0x0f180d34 ALTERNATE_EMIRROR_BITMAP_PARITY_CONTROL.ipipe0 =
0x00000001
0x0f180d35 ALTERNATE_EMIRROR_BITMAP_PARITY_STATUS_INTR.ipipe0 =
0x00000000
0x0f180d36 ALTERNATE_EMIRROR_BITMAP_PARITY_STATUS_NACK.ipipe0 =
0x00000000
0x0018070c ARB_EOP_DEBUG.ipipe0 = 0x00000000
0x00180312 ARB_RAM_DBGCTRL.ipipe0 = 0x00000000
0x03300000 ASF_PORT_SPEED.cpu0 = 0x00000000
0x03322000 ASF_PORT_SPEED.xe0 = 0x00000000
0x03326000 ASF_PORT_SPEED.xe1 = 0x00000000
0x0332a000 ASF_PORT_SPEED.xe2 = 0x00000000
0x0332e000 ASF_PORT_SPEED.xe3 = 0x00000000
0x03323000 ASF_PORT_SPEED.xe4 = 0x00000000
0x03327000 ASF_PORT_SPEED.xe5 = 0x00000000
0x0332b000 ASF_PORT_SPEED.xe6 = 0x00000000
0x0332f000 ASF_PORT_SPEED.xe7 = 0x00000000
0x03324000 ASF_PORT_SPEED.xe8 = 0x00000000
0x03328000 ASF_PORT_SPEED.xe9 = 0x00000000
0x0332c000 ASF_PORT_SPEED.xe10 = 0x00000000
0x03330000 ASF_PORT_SPEED.xe11 = 0x00000000
0x03325000 ASF_PORT_SPEED.xe12 = 0x00000000
0x03329000 ASF_PORT_SPEED.xe13 = 0x00000000
0x0332d000 ASF_PORT_SPEED.xe14 = 0x00000000
0x03331000 ASF_PORT_SPEED.xe15 = 0x00000000
0x03332000 ASF_PORT_SPEED.xe16 = 0x00000000
0x03336000 ASF_PORT_SPEED.xe17 = 0x00000000
0x0333a000 ASF_PORT_SPEED.xe18 = 0x00000000
0x0333e000 ASF_PORT_SPEED.xe19 = 0x00000000
0x03333000 ASF_PORT_SPEED.xe20 = 0x00000000
0x03337000 ASF_PORT_SPEED.xe21 = 0x00000000
0x0333b000 ASF_PORT_SPEED.xe22 = 0x00000000
0x0333f000 ASF_PORT_SPEED.xe23 = 0x00000000
0x03334000 ASF_PORT_SPEED.xe24 = 0x00000000
0x03338000 ASF_PORT_SPEED.xe25 = 0x00000000
0x0333c000 ASF_PORT_SPEED.xe26 = 0x00000000
0x03340000 ASF_PORT_SPEED.xe27 = 0x00000000
0x03335000 ASF_PORT_SPEED.xe28 = 0x00000000
0x03339000 ASF_PORT_SPEED.xe29 = 0x00000000
!------------------ output truncated ---------------!

Example (unit details)
Dell#show hardware stack-unit 0 unit 0 details

**
The total no of FP & CSF Devices in the Card is 1
The total no of FP Devices in the Card is 1
The total no of CSF Devices in the Card is 0
The number of ports in device 0 is - 49
The number of Hg ports in devices 0 is - 1
The CPU Port of the device is 0
The staring unit no the SWF in the device is 0
**

bcmLinkMonStatusShow: The Current Link Status Is
Front End Link Status 0x200000000000000000000000
Front End Port Present Status 0x000000000000000000000000
Back Plane Link Status 0x00000000

**

Link Status of all the ports in the Device - 0

The linkStatus of Front End Port 1 is FALSE
The linkStatus of Front End Port 2 is FALSE
The linkStatus of Front End Port 3 is TRUE
The linkStatus of Front End Port 4 is FALSE
The linkStatus of Front End Port 5 is FALSE
The linkStatus of Front End Port 6 is FALSE
The linkStatus of Front End Port 7 is FALSE
The linkStatus of Front End Port 8 is FALSE
The linkStatus of Front End Port 9 is FALSE
The linkStatus of Front End Port 10 is FALSE
The linkStatus of Front End Port 11 is FALSE
The linkStatus of Front End Port 12 is FALSE
The linkStatus of Front End Port 13 is FALSE
The linkStatus of Front End Port 14 is FALSE
The linkStatus of Front End Port 15 is FALSE
The linkStatus of Front End Port 16 is FALSE
The linkStatus of Front End Port 17 is FALSE
The linkStatus of Front End Port 18 is FALSE
The linkStatus of Front End Port 19 is FALSE
The linkStatus of Front End Port 20 is FALSE
The linkStatus of Front End Port 21 is FALSE
The linkStatus of Front End Port 22 is FALSE
The linkStatus of Front End Port 23 is FALSE
The linkStatus of Front End Port 24 is FALSE
The linkStatus of Front End Port 25 is FALSE
The linkStatus of Front End Port 26 is FALSE
The linkStatus of Front End Port 27 is FALSE
The linkStatus of Front End Port 28 is FALSE
The linkStatus of Front End Port 29 is FALSE
The linkStatus of Front End Port 30 is FALSE
The linkStatus of Front End Port 31 is FALSE
The linkStatus of Front End Port 32 is FALSE
The linkStatus of Front End Port 33 is FALSE
The linkStatus of Front End Port 34 is FALSE
The linkStatus of Front End Port 35 is FALSE
The linkStatus of Front End Port 36 is FALSE
The linkStatus of Front End Port 37 is FALSE

!------------------ output truncated ---------------!

Example (buffer)

Dell(conf)#sh hardware stack-unit 0 buffer total-buffer
Dell#sh hardware stack-unit 0 buffer total-buffer
Total Buffers allocated per Stack-Unit 46080

Example displaying queue range

Dell#show hardware stack-unit 0 buffer unit 0 interface all queue
 6 buffer-info
 Buffer Stats for Front End Ports

 ----- Buffer Stats for Interface Te 1/0 Queue 6 ----- maximum shared limit: 7667
 Default Packet Buffer allocate for the Queue: 8
 Used Packet Buffer: 0
 ----- Buffer Stats for Interface Te 1/1 Queue 6 ----- maximum shared limit: 7667
 Default Packet Buffer allocate for the Queue: 8
 Used Packet Buffer: 0
Buffer Stats for Interface Te 1/2 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 1/3 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 1/4 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 1/5 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 1/6 Queue 6

Example (Queue2/Buffer-Info)
Dell#show hardware stack-unit 0 buffer unit 0 interface all queue 6 buffer-info

Buffer Stats for Front End Ports
================================

Buffer Stats for Interface Te 0/0 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/1 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/2 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/3 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/4 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/5 Queue 6
Maximum Shared Limit: 7667
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0

Buffer Stats for Interface Te 0/6 Queue 6

<output truncated for brevity>

Related Commands

- clear hardware system-flow — clears the statistics from selected hardware components.
- show interfaces stack-unit — displays information on all interfaces on a specific stack member.
- show processes cpu — Displays CPU usage information based on running processes.
show system stack-ports — Displays information about the stacking ports on all switches in the stack.

show system — Displays the current status of all stack members or a specific member.

show hardware buffer interface

Display buffer statistics for a specific interface.

Syntax

```
show hardware buffer interface interface{priority-group { id | all } | queue { id | all } } buffer-info
```

Parameters

- **interface interface**: Enter any of the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

- **priority-group**: Enter the keyword priority-group followed by *id* for specific priority group or keyword **all**.

- **queue**: Enter the keyword queue followed by *id* for specific queue or keyword **all**.

- **buffer-info**: To display total buffer information for the interface, enter the keywords **buffer-info**.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - 9.9(0.0): Introduced on the FN IOM.
 - 9.8(0.0): Introduced on the MXL 10/40GbE Switch IO Module.

Example displaying total-buffer information for the interface

```
Dell# show hardware buffer interface tengigabitethernet 1/1 buffer-info
----- Buffer Stats for Interface Te 1/1 -----
Maximum Shared Limit for the Interface: 38336
Default Packet Buffer allocate for the Interface: 120
Used Packet Buffer for the Interface: 0
```
Example displaying priority-group range

```
Dell#show hardware buffer interface tengigabitethernet 1/1
priority-group 0 buffer-info
----- Buffer stats for unit: 0 port: 1 (interface Te 1/1) -----
---------------------------------------------------------------------
PG# PRIORITY GROUPS ALLOCATED (CELLS) OUTER (CELLS)
   MIN     SHARED     MODE HDRM      MIN     SHARED  HDRM
---------------------------------------------------------------------
0        -          61440  0         STATIC  174     0      0      0
Dell#
```

Example displaying queue range

```
Dell#show hardware buffer interface tengigabitethernet 1/1 queue
all buffer-info
----- Buffer Stats for Interface Te 1/1 Queue 0 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 1 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 2 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 3 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 4 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 5 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 6 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 7 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 8 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 9 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 10 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
Used Packet Buffer: 0
----- Buffer Stats for Interface Te 1/1 Queue 11 ----- 
Maximum Shared Limit: 29514
Default Packet Buffer allocate for the Queue: 8
```
show hardware counters interface interface

Display the counter information for a specific interface.

Syntax

```
show hardware counters interface interface
```

Parameters

- **counters**
 - Enter the keywords `counters` to display counter value for the specified stack-member the port-pipe.

- **interface**
 - Enter any of the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show hardware counters interfac tengigabitethernet 5/1
unit: 0 port: 2 (interface Te 5/1)
Description          Value
RX - IPV4 L3 Unicast Frame Counter     0
RX - IPV4 L3 Routed Multicast Packets 0
RX - IPV6 L3 Unicast Frame Counter    0
RX - IPV6 L3 Routed Multicast Packets 0
RX - Unicast Packet Counter           0
RX - 64 Byte Frame Counter            0
RX - 65 to 127 Byte Frame Counter     0
```
show hardware stack-unit buffer-stats-snapshot (Total Buffer Information)

View the buffer statistics tracking resource information depending on the type of buffer information, such as device-level details, port-level counters, queue-based snapshots, or priority group-level snapshot in the egress and ingress direction of traffic.

Syntax

Dell#show hardware stack-unit <id> buffer-stats-snapshot unit <id> resource x

Parameters

- stack-unit stack-unit-number
 - Unique ID of the stack unit to select a particular stack member and then enter one of the following command options to display a collection of data based on the option entered. The range is from 0 to 11.
buffer-stats-snapshot unit number

Display the historical snapshot of buffer statistical values.

unit

Enter the keyword unit along with a port-pipe number.

resource x

Buffer and traffic manager resources usage, where X can be one of the following:

- All - Displays ingress and egress device, port, and queue snapshots.
- Interface all queue (all) - egress queue-level snapshot for both unicast and multicast packets.
- Interface all queue ucast (id | all) - egress queue-level snapshot for unicast packets only.
- Interface all queue mcast (id | all) - egress queue-level snapshot for multicast packets only.
- Interface all prio-group (id | all) - ingress priority-group level snapshot.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the M XL 10/40GbE Switch.</td>
</tr>
</tbody>
</table>

Usage Information

The following information is displayed based on the buffer-info type, such as device-level details, queue-based snapshots, or priority group-level snapshot in the egress and ingress direction of traffic:

- Device-ingress – Displays total buffer accounting usage for the unit.
- Device-egress – Display total buffer usage for the unit, total multicast buffer usage for the unit and also on per-service-pool basis. Counters will be displayed for the 2 service-pools – one for normal traffic and other for DCB traffic.

When the buffer-stats-snapshot is disabled, the following informational message is displayed when you run the show command: %Info: Buffer-stats-snapshot feature is disabled.

Example

Dell#show hardware stack-unit 1 buffer-stats-snapshot unit 3 resource interface all queue mcast 3
Unit 1 unit: 3 port: 1 (interface Fo 1/144)

Q# TYPE Q# TOTAL BUFFERED CELLS

MCAST 3 0

Unit 1 unit: 3 port: 5 (interface Fo 1/148)
<table>
<thead>
<tr>
<th>Q#</th>
<th>TYPE</th>
<th>Q#</th>
<th>TOTAL BUFFERED CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 9 (interface Fo 1/152)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 13 (interface Fo 1/156)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 17 (interface Fo 1/160)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 21 (interface Fo 1/164)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 25 (interface Fo 1/168)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 29 (interface Fo 1/172)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 33 (interface Fo 1/176)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Unit 1 unit: 3 port: 37 (interface Fo 1/180)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Debugging and Diagnostics
show hardware buffer-stats-snapshot

Displays buffer statistics tracking resource information for a specific interface.

Syntax

```
show hardware buffer-stats-snapshot resource interface
interface(priority-group { id | all } | queue { ucast{id | all}
{ mcast { id | all} | all})
```

Parameters

- **buffer-stats-snapshot unit number**
 - Display the historical snapshot of buffer statistical values unit number.
 - Enter the keyword `unit` along with a port-pipe number.

- **interface interface**
 - Enter any of the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

- **queue**
 - Enter the keyword `queue` after `id` for specific queue or keyword `all`.

- **priority-group**
 - Enter the keyword `priority-group` followed by `{ id | all}` for specific priority group or keyword `all`.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - **9.8(0.0)**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- `<Interface><slot/port>-Queue ucast/mcast` — Displays the total unicast/multicast buffer usage on per-port per-queue basis. For CPU port, counters for queues 0 to 11 displays and there is no differentiation between unicast and multicast queues.

Example displaying egress queue-level snapshot for both unicast and multicast packets

```
Dell# show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 queue all
Unit 0 unit: 0 port: 1 (interface Fo 0/0)
-----------------------------------------------
Q# TYPE  Q#   TOTAL BUFFERED CELLS
-----------------------------------------------
UCAST    0     0
UCAST    1     0
```
for the specific interface

<table>
<thead>
<tr>
<th>UCAST</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>MCAST</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Example displaying egress queue-level snapshot for unicast packets for the specific interface

Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 queue ucast 10
Unit 0 unit: 0 port: 1 (interface Fo 0/0)

<table>
<thead>
<tr>
<th>Q# TYPE</th>
<th>Q#</th>
<th>TOTAL BUFFERED CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAST</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 queue ucast all
Unit 0 unit: 0 port: 1 (interface Fo 0/0)

<table>
<thead>
<tr>
<th>Q# TYPE</th>
<th>Q#</th>
<th>TOTAL BUFFERED CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAST</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>UCAST</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Example displaying egress queue-level snapshot for multicast packets for the specific interface

Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 queue mcast 3
Unit 1 unit: 0 port: 1 (interface Fo 0/0)

<table>
<thead>
<tr>
<th>Q# TYPE</th>
<th>Q#</th>
<th>TOTAL BUFFERED CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 queue mcast all
Unit 0 unit: 0 port: 1 (interface Fo 0/0)

<table>
<thead>
<tr>
<th>Q# TYPE</th>
<th>Q#</th>
<th>TOTAL BUFFERED CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAST</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Example displaying ingress priority-group level snapshot for the specific interface

```
MCAST 0 0
MCAST 1 0
MCAST 2 0
MCAST 3 0
MCAST 4 0
MCAST 5 0
MCAST 6 0
MCAST 7 0
MCAST 8 0
```

```
Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 priority-group 7
Unit 0 unit: 0 port: 1 (interface Fo 0/0)
---------------------------------------
PG#     SHARED CELLS     HEADROOM CELLS
---------------------------------------
    7       0                0
Dell#show hardware buffer-stats-snapshot resource interface fortyGigE 0/0 priority-group all
Unit 0 unit: 0 port: 1 (interface Fo 0/0)
---------------------------------------
PG#     SHARED CELLS     HEADROOM CELLS
---------------------------------------
   0       0                0
   1       0                0
   2       0                0
   3       0                0
   4       0                0
   5       0                0
   6       0                0
   7       0                0
```

show hardware system-flow

Display Layer 3 ACL or QoS data for the selected stack member and stack member port-pipe.

Syntax

```
show hardware system-flow layer2 stack-unit 0–5 port-set 0–0 [counters]
```

Parameters

- `acl | qos`
 For the selected stack member and stack member port-pipe, display which system flow entry the packet hits and what queue the packet takes as it dumps the raw system flow tables.

- `stack-unit 0–5`
 Enter the keywords `stack-unit` then 0 to 5 to select a stack member ID.

- `port-set 0–0 [counters]`
 Enter the keywords `port-set` with a port-pipe number.
(OPTIONAL) Enter the keyword counters to display hit counters for the selected ACL or QoS option.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show hardware system-flow layer2 stack-unit 0 port-set 0 counters

EntryId Description #HITS

2048 STP BPDU Redirects 0
2047 LLDP BPDU Redirects 164904
2045 LACP traffic Redirects 0
2044 GVRP traffic Redirects 0
2043 ARP Reply Redirects 0
2042 802.1x frames Redirects 0
2041 VRRP frames Redirects 0
2040 IPv6VRRP frames Redirects 0
2039 GRAT ARP 0
2036 IPv6 Mcast Control Traffic 128840
2000 VLT ARP SYNC Frames 0
1999 ICL Hellos 0
1998 ICL MAC SYNC Frames 0
1997 VLT Tunneled STP Frames 0
1995 DROP Cases 43207
1917 L3 Term Traffic ClassID 1 to Q6 0
1916 L3 CPU Bound Traffic ClassId 2 to Q5 0
1915 Unknown MCAST Packets 0
1792 BGP with TTL1, L4 SRC port Redirects 0
1791 BGP with TTL1, L4 DST Port Redirects 0
25
Dell#

Example (non-counters)

Dell#show hardware system-flow layer2 stack-unit 0 port-set 0

######################## FP Entry for redirecting STP BPDU to CPU Port
########################
EID 2048: gid=1, slice=15, slice_idx=0x00, prio=0x800, flags=0x82, Installed
tcam: color_indep=0, higig=0, higig_mask=0,
KEY=0x00000000 00000000 00000000 0180c200 00000000 00000000 00000000 00000000
00000000 00000000
, FPF4=0x00
MASK=0x00000000 00000000 00000000 00000000 ffffffff ffff0000
00000000 00000000
, 0x00
action={act=Drop, param0=0(0x00), param1=0(0x00)},
action={act=CosQCPUNew, param0=7(0x07), param1=0(0x00)},
action={act=CopyToCpu, param0=0(0x00), param1=0(0x00)},
action={act=UpdateCounter, param0=1(0x01),
param1=0(0x00)},

Debugging and Diagnostics | 510
meter=NULL,
counter={idx=0, mode=0x01, entries=1}

############### FP Entry for redirecting LLDP BPDU to RSM
###############
EID 2047: gid=1,
slice=15, slice_idx=0x01, prio=0x7ff, flags=0x82,
Installed
tcam: color_indep=0, higig=0, higig_mask=0,
KEY=0x00000000 00000000 00000000 0180c200 000e0000
00000000 00000000 , FFP4=0x00
MASK=0x00000000 00000000 00000000 ffffffff ffff0000
00000000 00000000 , 0x00
action={act=Drop, param0=0(0x00), param1=0(0x00)},
action={act=CosQCpuNew, param0=7(0x07), param1=0(0x00)},
action={act=CopyToCpu, param0=0(0x00), param1=0(0x00)},
action={act=UpdateCounter, param0=1(0x01),
param1=0(0x00)},
meter=NULL,
counter={idx=1, mode=0x01, entries=1}

############# FP Entry for redirecting LACP traffic to CPU Port
#############
EID 2045: gid=1,
slice=15, slice_idx=0x02, prio=0x7fd, flags=0x82,
Installed
tcam: color_indep=0, higig=0, higig_mask=0,
KEY=0x00000000 00000000 00000000 0180c200 00020000
00000000 00000000 , FFP4=0x00
MASK=0x00000000 00000000 00000000 ffffffff ffff0000
00000000 00000000 , 0x00
action={act=Drop, param0=0(0x00), param1=0(0x00)},
action={act=CosQCpuNew, param0=7(0x07), param1=0(0x00)},
action={act=CopyToCpu, param0=0(0x00), param1=0(0x00)},
action={act=UpdateCounter, param0=1(0x01),
param1=0(0x00)},
meter=NULL,
counter={idx=2, mode=0x01, entries=1}

################# FP Entry for redirecting GVRP traffic to RSM
###########
EID 2044: gid=1,
slice=15, slice_idx=0x03, prio=0x7fc, flags=0x82,
Installed
tcam: color_indep=0, higig=0, higig_mask=0,
KEY=0x00000000 00000000 00000000 0180c200 00210000
00000000 00000000 , FFP4=0x00
MASK=0x00000000 00000000 00000000 ffffffff ffff0000
00000000 00000000 , 0x00
action={act=Drop, param0=0(0x00), param1=0(0x00)},
action={act=CosQCpuNew, param0=7(0x07), param1=0(0x00)},
action={act=CopyToCpu, param0=0(0x00), param1=0(0x00)},
action={act=UpdateCounter, param0=1(0x01),
param1=0(0x00)},
meter=NULL,
counter={idx=3, mode=0x01, entries=1}
FP Entry for redirecting ARP Replies to RSM

EID 2043: gid=1, slice=15, slice_idx=0x04, prio=0x7fb, flags=0x82, Installed
tcam: color_indep=0, higig=0, higig_mask=0,
KEY=0x00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000806 00001600
, FPF4=0x00
, MASK=0x00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0000ffff 00001600
, 0x00
, action={act=Drop, param0=0(0x00), param1=0(0x00)},
action={act=CosQCpuNew, param0=6(0x06),
param1=0(0x00)},
action={act=CopyToCpu, param0=0(0x00), param1=0(0x00)},
action={act=UpdateCounter, param0=1(0x01),
param1=0(0x00)},
!--------- output truncated -----------------!

show hardware drops

Displays internal drops on the specified interface or for a range of interface.

Syntax

show hardware drops interface interface

Parameters

interface
Enter any of the following keywords and slot/port or slot/port-range or number information:
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

drops
Enter the keyword drops to display internal drops.

Command Modes

EXEC
EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

Version Description
9.9(0.0) Introduced on the FN IOM.
Example displaying internal drops for the specific interface

Dell#show hardware drops interface tengigabitethernet 2/1

Drops in Interface Te 2/1:
--- Ingress Drops ---
 Ingress Drops : 0
 IBP CBP Full Drops : 0
 PortSTPnotFwd Drops : 0
 IPv4 L3 Discards : 0
 Policy Discards : 0
 Packets dropped by FP : 0
 (L2+L3) Drops : 0
 Port bitmap zero Drops : 0
 Rx VLAN Drops : 0
--- Ingress MAC counters---
 Ingress FCSDrops : 0
 Ingress MTUExceeds : 0
--- MMU Drops ---
 Ingress MMU Drops : 0
 HOL DROPS(TOTAL) : 0
 HOL DROPS on COS0 : 0
 HOL DROPS on COS1 : 0
 HOL DROPS on COS2 : 0
 HOL DROPS on COS3 : 0
 HOL DROPS on COS4 : 0
 HOL DROPS on COS5 : 0
 HOL DROPS on COS6 : 0
 HOL DROPS on COS7 : 0
 HOL DROPS on COS8 : 0
 HOL DROPS on COS9 : 0
 HOL DROPS on COS10 : 0
 HOL DROPS on COS11 : 0
 HOL DROPS on COS12 : 0
 HOL DROPS on COS13 : 0
 HOL DROPS on COS14 : 0
 HOL DROPS on COS15 : 0
 HOL DROPS on COS16 : 0
 HOL DROPS on COS17 : 0
 TxPurge CellErr : 0
 Aged Drops : 0
--- Egress MAC counters---
 Egress FCS Drops : 0
--- Egress FORWARD PROCESSOR Drops ---
 IPv4 L3UC Aged & Drops : 0
 TTL Threshold Drops : 0
 INVALID VLAN CNTR Drops : 0
 L2MC Drops : 0
 PKT Drops of ANY Conditions : 0
 Hg MacUnderflow : 0
 TX Err PKT Counter : 0
--- Error counters---
 Internal Mac Transmit Errors : 0
 Unknown Opcode : 0
 Internal Mac Receive Errors : 0
Dynamic Host Configuration Protocol (DHCP)

Dynamic host configuration protocol (DHCP) is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on the configuration policies the network administrators determine.

An MXL switch can operate as a DHCP server or DHCP client. As a DHCP client, the switch requests an IP address from a DHCP server.

This chapter contains the following sections:

- Commands to Configure the System to be a DHCP Client
- Commands to Configure the System to be a DHCP Server
- Commands to Configure Secure DHCP

Topics:

- Commands to Configure the System to be a DHCP Server
 - clear ip dhcp
 - debug ip dhcp server
 - debug ipv6 dhcp
 - default-router
 - disable
 - dns-server
 - domain-name
 - excluded-address
 - hardware-address
 - host
 - lease
 - netbios-name-server
 - netbios-node-type
 - network
 - show ip dhcp binding
 - show ip dhcp configuration
 - show ip dhcp conflict
 - show ip dhcp server
 - Commands to Configure the System to be a DHCP Client
 - ip address dhcp
 - Other Commands Supported by the DHCP Client
- clear ip dhcp client statistics
- debug ip dhcp clients events
- debug ip dhcp clients packets
- release dhcp interface
- renew dhcp interface
- show ip dhcp client statistics
- show ip dhcp lease
- Commands to Configure Secure DHCP
- arp inspection
- arp inspection-trust
- clear ip dhcp snooping
- clear ipv6 dhcp snooping binding
- ip dhcp snooping
- ipv6 dhcp snooping
- ip dhcp snooping database
- ipv6 dhcp snooping database write-delay
- ip dhcp snooping binding
- IPv6 DHCP Snooping Binding
- ip dhcp snooping database renew
- ipv6 dhcp snooping database renew
- ip dhcp snooping trust
- ipv6 dhcp snooping trust
- ip dhcp source-address-validation
- ip dhcp snooping vlan
- ipv6 dhcp snooping vlan
- ip dhcp relay
- ip dhcp relay secondary-subnet
- show ip dhcp snooping
- show ipv6 DHCP snooping
- ip dhcp snooping verify mac-address
- ipv6 DHCP snooping verify mac-address
Commands to Configure the System to be a DHCP Server

To configure the system to be a DHCP server, use the following commands.

clear ip dhcp

Reset the DHCP counters.

Syntax

```plaintext
clear ip dhcp [binding {address | conflict | server statistics}]
```

Parameters

- **binding**
 - Enter the keyword `binding` to delete all entries in the binding table.

- **address**
 - Enter the IP address to clear the binding entry for a single IP address.

- **conflicts**
 - Enter the keyword `conflicts` to delete all of the log entries created for IP address conflicts.

- **server statistics**
 - Enter the keywords `server statistics` to clear all the server counter information.

Defaults

`none`

Command Modes

EXEC Privilege

Command History

- **Version**
 - **9.9(0.0)**
 - Introduced on the FN IOM.
 - **8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Entering `<CR>` after the `clear ip dhcp binding` command clears all the IPs from the binding table.

debug ip dhcp server

Display the Dell Networking OS debugging messages for DHCP.

Syntax

```plaintext
debug ip dhcp server [events | packets]
```
Parameters

- **events**: Enter the keyword `events` to display the DHCP state changes.
- **packet**: Enter the keyword `packet` to display packet transmission/reception.

Defaults

- none

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ipv6 dhcp

To enable debug logs for DHCPv6 relay agent transactions.

Syntax

```
debug ipv6 dhcp
```

To disable the debug logs for DHCPv6 relay agent transactions, use the `debug ipv6 dhcp` command.

Defaults

- none

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

default-router

Assign a default gateway to clients based on the address pool.

Syntax

```
default-router address [address2...address8]
```

Parameters

- **address**: Enter a list of routers that may be the default gateway for clients on the subnet. You may specify up to eight routers. List them in order of preference.

Defaults

- none
disable

Disable the DHCP server.

Syntax

disable

DHCP Server is disabled by default. To enable the system to be a DHCP server, use the no disable command.

Defaults

Disabled

Command Modes

DHCP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dns-server

Assign a DNS server to clients based on address pool.

Syntax

dns-server address [address2...address8]

Parameters

address

Enter a list of DNS servers that may service clients on the subnet. You may list up to eight servers, in order of preference.

Defaults

none

Command Modes

DHCP <POOL>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
domain-name

Assign a domain to clients based on the address pool.

Syntax

```plaintext
domain-name name
```

Parameters

- `name`

 Give a name to the group of addresses in a pool.

Defaults

none

Command Modes

DHCP <POOL>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

excluded-address

Prevent the server from leasing an address or range of addresses in the pool.

Syntax

```plaintext
excluded-address [address | low-address high-address]
```

Parameters

- `address`

 Enter a single address to be excluded from the pool.

- `low-address`

 Enter the lowest address in a range of addresses to be excluded from the pool.

- `high-address`

 Enter the highest address in a range of addresses to be excluded from the pool.

Defaults

none

Command Modes

DHCP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Dynamic Host Configuration Protocol (DHCP) | 519
hardware-address

For manual configurations, specify the client hardware address.

```
Syntax                  hardware-address address
Parameters             address            Enter the hardware address of the client.
Defaults               none
Command Modes          DHCP <POOL>
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

host

For manual (rather than automatic) configurations, assign a host to a single-address pool.

```
Syntax                  host address
Parameters             address/mask        Enter the host IP address and subnet mask.
Defaults               none
Command Modes          DHCP <POOL>
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

lease

Specify a lease time for the addresses in a pool.

```
Syntax                  lease {days [hours] [minutes] | infinite}
```
Parameters

- **days**
 - Enter the number of days of the lease. The range is from 0 to 31.

- **hours**
 - Enter the number of hours of the lease. The range is from 0 to 23.

- **minutes**
 - Enter the number of minutes of the lease. The range is from 0 to 59.

- **infinite**
 - Specify that the lease never expires.

Defaults

- 24 hours

Command Modes

- DHCP <POOL>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

netbios-name-server

Specify the NetBIOS windows internet naming service (WINS) name servers, in order of preference, that are available to Microsoft dynamic host configuration protocol (DHCP) clients.

Syntax

```
netbios-name-server address [address2...address8]
```

Parameters

- **address**
 - Enter the address of the NETBIOS name server. You may enter up to eight, in order of preference.

Defaults

- none

Command Modes

- DHCP <POOL>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

netbios-node-type

Specify the NetBIOS node type for a Microsoft DHCP client. Dell Networking Operating System (OS) recommends specifying clients as **hybrid**.

Syntax

```
netbios-node-type type
```

Dynamic Host Configuration Protocol (DHCP) | 521
Parameters

<table>
<thead>
<tr>
<th>type</th>
<th>Enter the NETBIOS node type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Broadcast:</td>
<td>Enter the keyword b-node.</td>
</tr>
<tr>
<td>• Hybrid:</td>
<td>Enter the keyword h-node.</td>
</tr>
<tr>
<td>• Mixed:</td>
<td>Enter the keyword m-node.</td>
</tr>
<tr>
<td>• Peer-to-peer: Enter the keyword p-node.</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Command Modes</th>
<th>DHCP <POOL></th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Command History</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Version</td>
<td>Description</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
<td></td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
<td></td>
</tr>
</tbody>
</table>

network

Specify the range of addresses in an address pool.

Syntax

```
network network /prefix-length
```

Parameters

<table>
<thead>
<tr>
<th>network/ prefix-length</th>
<th>Specify a range of addresses. Prefix-length range is from 17 to 31.</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

<table>
<thead>
<tr>
<th>DHCP <POOL></th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip dhcp binding

Display the DHCP binding table.

Syntax

```
show ip dhcp binding
```

Defaults

<table>
<thead>
<tr>
<th>none</th>
</tr>
</thead>
</table>

Dynamic Host Configuration Protocol (DHCP)
show ip dhcp configuration

Display the DHCP configuration.

Syntax

show ip dhcp configuration [global | pool name]

Parameters

- pool name: Display the configuration for a DHCP pool.
- global: Display the DHCP configuration for the entire system.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip dhcp conflict

Display the address conflict log.

Syntax

show ip dhcp conflict address

Parameters

- address: Display a particular conflict log entry.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show ip dhcp server

Display the DHCP server statistics.

Syntax

show ip dhcp server statistics

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Commands to Configure the System to be a DHCP Client

To configure the system to be a DHCP client, use the following commands.

ip address dhcp

Configure an Ethernet interface to acquire its IP address from a DHCP network server.

Syntax

ip address dhcp

Command Modes

INTERFACE

Default

The Ethernet is not configured to operate as a DHCP client and receive a dynamic IP address.

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `ip address dhcp` command enables an Ethernet interface to acquire a DHCP server-assigned dynamic IP address. This setting persists after a switch reboot. If you enter the `shutdown` command on the interface, DHCP transactions are stopped and the dynamically-acquired IP address is saved. To display the dynamic IP address and DHCP as the mode of IP address assignment, use the `show interface type slot/
If you later enter the `no shutdown` command and the lease timer for the dynamic IP address has expired, the IP address is unconfigured and the interface tries to acquire a new dynamic address from DHCP server.

You cannot configure a secondary (backup) IP address on an interface using the `ip address dhcp` command; you must use the `ip address` command at the interface configuration level.

To release a DHCP-assigned IP address and remove the interface from being a DHCP client, use the `no ip address dhcp` command. When you use the `no ip address dhcp` command:

- The IP address dynamically acquired from a DHCP server is released from the interface.
- The DHCP client is disabled on the interface; it can no longer acquire a dynamic IP address from a DHCP server.
- DHCP packet transactions on the interface are stopped.

To display the currently configure dynamic IP address and lease time, use the `show ip dhcp lease` command.

Other Commands Supported by the DHCP Client

The following commands are supported by the DHCP client.

clear ip dhcp client statistics

Display DHCP client statistics, including the number of DHCP messages sent and received on an interface.

Syntax

```
clear ip dhcp client statistics {all | interface type slot/port}
```

Parameters

- `all` Clear DHCP client statistics on all DHCP client-enabled interfaces on the switch.
- `interface type slot/port` Clear DHCP client statistics on the specified interface.
 - For a 10-GigabitEthernet Ethernet interface, enter `TenGigabitEthernet then the slot/port numbers; for example, tengigabitethernet 1/3.`
For a 40-GigabitEthernet Ethernet interface, enter
FortyGigabitEthernet then the slot/port numbers; for example, fortygigabitethernet 0/2.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ip dhcp clients events

Enable the display of log messages for the following events on DHCP client interfaces: IP address acquisition, IP address release, Renewal of IP address and lease time, and Release of an IP address.

Syntax

debug ip dhcp client events [interface type slot/port]

Parameters

- **interface type slot/ port**
 - Display log messages for DHCP events on the specified interface.
 - For a 10-GigabitEthernet Ethernet interface, enter TenGigabitEthernet then the slot/port numbers; for example, tengigabitethernet 1/3.
 - For a 40-GigabitEthernet Ethernet interface, enter FortyGigabitEthernet then the slot/port numbers; for example, fortygigabitethernet 0/2.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ip dhcp clients packets

Enable the display of log messages for all DHCP packets sent and received on DHCP client interfaces.

Syntax

debug ip dhcp client packets [interface type slot/port]
Parameters

- **interface type slot/port**

 Display log messages for DHCP packets sent and received on the specified interface.
 - For a 10-GigabitEthernet Ethernet interface, enter `TenGigabitEthernet` then the slot/port numbers; for example, `tengigabitethernet 1/3`.
 - For a 40-GigabitEthernet Ethernet interface, enter `FortyGigabitEthernet` then the slot/port numbers; for example, `fortygigabitethernet 0/2`.

release dhcp interface

Release the dynamically-acquired IP address on an Ethernet interface while retaining the DHCP client configuration on the interface.

Syntax

```
release dhcp interface type slot/port
```

Parameters

- **interface type slot/port**
 - For a 10-GigabitEthernet Ethernet interface, enter `TenGigabitEthernet` then the slot/port numbers; for example, `tengigabitethernet 1/3`.
 - For a 40-GigabitEthernet Ethernet interface, enter `FortyGigabitEthernet` then the slot/port numbers; for example, `fortygigabitethernet 0/2`.

Defaults

- none

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enter the `release dhcp` command, although the IP address that was dynamically-acquired from a DHCP server is released from an interface, the ability to acquire a new DHCP server-assigned address remains in the running configuration for the interface. To acquire a new IP address, enter either the `renew dhcp` command at the EXEC privilege level or the `ip address dhcp` command at the Interface Configuration level.
renew dhcp interface

Re-acquire a dynamic IP address on an Ethernet interface enabled as a DHCP client.

Syntax
renew dhcp interface type slot/port

Parameters
- interface type slot/port
 - For a 10-GigabitEthernet Ethernet interface, enter TenGigabitEthernet then the slot/port numbers; for example, tengigabitethernet 1/3.
 - For a 40-GigabitEthernet Ethernet interface, enter FortyGigabitEthernet then the slot/port numbers; for example, fortygigabitethernet 0/2.

Defaults
none

Command Modes
EXEC Privilege

Command History
- Version 8.3.16.1
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
When you enter the renew dhcp command, a new dynamic IP address is acquired on the specified Ethernet interface for the renewed lease time.

To display the currently configured dynamic IP address and lease time, enter the show ip dhcp lease command.

show ip dhcp client statistics

Display DHCP client statistics, including the number of DHCP messages sent and received on an interface.

Syntax
show ip dhcp client statistics {all | interface type slot/port}

Parameters
- all
 - Display DHCP client statistics on all DHCP client-enabled interfaces on the switch.
- interface type slot/port
 - Display DHCP client statistics on the specified interface.
 - For a 10-GigabitEthernet Ethernet interface, enter TenGigabitEthernet then the slot/port numbers; for example, tengigabitethernet 1/3.
For a 40-GigabitEthernet Ethernet interface, enter fortygigabitethernet then the slot/port numbers; for example, fortygigabitethernet 0/2.

Defaults

Command Modes

EXEC Privilege

Command History

Version 8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.

show ip dhcp lease

Display lease information about the dynamic IP address currently assigned to a DHCP client-enabled interface.

Syntax

show ip dhcp lease [interface type slot/port]

Parameters

Interface type slot/port

Display DHCP lease information on the specified interface.

- For a 10-GigabitEthernet Ethernet interface, enter TenGigabitEthernet then the slot/port numbers; for example, tengigabitethernet 1/3.
- For a 40-GigabitEthernet Ethernet interface, enter fortygigabitethernet then the slot/port numbers; for example, fortygigabitethernet 0/2.

Defaults

Display DHCP lease information on all DHCP client-enabled interfaces on the switch.

Command Modes

EXEC Privilege

Command History

Version 8.3.16.1
Introduced on the MXL 10/40GbE Switch IO Module.
Commands to Configure Secure DHCP

DHCP, as defined by RFC 2131, provides no authentication or security mechanisms. Secure DHCP is a suite of features that protects networks that use dynamic address allocation from spoofing and attacks.

arp inspection

Enable dynamic arp inspection (DAI) on a VLAN.

Syntax
arp inspection

Defaults
Disabled

Command Modes
INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

arp inspection-trust — specifies a port as trusted so that ARP frames are not validated against the binding table.

arp inspection-trust

Specify a port as trusted so that ARP frames are not validated against the binding table.

Syntax
arp inspection-trust

Defaults
Disabled

Command Modes

• INTERFACE
• INTERFACE PORT-CHANNEL

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
clear ip dhcp snooping

Clear the DHCP binding table.

Syntax

 clear ip dhcp snooping binding

Defaults

 none

Command Modes

 EXEC Privilege

Command History

 Version
 9.9(0.0) Introduced on the FN IOM.
 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

 show ip dhcp snooping — displays the contents of the DHCP binding table.

clear ipv6 dhcp snooping binding

Clear all the DHCPv6 snooping binding database entries.

Syntax

 clear ipv6 dhcp snooping binding

Defaults

 none

Command Modes

 EXEC Privilege

Command History

 Version
 9.9(0.0) Introduced on the FN IOM

Example

 Dell# clear ipv6 dhcp snooping?
 binding Clear the snooping binding database
ip dhcp snooping

Enable DHCP snooping globally.

Syntax

```
[no] ip dhcp snooping
```

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When enabled, no learning takes place until you enable snooping on a VLAN. After disabling DHCP snooping, the binding table is deleted, and Option 82, IP Source Guard, and Dynamic ARP Inspection are disabled.

Introduced in the Dell Networking OS version 7.8.1.0, DHCP snooping was available for Layer 3 only and dependent on DHCP Relay Agent (ip helper-address). The Dell Networking OS version 8.2.1.0 extends DHCP Snooping to Layer 2, and you do not have to enable relay agent to snoop on Layer 2 interfaces.

Related Commands

- `ip dhcp snooping vlan` — enables DHCP snooping on one or more VLANs.

ipv6 dhcp snooping

Enable DHCPv6 snooping globally for ipv6.

Syntax

```
[no] ipv6 dhcp snooping
```

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

To disable the snooping globally, use the `no ipv6 dhcp snooping` command.
ip dhcp snooping database

Delay writing the binding table for a specified time.

Syntax
```
ip dhcp snooping database write-delay minutes
```

Parameters
- **minutes**: The range is from 5 to 21600.

Defaults
None

Command Modes
- CONFIGURATION

Command History
- **Version**: 9.9(0.0) Introduced on the FN IOM.
- **Version**: 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

ipv6 dhcp snooping database write-delay

To set time interval for storing the snooping binding entries in a file.

Syntax
```
[no] ipv6 dhcp snooping database write-delay value
```

To disable the storing of snooping binding entries in a file, use the no ipv6 dhcp
snooping write-delay command.

Parameters
- **value**: The range is from 5 to 21600. The value of the minutes range is from 5 min. to 15 days.

Defaults
None

Command Modes
- CONFIGURATION

Command History
- **Version**: 9.9(0.0) Introduced on the FN IOM.
- **Version**: 9.7(0.0) Introduced on the MXL.
ip dhcp snooping binding

Create a static entry in the DHCP binding table.

Syntax

```
[no] ip dhcp snooping binding mac address vlan-id vlan-id ip ip-address interface type slot/port lease number
```

Parameters

- **mac address**
 Enter the keyword `mac` then the MAC address of the host to which the server is leasing the IP address.

- **vlan-id vlan-id**
 Enter the keywords `vlan-id` then the VLAN to which the host belongs. The range is from 2 to 4094.

- **ip ip-address**
 Enter the keyword `ip` then the IP address that the server is leasing.

- **interface type**
 Enter the keyword `interface` then the type of interface to which the host is connected:
 - For a Ten-Gigabit Ethernet interface, enter the keyword `tengigabitethernet`.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE`.

- **slot/port**
 Enter the slot and port number of the interface.

- **lease time**
 Enter the keyword `lease` then the amount of time the IP address are leased. The range is from 1 to 4294967295.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show ip dhcp snooping` — displays the contents of the DHCP binding table.
IPv6 DHCP Snooping Binding

Create a static DHCP snooping binding entry in the snooping database.

Syntax

```
[no] ipv6 dhcp snooping binding mac address vlan-id vlan-id ipv6 ipv6-address interface interface-type | interface-number lease value
```

To delete the DHCP snooping binding entry from DHCP snooping database, use the [no] ipv6 dhcp snooping binding mac address vlan-id vlan-id ipv6 ipv6-address interface interface-type | interface-number lease value command.

Parameters

- **mac address**: Enter the keyword `mac` then the MAC address of the host to which the server is leasing the IPv6 address.
- **vlan-id**: Enter the keywords `vlan-id` then the VLAN to which the host belongs. The range is from 2 to 4094.
- **ipv6 ipv6-address**: Enter the keyword `ipv6` then the IPv6 address that is leased to the client.
- **interface type**: Enter the keyword `interface` then the type of interface to which the host is connected:
 - For an 10/100 Ethernet interface, enter the keyword `fastethernet`.
 - For a Gigabit Ethernet interface, enter the keyword `gigabitethernet`.
 - For a Ten-Gigabit Ethernet interface, enter the keyword `tengigabitethernet`.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE`.
- **interface number**: Enter the number of the interface.
- **lease value**: Enter the keyword `lease` then the amount of time the IPv6 address are leased. The range is from 1 to 4294967295.

Defaults

- none

Command Modes

- EXEC Privilege

Command History

- **Version 9.9(0.0)**
 - Introduced on the FN IOM.
ip dhcp snooping database renew

Renew the binding table.

Syntax

```plaintext
ip dhcp snooping database renew
```

Defaults
none

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ipv6 dhcp snooping database renew

To load the binding entries from the file to DHCPv6 snooping binding database.

Syntax

```plaintext
ipv6 dhcp snooping database renew
```

Defaults
none

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>
ip dhcp snooping trust

Configure an interface as trusted.

Syntax

```text
[no] ip dhcp snooping trust
```

Defaults

Untrusted

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ipv6 dhcp snooping trust

Configure an interface as trusted for DHCP snooping.

Syntax

```text
[no] ipv6 dhcp snooping trust
```

To disable dhcp snooping trusted capability on this interface, use the `no ipv6 dhcp snooping trust` command.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

ip dhcp source-address-validation

Enable the IP Source Guard.

Syntax

```text
[no] ip dhcp source-address-validation [ipmac]
```

Parameters

- `ipmac`
 Enable IP+MAC Source Address Validation.

Defaults

Disabled
ip dhcp snooping vlan

Enable DHCP Snooping on one or more VLANs.

Syntax

[no] ip dhcp snooping vlan name

Parameters

name

Enter the name of a VLAN on which to enable DHCP Snooping.

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When enabled, the system begins creating entries in the binding table for the specified VLANs.

NOTE: Learning only happens if there is a trusted port in the VLAN.

Related Commands

ip dhcp snooping trust — configures an interface as trusted.
ipv6 dhcp snooping vlan

Enable ipv6 DHCP Snooping on VLAN or range of VLANs.

Syntax

```
[no] ip dhcp snooping vlan <vlan-id>
```

To disable the ipv6 dhcp snooping on VLAN basis or range of VLAN, use the no ipv6 dhcp snooping vlan <vlan-id> command.

Parameters

- **vlan-id**

 Enter the name of a VLAN id or list of the VLANs to enable DHCP Snooping.

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

ip dhcp relay

Enable Option 82.

Syntax

```
ip dhcp relay information-option [remote-id | trust-downstream]
```

Parameters

- **remote-id**

 Configure the system to enable the remote-id string in option-82.

- **trust-downstream**

 Configure the system to trust Option 82 when it is received from the previous-hop router.

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip dhcp relay secondary-subnet

Enable DHCP relay secondary-subnet on all the interfaces.

Syntax

```plaintext
[no] ip dhcp relay secondary-subnet
To disable the dhcp relay secondary-subnet, use the no ip dhcp relay
secondary-subnet command.
```

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S4810, S4820T, S6000 and Z-Series.</td>
</tr>
</tbody>
</table>

Example

```plaintext
Dell(conf)# ip dhcp relay secondary-subnet
```

show ip dhcp snooping

Display the contents of the DHCP binding table or display the interfaces configured with IP Source Guard.

Syntax

```plaintext
show ip dhcp snooping [binding | source-address-validation]
```

Parameters

- **binding**
 - Display the interfaces configured with IP Source Guard.
- **source-address-validation**
 - Display the interfaces configured with IP Source Guard.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Related Commands

- `clear ip dhcp snooping` — clears the contents of the DHCP binding table.

show ipv6 DHCP snooping

Display the DHCPv6 snooping database.

Syntax

```
show ipv6 dhcp snooping
```

Defaults

`none`

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ipv6 dhcp snooping
IPv6 DHCP Snooping                        : Enabled.
IPv6 DHCP Snooping Mac Verification       : Disabled.
Database write-delay (In minutes)         : 5
DHCP packets information
Snooping packets                          : 0
Snooping packets processed on L2 vlans    : 0
DHCP Binding File Details
Invalid File                              : 0
Invalid Binding Entry                     : 0
Binding Entry lease expired               : 0
```

Dell#

ip dhcp snooping verify mac-address

Validate a DHCP packet’s source hardware address against the client hardware address field (CHADDR) in the payload.

Syntax

```
[no] ip dhcp snooping verify mac-address
```

Defaults

Disabled

Command Modes

CONFIGURATION
ipv6 DHCP snooping verify mac-address

Configure to enable verify source mac-address against ipv6 DHCP packet mac address.

Syntax

```
[no] ipv6 dhcp snooping verify mac-address
```

To disable verify source mac-address against ipv6 DHCP packet mac address, use the
```
no ipv6 dhcp snooping verify mac-address
```
command.

Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>
Equal Cost Multi-Path (ECMP)

Equal cost multi-path (ECMP) is supported on the Dell Networking OS.

ecmp-group

Provides a mechanism to monitor traffic distribution on an ECMP link bundle. A system log is generated when the standard deviation of traffic distribution on a member link exceeds a defined threshold.

Syntax

dell# config

ecmp-group {ecmp-group-id interface interface | link-bundle-monitor}

To remove the selected interface, use the ecmp-group no interface command.

To disable link bundle monitoring, use the ecmp-group no link-bundle-monitor command.

Parameters

- **ecmp-group ID**
 - Enter the identifier number for the ECMP group. The range is from 2 to 64.

- **interface**
 - Enter the following keywords and slot/port to add the interface to the ECMP group:
 - 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

- **link-bundle-monitor**
 - Enter the keywords link-bundle-monitor to enable link bundle monitoring.

Defaults

Off

Command Modes

- CONFIGURATION
- CONFIGURATION ECMP-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
hash-algorithm

Changes the hash algorithm used to distribute traffic flows across a Port Channel.

Syntax

```
hash-algorithm {algorithm-number | {ecmp {crc16 | crc16cc |
crc32MSB | crc32LSB | crc-upper | dest-ip | lsb | xor1 | xor2 |
xor4 | xor8 | xor16} [number] lag {checksum | crc | xor} [number] 
hn-ecmp {checksum | crc | xor}[number] linecard number ip-sa-mask value ip-da-mask value | seed seed-value }hash-algorithm {ecmp |
crc16 | crc16cc | crc32MSB | crc32LSB | crc-upper | dest-ip | 
flow-based-hashing {crc16|crc16cc|crc32MSB|crc32LSB|xor1|xor2|
xor4|xor8|xor16}|lsb | xor1 | xor2 | xor4 | xor8 | xor16][[hg |
crc16 | crc16cc | crc32MSB | crc32LSB | xor1 | xor2 | xor4 | xor8 | xor16]][[lag |
crc16 | crc16cc | crc32MSB | crc32LSB | xor1 | xor2 | xor4 | xor8 |
xor16]]][stack-unit|linecard number | port-set number | [hg-seed value] | [seedvalue]}
```

To return to the default hash algorithm, use the no hash-algorithm command.

To return to the default ECMP hash algorithm, use the no hash-algorithm ecmp algorithm-value command.

To remove the hash algorithm on a particular stack-unit / line-card, use the no hash-algorithm linecard number command.

Parameters

- **algorithm-number**
 - Enter the algorithm number. The range is from 0 to 47.

- **ecmp (crc16 | crc16cc | crc32MSB | crc32LSB | crc-upper | dest-ip | lsb | xor1 | xor2 | xor4 | xor8 | xor16)**

 TeraScale and ExaScale Only: Enter the keyword ecmp then one of the following options:

 - `crc16`: Use CRC16_BISYNC — 16 bit CRC16-bisync polynomial (default)
 - `crc16cc`: Use CRC16_CCITT — 16 bit CRC16 using CRC16-CCITT polynomial
 - `crc32MSB`: Use CRC32_UPPER — MSB 16 bits of computed CRC32
 - `crc32LSB`: Use CRC32_LOWER — LSB 16 bits of computed CRC32
 - `crc-upper`: Uses the upper 32 bits of the key for the hash computation
 - `dest-ip`: Uses the destination IP for ECMP hashing
 - `lsb`: Returns the LSB of the key as the hash
 - `xor1`: Use CRC16_BISYNC_AND_XOR1 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor1
 - `xor2`: Use CRC16_BISYNC_AND_XOR2 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor2
• xor4: Use CRC16_BISYNC_AND_XOR4 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor4
• xor8: Use CRC16_BISYNC_AND_XOR8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8
• xor16: Use CR16 — 16 bit XOR

lag hash algorithm value
Enter the keyword lag then the LAG hash algorithm value. The range is from 0 to 47.

nh-ecmp hash algorithm value
(Optional) Enter the keyword nh-ecmp then the ECMP hash algorithm value.

linecard number
(Optional) Enter the keyword linecard then the linecard slot number.

ip-sa-mask value
(Optional) Enter the keywords ip-sa-mask then the ECMP/LAG hash mask value. The range is from 0 to FF. The default is FF.

ip-da-mask value
(Optional) Enter the keywords ip-da-mask then the ECMP/LAG hash mask value. The range is from 0 to FF. The default is FF.

ecmp crc16 | crc16cc | crc32MSB | crc-upper | dest-ip | flow-based-hashing | crc16 | crc16cc | crc32MSB | crc32LSB | xor1 | xor2 | xor4 | xor8 | xor16 | lsb | xor1 | xor2 | xor4 | xor8 | xor16
Enter the keyword ecmp then one of the following options:

• crc16: Use CRC16_BISYNC — 16 bit CRC16-bisync polynomial (default)
• crc16cc: Use CRC16_CCITT — 16 bit CRC16 using CRC16-CCITT polynomial
• crc32MSB: Use CRC32_UPPER — MSB 16 bits of computed CRC32
• crc32LSB: Use CRC32_LOWER — LSB 16 bits of computed CRC32
• crc-upper: Uses the upper 32 bits of the key for the hash computation
• dest-ip: Uses the destination IP for ECMP hashing
• flow-based-hashing: Enter the keywords flow-based-hashing followed by the algorithm
crc16 | crc16cc | crc32MSB | crc32LSB | xor1 | xor2 | xor4 | xor8 | xor16

• lsb: Returns the LSB of the key as the hash
• xor1: Use CRC16_BISYNC_AND_XOR1 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor1
• xor2: Use CRC16_BISYNC_AND_XOR2 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor2
• xor4: Use CRC16_BISYNC_AND_XOR4 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor4
• xor8: Use CRC16_BISYNC_AND_XOR8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8
• xor16: Use CR16 — 16 bit XOR
Enter the keyword `hg` then one of the following options available in the stack-unit and linecard provisioned devices:

- `crc16`: Use CRC16_BISYNC — 16 bit CRC16-bisync polynomial (default)
- `crc16cc`: Use CRC16_CCITT — 16 bit CRC16 using CRC16-CCITT polynomial
- `crc32MSB`: Use CRC32_UPPER — MSB 16 bits of computed CRC32
- `crc32LSB`: Use CRC32_LOWER — LSB 16 bits of computed CRC32
- `xor1`: Use CRC16_BISYNC_AND_XOR1 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor1
- `xor2`: Use CRC16_BISYNC_AND_XOR2 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor2
- `xor4`: Use CRC16_BISYNC_AND_XOR4 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor4
- `xor8`: Use CRC16_BISYNC_AND_XOR8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8
- `xor16`: Use CR16 — 16 bit XOR

Enter the keyword `hg` then one of the following options available in the stack-unit and linecard provisioned devices:

- `crc16`: Use CRC16_BISYNC — 16 bit CRC16-bisync polynomial (default)
- `crc16cc`: Use CRC16_CCITT — 16 bit CRC16 using CRC16-CCITT polynomial
- `crc32MSB`: Use CRC32_UPPER — MSB 16 bits of computed CRC32
- `crc32LSB`: Use CRC32_LOWER — LSB 16 bits of computed CRC32
- `xor1`: Use CRC16_BISYNC_AND_XOR1 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor1
- `xor2`: Use CRC16_BISYNC_AND_XOR2 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor2
- `xor4`: Use CRC16_BISYNC_AND_XOR4 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor4
- `xor8`: Use CRC16_BISYNC_AND_XOR8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8
- `xor16`: Use CR16 — 16 bit XOR

Enter the keyword `hg-seed` then the hash algorithm seed value. The range is from 0 to 2147483646.

Enter the keyword `stack-unit` then the stack-unit slot number.
linecard number (OPTIONAL) : Enter the keyword linecard then the linecard slot number.

port-set number (OPTIONAL) Enter the keyword port-set then the port-set slot number.

Defaults
0 for hash-algorithm value on TeraScale and ExaScale IPSA and IPDA mask value is FF for a line card.

Command Modes
CONFIGURATION

Command History
Version Description
9.9(0.0) Introduced on the FN IOM. Added flow-based-hashing support for hashing on ECMP.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To ensure that CRC is not used for LAG, set the default hash-algorithm method on ExaScale systems. For example, hash-algorithm ecmp xor lag checksum nh-ecmp checksum.

To achieve the functionality of hash-align on the ExaScale platform, do not use CRC as a hash-algorithm method.

The hash value calculated with the hash-algorithm command is unique to the entire chassis. The hash algorithm command with the line card option changes the hash for a particular line card by applying the mask specified in the IPSA and IPDA fields.

The line card option is applicable with the lag-hash-align microcode only (refer to CAM Profile Commands). Any other microcode returns an error message as follows:

- Dell(conf)#hash-algorithm linecard 5 ip-sa-mask ff ip-da-mask ff
 % Error: This command is not supported in the current microcode configuration

In addition, the linecard number ip-sa-mask value ip-da-mask value option has the following behavior to maintain bi-directionality:

- When hashing is done on both IPSA and IPDA, the ip-sa-mask and ip-da-mask values must be equal. (Single Linecard).

- When hashing is done only on IPSA or IPDA, the Dell Networking OS maintains bi-directionality with masks set to XX 00 for line card 1 and 00 XX for line card 2 (ip-sa-mask and ip-da-mask). The mask value must be the same for both line cards when using multiple line cards as ingress (where XX is any value from 00 to FF for both line cards). For example, assume that traffic is flowing between linecard 1 and linecard 2:
 - hash-algorithm linecard 1 ip-sa-mask aa ip-da-mask 00
 - hash-algorithm linecard 2 ip-sa-mask 00 ip-da-mask aa

The different hash algorithms are based on the number of Port Channel members and packet values. The default hash algorithm (number 0) yields the most balanced results
in various test scenarios, but if the default algorithm does not provide a satisfactory
distribution of traffic, use the hash-algorithm command to designate another
algorithm.

When a Port Channel member leaves or is added to the Port Channel, the hash
algorithm is recalculated to balance traffic across the members.

On TeraScale, if you do not enter the keyword ECMP or LAG, the Dell Networking OS
assumes it to be common for both. If the keyword ECMP or LAG is entered separately,
both should fall in the range of 0 to 23 or 24 to 47 since compression enable/disable is
common for both TeraScale and ExaScale support the range 0–47. The default for
ExaScale is 24.

hash-algorithm ecmp

Change the hash algorithm used to distribute traffic flows across an ECMP (equal-cost multipath routing)
group.

Syntax

hash-algorithm ecmp {crc-upper} | {dest-ip} | {lsb}

To return to the default hash algorithm, use the no hash-algorithm ecmp command.

Parameters

crc-upper Uses the upper 32 bits of the key for the hash computation. The
default is crc-lower.

dest-ip Uses the destination IP for ECMP hashing. The default is enabled.

lsb Returns the LSB of the key as the hash. The default is crc-lower.

Defaults

• crc-lower
• dest-ip enabled

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The hash value calculated with the hash-algorithm command is unique to the entire
chassis. The default ECMP hash configuration is crc-lower. This command takes the
lower 32 bits of the hash key to compute the egress port and is the “fall-back”
configuration if you have not configured anything else.
The different hash algorithms are based on the number of ECMP group members and packet values. The default hash algorithm yields the most balanced results in various test scenarios, but if the default algorithm does not provide satisfactory distribution of traffic, use this command to designate another algorithm.

When a member leaves or is added to the ECMP group, the hash algorithm is recalculated to balance traffic across the members.

hash-algorithm seed

Select the seed value for the ECMP, LAG, and NH hashing algorithm.

Syntax

```
hash-algorithm seed value [linecard slot] [port-set number]
```

Parameters

- **seed value**: Enter the keyword `seed` then the seed value. The range is from 0 to 4095.
- **linecard slot**: Enter the keyword `linecard` then the linecard slot number.
- **port-set number**: Enter the keywords `port-set` then the linecard port-pipe number.

Defaults

none

Command Modes

CONFIGURATION

Command History

- **Version** 9.9(0.0) Introduced on the FN IOM.
- **Version** 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Deterministic ECMP sorts ECMPs in order even though RTM provides them in a random order. However, the hash algorithm uses as a seed the lower 12 bits of the chassis MAC, which yields a different hash result for every chassis. This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis select different hops.

The Dell Networking OS provides a CLI-based solution for modifying the hash seed to ensure that on each configured system, the ECMP selection is same. When configured, the same seed is set for ECMP, LAG, and NH, and is used for incoming traffic only.
NOTE: While the seed is stored separately on each port-pipe, the same seed is used across all CAMs.
You cannot separate LAG and ECMP but you can use different algorithms across the chassis with the same seed. If LAG member ports span multiple port-pipes and line cards, set the seed to the same value on each port-pipe to achieve deterministic behavior.

If the hash algorithm configuration is removed, the hash seed does not go to the original factory default setting.

ip ecmp-group

Enable and specify the maximum number of ecmp that the L3 CAM hold for a route. By default, when maximum paths are not configured, the CAM can hold a maximum of 16 ecmp per route.

Syntax

```
ip ecmp-group {maximum-paths | {number} {path-fallback}}
```

To negate a command, use the `no ip ecmp-group maximum-paths` command.

Parameters

- **maximum-paths** Specify the maximum number of ECMP for a route. The range is 2 to 64.
- **path-fallback** Use the keywords `path-fallback` to enable this feature. If you enable the feature, re-enter this keyword to disable the feature.

Defaults

16

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You must save the new ECMP settings to the startup-config (write-mem) then reload the system for the new settings to take effect.

Related Commands

- `show ip cam stack-unit` — Display content-addressable memory (CAM) entries.
link-bundle-distribution trigger-threshold

Provides a mechanism to set the threshold to trigger when traffic distribution begins being monitored on an ECMP link bundle.

Syntax

```
link-bundle-distribution trigger-threshold [percent]
```

Parameters

- `percent` Indicate the threshold value when traffic distribution starts being monitored on an ECMP link bundle. The range is from 1 to 90%. The default is 60%.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

link-bundle-monitor enable

Provides a mechanism to enable monitoring of traffic distribution on an ECMP link bundle.

Syntax

```
link-bundle-monitor enable
```

To exit from ECMP group mode, use the `exit` command.

Command Modes

- ECMP-GROUP
- PORT-CHANNEL INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show config

Display the ECMP configuration.

Syntax
show config

Command Modes
CONFIGURATION-ECMP-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show link-bundle distribution

Display the link-bundle distribution for the interfaces in the bundle, type of bundle (LAG or ECMP), and the most recently calculated interface utilization (either bytes per second rate or maximum rate) for each interface.

Syntax
show link-bundle-distribution

Command Modes
EXEC Privilege

Example

Dell#show link-bundle-distribution
Link-bundle trigger threshold = 60
ECMP bundle = 5 Utilization[In Percent] = 0 Alarm State = Inactive
Interface Line Protocol Utilization[In Percent]
Te 0/4 Up 5
Te 0/3 Up 30
The switch is a blade switch which is plugged into the Dell M1000 Blade server chassis. The blade module contains two slots for pluggable flexible module. With single FC Flex IO module, 4 ports are supported, whereas 8 ports are supported with both FC Flex IO modules. Each port can operate in 2G, 4G or 8G Fiber Channel speed. The topology-wise, FC Flex IOM is directly connected to a FC Storage. In the following topology, the FC flex IOM model offers local connectivity without a SAN switch or fabric.
feature fc

Enable feature fc with FPort functionality.

Syntax

feature fc fport domain-id range

Parameters

Range

Enter the range from 1 to 239.

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.7(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Enable remote-fault-signaling rx off command in FCF FPort mode on interfaces connected to the Compellent and MDF storage devices.

Example

Dell(conf)#feature fc fport domain-id

fc zone

Create a zone.

Syntax

fc zone zonename member

To delete a zone, use the no fc zone zonename member command.
Parameters

- **zonename**: Enter the zone name.
- **member**: Enter the WWPN, port ID, or domain/port.

Command Modes: ALIAS CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Example without member

Dell(conf)# fc zone z1
Dell(conf-fc-zone-z1)#

Example with member

Dell(conf)#fc zone test
Dell(conf-fc-zone-test)#member ?
WORD WWN(00:00:00:00:00:00:00:00),
portID(000000), or Alias name(word)
Dell(conf-fc-zone-test)#member

Related Commands

- `show fc zone` — displays the configured zone.
- `show fcoe-map` — displays the fabric parameters.

fc alias

Create a zone alias name.

Syntax

```
fc alias ZoneAliasNamemember name
```

To delete a zone alias name, use the `no fc zone ZoneAliasName command`.

Parameters

- **ZoneAliasName**
 - Enter the zone alias name.
- **member name**
 - Enter the WWPN, port ID, or domain/port.

Command Modes: CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL and IOA.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>
Example

Dell(conf)#fc alias test12
Dell(conf-fc-alias-test12)#?
end Exit from configuration mode
exit Exit from Alias config mode
member Add Alias member
no Negate a command or set its defaults
show Show alias profile configuration
Dell(conf-fc-alias-test12)#member ?
WORD WWN(00:00:00:00:00:00:00:00), or
portID(123000)

Related Commands

show fc alias — displays the configured alias.

fc zoneset

Create a zoneset.

Syntax

```plaintext
fc zoneset zoneset_name [member]
```

To delete a zoneset, use the `no fc zoneset zoneset_name [member]` command.

Parameters

- `zoneset_name`: Enter the zoneset name.
- `member`: Enter the WWPN, FC-ID, or Alias name.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Example

Dell(conf)#fc zoneset test1
Dell(conf-fc-zoneset-test1)#member ?
WORD Zone Name
Dell(conf-fc-zoneset-test1)#member

Related Commands

- `show fc zoneset` — displays the configured and active zoneset.
- `show fcoe-map` — displays the fabric parameters.
fcoe-map

Create an FCoE map which contains the parameters used to configure the links between server CNAs and a SAN fabric. Apply the FCoE map on a server-facing Ethernet port.

Syntax

```
fcoe-map  map-name
```

Parameters

- `map-name`
 Maximum: 32 alphanumeric characters.

Defaults

None

Command Modes

- CONFIGURATION
- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.0(1.3)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Usage Information

An FCoE map is a template to map FCoE and FC parameters in a converged fabric. An FCoE map virtualizes upstream FC ports on an NPIV proxy gateway to appear to downstream server CNA ports as FCoE forwarder (FCF) ports on an FCoE network. When applied to FC and Ethernet ports on an NPIV proxy gateway, an FCoE map allows the switch to operate as an FCoE-FC bridge between an FC SAN and an FCoE network. It provides necessary parameters to FCoE-enabled servers and switches to log in to a SAN fabric.

On an MXL NPIV proxy gateway, an FCoE map is applied on fabric-facing FC ports and server-facing Ethernet ports. Use the `fcoe-map` command to apply an FCoE map on an Ethernet port. Use the `fabric` command to apply an FCoE map on an FC port.

An FCoE map consists of the following parameters: the dedicated FCoE VLAN for storage traffic, the destination SAN fabric (FC-MAP value), FCF priority, and the FIP keepalive (FKA) advertisement timeout.

To remove an FCoE map from an Ethernet interface, enter the `no fcoe-map map-name` command in Interface configuration mode.

NOTE: In FCF F mode, you can create only 1 FCoE map. It doesn’t get created automatically. If you try to create more than 1 map, an error message is displayed.
fabric

Apply an FCoE map on a fabric-facing Fibre Channel (FC) port.

Syntax

```
fabric map-name
```

Parameters

- `map-name` Maximum: 32 alphanumeric characters.

Defaults

None

Command Modes

INTERFACE FIBRE_CHANNEL

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.0(1.3)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Usage Information

An FCoE map is a template used to map FCoE and FC parameters in a converged fabric. An FCoE map virtualizes the upstream FC ports on an NPIV proxy gateway to appear to downstream server CNA ports as FCoE forwarder (FCF) ports on an FCoE network. When applied to FC and Ethernet ports on an NPIV proxy gateway, an FCoE map allows the switch to operate as an FCoE-FC bridge between an FC SAN and an FCoE network. It provides necessary parameters to FCoE-enabled servers and switches to log in to a SAN fabric. Use the `fcoe-map` command to create an FCoE map.

On an MXL NPIV proxy gateway, an FCoE map is applied on fabric-facing FC ports and server-facing Ethernet ports. Use the `fabric` command to apply an FCoE map on an FC port. Use the `fcoe-map` command to apply an FCoE map on an Ethernet port.

After you apply an FCoE map on an FC interface, when the port is enabled (`no shutdown`), the NPIV proxy gateway starts sending FIP multicast advertisements on behalf of the FC port to downstream servers to advertise the availability of a new FCF port on the FCoE VLAN.

To remove an FCoE map from an FC interface, enter the `no fabric map-name` command in Interface configuration mode.

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.
show fcoe-map — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.

active-zoneset

Activate the zoneset.

Syntax

```
active-zoneset zoneset_name
```

To change to the default zone behavior, use the `no active-zoneset zoneset_name` command.

Parameters

- **zoneset_name**

Enter the zoneset name.

Command Modes

- FC FABRIC CONFIGURATION

Command History

- **Version**

 - 9.9(0.0) Introduced on the FN IOM.
 - 9.7(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
 - 9.1(1.0) Introduced on the S5000.

Example

```
Dell(conf)# fcoe-map default_full_fabric
Dell(conf-fcoe-default_full_fabric)# fc-fabric
Dell(conf-fmap-default_full_fabric-fcfabric)# active-zoneset zs1
```

Related Commands

- `show fc zoneset` — displays the configured and active zoneset.

show fc ns

Display the devices in the name server database.

Syntax

```
show fc ns { switch } [brief]
```

Parameters

- **switch**

Enter the keyword `switch` to display all the devices in the name server database of the switch.

- **brief**

Enter the keyword `brief` to display in brief devices in the name server database.

Command Modes

- EXEC
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Example

Dell#show fc ns switch
Total number of devices = 1
Switch Name: 10:00:5c:f9:dd:ef:0a:00
Domain Id: 1
Switch Port: 53
Port Id: 01:35:00
Port Name: 10:00:8c:7c:ff:17:f8:01
Node Name: 20:00:8c:7c:ff:17:f8:01
Class of Service: 8
IP Address: Brocade-1860 | 3.0.3.0 | DV-SP-SERVER2
Symbolic Port Name: (NULL)
Symbolic Node Name: (NULL)
Port Type: Node port
Registered with NameServer: Yes
Registered for SCN: Yes
Display of local name server entries - brief version
Dell#

Dell#show fc ns switch brief
Total number of devices = 1
Intf# Domain FC-ID Enode-WWPN Enode-WWNN
53 1 01:35:00 10:00:8c:7c:ff:17:f8:01 20:00:8c:7c:ff:17:f8:01
Dell#

Dell#show fc ns fabric
Total number of devices = 3
Switch Name: 10:00:5c:f9:dd:ef:0a:80
Domain Id: 2
Switch Port: 9
Port Id: 02:09:00
Port Name: 32:11:0e:fc:00:00:00:88
Node Name: 22:11:0e:fc:00:00:00:88
Class of Service: 8
IP Address: Brocade-1860 | 3.0.3.0 | DV-SP-SERVER2
Symbolic Port Name: (NULL)
Symbolic Node Name: (NULL)
Port Type: Node port
Registered with NameServer: No
Registered for SCN: No
Switch Name: 10:00:5c:f9:dd:ef:0a:80
Domain Id: 2
Switch Port: 11
Port Id: 02:0b:00
Port Name: 31:11:0e:fc:00:00:00:77
Node Name: 21:11:0e:fc:00:00:00:77
Class of Service: 8
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Symbolic Port Name</th>
<th>Symbolic Node Name</th>
<th>Port Type</th>
<th>Registered with NameServer</th>
<th>Registered for SCN</th>
<th>Switch Name</th>
<th>Domain Id</th>
<th>Switch Port</th>
<th>Port Id</th>
<th>Port Name</th>
<th>Node Name</th>
<th>Class of Service</th>
<th>IP Address</th>
<th>Symbolic Port Name</th>
<th>Symbolic Node Name</th>
<th>Port Type</th>
<th>Registered with NameServer</th>
<th>Registered for SCN</th>
<th>Switch Name</th>
<th>Domain Id</th>
<th>Switch Port</th>
<th>Port Id</th>
<th>Port Name</th>
<th>Node Name</th>
<th>Class of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(NULL)</td>
<td>(NULL)</td>
<td>Node port</td>
<td>No</td>
<td>No</td>
<td>10:00:5c:f9:dd:ef:0a:00</td>
<td>1</td>
<td>53</td>
<td>01:35:00</td>
<td>10:00:8c:7c:ff:17:f8:01</td>
<td>20:00:8c:7c:ff:17:f8:01</td>
<td>8</td>
<td>Brocade-1860</td>
<td>3.0.3.0</td>
<td>DV-SP-SERVER2</td>
<td></td>
<td>Yes</td>
<td>(NULL)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dell#show fc ns fabric brief
Total number of devices = 2
Intf# Domain FC-ID Enode-WWPN
Enode-WWNN
9 2 02:09:00 32:11:0e:fc:00:00:00:88
22:11:0e:fc:00:00:00:88
11 2 02:0b:00 31:11:0e:fc:00:00:00:77
21:11:0e:fc:00:00:00:77

Dell#

show fc switch

Display the switch configuration for Fibre Channel capability.

Syntax

```
show fc switch
```

Parameters

None

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.0(1.3)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>
Usage Information

The following table describes the show fc switch output shown in the following example.

<table>
<thead>
<tr>
<th>Switch Mode</th>
<th>Fibre Channel mode of operation of an MXL switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch WWN</td>
<td>Factory-assigned worldwide node (WWN) name of the MXL. The MXL WWN name is not user-configurable.</td>
</tr>
</tbody>
</table>

Example

Dell(conf)#do show fc switch
Switch Mode : FPORT
Switch WWN : 10:00:aa:00:00:00:00:ac
Dell(conf)#

show fc zoneset

Display the configured and active zoneset.

Syntax

show fc zoneset [zoneset_name | active]

Parameters

zoneset_name Enter the zoneset name to display the zoneset name
active Enter the keyword active to display the active zonesets.
merged Enter the keyword merged to display the merge active zones.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Example

Dell#show fc zoneset

ZoneSetName ZoneName ZoneMember

fcoe_srv_fc_tgt brcd_sanb
brdc_cna1_wpn1 sanb_p2tg1_wpn

Active Zoneset: fcoe_srv_fc_tgt
Dell#show fc zoneset active

Active Zoneset: fcoe_srv_fd_tgt

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>brcd_sanb</td>
<td>10:00:8c:7c:ff:21:5f:8d 20:02:00:11:0d:03:00:00</td>
</tr>
</tbody>
</table>

Dell#

Related Commands

- `fc zone` — creates a zone.
- `fc zoneset` — creates a zoneset.
- `active-zoneset` — activates the zoneset.

show fc zone

Display the configured zone.

Syntax

```
show fc zone [zonename ]
```

Parameters

- `zonename` Enter the zone name to display the details.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1(1.0)</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show fc zone

ZoneName                        ZoneMember
========================================================================
brcd_sanb                       10:00:8c:7c:ff:21:5f:8d
                                        20:02:00:11:0d:03:00:00
Dell#
```
show fc alias

Display the configured alias.

Syntax

```
show fc alias [ZoneAliasName ]
```

Parameters

```
ZoneAliasName   Enter the zone alias name to display the details.
```

Command Modes

```
• EXEC
• EXEC Privilege
```

Command History

```
Version   Description
9.9(0.0)   Introduced on the FN IOM.
9.7(0.0)   Introduced on the MXL 10/40GbE Switch IO Module.
9.1(1.0)   Introduced on the S5000.
```

Example

```
Dell#show fc alias
Zone Alias Name        all
0x030303
Dell#
```

Related Commands

```
fc alias — creates a zone alias name.
```

show fcoe-map

Display the Fibre Channel and FCoE configuration parameters in FCoE maps.

Syntax

```
show fcoe-map
```

Parameters

```
None
```

Command Modes

```
• EXEC
```

Related Commands

```
fc zone — creates a zone.
```

```
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.1.1.0</td>
<td>Introduced on the S5000.</td>
</tr>
</tbody>
</table>

Usage Information

Use the `show fcoe-map` command to display the FC and FCoE parameters used to configure server-facing Ethernet (FCoE) and fabric-facing FC ports in all FCoE maps on the switch.

In each FCoE map, the values for the fabric ID and FC-MAP that identify the SAN fabric to which FC storage traffic is sent, and the FCoE VLAN to be used must be unique.

An FCoE map is used to identify the SAN fabric to which FCoE storage traffic is sent. It also virtualizes the switch with FC Flex IO module FC ports, so that they appear to downstream server CNA ports as FCoE Forwarder (FCF) ports on an FCoE network.

Example

```
Dell#show fcoe-map

Fabric Name SAN_FABRIC
Fabric Type npiv
Fabric Id 1002
Vlan Id 1002
Vlan priority 3
FC-MAP 0efc00
FKA-ADV-Period 8
Fcf Priority 128
Config-State ACTIVE
Oper-State UP

===
Members
Fc 0/41 Fc 0/42 Fc 0/43 Fc 0/44 Fc 0/49 Fc 0/50 Fc 0/51 Fc 0/52
Te 0/4 Te 0/9 Te 0/16
===
Dell#
```

Related Commands

`fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.
To configure federal information processing standards (FIPS) cryptography, use the following commands on the switch.

**Topics:**
- `fips mode enable`
- `show fips status`
- `show ip ssh`
- `ssh`

### fips mode enable

Enable the FIPS cryptography mode on the platform.

**Syntax**

```
fips mode enable
```

To disable the FIPS cryptography mode, use the `no fips mode enable` command.

**Default**

Disabled

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell (conf)#fips mode enable
WARNING: Enabling FIPS mode will close all SSH/Telnet connection, restart those servers, and destroy all configured host keys.
proceed (y/n) ? y
Dell (conf)#
```

**Related Commands**

- `ssh` — opens an SSH connection specifying the hostname, username, port number, and version of the SSH client.
show fips status

Displays the status of the FIPS mode.

Syntax

    show fips status

Defaults

    None

Command Modes

    EXEC

Command History

    Version Description
    9.9(0.0)    Introduced on the FN IOM.
    9.2(0.0)   Introduced on the MXL 10/40GbE Switch IO Module.

Example

    Dell#show fips status
    FIPS Mode : Disabled
    Dell#

                  Dell#show fips status
    FIPS Mode : Enabled
                  Dell#

show ip ssh

Display information about established SSH sessions

Syntax

    show ip ssh

Defaults

    none

Command Modes

    EXEC
    EXEC Privilege

Command History

    Version Description
    9.9(0.0)    Introduced on the FN IOM.
    9.2(0.0)    Introduced on the MXL 10/40GbE Switch IO Module.

Example

    Dell# show ip ssh
    SSH server               : enabled.
    SSH server version       : v2.
    SSH server vrf           : default.
    SSH server ciphers      : aes256-ctr, aes256-cbc, aes192-ctr,
                               aes192-cbc, aes128-ctr, aes128-cbc, 3des-cbc.
    SSH server macs          : hmac-sha2-256, hmac-shal, hmac-
**ssh**

Open an SSH connection specifying the hostname, username, port number, and version of the SSH client.

**Syntax**

```
ssh {hostname | ipv4 address | ipv6 address} [-c encryption cipher | -l username | -m HMAC algorithm | -p port-number | -v {1|2}]
```

**Parameters**

- **hostname**  
  (OPTIONAL) Enter the IP address or the hostname of the remote device.

- **ipv4 address**  
  (OPTIONAL) Enter the IP address in dotted decimal format A.B.C.D.

- **ipv6 address**  
  (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

  **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.

- **-c encryption cipher**  
  Enter the following encryption cipher to use. (For v2 clients only.) Without the FIPS mode enabled:

  - 3des-cbc: Force ssh to use 3des-cbc encryption cipher.

  With the FIPS mode enabled:

  - aes128-cbc: Force ssh to use the aes128–cbc encryption cipher.
  - aes256-cbc: Force ssh to use the aes256–cbc encryption cipher.

- **-l username**  
  (OPTIONAL) Enter the keyword -l then the user name used in this SSH session. The default is the user name of the user associated with the terminal.

- **-m HMAC algorithm**  
  Enter one of the following HMAC algorithms to use. (For v2 clients only): Without the FIPS mode enabled:

  - hmac-sha1: Force ssh to use the hmac-sha1 HMAC algorithm.
  - hmac-sha1-96: Force ssh to use the hmac-sha1–96 HMAC algorithm.
• hmac-md5: Force ssh to use the hmac-md5 HMAC algorithm.
• hmac-md5–96: Force ssh to use the hmac-md5–96 HMAC algorithm.

With the FIPS mode enabled:
• hmac-sha1: Force ssh to use the hmac-sha1 HMAC algorithm.
• hmac-sha1–96: Force ssh to use the hmac-sha1–96 HMAC algorithm.

-p port-number  (OPTIONAL) Enter the keyword –p then the port number.
The range is 1 to 65536
The default is 22

-v {1|2}  (OPTIONAL) Enter the keyword –v then the SSH version 1 or 2.
The default: The version from the protocol negotiation.

NOTE: If the FIPS mode is enabled, this option does not display in the output.

Defaults As indicated above.
Command Modes EXEC Privilege
Command History

Example
If FIPS mode is not enabled:

Dell#ssh 10.11.8.12 ?
-c Encryption cipher to use (for v2 client
-l User name option
-m HMAC algorithm to use (for v2 clients only)
-p SSH server port option (default 22)
-v SSH protocol version

Dell#ssh 10.11.8.12 -c ?
3des-cbc Force ssh to use 3des-cbc encryption cipher

Dell#ssh 10.11.8.12 -m ?
hmac-sha1 Force ssh to use hmac-sha1 HMAC algorithm
hmac-sha1–96 Force ssh to use hmac-sha1–96 HMAC algorithm
hmac-md5 Force ssh to use hmac-md5 HMAC algorithm
hmac-md5–96 Force ssh to use hmac-md5–96 HMAC algorithm

With FIPS mode enabled:

Dell#ssh 10.11.8.12 ?
-c Encryption cipher to use (for v2 client
-l User name option
-m HMAC algorithm to use (for v2 clients only)
-p SSH server port option (default 22)

Dell#ssh 10.11.8.12 -c ?
aes128-cbc Force ssh to use aes128-cbc encryption cipher
aes256-cbc Force ssh to use aes256-cbc encryption cipher

Dell#ssh 10.11.8.12 -m ?
hmac-shal Force ssh to use hmac-shal HMAC algorithm
hmac-shal-96 Force ssh to use hmac-shal-96 HMAC algorithm
In a converged Ethernet network, the switch can operate as an intermediate Ethernet bridge to snoop on Fibre Channel over Ethernet initialization protocol (FIP) packets during the login process on Fibre Channel over Ethernet (FCoE) forwarders (FCFs).

Acting as a transit FIP snooping bridge, the switch uses dynamically-created ACLs to permit only authorized FCoE traffic to be transmitted between an FCoE end-device and an FCF. The following Dell Networking Operating System (OS) commands are used to configure and verify the FIP snooping feature.

Topics:
- clear fip-snooping database interface vlan
- clear fip-snooping statistics
- feature fip-snooping
- fip-snooping enable
- fip-snooping fc-map
- fip-snooping port-mode fcf
- show fip-snooping config
- show fip-snooping enode
- show fip-snooping fcf
- show fip-snooping sessions
- show fip-snooping statistics
- show fip-snooping system
- show fip-snooping vlan

**clear fip-snooping database interface vlan**

Clear FIP snooping information on a VLAN for a specified FCoE MAC address, ENode MAC address, or FCF MAC address, and remove the corresponding ACLs FIP snooping generates.

**Syntax**

```
clear fip-snooping database interface vlan vlan-id {fcoe-mac-address | enode-mac-address | fcf-mac-address}
```

**Parameters**

- `fcoe-mac-address` Enter the FCoE MAC address to be cleared of FIP snooping information.
clear fip-snooping statistics

Clears the statistics on the FIP packets snooped on all VLANs, a specified VLAN, or a specified port interface.

Syntax

```
clear fip-snooping statistics [interface vlan vlan-id | interface port-type port/slot | interface port-channel port-channel-number]
```

Parameters

- `vlan-id`: Enter the VLAN ID of the FIP packet statistics to be cleared.
- `port-type port/slot`: Enter the port-type and slot number of the FIP packet statistics to be cleared.
- `port-channel-number`: Enter the port channel number of the FIP packet statistics to be cleared.

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

feature fip-snooping

Enable FCoE transit and FIP snooping on a switch.

Syntax

```
feature fip-snooping
```

FIP Snooping | 572
To disable the FCoE transit feature, use the `no feature fip-snooping` command.

**Defaults**  
Disabled

**Command Modes**  
CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### fip-snooping enable

Enable FIP snooping on all VLANs or on a specified VLAN.

**Syntax**

```plaintext
fip-snooping enable
```

To disable the FIP snooping feature on all or a specified VLAN, use the `no fip-snooping enable` command.

**Defaults**

FIP snooping is disabled on all VLANs.

**Command Modes**

- CONFIGURATION
- VLAN INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The maximum number of FCFs supported per FIP snooping-enabled VLAN is four. The maximum number of FIP snooping sessions supported per ENode server is 16.

### fip-snooping fc-map

Configure the FC-MAP value FIP snooping uses on all VLANs.

**Syntax**

```plaintext
fip-snooping fc-map fc-map-value
```
To return the configured FM-MAP value to the default value, use the `no fip-snooping fc-map` command.

**Parameters**

- **fc-map-value**: Enter the FC-MAP value FIP snooping uses. The range is from 0EFC00 to 0EFCFF.

**Defaults**

- 0x0EFC00

**Command Modes**

- CONFIGURATION
- VLAN INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### fip-snooping port-mode fcf

Configure the port for bridge-to-FCF links.

**Syntax**

```plaintext
fip-snooping port-mode fcf
```

To disable the bridge-to-FCF link on a port, use the `no fip-snooping port-mode fcf` command.

**Command Modes**

- INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>Version 8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The maximum number of FCFs supported per FIP snooping-enabled VLAN is four.
show fip-snooping config

Display the FIP snooping status and configured FC-MAP values.

Syntax
show fip-snooping config

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell# show fip-snooping config
FIP Snooping Feature enabled Status: Enabled
FIP Snooping Global enabled Status: Enabled
Global FC-MAP Value: 0X0EFC00

FIP Snooping enabled VLANs
VLAN   Enabled   FC-MAP
-----   -------   --------
100    TRUE      0X0EFC00

show fip-snooping enode

Display information on the ENodes in FIP-snooped sessions, including the ENode interface and MAC address, FCF MAC address, VLAN ID and FC-ID.

Syntax
show fip-snooping enode [enode-mac-address]

Parameters
enode-mac-address

Enter the MAC address of the ENodes to display.

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
show fip-snooping enode

Display information on the ENodes in FIP-snooped sessions, including the ENode interface and MAC address, ENode interface, VLAN ID, FC-MAP value, FKA advertisement period, and number of ENodes connected.

Syntax

```
show fip-snooping enode
```

Parameters

- `fcf-mac-address` Enter the MAC address of the ENode to display.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
  - 9.9(0.0) Introduced on the FN IOM.
  - 8.3.16.1 Introduced on the MxL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show fip-snooping enode` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENode MAC</td>
<td>MAC address of the ENode.</td>
</tr>
<tr>
<td>ENode Interface</td>
<td>Slot/ port number of the interface connected to the ENode.</td>
</tr>
<tr>
<td>FCF MAC</td>
<td>MAC address of the FCF.</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN ID number the session uses.</td>
</tr>
<tr>
<td>FC-ID</td>
<td>Fibre Channel session ID the FCF assigns.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show fip-snooping enode
Enode MAC Enode Interface FCF MAC VLAN FC-ID
--------- --------------- ------- ---- -----
d4:ae:52:1b:e3:cd Te 0/8 54:7f:ee:37:34:40 100 62:00:11
```

show fip-snooping fcf

Display information on the FCFs in FIP-snooped sessions, including the FCF interface and MAC address, FCF interface, VLAN ID, FC-MAP value, FKA advertisement period, and number of ENodes connected.

Syntax

```
show fip-snooping fcf [fcf-mac-address]
```

Parameters

- `fcf-mac-address` Enter the MAC address of the FCF to display.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
  - 9.9(0.0) Introduced on the FN IOM.
  - 8.3.16.1 Introduced on the MxL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show fip-snooping fcf` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCF MAC</td>
<td>MAC address of the FCF.</td>
</tr>
<tr>
<td>FCF Interface</td>
<td>Slot/port number of the interface to which the FCF is connected.</td>
</tr>
</tbody>
</table>
show fip-snooping sessions

Display information on FIP-snooped sessions on all VLANs or a specified VLAN, including the ENode interface and MAC address, the FCF interface and MAC address, VLAN ID, FCoE MAC address and FCoE session ID number (FC-ID), worldwide node name (WWNN) and the worldwide port name (WWPN).

Syntax

```
show fip-snooping sessions [interface vlan vlan-id]
```

Parameters

- `vlan-id` Enter the vlan-id of the specified VLAN to display.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
  - **9.9(0.0)** Introduced on the FN IOM.
  - **8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show fip-snooping sessions` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENode MAC</td>
<td>MAC address of the ENode.</td>
</tr>
<tr>
<td>ENode Interface</td>
<td>Slot/ port number of the interface connected to the ENode.</td>
</tr>
<tr>
<td>FCF MAC</td>
<td>MAC address of the FCF.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show fip-snooping fcf

<table>
<thead>
<tr>
<th>FCF MAC</th>
<th>FCF Interface</th>
<th>VLAN</th>
<th>FC-MAP</th>
<th>FKA_ADV_PERIOD</th>
<th>No. of Enodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>54:7f:ee:37:34:40</td>
<td>Po 22</td>
<td>100</td>
<td>0e:fc:00 4000</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
```

**Field Description**

- **VLAN**: VLAN ID number the session uses.
- **FC-MAP**: FC-Map value the FCF advertises.
- **ENode Interface**: Slot/ number of the interface connected to the ENode.
- **FKA_ADV_PERIOD**: Time (in milliseconds) during which FIP keep-alive advertisements transmit.
- **No of ENodes**: Number of ENodes connected to the FCF.
- **FC-ID**: Fibre Channel session ID the FCF assigns.
### Field Description

**FCF Interface**
Slot/ port number of the interface to which the FCF is connected.

**VLAN**
VLAN ID number the session uses.

**FCoE MAC**
MAC address of the FCoE session the FCF assigns.

**FC-ID**
Fibre Channel ID the FCF assigns.

**Port WWPN**
Worldwide port name of the CNA port.

**Port WWNN**
Worldwide node name of the CNA port.

### Example
```plaintext
Dell#show fip-snooping sessions
Enode MAC Enode Intf FCF MAC FCF Intf VLAN
aa:bb:cc:00:00:00 Te 0/42 aa:bb:cd:00:00:00 Te 0/43 100

FCoE MAC FC-ID Port WWPN Port WWNN
0e:fc:00:01:00:01 01:00:01 31:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00
0e:fc:00:01:00:02 01:00:02 41:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00
0e:fc:00:01:00:03 01:00:03 41:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00
0e:fc:00:01:00:04 01:00:04 41:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00
0e:fc:00:01:00:05 01:00:05 41:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00
```

### show fip-snooping statistics

Display statistics on the FIP packets snooped on all interfaces, including VLANs, physical ports, and port channels.

**Syntax**

```plaintext
show fip-snooping statistics [interface vlan vlan-id | interface port-type port/slot | interface port-channel port-channel-number]
```

**Parameters**

- **vlan-id**
Enter the VLAN ID of the FIP packet statistics displays.

- **port-type port/slot**
Enter the port-type and slot number of the FIP packet statistics displays.

- **port-channel-number**
Enter the port channel number of the FIP packet statistics displays.

**Command Modes**
- EXEC
### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

The following describes the `show fip-snooping statistics` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of VLAN Requests</td>
<td>Number of FIP-snoop VLAN request frames received on the interface.</td>
</tr>
<tr>
<td>Number of VLAN Notifications</td>
<td>Number of FIP-snoop VLAN notification frames received on the interface.</td>
</tr>
<tr>
<td>Number of Multicast Discovery Solicits</td>
<td>Number of FIP-snoop multicast discovery solicit frames received on the interface.</td>
</tr>
<tr>
<td>Number of Unicast Discovery Solicits</td>
<td>Number of FIP-snoop unicast discovery solicit frames received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGI</td>
<td>Number of FIP-snoop FLOGI request frames received on the interface.</td>
</tr>
<tr>
<td>Number of FDISC</td>
<td>Number of FIP-snoop FDISC request frames received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGO</td>
<td>Number of FIP-snoop FLOGO frames received on the interface.</td>
</tr>
<tr>
<td>Number of ENode Keep Alives</td>
<td>Number of FIP-snoop ENode keep-alive frames received on the interface.</td>
</tr>
<tr>
<td>Number of VN Port Keep Alives</td>
<td>Number of FIP-snoop VN port (Virtual N-port) keep-alive frames received on the interface.</td>
</tr>
<tr>
<td>Number of Multicast Discovery Advertisements</td>
<td>Number of FIP-snoop multicast discovery advertisements received on the interface.</td>
</tr>
<tr>
<td>Number of Unicast Discovery Advertisements</td>
<td>Number of FIP-snoop unicast discovery advertisements received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGI Accepts</td>
<td>Number of FIP FLOGI accept frames received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGI Rejects</td>
<td>Number of FIP FLOGI reject frames received on the interface.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Number of FDISC Accepts</td>
<td>Number of FIP FDISC accept frames received on the interface.</td>
</tr>
<tr>
<td>Number of FDISC Rejects</td>
<td>Number of FIP FDISC reject frames received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGO Accepts</td>
<td>Number of FIP FLOGO accept frames received on the interface.</td>
</tr>
<tr>
<td>Number of FLOGO Rejects</td>
<td>Number of FIP FLOGO reject frames received on the interface.</td>
</tr>
<tr>
<td>Number of CVLs</td>
<td>Number of FIP clear virtual link frames received on the interface.</td>
</tr>
<tr>
<td>Number of FCF Discovery Timeouts</td>
<td>Number of FCF discovery timeouts that occurred on the interface.</td>
</tr>
<tr>
<td>Number of VN Port Session Timeouts</td>
<td>Number of VN port session timeouts that occurred on the interface.</td>
</tr>
<tr>
<td>Number of Session failures due to Hardware Config</td>
<td>Number of session failures due to hardware configuration that occurred on the interface.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell# show fip-snooping statistics interface vlan 100
Number of Vlan Requests :0
Number of Vlan Notifications :0
Number of Multicast Discovery Solicits :2
Number of Unicast Discovery Solicits :0
Number of FLOGI :2
Number of FDISC :16
Number of FLOGO :0
Number of Enode Keep Alive :9021
Number of VN Port Keep Alive :3349
Number of Multicast Discovery Advertisement :4437
Number of Unicast Discovery Advertisement :2
Number of FLOGI Accepts :2
Number of FLOGI Rejects :0
Number of FDISC Accepts :16
Number of FDISC Rejects :0
Number of FLOGO Accepts :0
Number of FLOGO Rejects :0
Number of CVL :0
Number of FCF Discovery Timeouts :0
Number of VN Port Session Timeouts :0
Number of Session failures due to Hardware Config :0
Dell(conf)#
```

```
Dell# show fip-snooping statistics int tengigabitethernet 0/11
Number of Vlan Requests :1
Number of Vlan Notifications :0
Number of Multicast Discovery Solicits :1
Number of Unicast Discovery Solicits :0
Number of FLOGI :1
Number of FDISC :16
```
### show fip-snooping system

Display information on the status of FIP snooping on the switch (enabled or disabled), including the number of FCoE VLANs, FCFs, ENodes, and currently active sessions.

**Syntax**

```
show fip-snooping system
```

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

```
Dell# show fip-snooping system
Global Mode : Enabled
FCOE VLAN List (Operational) : 1, 100
FCFs : 1
Enodes : 2
Sessions : 17
```

**show fip-snooping vlan**

Display information on the FCoE VLANs on which FIP snooping is enabled.

**Syntax**

```
show fip-snooping vlan
```

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

```
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```

**Example**

```
Dell# show fip-snooping vlan
* = Default VLAN
VLAN FC-MAP FCFs Enodes Sessions
---- ------ ---- ------ --------
*1 - - - -
100 0X0EFC00 1 2 17
```
Force10 Resilient Ring Protocol (FRRP)

FRRP is a proprietary protocol for that offers fast convergence in a Layer 2 network without having to run the spanning tree protocol (STP). The resilient ring protocol is an efficient protocol that transmits a high-speed token across a ring to verify the link status. All the intelligence is contained in the master node with practically no intelligence required of the transit mode.

Important Points to Remember

- FRRP is media- and speed-independent.
- FRRP is a Dell Networking proprietary protocol that does not interoperate with any other vendor.
- Spanning Tree must be disabled on both primary and secondary interfaces before Resilient Ring protocol is enabled.
- A virtual local area network (VLAN) configured as the control VLAN for a ring cannot be configured as a control or member VLAN for any other ring.
- Member VLANs across multiple rings are not supported in Master nodes.
- If multiple rings share one or more member VLANs, they cannot share any links between them.
- Each ring can have only one Master node; all others are Transit nodes.

Topics:

- clear frrp
- debug frrp
- description
- disable
- interface
- member-vlan
- mode
- protocol frrp
- show frrp
- timer
**clear frrp**

Clear the FRRP statistics counters.

**Syntax**

```
clear frrp [ring-id]
```

**Parameters**

- `ring-id` (Optional) Enter the ring identification number. The range is from 1 to 255.

**Defaults**

none

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN MXL.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Executing this command without the optional `ring-id` command clears the statistics counters on all the available rings. The system requires a command line confirmation before the command executes. This command clears the following counters:

- hello Rx and Tx counters
- Topology change Rx and Tx counters
- The number of state change counters

**Example**

```
Dell#clear frrp
Clear frrp statistics counter on all ring [confirm] yes
Dell#clear frrp 4
Clear frrp statistics counter for ring 4 [confirm] yes
Dell#
```

**Related Commands**

- `show frrp` — displays the resilient ring protocol configuration.

---

**debug frrp**

Clear the FRRP statistics counters.

**Syntax**

```
debug frrp {event | packet | detail} [ring-id] [count number]
```
To disable debugging, use the no debug frrp {event | packet | detail} {ring-id} {countnumber} command.

**Parameters**

- **event**: Enter the keyword `event` to display debug information related to ring protocol transitions.
- **packet**: Enter the keyword `packet` to display brief debug information related to control packets.
- **detail**: Enter the keyword `detail` to display detailed debug information related to the entire ring protocol packets.
- **ring-id**: (Optional) Enter the ring identification number. The range is from 1 to 255.
- **count number**: Enter the keyword `count` then the number of debug outputs. The range is from 1 to 65534.

**Defaults**

Disabled.

**Command Modes**

- CONFIGURATION (conf-frrp)

**Command History**

- Version 9.9(0.0) Introduced on the FN IOM.
- Version 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

Because the resilient ring protocol can potentially transmit 20 packets per interface, restrict debug information.

### description

Enter an identifying description of the ring.

**Syntax**

description Word

To remove the ring description, use the no description [Word] command.

**Parameters**

- **Word**: Enter a description of the ring. Maximum: 255 characters.

**Defaults**

none

**Command Modes**

- CONFIGURATION (conf-frrp)

**Command History**

- Version 9.9(0.0) Introduced on the FN IOM.
disable

Disable the resilient ring protocol.

Syntax

```text
disable
```

To enable the Resilient Ring Protocol, use the `no disable` command.

Defaults

Disabled

Command Modes

CONFIGURATION (conf-frrp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

interface

Configure the primary, secondary, and control-vlan interfaces.

Syntax

```text
interface {primary interface secondary interface control-vlan vlan-id}
```

To return to the default, use the `no interface {primary interface secondary interface control-vlan vlan-id}` command.

Parameters

- `primary interface` Enter the keyword `primary` to configure the primary interface then one of the following interfaces and slot/port information:
  - Fast Ethernet interface: `enter the keyword FastEthernet then the slot/port information`
  - Port Channel interface: `enter the keyword port-channel then a number. The range is from 1 to 128`
  - 10-Gigabit Ethernet interface: `enter the keyword TenGigabitEthernet then the slot/port information`
  - 40-Gigabit Ethernet interface: `enter the keyword fortyGigE then the slot/port information`
secondary interface

Enter the keyword secondary to configure the secondary interface then one of the following interfaces and slot/port information:

- Fast Ethernet interface: enter the keyword FastEthernet then the slot/port information.
- Port Channel interface: enter the keyword port-channel then a number. The range is from 1 to 128.
- 10-Gigabit Ethernet interface: enter the keyword TenGigabitEthernet then the slot/port information
- 40-Gigabit Ethernet interface: enter the keyword fortyGigE then the slot/port information

control-vlan vlan-id

Enter the keyword control-vlan then the VLAN ID. The range is from 1 to 4094.

Defaults

none

Command Modes

CONFIGURATION (conf-frrp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IOM.</td>
</tr>
</tbody>
</table>

Usage Information

This command causes the Ring Manager to take ownership of the two ports after IFM validates the configuration. Ownership is relinquished for a port only when the interface does not play a part in any control VLAN, that is, the interface does not belong to any ring.

Related Commands

- show frrp — displays the resilient ring protocol configuration information.

member-vlan

Specify the member VLAN identification numbers.

Syntax

member-vlan {vlan-range}

To return to the default, use the no member-vlan [vlan-range] command.

Parameters

vlan-range

Enter the member VLANs using VLAN IDs (separated by commas), a range of VLAN IDs (separated by a hyphen), a single VLAN ID, or a combination. For example: VLAN IDs (comma-separated): 3, 4, 6. Range (hyphen-separated): 5-10. Combination: 3, 4, 5-10, 8.
**mode**

Set the Master or Transit mode of the ring.

**Syntax**

```plaintext
mode {master | transit}
```

To reset the mode, use the `no mode {master | transit}` command.

**Parameters**

- `master` - Enter the keyword `master` to set the Ring node to Master mode.
- `transit` - Enter the keyword `transit` to set the Ring node to Transit mode.

**Defaults**

- Mode None

**Command Modes**

- CONFIGURATION (conf-frrp)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**protocol frrp**

Enter the Resilient Ring Protocol and designate a ring identification.

**Syntax**

```plaintext
protocol frrp {ring-id}
```

To exit the ring protocol, use the `no protocol frrp {ring-id}` command.

**Parameters**

- `ring-id` - Enter the ring identification number. The range is from 1 to 255.

**Defaults**

- none
show frrp

Display the resilient ring protocol configuration.

Syntax
show frrp [ring-id [summary]] | [summary]

Parameters
ring-id Enter the ring identification number. The range is from 1 to 255
summary (OPTIONAL) Enter the keyword summary to view just a
summarized version of the Ring configuration.

Defaults none

Command Modes EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Executing this command without the optional ring-id command clears the statistics counters on all the available rings. The system requires a command line confirmation before the command executes. This command clears the following counters:

- hello Rx and Tx counters
- Topology change Rx and Tx counters
- The number of state change counters

Example (Summary)
Dell#show frrp summary
Ring-ID State Mode  Ctrl_Vlan Member_Vlans
------------------------------
 2     UP   Master  2     11-20, 25,27-30
 31    UP   Transit 31   40-41
 50    Down  Transit 50   32
Dell#

Example (1)
Dell#show frrp 1
Ring protocol 1 is in Master mode
Ring Protocol Interface:
Primary: TenGigabitEthernet 0/6 State: Forwarding
Secondary: Port-channel 100 State: Blocking
Control Vlan: 1
Ring protocol Timers: Hello-Interval 50 msec Dead-Interval 150 msec
Ring Master's MAC Address is 00:01:e8:13:a3:19
Topology Change Statistics: Tx:110 Rx:45
Hello Statistics: Tx:13028 Rx:12348
Number of state Changes: 34
Member Vlans: 1000-1009
Dell#

Example (2)

Summary
Dell#show frrp 2 summary
Ring-ID State Mode Ctrl_Vlan Member_Vlans
-----------------------------------------------
2 Up Master 2 11-20, 25, 27-30
Dell#

Related Commands
protocol frrp — enters the resilient ring protocol and designate a ring identification.

**timer**

Set the hello interval or dead interval for the Ring control packets.

**Syntax**

```
timer {hello-interval milliseconds} | {dead-interval milliseconds}
```

To remove the timer, use the `no timer {hello-interval milliseconds} | {dead-interval milliseconds}` command.

**Parameters**

- **hello-interval milliseconds**
  - Enter the keyword `hello-interval` then the time, in milliseconds, to set the hello interval of the control packets. The milliseconds must be entered in increments of 50 millisecond; for example, 50, 100, 150, and so on. If an invalid value is entered, an error message is generated. The range is from 50 to 2000 ms. Default: 500 ms.

- **dead-interval milliseconds**
  - Enter the keyword `dead-interval` then the time, in milliseconds, to set the dead interval of the control packets. The range is from 50 to 6000 ms. Default: 1500 ms.

**NOTE:** The configured dead interval must be at least three times the hello interval.

**Defaults**

- 500 ms for `hello-interval milliseconds`
- 1500 ms for `dead-interval milliseconds`

**Command Modes**

CONFIGURATION (conf-frrp)
### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

The **hello interval** command is the interval at which ring frames are generated from the primary interface of the master node. The **dead interval** command is the time that elapses before a time-out occurs.
GARP VLAN Registration (GVRP)

The Dell Networking Operating System (OS) supports the basic GVRP commands. The generic attribute registration protocol (GARP) mechanism allows the configuration of a GARP participant to propagate through a network quickly. A GARP participant registers or de-registers its attributes with other participants by making or withdrawing declarations of attributes. At the same time, based on received declarations or withdrawals, GARP handles attributes of other participants.

GVRP enables a device to propagate local virtual local area network (VLAN) registration information to other participant devices and dynamically update the VLAN registration information from other devices. The registration information updates local databases regarding active VLAN members and through which port the VLANs can be reached.

GVRP ensures that all participants on a bridged LAN maintain the same VLAN registration information. The VLAN registration information propagated by GVRP includes both manually configured local static entries and dynamic entries from other devices.

GVRP participants have the following components:

- The GVRP application
- GARP information propagation (GIP)
- GARP information declaration (GID)

Important Points to Remember

- GVRP is supported on Layer 2 ports only.
- All VLAN ports added by GVRP are tagged.
- GVRP is supported on untagged ports belonging to a default VLAN and tagged ports.
- GVRP cannot be enabled on untagged ports belonging to a non-default VLAN unless native VLAN is turned on.
- GVRP requires end stations with dynamic access network interface controller (NICs).
- Based on updates from GVRP-enabled devices, GVRP allows the system to dynamically create a port-based VLAN (unspecified) with a specific VLAN ID and a specific port.
- On a port-by-port basis, GVRP allows the system to learn about GVRP updates to an existing port-based VLAN with that VLAN ID and IEEE 802.1Q tagging.
- GVRP allows the system to send dynamic GVRP updates about your existing port-based VLAN.
- GVRP updates are not sent to any blocked spanning tree protocol (STP) ports. GVRP operates only on ports that are in the forwarding state.
- GVRP operates only on ports that are in the STP forwarding state. If you enable GVRP, a port that changes to the STP Forwarding state automatically begin to participate in GVRP. A port that changes to an STP state other than forwarding no longer participates in GVRP.
• VLANs created dynamically with GVRP exist only as long as a GVRP-enabled device is sending updates. If the devices no longer send updates, or GVRP is disabled, or the system is rebooted, all dynamic VLANs are removed.

• GVRP manages the active topology, not non-topological data such as VLAN protocols. If a local bridge must classify and analyze packets by VLAN protocols, manually configure protocol-based VLANs, and simply rely on GVRP for VLAN updates. But if the local bridge must know only how to reach a given VLAN, then GVRP provides all necessary information.

• The VLAN topologies that GVRP learns are treated differently from VLANs that are statically configured. The GVRP dynamic updates are not saved in NVRAM, while static updates are saved in NVRAM. When GVRP is disabled, the system deletes all VLAN interfaces that were learned through GVRP and leaves unchanged all VLANs that were manually configured.

Topics:

• clear gvrp statistics
• debug gvrp
• disable
• garp timers
• gvrp enable
• gvrp registration
• protocol gvrp
• show config
• show garp timers
• show gvrp
• clear gvrp statistics
• show vlan

**clear gvrp statistics**

Clear GVRP statistics on an interface.

**Syntax**

```plaintext
clear gvrp statistics interface interface
```

**Parameters**

`interface interface` Enter the following keywords and slot/port or number information:

- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

**Defaults**

none

**Command Modes**

EXEC

GARP VLAN Registration (GVRP) | 593
**debug gvrp**

Enable debugging on GVRP.

```
Syntax: debug gvrp {config | events | pdu}
```

To disable debugging, use the `no debug gvrp {config | events | pdu}` command.

**Parameters**

- **config**: Enter the keyword `config` to enable debugging on the GVRP configuration.
- **event**: Enter the keyword `event` to enable debugging on the JOIN/LEAVE events.
- **pdu**: Enter the keyword `pdu` then one of the following Interface keywords and slot/port or number information:
  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

**Defaults**

Disabled.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
disable

Globally disable GVRP.

Syntax
disable
To re-enable GVRP, use the no disable command.

Defaults
Enabled.

Command Modes CONFIGURATION-GVRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
gvrp enable — enables GVRP on physical interfaces and LAGs.
protocol gvrp — access GVRP protocol.

garp timers

Set the intervals (in milliseconds) for sending GARP messages.

Syntax
garp timers {join | leave | leave-all}
To return to the previous setting, use the no garp timers {join | leave | leave-all} command.

Parameters

- join
  - Enter the keyword join then the number of milliseconds to configure the join time. The range is from 100 to 147483647 milliseconds. The default is 200 milliseconds.
  - **NOTE**: Designate the milliseconds in multiples of 100.

- leave
  - Enter the keyword leave then the number of milliseconds to configure the leave time. The range is from 100 to 2147483647 milliseconds. The default is 600 milliseconds.
  - **NOTE**: Designate the milliseconds in multiples of 100.
**leave-all**

Enter the keywords **leave-all** then the number of milliseconds to configure the leave-all time. The range is from 100 to 2147483647 milliseconds. The default is 1000 milliseconds.

**NOTE:** Designate the milliseconds in multiples of 100.

---

**Defaults**

As above.

**Command Modes**

CONFIGURATION-GVRP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

- **Join Timer** — Join messages announce the willingness to register some attributes with other participants. For reliability, each GARP application entity sends a Join message twice and uses a join timer to set the sending interval.

- **Leave Timer** — Leave announces the willingness to de-register with other participants. Together with Join, Leave messages help GARP participants complete attribute reregistration and de-registration. The leave timer starts after receipt of a leave message sent for de-registering some attribute information. If a Join message is not received before the Leave time expires, the GARP application entity removes the attribute information as requested.

- **Leave All Timer** — The Leave All timer starts when a GARP application entity starts. When this timer expires, the entity sends a Leave-all message so that other entities can reregister their attribute information. Then the Leave-all time begins again.

**Related Commands**

- `show garp timers` — displays the current GARP times.

---

**gvrp enable**

Enable GVRP on physical interfaces and LAGs.

**Syntax**

```
gvrp enable
```

To disable GVRP on the interface, use the `no gvrp enable` command.

**Defaults**

Disabled.

**Command Modes**

CONFIGURATION-INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
### gvrp registration

Configure the GVRP register type.

**Syntax**

```plaintext
gvrp registration {fixed | normal | forbidden}
```

To return to the default, use the `gvrp register normal` command.

**Parameters**

- **fixed**
  
  Enter the keyword `fixed` then the VLAN range in a comma-separated VLAN ID set.

- **normal**
  
  Enter the keyword `normal` then the VLAN range in a comma-separated VLAN ID set. This setting is the default.

- **forbidden**
  
  Enter the keyword `forbidden` then the VLAN range in a comma-separated VLAN ID set.

**Defaults**

- **normal**

**Command Modes**

- **CONFIGURATION-INTERFACE**

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

**Fixed registration** prevents an interface, configured using the command line, to belong to a VLAN (static configuration) from being unconfigured when it receives a Leave message. Therefore, Registration mode on that interface is fixed.

**Normal registration** is the default registration. The port’s membership in the VLAN depends on GVRP. The interface becomes a member of a VLAN after learning about the VLAN through GVRP. If the VLAN is removed from the port that sends GVRP advertisements to this device, the port stops being a member of the VLAN.

To advertise or learn about VLANs through GVRP, use the `forbidden` command when you do not want the interface.

**Related Commands**

- `show gvrp` — displays the GVRP configuration including the registration.
**protocol gvrp**

Access GVRP protocol — (config-gvrp)#.

**Syntax**

```
protocol gvrp
```

**Defaults**

Disabled.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `disable` — globally disables GVRP.

**show config**

Display the global GVRP configuration.

**Syntax**

```
show config
```

**Command Modes**

CONFIGURATION-GVRP

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `gvrp enable` — enables GVRP on physical interfaces and LAGs.
- `protocol gvrp` — accesses the GVRP protocol.

**show garp timers**

Display the GARP timer settings for sending GARP messages.

**Syntax**

```
show garp timers
```
show gvrp

Display the GVRP configuration.

Syntax: show gvrp [brief | interface]

Parameters:
- **brief**: (OPTIONAL) Enter the keyword brief to display a brief summary of the GVRP configuration.
- **interface**: (OPTIONAL) Enter the following keywords and slot/port or number information:
  - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Defaults: none

Command Modes:
- EXEC
- EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If no ports are GVRP participants, the message output changes from GVRP Participants running on <port_list> to GVRP Participants running on no ports.

Example

```
R3#show gvrp brief
GVRP Feature is currently enabled.
Port GVRP Status Edge-Port
--
Te 3/0 Disabled No
Te 3/1 Disabled No
Te 3/2 Enabled No
Te 3/3 Disabled No
Te 3/4 Disabled No
Te 3/5 Disabled No
Te 3/6 Disabled No
Te 3/7 Disabled No
Te 3/8 Disabled No
```

Related Commands

- `show gvrp statistics` — displays the GVRP statistics.
- `clear gvrp statistics` — clears GVRP statistics.
- `clear gvrp statistics summary` — clears GVRP statistics and displays a summary.

### clear gvrp statistics

Clear GVRP statistics on an interface.

**Syntax**

```
clear gvrp statistics {interface interface | summary}
```

**Parameters**

- `interface interface` Enter the following keywords and slot/port or number information:
  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- `summary` Enter the keyword `summary` to display just a summary of the GVRP statistics.

**Defaults**

- `none`

**Command Modes**

- `EXEC`

GARP VLAN Registration (GVRP) | 600
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Invalid messages/attributes skipped can occur in the following cases:

- The incoming GVRP PDU has an incorrect length.
- ‘End of PDU’ was reached before the complete attribute could be parsed.
- The Attribute Type of the attribute that was being parsed was not the GVRP VID Attribute Type (0x01).
- The attribute that was being parsed had an invalid attribute length.
- The attribute that was being parsed had an invalid GARP event.
- The attribute that was being parsed had an invalid VLAN ID. The valid range is 1 - 4095.

A failed registration can occur for the following reasons:

- Join requests were received on a port that was blocked from learning dynamic VLANs (GVRP Blocking state).
- An entry for a new GVRP VLAN could not be created in the GVRP database.

Example

Dell#show gvrp statistics int tengig 1/0

Join Empty Received: 0
Join In Received: 0
Empty Received: 0
LeaveIn Received: 0
Leave Empty Received: 0
Leave All Received: 40
Join Empty Transmitted: 156
Join In Transmitted: 0
Empty Transmitted: 0
Leave In Transmitted: 0
Leave Empty Transmitted: 0
Leave All Transmitted: 41
Invalid Messages/Attributes skipped: 0
Failed Registrations: 0
Dell#

Related Commands

show gvrp — displays the GVRP configuration.

show vlan

Display the global VLAN configuration.

Syntax

show vlan

GARP VLAN Registration (GVRP)  |  601
Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell# show vlan
Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port
       Mirror VLANs, P - Primary, C - Community, I - Isolated
       Q: U - Untagged, T - Tagged
       x - Dot1x untagged, X - Dot1x tagged
       G - GVRP tagged, M - Vlan-stack, H - VSN tagged
       i - Internal untagged, I - Internal tagged, v - VLT untagged,
       V - VLT tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Active</td>
<td>U Te 3/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U Te 5/7-8</td>
</tr>
</tbody>
</table>

G 10 Active
G Po128(Te 5/49) (dynamically learned vlan)
Dell

Related Commands

- `show gvrp statistics` — displays the GVRP statistics.
Internet Group Management Protocol (IGMP)

The IGMP commands are supported by the Dell Networking Operating System (OS).

IGMP Snooping Commands

The Dell Networking OS supports IGMP Snooping version 2 and 3 on all Dell Networking systems.

Important Points to Remember for IGMP Snooping

- The Dell Networking OS supports version 1, version 2, and version 3 hosts.
- The Dell Networking OS IGMP snooping implementation is based on IP multicast address (not based on Layer 2 multicast mac address) and the IGMP snooping entries are in Layer 3 flow table not in Layer 2 forwarding information base (FIB).
- The Dell Networking OS IGMP snooping implementation is based on draft-ietf-magma-snoop-10.
- IGMP snooping is not enabled by default on the switch.
- A maximum of 1800 groups and 600 virtual local area network (VLAN) are supported.
- IGMP snooping is not supported on a default VLAN interface.
- IGMP snooping is not supported over VLAN-Stack-enabled VLAN interfaces (you must disable IGMP snooping on a VLAN interface before configuring VLAN-Stack-related commands).
- IGMP snooping does not react to Layer 2 topology changes triggered by spanning tree protocol (STP).
- IGMP snooping reacts to Layer 2 topology changes multiple spanning tree protocol (MSTP) triggers by sending a general query on the interface that comes in the FWD state.

Important Points to Remember for IGMP Querier

- The IGMP snooping Querier supports version 2.
- You must configure an IP address to the VLAN interface for IGMP snooping Querier to begin. The IGMP snooping Querier disables itself when a VLAN IP address is cleared, and then it restarts itself when an IP address is reassigned to the VLAN interface.
- When enabled, IGMP snooping Querier does not start if there is a statically configured multicast router interface in the VLAN.
• When enabled, IGMP snooping Querier starts after one query interval in case no IGMP general query (with IP SA lower than its VLAN IP address) is received on any of its VLAN members.

• When enabled, IGMP snooping Querier periodically sends general queries with an IP source address of the VLAN interface. If it receives a general query on any of its VLAN member, it checks the IP source address of the incoming frame.

• If the IP SA in the incoming IGMP general query frame is lower than the IP address of the VLAN interface, the switch disables its IGMP snooping Querier functionality.

• If the IP SA of the incoming IGMP general query is higher than the VLAN IP address, the switch continues to work as an IGMP snooping Querier.

### ip igmp access-group

To specify access control for packets, use this feature.

**Syntax**

```
ip igmp access-group access-list
```

To remove the feature, use the `no ip igmp access-group access-list` command.

**Parameters**

- `access-list` Enter the name of the extended ACL (16 characters maximum).

**Defaults**

Not configured

**Command Modes**

INTERFACE (conf-if-interface-slot/port)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The access list accepted is an extended ACL. To block IGMP reports from hosts, on a per-interface basis based on the group address and source address that you specify in the access list, use this feature.

### ip igmp group-join-limit

To limit the number of IGMP groups that can be joined in a second, use this feature.

**Syntax**

```
ip igmp group-join-limit number
```

**Parameters**

- `number` Enter the number of IGMP groups permitted to join in a second. The range is from 1 to 10000.

**Defaults**

None


**Command Modes**

CONFIGURATION (conf-if-interface-slot/port)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### ip igmp querier-timeout

Change the interval that must pass before a multicast router decides that there is no longer another multicast router that should be the querier.

**Syntax**

```
ip igmp querier-timeout seconds
```

To return to the default value, use the `no ip igmp querier-timeout` command.

**Parameters**

- **seconds**
  
Enter the number of seconds the router must wait to become the new querier. The range is from 60 to 300. The default is **125 seconds**.

**Defaults**

- **125 seconds**

**Command Modes**

INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### ip igmp query-interval

Change the transmission frequency of IGMP general queries the Querier sends.

**Syntax**

```
ip igmp query-interval seconds
```

To return to the default values, use the `no ip igmp query-interval` command.

**Parameters**

- **seconds**
  
Enter the number of seconds between queries sent out. The range is from 1 to 18000. The default is **60 seconds**.

**Defaults**

- **60 seconds**
ip igmp query-max-resp-time

Set the maximum query response time advertised in general queries.

Syntax

```
ip igmp query-max-resp-time seconds
```

To return to the default values, use the `no ip igmp query-max-resp-time` command.

Parameters

- `seconds` Enter the number of seconds for the maximum response time. The range is from 1 to 25. The default is `10 seconds`.

Defaults

- `10 seconds` (that is, IGMPv2)

Command Modes

- INTERFACE

Command History

- **Version** | **Description**
  - 9.9(0.0) | Introduced on the FN IOM.
  - 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

ip igmp version

Manually set the version of the router to IGMPv2 or IGMPv3.

Syntax

```
ip igmp version {2 | 3}
```

Parameters

- `2` Enter the number 2 to set the IGMP version number to IGMPv2.
- `3` Enter the number 3 to set the IGMP version number to IGMPv3.

Defaults

- `2` (that is, IGMPv2)

Command Modes

- INTERFACE
ip igmp snooping enable

Enable IGMP snooping on all or a single VLAN. This command is the master on/off switch to enable IGMP snooping.

Syntax
ip igmp snooping enable
To disable IGMP snooping, use the no ip igmp snooping enable command.

Defaults
Disabled.

Command Modes
- CONFIGURATION
- INTERFACE VLAN

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To enable IGMP snooping, enter this command. When you enable this command from CONFIGURATION mode, IGMP snooping enables on all VLAN interfaces (except the default VLAN).

**NOTE:** Execute the no shutdown command on the VLAN interface for IGMP Snooping to function.

Related Commands
shutdown — (no shutdown) activates an interface.

ip igmp snooping fast-leave

Enable IGMP snooping fast-leave for this VLAN.

Syntax
ip igmp snooping fast-leave
To disable IGMP snooping fast leave, use the no igmp snooping fast-leave command.
Defaults: Not configured.

Command Modes: INTERFACE VLAN — (conf-if-vl-n)

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information:
Queriers normally send some queries when a leave message is received prior to deleting a group from the membership database. There may be situations when you require a fast deletion of a group. When you enable IGMP fast leave processing, the switch removes an interface from the multicast group as soon as it detects an IGMP version 2 leave message on the interface.

ip igmp snooping flood

This command controls the flooding behavior of unregistered multicast data packets.

Syntax:

ip igmp snooping flood

Defaults: Enabled.

Command Modes: CONFIGURATION

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information:
When you disable flooding, unregistered multicast data traffic is forwarded to only multicast router ports, both static and dynamic, in a VLAN. If there is no multicast router port in a VLAN, unregistered multicast data traffic is dropped.

On the switch, when you configure no ip igmp snooping flood, the system forwards the frames on mrouter ports for first 96 IGMP snooping enabled VLANs. For all other VLANs, unregistered multicast packets are dropped.
ip igmp snooping last-member-query-interval

The last member query interval is the maximum response time inserted into Group-Specific queries sent in response to Group-Leave messages.

Syntax

ip igmp snooping last-member-query-interval milliseconds
To return to the default value, use the no ip igmp snooping last-member-query-interval command.

Parameters

milliseconds
Enter the interval in milliseconds. The range is from 100 to 65535. The default is 1000 milliseconds.

Defaults

1000 milliseconds

Command Modes

INTERFACE VLAN

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This last-member-query-interval is also the interval between successive Group-Specific Query messages. To change the last-member-query interval, use this command.

ip igmp snooping mrouter

Statically configure a VLAN member port as a multicast router interface.

Syntax

ip igmp snooping mrouter interface interface
To delete a specific multicast router interface, use the no igmp snooping mrouter interface interface command.

Parameters

interface interface
Enter the following keywords and slot/port or number information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.

### ip igmp snooping querier

Enable IGMP querier processing for the VLAN interface.

**Syntax**

```plaintext
ip igmp snooping querier
```

To disable IGMP querier processing for the VLAN interface, use the `no ip igmp snooping querier` command.

**Defaults**

Not configured.

**Command Modes**

INTERFACE VLAN — (conf-if-vl-n)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command enables the IGMP switch to send General Queries periodically. This behavior is useful when there is no multicast router present in the VLAN because the multicast traffic is not routed. Assign an IP address to the VLAN interface for the switch to act as a querier for this VLAN.
show ip igmp snooping mrouter

Display multicast router interfaces.

Syntax

```
show ip igmp snooping mrouter [vlan number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan number</code></td>
<td>Enter the keyword <code>vlan</code> then the VLAN number. The range is from 1 to 4094.</td>
</tr>
</tbody>
</table>

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip igmp snooping mrouter
Interface Router Ports
Vlan 2 Te 1/3, Po 1
Dell#
```
The commands in this chapter are supported by Dell Networking Operating System (OS).
This chapter contains the following sections:

- Basic Interface Commands
- Port Channel Commands

Topics:

- Basic Interface Commands
- clear counters
- clear dampening
- cx4-cable-length
- dampening
- default interface
- description
- duplex (1000/10000 Interfaces)
- flowcontrol
- interface
- interface loopback
- interface ManagementEthernet
- interface null
- interface range
- interface range macro (define)
- interface range macro name
- interface vlan
- intf-type cr4 autoneg
- keepalive
- load-balance
- load-balance hg
- monitor interface
- mtu
- negotiation auto
- portmode hybrid
- rate-interval
- remote-fault-signaling rx
- show config
- show config (from INTERFACE RANGE mode)
Basic Interface Commands

The following commands are for Physical, Loopback, and Null interfaces.
clear counters

Clear the counters used in the show interfaces commands for all virtual router redundancy protocol (VRRP) groups, virtual local area networks (VLANs), and physical interfaces, or selected ones.

**Syntax**

```plaintext
clear counters [interface] [vrrp ([vrid | vrf instance])] [learning-limit]
```

**Parameters**

- **interface** *(OPTIONAL)* Enter any of the following keywords and slot/port or number to clear counters from a specified interface:
  - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For the management interface on the RPM, enter the keyword `ManagementEthernet` then slot/port information. The slot range is from 0 to 1 and the port range is 0.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
  - For a VLAN, enter the keyword `VLAN` then a number from 1 to 4094.

  **NOTE:** This command also enables you to clear the port configurations corresponding to a range of ports.

  - You can specify multiple ports as `slot/port-range`. For example, if you want to clear the port configurations corresponding to all ports between 1 and 4, specify the port range as `clear counters interfaces interface-type 1/1 - 4`.

- **vrrp vrid** *(OPTIONAL)* Enter the keyword `vrrp` to clear the counters of all VRRP groups. To clear the counters of a specified group, enter a VRID number from 1 to 255.

- **vrrp [vrf instance]** *(OPTIONAL)* Enter the keyword `vrrp` to clear the counters of all VRRP groups. To clear the counters of VRRP groups in a specified VRF instance, enter the name of the instance (32 characters maximum).

- **learning-limit** *(OPTIONAL)* Enter the keywords `learning-limit` to clear unknown source address (SA) drop counters when MAC learning limit is configured on the interface.

**Defaults**

Without an interface specified, the command clears all interface counters.
clear dampening

Clear the dampening counters on all the interfaces or just the specified interface.

Syntax

```
clear dampening [interface]
```

Parameters

- `interface` (OPTIONAL) Enter any of the following keywords and slot/port or number to clear counters from a specified interface:
  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults

Without an interface specified, the command clears all interface dampening counters.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `mac learning-limit` — allows aging of MACs even though a learning-limit is configured or disallow station move on learned MACs.
- `show interfaces` — displays information on the interfaces.
On the switch, after you enter the `clear counters` command and verify the results with the `show interfaces` command, the line rate is not reset to 0.00%.

**Example**

```plaintext
Dell#clear dampening tengigabitethernet 1/2
Clear dampening counters on tengig 1/2 [confirm] y
Dell#
```

**Related Commands**

- `show interfaces dampening` — displays interface dampening information.
- `dampening` — configures dampening on an interface.

---

**cx4-cable-length**

Configure the length of the cable to be connected to the selected CX4 port.

**Syntax**

```
[no] cx4-cable-length {long | medium | short}
```

**Parameters**

- `long` | `medium` | `short`

  Enter the keyword that matches the cable length to be used at the selected port:

  - `short` = For 1-meter and 3-meter cable lengths.
  - `medium` = For 5-meter cable length.
  - `long` = For 10-meter and 15-meter cable lengths.

**Defaults**

`medium`

**Command Modes**

`INTERFACE`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command only works on ports that the system recognizes as CX4 ports. The figures below shows an attempt to configure an XFP port with the command after inserting a CX4 converter into the port.

For details about using XFP ports with CX4 cables, refer to your MXL switch hardware guide.

**Example**

(Unsuccessful)

```plaintext
Dell#show interfaces tengigabitethernet 0/26 | grep "XFP type"
Pluggable media present, XFP type is 10GBASE-CX4
Dell(conf-if-te-0/26)#cx4-cable-length short
% Error: Unsupported command.
```
Dell(conf-if-te-0/26)#cx4-cable-length medium
% Error: Unsupported command.
Dell(conf-if-te-0/26)#cx4-cable-length long
% Error: Unsupported command.
Dell(conf-if-te-0/26)#

Example (Successful)

Dell#config
Dell(config)#interface tengigabitethernet 0/5
Dell(conf-if-0/5)#cx4-cable-length long
Dell(conf-if-0/5)#show config
!
interface TenGigabitEthernet 0/4
no ip address
cx4-cable-length long
shutdown
Dell(conf-if-0/5)#exit
Dell(config)#

Related Commands

show config – displays the configuration of the selected interface.

dampening

Configure dampening on an interface.

Syntax

dampening [[[half-life] [reuse-threshold]] [suppress-threshold]] [max-suppress-time]]

To disable dampening, use the no dampening [[[half-life] [reuse-threshold]] [suppress-threshold]] [max-suppress-time]] command.

Parameters

- **half-life**: Enter the number of seconds after which the penalty is decreased. The penalty decreases half after the half-life period expires. The range is from 1 to 30 seconds. The default is 5 seconds.
- **reuse-threshold**: Enter a number as the reuse threshold, the penalty value below which the interface state is changed to “up”. The range is from 1 to 20000. The default is 750.
- **suppress-threshold**: Enter a number as the suppress threshold, the penalty value above which the interface state is changed to “error disabled”. The range is from 1 to 20000. The default is 2500.
- **max-suppress-time**: Enter the maximum number for which a route can be suppressed. The default is four times the half-life value. The range is from 1 to 86400. The default is 20 seconds.

Defaults

Disabled.

Command Modes

INTERFACE (conf-if-)

Related

show config – displays the configuration of the selected interface.
### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

With each flap, the Dell Networking OS penalizes the interface by assigning a penalty (1024) that decays exponentially depending on the configured half-life. After the accumulated penalty exceeds the suppress threshold value, the interface moves to the Error-Disabled state. This interface state is deemed as “down” by all static/dynamic Layer 2 and Layer 3 protocols. The penalty is exponentially decayed based on the half-life timer. After the penalty decays below the reuse threshold, the interface enables. The configured parameters are as follows:

- `suppress-threshold` should be greater than `reuse-threshold`
- `max-suppress-time` should be at least 4 times `half-life`

**NOTE:** You cannot apply dampening on an interface that is monitoring traffic for other interfaces.

### Example

```
Dell(conf-if-te-3/2)#dampening 20 800 4500 120
Dell(conf-if-te-3/2)#
```

### Related Commands

- `clear dampening` — clears the dampening counters on all the interfaces or just the specified interface.
- `show interfaces dampening` — displays interface dampening information.

---

## default interface

Reset a physical interface to its factory default settings.

### Syntax

default interface interface-type slot/port - range

### Parameters

- **interface-type**
  - Enter the interface type and slot/port information:
    - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
    - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigabitEthernet` then the slot/port information.

- **range**
  - You can specify multiple ports as `slot/port-range`. For example, if you want to display information corresponding to all
ports between 1 and 4, specify the port range as show interfaces interface-type 1/1 - 4.

Defaults
None

Command Modes
CONFIGURATION

Command History
This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the MXL and FN IOM.</td>
</tr>
</tbody>
</table>

Usage Information
Use the default interface command to set a 10- Gigabit Ethernet or 40-Gigabit Ethernet interface to its factory-default state. By default, a physical interface is disabled (shutdown) with no assigned IP address or switchport (no ip address). This command removes all software settings and all L3, VLAN, VXLAN, and port-channel configurations on a physical interface.

Example

```
Dell(conf-if-te-1/5)#show config
!
interface TenGigabitEthernet 1/5
 description testconfig
 no ip address
 portmode hybrid
 switchport
 rate-interval 8
 mac learning-limit 10 no-station-move
 no shutdown
Dell(conf-if-te-1/5)#

Dell(conf)#default interface tengigabitethernet 1/5

Dell(conf-if-te-1/5)#show config
!
interface TenGigabitEthernet 1/5
 no ip address
 shutdown
Dell(conf-if-te-1/5)#
```

Related Commands
show running-config — displays the current configuration.

description

Assign a descriptive text string to the interface.

Syntax
description desc_text
To delete a description, use the `no description` command.

**Parameters**
- `desc_text` Enter a text string up to 240 characters long. To use special characters as a part of the description string, you must enclose the whole string in double quotes.

**Defaults**
- `none`

**Command Modes**
- `INTERFACE`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

- Spaces between characters are not preserved after entering this command unless you enclose the entire description in quotation marks ("desc_text").
- Entering a text string after the `description` command overwrites any previous text string that you previously configured as the description.
- The `shutdown` and `description` commands are the only commands that you can configure on an interface that is a member of a port-channel.
- Use the `show interfaces description` command to display descriptions configured for each interface.

**Related Commands**
- `show interfaces description` — displays the description field of the interfaces.

---

**duplex (1000/10000 Interfaces)**

Configure duplex mode on any physical interfaces where the speed is set to 1000/10000.

**Syntax**
```
duplex {half | full}
```

To return to the default setting, use the `no duplex` command.

**Parameters**
- `half` Enter the keyword `half` to set the physical interface to transmit only in one direction.
- `full` Enter the keyword `full` to set the physical interface to transmit in both directions.

**Defaults**
- Not configured.
Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command applies to any physical interface with speed set to 1000/10000.

 NOTE: Starting with the Dell Networking OS version 7.8.1.0, when you use a copper SFP2 module with catalog number GP-SFP2-1T in the S25P module, you can manually set its speed with the speed command. When you set the speed to 10 Mbps or 100 Mbps, you can also execute the duplex command.

Related Commands

speed (for 1000/10000/auto interfaces) — sets the speed on the Base-T Ethernet interface.

negotiation auto — enables or disables auto-negotiation on an interface.

flowcontrol

Control how the system responds to and generates 802.3x pause frames on 10G stack units.

Syntax

flowcontrol rx {off | on} tx {off | on} [negotiate]

Parameters

- rx on
  - Enter the keywords rx on to process the received flow control frames on this port. This is the default value for the receive side.

- rx off
  - Enter the keywords rx off to ignore the received flow control frames on this port.

- tx on
  - Enter the keywords tx on to send control frames from this port to the connected device when a higher rate of traffic is received. This is the default value on the send side.

- tx off
  - Enter the keywords tx off so that flow control frames are not sent from this port to the connected device when a higher rate of traffic is received.

- negotiate
  - (Optional) Enter the keyword negotiate to enable the pause-negotiation with the egress port of the peer device. If the negotiate command is not used, pause-negotiation is disabled. 40 gigabit Ethernet interfaces do not support pause-negotiation.
Defaults

- rx off
- tx off

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.6(0.0)</td>
<td>Added support for the negotiate feature on the M I/O Aggregator.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The globally assigned 48-bit Multicast address 01-80-C2-00-00-01 is used to send and receive pause frames. To allow full-duplex flow control, stations implementing the pause operation instruct the MAC to enable the reception of frames with a destination address equal to this multicast address.

The pause:

- Starts when either the packet pointer or the buffer threshold is met (whichever is met first). When the discard threshold is met, packets are dropped.
- Ends when both the packet pointer and the buffer threshold fall below 50% of the threshold settings.

The discard threshold defines when the interface starts dropping the packet on the interface. This may be necessary when a connected device does not honor the flow control frame sent by the switch. The discard threshold should be larger than the buffer threshold so that the buffer holds at least hold at least three packets.

On 4-port 10G stack units: Changes in the flow-control values may not be reflected automatically in the show interface output for 10G interfaces. This is because 10G interfaces do not support auto-negotiation.

Important Points to Remember

- Do not enable tx pause when buffer carving is enabled. For information and assistance, consult Dell Networking TAC.
- Asymmetric flow control (rx on tx off, or rx off tx on) setting for the interface port less than 100 Mb/s speed is not permitted. The following error is returned:
  Can’t configure Asymmetric flowcontrol when speed <1G, config ignored
- The only configuration applicable to half duplex ports is rx off tx off. The following error is returned:
  Cannot configure Asymmetric flowcontrol when speed <1G, config ignored>
You cannot configure half duplex when the flow control configuration is on (default is rx on tx on). The following error is returned: Cannot configure half duplex when flowcontrol is on, config ignored.

**NOTE:** The flow control must be off (rx off tx off) before configuring the half duplex.

**Example (partial)**

```bash
Dell(conf-if-tengig-0/1)#show config
!
interface TenGigabitEthernet 0/1
no ip address
switchport
no negotiation auto
flowcontrol rx off tx on
no shutdown
...
```

**Example (Values)**

This Example shows how the Dell Networking OS negotiates the flow control values between two Dell Networking chassis connected back-to-back using 1G copper ports.

<table>
<thead>
<tr>
<th>Configured</th>
<th>LocRxConf</th>
<th>LocTxConf</th>
<th>RemoteRxConf</th>
<th>RemoteTxConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td></td>
<td>off</td>
<td>on</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LocNegRx</th>
<th>LocNegTx</th>
<th>RemNegRx</th>
<th>RemNegTx</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

Interfaces 623
Related Commands

show running-config — displays the flow configuration parameters (non-default values only).

show interfaces — displays the negotiated flow control parameters.

interface

Configure a physical interface on the switch.

Syntax

```
interface interface
```

Parameters

- **interface**: Enter one of the following keywords and slot/port or number information:
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
  - For a Fibre Channel interface, enter the keyword `FibreChannel`, then the slot/port information.

Defaults

Not configured.

Command Modes

- **CONFIGURATION**

Command History

- **Version**
  - **9.9(0.0)**: Introduced on the FN IOM.
  - **9.4(0.0)**: Added the support for interfaces.
  - **9.2(0.0)**: Introduced on the M I/O Aggregator.
  - **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You cannot delete a physical interface.

By default, physical interfaces are disabled (shutdown) and are in Layer 3 mode. To place an interface in mode, ensure that the interface’s configuration does not contain an IP address and enter the Port Channel Commands command. By default, the interface is shutdown when the portmode hybrid and switchport are enabled.

The tunnel interface operates as an ECMP (equal cost multi path) only when the next hop to the tunnel destination is over a physical interface. If you select any other
interface as the next hop to the tunnel destination, the tunnel interface does not operate as an ECMP.

Example

Dell(conf)#interface tengig 0/1
Dell(conf-if-tengig-0/1)#exit#

Related Commands

interface port-channel — configures a port channel.

interface vlan — configures a VLAN.

show interfaces — displays the interface configuration.

interface loopback

Configure a Loopback interface.

Syntax

interface loopback number

To remove a loopback interface, use the no interface loopback number command.

Parameters

number

Enter a number as the interface number. The range is from 0 to 16383.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the M I/O Aggregator.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell(conf)#interface loopback 1655
Dell(conf-if-lo-1655)#

Related Commands

interface — configures a physical interface.

interface null — configures a Null interface.

interface port-channel — configures a port channel.

interface vlan — configures a VLAN.
interface ManagementEthernet

Configure the Management port on the system.

Syntax
interface ManagementEthernet slot/port

Parameters
slot/port Enter the keyword ManagementEthernet, then the slot number (0 or 1) and port number zero (0).

Defaults Not configured.

Command Modes CONFIGURATION

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You cannot delete a Management port.

The Management port is enabled by default (no shutdown). To assign an IP address to the Management port, use the ip address command.

Example
Dell(conf)#interface managementethernet 0/0
Dell(conf-if-ma-0/0)#

interface null

Configure a Null interface on the switch.

Syntax
interface null number

Parameters
number Enter zero (0) as the Null interface number.

Defaults Not configured; number = 0

Command Modes CONFIGURATION

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
### Version

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

You cannot delete the Null interface. The only configuration command possible in a Null interface is `ip unreachables`.

### Example

```conf
Dell(conf)#interface null 0
Dell(conf-if-nu-0)#
```

### Related Commands

- `interface` — configures a physical interface.
- `interface loopback` — configures a Loopback interface.
- `interface port-channel` — configures a port channel.
- `interface vlan` — configures a VLAN.
- `ip unreachables` — enables generation of internet control message protocol (ICMP) unreachable messages.

### interface range

This command permits configuration of a range of interfaces to which subsequent commands are applied (bulk configuration). Using the `interface range` command, you can enter identical commands for a range of interfaces.

#### Syntax

```conf
interface range interface, interface,...
```

#### Parameters

- `interface, interface,...`

  Enter the keywords `interface range` and one of the interfaces — slot/port, port-channel, or VLAN number. Select the range of interfaces for bulk configuration. You can enter up to six comma-separated ranges. Spaces are not required between the commas. Comma-separated ranges can include VLANs, port-channels, and physical interfaces.

  Slot/Port information must contain a space before and after the dash. For example, `interface range tengigabitethernet 0/1 - 5` is valid; `interface range tengigabitethernet 0/1-5` is NOT valid.

  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.

**Defaults**
none

**Command Modes**
CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
When creating an interface range, interfaces appear in the order they are entered; they are not sorted. The command verifies that interfaces are present (physical) or configured (logical).

**Important Points to Remember:**
- Bulk configuration is created if at least one interface is valid.
- Non-existing interfaces are excluded from the bulk configuration with a warning message.
- The interface range prompt includes interface types with slot/port information for valid interfaces. The prompt allows for a maximum of 32 characters. If the bulk configuration exceeds 32 characters, it is represented by an ellipsis (...).
- When the interface range prompt has multiple port ranges, the smaller port range is excluded from the prompt.
- If overlapping port ranges are specified, the port range is extended to the smallest start port and the biggest end port.

**Example (Bulk)**
Dell(conf)#interface range so 2/0-1, te 1/1, fa 0/0
% Warning: Non-existing ports (not configured) are ignored by interface-range

**Example (Multiple Ports)**
Dell(conf)#interface range te 2/1 - 8, te 2/1 - 4
Dell(conf-if-range-te-2/1-8)#

**Example (Overlapping Ports)**
Dell(conf)#interface range te 2/1 - 3, te 2/1 - 7
Dell(conf-if-range-te-2/1-7)#

**Usage Information**
Only VLAN and port-channel interfaces created using the interface vlan and interface port-channel commands can be used in the interface range command.

Use the show running-config command to display the VLAN and port-channel interfaces. VLAN or port-channel interfaces that are not displayed in the show running-config command cannot be used with the bulk configuration feature of the
interface range command. You cannot create virtual interfaces (VLAN, Port-channel) using the interface range command.

NOTE: If a range has VLAN, physical, port-channel, and SONET interfaces, only commands related to physical interfaces can be bulk configured. To configure commands specific to VLAN or port-channel, only those respective interfaces should be configured in a particular range.

Example (Single Range)
This example shows a single range bulk configuration.

Dell(config)# interface range tengigabitethernet 5/1 - 8
Dell(config-if-range)# no shutdown
Dell(config-if-range)#

Example (Multiple Range)
This example shows how to use commas to add different interface types to the range enabling all TenGigabit Ethernet interfaces in the range 5/1 to 5/3 and both Ten-Gigabit Ethernet interfaces 1/1 and 1/2.

Dell(config-if)# interface range tengigabitethernet5/1-3,
tengigabitethernet1/1-2
Dell(config-if-range)# no shutdown
Dell(config-if-range)#

Example (Multiple Range)
This example shows how to use commas to add SONET, VLAN, and port-channel interfaces to the range.

Dell(config-if)# interface range tengigabitethernet5/1-3,
tengigabitethernet1/1-2,
Vlan 2-100, Port 1-25
Dell(config-if-range)# no shutdown
Dell(config-if-range)#

Related Commands
interface port-channel — configures a port channel group.
interface vlan — configures a VLAN interface.
show config (from INTERFACE RANGE mode) — shows the bulk configuration interfaces.
show range — shows the bulk configuration ranges.

interface range macro (define)

Defines a macro for an interface range and then saves the macro in the running configuration.

Syntax
define interface range macro name interface , interface , ...

Parameters
name Enter up to 16 characters for the macro name.
Enter the keywords `interface range` and one of the interfaces — slot/port, port-channel, or VLAN number. Select the range of interfaces for bulk configuration. You can enter up to six comma-separated ranges. Spaces are not required between the commas. Comma-separated ranges can include VLANs, port-channels, and physical interfaces.

Slot/Port information must contain a space before and after the dash. For example, `interface range tengigabitethernet 0/1 - 5` is valid; `interface range tengigabitethernet 0/1-5` is NOT valid.

- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

**Defaults**

- `none`

**Command Modes**

- `CONFIGURATION`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example (Single Range)**

This example shows how to define an interface range macro named test. Execute the `show running-config` command to display the macro definition.

```
Dell(config)# define interface-range test tengigabitethernet0/0-3, tengigabitethernet 5/0-7
Dell# show running-config | grep define
define interface-range test tengigabitethernet0/0-3, tengigabitethernet5/0-7,
Dell(config)#interface range macro test
Dell(config-if-range-te-0/0-3,te-5/0-7)#
```

**Related Commands**

- `interface range` — configures a range of command (bulk configuration)
- `interface range macro name` — runs an interface range macro.
interface range macro name

Run the interface-range macro to automatically configure the pre-defined range of interfaces.

Syntax

interface range macro name

Parameters

name

Enter the name of an existing macro.

Defaults

none

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example (Single Range)

This example shows the macro named test that was defined earlier.

Dell(config)#interface range macro test
Dell(config-if-range-te-0/0-3,te-5/0-8)#

Related Commands

interface range — configures a range of command (bulk configuration).

interface range macro (define) — defines a macro for an interface range (bulk configuration).

interface vlan

Configure a VLAN. You can configure up to 4096 VLANs.

Syntax

interface vlan vlan-id

To delete a VLAN, use the no interface vlan vlan-id command.

Parameters

vlan-id

Enter a number as the VLAN Identifier. The range is from 1 to 4096.

Defaults

Not configured, except for the Default VLAN, which is configured as VLAN 1.

Command Modes

CONFIGURATION
### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

For more information about VLANs and the commands to configure them, refer to the Virtual LAN (VLAN) Commands.

FTP, TFTP, and SNMP operations are not supported on a VLAN. MAC/IP ACLs are not supported.

### Example

```plaintext
Dell(conf)#int vlan 3
Dell(conf-if-vl-3)#
```

### Related Commands

- `interface` — configures a physical interface.
- `interface port-channel` — configures a port channel group.

### intf-type cr4 autoneg

Set the interface type as CR4 with auto-negotiation enabled.

#### Syntax

```
intf-type cr4 autoneg
```

*If you configure `intf-type cr4 autoneg`, use the `no intf-type cr4 autoneg` command to set the interface type as cr4 with autonegotiation disabled.*

#### Defaults

Not configured

#### Command Modes

- CONFIGURATION

#### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

#### Usage Information

If you configure `interface type` as CR4 with auto-negotiation enabled, also configure CR4 with auto-negotiation. Many DAC cable link issues are resolved by setting the `interface type` as CR4.

#### Related Commands

- `interface` — configures a physical interface.
interface port-channel — configures a port channel group.

keepalive

Send keepalive packets periodically to keep an interface alive when it is not transmitting data.

Syntax
keepalive [seconds]

Parameters
- **seconds** (OPTIONAL) For interfaces with PPP encapsulation enabled, enter the number of seconds between keepalive packets. The range is from 0 to 23767. The default is 10 seconds.

Defaults
Enabled.

Command Modes
- INTERFACE

Command History
- **Version**
  - 9.9(0.0) Introduced on the FN IOM.
  - 9.2(0.0) Introduced on the M I/O Aggregator.
  - 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
When you configure keepalive, the system sends a self-addressed packet out of the configured interface to verify that the far end of a WAN link is up. When you configure no keepalive, the system does not send keepalive packets and so the local end of a WAN link remains up even if the remote end is down.

load-balance

By default, Dell Networking OS uses an IP 4-tuple (IP SA, IP DA, Source Port, and Destination Port) to distribute IP traffic over members of a Port Channel as well as equal-cost paths. To designate another method to balance traffic over Port Channel members, use the load-balance command.

Syntax
load-balance {ip-selection [dest-ip | source-ip]} | {mac [dest-mac | source-dest-mac | source-mac]} | {tcp-udp | ingress-port [enable]}

To return to the default setting (IP 4-tuple), use the no load-balance {ip-selection [dest-ip | source-ip]} | {mac [dest-mac | source-dest-mac | source-mac]} | {tcp-udp | ingress-port [enable]} command.
Parameters

**ip-selection**

**(dest-ip | source-ip)**

Enter the keywords to distribute IP traffic based on the following criteria:

- **NOTE:** The hashing mechanism returns a 3-bit index indicating which port the packet should be forwarded.

- **dest-ip** — Uses destination IP address and destination port fields to hash.

- **source-ip** — Uses source IP address and source port fields to hash.

**mac (dest-mac | source-dest-mac | source-mac)**

Enter the keywords to distribute MAC traffic based on the following criteria:

- **dest-mac** — Uses the destination MAC address, VLAN, Ethertype, source module ID and source port ID fields to hash.

- **source-dest-mac** — Uses the destination and source MAC address, VLAN, Ethertype, source module ID and source port ID fields to hash.

- **source-mac** — Uses the source MAC address, VLAN, Ethertype, source module ID and source port ID fields to hash.

**tcp-udp enable**

Enter the keywords to distribute traffic based on the following:

- **enable** — Takes the TCP/UDP source and destination ports into consideration when doing hash computations. This option is enabled by default.

- **ingress-port enable** — Enter the keywords to distribute traffic based on the following:

  - **enable** — Takes the source port into consideration when doing hash computations. This option is disabled by default.

**Defaults**

IP 4-tuple (IP SA, IP DA, Source Port, Destination Port)

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

By default, Dell Networking OS distributes incoming traffic based on a hash algorithm using the following criteria:

- IP source address
- IP destination address
TCP/UDP source port
TCP/UDP destination port

load-balance hg

Choose the traffic flow parameters the hash calculation uses while distributing the traffic across internal higig links.

Syntax


Parameters

ip-selection | ipv6-selection [source-ip | source-ipv6 | source-port-id | source-module-id | dest-ip | dest-ipv6 | dest-port-id | dest-module-id | protocol | vlan | L4-source-port | L4-dest-port ]

To use IPv4 key fields in hash computation, enter the keyword ip-selection then one of the parameters. To use IPv6 key fields in hash computation, enter the keyword ipv6-selection then one of the parameters.

- source-ip — Use IPv4 src-ip field in hash calculation.
- source-ipv6 — Use IPv6 src field in hash calculation
- source-port-id — Use src-port-id field in hash calculation
- source-module-id — Use src-module-id field in hash calculation
- dest-ip — Use IPv4 dest-ip field in hash calculation
- dest-ipv6 — Use IPv6 dest-ip field in hash calculation
- dest-port-id — Use dest-port-id field in hash calculation
- dest-module-id — Use dest-module-id field in hash calculation
- protocol — Use IPv4 protocol field in hash calculation
- vlan — Use vlan field in hash calculation
- L4-source-port — Use IPv4 L4-source-port field in hash calculation
- L4-dest-port — Use IPv4 L4-dest-port field in hash calculation

mac [source-mac | source-port-id | source-module-id | dest-mac | dest-port-id | dest-

To use MAC key fields in hash computation, enter the keyword mac then one of the parameters:

- source-mac — Use source-mac field in hash calculation
- source-port-id — Use src-port-id field in hash calculation

Interfaces
module-id | vlan | ethertype | source-dest-mac |

- source-module-id — Use src-module-id field in hash calculation.
- dest-mac — Use dest-mac field in hash calculation.
- dest-port-id — Use dest-port-id field in hash calculation.
- dest-module-id — Use dest-module-id field in hash calculation.
- vlan — Use vlan field in hash calculation.
- ethertype — Use Ethertype field in hash calculation.
- source-dest-mac — Use SMAC and DMAC fields in hash calculation.

tunnel (ipv4-over-ipv4 | ipv4-over-gre-ipv4 | mac-in-mac)

To use tunnel key fields in hash computation, enter the keyword tunnel then one of the parameters:

- ipv4-over-ipv4 — Use ipv4-over-ipv4 field in hash calculation.
- ipv4-over-gre-ipv4 — Use ipv4-over-gre-ipv4 field in hash calculation.
- mac-in-mac — Use mac-in-mac field in hash calculation.

Defaults
IP selection 5-tuples (source-ip dest-ip vlan protocol L4-source-port L4-dest-port).

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
| 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

monitor interface

Monitor counters on a single interface or all interfaces on a line card. The screen is refreshed every five seconds and the CLI prompt disappears.

Syntax

```
monitor interface [interface]
```

To disable monitoring and return to the CLI prompt, press the q key.

Parameters

- **interface**

  (OPTIONAL) Enter the following keywords and slot/port or number information:

  - For the management port, enter the keyword managementethernet then the slot (0 or 1) and the port (0).
For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In the Example, the delta column displays changes since the last screen refresh.

The following are the monitor command menu options.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>systest-3</td>
<td>Displays the host name assigned to the system.</td>
</tr>
<tr>
<td>monitor time</td>
<td>Displays the amount of time since the monitor interface command was entered.</td>
</tr>
<tr>
<td>time</td>
<td>Displays the amount of time the chassis is up (since last reboot).</td>
</tr>
<tr>
<td>m</td>
<td>Change the view from a single interface to all interfaces on the line card or visa-versa.</td>
</tr>
<tr>
<td>c</td>
<td>Refresh the view.</td>
</tr>
<tr>
<td>b</td>
<td>Change the counters displayed from Packets on the interface to Bytes.</td>
</tr>
<tr>
<td>r</td>
<td>Change the [delta] column from change in the number of packets/bytes in the last interval to rate per second.</td>
</tr>
<tr>
<td>l</td>
<td>Change the view to the next interface on the line card, or if in line card mode, the next line card in the chassis.</td>
</tr>
<tr>
<td>a</td>
<td>Change the view to the previous interface on the line card, or if in line card mode, the previous line card in the chassis.</td>
</tr>
<tr>
<td>T</td>
<td>Increase the screen refresh rate.</td>
</tr>
<tr>
<td>t</td>
<td>Decrease the screen refresh rate.</td>
</tr>
<tr>
<td>q</td>
<td>Return to the CLI prompt.</td>
</tr>
</tbody>
</table>

Example (Single Interface)

systest-3 Monitor time: 00:00:06 Refresh Intvl.: 2s Time: 03:26:26

Interface: Te 0/3, Enabled, Link is Up, Linespeed is 1000 Mbit

Traffic statistics: Current Rate Delta
Input bytes: 9069828 43 Bps 86
Output bytes: 606915800 43 Bps 86
mtu

Set the link maximum transmission unit (MTU) (frame size) for an Ethernet interface.

Syntax:

```
mtu value
```

To return to the default MTU value, use the `no mtu` command.

Parameters:

- **value**: Enter a maximum frame size in bytes. The range is from 594 to 9252. MXL Switch Range is from 594 to 12000. The default is 1554.

Defaults:

- 1554

Command Modes:

- INTERFACE

Command History:

- **Version**: Description
- 9.9(0.0): Introduced on the FN IOM.
- 9.2(0.0): Introduced on the M I/O Aggregator.
- 8.3.16.1: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information:

- If the packet includes a Layer 2 header, the difference between the link MTU and IP MTU (`ip mtu` command) must be enough bytes to include the Layer 2 header.
The IP MTU is adjusted automatically when you configure the Layer 2 MTU with the `mtu` command.

When you enter the `no mtu` command, The Dell Networking OS reduces the IP MTU value to 1536 bytes.

Link MTU and IP MTU considerations for port channels and VLANs are as follows.

**port channels:**
- All members must have the same link MTU value and the same IP MTU value.
- The port channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the channel members. For example, if the members have a link MTU of 2100 and an IP MTU 2000, the port channel's MTU values cannot be higher than 2100 for link MTU or 2000 bytes for IP MTU.

**VLANs:**
- All members of a VLAN must have same IP MTU value.
- Members can have different Link MTU values. Tagged members must have a link MTU 4 bytes higher than untagged members to account for the packet tag.
- The VLAN link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the VLAN members. For example, the VLAN contains tagged members with Link MTU of 1522 and IP MTU of 1500 and untagged members with Link MTU of 1518 and IP MTU of 1500. The VLAN's Link MTU cannot be higher than 1518 bytes and its IP MTU cannot be higher than 1500 bytes.

The following shows the difference between Link MTU and IP MTU.

<table>
<thead>
<tr>
<th>Layer 2 Overhead</th>
<th>Link MTU and IP MTU Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet (untagged)</td>
<td>18 bytes</td>
</tr>
<tr>
<td>VLAN Tag</td>
<td>22 bytes</td>
</tr>
<tr>
<td>Untagged Packet with VLAN-Stack</td>
<td>22 bytes</td>
</tr>
<tr>
<td>Header</td>
<td></td>
</tr>
<tr>
<td>Tagged Packet with VLAN-Stack</td>
<td>26 bytes</td>
</tr>
<tr>
<td>Header</td>
<td></td>
</tr>
</tbody>
</table>

**negotiation auto**

Enable auto-negotiation on an interface.

**Syntax**

```
negotiation auto
```
To disable auto-negotiation, use the `no negotiation auto` command.

**Defaults**

Enabled.

**Command Modes**

INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The `no negotiation auto` command is only available if you first manually set the speed of a port to `10Mbits` or `100Mbits`.

The `negotiation auto` command provides a `mode` option for configuring an individual port to forced-master/forced slave after you enable auto-negotiation.

If you do not use the `mode` option, the default setting is `slave`. If you do not configure forced-master or forced-slave on a port, the port negotiates to either a master or a slave state. Port status is one of the following:

- Forced-master
- Force-slave
- Master
- Slave
- Auto-neg Error — typically indicates that both ends of the node are configured with forced-master or forced-slave.

⚠️ **CAUTION:** Ensure that one end of your node is configured as forced-master and one is configured as forced-slave. If both are configured the same (that is, forced-master or forced-slave), the `show interfaces` command flaps between an auto-neg-error and forced-master/slave states.

You can display master/slave settings with the `show interfaces` command.

**Example (Master/Slave)**

```
Dell(conf)# int tengig 0/0
Dell(conf-if)#neg auto
Dell(conf-if-autoneg)# ?
 end Exit from configuration mode
 exit Exit from autoneg configuration mode
 mode Specify autoneg mode
 no Negate a command or set its defaults
 show Show autoneg configuration information
Dell(conf-if-autoneg)#mode ?
 forced-master Force port to master mode
 forced-slave Force port to slave mode
Dell(conf-if-autoneg)#
```

**Example (Master/Slave, partial)**

```
Dell#show interfaces configured
TenGigabitEthernet 1/8 is up, line protocol is up
```
Hardware is Dell Force10Eth, address is 00:01:e8:05:f7:fc
  Current address is 00:01:e8:05:f7:fc
  Interface index is 474791997
  Internet address is 1.1.1.1/24
  MTU 1554 bytes, IP MTU 1500 bytes
  LineSpeed 1000 Mbit, Mode full duplex, Master
  ARP type: ARPA, ARP Timeout 04:00:00
  Last clearing of "show interfaces" counters 00:12:42
  Queueing strategy: fifo
  Input Statistics:
  ...

User Information

Both sides of the link must have auto-negotiation enabled or disabled for the link to come up.

The following details the possible speed and auto-negotiation combinations for a line between two 10/100/1000 Base-T Ethernet interfaces.

Port 0
- auto-negotiation enabled* speed 1000 or auto
- auto-negotiation enabled speed 100
- auto-negotiation disabled speed 100
- auto-negotiation disabled speed 100
- auto-negotiation enabled* speed 1000 or auto

Port 1
- auto-negotiation enabled* speed 1000 or auto
- auto-negotiation enabled speed 100
- auto-negotiation disabled speed 100
- auto-negotiation enabled speed 100
- auto-negotiation disabled speed 100

Link Status Between Port 1 and Port 2
- Up at 1000 Mb/s
- Up at 100 Mb/s
- Up at 100 Mb/s
- Down
- Down

* You cannot disable auto-negotiation when the speed is set to 1000 or auto.

Related Commands
  speed (for 1000/10000 interfaces) — sets the link speed to 1000, 10000, or auto-negotiate the speed.
portmode hybrid

To accept both tagged and untagged frames, set a physical port or port-channel. A port configured this way is identified as a hybrid port in report displays.

Syntax

portmode hybrid

To return a port to accept either tagged or untagged frames (non-hybrid), use the no portmode hybrid command.

Defaults

non-hybrid

Command Modes

INTERFACE (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the interface command shown in the following example. This example sets a port as hybrid, makes the port a tagged member of VLAN 20, and an untagged member of VLAN 10, which becomes the native VLAN of the port. The port now accepts:

- untagged frames and classify them as VLAN 10 frames
- VLAN 20 tagged frames

The following describes the do show interfaces command shown in the following example. This example shows output with "Hybrid" as the newly added value for 802.1QTagged. The options for this field are:

- True — port is tagged
- False — port is untagged
- Hybrid — port accepts both tagged and untagged frames

The following describes the interface vlan command shown in the following example. This example shows unconfiguration of the hybrid port using the no portmode hybrid command.

**NOTE:** Remove all other configurations on the port before you can remove the hybrid configuration from the port.

Example

```
Dell(conf)#interface tengig 0/2
Dell(conf-if-te-0/2)#no shut
Dell(conf-if-te-0/2)#portmode hybrid
Dell(conf-if-te-0/2)#sw
Dell(conf-if-te-0/2)#int vlan 10
```
Example (tagged hybrid)
Dell(conf-if-vl-10)#tag tengig 0/2
Dell(conf-if-vl-10)#int vlan 20
Dell(conf-if-vl-20)#untag tengig 0/2
Dell(conf-if-vl-20)#

Example (unconfigure the hybrid port)
Dell(conf-if-vl-20)#interface vlan 10
Dell(conf-if-vl-10)#no untagged tengig 0/2
Dell(conf-if-vl-10)#interface vlan 20
Dell(conf-if-vl-20)#no tagged tengig 0/2
Dell(conf-if-vl-20)#interface tengig 0/2
Dell(conf-if-te-0/2)#no portmode hybrid
Dell(conf-if-vl-20)#

Related Commands
show interfaces switchport — displays the configuration of switchport (Layer 2) interfaces on the switch.

vlan-stack trunk — specifies an interface as a trunk port to the Stackable VLAN network.

rate-interval

Configure the traffic sampling interval on the selected interface.

Syntax
rate-interval seconds
Parameters

seconds

Enter the number of seconds for which to collect traffic data. The range is from 5 to 299 seconds.

| NOTE: For 0 to 5 seconds, polling occurs every 5 seconds. For 6 to 10 seconds, polling occurs every 10 seconds. For any other value, polling occurs every 15 seconds.

Defaults

299 seconds

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The output of the `show interfaces` command displays the configured rate interval, along with the collected traffic data.

Related Commands

- `show interfaces` — displays information on physical and virtual interfaces.

---

**remote-fault-signaling rx**

Brings the interface up or down when a Remote Fault Indication (RFI) error is detected.

**Syntax**

`remote-fault-signaling rx {on | off}`

**Parameters**

- **on**: Brings the interface up when an RFI error is detected.
- **off**: Brings the interface down when an RFI error is detected.

**Defaults**

ON.

**Command Modes**

INTERFACE CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL switch.</td>
</tr>
</tbody>
</table>

**Usage Information**

By default, the switch processes the RFI errors transmitted by remote peers and brings down the interface when an RFI error is detected.
show config

Display the interface configuration.

Syntax
show config

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell(conf-if)#show conf
!
interface TenGigabitEthernet 1/7
  no ip address
  switchport
  no shutdown
Dell(conf-if)#

show config (from INTERFACE RANGE mode)

Display the bulk configured interfaces (interface range).

Syntax
show config

Command Modes
CONFIGURATION INTERFACE (conf-if-range)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell(conf)#interface range tengigabitethernet 1/1 - 2
Dell(conf-if-range-te-1/1-2)#show config
!
interface TenGigabitEthernet 1/1
  no ip address

Example
Dell(conf-if-te-1/3)#remote-fault-signaling rx ?
on Enable
off Disable
switchport
no shutdown
!
interface TenGigabitEthernet 1/2
   no ip address
   switchport
   no shutdown
Dell(conf-if-range-te-1/1-2)#

show interfaces

Display information on a specific physical interface or virtual interface.

Syntax
   show interfaces interface

Parameters
   interface
       Enter one of the following keywords and slot/port or number information:
           • For a Loopback interface, enter the keyword loopback then a number from 0 to 16383.
           • For a management interface, enter the keyword ManagementEthernet then the slot/port information. The slot range is 0 to 1 and the port range is 0.
           • For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
           • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
           • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
           • For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.

   NOTE: This command also enables you to view information corresponding to a range of ports. However, for Open Networking (ON) platforms the notation for specifying port range in the command is different from how you specify in non-ON platforms.

   • For non-ON platforms, you can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces interface-type 1/1 - 4.
   • For ON platforms, you can specify multiple ports as slot/port/[subport] - slot/port/[subport]. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces interface-type 1/1/1 - 1/4/1.
Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Starting with Dell Networking OS Release 9.3(0.0), you can also view the configuration of 40-Gigabit Ethernet interfaces by using the `fortyGigE` keyword with the `show interfaces interface-type brief` command. For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` followed by the slot/port information to indicate the interface.

Use the `show interfaces` command for details on a specific interface. Use the `show interfaces stack-unit` command for details on all interfaces on the designated stack unit.

On the switch, the `show interface` output displays incorrect rate information details over time for link monitoring when the rate-interval is configured for 5 seconds. Dell Networking OS recommends using higher rate-intervals, such as 15 to 299 seconds, to minimize the errors seen.

**NOTE:** In the CLI output, the power value is rounded to a 3-digit value. For receive/transmit power that is less than 0.000, an `snmp query` returns the corresponding dbm value even though the CLI displays as 0.000.

**NOTE:** After the counters are cleared, the line-rate continues to increase until it reaches the maximum line rate. When the maximum line rate is reached, there is no change in the line-rate.

User Information

The following table describes the `show interfaces` command shown in the 10G (TeraScale) Example below.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TenGigabitEthernet 2/0...</td>
<td>Interface type, slot/port, and administrative and line protocol status.</td>
</tr>
<tr>
<td>Hardware is...</td>
<td>Interface hardware information, assigned MAC address, and current address.</td>
</tr>
<tr>
<td>Interface index...</td>
<td>Displays the interface index number used by SNMP to identify the interface.</td>
</tr>
<tr>
<td>Internet address...</td>
<td>States whether an IP address is assigned to the interface. If an IP address is assigned, that address is displayed.</td>
</tr>
<tr>
<td>MTU 1554...</td>
<td>Displays link and IP MTU information.</td>
</tr>
<tr>
<td>LineSpeed</td>
<td>Displays the interface’s line speed, duplex mode, and Slave.</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ARP type:...</td>
<td>Displays the ARP type and the ARP timeout value for the interface.</td>
</tr>
<tr>
<td>Last clearing...</td>
<td>Displays the time when the <code>show interfaces</code> counters were cleared.</td>
</tr>
<tr>
<td>Queuing strategy...</td>
<td>States the packet queuing strategy. FIFO means first in first out.</td>
</tr>
<tr>
<td>Input Statistics:</td>
<td>Displays all the input statistics including:</td>
</tr>
<tr>
<td></td>
<td>• Number of packets and bytes into the interface</td>
</tr>
<tr>
<td></td>
<td>• Number of packets with VLAN tagged headers</td>
</tr>
<tr>
<td></td>
<td>• Packet size and the number of those packets inbound to the interface</td>
</tr>
<tr>
<td></td>
<td>• Number of Multicast and Broadcast packets:</td>
</tr>
<tr>
<td></td>
<td>• Multicasts = number of MAC multicast packets</td>
</tr>
<tr>
<td></td>
<td>• Broadcasts = number of MAC broadcast packets</td>
</tr>
<tr>
<td></td>
<td>• Number of runts, giants, and throttles packets:</td>
</tr>
<tr>
<td></td>
<td>• runts = number of packets that are less than 64B</td>
</tr>
<tr>
<td></td>
<td>• giants = packets that are greater than the MTU size</td>
</tr>
<tr>
<td></td>
<td>• throttles = packets containing PAUSE frames</td>
</tr>
<tr>
<td></td>
<td>• Number of CRC, overrun, and discarded packets:</td>
</tr>
<tr>
<td></td>
<td>• CRC = packets with CRC/FCS errors</td>
</tr>
<tr>
<td></td>
<td>• overrun = number of packets discarded due to FIFO overrun conditions</td>
</tr>
<tr>
<td></td>
<td>• discarded = the sum of runts, giants, CRC, and overrun packets discarded without any processing</td>
</tr>
<tr>
<td>Output Statistics:</td>
<td>Displays output statistics sent out of the interface including:</td>
</tr>
<tr>
<td></td>
<td>• Number of packets, bytes, and underruns out of the interface</td>
</tr>
<tr>
<td></td>
<td>• Packet size and the number of those packets outbound to the interface</td>
</tr>
<tr>
<td></td>
<td>• Number of Multicast, Broadcast, and Unicast packets:</td>
</tr>
<tr>
<td></td>
<td>• Multicasts = number of MAC multicast packets</td>
</tr>
<tr>
<td></td>
<td>• Broadcasts = number of MAC broadcast packets</td>
</tr>
<tr>
<td></td>
<td>• Unicasts = number of MAC unicast packets</td>
</tr>
<tr>
<td></td>
<td>• Number of VLANs, throttles, discards, and collisions::</td>
</tr>
<tr>
<td></td>
<td>• Vlans = number of VLAN tagged packets</td>
</tr>
<tr>
<td></td>
<td>• throttles = packets containing PAUSE frames</td>
</tr>
<tr>
<td></td>
<td>• discarded = number of packets discarded without any processing</td>
</tr>
<tr>
<td></td>
<td>• collisions = number of packet collisions</td>
</tr>
<tr>
<td></td>
<td>• wred=count both packets discarded in the MAC and in the hardware-based queues</td>
</tr>
</tbody>
</table>
## Line Description

**Rate information...** Estimate of the input and output traffic rate over a designated interval (30 to 299 seconds). Traffic rate is displayed in bits, packets per second, and percent of line rate.

**Time since...** Elapsed time since the last interface status change (hh:mm:ss format).

### Example (10G port)

```
Dell#show interfaces tengigabitethernet 2/1
TenGigabitEthernet 2/1 is up, line protocol is up
Hardware is Dell Force10Eth, address is 00:01:e8:05:f7:3a
Interface index is 100990998
Internet address is 213.121.22.45/28
MTU 1554 bytes, IP MTU 1500 bytes
LineSpeed 10000 Mbit
ARP type: ARPA, ARP Timeout 04:00:00
Last clearing of "show interfaces" counters 02:31:45
Queueing strategy: fifo
Input Statistics:
 0 packets, 0 bytes
 Input 0 IP Packets, 0 Vlans 0 MPLS
 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
 0 symbol errors, 0 runts, 0 giants, 0 throttles
 0 CRC, 0 IP Checksum, 0 overrun, 0 discarded
Output Statistics:
 1 packets, 64 bytes, 0 underruns
 0 Multicasts, 2 Broadcasts, 0 Unicasts
 0 IP Packets, 0 Vlans, 0 MPLS
 0 throttles, 0 discarded
Rate info (interval 299 seconds):
 Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
 Output 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
Time since last interface status change: 00:00:27
```

### Usage Information

The interface counter "over 1023-byte pkts" does not increment for packets in the range 9216 > x < 1023.

The Management port is enabled by default (no shutdown). If necessary, use the ip address command to assign an IP address to the Management port.

### Example (1G SFP)

```
Dell#show interfaces tengigabitethernet 0/4
TenGigabitEthernet 0/4 is up, line protocol is up
Hardware is Dell Force10Eth, address is 00:01:e8:43:00:01
 Current address is 00:01:e8:43:00:01
Port is present
Pluggable media present, SFP+ type is 10GBASE-SR
 Medium is MultiRate, Wavelength is 850nm
 SFP+ receive power reading is -3.6041dBm
Interface index is 45420801
Internet address is not set
Mode of IP Address Assignment : NONE
DHCP Client-ID :tenG1730001e8430001
MTU 1554 bytes, IP MTU 1500 bytes
LineSpeed 10000 Mbit
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout 04:00:00
```
Last clearing of "show interface" counters 21:14:32
Queueing strategy: fifo
Input Statistics:
  94322888 packets, 6036664832 bytes
  94322888 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 94322888 Broadcasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
Output Statistics:
  180384 packets, 11926850 bytes, 0 underruns
  172622 64-byte pkts, 7762 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  7762 Multicasts, 87726 Broadcasts, 84896 Unicasts
  0 throttles, 0 discarded, 0 collisions
Rate info (interval 299 seconds):
  Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
  Output 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
Time since last interface status change: 21:13:36

Dell#show interface managementethernet?
0/0 Management Ethernet interface number
Dell#show interface managementethernet 0/0
ManagementEthernet 0/0 is up, line protocol is up
    Hardware is DellForce10Eth, address is 00:1e:c9:f1:00:05
    Current address is 00:1e:c9:f1:00:05
    Pluggable media not present
    Interface index is 235159752
    Internet address is 10.11.209.87/16
    Mode of IP Address Assignment : MANUAL
    DHCP Client-ID: mgmt001ec9f10005
    Virtual-IP is not set
    Virtual-IP IPv6 address is not set
    MTU 1554 bytes, IP MTU 1500 bytes
    LineSpeed 100 Mbit, Mode full duplex
    ARP type: ARPA, ARP Timeout 04:00:00
    Last clearing of "show interface" counters 5d4h57m
Queueing strategy: fifo
  Input 3448753 packets, 950008323 bytes, 3442163 multicast
  Received 0 errors, 0 discarded
  Output 4627 packets, 814226 bytes, 0 multicast
  Output 0 errors, 0 invalid protocol

Related Commands
  show interfaces configured — displays any interface with a non-default configuration.
  show interfaces stack-unit — displays information on all interfaces on a specific stack unit.
  strict-priority unicast — displays information of either rate limiting or rate policing on the interface.
  show interfaces switchport — displays Layer 2 information about the interfaces.
show inventory — displays the MXL switch type, components (including media), Dell Networking OS version including hardware identification numbers, and configured protocols.

show ip interface — displays Layer 3 information about the interfaces.

show memory — displays the stack unit(s) status.

show range — displays all interfaces configured using the interface range command.

show interfaces configured

Display any interface with a non-default configuration.

Syntax
show interfaces configured

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show interfaces configured
TenGigabitEthernet 1/8 is up, line protocol is up
Hardware is Force10Eth, address is 00:01:e8:05:f7:fc
  Current address is 00:01:e8:05:f7:fc
  Interface index is 474791997
  Internet address is 1.1.1.1/24
  MTU 1554 bytes, IP MTU 1500 bytes
  LineSpeed 1000 Mbit, Mode full duplex, Master
  ARP type: ARPA, ARP Timeout 04:00:00
  Last clearing of "show interfaces" counters 00:12:42
  Queueing strategy: fifo
  Input Statistics:
  10 packets, 10000 bytes
  0 Vlans
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 10 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
  Output Statistics:
  1 packets, 64 bytes, 0 underruns
  1 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 1 Broadcasts, 0 Unicasts
  0 Vlans, 0 throttles, 0 discarded, 0 collisions
show interfaces dampening

Display interface dampening information.

Syntax

```
show interfaces dampening [[interface] [summary] [detail]]
```

Parameters

- **interface** (Optional) Enter one of the following keywords and slot/port or number information:
  - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

  **NOTE:** This command also enables you to view information corresponding to a range of ports. However, for Open Networking (ON) platforms the notation for specifying port range in the command is different from how you specify in non-ON platforms.

  - For non-ON platforms, you can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces interface-type 1/1 - 4.
  - For ON platforms, you can specify multiple ports as slot/port/[subport] - slot/port/[subport]. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces interface-type 1/1/1 - 1/4/1.

- **summary** (OPTIONAL) Enter the keyword summary to display the current summary of dampening data, including the number of interfaces configured and the number of interfaces suppressed, if any.

- **detail** (OPTIONAL) Enter the keyword detail to display detailed interface dampening data.
show interfaces description

Display the descriptions configured on the interface.

Syntax

show interfaces [interface] description

Parameters

interface  (Optional) Enter one of the following keywords and slot/port or number information:

- For Loopback interfaces, enter the keyword loopback then a number from 0 to 16383.
- For the management interface on the RPM, enter the keyword ManagementEthernet then the slot/port information. The slot range is 0-0 and the port range is 0.
- For the Null interface, enter the keywords null 0.
- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For VLAN interfaces, enter the keyword vlan then a number from 1 to 4094.
NOTE: This command also enables you to view information corresponding to a range of ports. However, for Open Networking (ON) platforms the notation for specifying port range in the command is different from how you specify in non-ON platforms.

- For non-ON platforms, you can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.
- For ON platforms, you can specify multiple ports as `slot/port/ [subport] - slot/port/ [subport]`. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1/1 - 1/1/4`.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show interfaces description` command shown in the Example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Displays the type of interface and associated slot and port number.</td>
</tr>
<tr>
<td>OK?</td>
<td>Indicates if the hardware is functioning properly.</td>
</tr>
<tr>
<td>Status</td>
<td>States whether the interface is enabled (up) or disabled (administratively down).</td>
</tr>
<tr>
<td>Protocol</td>
<td>States whether IP is enabled (up) or disabled (down) on the interface.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the description (if any) manually configured for the interface.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show interface description
Interface OK Status Protocol Description
TenGigabitEthernet 0/1 NO admin down down
TenGigabitEthernet 0/2 NO admin down down
TenGigabitEthernet 0/3 NO admin down down
TenGigabitEthernet 0/4 NO admin down down
TenGigabitEthernet 0/5 NO admin down down
```
show interfaces stack-unit

Display information on all interfaces on a specific MXL switch stack member.

**Syntax**

```
show interfaces stack-unit stack-unit-number
```

**Parameters**

- `stack-unit-number`
  Enter the stack unit number. The range is from 0 to 5.

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell#show interfaces stack-unit 0
TenGigabitEthernet 0/1 is down, line protocol is down
 Hardware is DellForce10Eth, address is 00:1e:c9:f1:00:05
 Current address is 00:1e:c9:f1:00:05
 Server Port AdminState is Down
 Pluggable media not present
 Interface index is 34148609
 Internet address is not set
 Mode of IP Address Assignment : NONE
 DHCP Client-ID :tenG130001ec9f10005
 MTU 1554 bytes, IP MTU 1500 bytes
 LineSpeed auto
 Flowcontrol rx off tx off
 ARP type: ARPA, ARP Timeout 04:00:00
 Last clearing of "show interface" counters 5d5h24m
 Queueing strategy: fifo
 Input Statistics:
 0 packets, 0 bytes
 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
 0 Multicasts, 0 Broadcasts
 0 runts, 0 giants, 0 throttles
 0 CRC, 0 overrun, 0 discarded
 Output Statistics:
 0 packets, 0 bytes, 0 underruns
```
0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
0 Multicasts, 0 Broadcasts, 0 Unicasts
0 throttles, 0 discarded, 0 collisions
Rate info (interval 299 seconds):
  Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
  Output 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate
Time since last interface status change: 5d5h23m
!----------output truncated --------------------!
Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show interface status
Port Description Status Speed Duplex Vlan
Te 0/1 Down Auto Auto --
Te 0/2 Down Auto Auto --
Te 0/3 Down Auto Auto --
Te 0/4 Down Auto Auto --
Te 0/5 Down Auto Auto --
Te 0/6 Down Auto Auto --
Te 0/7 Down Auto Auto --
Te 0/8 Up 10000 Mbit Full --
Dell#

Related Commands
show interfaces — displays information on a specific physical interface or virtual interface.

show interfaces switchport

Display only virtual and physical interfaces in Layer 2 mode. This command displays the Layer 2 mode interfaces’ IEEE 802.1Q tag status and VLAN membership.

Syntax
show interfaces switchport [interface | stack-unit stack-unit-number]

Parameters
- **interface** (OPTIONAL) Enter one of the following keywords and slot/port or number information:
  - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
  - Enter the keyword backup to view the backup interface for this interface.
NOTE: This command also enables you to view information corresponding to a range of ports.

- For physical interfaces, you can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces interface-type 1/1 - 4.
- For port-channel interfaces, you can specify multiple ports as port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces port-channel 1 - 4.

stack-unit stack-unit-number (OPTIONAL) Enter the keyword stack-unit then the stack-unit-number. The range is from 0 to 5.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show interfaces switchport command for the following example.

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the interface's type, slot, and port number.</td>
</tr>
<tr>
<td>802.1QTagged</td>
<td>Displays whether if the VLAN tagged (&quot;True&quot;), untagged (&quot;False&quot;), or hybrid (&quot;Hybrid&quot;), which supports both untagged and tagged VLANs by port 13/0.</td>
</tr>
<tr>
<td>Vlan membership</td>
<td>Lists the VLANs to which the interface is a member. Starting with the Dell Networking OS version 7.6.1, this field can display native VLAN membership by port 13/0.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show interfaces switchport
Codes: U - Untagged, T - Tagged
 x - Dotlx untagged, X - Dotlx tagged
 G - GVRP tagged, M - Trunk, H - VSN tagged
 i - Internal untagged, I - Internal tagged, v - VLT
untagged, V - VLT

Name: TenGigabitEthernet 3/2
802.1QTagged: Hybrid
Vlan membership:
 Q Vlans
 U 20
```
T 10
Native VlanId: 20.
Name: TenGigabitEthernet 5/2
802.1QTagged: False
Vlan membership:
Q Vlans
U 1

Name: TenGigabitEthernet 5/3
802.1QTagged: False
Vlan membership:
Q Vlans
U 1

Name: TenGigabitEthernet 5/49 (Port-channel 128)
802.1QTagged: True
Vlan membership:
Q Vlans
G 10

Name: Port-channel 128
802.1QTagged: True
Vlan membership:
Q Vlans
Dell#

Related Commands

- interface — configures a physical interface on the switch.
- show ip interface — displays Layer 3 information about the interfaces.
- show interfaces — displays information on a specific physical interface or virtual interface.
- show interfaces transceiver — displays the physical status and operational status of an installed transceiver. The output also displays the transceiver’s serial number.

show interfaces transceiver

Display the physical status and operational status of an installed transceiver. The output also displays the transceiver’s serial number.

Syntax

```
show interfaces {tengigabitethernet slot/port | fortyGigE slot/port}transceiver
```

Parameters

tengigabitethernet  For a 10G interface, enter the keyword tengigabitethernet then the slot/port information.
NOTE: This command also enables you to view information corresponding to a range of ports. However, for Open Networking (ON) platforms the notation for specifying port range in the command is different from how you specify in non-ON platforms.

- For non-ON platforms, you can specify multiple ports as slot/port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1 - 4`.
- For ON platforms, you can specify multiple ports as slot/port/[subport] - slot/port/[subport]. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as `show interfaces interface-type 1/1/1 - 1/4/1`.

**fortyGigE**

For a 40G interface, enter the keyword `fortyGigE` then the slot/port information.

### Command Modes

- EXEC
- EXEC Privilege

### Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### Usage Information

The following describes the `show interfaces transceiver` command shown in the following example.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx Power measurement type</td>
<td>Output depends on the vendor, typically either &quot;Average&quot; or &quot;OMA&quot; (Receiver optical modulation amplitude).</td>
</tr>
<tr>
<td>Temp High Alarm threshold</td>
<td>Factory-defined setting, typically in Centigrade. Value differs between SFPs and SFP+.</td>
</tr>
<tr>
<td>Voltage High Alarm threshold</td>
<td>Displays the interface index number used by SNMP to identify the interface.</td>
</tr>
<tr>
<td>Bias High Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>TX Power High Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>RX Power High Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Temp Low Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Voltage Low Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Bias Low Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>TX Power Low Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>RX Power Low Alarm threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Temp High Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Voltage High Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Bias High Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>TX Power High Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>RX Power High Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Temp Low Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Voltage Low Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Bias Low Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>TX Power Low Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Power Low Warning threshold</td>
<td>Factory-defined setting. Value can differ between SFP and SFP+.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Current temperature of the SFPs. If this temperature crosses Temp High alarm/warning thresholds, the temperature high alarm/warning flag is set to true.</td>
</tr>
<tr>
<td>Voltage</td>
<td>Current voltage of the SFPs. If this voltage crosses voltage high alarm/warning thresholds, the voltage high alarm/warning flag is set to true.</td>
</tr>
<tr>
<td>Tx Bias Current</td>
<td>Present transmission (Tx) bias current of the SFP. If this crosses bias high alarm/warning thresholds, the TX bias high alarm/warning flag is set to true. If it falls below the low alarm/warning thresholds, the TX bias low alarm/warning flag is set to true.</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Tx Power</strong></td>
<td>Present Tx power of the SFP. If this crosses Tx power alarm/warning thresholds, the Tx power high alarm/warning flag is set to true. If it falls below the low alarm/warning thresholds, the Tx power low alarm/warning flag is set to true.</td>
</tr>
<tr>
<td><strong>Rx Power</strong></td>
<td>Present receiving (Rx) power of the SFP. This value is either average Rx power or OMA. This depends on the Rx Power measurement type displayed above. If this crosses Rx power alarm/warning thresholds, the Rx power high alarm/warning flag is set to true. If it falls below the low alarm/warning thresholds, the Rx power low alarm/warning flag is set to true.</td>
</tr>
<tr>
<td><strong>Data Ready state Bar</strong></td>
<td>This field indicates that the transceiver has achieved power up and data is ready. This is set to true if data is ready to be sent and set to false if data is being transmitted.</td>
</tr>
<tr>
<td><strong>Rx LOS state</strong></td>
<td>This is the digital state of the Rx_LOS output pin. This is set to true if the operating status is down.</td>
</tr>
<tr>
<td><strong>Tx Fault state</strong></td>
<td>This is the digital state of the Tx Fault output pin.</td>
</tr>
<tr>
<td><strong>Rate Select state</strong></td>
<td>This is the digital state of the SFP rate_select input pin.</td>
</tr>
<tr>
<td><strong>RS state</strong></td>
<td>This is the reserved digital state of the pin AS(1) per SFF-8079 and RS(1) per SFF-8431.</td>
</tr>
<tr>
<td><strong>Tx Disable state</strong></td>
<td>If the admin status of the port is down then this flag is set to true.</td>
</tr>
<tr>
<td><strong>Temperature High Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current voltage value displayed above.</td>
</tr>
<tr>
<td><strong>Voltage High Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current Temperature value displayed above.</td>
</tr>
<tr>
<td><strong>Tx Bias High Alarm Flag</strong></td>
<td>This can be either true or false, depending on the present Tx bias current value displayed above.</td>
</tr>
<tr>
<td><strong>Tx Power High Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current Tx bias power value displayed above.</td>
</tr>
<tr>
<td><strong>Rx Power High Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current Rx power value displayed above.</td>
</tr>
<tr>
<td><strong>Temperature Low Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current Temperature value displayed above.</td>
</tr>
<tr>
<td><strong>Voltage Low Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current voltage value displayed above.</td>
</tr>
<tr>
<td><strong>Tx Bias Low Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Tx bias current value displayed above.</td>
</tr>
<tr>
<td><strong>Tx Power Low Alarm Flag</strong></td>
<td>This can be either true or false, depending on the Current Tx power value displayed above.</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Rx Power Low Alarm Flag</td>
<td>This can be either true or false, depending on the Current Rx power value displayed above.</td>
</tr>
<tr>
<td>Temperature High Warning Flag</td>
<td>This can be either true or false, depending on the Current Temperature value displayed above.</td>
</tr>
<tr>
<td>Voltage High Warning Flag</td>
<td>This can be either true or false, depending on the Current Voltage value displayed above.</td>
</tr>
<tr>
<td>Tx Bias High Warning Flag</td>
<td>This can be either true or false, depending on the Tx bias current value displayed above.</td>
</tr>
<tr>
<td>Tx Power High Warning Flag</td>
<td>This can be either true or false, depending on the Current Tx power value displayed above.</td>
</tr>
<tr>
<td>Rx Power High Warning Flag</td>
<td>This can be either true or false, depending on the Current Tx power value displayed above.</td>
</tr>
<tr>
<td>Temperature Low Warning Flag</td>
<td>This can be either true or false, depending on the Current Temperature value displayed above.</td>
</tr>
<tr>
<td>Voltage Low Warning Flag</td>
<td>This can be either true or false, depending on the Current Voltage value displayed above.</td>
</tr>
<tr>
<td>Tx Bias Low Warning Flag</td>
<td>This can be either true or false, depending on the present Tx bias current value displayed above.</td>
</tr>
<tr>
<td>Tx Power Low Warning Flag</td>
<td>This can be either true or false, depending on the Current Tx power value displayed above.</td>
</tr>
<tr>
<td>Rx Power Low Warning Flag</td>
<td>This can be either true or false, depending on the Current Rx power value displayed above.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show interfaces tengigabitethernet 1/1 transceiver
SFP is present.

SFP 0 Serial Base ID fields
SFP 0 Id = 0x03
SFP 0 Ext Id = 0x04
SFP 0 Connector = 0x07
SFP 0 Transciever Code = 0x00 0x00 0x01 0x20 0x40 0x0c 0x05
SFP 0 Encoding = 0x01
SFP 0 BR Nominal = 0x15
SFP 0 Length(9um) Km = 0x00
SFP 0 Length(9um) 100m = 0x00
SFP 0 Length(50um) 10m = 0x1e
SFP 0 Length(62.5um) 10m = 0x0f
SFP 0 Length(Copper) 10m = 0x00
SFP 0 Vendor Rev = A
SFP 0 Laser Wavelength = 850 nm
SFP 0 CheckCodeBase = 0x66
SFP 0 Serial Extended ID fields
SFP 0 Options = 0x00 0x12
SFP 0 BR max= 0
SFP 0 BR min= 0
SFP 0 Vendor SN= P5N1ACE
SFP 0 Datecode = 040528
SFP 0 CheckCodeExt = 0x5b
```
### SFP 1 Diagnostic Information

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx Power measurement type</td>
<td>Average</td>
</tr>
<tr>
<td>Temp High Alarm threshold</td>
<td>95.000°C</td>
</tr>
<tr>
<td>Voltage High Alarm threshold</td>
<td>3.900V</td>
</tr>
<tr>
<td>Bias High Alarm threshold</td>
<td>17.000mA</td>
</tr>
<tr>
<td>TX Power High Alarm threshold</td>
<td>0.631mW</td>
</tr>
<tr>
<td>RX Power High Alarm threshold</td>
<td>1.259mW</td>
</tr>
<tr>
<td>Temp Low Alarm threshold</td>
<td>-25.000°C</td>
</tr>
<tr>
<td>Voltage Low Alarm threshold</td>
<td>2.700V</td>
</tr>
<tr>
<td>Bias Low Alarm threshold</td>
<td>1.000mA</td>
</tr>
<tr>
<td>TX Power Low Alarm threshold</td>
<td>0.067mW</td>
</tr>
<tr>
<td>RX Power Low Alarm threshold</td>
<td>0.010mW</td>
</tr>
</tbody>
</table>

### SFP 1 Temperature High Warning threshold

<table>
<thead>
<tr>
<th>Warning threshold</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp High Warning threshold</td>
<td>90.000°C</td>
</tr>
<tr>
<td>Voltage High Warning threshold</td>
<td>3.700V</td>
</tr>
<tr>
<td>Bias High Warning threshold</td>
<td>14.000mA</td>
</tr>
<tr>
<td>TX Power High Warning threshold</td>
<td>0.631mW</td>
</tr>
<tr>
<td>RX Power High Warning threshold</td>
<td>0.794mW</td>
</tr>
<tr>
<td>Temp Low Warning threshold</td>
<td>-20.000°C</td>
</tr>
<tr>
<td>Voltage Low Warning threshold</td>
<td>2.900V</td>
</tr>
<tr>
<td>Bias Low Warning threshold</td>
<td>2.000mA</td>
</tr>
<tr>
<td>TX Power Low Warning threshold</td>
<td>0.079mW</td>
</tr>
<tr>
<td>RX Power Low Warning threshold</td>
<td>0.016mW</td>
</tr>
</tbody>
</table>

### SFP 1 Temperature and Voltage

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>39.930°C</td>
</tr>
<tr>
<td>Voltage</td>
<td>3.293V</td>
</tr>
<tr>
<td>Tx Bias Current</td>
<td>6.894mA</td>
</tr>
<tr>
<td>Tx Power</td>
<td>0.328mW</td>
</tr>
<tr>
<td>Rx Power</td>
<td>0.000mW</td>
</tr>
</tbody>
</table>

### SFP 1 State and Alarm Flags

<table>
<thead>
<tr>
<th>State or Flag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Ready state Bar</td>
<td>False</td>
</tr>
<tr>
<td>Rx LOS state</td>
<td>True</td>
</tr>
<tr>
<td>Tx Fault state</td>
<td>False</td>
</tr>
<tr>
<td>Rate Select state</td>
<td>False</td>
</tr>
<tr>
<td>RS state</td>
<td>False</td>
</tr>
<tr>
<td>Tx Disable state</td>
<td>False</td>
</tr>
</tbody>
</table>

### SFP 1 Temperature and Alarm Flags

Temperature High Alarm Flag	False
Voltage High Alarm Flag	False
Bias High Alarm Flag	False
TX Power High Alarm Flag	False
RX Power High Alarm Flag	False
Temperature Low Alarm Flag	False
Voltage Low Alarm Flag	False
Bias Low Alarm Flag	False
TX Power Low Alarm Flag	False
RX Power Low Alarm Flag	True

Related Commands

- `interface` — configures a physical interface on the switch.
- `show ip interface` — displays Layer 3 information about the interfaces.
- `show interfaces` — displays information on a specific physical interface or virtual interface.
show inventory — displays the switch type, components (including media), the Dell Networking OS version including hardware identification numbers, and configured protocols.

show range

Display all interfaces configured using the interface range command.

Syntax

show range

Command Modes

INTERFACE RANGE (config-if-range)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell(conf-if-range-te-0/6)#show range
interface tengigabitethernet 0/6
Dell(conf-if-range-te-0/6)#

Related Commands

interface — configures a physical interface on the switch.

show ip interface — displays Layer 3 information about the interfaces.

show interfaces — displays information on a specific physical interface or virtual interface.

shutdown

Disable an interface.

Syntax

shutdown

To activate an interface, use the no shutdown command.

Defaults

The interface is disabled.

Command Modes

INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
**Version**  
8.3.16.1  
Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**  
The `shutdown` command marks a physical interface as unavailable for traffic. To discover if an interface is disabled, use the `show ip interface brief` command. Disabled interfaces are listed as down.

Disabling a VLAN or a port channel causes different behavior. When you disable a VLAN, the Layer 3 functions within that VLAN are disabled. Layer 2 traffic continues to flow. Entering the `shutdown` command on a port channel disables all traffic on the port channel and the individual interfaces within the port channel. To enable a port channel, enter `no shutdown` on the port channel interface and at least one interface within that port channel.

The `shutdown` and `description` commands are the only commands that you can configure on an interface that is a member of a port channel.

**Related Commands**  
`interface port-channel` — creates a port channel interface.

`interface vlan` — creates a VLAN.

`show ip interface` — displays the interface routing status. Add the keyword `brief` to display a table of interfaces and their status.

---

**speed (for 1000/10000/auto interfaces)**

Set the speed for 1000/10000 Base-T Ethernet interfaces. Set both sides of a link to the same speed (1000/10000) or to auto or the link may not come up.

**Syntax**  
```
speed {1000 | 10000 | auto}
```

To return to the default setting, use the `no speed {1000 | 10000 | auto}` command.

**Parameters**

- **1000**  
Enter the keyword `1000` to set the interface's speed to 1000 Mb/s.

- **10000**  
Enter the keyword `10000` to set the interface's speed to 10000 Mb/s. Auto-negotiation is enabled. For more information, refer to `negotiation auto`.

- **auto**  
Enter the keyword `auto` to set the interface to auto-negotiate its speed. Auto-negotiation is enabled. For more information, refer to `negotiation auto`.

**Defaults**  
`auto`
Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Added support for fanned–out 1 Gigabit SFP port.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is found on the 1000/10000 Base-T Ethernet interfaces.

When you enable auto, the system performs an automatic discovery to determine the optics installed and configure the appropriate speed.

When you configure a speed for the 1000/10000 interface, confirm the negotiation auto command setting. Both sides of the link must have auto-negotiation either enabled or disabled. For speed settings of 1000 or auto, the software sets the link to auto-negotiation and you cannot change that setting.

Related Commands

duplex (1000/10000 Interfaces) — configures duplex mode on physical interfaces with the speed set to 10/100.

negotiation auto — enables or disables auto-negotiation on an interface.

If you use an active optical cable (AOC), you can convert the QSFP+ port to a 10 Gigabit SFP+ port or 1 Gigabit SFP port. You can use the speed command to enable the required speed.

stack-unit portmode

Split a single 40G port into 4-10G ports on the switch.

Syntax

```
stack-unit stack-unit-number port number portmode quad
```

Parameters

- **stack-unit**: Enter the stack member unit identifier of the stack member to reset. The range is 0 to 5.

  **NOTE**: The switch commands accept Unit ID numbers from 0 to 5, though the switch supports stacking up to three units only with the Dell Networking OS version 8.3.7.1.

- **number**: Enter the port number of the 40G port to be split. Enter one of the following port numbers for the switch: 48, 52, 56, or 60.
Defaults

Disabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Splitting a 40G port into 4x10G port is supported on standalone and stacked units.

- You cannot use split ports as stack-link to stack a switch.
- The split ports switch unit cannot be a part of any stacked system.
- The unit number with the split ports must be the default (stack-unit 0).
- This setup can be verified using the `show system brief` command. If the unit ID is different than 0, it must be renumbered to 0 before ports are split by using the `stack-unit id renumber 0` command in EXEC mode.

The quad port must be in a default configuration before it can be split into 4x10G ports. The 40G port is lost in the config when the port is split, so be sure that the port is also removed from other L2/L3 feature configurations.

The system must be reloaded after issuing the CLI for the change to take effect.

---

**wavelength**

Set the wavelength for tunable 10–Gigabit SFP+ optics.

**Syntax**

```
wavelength
```

To retain the existing wavelength, use the `no wavelength` command.

**Defaults**

none

**Command Modes**

INTERFACE

**Command History**

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

**Version**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6000, S6000–ON, S5000, S4810, S4820T, S3048–ON, S4048–ON, M I/O Aggregator, FN I/O Module, MXL, C9010, S3100 series, and Z9100-ON.</td>
</tr>
</tbody>
</table>
Usage Information

The wavelength can be configured only on a tunable 10–Gigabit SFP+ optic. The wavelength range is from 1528.3 nm to 1568.77 nm.

If you configure the wavelength on a non-tunable optic, there is no change to the existing wavelength. The configured wavelength is saved in the running configuration and is applicable, when a tunable optic is used.

If you do not configure the wavelength on an inserted tunable optic, the existing wavelength is used.

Example

The following example shows the wavelength set for a tunable 10–Gigabit SFP+ optic:

Related Commands

• show config — displays the interface configuration.

Port Channel Commands

A link aggregation group (LAG) is a group of links that appear to a MAC client as if they were a single link according to IEEE 802.3ad. In the Dell Networking OS, a LAG is referred to as a Port Channel.

• For the switch, the maximum port channel ID is 128 and the maximum members per port channel is 16.

Because each port can be assigned to only one Port Channel, and each Port Channel must have at least one port, some of those nominally available Port Channels might have no function because they could have no members if there are not enough ports installed. In the switch module, those ports could be provided by stack members.

NOTE: The Dell Networking OS implementation of LAG or Port Channel requires that you configure a LAG on both switches manually. For information about Dell Networking OS link aggregation control protocol (LACP) for dynamic LAGs, refer to the Link Aggregation Control Protocol (LACP) chapter. For more information about configuring and using Port Channels, refer to the Dell Networking OS Configuration Guide.

channel-member

Add an interface to the Port Channel, while in INTERFACE PORTCHANNEL mode.

Syntax

channel-member interface

Parameters

interface (OPTIONAL) Enter any of the following keywords and slot/port or number information:

Usage Information

669
For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

**Defaults**
Not configured.

**Command Modes**
INTERFACE PORTCHANNEL

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Use the `interface port-channel` command to access this command.

You cannot add an interface to a Port Channel if the interface contains an IP address in its configuration.

Link MTU and IP MTU considerations for Port Channels are:

- All members must have the same link MTU value and the same IP MTU value.
- The Port Channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the channel members. For example, if the members have a link MTU of 2100 and an IP MTU 2000, the Port Channel's MTU values cannot be higher than 2100 for link MTU or 2000 bytes for IP MTU.

When an interface is removed from a Port Channel with the `no channel-member` command, the interface reverts to its configuration prior to joining the Port Channel.

An interface can belong to only one Port Channel.

You can add up to 16 interfaces to a Port Channel on the switch. The interfaces can be located on different line cards but must be the same physical type and speed (for example, all 10-Gigabit Ethernet interfaces). However, you can combine 100/1000 interfaces and GE interfaces in the same Port Channel.

If the Port Channel contains a mix of interfaces with 100 Mb/s speed and 1000 Mb/s speed, the software disables those interfaces whose speed does not match the speed of the first interface configured and enabled in the Port Channel. If that first interface goes down, the Port Channel does not change its designated speed; disable and re-enable the Port Channel or change the order of the channel members configuration to change the designated speed. If the Port Channel contains a mix of interfaces with 100 Mb/s speed and 1000 Mb/s speed, the software disables those interfaces whose speed does not match the speed of the first interface configured and enabled in the Port Channel. If that first interface goes down, the Port Channel does not change its designated speed; disable and re-enable the Port Channel or change the order of the channel members configuration to change the designated speed. For more information about Port Channels, refer to the *Dell Networking OS Configuration Guide*. 

Interfaces | 670
**Related Commands**
- `description` — assigns a descriptive text string to the interface.
- `interface port-channel` — creates a Port Channel interface.
- `shutdown` — disables/enables the port channel.

**group**

Group two LAGs in a supergroup (“fate-sharing group” or “failover group”).

**Syntax**
```
group group_number port-channel number port-channel number
```

To remove an existing LAG supergroup, use the `no group group_number` command.

**Parameters**
- `group_number` Enter an integer from 1 to 32 that uniquely identifies this LAG fate-sharing group.
- `port-channel number` Enter the keywords `port-channel` then an existing LAG number. Enter this keyword/variable combination twice, identifying the two paired LAGs.

**Defaults**
none

**Command Modes**
PORT-CHANNEL FAILOVER-GROUP (conf-po-failover-grp)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

**Example**
```
Dell(conf)#port-channel failover-group
Dell(conf-po-failover-grp)#group 1 port-channel 1 port-channel 2
Dell(conf-po-failover-grp)#
```

**Related Commands**
- `port-channel failover-group` — accesses PORT-CHANNEL FAILOVER-GROUP mode to configure a LAG failover group.
- `show interfaces port-channel` — displays information on configured Port Channel groups.
interface port-channel

Create a Port Channel interface, which is a link aggregation group (LAG) containing 16 physical interfaces on the MXL switch.

**Syntax**

```
interface port-channel channel-number
```

To delete a Port Channel, use the `no interface port-channel channel-number` command.

**Parameters**

- `channel-number` For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.

**Defaults**

Not configured.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

Port Channel interfaces are logical interfaces and can be either in Layer 2 mode (by using the `switchport` command) or Layer 3 mode (by configuring an IP address). You can add a Port Channel in Layer 2 mode to a VLAN.

A Port Channel can contain both 100/1000 interfaces and GE interfaces. Based on the first interface configured in the Port Channel and enabled, the Dell Networking OS determines if the Port Channel uses 100 Mb/s or 1000 Mb/s as the common speed. For more information, refer to `channel-member`.

If the line card is in a Jumbo mode chassis, you can also configure the `mtu` and `ip mtu` commands. The Link MTU and IP MTU values configured on the channel members must be greater than the Link MTU and IP MTU values configured on the Port Channel interface.

> **NOTE:** In a Jumbo-enabled system, you must configure all members of a Port Channel with the same link MTU values and the same IP MTU values.

**Example**

```
Dell(conf)#int port-channel 2
Dell(conf-if-po-2)#
```

**Related Commands**

- `channel-member` — adds a physical interface to the LAG.
interface — configures a physical interface.
interface vlan — configures a VLAN.
shutdown — disables/enables the port channel.

minimum-links

Configure the minimum number of links in a LAG (Port Channel) that must be in "oper up" status for the LAG to be also in "oper up" status.

Syntax

```
minimum-links number
```

Parameters

- `number`: Enter the number of links in a LAG that must be in "oper up" status. The range is from 1 to 16. The default is 1.

Defaults

1

Command Modes

INTERFACE

Command History

- **Version**
  - **9.9(0.0)**: Introduced on the FN IOM.
  - **9.2(0.0)**: Introduced on the M I/O Aggregator.
  - **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

If you use this command to configure the minimum number of links in a LAG that must be in "oper up" status, the LAG must have at least that number of "oper up" links before it can be declared as up. For example, if the required minimum is four, and only three are up, the LAG is considered down.

port-channel failover-group

To configure a LAG failover group, access PORT-CHANNEL FAILOVER-GROUP mode.

Syntax

```
port-channel failover-group
```

To remove all LAG failover groups, use the no port-channel failover-group command.

Defaults

none

Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This feature groups two LAGs to work in tandem as a supergroup. For example, if one LAG goes down, the other LAG is taken down automatically, providing an alternate path to reroute traffic, avoiding oversubscription on the other LAG. You can use both static and dynamic (LACP) LAGs to configure failover groups. For more information, refer to the Port Channel chapter in the Dell Networking OS Configuration Guide.

Related Command

- **group** — groups two LAGs in a supergroup ("fate-sharing group").
- **show interfaces port-channel** — displays information on configured Port Channel groups.

### show config

Display the current configuration of the selected LAG.

**Syntax**

```
show config
```

**Command Modes**

INTERFACE PORTCHANNEL

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell(conf-if-po-1)#show config
!
interface Port-channel 1
 no ip address
 shutdown
Dell(conf-if-po-1)#
```

### show interfaces port-channel

Display information on configured Port Channel groups.

**Syntax**

```
show interfaces port-channel [channel-number] [brief]
```
Parameters

channel-number For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.

NOTE: This command also enables you to view information corresponding to a range of ports.

- For port-channel interfaces, you can specify multiple ports as port-range. For example, if you want to display information corresponding to all ports between 1 and 4, specify the port range as show interfaces port-channel 1 - 4.

brief (OPTIONAL) Enter the keyword brief to display only the port channel number, the state of the port channel, and the number of interfaces in the port channel.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM and added support to display the interface configurations corresponding to a range of ports..
8.3.16.1 Introduced on the S4820T.

Usage Information

The following describes the show interfaces port-channel command shown in the following example.

Field Description
Port-Channel 1... Displays the LAG's status. In the Example, the status of the LAG's LAG fate-sharing group ("Failover-group") is listed.
Hardware is... Displays the interface’s hardware information and its assigned MAC address.
Port-channel is part... Indicates whether the LAG is part of a LAG fate-sharing group ("Failover-group").
Internet address... States whether an IP address is assigned to the interface. If an IP address is assigned, that address is displayed.
MTU 1554... Displays link and IP MTU.
LineSpeed Displays the interface’s line speed. For a port channel interface, it is the line speed of the interfaces in the port channel.
Members in this... Displays the interfaces belonging to this port channel.
ARP type:... Displays the ARP type and the ARP timeout value for the interface.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last clearing...</td>
<td>Displays the time when the <code>show interfaces</code> counters were cleared.</td>
</tr>
<tr>
<td>Queueing strategy...</td>
<td>States the packet queuing strategy. FIFO means first in first out.</td>
</tr>
<tr>
<td>packets input...</td>
<td>Displays the number of packets and bytes into the interface.</td>
</tr>
<tr>
<td>Input 0 IP packets...</td>
<td>Displays the number of packets with IP headers, VLAN tagged headers, and MPLS headers. The number of packets may not add correctly because a VLAN tagged IP packet counts as both a VLAN packet and an IP packet.</td>
</tr>
<tr>
<td>0 64-byte...</td>
<td>Displays the size of packets and the number of those packets entering that interface. This information is displayed over two lines.</td>
</tr>
<tr>
<td>Received 0...</td>
<td>Displays the type and number of errors or other specific packets received. This information is displayed over three lines.</td>
</tr>
<tr>
<td>Output 0...</td>
<td>Displays the type and number of packets sent out the interface. This information is displayed over three lines.</td>
</tr>
<tr>
<td>Rate information...</td>
<td>Displays the traffic rate information into and out of the interface. Traffic rate is displayed in bits and packets per second.</td>
</tr>
<tr>
<td>Time since...</td>
<td>Displays the time since the last change in the configuration of this interface.</td>
</tr>
</tbody>
</table>

**Example (EtherScale)**

Dell#show interfaces port-channel
Port-channel 1 is down, line protocol is down
Hardware address is 00:1e:c9:f1:00:05, Current address is 00:1e:c9:f1:00:05
Interface index is 1107755009
Minimum number of links to bring Port-channel up is 1
Internet address is not set
Mode of IP Address Assignment : NONE
DHCP Client-ID : lag1001ec9f10005
MTU 1554 bytes, IP MTU 1500 bytes
LineSpeed auto
Members in this channel:
ARP type: ARPA, ARP Timeout 04:00:00
Last clearing of "show interface" counters 03:28:00
Queueing strategy: fifo
Input Statistics:
  0 packets, 0 bytes
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
pkts
  0 Multicasts, 0 Broadcasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
Output Statistics:
  0 packets, 0 bytes, 0 underruns
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
The following describes the `show interfaces port-channel brief` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG</td>
<td>Lists the port channel number.</td>
</tr>
<tr>
<td>Mode</td>
<td>Lists the mode:</td>
</tr>
<tr>
<td></td>
<td>• L3 — for Layer 3</td>
</tr>
<tr>
<td></td>
<td>• L2 — for Layer 2</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the status of the port channel.</td>
</tr>
<tr>
<td></td>
<td>• down — if the port channel is disabled (<code>shutdown</code>)</td>
</tr>
<tr>
<td></td>
<td>• up — if the port channel is enabled (<code>no shutdown</code>)</td>
</tr>
<tr>
<td>Uptime</td>
<td>Displays the age of the port channel in hours:minutes:seconds.</td>
</tr>
<tr>
<td>Ports</td>
<td>Lists the interfaces assigned to this port channel.</td>
</tr>
<tr>
<td>(untitled)</td>
<td>Displays the status of the physical interfaces (up or down).</td>
</tr>
<tr>
<td></td>
<td>• In Layer 2 port channels, an * (asterisk) indicates which interface is the primary port of the port channel. The primary port sends out interface PDU.</td>
</tr>
<tr>
<td></td>
<td>• In Layer 3 port channels, the primary port is not indicated.</td>
</tr>
</tbody>
</table>

Example (brief)

```
Dell#show int po 1 brief
Codes: L - LACP Port-channel

 LAG Mode Status Uptime Ports
 1 L3 down 00:00:00 Te 0/6 (Down)
Dell#
```

Related Commands

- `show lacp` — displays the LACP matrix.
Time Domain Reflectometer (TDR)

TDR is useful for troubleshooting an interface that is not establishing a link; either it is flapping or not coming up at all. TDR detects open or short conditions of copper cables on 100/1000 Base-T modules.

Important Points to Remember

- The interface and port must be enabled (configured — refer to the `interface` command) before running TDR. An error message is generated if you have not enabled the interface.
- The interface on the far-end device must be shut down before running TDR.
- Because TDR is an intrusive test on an interface that is not establishing a link, do not run TDR on an interface that is passing traffic.
- When testing between two devices, do not run the test on both ends of the cable.

tdr-cable-test

Test the condition of copper cables on 100/1000 Base-T modules.

**Syntax**

```
tdr-cable-test interface
```

**Parameters**

- `interface` Enter the keyword `TenGigabitEthernet` then the slot/port information for the 100/1000 Ethernet interface.

**Defaults**

`none`

**Command Modes**

`EXEC`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The interface must be enabled to run the test or an error message is generated:

```
Dell#tdr-cable-test tengigabitethernet 5/2
%Error: Interface is disabled Te 5/2
```

**Related Commands**

- `show tdr` — displays the results of the TDR test.
show tdr

Display the TDR test results.

Syntax

```
show tdr interface
```

Parameters

- **interface**
  
Enter the keyword **TenGigabitEthernet** then the slot/port information for the 100/1000 Ethernet interface.

Defaults

- none

Command Modes

- EXEC

Command History

- **Version 9.9(0.0)**
  
  Introduced on the FN IOM.

- **Version 8.3.16.1**
  
  Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- If the TDR test has not been run, an error message is generated:
  
  ```
 %Error: Please run the TDR test first
  ```

  The following describes the TDR test status.

<table>
<thead>
<tr>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK Status:</td>
<td>TDR test is complete, no fault is detected on the cable, and the test is terminated.</td>
</tr>
<tr>
<td>Terminated</td>
<td></td>
</tr>
<tr>
<td>Length: 92 (+/- 1) meters, Status: Shorted</td>
<td>A short is detected on the cable. The location, in this Example is 92 meters. The short is accurate to plus or minus one meter.</td>
</tr>
<tr>
<td>Length: 93 (+/- 1) meters, Status: Open</td>
<td>An opening is detected on the cable. The location, in this Example is 93 meters. The open is accurate to plus or minus one meter.</td>
</tr>
<tr>
<td>Status: Impedance Mismatch</td>
<td>There is an impedance mismatch in the cables.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show tdr tengigabitethernet 1/7
Time since last test: 00:00:02
 Pair A, Length: OK Status: Terminated
 Pair B, Length: 92 (+/- 1) meters, Status: Short
 Pair C, Length: 93 (+/- 1) meters, Status: Open
 Pair D, Length: 0 (+/- 1) meters, Status: Impedance Mismatch
```

Related Commands

- `tdr-cable-test` — runs the TDR test.
UDP Broadcast

The user datagram protocol (UDP) broadcast feature is a software-based method to forward low throughput (not to exceed 200 pps) IP/UDP broadcast traffic arriving on a physical or VLAN interface.

Important Points to Remember

• Routing information protocol (RIP) is not supported with the UDP Broadcast feature.
• If you configure this feature on an interface using the `ip udp-helper udp-port` command, the `ip directed-broadcast` command becomes ineffective on that interface.
• The existing `show interface` command has been modified to display the configured broadcast address.

debug ip udp-helper

Enable UDP debug and display the debug information on a console.

Syntax

```
debug ip udp-helper
```

To disable debug information, use the `no debug ip udp-helper` command.

Defaults

Debug disabled.

Command Modes

• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#debug ip udp-helper
UDP helper debugging is on
01:20:22: Pkt rcvd on Te 4/1 with IP DA (0xffffffff) will be sent on Te 4/2 Te 4/3 Vlan 3
01:44:54: Pkt rcvd on Te 5/1 is handed over for DHCP processing.
```

Related Commands

- `ip udp-broadcast-address` — configures a UDP IP address for broadcast.
ip udp-helper udp-port — enables the UDP broadcast feature on an interface.

show ip udp-helper — displays the configured UDP helper(s) on all interfaces.

### ip udp-broadcast-address

Configure an IP UDP address for broadcast.

**Syntax**

```
ip udp-broadcast-address address
```

To delete the configuration, use the `no ip udp-broadcast-address address` command.

**Parameters**

- **address**
  
  Enter an IP broadcast address in dotted decimal format (A.B.C.D).

**Defaults**

Not configured.

**Command Modes**

INTERFACE (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Enter an IP broadcast address in dotted decimal format (A.B.C.D).</td>
</tr>
</tbody>
</table>

**Usage Information**

When a UDP broadcast packet is flooded out of an interface, and the outgoing interface is configured using this command, the outgoing packet’s IP destination address is replaced with the configured broadcast address.

**Related Commands**

debug ip udp-helper — enables debug and displays the debug information on a console.

show ip udp-helper — displays the configured UDP helpers on all interfaces.

### ip udp-helper udp-port

Enable the UDP broadcast feature on an interface either for all UDP ports or a specified list of UDP ports.

**Syntax**

```
ip udp-helper udp-port [udp-port-list]
```

To disable the UDP broadcast on a port, use the `no ip udp-helper udp-port [udp-port-list]` command.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>udp-port-list</td>
<td>(OPTIONAL) Enter up to 16 comma-separated UDP port numbers.</td>
</tr>
</tbody>
</table>

**NOTE:** If you do not use this option, all UDP ports are considered by default.

Defaults

none

Command Modes

- INTERFACE (config-if)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- If you configure the `ip helper-address` command and `ip udp-helper udp-port` command, the behavior is that the UDP broadcast traffic with port numbers 67/68 is unicast relayed to the DHCP server per the `ip helper-address` configuration. This occurs regardless if the `ip udp-helper udp-port` command contains port numbers 67/68 or not.

- If you only configure the `ip udp-helper udp-port` command, all the UDP broadcast traffic is flooded, including ports 67/68 traffic if those ports are part of the `udp-port-list`.

Related Commands

- `ip helper-address` — configures the destination broadcast or host address for the DHCP server.
- `debug ip udp-helper` — enables debug and displays the debug information on a console.
- `show ip udp-helper` — displays the configured UDP helpers on all interfaces.

---

**show ip udp-helper**

Display the configured UDP helpers on all interfaces.

Syntax

```
show ip udp-helper
```

Defaults

none

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
**Version** 8.3.16.1

**Description**
Introduced on the MXL 10/40GbE Switch IO Module.

**Example**

Dell#show ip udp-helper
--------------------------------------------------
Port    UDP port list
--------------------------------------------------
Te 1/1   656, 658
Te 1/2   All

**Related Commands**

- ```debug ip udp-helper``` — enables debug and displays the debug information on a console.

- ```ip udp-broadcast-address``` — configures a UDP IP address for broadcast.

- ```ip udp-helper udp-port``` — enables the UDP broadcast feature on an interface either for all UDP ports or a specified list of UDP ports.
The basic IPv4 commands are supported by Dell Networking Operating System (OS).

Topics:
- arp
- arp learn-enable
- arp retries
- arp timeout
- clear arp-cache
- clear host
- clear ip fib stack-unit
- clear ip route
- clear tcp statistics
- debug arp
- debug ip dhcp
- debug ip icmp
- debug ip packet
- ip address
- ip directed-broadcast
- ip domain-list
- ip domain-lookup
- ip domain-name
- ip helper-address
- ip helper-address hop-count disable
- ip host
- ip icmp source-interface
- ipv6 icmp source-interface
- ip max-frag-count
- ip name-server
- ip proxy-arp
- ip route
- ip source-route
- ip tcp initial-time
- show ip tcp initial-time
- ip unreachable
- management route
- show arp
arp

To associate an IP address with a multicast MAC address in the switch when you configure multicast mode of the network load balancing (NLB), use the address resolution protocol (ARP).

**Syntax**

```
arp ip-address multicast-mac-address interface
```

To remove an ARP address, use the `no arp ip-address` command.

**Parameters**

- **ip-address**
  - Enter an IP address in dotted decimal format.

- **multicast-mac-address**
  - Enter a 48-bit hexadecimal address in MAC address in `nn:nn:nn:nn:nn:nn` format for the static MAC address to be used to switch multicast traffic.

- **interface**
  - (OPTIONAL) Enter any of the following keywords and slot/port or number information:
    - For the Management interface, enter the keyword `ManagementEthernet` then the slot/port information. The slot range is from 0 to 1 and the port range is 0.
    - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
    - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
    - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
    - The interface specified here must be one of the interfaces configured using the `{output-range | output} interface` option with the `mac-address-table static` command.

**Defaults**

Not configured.
**Command Modes**

- **CONFIGURATION**

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for association of an IP address with multicast MAC address on the MXL platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

For multicast mode of NLB, to associate an IP address with a multicast MAC address in the switch, use address resolution protocol (ARP) by entering the `arp ip-address multicast-mac-address` command in Global configuration mode. This setting causes the multicast MAC address to be mapped to the cluster IP address for NLB mode of operation of the switch.

You cannot use Class D or Class E IP addresses or zero IP address (0.0.0.0) when creating a static ARP. Zero MAC addresses (00:00:00:00:00:00) are also invalid.

**Related Commands**

- `clear arp-cache` — clears dynamic ARP entries from the ARP table.
- `show arp` — displays the ARP table.

---

**arp learn-enable**

Enable ARP learning using gratuitous ARP.

**Syntax**

```
arp learn-enable
```

**Defaults**

Disabled

**Command Modes**

- **CONFIGURATION**

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

---

**arp retries**

Set the number of ARP retries in case the system does not receive an ARP reply in response to an ARP request.

**Syntax**

```
arp retries number
```

**Parameters**

- `number` specifies the number of retries.
Parameters

number  Enter the number of retries. The range is from 5 to 20. The default is 5.

Defaults  5
Command Modes  CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Retries are 20 seconds apart.

Related Commands

show arp retries — displays the configured number of ARP retries.

arp timeout

Set the time interval for an ARP entry to remain in the ARP cache.

Syntax  

arp timeout minutes

Parameters

minutes  Enter the number of minutes. The range is from 0 to 35790. The default is 240 minutes.

Defaults  240 minutes (4 hours)
Command Modes  INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

show interfaces — displays the ARP timeout value for all available interfaces.

clear arp-cache

Clear the dynamic ARP entries from a specific interface or optionally delete (no-refresh) ARP entries from the content addressable memory (CAM).

Syntax  

clear arp-cache [interface | ip ip-address] [no-refresh]
Parameters

**interface**  (OPTIONAL) Enter the following keywords and slot/port or number information:

- For the Management interface, enter the keyword `ManagementEthernet` then the slot/port information. The slot range is from 0 to 1 and the port range is 0.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

**ip ip-address**  (OPTIONAL) Enter the keyword `ip` then the IP address of the ARP entry you wish to clear.

**no-refresh**  (OPTIONAL) Enter the keywords `no-refresh` to delete the ARP entry from CAM. Or use this option with `interface` or `ip ip-address` to specify which dynamic ARP entries you want to delete.

**NOTE:** Transit traffic may not be forwarded during the period when deleted ARP entries are resolved again and re-installed in CAM. Use this option with extreme caution.

**Command Modes**  EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### clear host

Remove one or all dynamically learned host table entries.

**Syntax**

```
clear host name
```

**Parameters**

**name**  Enter the name of the host to delete. Enter * to delete all host table entries.

**Command Modes**  EXEC Privilege
clear ip fib stack-unit

Clear all forwarding information base (FIB) entries in the specified stack unit (use this command with caution, refer to Usage Information.)

Syntax

```
clear ip fib stack-unit unit-number
```

Parameters

- `unit-number` Enter the number of the stack unit. The range is from 0 to 5.

Command Modes

- EXEC
- EXEC Privilege

Command History

- Version 9.9(0.0) Introduced on the FN IOM.
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To clear Layer 3 CAM inconsistencies, use this command.

⚠️ **CAUTION:** Executing this command causes traffic disruption.

Related Commands

- `show ip fib stack-unit` — shows FIB entries.

clear ip route

Clear one or all routes in the routing table.

Syntax

```
clear ip route {* | ip-address mask}
```

Parameters

- `*` Enter an asterisk (*) to clear all learned IP routes.
- `ip-address mask` Enter a specific IP address and mask in dotted decimal format to clear that IP address from the routing table.
clear tcp statistics

Clear TCP counters.

Syntax: clear tcp statistics

Command Modes: EXEC Privilege

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug arp

View information on ARP transactions.

Syntax: debug arp [interface] [count value]

To stop debugging ARP transactions, use the no debug arp command.

Parameters:

- interface (OPTIONAL) Enter the following keywords and slot/port or number information:
  - For the Management interface, enter the keyword ManagementEthernet then the slot/port information. The slot range is from 0 to 1 and the port range is 0.
  - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

For a VLAN, enter the keyword vlan then a number from 1 to 4094.

count value (OPTIONAL) Enter the keyword count then the count value. The range is from 1 to 65534.

Defaults none

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To stop packets from flooding the user terminal when debugging is turned on, use the count option.

dev bg ip dhcp

Enable debug information for dynamic host configuration protocol (DHCP) relay transactions and display the information on the console.

Syntax debug ip dhcp

To disable debug, use the no debug ip dhcp command.

Defaults Debug disabled

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#debug ip dhcp
00:12:21 : %RELAY-I-PACKET: BOOTP REQUEST (Unicast) received at interface 113.3.3.17 BOOTP Request, hops = 0, XID = 0xbf05140f, secs = 0, hwaddr = 00:60:CF:20:7B:8C, giaddr = 0.0.0.0
00:12:21 : %RELAY-I-BOOTREQUEST: Forwarded BOOTREQUEST for 00:60:CF:20:7B:8C to 14.4.4.2
00:12:26 : %RELAY-I-PACKET: BOOTP REQUEST (Unicast) received at interface 113.3.3.17 BOOTP Request, hops = 0, XID = 0xbf05140f, secs = 5, hwaddr = 00:60:CF:
20:7B:8C, giaddr = 0.0.0.0
00:12:26 : %RELAY-I-BOOTREQUEST: Forwarded BOOTREQUEST for
00:60:CF:20:7B:8C to 14.4.4.2
00:12:40 : %RELAY-I-PACKET: BOOTP REQUEST (Unicast) received at
interface 113.3.3.17 BOOTP
Request, hops = 0, XID = 0xda4f9503, secs = 0, hwaddr = 00:60:CF:
20:7B:8C, giaddr = 0.0.0.0
00:12:40 : %RELAY-I-BOOTREQUEST: Forwarded BOOTREQUEST for
00:60:CF:20:7B:8C to 14.4.4.2
00:12:42 : %RELAY-I-PACKET: BOOTP REPLY (Unicast) received at
interface 14.4.4.1 BOOTP Reply,
hops = 0, XID = 0xda4f9503, secs = 0, hwaddr = 00:60:CF:20:7B:8C,
giaddr = 113.3.3.17
00:12:42 : %RELAY-I-BOOTREPLY: Forwarded BOOTREPLY for 00:60:CF:
20:7B:8C to 113.3.3.254
00:12:42 : %RELAY-I-PACKET: BOOTP REQUEST (Unicast) received at
interface 113.3.3.17 BOOTP
Request, hops = 0, XID = 0xda4f9503, secs = 0, hwaddr = 00:60:CF:
20:7B:8C, giaddr = 0.0.0.0
00:12:42 : %RELAY-I-BOOTREQUEST: Forwarded BOOTREQUEST for
00:60:CF:20:7B:8C to 14.4.4.2
00:12:42 : %RELAY-I-PACKET: BOOTP REPLY (Unicast) received at
interface 14.4.4.1 BOOTP Reply,
hops = 0, XID = 0xda4f9503, secs = 0, hwaddr = 00:60:CF:20:7B:8C,
giaddr = 113.3.3.17
00:12:42 : %RELAY-I-BOOTREPLY: Forwarded BOOTREPLY for 00:60:CF:
20:7B:8C to 113.3.3.254
Dell#

Related Commands
ip helper-address — specifies the destination broadcast or host address for the DHCP server request.

ip helper-address hop-count disable — disables the hop-count increment for the DHCP relay agent.

**debug ip icmp**

View information on the internal control message protocol (ICMP).

**Syntax**

```
debug ip icmp [interface] [count value]
```

To disable debugging, use the no debug ip icmp command.

**Parameters**

- **interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
  - For the Management interface, enter the keyword ManagementEthernet then the slot/port information. The slot range is from 0 to 1 and the port range is 0.
  - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

For a VLAN, enter the keyword vlan then a number from 1 to 4094.

count value  (OPTIONAL) Enter the keyword count then the count value. The range is from 1 to 65534. The default is Infinity.

Command Modes
EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
ICMP: echo request rcvd from src 40.40.40.40
ICMP: src 40.40.40.40, dst 40.40.40.40, echo reply
ICMP: src 40.40.40.40, dst 40.40.40.40, echo reply
ICMP: echo request sent to dst 40.40.40.40
ICMP: echo request rcvd from src 40.40.40.40
ICMP: src 40.40.40.40, dst 40.40.40.40, echo reply
ICMP: src 40.40.40.40, dst 40.40.40.40, echo reply
ICMP: echo request sent to dst 40.40.40.40

Usage Information
To stop packets from flooding the user terminal when debugging is turned on, use the count option.

debug ip packet

View a log of IP packets sent and received.

Syntax
debug ip packet [access-group name] [count value] [interface]  

To disable debugging, use the no debug ip packet [access-group name] [count value] [interface] command.

Parameters

access-group name  Enter the keywords access-group then the access list name (maximum 16 characters) to limit the debug output based on the defined rules in the ACL.

count value  (OPTIONAL) Enter the keyword count then the count value. The range is from 1 to 65534. The default is Infinity.

interface  (OPTIONAL) Enter the following keywords and slot/port or number information:
• For the Management interface, enter the keyword ManagementEthernet then the slot/port information. The slot range is from 0 to 1 and the port range is 0.
• For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
• For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
• For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
• For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes
EXEC Privilege

Command History
Version     Description
9.9(0.0)    Introduced on the FN IOM.
8.3.16.1    Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The following describes the debug ip packet command in the following example.

Field                          Description

s=                             Lists the source address of the packet and the name of the interface (in parentheses) that received the packet.
d=                             Lists the destination address of the packet and the name of the interface (in parentheses) through which the packet is being sent out on the network.
len                             Displays the packet’s length.
sending, rcvd, fragment, sending broad/multicast proto, unroutable
                              The last part of each line lists the status of the packet.
TCP src=                       Displays the source and destination ports, the sequence number, the acknowledgement number, and the window size of the packets in that TCP packets.
UDP src=                       Displays the source and destination ports for the UDP packets.
ICMP type=                     Displays the ICMP type and code.
IP Fragment                    States that it is a fragment and displays the unique number identifying the fragment (ident) and the offset (in 8-byte units) of this fragment (fragment offset) from the beginning of the original datagram.

Example
IP: s=10.1.2.62 (local), d=10.1.2.206 (Ma 0/0), len 54, sending
TCP src=23, dst=40869, seq=2112994894, ack=606901739, win=8191 ACK PUSH
IP: s=10.1.2.206 (Ma 0/0), d=10.1.2.62, len 40, rcvd
TCP src=0, dst=0, seq=0, ack=0, win=0
IP: s=10.1.2.62 (local), d=10.1.2.206 (Ma 0/0), len 226, sending
TCP src=23, dst=40869, seq=2112994896, ack=606901739, win=8192 ACK PUSH
IP: s=10.1.2.216 (Ma 0/0), d=10.1.2.255, len 78, rcvd
UDP src=0, dst=0
IP: s=10.1.2.62 (local), d=10.1.2.3 (Ma 0/0), len 1500, sending fragment
   IP Fragment, Ident = 4741, fragment offset = 0
   ICMP type=0, code=0
IP: s=10.1.2.62 (local), d=10.1.2.3 (Ma 0/0), len 1500, sending fragment
   IP Fragment, Ident = 4741, fragment offset = 1480
IP: s=40.40.40.40 (local), d=224.0.0.5 (Te 1/8), len 64, sending broad/multicast
   proto=89
IP: s=40.40.40.40 (local), d=224.0.0.6 (Te 1/8), len 28, sending broad/multicast
   proto=2
IP: s=0.0.0.0, d=30.30.30.30, len 100, unroutable
   ICMP type=8, code=0
IP: s=0.0.0.0, d=30.30.30.30, len 100, unroutable
   ICMP type=8, code=0

Usage Information
To stop packets from flooding the user terminal when debugging is turned on, use the count option.

The access-group option supports only the equal to (eq) operator in TCP ACL rules. Port operators not equal to (neq), greater than (gt), less than (lt), or range are not supported in access-group option (refer to the following example). ARP packets (arp) and Ether-type (ether-type) are also not supported in the access-group option. The entire rule is skipped to compose the filter.

The access-group option pertains to:

- IP protocol number: from 0 to 255
- Internet control message protocol (icmp) but not the ICMP message type (from 0 to 255)
- Any internet protocol (ip)
- Transmission Control Protocol (tcp) but not on the rst, syn, or urg bits
- User Datagram Protocol (udp)

In the case of ambiguous access control list rules, the debug ip packet access-control command is disabled. A message appears identifying the error (refer to the Example below).

Example (Error Messages)
Dell#debug ip packet access-group test
%Error: port operator GT not supported in access-list debug
%Error: port operator LT not supported in access-list debug
%Error: port operator RANGE not supported in access-list debug
%Error: port operator NEQ not supported in access-list debug

Dell#00:10:45: %RPM0-P:CP
%IPMGR-3-DEBUG_IP_PACKET_ACL_AMBIGUOUS_EXP: Ambiguous rules not supported in access-list debug, access-list debugging is turned
ip address

Assign a primary and secondary IP address to the interface.

Syntax

```
ip address ip-address mask [secondary]
```

To delete an IP address from an interface, use the `no ip address [ip-address]` command.

Parameters

- **ip-address**: Enter an IP address in dotted decimal format.
- **mask**: Enter the mask of the IP address in slash prefix format (for example, /24).
- **secondary**: (OPTIONAL) Enter the keyword `secondary` to designate the IP address as the secondary address.

Defaults

Not configured.

Command Modes

INTERFACE

Command History

- **Version**: 9.9(0.0)
  - Introduced on the FN IOM.
- **Version**: 8.3.16.1
  - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You must be in INTERFACE mode before you add an IP address to an interface. Assign an IP address to an interface prior to entering ROUTER OSPF mode.

ip directed-broadcast

Enables the interface to receive directed broadcast packets.

Syntax

```
ip directed-broadcast
```

To disable the interface from receiving directed broadcast packets, use the `no ip directed-broadcast` command.

Defaults

Disabled (that is, the interface does not receive directed broadcast packets)

Command Modes

INTERFACE
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**ip domain-list**

Configure names to complete unqualified host names.

**Syntax**

```
ip domain-list name
```

To remove the name, use the `no ip domain-list name` command.

**Parameters**

- **name**
  - Enter a domain name to be used to complete unqualified names (that is, incomplete domain names that cannot be resolved).

**Defaults**

Disabled.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To configure a list of possible domain names, configure the `ip domain-list` command up to six times.

If you configure both the `ip domain-name` and `ip domain-list` commands, the software tries to resolve the name using the `ip domain-name` command. If the name is not resolved, the software goes through the list of names configured with the `ip domain-list` command to find a match.

To enable dynamic resolution of hosts, use the following steps:

- specify a domain name server with the `ip name-server` command
- enable DNS with the `ip domain-lookup` command

To view current bindings, use the `show hosts` command. To view a DNS-related configuration, use the `show running-config resolve` command.

**Related Commands**

- `ip domain-name` — specifies a DNS server.
### ip domain-lookup

To address resolution (that is, DNS), enable dynamic host-name.

**Syntax**

```
ip domain-lookup
```

To disable DNS lookup, use the `no ip domain-lookup` command.

**Defaults**

Disabled.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To fully enable DNS, also specify one or more domain name servers with the `ip name-server` command.

The Dell Networking OS does not support sending DNS queries over a VLAN. DNS queries are sent out all other interfaces, including the Management port.

To view current bindings, use the `show hosts` command.

**Related Commands**

- `ip name-server` — specifies a DNS server.
- `show hosts` — Views the current bindings.

### ip domain-name

Configure one domain name for the switch.

**Syntax**

```
ip domain-name name
```

To remove the domain name, use the `no ip domain-name` command.

**Parameters**

- `name`

  Enter one domain name to be used to complete unqualified names (that is, incomplete domain names that cannot be resolved).

**Defaults**

Not configured.
**ip help-address**

Specify the address of a DHCP server so that DHCP broadcast messages can be forwarded when the DHCP server is not on the same subnet as the client.

**Syntax**
```
ip helper-address ip-address
```

To remove a DHCP server address, use the `no ip helper-address` command.

**Parameters**
- `ip-address`: Enter an IP address in dotted decimal format (A.B.C.D).

**Defaults**
Not configured.

**Command Modes**
- INTERFACE

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

You can add multiple DHCP servers by entering the `ip helper-address` command multiple times. If multiple servers are defined, an incoming request is sent simultaneously to all configured servers and the reply is forwarded to the DHCP client.
The Dell Networking OS uses standard DHCP ports, that is UDP ports 67 (server) and 68 (client) for DHCP relay services. It listens on port 67 and if it receives a broadcast, the software converts it to unicast, and forwards to the DHCPP-server with source port=68 and destination port=67.

The server replies with source port=67, destination port=67 and the system forwards to the client with source port=67, destination port=68.

**ip helper-address hop-count disable**

Disable the hop-count increment for the DHCP relay agent.

**Syntax**

```
ip helper-address hop-count disable
```

To re-enable the hop-count increment, use the
```
no ip helper-address hop-count disable
```

**Defaults**

Enabled; the hops field in the DHCP message header is incremented by default.

**Command Modes**

CONFIGURATION

**Command History**

- **Version**
  - **9.9(0.0)** Introduced on the FN IOM.
  - **8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

**Usage Information**

This command disables the incrementing of the hops field when boot requests are relayed to a DHCP server through the Dell Networking OS. If the incoming boot request already has a non-zero hops field, the message is relayed with the same value for hops. However, the message is discarded if the hops field exceeds 16, to comply with the relay agent behavior specified in RFC 1542.

**Related Commands**

- `ip helper-address` — specifies the destination broadcast or host address for DHCP server requests.
- `show running-config` — displays the current configuration and changes from the default values.

**ip host**

Assign a name and IP address to be used by the host-to-IP address mapping table.

**Syntax**

```
ip host name ip-address
```
To remove an IP host, use the `no ip host name [ip-address]` command.

**Parameters**

- **name**: Enter a text string to associate with one IP address.
- **ip-address**: Enter an IP address, in dotted decimal format, to be mapped to the name.

**Defaults**

Not configured.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

---

**ip icmp source-interface**

Enable the ICMP error and unreachable messages to be sent with the source interface IP address, such as the loopback address, instead of the hops of the preceding devices along the network path to be used for easy debugging and diagnosis of network disconnections and reachability problems with IPv4 packets.

**Syntax**

```
ip icmp source-interface interface
```

**Parameters**

- **interface**: Enter one of the following keywords and slot/port or number information:
  - For a Management Ethernet interface, enter the keyword `managementethernet`.
  - For a Loopback interface, enter the keyword `loopback`. The range is from 0 to 16383.
  - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet`.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE`.

**NOTE:** When you configure the capability to enable the loopback IP address to be sent for easy debugging and diagnosis (IP addresses of the devices for which the ICMP source interface is configured), the source IP address of the outgoing ICMP error message is modified, although the packets are not sent out using the configured interface. Because the management interface is configured without any parameters such as the IP address, it is treated to the management interface of the primary unit or the existing unit.
For a VLAN interface, enter the keyword vlan. The range is from 1 to 4094.

**Defaults**
Not configured.

**Command Modes**
CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL platform.</td>
</tr>
</tbody>
</table>

**Usage Information**
You can enable the mechanism to configure the source or the originating interface from which the packet (the device that generates the ICMP error messages) is received by the switch to send the loopback address instead of its source IP address to be used in the ICMP unreachable messages and in the `traceroute` command output. The loopback address must be unique in a particular domain.

In network environments that contain a large number of devices, ranging up to thousands of systems, and with each device configured for equal-cost multipath (ECMP) links, you cannot effectively and optimally use the `traceroute` and `ping` applications to examine the network reachability and identify any broken links for diagnostic purposes. In such cases, if the reply that is obtained from each hop on the network path contains the IP address of the adjacent, neighboring interface from which the packet is received, it is difficult to employ the `ping` and `traceroute` utilities. You can enable the ICMP unreachable messages to contain the loopback address of the source device instead of the previous hop's IP address to be able to easily and quickly identify the device and devices along the path because the DNS server maps the loopback IP address to the hostname and does not translate the IP address of every interface of the switch to the hostname.

**Example**

```
Dell(conf)#ip icmp source-interface tengigabitethernet 0/1
Dell(conf)#
```

### `ipv6 icmp source-interface`

Enable the ICMP error and unreachable messages to be sent with the source interface IP address, such as the loopback address, instead of the hops of the preceding devices along the network path to be used for easy debugging and diagnosis of network disconnections and reachability problems with IPv6 packets.

**Syntax**
```
ipv6 icmp source-interface interface
```

**Parameters**

- **interface**: Enter one of the following keywords and slot/port or number information:
  - For a Management Ethernet interface, enter the keyword `managementethernet`. 

**IPv4 Routing** | 702
Usage Information

You can enable the mechanism to configure the source or the originating interface from which the packet (the device that generates the ICMP error messages) is received by the switch to send the loopback address instead of its source IP address to be used in the ICMP unreachable messages and in the `traceroute` command output. The loopback address must be unique in a particular domain.

In network environments that contain a large number of devices, ranging up to thousands of systems, and with each device configured for equal-cost multipath (ECMP) links, you cannot effectively and optimally use the `traceroute` and `ping` applications to examine the network reachability and identify any broken links for diagnostic purposes. In such cases, if the reply that is obtained from each hop on the network path contains the IP address of the adjacent, neighboring interface from which the packet is received, it is difficult to employ the `ping` and `traceroute` utilities. You can enable the ICMP unreachable messages to contain the loopback address of the source device instead of the previous hop's IP address to be able to easily and quickly identify the device and devices along the path because the DNS server maps the loopback IP address to the hostname and does not translate the IP address of every interface of the switch to the hostname.
**Example**

Dell(conf)#ipv6 icmp source-interface tengigabitethernet 0/1
Dell(conf)#

### ip max-frag-count

Set the maximum number of fragments allowed in one packet for packet re-assembly.

**Syntax**

```
ip max-frag-count count
```

To place no limit on the number of fragments allowed, use the **no ip max-frag-count** command.

**Parameters**

- **count**
  
Enter a number for the number of fragments allowed for re-assembly. The range is from 2 to 256.

**Defaults**

No limit is set on number of fragments allowed.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

To avoid denial of service (DOS) attacks, keep the number of fragments allowed for re-assembly low.

### ip name-server

Enter up to six IPv4 addresses of name servers. The order you enter the addresses determines the order of their use.

**Syntax**

```
ip name-server ipv4-address [ipv4-address2...ipv4-address6]
```

To remove a name server, use the **no ip name-server ip-address** command.

**Parameters**

- **ipv4-address**
  
Enter the IPv4 address, in dotted decimal format, of the name server to be used.

- **ipv4-address2...ipv4-address6**
  
  (OPTIONAL) Enter up to five more IPv4 addresses, in dotted decimal format, of name servers to be used. Separate the addresses with a space.
Defaults
No name servers are configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The system does not support sending DNS queries over a VLAN. DNS queries are sent out on all other interfaces, including the Management port.

ip proxy-arp

Enable proxy ARP on an interface.

Syntax
ip proxy-arp

To disable proxy ARP, use the no ip proxy-arp command.

Defaults
Enabled.

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
show ip interface — displays the interface routing status and configuration.

ip route

Assign a static route to the switch.

Syntax
ip route {destination mask {ip-address | interface [ip-address] | [distance] | [permanent] | tag tag-value}}

To delete a specific static route, use the no ip route destination mask command.

To delete all routes matching a certain route, use the no ip route destination mask command.
Parameters

**destination**
Enter the IP address in dotted decimal format of the destination device.

**mask**
Enter the mask in the slash prefix format (/x) of the destination IP address.

**ip-address**
Enter the IP address of the forwarding router in dotted decimal format.

**interface**
Enter the keyword `interface` then the slot/port number.

- For a Loopback interface, enter the keyword `loopback` then a number from zero (0) to 16383.
- For the null interface, enter the keyword `null` then zero (0).
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

**distance**
(Optional) Enter the value of the distance metric assigned to the route. The range is from 1 to 255.

**permanent**
(Optional) Enter the keyword `permanent` to specify that the route must not be removed even if the interface assigned to that route goes down. The route must be currently active to be installed in the routing table. If you disable the interface, the route is removed from the routing table.

**tag tag-value**
(Optional) Enter the keyword `tag` then a number to assign to the route. The range is from 1 to 4294967295.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Using the following example of a static route: `ip route 33.33.33.0 /24 ten gigabitethernet 0/1 172.31.5.43`

- The software installs a next hop that is not on the directly connected subnet but which recursively resolves to a next hop on the interface’s configured subnet. In the example, if te 0/1 has an ip address on subnet 2.2.2.0 and if 172.31.5.43 recursively resolves to 2.2.2.0, the system installs the static route.
When the interface goes down, the system withdraws the route.
When the interface comes up, the system re-installs the route.
When recursive resolution is “broken,” the system withdraws the route.
When recursive resolution is satisfied, the system re-installs the route.

Related Commands

**show ip route** — views the switch routing table.

### ip source-route

Enable the system to forward IP packets with source route information in the header.

**Syntax**

```plaintext
ip source-route
```

To drop packets with source route information, use the `no ip route-source` command.

**Defaults**

Enabled.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### ip tcp initial-time

Define the wait duration in seconds for the TCP connection to be established.

**Syntax**

```
ip tcp initial-time <8-75>
```

To restore the default behavior, which causes the wait period to be set as eight seconds, use the `no ip tcp initial-time` command.

**Parameters**

```plaintext
<8-75>
```

Wait duration in seconds for the TCP connection to be established.

**Command Modes**

CONFIGURATION
show ip tcp initial-time

Displays the interval that you configured for the device to wait before the TCP connection is attempted to be established.

Syntax

```
show ip tcp initial-time
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

ip unreachable

Enable the generation of internet control message protocol (ICMP) unreachable messages.

Syntax

```
ip unreachable
```

To disable the generation of ICMP messages, use the `no ip unreachable` command.

Defaults

Disabled.

Command Modes

- INTERFACE
management route

Configure a static route that points to the Management interface or a forwarding router.

Syntax

```
management route {ipv4-address}/mask | {forwarding-router-address | managementethernet}
```

To remove a static route, use the `no management route {ipv4-address}/mask | {forwarding-router-address | managementethernet}` command.

Parameters

- `ipv4-address`/mask
  - Enter an IPv4 Address (A.B.C.D) then the prefix-length for the IP address of the management interface.
- `forwarding-router-address`
  - Enter an IPv4 address of a forwarding router.
- `managementethernet`
  - Enter the keyword `managementethernet` for the Management interface.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

Usage Information

When a static route (or a protocol route) overlaps with Management static route, the static route (or a protocol route) is preferred over the Management Static route. Also, Management static routes and the Management Connected prefix are not reflected in the hardware routing tables. Separate routing tables are maintained for IPv4 and IPv6 management routes. This command manages both tables.

Related Commands

- `interface ManagementEthernet` — configures the Management port on the system.
show arp

Display the ARP table.

**Syntax**

```
show arp [interface interface | ip ip-address [mask] | macaddress mac-address [mac-address mask]] [static | dynamic][summary]
```

**Parameters**

- **interface interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
  - For the Management interface, enter the keyword `managementethernet` then the slot/port information.
  - For a Port Channel interface, enter the keyword `port-channel` then a number. The range is from 1 to 128.
  - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
  - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
  - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

- **ip ip-address** (OPTIONAL) Enter the keyword `ip` then an IP address in the dotted decimal format. Enter the optional IP address mask in the slash prefix format (/x).

- **mask**

- **macaddress mac-address** (OPTIONAL) Enter the keyword `macaddress` then a MAC address in nn:nn:nn:nn:nn:nn format. Enter the optional MAC address mask in nn:nn:nn:nn:nn:nn format also.

- **static** (OPTIONAL) Enter the keyword `static` to view entries entered manually.

- **dynamic** (OPTIONAL) Enter the keyword `dynamic` to view dynamic entries.

- **summary** (OPTIONAL) Enter the keyword `summary` to view a summary of ARP entries.

**Command Modes**

```
EXEC Privilege
```

**Command History**

```
Version Description
9.9(0.0) Introduced on the FN IOM.
9.4.0.0 Added usage information for Clear arp-cache.
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```
Usage Information

The following example shows two VLANs that are associated with a private VLAN (PVLAN) (refer to Private VLAN (PVLAN)). If you have entered the 'clear arp-cache' command to remove a large number of ARP entries and the command is still being processed in the background, an error message is displayed as follows if you attempt to enter the 'show arp' command: "Clear arp in-progress. Please try after sometime!"

The following describes the show arp command shown in the following example.

<table>
<thead>
<tr>
<th>Row Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Displays the protocol type.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the IP address of the ARP entry.</td>
</tr>
<tr>
<td>Age(min)</td>
<td>Displays the age (in minutes) of the ARP entry.</td>
</tr>
<tr>
<td>Hardware Address</td>
<td>Displays the MAC address associated with the ARP entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the first two letters of the interfaces type and the slot/port associated with the ARP entry.</td>
</tr>
<tr>
<td>VLAN</td>
<td>Displays the VLAN ID, if any, associated with the ARP entry.</td>
</tr>
<tr>
<td>CPU</td>
<td>Lists which CPU the entries are stored on.</td>
</tr>
</tbody>
</table>

Example

Dell>show arp

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Address</th>
<th>Age(min)</th>
<th>Hardware Address</th>
<th>Interface</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>10.11.8.6</td>
<td>167</td>
<td>00:01:e9:45:00:03</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>10.11.68.14</td>
<td>124</td>
<td>00:01:e9:45:00:03</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>11.12.09.254</td>
<td>0</td>
<td>00:01:e9:45:00:03</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
</tbody>
</table>

Example (Private VLAN)

NOTE: In this example, Line 1 shows community VLAN 200 (in primary VLAN 10) in a PVLAN. Line 2 shows primary VLAN 10.

Dell#show arp

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Address</th>
<th>Age(min)</th>
<th>Hardware Address</th>
<th>Interface</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>5.5.5.1</td>
<td>-</td>
<td>00:01:e8:43:96:5e</td>
<td>Vl 10 pv 200</td>
<td>CP</td>
</tr>
<tr>
<td>Internet</td>
<td>5.5.5.10</td>
<td>-</td>
<td>00:01:e8:44:99:55</td>
<td>Vl 10</td>
<td>CP</td>
</tr>
<tr>
<td>Internet</td>
<td>10.1.2.4</td>
<td>1</td>
<td>00:01:e8:d5:9e:e2</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>10.10.10.4</td>
<td>1</td>
<td>00:01:e8:d5:9e:e2</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>10.16.127.53</td>
<td>1</td>
<td>00:01:e8:d5:9e:e2</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>10.16.134.254</td>
<td>20</td>
<td>00:01:e8:d5:9e:e2</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
<tr>
<td>Internet</td>
<td>133.33.33.4</td>
<td>1</td>
<td>00:01:e8:d5:9e:e2</td>
<td>Ma 0/0</td>
<td>- CP</td>
</tr>
</tbody>
</table>
Usage Information

The following describes the `show arp summary` command shown in the following example.

<table>
<thead>
<tr>
<th>Row Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Entries</td>
<td>Lists the total number of ARP entries in the ARP table.</td>
</tr>
<tr>
<td>Static Entries</td>
<td>Lists the total number of configured or static ARP entries.</td>
</tr>
<tr>
<td>Dynamic Entries</td>
<td>Lists the total number of learned or dynamic ARP entries.</td>
</tr>
<tr>
<td>CPU</td>
<td>Lists which CPU the entries are stored on.</td>
</tr>
</tbody>
</table>

Example (Summary)

```
#show arp summary
TotalEntries Static Entries Dynamic Entries CPU
--
 3 0 3 CP
Dell
```

Related Commands

- `ip local-proxy-arp` — enables/disables Layer 3 communication in secondary VLANs.
- `switchport mode private-vlan` — sets PVLAN mode of the selected port.

show arp retries

Display the configured number of ARP retries.

Syntax

```
show arp retries
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on MXL 10/40GbE Switch IO Module</td>
</tr>
</tbody>
</table>

Related Commands

- `arp retries` — sets the number of ARP retries in case the system does not receive an ARP reply in response to an ARP request.
**show hosts**

View the host table and DNS configuration.

**Syntax**

```
show hosts
```

**Command Modes**

- EXEC
- EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The following describes the `show hosts` command in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default domain...</td>
<td>Displays the domain name (if configured).</td>
</tr>
<tr>
<td>Name/address lookup...</td>
<td>States if DNS is enabled on the system.</td>
</tr>
<tr>
<td></td>
<td>• If DNS is enabled, the Name/Address lookup is domain service.</td>
</tr>
<tr>
<td></td>
<td>• If DNS is not enabled, the Name/Address lookup is static mapping</td>
</tr>
<tr>
<td>Name servers are...</td>
<td>Lists the name servers, if configured.</td>
</tr>
<tr>
<td>Host</td>
<td>Displays the host name assigned to the IP address.</td>
</tr>
<tr>
<td>Flags</td>
<td>Classifies the entry as one of the following:</td>
</tr>
<tr>
<td></td>
<td>• perm — the entry was manually configured and will not time out</td>
</tr>
<tr>
<td></td>
<td>• temp — the entry was learned and will time out after 72 hours of inactivity</td>
</tr>
<tr>
<td></td>
<td>Also included in the flag is an indication of the validity of the route:</td>
</tr>
<tr>
<td></td>
<td>• ok — the entry is valid.</td>
</tr>
<tr>
<td></td>
<td>• ex — the entry expired.</td>
</tr>
<tr>
<td></td>
<td>• ?? — the entry is suspect.</td>
</tr>
<tr>
<td>TTL</td>
<td>Displays the amount of time until the entry ages out of the cache. For dynamically learned entries only.</td>
</tr>
</tbody>
</table>
### show hosts

**Field**
- **Type**
  - Displays IP as the type of entry.
- **Address**
  - Displays the IP addresses assigned to the host.

**Example**

```
Dell#show hosts
Default domain is not set
Name/address lookup uses static mappings
Name servers are not set
Host Flags TTL Type Address
-------- ----- ---- ---- -------
ks (perm, OK) - IP 2.2.2.2
4200-1 (perm, OK) - IP 192.68.69.2
1230-3 (perm, OK) - IP 192.68.99.2
Zr (perm, OK) - IP 192.71.18.2
210-3 (perm, OK) - IP 192.71.23.1
Dell#
```

**Related Commands**
- `traceroute` — views the DNS resolution.
- `ip host` — configures a host.

---

### show ip cam stack-unit

Display CAM entries.

**Syntax**

```
show ip cam stack-unit {0-5} [port-set {pipe-number} | {ip-address mask [longer-prefixes]} detail | member-info | summary]
```

**Parameters**

- **0–5**
  - Enter the stack-unit ID from 0 to 5
- **pipe-number**
  - Enter the number of the Port-Pipe number. The range is from 0 to 0
- **ip-address mask [longer-prefixes]**
  - (OPTIONAL) Enter the IP address and mask of a route to CAM entries for that route only. Enter the keywords longer-prefixes to view routes with a common prefix.
- **detail**
  - Enter the keyword detail to display the group index ID used by the ecmp routes in the CAM.
- **member-info**
  - Enter the keywords member-info to display the group index used by the ecmp, the number of egress ports (members) for the ecmp, and the port details of each member. The detail information under member-info gives the MAC address, VLAN ID, and gateway of every member port of the ecmp.
summary  (OPTIONAL) Enter the keyword summary to view a table listing route prefixes and the total number routes which can be entered in to CAM.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip cam command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Displays the destination route of the index.</td>
</tr>
<tr>
<td>EC</td>
<td>Displays the number of equal cost multipaths (ECMP) available for the default route for non-Jumbo line cards. For Jumbo line cards, displays 0, 1 when ECMP is more than eight.</td>
</tr>
<tr>
<td>CG</td>
<td>Displays 0.</td>
</tr>
<tr>
<td>V</td>
<td>Displays a 1 if the entry is valid and a 0 otherwise.</td>
</tr>
<tr>
<td>C</td>
<td>Displays the CPU bit. 1 indicates that a packet hitting this entry is forwarded to the CP or RP2, depending on Egress port.</td>
</tr>
<tr>
<td>VId</td>
<td>Displays the VLAN ID. If the entry is 0, the entry is not part of a VLAN.</td>
</tr>
<tr>
<td>Mac Addr</td>
<td>Displays the next-hop router’s MAC address.</td>
</tr>
<tr>
<td>Port</td>
<td>Displays the egress interface. Use the second half of the entry to determine the interface. For example, in the entry 17cl CP, the CP is the pertinent portion.</td>
</tr>
<tr>
<td></td>
<td>• CP = control processor</td>
</tr>
<tr>
<td></td>
<td>• Gi = Gigabit Ethernet interface</td>
</tr>
<tr>
<td></td>
<td>• Te = 10–Gigabit Ethernet interface</td>
</tr>
</tbody>
</table>

Example

Dell#show ip cam stack-unit 0 port-set 0 10.10.10.10/32 longer-prefixes

<table>
<thead>
<tr>
<th>Destination</th>
<th>EC</th>
<th>CG</th>
<th>V</th>
<th>C</th>
<th>VId</th>
<th>Mac-Addr</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>00:00:00:00:00:00:00 3f01 CP</td>
<td></td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip cam ecmp-group command shown in the following example.
### Field Description

**Prefix Length**
Displays the prefix-length or mask for the IP address configured on the linecard 0 port pipe 0.

**Current Use**
Displays the number of routes currently configured for the corresponding prefix or mask on the linecard 0 port pipe 0.

**Initial Size**
Displays the CAM size the system allocates for the corresponding mask. The system adjusts the CAM size if the number of routes for the mask exceeds the initial allocation.

---

#### Example (ECMP-Group)

Dell#show ip cam stack-unit 0 po 0 ecmp-group detail

<table>
<thead>
<tr>
<th>Destination</th>
<th>EC</th>
<th>CG</th>
<th>V</th>
<th>C</th>
<th>VId</th>
<th>Mac-Addr</th>
<th>Port ECMP</th>
<th>Group-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>00:01:e8:8a:d6:58</td>
<td>0004</td>
<td>Te 0/3</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:01:e8:8a:d6:58</td>
<td>0009</td>
<td>Te 0/8</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:00:00:00:00:00:00:00</td>
<td>3f01 CP</td>
<td></td>
</tr>
<tr>
<td>2.1.1.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:00:00:00:00:00:00:00</td>
<td>3f01 CP</td>
<td></td>
</tr>
<tr>
<td>1.1.1.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:00:00:00:00:00:00:00</td>
<td>3f01 CP</td>
<td></td>
</tr>
<tr>
<td>2.1.1.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:00:00:00:00:00:00:00</td>
<td>3f01 CP</td>
<td></td>
</tr>
<tr>
<td>100.1.1.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:01:e8:8a:d6:58</td>
<td>0004</td>
<td>Te 0/3</td>
</tr>
<tr>
<td>100.1.1.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:01:e8:8a:d6:58</td>
<td>0009</td>
<td>Te 0/8</td>
</tr>
<tr>
<td>0.0.0.0.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>00:00:00:00:00:00:00:00</td>
<td>3f01 CP</td>
<td></td>
</tr>
</tbody>
</table>

Dell#

#### Example (Member-Info)

Dell#show ip cam stack-unit 0 po 0 ecmp-group member-info detail

<table>
<thead>
<tr>
<th>Group Index</th>
<th>Member Count</th>
<th>Mac-Addr</th>
<th>Port</th>
<th>VLan ID</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>00:01:e8:8a:d6:58</td>
<td>Te 0/3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.1.1.2</td>
<td></td>
<td>00:01:e8:8a:d6:58</td>
<td>Te 0/8</td>
<td>0</td>
<td>2.1.1.2</td>
</tr>
</tbody>
</table>

Dell#

---

### show ip fib stack-unit

View all FIB entries.

**Syntax**

```
show ip fib stack-unit 0-5 [ip-address [mask] [longer-prefixes] | summary]
```

**Parameters**

- **0-5**
  Enter the unit ID, from 0 to 5.

- **ip-address mask**
  (OPTIONAL) Enter the IP address of the network destination to view only information on that destination. Enter the IP address in dotted decimal format (A.B.C.D). Enter the mask in slash prefix format (/X).

- **longer-prefixes**
  (OPTIONAL) Enter the keywords longer-prefixes to view all routes with a common prefix.
summary 

(Optional) Enter the keyword summary to view the total number of prefixes in the FIB.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip fib stack-unit command shown in the following example.

Field           Description
Destination     Lists the destination IP address.
Gateway         Displays either the word "direct" and an interface for a directly connected route or the remote IP address used to forward the traffic.
First-Hop       Displays the first hop IP address.
Mac-Addr        Displays the MAC address.
Port            Displays the egress-port information.
VId             Displays the VLAN ID. If no VLAN is assigned, zero (0) is listed.
EC              Displays the number of ECMP paths.

Example

Dell#show ip fib stack-unit 0
Destination    Gateway     First-Hop  Mac-Addr        Port VId EC
------------------------------------------------------------------
10.10.10.10/32 Direct, Nu 0  0.0.0.0 00:00:00:00:00:00 BLK HOLE 0 0
Dell>

Related Commands

clear ip fib stack-unit — clear FIB entries on a specified stack-unit.

show ip interface

View IP-related information on all interfaces.

Syntax

show ip interface [interface | brief] [configured]
Parameters  

**interface**  

(OPTIONAL) Enter the following keywords and slot/port or number information:

- For a Loopback interface, enter the keyword Loopback then a number from 0 to 16383.
- For the Management interface, enter the keyword ManagementEthernet then zero (0).
- For the Null interface, enter the keyword null then zero (0).
- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a VLAN, enter the keyword vlan then a number from 1 to 4094.

**brief**  

(OPTIONAL) Enter the keyword brief to view a brief summary of the interfaces and whether an IP address is assigned.

**configured**  

(OPTIONAL) Enter the keyword configured to display the physical interfaces with non-default configurations only.

Command Modes  

- EXEC
- EXEC Privilege

Command History  

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information  

The following describes the show ip interface command shown in the following example.

<table>
<thead>
<tr>
<th>Lines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TenGigabitEthernet 0/0</td>
<td>Displays the interface’s type, slot/port, and physical and line protocol status.</td>
</tr>
<tr>
<td>Internet address...</td>
<td>States whether an IP address is assigned to the interface. If an IP address is assigned, that address is displayed.</td>
</tr>
<tr>
<td>IP MTU is...</td>
<td>Displays IP MTU value.</td>
</tr>
<tr>
<td>Inbound access...</td>
<td>Displays the name of the configured incoming access list. If none is configured, the phrase “not set” is displayed.</td>
</tr>
<tr>
<td>Proxy ARP...</td>
<td>States whether proxy ARP is enabled on the interface.</td>
</tr>
<tr>
<td>Split horizon...</td>
<td>States whether split horizon for RIP is enabled on the interface.</td>
</tr>
<tr>
<td>Lines</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Poison Reverse...</td>
<td>States whether poison for RIP is enabled on the interface.</td>
</tr>
<tr>
<td>ICMP redirects...</td>
<td>States if ICMP redirects are sent.</td>
</tr>
<tr>
<td>ICMP unreachables...</td>
<td>States if ICMP unreachable messages are sent.</td>
</tr>
</tbody>
</table>

**Example**

Dell#show ip int te 0/0  
TenGigabitEthernet 0/1 is down, line protocol is down  
Internet address is not set  
IP MTU is 1500 bytes  
Inbound access list is not set  
Proxy ARP is enabled  
Split Horizon is enabled  
Poison Reverse is disabled  
ICMP redirects are not sent  
ICMP unreachables are not sent  

Dell#

**Usage Information**

The following describes the `show ip interface brief` command shown in the following example.

**Fields**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Displays type of interface and the associated slot and port number.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>Displays the IP address for the interface, if configured.</td>
</tr>
<tr>
<td>Ok?</td>
<td>Indicates if the hardware is functioning properly.</td>
</tr>
<tr>
<td>Method</td>
<td>Displays &quot;Manual&quot; if the configuration is read from the saved configuration.</td>
</tr>
<tr>
<td>Status</td>
<td>States whether the interface is enabled (up) or disabled (administratively down).</td>
</tr>
<tr>
<td>Protocol</td>
<td>States whether IP is enabled (up) or disabled (down) on the interface.</td>
</tr>
</tbody>
</table>

**Example (Brief)**

```
Dell#show ip int brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet 1/1 unassigned NO Manual administratively down down
GigabitEthernet 1/2 unassigned YES Manual
GigabitEthernet 1/3 unassigned YES Manual
GigabitEthernet 1/4 unassigned YES Manual
GigabitEthernet 1/5 10.10.10.1 YES Manual
GigabitEthernet 1/6 unassigned NO Manual administratively down down
```
show ip management-route

View the IP addresses assigned to the Management interface.

Syntax

```
show ip management-route [all | connected | summary | static]
```

Parameters

- **all** (OPTIONAL) Enter the keyword `all` to view all IP addresses assigned to all Management interfaces on the switch.
- **connected** (OPTIONAL) Enter the keyword `connected` to view only routes directly connected to the Management interface.
- **summary** (OPTIONAL) Enter the keyword `summary` to view a table listing the number of active and non-active routes and their sources.
- **static** (OPTIONAL) Enter the keyword `static` to view non-active routes also.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip management-route

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2.0/24</td>
<td>ManagementEthernet 0/0</td>
<td>Connected</td>
</tr>
<tr>
<td>172.16.1.0/24</td>
<td>10.1.2.4</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dell#
```

show ip protocols

View information on all routing protocols enabled and active on the switch.

Syntax

```
show ip protocols
```

Command Modes

- EXEC
- EXEC Privilege
show ip route

View information, including how they were learned, about the IP routes on the switch.

Syntax

show ip route [hostname | ip-address [mask] [longer-prefixes] | list prefix-list [process-id | all | connected | static | summary]

Parameters

ip-address

(=OPTIONAL) Specify a name of a device or the IP address of the device to view more detailed information about the route.

mask

(=OPTIONAL) Specify the network mask of the route. Use this parameter with the IP address parameter.

longer-prefixes

(=OPTIONAL) Enter the keywords longer-prefixes to view all routes with a common prefix.

list prefix-list

(=OPTIONAL) Enter the keyword list and the name of a configured prefix list. For more information, refer to the show ip route list command.

process-id

(=OPTIONAL) Specify that only OSPF routes with a certain process ID must be displayed.

c connected

(=OPTIONAL) Enter the keyword connected to view only the directly connected routes.

all

(=OPTIONAL) Enter the keyword all to view both active and non-active routes.
static (OPTIONAL) Enter the keyword static to view only routes the ip route command configures.

summary (OPTIONAL) Enter the keyword summary. For more information, refer to the show ip route summary command.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip route all command in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(undefined)</td>
<td>Identifies the type of route:</td>
</tr>
<tr>
<td></td>
<td>• C = connected</td>
</tr>
<tr>
<td></td>
<td>• S = static</td>
</tr>
<tr>
<td></td>
<td>• R = RIP</td>
</tr>
<tr>
<td></td>
<td>• B = BGP</td>
</tr>
<tr>
<td></td>
<td>• IN = internal BGP</td>
</tr>
<tr>
<td></td>
<td>• EX = external BGP</td>
</tr>
<tr>
<td></td>
<td>• LO = Locally Originated</td>
</tr>
<tr>
<td></td>
<td>• O = OSPF</td>
</tr>
<tr>
<td></td>
<td>• IA = OSPF inter area</td>
</tr>
<tr>
<td></td>
<td>• N1 = OSPF NSSA external type 1</td>
</tr>
<tr>
<td></td>
<td>• N2 = OSPF NSSA external type 2</td>
</tr>
<tr>
<td></td>
<td>• E1 = OSPF external type 1</td>
</tr>
<tr>
<td></td>
<td>• E2 = OSPF external type 2</td>
</tr>
<tr>
<td></td>
<td>• i = IS-IS</td>
</tr>
<tr>
<td></td>
<td>• L1 = IS-IS level-1</td>
</tr>
<tr>
<td></td>
<td>• L2 = IS-IS level-2</td>
</tr>
<tr>
<td></td>
<td>• IA = IS-IS inter-area</td>
</tr>
<tr>
<td></td>
<td>• * = candidate default</td>
</tr>
<tr>
<td></td>
<td>• &gt; = non-active route</td>
</tr>
<tr>
<td></td>
<td>• + = summary routes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination</th>
<th>Identifies the route’s destination IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway</td>
<td>Identifies whether the route is directly connected and on which interface the route is configured.</td>
</tr>
<tr>
<td>Dist/Metric</td>
<td>Identifies if the route has a specified distance or metric.</td>
</tr>
</tbody>
</table>
### Field Description

**Last Change**
Identifies when the route was last changed or configured.

**Example**

```
Dell#show ip route all
```

Codes:
- C - connected
- S - static
- R - RIP
- B - BGP
- IN - internal BGP
- EX - external BGP
- LO - Locally Originated
- O - OSPF
- IA - OSPF inter area
- N1 - OSPF NSSA external type 1
- N2 - OSPF NSSA external type 2
- E1 - OSPF external type 1
- E2 - OSPF external type 2
- i - IS-IS
- L1 - IS-IS level-1
- L2 - IS-IS level-2
- IA - IS-IS inter area
- * - candidate default

Gateway of last resort is not set

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 3.0.0.0/8</td>
<td>via 100.10.10.10, So 2/8</td>
<td>120/1</td>
<td>00:07:12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 100.10.10.0/24</td>
<td>Direct, So 2/8</td>
<td>120/0</td>
<td>00:08:54</td>
</tr>
</tbody>
</table>
```

**Example**

```
Dell#show ip route summary
```

```
Route Source Active Routes Non-active Routes
connected 2 0
static 1 0
Total 3 0
Total 3 active route(s) using 612 bytes
```

```
R1_E600i>show ip route static ?
| Pipe through a command
|<cr>
```

```
R1_E600i>show ip route static
```

```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>*S 0.0.0.0/0</td>
<td>via 10.10.91.9, Te 1/2</td>
<td>1/0</td>
<td>3d2h</td>
</tr>
</tbody>
</table>
```

### show ip route list

Display IP routes in an IP prefix list.

#### Syntax

```
show ip route list prefix-list
```

#### Parameters

- **prefix-list**
  Enter the name of a configured prefix list.

#### Command Modes

- **EXEC**
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip route list test

Codes: C- connected, S - static, R - RIP, B - BGP, IN - internal BGP, EX - external BGP, LO - Locally Originated,
 O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
 N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
 E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1,
 L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default,
 > - non-active route, + - summary route

Gateway of last resort is not set

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 2.1.0.0/24</td>
<td>via 2.1.4.1, Te 4/4</td>
<td>120/2</td>
<td>3d0h</td>
</tr>
<tr>
<td>R 2.1.1.0/24</td>
<td>via 2.1.4.1, Te 4/4</td>
<td>120/2</td>
<td>3d1h</td>
</tr>
<tr>
<td>R 2.1.2.0/24</td>
<td>via 2.1.4.1, Te 4/4</td>
<td>120/1</td>
<td>3d0h</td>
</tr>
<tr>
<td>R 2.1.3.0/24</td>
<td>via 2.1.4.1, Te 4/4</td>
<td>120/1</td>
<td>3d1h</td>
</tr>
<tr>
<td>C 2.1.4.0/24</td>
<td>Direct, Te 4/4</td>
<td>0/0</td>
<td>3d1h</td>
</tr>
</tbody>
</table>
```

Related Commands

- `ip prefix-list` — enters CONFIGURATION-IP PREFIX-LIST mode and configures a prefix list.
- `show ip prefix-list summary` — displays a summary of the configured prefix lists.

show ip route summary

View a table summarizing the IP routes in the switch.

Syntax
```
show ip route summary
```

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

IPv4 Routing | 724
The following describes the show ip route summary shown in the following example.

### Column Heading

**Route Source**
- Identifies how the route is configured in the system.

**Active Routes**
- Identifies the best route if a route is learned from two protocol sources.

**Non-active Routes**
- Identifies the back-up routes when a route is learned by two different protocols. If the best route or active route goes down, the non-active route becomes the best route.

**ospf 100**
- If routing protocols (OSPF, RIP) are configured and routes are advertised, then information on those routes is displayed.

**Total 1388 active...**
- Displays the number of active and non-active routes and the memory usage of those routes. If there are no routes configured in the system, this line does not appear.

### Example

```
Dell>show ip route summary

Route Source Active Routes Non-active Routes
connected 17 0
static 3 0
ospf 100 1368 2
Intra-area: 762 Inter-area: 1 External-1: 600 External-2: 5
Total 1388 2
Total 1388 active route(s) using 222440 bytes
Total 2 non-active route(s) using 128 bytes
Dell>
```

### Related Commands
- `show ip route` — displays information about the routes found in the switch.

---

**show ip traffic**

View IP, ICMP, UDP, TCP and ARP traffic statistics.

**Syntax**

```plaintext
show ip traffic
```  
**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

The following describes the show ip traffic summary shown in the following example.
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown protocol...</td>
<td>No receiver for these packets. Counts packets whose protocol type field is not recognized by the system.</td>
</tr>
<tr>
<td>not a gateway...</td>
<td>Packets can not be routed; the host/network is unreachable.</td>
</tr>
<tr>
<td>security failures...</td>
<td>Counts the number of received unicast/multicast packets that could not be forwarded due to:</td>
</tr>
<tr>
<td></td>
<td>• route not found for unicast/multicast; ingress interfaces do not belong to the destination multicast group</td>
</tr>
<tr>
<td></td>
<td>• destination IP address belongs to reserved prefixes; the host/network is unreachable</td>
</tr>
<tr>
<td>bad options...</td>
<td>Unrecognized IP option on a received packet.</td>
</tr>
<tr>
<td>Frags:</td>
<td>IP fragments received.</td>
</tr>
<tr>
<td>... reassembled</td>
<td>Number of IP fragments that were reassembled.</td>
</tr>
<tr>
<td>... timeouts</td>
<td>Number of times a timer expired on a reassembled queue.</td>
</tr>
<tr>
<td>... too big</td>
<td>Number of invalid IP fragments received.</td>
</tr>
<tr>
<td>... couldn't fragment</td>
<td>Number of packets that could not be fragmented and forwarded.</td>
</tr>
<tr>
<td>...encapsulation failed</td>
<td>Counts packets which could not be forwarded due to ARP resolution failure. The system sends an arp request prior to forwarding an IP packet. If a reply is not received, the system repeats the request three times. These packets are counted in encapsulation failed.</td>
</tr>
<tr>
<td>Rcvd:</td>
<td></td>
</tr>
<tr>
<td>...short packets</td>
<td>The number of bytes in the packet are too small.</td>
</tr>
<tr>
<td>...bad length</td>
<td>The length of the packet was not correct.</td>
</tr>
<tr>
<td>...no port broadcasts</td>
<td>The incoming broadcast/multicast packet did not have any listener.</td>
</tr>
<tr>
<td>...socket full</td>
<td>The applications buffer is full and the incoming packet are dropped.</td>
</tr>
</tbody>
</table>

The F10 Monitoring MIB provides access to the following statistics.

- **IP Statistics: Bcast: Received**: Object = f10BcastPktRecv, OIDs = 1.3.6.1.4.1.6027.3.3.5.1.1
- **IP Statistics: Bcast: Sent**: Object = f10BcastPktSent, OIDs = 1.3.6.1.4.1.6027.3.3.5.1.2
- **IP Statistics: Mcast: Received**: Object = f10McastPktRecv, OIDs = 1.3.6.1.4.1.6027.3.3.5.1.3
- **IP Statistics: Mcast: Sent**: Object = f10McastPktSent, OIDs = 1.3.6.1.4.1.6027.3.3.5.1.4
- **ARP Statistics: Rcvd: Request**: Object = f10ArpReqRecv, OIDs = 1.3.6.1.4.1.6027.3.3.5.2.1
Example

Dell#show ip traffic
IP statistics:
  Rcvd: 10021161 total, 3197480 local destination
  2501 format errors, 390 checksum errors, 0 bad hop count
  0 unknown protocol, 0 not a gateway
  115 security failures, 0 bad options
  Frags: 0 reassembled, 0 timeouts, 0 too big
  0 fragmented, 0 couldn't fragment
  Bcast: 6281 received, 0 sent; Mcast: 500 received, 0 sent
  Sent: 6573260 generated, 0 forwarded
  3830 encapsulation failed, 0 no route

ICMP statistics:
  Rcvd: 0 format errors, 0 checksum errors, 0 redirects, 3 unreachable
  0 echo, 0 echo reply, 0 mask requests, 0 mask replies, 0 quench
  0 parameter, 0 timestamp, 0 info request, 0 other
  Sent: 0 redirects, 1 unreachable, 0 echo, 0 echo reply
  0 mask requests, 0 mask replies, 0 quench, 0 timestamp
  0 info reply, 0 time exceeded, 0 parameter problem

UDP statistics:
  Rcvd: 2938110 total, 14 checksum errors, 1 no port
  0 short packets, 0 bad length, 1883908 no port broadcasts, 0 socket full
  Sent: 329731 total, 1883908 forwarded broadcasts

show tcp statistics

View information on TCP traffic through the switch.

Syntax
  show tcp statistics

Command Modes
  EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
### Usage Information

The following describes the `show tcp statistics cp` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rcvd:</strong></td>
<td>Displays the number and types of TCP packets received by the switch.</td>
</tr>
<tr>
<td>• Total = total packets received</td>
<td></td>
</tr>
<tr>
<td>• no port = number of packets received with no designated port</td>
<td></td>
</tr>
<tr>
<td><strong>0 checksum error...</strong></td>
<td>Displays the number of packets received with the following:</td>
</tr>
<tr>
<td>• checksum errors</td>
<td></td>
</tr>
<tr>
<td>• bad offset to data</td>
<td></td>
</tr>
<tr>
<td>• too short</td>
<td></td>
</tr>
<tr>
<td><strong>329 packets...</strong></td>
<td>Displays the number of packets and bytes received in sequence.</td>
</tr>
<tr>
<td><strong>17 dup...</strong></td>
<td>Displays the number of duplicate packets and bytes received.</td>
</tr>
<tr>
<td><strong>0 partially...</strong></td>
<td>Displays the number of partially duplicated packets and bytes received.</td>
</tr>
<tr>
<td><strong>7 out-of-order...</strong></td>
<td>Displays the number of packets and bytes received out of order.</td>
</tr>
<tr>
<td><strong>0 packets with data after window</strong></td>
<td>Displays the number of packets and bytes received that exceed the switch's window size.</td>
</tr>
<tr>
<td><strong>0 packets after close</strong></td>
<td>Displays the number of packet received after the TCP connection was closed.</td>
</tr>
<tr>
<td><strong>0 window probe packets...</strong></td>
<td>Displays the number of window probe and update packets received.</td>
</tr>
<tr>
<td><strong>41 dup ack...</strong></td>
<td>Displays the number of duplicate acknowledgement packets and acknowledgement packets with data received.</td>
</tr>
<tr>
<td><strong>10184 ack...</strong></td>
<td>Displays the number of acknowledgement packets and bytes received.</td>
</tr>
<tr>
<td><strong>Sent:</strong></td>
<td>Displays the total number of TCP packets sent and the number of urgent packets sent.</td>
</tr>
<tr>
<td><strong>25 control packets...</strong></td>
<td>Displays the number of control packets sent and the number retransmitted.</td>
</tr>
<tr>
<td><strong>11603 data packets...</strong></td>
<td>Displays the number of data packets sent.</td>
</tr>
<tr>
<td><strong>24 data packets retransmitted</strong></td>
<td>Displays the number of data packets resent.</td>
</tr>
<tr>
<td><strong>355 ack..</strong></td>
<td>Displays the number of acknowledgement packets sent and the number of packet delayed.</td>
</tr>
<tr>
<td><strong>0 window probe...</strong></td>
<td>Displays the number of window probe and update packets sent.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
7 Connections initiated... | Displays the number of TCP connections initiated, accepted, and established.
14 Connections closed... | Displays the number of TCP connections closed, dropped.
20 Total rxmt... | Displays the number of times the switch tried to re-send data and the number of connections dropped during the TCP retransmit timeout period.
0 Keepalive... | Lists the number of keepalive packets in timeout, the number keepalive probes and the number of TCP connections dropped during keepalive.

**Example**

```
Dell#show tcp statistics
Rcvd: 9849 Total, 0 no port
 0 checksum error, 0 bad offset, 0 too short
 5735 packets (7919 bytes) in sequence
 20 dup packets (2 bytes)
 0 partially dup packets (0 bytes)
 1 out-of-order packets (0 bytes)
 0 packets (0 bytes) with data after window
 0 packets after close
 0 window probe packets, 0 window update packets
 0 dup ack packets, 0 ack packets with unsend data
 6671 ack packets (152813 bytes)
Sent: 6778 Total, 0 urgent packets
 7 control packets
 6674 data packets (152822 bytes)
 85 ack only packets (5677 delayed)
 0 window probe packets, 0 window update packets
 0 Connections initiated, 7 connections accepted, 7 connections established
 8 Connections closed (including 4 dropped, 0 embryonic dropped)
 12 Total rxmt timeout, 1 connections dropped in rxmt timeout
 26 Keepalive timeout, 25 keepalive probe, 1 Connections dropped in keepalive
Dell#
```

**Related Commands**

- `show ip cam stack-unit` — displays the CAM table.
Internet Protocol Security (IPSec)

Internet protocol security (IPSec) is an end-to-end security scheme for securing IP communications by authenticating and encrypting all packets in a session. Use IPSec between hosts, gateways, or hosts and gateways.

IPSec uses a series of protocol functions to achieve information security:

- **Authentication Headers (AH)** — Connectionless integrity and origin authentication for IP packets.
- **Encapsulating Security Payloads (ESP)** — Confidentiality, authentication, and data integrity for IP packets.
- **Security Associations (SA)** — Algorithm-provided parameters required for AH and ESP protocols.

IPSec capability is available on control (protocol) and management traffic; end-node support is required.

IPSec supports two operational modes: Transport and Tunnel.

- **Transport** is the default mode for IPSec and encrypts only the payload of the packet. Routing information is unchanged.
- **Tunnel mode** is used to encrypt the entire packet, including the routing information in the IP header. Tunnel mode is typically used in creating virtual private networks (VPNs).

Transport mode provides IP packet payload protection using ESP. You can use ESP alone or in combination with AH to provide additional authentication. AH protects data from modification but does not provide confidentiality.

SA is the configuration information that specifies the type of security provided to the IPSec flow. The SA is a set of algorithms and keys used to authenticate and encrypt the traffic flow. The AH and ESP use SA to provide traffic protection for the IPSec flow.

**NOTE:**
Due to performance limitations on the control processor, you cannot enable IPSec on all packets in a communication session.

**Topics:**
- `crypto ipsec transform-set`
- `crypto ipsec policy`
- `management crypto-policy`
- `match`
- `session-key`
- `show crypto ipsec transform-set`
- `show crypto ipsec policy`
- `transform-set`
crypto ipsec transform-set

Create a transform set, or combination of security algorithms and protocols, of cryptos.

Syntax

crypto ipsec transform-set name {ah-authentication {md5|sha1|null} | esp-authentication {md5|sha1|null} | esp-encryption {3des|cbc|des|null}}

To delete a transform set, use the no crypto ipsec transform-set name {ah-authentication {md5|sha1|null} | esp-authentication {md5|sha1|null} | esp-encryption {3des|cbc|des|null}} command.

Parameters

name
Enter the name for the transform set.

ah-authentication
Enter the keywords ah-authentication then the transform type of operation to apply to traffic. The transform type represents the encryption or authentication applied to traffic.

- md5 — Use Message Digest 5 (MD5) authentication.
- sha1 — Use Secure Hash Algorithm 1 (SHA-1) authentication.
- null — Causes an encryption policy configured for the area to not be inherited on the interface.

esp-authentication
Enter the keywords esp-authentication then the transform type of operation to apply to traffic. The transform type represents the encryption or authentication applied to traffic.

- md5 — Use Message Digest 5 (MD5) authentication.
- sha1 — Use Secure Hash Algorithm 1 (SHA-1) authentication.
- null — Causes an encryption policy configured for the area to not be inherited on the interface.

esp-encryption
Enter the keywords esp-encryption then the transform type of operation to apply to traffic. The transform type represents the encryption or authentication applied to traffic.

- 3des — Use 3DES encryption.
- cbc — Use CDC encryption.
- des — Use DES encryption.
- null — Causes an encryption policy configured for the area to not be inherited on the interface.

Defaults

none

Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- Both sides of the link must specify the same transform set.
- You can create up to 64 transform sets.

Example

```
Dell(conf)#int ten 0/4
Dell(conf-if-te-0/4)#ipv6 address 200:1::/64 eui64
Dell(conf)#int ten 0/6
Dell(conf-if-te-0/6)#ipv6 address 801:10::/64 eui64
```

crypto ipsec policy

Create a crypto policy used by ipsec.

Syntax

```
crypto ipsec policy name seq-num ipsec-manual
```

To delete a crypto policy entry, use the `no crypto ipsec policy name seq-num ipsec-manual` command.

Parameters

- `name` Enter the name for the crypto policy set.
- `seq-num` Enter the sequence number assigned to the crypto policy entry.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command creates a crypto policy entry and enters the crypto policy configuration mode for configuring the flow parameters.

Example

```
Dell(conf)#crypto ipsec policy West 10 ipsec-manual
Dell(conf-crypto-policy)#
```
management crypto-policy

Apply the crypto policy to management traffic.

Syntax

management crypto-policy name

To remove the management traffic crypto policy, use the no management crypto-policy name command.

Parameters

name Enter the name for the crypto policy.

Defaults

none

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

match

Match a sequence number to the transmission control protocol (TCP)/user datagram protocol (UDP) packets.

Syntax

match seq-num {tcp | udp} {ipv6 | ip} port-num dest-ip dest-port-num

To remove the match filter for the crypto map, use the no match seq-num command.

Parameters

seq-num Enter the match command sequence number. The range is from 0 to 255.
tcp Enter the keyword tcp to configure a TCP access list filter.
udp Enter the keyword udp to configure a UDP access list filter.
ipv6 Enter the source IPv6 address.
ip Enter the source IPv4 address.
port-num Enter the source port number. The range is from 0 to 65535
dest-ip Enter the destination IP address.
**dest-port-num**
Enter the destination port number. The range is from 0 to 65535.

**Defaults**
none

**Command Modes**
CONFIG-CRYPTO-POLICY

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
UDP is not supported. Only TCP 23 telnet and 21 FTP are supported.

**Example**
```
Dell(conf-crypto-policy)#match 0 tcp a::1 /128 0 a::2 /128 23
Dell(conf-crypto-policy)#match 1 tcp a::1 /128 23 a::2 /128 0
Dell(conf-crypto-policy)#match 2 tcp a::1 /128 0 a::2 /128 21
Dell(conf-crypto-policy)#match 3 tcp a::1 /128 21 a::2 /128 0
Dell(conf-crypto-policy)#match 4 tcp 1.1.1.1 /32 0 1.1.1.2 /32 23
Dell(conf-crypto-policy)#match 5 tcp 1.1.1.1 /32 23 1.1.1.2 /32 0
Dell(conf-crypto-policy)#match 6 tcp 1.1.1.1 /32 0 1.1.1.2 /32 21
Dell(conf-crypto-policy)#match 7 tcp 1.1.1.1 /32 21 1.1.1.2 /32 0
```

**session-key**

Specify the session keys used in the crypto policy entry.

**Syntax**
```
session-key {inbound | outbound} {ah spi hex-key-string | esp spi encrypt hex-key-string auth hex-key-string}
```

To delete the session key information from the crypto policy, use the `no session-key {inbound | outbound} {ah | esp} command.

**Parameters**

- **name**
  Enter the name of the host to delete. Enter * to delete all host table entries.

- **inbound**
  Specify the inbound session key for IPSec.

- **outbound**
  Specify the outbound session key for IPSec.

- **ah**
  Use the AH protocol when you select the AH transform set in the crypto policy.

- **esp**
  Use the ESP protocol when you select the ESP transform set in the crypto policy.

- **spi**
  Enter the security parameter index number.

- **hex-key-string**
  Enter the session key in hex format (a string of 8, 16, or 20 bytes). For DES algorithms, specify at least 16 bytes per key. For SHA algorithms, specify at least 20 bytes per key.
**encrypt**
Indicates the ESP encryption transform set key string.

**auth**
Indicates the ESP authentication transform set key string.

**Defaults**
none

**Command Modes**
CONF-CRYPTO-POLICY

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**
- This command is only available in the ipsec-manual model.
- The key information entry is associated with the global method for enabling clear text or encrypted display in the running config.

---

**show crypto ipsec transform-set**

Display the transform set configuration.

**Syntax**

```
show crypto ipsec transform-set name
```

**Parameters**

- **name**
Enter the name of the transform set.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Example**

```
Dell(conf)#do show crypto ipsec transform-set
Transform-Set Name : ts1
Transform-Set refCnt : 0
AH Transform : md5
ESP Auth Transform :
ESP Encry Transform :
Dell(conf)#
```
show crypto ipsec policy

Display the crypto policy configuration.

Syntax

`show crypto ipsec policy name`

Parameters

- **name**
  
Enter the name for the crypto policy set.

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(conf-crypto-policy)#do show crypto ipsec policy

Policy name : poll
Policy refcount : 0
Sequence Num : 1
SA Mode : IPSEC-MANUAL
Transform-Set Name :
Peer IP Address :
Inbound AH SPI : 0
Inbound ESP Auth SPI : 0
Inbound ESP Encry SPI : 0
Inbound AH Key : [0]:
Inbound ESP Auth Key : [0]:
Inbound ESP Encry Key : [0]:
Outbound AH SPI : 0
Outbound ESP Auth SPI : 0
Outbound ESP Encry SPI : 0
Outbound AH Key : [0]:
Outbound ESP Auth Key : [0]:
Outbound ESP Encry Key : [0]:

Match sequence Num : 2
Protocol type : tcp
IP or IPv6 : IP
Source address : 1.1.1.1
Source mask : /32
Source port : 0
Destination address : 1.1.1.2
Destination mask : /32
Destination port : 23
source-interface name :
source-interface num :

Dell(conf-crypto-policy)#
```
transform-set

Specify the transform set the crypto policy uses.

Syntax

```
transform-set transform-set-name
```

To delete a transform set from the crypto policy, use the `no transform-set transform-set-name` command.

Parameters

- **transform-set-name**: Enter the name for the crypto policy transform set.

Defaults

- none

Command Modes

- CONFIG-CRYPTO-POLICY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
IPv6 Access Control Lists (IPv6 ACLs)

IPv6 ACLs and IPv6 Route Map commands are supported on Dell Networking switch.

NOTE: For IPv4 ACL commands, refer to the Access Control Lists (ACL) chapter.

Important Points to Remember

- Certain platforms require manual CAM usage space allotment. For more information, refer to the cam-acl (Configuration) command.
- Egress IPv6 ACL and IPv6 ACL on the Loopback interface is not supported.
- Reference to an empty ACL permits any traffic.
- ACLs are not applied to self-originated traffic (for example, Control Protocol traffic not affected by IPv6 ACL because the routed bit is not set for Control Protocol traffic and for egress ACLs the routed bit must be set).
- You can use the same access list name for both IPv4 and IPv6 ACLs.
- You can apply both IPv4 and IPv6 ACLs on an interface at the same time.
- You can apply IPv6 ACLs on physical interfaces and a logical interfaces (Port-channel/VLAN).
- Non-contiguous masks are not supported in source or destination addresses in IPv6 ACL entries.
- Because the prefix mask is specified in /x format in IPv6 ACLs, inverse mask is not supported.

Topics:

- IPv6 ACL Commands
- cam-acl
- cam-acl-egress
- ipv6 access-list
- ipv6 control-plane egress-filter
- permit
- permit icmp
- show cam-acl
- show cam-acl-egress

IPv6 ACL Commands

The following commands configure IPv6 ACLs.
cam-acl

Allocate space for IPv6 ACLs.

Syntax

```
cam-acl {default | l2acl 1-10 ipv4acl 1-10 ipv6acl 0-10 ipv4qos 1-10 l2qos 1-10}
```

Parameters

- **default**
  - Use the default CAM profile settings, and set the CAM as follows:
    - L3 ACL (ipv4acl): 6
    - L2 ACL(l2acl): 5
    - IPv6 L3 ACL (ipv6acl): 0
    - L3 QoS (ipv4qos): 1
    - L2 QoS (l2qos): 1

- **l2acl 1-10 ipv4acl 1-10 ipv6acl 0-10 ipv4qos 1-10 l2qos 1-10**
  - Allocate space to support IPv6 ACLs. Enter all of the profiles and a range. Enter the CAM profile name then the amount to be allotted. The total space allocated must equal 13. The ipv6acl range must be a factor of 2.

Command Modes

- **CONFIGURATION**

Command History

- **Version**
  - **9.9(0.0)**: Introduced on the FN IOM.
  - **9.2(0.0)**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- For the new settings to take effect, save the new CAM settings to the startup-config (write-mem or copy run start), then reload the system.
- The total amount of space allowed is 16 FP blocks. System flow requires three blocks and these blocks cannot be reallocated.
- When configuring space for IPv6 ACLs, the total number of Blocks must equal 13.
- Ranges for the CAM profiles are from 1 to 10, except for the ipv6acl profile which is from 0 to 10. The ipv6acl allocation must be a factor of 2 (2, 4, 6, 8, 10).
**cam-acl-egress**

Allocate space for IPv6 egress ACLs.

**Syntax**

```plaintext
cam-acl-egress {default | l2acl 1-4 ipv4acl 1-4 ipv6acl 0-4}
```

**Parameters**

- **default**
  - Use the default CAM profile settings, and set the CAM as follows:
    - L2 ACL (l2acl): 1
    - L3 ACL (ipv4acl): 1
    - IPv6 L3 ACL (ipv6acl): 2

- **l2acl 1-4 ipv4acl 1-4 ipv6acl 0-4**
  - Allocate space to support IPv6 ACLs. Enter all of the profiles and a range. Enter the CAM profile name then the amount to be allotted. The total space allocated must equal 13. The `ipv6acl` range must be a factor of 2.

**Command Modes**

- CONF-CONTEXT

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

- For the new settings to take effect, save the new CAM settings to the startup-config (write-mem or copy run start), then reload the system.

- The total amount of space allowed is 16 FP Blocks. System flow requires three blocks and these blocks cannot be reallocated.

- When configuring space for IPv6 ACLs, the total number of Blocks must equal 13.

- Ranges for the CAM profiles are from 1 to 10, except for the `ipv6acl` profile which is from 0 to 10. The `ipv6acl` allocation must be a factor of 2 (2, 4, 6, 8, 10).

**Example**

```plaintext
Dell#
Dell(conf)#cam-acl-egress ?
default Reset Egress CAM ACL entries to default setting
l2acl Set L2-ACL entries
Dell(conf)#cam-acl-egress l2acl ?
<1-4> Number of FP blocks for l2acl
Dell(conf)#cam-acl-egress l2acl 1 i
ipv4acl Set IPV4-ACL entries
Dell(conf)#cam-acl-egress l2acl 1 ipv4acl 1 ?
ipv6acl Set IPV6-ACL entries
Dell(conf)#cam-acl-egress l2acl 1 ipv4acl 1 ipv6acl ?
```
ipv6 access-list

Configure an access list based on IPv6 addresses or protocols.

Syntax

ipv6 access-list access-list-name cpu-qos {permit | deny} ospfv3

To delete an access list, use the no ipv6 access-list access-list-name command.

Parameters

access-list-name Enter the access list name as a string, up to 140 characters.
cpu-qos Enter the keyword cpu-qos to assign this ACL to control plane traffic only (CoPP).
permit Enter the keyword permit to configure a filter to forward packets meeting this condition.
deny Enter the keyword deny to configure a filter to drop packets meeting this condition.
ospfv3 Specify that this ACL is for OSPFv3 control plane traffic.

Defaults

All access lists contain an implicit "deny any"; that is, if no match occurs, the packet is dropped.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for CoPP for OSPFv3 on the MXL 10/40GbE Switch IO Module.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The number of entries allowed per ACL is hardware-dependent. For detailed specification on entries allowed per ACL, refer to your line card documentation. You can create an IPv6 ACL for control-plane traffic policing for OSPFv3, in addition to the CoPP support for VRRP, BGP, and ICMP that existed in Dell Networking OS releases 9.3(0.0) and earlier.

Related Commands

show config — views the current configuration.
**ipv6 control-plane egress-filter**

Enable egress Layer 3 ACL lookup for IPv6 CPU traffic.

**Syntax**

```
ipv6 control-plane egress-filter
```

**Defaults**

Not enabled.

**Command Modes**

EXEC Privilege

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**permit**

To configure a filter that matches the filter criteria, select an IPv6 protocol number, ICMP, IPv6, TCP, or UDP.

**Syntax**

```
permit {ipv6-protocol-number | icmp | ipv6 | tcp | udp} [count [byte]] [dscp value] [order] [fragments] [log [interval minutes] [threshold-in-msgs [count]]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command syntax if you know the filter's sequence number
- Use the `no permit {ipv6-protocol-number | icmp | ipv6 | tcp | udp}` command

**Parameters**

- **ip-protocol-number**
  - Enter an IPv6 protocol number. The range is from 0 to 255.
- **icmp**
  - Enter the keyword `icmp` to filter internet Control Message Protocol version 6.
- **ipv6**
  - Enter the keyword `ipv6` to filter any internet Protocol version 6.
- **tcp**
  - Enter the keyword `tcp` to filter the Transmission Control protocol.
- **udp**
  - Enter the keyword `udp` to filter the User Datagram Protocol.
- **count**
  - (OPTIONAL) Enter the keyword `count` to count packets the filter processes.
byte  (OPTIONAL) Enter the keyword byte to count bytes the filter processes.

dscp  (OPTIONAL) Enter the keyword dscp to match to the IP DCSCP values.

order  (OPTIONAL) Enter the keyword order to specify the QoS priority for the ACL entry. The range is from 0 to 254 (where 0 is the highest priority and 254 is the lowest; lower-order numbers have a higher priority). If you do not use the keyword order, the ACLs have the lowest order by default (255).

fragments  Enter the keyword fragments to use ACLs to control packet fragments.

log  (OPTIONAL) Enter the keyword log to enable the triggering of ACL log messages.

threshold-in-msgs  (OPTIONAL) Enter the threshold-in-msgs keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the seq, permit, or deny commands. The threshold range is from 1 to 100.

interval minutes  (OPTIONAL) Enter the keyword interval followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor  (OPTIONAL) Enter the keyword monitor when the rule is describing the traffic that you want to monitor and the ACL in which you are creating the rule is applied to the monitored interface.

Defaults  Not configured.

Command Modes  ACCESS-LIST

Command History  

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for logging of ACLs on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
permit icmp

To allow all or specific internet control message protocol (ICMP) messages, configure a filter.

**Syntax**

```
permit icmp {source address mask | any | host ipv6-address}
(destination address | any | host ipv6-address) [message-type]
[count [byte]] | [log] [interval minutes] [threshold-in-msgs [count]] [monitor]
```

To remove this filter, you have two choices:

- Use the `no seq sequence-number` command if you know the filter’s sequence number.
- Use the `no permit icmp {source address mask | any | host ipv6-address} 
(destination address | any | host ipv6-address)` command.

**Parameters**

- **source address**
  Enter the IPv6 address of the network or host from which the packets were sent in the `x:x:x::x` format then the prefix length in the `/x` format. The range is from `/0` to `/128`. The `::` notation specifies successive hexadecimal fields of zero.

- **mask**
  Enter a network mask in `/prefix` format `/x`.

- **any**
  Enter the keyword `any` to specify that all routes are subject to the filter.

- **host ipv6-address**
  Enter the keyword `host` then the IPv6 address of the host in the `x:x:x::x` format. The `::` notation specifies successive hexadecimal fields of zero.

- **destination address**
  Enter the IPv6 address of the network or host to which the packets are sent in the `x:x:x::x` format then the prefix length in the `/x` format. The range is from `/0` to `/128`. The `::` notation specifies successive hexadecimal fields of zero.

- **message-type**
  (OPTIONAL) Enter an ICMP message type, either with the type (and code, if necessary) numbers or with the name of the message type. The range is from 0 to 255 for ICMP type and from 0 to 255 for ICMP code.

- **count**
  (OPTIONAL) Enter the keyword `count` to count packets the filter processes.

- **byte**
  (OPTIONAL) Enter the keyword `byte` to count bytes the filter processes.

- **log**
  (OPTIONAL) Enter the keyword `log` to enable the triggering of ACL log messages.
threshold-in-msgs count

(Optional) Enter the `threshold-in-msgs` keyword followed by a value to indicate the maximum number of ACL logs that can be generated, exceeding which the generation of ACL logs is terminated with the `seq`, `permit`, or `deny` commands. The threshold range is from 1 to 100.

interval minutes

(Optional) Enter the keyword `interval` followed by the time period in minutes at which ACL logs must be generated. The interval range is from 1 to 10 minutes.

monitor

(Optional) Enter the keyword `monitor` to monitor traffic on the monitoring interface specified in the flow-based monitoring session along with the filter operation.

Defaults

By default, 10 ACL logs are generated if you do not specify the threshold explicitly. The default frequency at which ACL logs are generated is five minutes. By default, flow-based monitoring is not enabled.

Command Modes

ACCESS-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added the support for flow-based monitoring on the MXL 10/40GbE Switch IO Module platform</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added the support for logging of ACLs on the MXL 10/40GbE Switch IO Module platform</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information

When the configured maximum threshold is exceeded, generation of logs is stopped. When the interval at which ACL logs are configured to be recorded expires, the subsequent, fresh interval timer is started and the packet count for that new interval commences from zero. If ACL logging was stopped previously because the configured threshold is exceeded, it is re-enabled for this new interval.

If ACL logging is stopped because the configured threshold is exceeded, it is re-enabled after the logging interval period elapses. ACL logging is supported for standard and extended IPv4 ACLs, IPv6 ACLs, and MAC ACLs. You can configure ACL logging only on ACLs that are applied to ingress interfaces; you cannot enable logging for ACLs that are associated with egress interfaces.

You can activate flow-based monitoring for a monitoring session by entering the `flow-based enable` command in the Monitor Session mode. When you enable this capability, traffic with particular flows that are traversing through the ingress and egress interfaces are examined and, appropriate ACLs can be applied in both the ingress and egress direction. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic.
egress traffic. You may specify traffic using standard or extended access-lists. This mechanism copies all incoming or outgoing packets on one port and forwards (mirrors) them to another port. The source port is the monitored port (MD) and the destination port is the monitoring port (MG).

show cam-acl

Show space allocated for IPv6 ACLs.

Syntax

    show cam-acl

Command Modes

    •  EXEC
    •  EXEC Privilege

Command History

    Version     Description
    9.9(0.0)    Introduced on the FN IOM.
    9.2(0.0)    Introduced on the MXL 10/40GbE Switch IO Module.

Example

show cam-acl (non default)
Dell(conf)#cam-acl l2acl 2 ipv4acl 4 ipv6acl 4 ipv4qos 2 l2qos 1
l2pt 0 ipmacacl 0 vman-qos 0 ecfmacl 0
Dell#show cam-acl

-- Chassis Cam ACL --

Current Settings (in block sizes)

1 block = 128 entries

L2Acl          :         2
Ipv4Acl        :         4
Ipv6Acl        :         4
Ipv4Qos        :         2
L2Qos          :         1
L2PT           :         0
IpMacAcl       :         0
VmanQos        :         0
VmanDualQos    :         0
EcfmAcl        :         0
FcoeAcl        :         0
iscsiOptAcl    :         0
ipv4pbr        :         0
vrfv4Acl       :         0
Openflow       :         0
fedgevacl      :         F3940

-- stack-unit 0 --

Current Settings (in block sizes)

1 block = 128 entries

L2Acl          :         2
Ipv4Acl        :         4
Ipv6Acl        :         4
Ipv4Qos        :         2
L2Qos          :         1

IPv6 Access Control Lists (IPv6 ACLs)
show cam-acl-egress

Show information on FP groups allocated for egress ACLs.

Syntax

    show cam-acl-egress

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show cam-acl-egress

```
-- Chassis Egress Cam ACL --
 Current Settings(in block sizes)
 1 block = 256 entries
L2Acl : 1
Ipv4Acl: 1
Ipv6Acl: 2

-- stack-unit 0 --
 Current Settings(in block sizes)
L2Acl : 1
Ipv4Acl: 1
Ipv6Acl: 2
```

Related Commands

- **cam-acl** — configures CAM profiles to support IPv6 ACLs.
This chapter describes IPv6 basic commands.

Topics:

- clear ipv6 fib
- clear ipv6 route
- clear ipv6 mld_host
- ipv6 address autoconfig
- ipv6 address
- ipv6 address eui64
- ipv6 control-plane icmp error-rate-limit
- ipv6 flowlabel-zero
- ipv6 host
- ipv6 name-server
- ipv6 nd dad attempts
- ipv6 nd dns-server
- ipv6 nd prefix
- ipv6 route
- ipv6 unicast-routing
- show ipv6 cam stack-unit
- show ipv6 control-plane icmp
- show ipv6 fib stack-unit
- show ipv6 flowlabel-zero
- show ipv6 interface
- show ipv6 mld_host
- show ipv6 route
- trust ipv6-diffserv

**clear ipv6 fib**

Clear (refresh) all forwarding information base (FIB) entries on a linecard or stack unit.

**Syntax**

```
clear ipv6 fib linecard slot | stack-unit unit-number
```

**Parameters**

- `slot` Enter the slot number to clear the FIB for a linecard.
**clear ipv6 route**

Clear (refresh) all or a specific route from the IPv6 routing table.

**Syntax**

```
clear ipv6 route {* | ipv6-address prefix-length}
```

**Parameters**

- `*` Enter the `*` to clear (refresh) all routes from the IPv6 routing table.
- `ipv6-address prefix-length` Enter the IPv6 address in the `x:x:x:x::x` format then the prefix length in the `/x` format. The range is from `/0` to `/128`.

**Command Modes**

EXEC Privilege

**Command History**

- **Version 9.9(0.0)**
  - Introduced on the FN IOM.
- **Version 9.2(0.0)**
  - Introduced on the MXL 10/40GbE Switch IO Module.

**NOTE:** The `::` notation specifies successive hexadecimal fields of zeros.

---

**clear ipv6 mld_host**

Clear the IPv6 MLD host counters and reset the elapsed time.

**Syntax**

```
clear ipv6 mld_host
```

**Command Modes**

EXEC

**Command History**

- **Version 9.9(0.0)**
  - Introduced on the FN IOM.
ipv6 address autoconfig

Configure IPv6 address auto-configuration for the management interface.

Syntax
ipv6 address autoconfig

To disable the address autoconfig operation on the management interface, use the no ipv6 address autoconfig command.

Default
Disabled

Command Modes
INTERFACE (management interface only)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the Mxl 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- SAA can configure up to two addresses. If any preferred prefix or valid timers time out, the corresponding address are deprecated or removed. If an address is removed due to a time-out, an address from the current unused prefix is used to create a new address. If there are no remaining prefixes, the software waits to receive a new prefix from the RA.
- If auto-configuration is enabled, all IPv6 addresses on that management interface are auto-configured. Manual and auto- configurations are not supported on a single management interface.
- Removing auto-configuration removes all auto-configured IPv6 addresses and the link-local IPv6 address from that management interface.
- IPv6 addresses on a single management interface cannot be members of the same subnet.
- IPv6 secondary addresses on management interfaces across a platform must be members of the same subnet.
- IPv6 secondary addresses on management interfaces should not match the virtual IP address and should not be in the same subnet as the virtual IP.
ipv6 address

Configure an IPv6 address to an interface.

Syntax
ipv6 address {ipv6-address prefix-length}

To remove the IPv6 address, use the no ipv6 address {ipv6-address prefix-length} command.

Parameters

ipv6-address
Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

prefix-length

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

Defaults
none

Command Modes
INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

• If two addresses are configured, delete an existing address before configuring a new address.

• If the last manually-configured global IPv6 address is removed using the "no" form of the command, the link-local IPv6 address is removed automatically.

• IPv6 addresses on a single management interface cannot be members of the same subnet.

• IPv6 secondary addresses on management interfaces across platform must be members of the same subnet.

• IPv6 secondary addresses on management interfaces should not match the virtual IP address and should not be in the same subnet as the virtual IP.

Example

Dell(conf)#interface tengigabitethernet x/x
Dell(conf-if-te-x/x)#ipv6 address ?
X:X:X:X::X IPv6 address
Dell(conf-if-te-x/x)#ipv6 address 2002:1:2::3 ?
<0-128> Prefix length in bits
Dell(conf-if-te-x/x)#ipv6 address 2002:1:2::3 /96 ?
Dell(conf-if-te-x/x)#ipv6 address 2002:1:2::3 /96
Dell(conf-if-te-x/x)#show config
**ipv6 address eui64**

Configure IPv6 EUI64 address configuration on the interface.

**Syntax**

```
ipv6 address {ipv6-address prefix-length} eui64
```

To disable IPv6 EUI64 address autoconfiguration, use the
```
no ipv6 address {ipv6-address prefix-length} eui64
```
command.

**Parameters**

- `ipv6-address`
  - Enter the IPv6 prefix in the `x:x:x:x:x` format then the prefix
  length in the `/x` format. The range is from `/0` to `/128.

  **NOTE:** The `::` notation specifies successive hexadecimal
  fields of zeros.

**Defaults**

`none`

**Command Modes**

`CONFIGURATION`

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

This command allows you to create an EUI64 address based on the specified prefix and
MAC address only. Prefixes may be configured on the interface using the `ipv6 nd prefix` command without creating an EUI64 address.

**Example**

```
Dell(conf)#int ten 0/4
Dell(conf-if-te-0/4)#ipv6 address 200:1::/64 eui64
Dell(conf)#int ten 0/6
Dell(conf-if-te-0/6)#ipv6 address 801:10::/64 eui64
```

**ipv6 control-plane icmp error-rate-limit**

Configure the maximum number of ICMP error packets per second that can be sent per second.

**Syntax**

```
ipv6 control-plane icmp error-rate-limit {1-200}
```

To restore the default value, use the `no ipv6 control-plane icmp error-rate-limit` command.
### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pps</td>
<td>Enter the maximum number of error packets generated per second. The range is from 1 to 200, where 0 disables the rate-limiting.</td>
</tr>
</tbody>
</table>

**Default**: 100 pps

**Command Modes**: CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

### ipv6 flowlabel-zero

Configure system to set the flow label field in the packets to zero.

**Syntax**

```
ipv6 flowlabel-zero
```

To disable the 0 from being set in the field and allow the protocol operations to fill the field, use the `no ipv6 flowlabel-zero` command.

**Default**: Disabled

**Command Modes**: CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

If the flowlabel value is already set for BGP or SSH, the system defaults to the already configured value. All packets on the same connection are considered part of the same flow by the system. For new connections, set the new flowlabel to zero.

### ipv6 host

Assign a name and IPv6 address the host-to-IPv6 address mapping table uses.

**Syntax**

```
ipv6 host name ipv6-address
```

To remove an IP host, use the `no ipv6 host name {ipv6-address}`.
**Parameters**

- **name**: Enter a text string to associate with one IP address.
- **ipv6-address**: Enter the IPv6 address (X:X::X::X) to be mapped to the name.

**Defaults**

Not configured.

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**ipv6 name-server**

Enter up to six IPv6 addresses of name servers. The order you enter the addresses determines the order of their use.

**Syntax**

ipv6 name-server ipv6-address [ipv6-address2... ipv6-address6]

To remove a name server, use the `no ipv6 name-server ipv6-address` command.

**Parameters**

- **ipv6-address**: Enter the IPv6 address (X::X::X::X) of the name server to be used.
  
  **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.

- **ipv6-address2... ipv6-address6**: (OPTIONAL) Enter up to five more IPv6 addresses, in the x:x::x::x format, of name servers to be used. Separate the IPv6 addresses with a space.

**Defaults**

none

**Command Modes**

CONFIGURATION

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

**Usage Information**

You can separately configure both IPv4 and IPv6 domain name servers.
**ipv6 nd dad attempts**

To perform duplicate address detection (DAD) on the management interface, configure the number of neighbor solicitation messages that are sent.

**Syntax**

```plaintext
ipv6 nd dad attempts {number of attempts}
```

To restore the default value, use the `no ipv6 nd dad attempts` command.

**Parameters**

- `number of attempts`
  - Enter the number of attempts to be made to detect a duplicate address. The range is from 0 to 15. Setting the value to 0 disables DAD on the interface.

**Default**

3 attempts

**Command Modes**

- INTERFACE (management interface only)

**Command History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

---

**ipv6 nd dns-server**

Configures Recursive DNS Server (RDNSS) addresses to be distributed via IPv6 router advertisements to an IPv6 device.

**Syntax**

```plaintext
ipv6 nd dns-server {ipv6-RDNSS-address} [lifetime | infinite]
```

To remove the IPv6 RDSS configuration, use `no ipv6 nd dns-server {ipv6-RDNSS-address} [lifetime | infinite]`

**Parameters**

- `ipv6-RDNSS-address`
  - Enter the IPv6 Recursive DNS Server’s (RDNSS) address. You can specify up to 4 IPv6 RDNSS server addresses.

- `lifetime`
  - Enter the lifetime in seconds. The amount of time the IPv6 host can use the IPv6 RDNSS address for name resolution. The range is 0 to 4294967295 seconds. When you specify the maximum lifetime value of 4294967295 or `infinite`, the lifetime does not expire. A value of 0 indicates to the host that the RDNSS address should not be used. You must specify a lifetime using the `lifetime` or `infinite` parameter.
infinite

Enter the keyword infinite to specify that the RDNSS lifetime does not expire.

**Defaults**
Not Configured

**Command Modes**
INTERFACE CONFIG

**Command History**
This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100–ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000–ON.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4810, S4820T, and MXL...</td>
</tr>
</tbody>
</table>

**Usage Information**
Use this command to add, edit, or delete an IPv6 RDNSS address and lifetime value. You can configure up to four IPv6 RDNSS addresses. You must specify a lifetime using the lifetime or infinite parameter.

**Example**

```
ip prefix
```

**ipv6 nd prefix**

Specify which IPv6 prefixes are included in Neighbor Advertisements.

**Syntax**
```
ipv6 nd prefix {ipv6-prefix | prefix-length | default} [no-advertise] | [no-autoconfig] [no-rtr-address] [off-link] [lifetime {valid | infinite} {preferred | infinite}]```

Parameters
- **ipv6-prefix**: Enter an IPv6 prefix.
- **prefix-length**: Enter the prefix then the prefix length. The length range is from 0 to 128.
- **default**: Enter the keyword default to set default parameters for all prefixes.
- **no-advertise**: Enter the keyword no-advertise to prevent the specified prefix from being advertised.
- **no-autoconfig**: Enter the keywords no-autoconfig to disable Stateless Address Autoconfiguration.
- **no-rtr-address**: Enter the keyword no-rtr-address to exclude the full router address from router advertisements (the R bit is not set).
off-link

Enter the keywords off-link to advertise the prefix without stating to recipients that the prefix is either on-link or off-link.

valid-lifetime | infinite

Enter the amount of time that the prefix is advertised, or enter infinite for an unlimited amount of time. The range is from 0 to 4294967295. The default is 2592000. The maximum value means that the preferred lifetime does not expire for the valid-life time parameter.

preferred-lifetime | infinite

Enter the amount of time that the prefix is preferred, or enter infinite for an unlimited amount of time. The range is from 0 to 4294967295. The default is 2592000. The maximum value means that the preferred lifetime and does not expire.

Command Modes

INTERFACE

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

By default, all prefixes configured as addresses on the interface are advertised. This command allows control over the individual parameters per prefix; you can use the default keyword to use the default parameters for all prefixes. If a prefix has been configured with lifetime parameter values, the default values cannot be applied using the ipv6 nd prefix default no-autoconfig command.

ipv6 route

Establish a static IPv6 route.

Syntax

ipv6 route ipv6-address prefix-length (ipv6-address | interface | interface ipv6-address) [distance] [tag value] [permanent]

To remove the IPv6 route, use the no ipv6 route ipv6-address prefix-length (ipv6-address | interface | interface ipv6-address) [distance] [tag value] [permanent] command.

Parameters

ipv6-address Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

prefix-length

interface (OPTIONAL) Enter the following keywords and slot/port or number information:

Command Modes

IPv6 Basics | 757
For a loopback interface, enter the keyword `loopback` then a number from zero (0) to 16383.

For the null interface, enter the keyword `null` then zero (0).

For a port channel interface, enter the keyword `port-channel` then the port channel number. The range is from 1 to 128.

For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

For a tunnel interface, enter the keyword `tunnel` then the tunnel interface number. The range is from 1 to 16383.

For a VLAN interface, enter the keyword `VLAN` then the vlan number. The range is from 1 to 4094.

If you configure a static IPv6 route using an egress interface and enter the `ping` command to reach the destination IPv6 address, the ping operation may not work. Configure the IPv6 route using a next-hop IPv6 address in order for the `ping` command to detect the destination address.

```
ipv6-address
```

(OPTIONAL) Enter the forwarding router IPv6 address in the x:x:x:x::x format.

```
NOTE: The :: notation specifies successive hexadecimal fields of zeros.
```

```
distance
```

(Optional) Enter a number as the metric distance assigned to the route. The range is from 1 to 255.

```
tag value
```

(Optional) Enter the keyword `tag` then a tag value number. The range is from 1 to 4294967295.

```
permanent
```

(Optional) Enter the keyword `permanent` to specify that the route is not to be removed, even if the interface assigned to that route goes down.

```
NOTE: If you disable the interface with an IPv6 address associated with the keyword `permanent`, the route disappears from the routing table.
```

Defaults
none

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

When the interface goes down, the system withdraws the route. The route is re-installed by the system when the interface comes back up. When a recursive resolution is “broken,” the system withdraws the route. The route is re-installed by the system when the recursive resolution is satisfied.

After an IPv6 static route interface is created, if an IP address is not assigned to a peer interface, the peer must be manually pinged to resolve the neighbor information.

Example

```
Dell(conf)#ipv6 route?
X:X:X:X:XXIPv6 prefix x:x::y
Dell(conf)#ipv6 route 44::0 ?
/nnMask in slash format
Dell(conf)#ipv6 route 44::0 /64 ?
X:X:X:X:XXForwarding router’s address
gigabitethernetGigabit Ethernet interface
loopbackLoopback interface
nullNull interface
port-channelPort-Channel interface
tenGigabitethernetTenGigabit Ethernet interface
fortyGigEFortyGigabit Ethernet interface
tunnelTunnel interface
vlanVlan interface
Dell(conf)#ipv6 route 44::0 /64 33::1 ?
<1-255>Distance metric for this route
permanentPermanent route
tagSet tag for this route
Dell(conf)#ipv6 route 44::0 /64 33::1
Dell(conf)#ipv6 route 44::0 /64 tengigabitethernet 0/1 ?
X:X:X:X:XXForwarding router's address
Dell(conf)#ipv6 route 44::0 /64 tengigabitethernet 0/1 66::1
Dell(conf)#
```

Related Commands

- `show ipv6 route` — views the IPv6 configured routes.

ipv6 unicast-routing

Enable IPv6 Unicast routing.

```
Syntax
ipv6 unicast-routing

To disable unicast routing, use the no ipv6 unicast-routing command.
```

Defaults

Enabled

Command Modes

- CONFIGURATION

Command History

```
Version Description
9.9(0.0) Introduced on the FN IOM.
```
Version | Description
---|---
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
Because this command is enabled by default, it does not appear in the running configuration. When you disable unicast routing, the no ipv6 unicast-routing command is included in the running configuration. Whenever unicast routing is disabled or re-enabled, the system generates a syslog message indicating the action.

Disabling unicast routing on a chassis causes the following behavior:

- static and protocol learned routes are removed from RTM and from the CAM; packet forwarding to these routes is terminated
- connected routes and resolved neighbors remain in the CAM and new IPv6 neighbors are still discoverable
- additional protocol adjacencies (OSPFv3 and BGP4) are brought down and no new adjacencies are formed
- the IPv6 address family configuration (under router bgp) is deleted
- IPv6 Multicast traffic continues to flow unhindered

show ipv6 cam stack-unit

Displays the IPv6 CAM entries for the specified stack-unit.

Syntax
```
show ipv6 cam stack-unit unit-number port-set {0-0} [summary | index | ipv6 address]
```

Parameters
- **unit-number**
 - Enter the stack unit’s ID number. The range is from 0 to 5.
- **port-set**
 - Enter the keyword Port Set.
- **summary**
 - (OPTIONAL) Enter the keyword summary to display a table listing network prefixes and the total number prefixes which can be entered into the IPv6 CAM.
- **index**
 - (OPTIONAL) Enter the index in the IPv6 CAM.
- **ipv6-address**
 - Enter the IPv6 address in the x:x:x:x:x/x format to display networks that have more specific prefixes. The range is from /0 to /128.

Defaults
none

Command Modes
- EXEC
- EXEC Privilege

NOTE: The :: notation specifies successive hexadecimal fields of zeros.
show ipv6 control-plane icmp

Displays the status of the icmp control-plane setting for the error eate limit setting.

Syntax
show ipv6 control-plane icmp

Default
100

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
ipv6 flowlabel-zero — Configure IPv6 address auto-configuration for the management interface.

show ipv6 fib stack-unit

View all FIB entries.

Syntax
show ipv6 fib stack-unit unit-number [summary | ipv6-address]

Parameters

- **slot-number**
 - Enter the number of the stack unit. The range is from 0 to 5.

- **summary**
 - (OPTIONAL) Enter the keyword summary to view a summary of entries in IPv6 cam.
Enter the IPv6 address in the x:x:x:x:n format to display networks that have more specific prefixes. The range is from /0 to /128.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Host tables are not stored in CAM tables. Entries for camIndex displays as zero (0) on the show ipv6 fib stack-unit output for neighbor entries, such as address resolution protocol (ARP) entries.

show ipv6 flowlabel-zero

Display the flow label zero setting.

Syntax

```
show ipv6 flowlabel-zero
```

Default

Disabled

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- ipv6 nd dad attempts — Configure system to set the flow label field in the packets to zero.

show ipv6 interface

Display the status of interfaces configured for IPv6.

Syntax

```
show ipv6 interface interface [brief] [configured] [gigabitethernet slot | slot/port] [linecard slot-number] [loopback
```

IPv6 Basics | 762
interface-number [managementethernet slot/port] [port-channel number] [tengigabitethernet slot | slot/port] [fortyGigE slot | slot/port] [vlan vlan-id]

Parameters

- **interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword `Loopback` then a number from 0 to 16383.
 - For the Null interface, enter the keyword `null` then zero (0).
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For stacking, enter the keywords `stack-unit` then the stack-unit ID.
 - For a tunnel interface, enter the keyword `tunnel` then the tunnel ID.
 - For a VLAN interface, enter the keyword `VLAN`.
 - For a port channel interface, enter the keywords `port-channel`.
 - **brief** (OPTIONAL) View a summary of IPv6 interfaces.
 - **configured** (OPTIONAL) View information on all IPv6 configured interfaces.
 - **gigabitethernet** (OPTIONAL) View information for an IPv6 gigabitethernet interface.
 - **linecard slot/port** (OPTIONAL) View information for a specific IPv6 linecard or stack-unit. The range is 0 to 11.
 - **managementethernet slot/port** (OPTIONAL) View information on an IPv6 Management port. Enter the slot number (0-1) and port number zero (0).
 - **loopback** (OPTIONAL) View information for IPv6 Loopback interfaces.
 - **port-channel** (OPTIONAL) View information for IPv6 port channels.
 - **tengigabitethernet** (OPTIONAL) View information for an IPv6 tengigabitethernet interface.
 - **fortyGigE** (OPTIONAL) View information for an IPv6 fortygigabitethernet interface.
 - **vlan** (OPTIONAL) View information for IPv6 VLANs.

Defaults

`none`

Command Modes

- EXEC
- EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The Management port is enabled by default (no shutdown). If necessary, use the ipv6 address command to assign an IPv6 address to the Management port.

Example

```plaintext
Dell#show ipv6 int te 0/2
TenGigabitEthernet 0/2 is up, line protocol is up
IPv6 is enabled
Link Local address: fe80::201:e8ff:fea7:497e
Global Unicast address(es):
  100::2, subnet is 100::/64 (MANUAL)
  Remaining lifetime: infinite
Global Anycast address(es):
Joined Group address(es):
  ff02::1
  ff02::2
  ff02::1:ff00:2
  ff02::1:ffa7:497e
ND MTU is 0
ICMP redirects are not sent
DAD is enabled, number of DAD attempts: 3
ND reachable time is 39610 milliseconds
ND base reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 198 to 600 seconds
ND router advertisements live for 1800 seconds
ND advertised hop limit is 64
IPv6 hop limit for originated packets is 64
```

Example (Managementethernet)

```plaintext
Dell#show ipv6 int man 0/0
ManagementEthernet 0/0 is up, line protocol is up
IPv6 is enabled
Link Local address: fe80::201:e8ff:fea7:497e
Global Unicast address(es):
  Actual address is 300::1, subnet is 300::/64 (MANUAL)
  Remaining lifetime: infinite
  Virtual-IP IPv6 address is not set
Global Anycast address(es):
Joined Group address(es):
  ff02::1
  ff02::1:ff00:1
  ff02::1:ffa7:497e
ND MTU is 0
ICMP redirects are not sent
DAD is enabled, number of DAD attempts: 3
ND reachable time is 20410 milliseconds
ND base reachable time is 30000 milliseconds
ND retransmit interval is 1000 milliseconds
ND hop limit is 64
```

Example (Brief)

```plaintext
Dell#show ipv6 int brief
TenGigabitEthernet 0/2 [administratively down/down]
  fe80::201:e8ff:fea7:497e
```
Example (tunnel)
Dell#show ipv6 int tun 1
Tunnel 1 is up, line protocol is up
IPV6 is enabled
Link Local address: fe80::201:e8ff:fea7:497e
Global Unicast address(es):
 400::1, subnet is 400::/64 (MANUAL)
 Remaining lifetime: infinite
Global Anycast address(es):
Joined Group address(es):
 ff02::1
 ff02::1:ff00:1
 ff02::1:ffa7:497e
ND MTU is 0
ICMP redirects are not sent
DAD is enabled, number of DAD attempts: 3
ND reachable time is 20410 milliseconds
ND base reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND router advertisements are sent every 198 to 600 seconds
ND router advertisements live for 1800 seconds
ND advertised hop limit is 64
IPv6 hop limit for originated packets is 64

show ipv6 mld_host

Display the IPv6 MLD host counters.

Syntax
show ipv6 mld_host

Command Modes
EXEC

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The following describes the show ipv6 mld-host command shown in the following example.
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid MLD Packets</td>
<td>The total number of packets received and sent from the last time the elapsed time was cleared.</td>
</tr>
<tr>
<td>Reports</td>
<td>The total number of reports (queries and unsolicited reports generated from joins or leaves) that have been received or sent.</td>
</tr>
<tr>
<td>Leaves</td>
<td>The number of Multicast leaves that have been sent.</td>
</tr>
<tr>
<td>MLDv1 queries</td>
<td>The number of MLDv1 queries that have been received.</td>
</tr>
<tr>
<td>MLDv2 queries</td>
<td>The number of MLDv2 queries that have been received.</td>
</tr>
<tr>
<td>Malformed Packets</td>
<td>The number of MLDv1 and MLDv2 packets that do not match the requirement for a valid MLD packet.</td>
</tr>
</tbody>
</table>

Example

MLD Host Traffic Counters
Elapsed time since counters cleared: 00:28:33:52

<table>
<thead>
<tr>
<th>Field</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid MLD Packets</td>
<td>97962</td>
<td>18036</td>
</tr>
<tr>
<td>Reports</td>
<td>79962</td>
<td>18034</td>
</tr>
<tr>
<td>Leaves</td>
<td>----</td>
<td>0</td>
</tr>
<tr>
<td>MLDv2 Queries</td>
<td>18000</td>
<td>----</td>
</tr>
<tr>
<td>MLDv1 Queries</td>
<td>0</td>
<td>----</td>
</tr>
</tbody>
</table>

Errors:
Malformed Packets: 4510

show ipv6 route

Displays the IPv6 routes.

Syntax

```
show ipv6 route [ipv6-address prefix-length] [hostname] [all] [bgp as number] [connected] [isis tag] [list prefix-list name] [ospf process-id] [rip] [static] [summary]
```

Parameters

- **ipv6-address**
 - (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.

- **hostname**
 - (OPTIONAL) View information for this IPv6 routes with Host Name.

- **all**
 - (OPTIONAL) View information for all IPv6 routes.

- **bgp**
 - (OPTIONAL) View information for all IPv6 BGP routes.

- **connected**
 - (OPTIONAL) View only the directly connected IPv6 routes.

- **isis**
 - (OPTIONAL) View information for all IPv6 IS-IS routes.

- **list**
 - (OPTIONAL) View the IPv6 prefix list.
ospf (OPTIONAL) View information for all IPv6 OSPF routes.
rip (OPTIONAL) View information for all IPv6 RIP routes.
static (OPTIONAL) View only routes configured by the ipv6 route command.
summary (OPTIONAL) View a brief list of the configured IPv6 routes.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The following describes the show ipv6 route command shown in the following examples.

Field Description
(undefined) Identifies the type of route:
• L = Local
• C = connected
• S = static
• R = RIP
• B = BGP
• IN = internal BGP
• EX = external BGP
• LO = Locally Originated
• O = OSPF
• IA = OSPF inter-area
• N1 = OSPF NSSA external type 1
• N2 = OSPF NSSA external type 2
• E1 = OSPF external type 1
• E2 = OSPF external type 2
• i = IS-IS
• L1 = IS-IS level-1
• L2 = IS-IS level-2
• IA = IS-IS inter-area
• * = candidate default
• > = non-active route
• + = summary routes
Field	**Description**
Destination | Identifies the route's destination IPv6 address.
Gateway | Identifies whether the route is directly connected and on which interface the route is configured.
Dist/Metric | Identifies if the route has a specified distance or metric.
Last Change | Identifies when the route was last changed or configured.

Example

Dell#show ipv6 route

Codes: C - connected, S - static, R - RIP, B - BGP, IN - internal BGP, EX - external BGP, LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, Gateway of last resort is not set

<table>
<thead>
<tr>
<th>Destination</th>
<th>Dist/Metric</th>
<th>Gateway</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 100::/64</td>
<td>[0/0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct, Te 0/8, 20:00:18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 400::/64</td>
<td>[0/0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct, Tu 1, 00:09:02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 800::/64</td>
<td>[1/0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>via 100::1, Te 0/8, 00:00:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L fe80::/10</td>
<td>[0/0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct, Nu 0, 20:00:18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dell#

trust ipv6-diffserv

Allows the dynamic classification of IPv6 DSCP.

Syntax

trust ipv6-diffserv

To remove the definition, use the no trust ipv6-diffserv command.

Defaults

none

Command Modes

CONFIGURATION-POLICY-MAP-IN
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you configure trust IPv6 diffserv, matched bytes/packets counters are not incremented in the `show qos statistics` command.

Trust diffserv (IPv4) can co-exist with trust ipv6-diffserv in an Input Policy Map. Dynamic classification happens based on the mapping as shown:

<table>
<thead>
<tr>
<th>IPv6 Service Class Field</th>
<th>Queue ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>111XXXXX</td>
<td>7</td>
</tr>
<tr>
<td>110XXXXX</td>
<td>6</td>
</tr>
<tr>
<td>101XXXXX</td>
<td>5</td>
</tr>
<tr>
<td>100XXXXX</td>
<td>4</td>
</tr>
<tr>
<td>011XXXXX</td>
<td>3</td>
</tr>
<tr>
<td>010XXXXX</td>
<td>2</td>
</tr>
<tr>
<td>001XXXXX</td>
<td>1</td>
</tr>
<tr>
<td>000XXXXX</td>
<td>0</td>
</tr>
</tbody>
</table>
IPv6 Border Gateway Protocol (IPv6 BGP)

IPv6 Border Gateway Protocol (IPv6 BGP) is supported on Dell Networking platforms. This chapter includes the following sections:

- IPv6 BGP Commands
- IPv6 MBGP Commands

Topics:

- IPv6 BGP Commands
- address family
- aggregate-address
- bgp always-compare-med
- bgp bestpath as-path ignore
- bgp bestpath med confed
- bgp bestpath med missing-as-best
- bgp client-to-client reflection
- bgp cluster-id
- bgp confederation identifier
- bgp confederation peers
- bgp dampening
- bgp default local-preference
- bgp enforce-first-as
- bgp fast-external-fallover
- bgp four-octet-as-support
- bgp graceful-restart
- bgp log-neighbor-changes
- bgp non-deterministic-med
- bgp recursive-bgp-next-hop
- bgp regex-eval-optz-disable
- bgp router-id
- bgp soft-reconfig-backup
- capture bgp-pdu neighbor (ipv6)
- capture bgp-pdu max-buffer-size
- clear ip bgp * (asterisk)
- clear ip bgp as-number
- clear ip bgp ipv6-address
- clear ip bgp peer-group
- clear ip bgp ipv6 dampening
- clear ip bgp ipv6 flap-statistics
- clear ip bgp ipv6 unicast soft
- debug ip bgp
- debug ip bgp events
- debug ip bgp ipv6 dampening
- debug ip bgp ipv6 unicast soft-reconfiguration
- debug ip bgp keepalives
- debug ip bgp notifications
- debug ip bgp updates
- default-metric
- description
- distance bgp
- maximum-paths
- neighbor activate
- neighbor advertisement-interval
- neighbor allowas-in
- neighbor default-originate
- neighbor description
- neighbor distribute-list
- neighbor ebgp-multihop
- neighbor fall-over
- neighbor filter-list
- neighbor maximum-prefix
- neighbor X:X:X::X password
- neighbor next-hop-self
- neighbor peer-group (assigning peers)
- neighbor peer-group (creating group)
- neighbor peer-group passive
- neighbor remote-as
- neighbor remove-private-as
- neighbor route-map
- neighbor route-reflector-client
- neighbor send-community
- neighbor shutdown
- neighbor soft-reconfiguration inbound
- neighbor subnet
- neighbor timers
- neighbor update-source
- neighbor weight
- network
- network backdoor
- redistribute
- redistribute isis
- redistribute ospf
- router bgp
- show capture bgp-pdu neighbor
- show config
- show ip bgp ipv6 unicast
- show ip bgp ipv6 unicast cluster-list
- show ip bgp ipv6 unicast community
- show ip bgp ipv6 unicast community-list
- show ip bgp ipv6 unicast dampened-paths
- show ip bgp ipv6 unicast detail
- show ip bgp ipv6 unicast extcommunity-list
- show ip bgp ipv6 unicast filter-list
- show ip bgp ipv6 unicast flap-statistics
- show ip bgp ipv6 unicast inconsistent-as
- show ip bgp ipv6 unicast neighbors
- show ip bgp ipv6 unicast peer-group
- show ip bgp ipv6 unicast summary
- show ip bgp next-hop
- show ip bgp paths
- show ip bgp paths as-path
- show ip bgp paths community
- show ip bgp paths extcommunity
- show ip bgp regexp
- timers bgp
- IPv6 MBGP Commands
- address family
- aggregate-address
- bgp dampening
- clear ip bgp ipv6 unicast
- clear ip bgp ipv6 unicast dampening
- clear ip bgp ipv6 unicast flap-statistics
- debug ip bgp ipv6 unicast dampening
- debug ip bgp ipv6 unicast peer-group updates
- debug ip bgp ipv6 unicast updates
- distance bgp
- neighbor activate
- neighbor advertisement-interval
- neighbor default-originate
- neighbor distribute-list
- neighbor filter-list
IPv6 BGP Commands

BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). BGP version 4 (BGPv4) supports classless interdomain routing and the aggregation of routes and AS paths. Basically, two routers (called neighbors or peers) exchange information including full routing tables and periodically send messages to update those routing tables.

The following commands allow you to configure and enable BGP.

address family

This command changes the context to subsequent address family identifier (SAFI).

Syntax

address family ipv6 unicast

To remove SAFI context, use the no address family ipv6 unicast command.

Parameters

- ipv6
- unicast

Enter the keyword ipv6 to specify the address family as IPv6.

Enter the keyword unicast to specify multicast as SAFI.
aggregate-address

Summarize a range of prefixes to minimize the number of entries in the routing table.

Syntax

```
aggregate-address ipv6-address prefix-length [advertise-map map-name] [as-set] [attribute-map map-name] [summary-only] [suppress-map map-name]
```

Parameters

- `ipv6-address prefix-length` Enter the IPv6 address in the x:x:x:x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `advertise-map map-name` (OPTIONAL) Enter the keywords advertise-map then the name of a configured route map to set filters for advertising an aggregate route.

- `as-set` (OPTIONAL) Enter the keywords as-set to generate path attribute information and include it in the aggregate. AS_SET includes AS_PATH and community information from the routes included in the aggregated route.

- `attribute-map map-name` (OPTIONAL) Enter the keywords attribute-map then the name of a configured route map to modify attributes of the aggregate, excluding AS_PATH and NEXT_HOP attributes.

- `summary-only` (OPTIONAL) Enter the keywords summary-only to advertise only the aggregate address. Specific routes are not advertised.

- `suppress-map map-name` (OPTIONAL) Enter the keywords suppress-map then the name of a configured route map to identify which more-specific routes in the aggregate are suppressed.

Defaults

- Not configured.
Command Modes

- ROUTER BGP ADDRESS FAMILY
- ROUTER BGP ADDRESS FAMILY IPv6

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

At least one of the routes included in the aggregate address must be in the BGP routing table for the configured aggregate to become active.

Do not add the as-set parameter to the aggregate if routes within the aggregate are constantly changing as the aggregate will flap to keep track of the changes in the AS_PATH.

In route maps used in the suppress-map parameter, routes meeting the deny clause are not suppress; in other words, they are allowed. The opposite is true: routes meeting the permit clause are suppressed.

If the route is injected using the network command, that route still appears in the routing table if you configure the summary-only parameter in the aggregate-address command.

The summary-only parameter suppresses all advertisements. If you want to suppress advertisements to only specific neighbors, use the neighbor distribute-list command.

In the show ip bgp ipv6 unicast command, aggregates contain an ‘a’ in the first column and routes suppressed by the aggregate contain an ‘s’ in the first column.

bgp always-compare-med

Allows you to enable comparison of the MULTI_EXIT_DISC (MED) attributes in the paths from different external ASs.

Syntax

```
bgp always-compare-med
```

To disable comparison of MED, use the no bgp always-compare-med command.

Defaults

Disabled (that is, the software only compares MEDs from neighbors within the same AS).

Command Modes

ROUTER BGP
bgp bestpath as-path ignore

Ignore the AS PATH in BGP best path calculations.

Syntax

```
bgp bestpath as-path ignore
```

To return to the default, use the `no bgp bestpath as-path ignore` command.

Defaults

Disabled (that is, the software considers the AS_PATH when choosing a route as best).

Command Modes

- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable this command, use the `capture bgp-pdu max-buffer-size *` command to recompute the best path.

bgp bestpath med confed

Enable MULTI_EXIT_DISC (MED) attribute comparison on paths learned from BGP confederations.

Syntax

```
bgp bestpath med confed
```

To disable MED comparison on BGP confederation paths, use the `no bgp bestpath med confed` command.

Defaults

Disabled.

Command Modes

- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable this command, use the `capture bgp-pdu max-buffer-size *` command to recompute the best path.
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The software compares the MEDs only if the path contains no external autonomous system numbers.

If you enable this command, use the `capture bgp-pdu max-buffer-size *` command to recompute the best path.

bgp bestpath med missing-as-best

During path selection, indicate a preference to paths with missing MED (MULTI_EXIT_DISC) over those paths with an advertised MED attribute.

Syntax

```
bgp bestpath med missing-as-best
```

To return to the default selection, use the `no bgp bestpath med missing-as-best` command.

Defaults

Disabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The MED is a 4-byte unsigned integer value and the default behavior is to assume a missing MED as 4294967295. This command causes a missing MED to be treated as 0. During path selection, paths with a lower MED are preferred over those with a higher MED.

bgp client-to-client reflection

Allows you to enable route reflection between clients in a cluster.

Syntax

```
bgp client-to-client reflection
```

To disable client-to-client reflection, use the `no bgp client-to-client reflection` command.
bgp cluster-id

Assign a cluster ID to a BGP cluster with more than one route reflector.

Syntax

```
bgp cluster-id {ip-address | number}
```

To delete a cluster ID, use the `no bgp cluster-id {ip-address | number}` command.

Parameters

- `ip-address` Enter an IP address as the route reflector cluster ID.
- `number` Enter a route reflector cluster ID as a number from 1 to 4294967295.

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When a BGP cluster contains only one route reflector, the cluster ID is the route reflector's router ID. For redundancy, a BGP cluster may contain two or more route reflectors and you assign a cluster ID with the `bgp cluster-id` command. Without a cluster ID, the route reflector cannot recognize route updates from the other route reflectors within the cluster.

The default format for displaying the cluster-id is dotted decimal, but if you enter the cluster-id as an integer, it displays as an integer.
Related Commands

- `bgp client-to-client reflection` — enables route reflection between the route reflector and the clients.
- `neighbor route-reflector-client` — configures a route reflector and clients.
- `show ip bgp ipv6 unicast cluster-list` — views paths with a cluster ID.

bgp confederation identifier

Configure an identifier for a BGP confederation.

Syntax

```
bgp confederation identifier as-number
```

To delete a BGP confederation identifier, use the `no bgp confederation identifier as-number` command.

Parameters

- `as-number` Enter the AS number. The range is from 1 to 65535.

Defaults

Not configured.

Command Modes

- `ROUTER BGP`

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The autonomous systems configured in this command are visible to the EBGP neighbors. Each autonomous system is fully meshed and contains a few connections to other autonomous systems. The next hop, MED, and local preference information is preserved throughout the confederation.

The system accepts confederation EBGP peers without a LOCAL_PREF attribute. The software sends AS_CONFED_SET and accepts AS_CONFED_SET and AS_CONF_SEQ.

bgp confederation peers

Specify the autonomous systems (ASs) that belong to the BGP confederation.

Syntax

```
bgp confederation peers as-number [...as-number]
```
To remove bgp confederation peers, use the `no bgp confederation peer` command.

Parameters

- `as-number`
 Enter the AS number. The range is 1 to 65535.

- `...as-number`
 (OPTIONAL) Enter up to 16 confederation numbers. The range is from 1 to 65535.

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The Autonomous Systems configured in this command are visible to the EBGP neighbors. Each Autonomous System is fully meshed and contains a few connections to other Autonomous Systems.

After specifying autonomous systems numbers for the BGP confederation, recycle the peers to update their configuration.

Related Commands

- `bgp confederation identifier` — configures a confederation ID.

bgp dampening

Enable BGP route dampening and configure the dampening parameters.

Syntax

```
bgp dampening [half-life reuse suppress max-suppress-time] [route-map map-name]
```

Parameters

- `half-life`
 (OPTIONAL) Enter the number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half, after the half-life period expires. The range is from 1 to 45. The default is **15 minutes**.

- `reuse`
 (OPTIONAL) Enter a number as the reuse value, which is compared to the flapping route’s Penalty value. If the Penalty value is less than the reuse value, the flapping route is once again advertised (or no longer suppressed). The range is from 1 to 20000. The default is **750**.
suppress (OPTIONAL) Enter a number as the suppress value, which is compared to the flapping route's Penalty value. If the Penalty value is greater than the suppress value, the flapping route is no longer advertised (that is, it is suppressed). The range is from 1 to 20000. The default is 2000.

max-suppress-time (OPTIONAL) Enter the maximum number of minutes a route can be suppressed. The default is four times the half-life value. The range is from 1 to 255. The default is 60 minutes.

route-map map-name (OPTIONAL) Enter the keywords route-map then the name of a configured route map. Only match commands in the configured route map are supported.

Defaults Disabled.

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information If you enter bgp dampening, the default values for half-life, reuse, suppress, and max-suppress-time are applied. The parameters are position-dependent; therefore, if you configure one parameter, you must configure the parameters in the order they appear in the command.

Related Commands

- `show ip bgp ipv6 unicast dampened-paths` — views the BGP paths.
- `bgp default local-preference` — Change the default local preference value for routes exchanged between internal BGP peers.

bgp default local-preference

Change the default local preference value for routes exchanged between internal BGP peers.

Syntax

```
bgp default local-preference value
```

To return to the default value, use the `no bgp default local-preference` command.

Parameters

- **value** Enter a number to assign to routes as the degree of preference for those routes. When routes are compared, the higher the degree of preference or local preference value, the more the route is preferred. The range is from 0 to 4294967295. The default is 100.

Defaults

100
bgp enforce-first-as

Disable (or enable) enforce-first-as check for updates received from EBGP peers.

Syntax

```
bgp enforce-first-as
```

To turn off the default, use the `no bgp enforce-first-as` command.

Defaults

Enabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This is enabled by default; that is, for all updates received from EBGP peers, BGP ensures that the first AS of the first AS segment is always the AS of the peer. If not, the update is dropped and a counter is incremented. To view the failed enforce-first-as check counter, use the `show ip bgp ipv6 unicast neighbors` command.

If you disable `enforce-first-as`, view it using the `show ip protocols` command.

Related Commands

- `show ip bgp ipv6 unicast neighbors` — displays IPv6 routing information exchanged by BGP neighbors.
- `show ip protocols` — views information on routing protocols.

bgp fast-external-fallover

Enable the fast external fallover feature, which immediately resets the BGP session if a link to a directly connected external peer fails.

Syntax

```
bgp fast-external-fallover
```

IPv6 Border Gateway Protocol (IPv6 BGP) | 782
To disable fast external fallover, use the `no bgp fast-external-fallover` command.

Defaults
Enabled.

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The `bgp fast-external-fallover` command appears in the `show config` command output.

bgp four-octet-as-support

Enable 4-byte support for the BGP process.

Syntax
`bgp four-octet-as-support`
To disable fast external fallover, use the `no bgp four-octet-as-support` command.

Defaults
Disabled (supports 2-Byte format)

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Routers supporting 4-Byte ASNs advertise that function in the OPEN message. The behavior of a 4-Byte router is slightly different depending on whether it is speaking to a 2-Byte router or a 4-Byte router.

When creating Confederations, all the routers in the Confederation must be 4- or 2-byte identified routers. You cannot mix them.

Where the 2-Byte format is from 1 to 65535, the 4-Byte format is from 1 to 4294967295. Both formats are accepted, and the advertisements reflect the entered format.

For more information about using the 2- or 4-Byte format, refer to the *Dell Networking OS Configuration Guide*.

IPv6 Border Gateway Protocol (IPv6 BGP) | 783
bgp graceful-restart

Enable graceful restart on a BGP neighbor, a BGP node, or designate a local router to support graceful restart as a receiver only.

Syntax

```
bgp graceful-restart [restart-time seconds] [stale-path-time seconds] [role receiver-only]
```

To return to the default, enter the `no bgp graceful-restart` command.

Parameters

- `neighbor ip-address | peer-group-name` Enter the keyword `neighbor` then one of the options:
 - `ip-address` of the neighbor in IP address format of the neighbor
 - `peer-group-name` of the neighbor peer group

- `restart-time seconds` Enter the keywords `restart-time` then the maximum number of seconds needed to restart and bring up all peers. The range is from 1 to 3600 seconds. The default is **120 seconds**.

- `stale-path-time seconds` Enter the keywords `stale-path-time` then the maximum number of seconds to wait before restarting a peer’s stale paths. The default is **360 seconds**.

- `role receiver-only` Enter the keywords `role receiver-only` to designate the local router to support graceful restart as a receiver only.

Defaults

As above

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This feature is advertised to BGP neighbors through a capability advertisement. In Receiver Only mode, BGP saves the advertised routes of peers that support this capability when they restart.
bgp log-neighbor-changes

Enable logging of BGP neighbor resets.

Syntax

```plaintext
bgp log-neighbor-changes
To disable logging, use the no bgp log-neighbor-changes command.
```

Defaults

Enabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `bgp log-neighbor-changes` command appears in the `show config` command output.

Related Commands

- `show config` — views the current configuration.

bgp non-deterministic-med

Compare MEDs of paths from different autonomous systems (ASs).

Syntax

```plaintext
bgp non-deterministic-med
To return to the default, use the no bgp non-deterministic-med command.
```

Defaults

Disabled (that is, paths/routes for the same destination but from different ASs does not have their MEDs compared).

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In Non-Deterministic mode, paths are compared in the order in which they arrive. This method can lead to the system choosing different best paths from a set of paths, depending on the order in which they are received from the neighbors because MED.
may or may not get compared between adjacent paths. In Deterministic mode (no bgp non-deterministic-med), the system compares MED between adjacent paths within an AS group because all paths in the AS group are from the same AS.

When you change the path selection from Deterministic to Non-Deterministic mode, the path selection for existing paths remains Deterministic until you enter the `capture bgp-pdu max-buffer-size` command to clear existing paths.

bgp recursive-bgp-next-hop

Enable next-hop resolution through other routes learned by BGP.

Syntax

```
bgp recursive-bgp-next-hop
```

To disable next-hop resolution, use the `no bgp recursive-bgp-next-hop` command.

Defaults

Enabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is a knob to disable BGP next-hop resolution using BGP learned routes. During the next-hop resolution, only the first route that the next-hop resolves through is verified for the route’s protocol source and is checked if the route is learned from BGP or not.

For this command to take effect and to keep the BGP database consistent, you need the `clear ip bgp` command. Execute the `clear ip bgp` command right after executing this command.

Related Commands

- `capture bgp-pdu max-buffer-size`

bgp regex-eval-optz-disable

Disables the Regex Performance engine that optimizes complex regular expression with BGP.

Syntax

```
bgp regex-eval-optz-disable
```

Usage Information

This command is a knob to disable BGP regex evaluation optimization. When disabled, the Regex Performance engine is not used, which can lead to performance issues for routing advertisements with large number of Regular Expression. This command is a knob to disable BGP regex evaluation optimization.
To re-enable optimization engine, use the `no bgp regex-eval-optz-disable` command.

Defaults
Enabled.

Command Modes
ROUTER BGP (conf-router_bgp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
BGP uses regular expressions (regex) to filter route information. In particular, the use of regular expressions to filter routes based on AS-PATHs and communities is quite common. In a large scale configuration, filtering millions of routes based on regular expressions can be quite CPU intensive, as a regular expression evaluation involves generation and evaluation of complex finite state machines.

BGP policies, containing regular expressions to match as-path and communities, tend to use a lot of CPU processing time, which in turn affects the BGP routing convergence. Additionally, the `show bgp` commands, which are filtered through regular expressions, use up CPU cycles particularly with large databases. The Regex Engine Performance Enhancement feature optimizes the CPU usage by caching and reusing regular expression evaluation results. This caching and reuse may be at the expensive of RP1 processor memory.

Related Commands
- `show ip protocols` — views information on all routing protocols enabled and active.

bgp router-id

Assign a user-given ID to a BGP router.

Syntax
```
bgp router-id ip-address
```

To delete a user-assigned IP address, use the `no bgp router-id` command.

Parameters
- `ip-address` Enter an IP address in dotted decimal format to reset only that BGP neighbor.

Defaults
The router ID is the highest IP address of the Loopback interface or, if no Loopback interfaces are configured, the highest IP address of a physical interface on the router.

Command Modes
ROUTER BGP
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Peering sessions are reset when you change the router ID of a BGP router.

bgp soft-reconfig-backup

Use this command only when route-refresh is not negotiated between peers to avoid having a peer re-send BGP updates.

Syntax

```
bgp soft-reconfig-backup
```

To return to the default setting, use the `no bgp soft-reconfig-backup` command.

Defaults

Off

Command Modes

ROUTER BGPV6 ADDRESS FAMILY (conf-router_bgpv6_af)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable soft-reconfiguration for a neighbor and you execute the `clear ip bgp soft in` command, the update database stored in the router replays and updates are reevaluated. With this command, the replay and update process is triggered only if route-refresh request is not negotiated with the peer. If the request is negotiated (after execution of `clear ip bgp soft in`), BGP sends a route-refresh request to the neighbor and receives all of the peer’s updates.

Related Commands

- `clear ip bgp ipv6 unicast soft` — activates inbound policies for IPv6 routes without resetting the BGP TCP session.

capture bgp-pdu neighbor (ipv6)

Enable capture of an IPv6 BGP neighbor packet.

Syntax

```
capture bgp-pdu neighbor ipv6-address direction {both | rx | tx}
```

To disable capture of the IPv6 BGP neighbor packet, use the `no capture bgp-pdu neighbor ipv6-address` command.
Parameters

- **ipv6-address**: Enter the IPv6 address of the target BGP neighbor.
- **direction (both | rx | tx)**: Enter the keyword `direction` and a direction — either `rx` for inbound, `tx` for outbound, or both.

Defaults

- Not configured.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `capture bgp-pdu max-buffer-size` — enables route reflection between the route reflector and the clients.
- `show capture bgp-pdu neighbor` — configures a route reflector and clients.

capture bgp-pdu max-buffer-size

Set the size of the BGP packet capture buffer. This buffer size pertains to both IPv4 and IPv6 addresses.

Syntax

```
capture bgp-pdu max-buffer-size 100-102400000
```

Parameters

- **100-102400000**: Enter a size for the capture buffer.

Defaults

- 40960000 bytes

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `capture bgp-pdu neighbor (ipv6)` — enables route reflection between the route reflector and the clients.
- `show capture bgp-pdu neighbor` — configures a route reflector and clients.
clear ip bgp * (asterisk)

Reset all BGP sessions in the specified category. The soft parameter (BGP Soft Reconfiguration) clears the policies without resetting the TCP connection.

Syntax

```
clear ip bgp * [ipv4 multicast soft [in | out] | ipv6 unicast soft [in | out] | soft [in | out]]
```

Parameters

- `*` Enter an asterisk (`*`) to reset all BGP sessions.
- `ipv4 multicast soft [in | out]` (OPTIONAL) Enter the keywords `ipv4 multicast soft [in | out]` to set options within the specified IPv4 address family.
- `ipv6 unicast soft [in | out]` (OPTIONAL) Enter the keywords `ipv6 unicast soft [in | out]` to set options within the specified IPv6 address family.
- `soft` (OPTIONAL) Enter the keyword `soft` to configure and activate policies without resetting the BGP TCP session, that is, BGP Soft Reconfiguration.

NOTE: If you enter `clear ip bgp ip6-address soft`, both inbound and outbound policies are reset.

- `in` (OPTIONAL) Enter the keyword `in` to activate only inbound policies.
- `out` (OPTIONAL) Enter the keyword `out` to activate only outbound policies.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip bgp as-number

Reset BGP sessions. The soft parameter (BGP Soft Reconfiguration) clears the policies without resetting the TCP connection.

Syntax

```
clear ip bgp as-number [flap-statistics | ipv4 {multicast {flap-statistics | soft [in | out]} | unicast {flap-statistics | soft [in | out]} | ipv6 unicast {flap-statistics | soft [in | out]} | soft [in | out]]
```

IPv6 Border Gateway Protocol (IPv6 BGP) | 790
Parameters

as-number
Enter an autonomous system (AS) number to reset neighbors belonging to that AS. If used without a qualifier, the keyword resets all neighbors belonging to that AS. The range is from 1 to 65535.

flap-statistics
(Optional) Enter the keywords flap-statistics to clear all flap statistics belonging to that AS or a specified address family within that AS.

ipv4
(Optional) Enter the keyword ipv4 to select options for that address family.

ipv6
(Optional) Enter the keyword ipv6 to select options for that address family.

unicast
(Optional) Enter the keyword unicast to select the unicast option within the selected address family.

multicast
(Optional) Enter the keyword multicast to select the multicast option within the selected address family. Multicast is supported on IPv4 only.

soft
(Optional) Enter the keyword soft to configure and activate policies without resetting the BGP TCP session; that is, BGP Soft Reconfiguration.

in
(Optional) Enter the keyword in to activate only inbound policies.

out
(Optional) Enter the keyword out to activate only outbound policies.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip bgp ipv6-address

Reset BGP sessions specific to an IPv6 address. The soft parameter (BGP Soft Reconfiguration) clears the policies without resetting the TCP connection.

Syntax

```
clear ip bgp ipv6-address [flap-statistics | ipv4 {multicast | flap-statistics | soft {in | out}} | unicast {flap-statistics | soft {in | out}}]
```
clear ip bgp peer-group

Reset a peer-group’s BGP sessions.

Syntax

```
clear ip bgp peer-group peer-group-name
```
clear ip bgp ipv6 dampening

Clear information on route dampening and return suppressed route to active state.

Syntax

```plaintext
clear ip bgp ipv6 unicast dampening [ipv6-address]
```

Parameters

- **ipv6-address** (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

Usage Information

After you enter this command, the software deletes the history routes and returns the suppressed routes to the active state.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

```markdown
filter-list as-path-name
```

(OPTIONAL) Enter the keywords filter-list then the name of a configured AS-PATH list.

```markdown
regexp regular-expression
```

(OPTIONAL) Enter the keyword regexp then the regular expressions. Use one or a combination of the following:

- . (period) matches on any single character, including white space
- * (asterisk) matches on sequences in a pattern (zero or more sequences)
- + (plus sign) matches on sequences in a pattern (one or more sequences)
- ? (question mark) matches sequences in a pattern (0 or 1 sequences)
- [] (brackets) matches a range of single-character patterns.
- ^ (caret) matches the beginning of the input string. (If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.)
- $ (dollar sign) matches the end of the output string.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enter the `clear ip bgp ipv6 flap-statistics` command without parameters, all the statistics clear.

Related Commands

- `show ip bgp ipv6 unicast flap-statistics` — views BGP flap statistics.

clear ip bgp ipv6 unicast soft

Clear and reapply policies for IPv6 unicast routes without resetting the TCP connection; that is, perform BGP soft reconfiguration.

Syntax

```markdown
clear ip bgp { * | as-number | ipv4-neighbor-addr | ipv6-neighbor-addr | peer-group name} ipv6 unicast soft [in | out]
```

Parameters

- `*` Clear and reapply policies for all BGP sessions.
as-number

Clear and reapply policies for all neighbors belonging to the AS. The range is from 0 to 65535 (2 Byte), from 1 to 4294967295 (4 Byte), or from 0.1 to 0.65535.65535 (Dotted format).

ipv4-neighbor-addr | ipv6-neighbor-addr

Clear and reapply policies for a neighbor.

peer-group name

Clear and reapply policies for all BGP routers in the specified peer group.

ipv6 unicast

Clear and reapply policies for all IPv6 unicast routes.

in

Reapply only inbound policies.

NOTE: If you enter `soft`, without an `in` or `out` option, both inbound and outbound policies are reset.

out

Reapply only outbound policies.

NOTE: If you enter `soft`, without an `in` or `out` option, both inbound and outbound policies are reset.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ip bgp

Allows you to view all information on BGP, including BGP events, keepalives, notifications, and updates.

Syntax

```
debug ip bgp [ipv6-address | peer-group peer-group-name] [in | out]
```

To disable all BGP debugging, use the `no debug ip bgp` command.

Parameters

- **ipv6-address** *(OPTIONAL)* Enter the IPv6 address in the `x:x:x:x` format then the prefix length in the `/x` format. The range is from `/0` to `/128.

 NOTE: The `::` notation specifies successive hexadecimal fields of zeros.

- **peer-group peer-group-name** Enter the keywords `peer-group` then the name of the peer group.
in (OPTIONAL) Enter the keyword in to view only information on inbound BGP routes.

out (OPTIONAL) Enter the keyword out to view only information on outbound BGP routes.

Command Modes EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To view information on both incoming and outgoing routes, do not include the in and out parameters in the debugging command. The in and out parameters cancel each other; for example, if you enter debug ip bgp in and then enter debug ip bgp out, you do not see information on the incoming routes.

Entering a no debug ip bgp command removes all configured debug commands for BGP.

Related Commands
debug ip bgp events — views information about BGP events.
d debug ip bgp keepalives — views information about BGP keepalives.
d debug ip bgp notifications — views information about BGP notifications.
d debug ip bgp updates — views information about BGP updates.

ddebug ip bgp events

Allows you to view information on local BGP state changes and other BGP events.

Syntax
d d e b u g i p b g p [i p v 6 - a d d r e s s | p e e r - g r o u p p e e r - g r o u p - n a m e] e v e n t s [i n | o u t]

Parameters

ipv6-address (OPTIONAL) Enter the IPv6 address in the x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.
peer-group peer-group-name Enter the keywords peer-group then the name of the peer group.
in (OPTIONAL) Enter the keyword in to view only information on inbound BGP routes.
out (OPTIONAL) Enter the keyword out to view only information on outbound BGP routes.

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Entering a no debug ip bgp command removes all configured debug commands for BGP.

debug ip bgp ipv6 dampening

View information on dampened (non-active) IPv6 routes.

Syntax
debug ip bgp ipv6 unicast dampening [in | out]
To disable debugging, use the no debug ip bgp ipv6 unicast dampening command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>(OPTIONAL) Enter the keyword in to view only inbound dampened routes.</td>
</tr>
<tr>
<td>out</td>
<td>(OPTIONAL) Enter the keyword out to view only outbound dampened routes.</td>
</tr>
</tbody>
</table>

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Entering a no debug ip bgp command removes all configured debug commands for BGP.
debug ip bgp ipv6 unicast soft-reconfiguration

Enable soft-reconfiguration debugging for IPv6 unicast routes.

Syntax
debug ip bgp [ipv4-address | ipv6-address | peer-group-name] ipv6 unicast soft-reconfiguration
To disable debugging, use the no debug ip bgp [ipv4-address | ipv6-address | peer-group-name] ipv6 unicast soft-reconfiguration command.

Parameters
- **ipv4-address**: Enter the IP address of the neighbor on which you want to enable soft-reconfiguration debugging.
- **ipv6-address**: Enter the IP address of the neighbor on which you want to enable soft-reconfiguration debugging.
- **peer-group-name**: Enter the name of the peer group on which you want to enable soft-reconfiguration debugging.
- **ipv6 unicast**: Debug soft reconfiguration for IPv6 unicast routes.

Defaults
Disabled.

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command turns on BGP soft-reconfiguration inbound debugging for IPv6 unicast routes. If no neighbor is specified, debug is turned on for all neighbors.

Related Commands
- show ip bgp ipv6 unicast dampened-paths — views BGP dampened routes.
debug ip bgp keepalives

Allows you to view information about BGP keepalive messages.

Syntax
debug ip bgp [ipv6-address | peer-group peer-group-name] keepalives [in | out]
To disable debugging, use the no debug ip bgp [ip-address | peer-group peer-group-name] keepalives [in | out] command.

Parameters
- **ipv6-address** (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is /0 to /128.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.
- **peer-group peer-group-name** (OPTIONAL) Enter the keywords peer-group then the name of the peer group.
- **in** (OPTIONAL) Enter the keyword in to view only inbound keepalive messages.
- **out** (OPTIONAL) Enter the keyword out to view only outbound keepalive messages.

Command Modes
- EXEC Privilege

Command History
- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
- Entering a no debug ip bgp command removes all configured debug commands for BGP.

debug ip bgp notifications

Allows you to view information about BGP notifications received from neighbors.

Syntax
debug ip bgp [ipv6-address | peer-group peer-group-name] notifications [in | out]
To disable debugging, use the `no debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out]` command.

Parameters

- **ipv6-address** (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group peer-group-name** (OPTIONAL) Enter the keywords `peer-group` then the name of the peer group.

- **in** (OPTIONAL) Enter the keyword `in` to view BGP notifications received from neighbors.

- **out** (OPTIONAL) Enter the keyword `out` to view BGP notifications sent to neighbors.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Entering a `no debug ip bgp` command removes all configured debug commands for BGP.

debug ip bgp updates

Allows you to view information about BGP updates.

Syntax

debug ip bgp [ipv6-address | peer-group peer-group-name | ipv6 unicast [ipv6-address]] updates [in | out | prefix-list prefix-list-name]

To disable debugging, use the `no debug ip bgp [ip-address | peer-group peer-group-name | ipv6 unicast [ipv6-address]] updates [in | out]` command.

Parameters

- **ipv6-address** (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.
default-metric

Allows you to change the metrics of redistributed routes to locally originated routes. Use this command with the `redistribute` command.

Syntax

```
default-metric number
```

To return to the default setting, use the `no default-metric` command.

Parameters

- `number` : Enter a number as the metric to be assigned to routes from other protocols. The range is from 1 to 4294967295.

Defaults

0

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `default-metric` command in BGP sets the value of the BGP MULTI_EXIT_DISC (MED) attribute for redistributed routes only.
description

Enter a description of the BGP routing protocol.

Syntax
```
description {description}
```
To remove the description, use the no description {description} command.

Parameters

- **description**

Enter a description to identify the BGP protocol (80 characters maximum).

Defaults

- none

Command Modes

- ROUTER BGP

Command History

- **Version**
 Description
 - **9.9(0.0)**
 - Introduced on the FN IOM.
 - **9.2(0.0)**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- **router bgp** — enters ROUTER mode on the switch.

distance bgp

Configure three administrative distances for routes.

Syntax
```
distance bgp external-distance internal-distance local-distance
```
To return to default values, use the no distance bgp command.

Parameters

- **external-distance**

Enter a number to assign to routes learned from a neighbor external to the AS. The range is from 1 to 255. The default is 20.

- **internal-distance**

Enter a number to assign to routes learned from a router within the AS. The range is from 1 to 255. The default is 200.
local-distance

Enter a number to assign to routes learned from networks listed in the network command. The range is from 1 to 255. The default is **200**.

Defaults

- external-distance = **20**
- internal-distance = **200**
- local-distance = **200**

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

⚠️ **CAUTION:** Dell Networking recommends that you do not change the administrative distance of internal routes. Changing the administrative distances may cause routing table inconsistencies.

The higher the administrative distance assigned to a route means that your confidence in that route is low. Routes assigned an administrative distance of 255 are not installed in the routing table.

Routes from confederations are treated as internal BGP routes.

maximum-paths

Configure the maximum number of parallel routes (multipath support) BGP supports.

Syntax

```
maximum-paths {ebgp | ibgp} number
```

To return to the default values, use the **no maximum-paths** command.

Parameters

- **ebgp**
 - Enter the keyword `ebgp` to enable multipath support for External BGP routes.
- **ibgp**
 - Enter the keyword `ibgp` to enable multipath support for Internal BGP routes.
- **number**
 - Enter a number as the maximum number of parallel paths. The range is from 1 to 16. The default is **1**.

Defaults

- **1**

Command Modes

ROUTER BGPV6-ADDRESS FAMILY
neighbor activate

This command allows the specified neighbor/peer group to be enabled for the current AFI/SAFI.

Syntax
neighbor {ipv6-address | peer-group-name} activate
To disable, use the no neighbor {ipv6-address | peer-group-name} activate command.

Parameters
ipv6-address Enter the IPv6 address in the x:x:x:x::x format.
peer-group-name Identify a peer group by name.
activate Enter the keyword activate to enable the identified neighbor or peer group in the new AFI/SAFI.

Defaults Disabled.

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
By default, when you create a neighbor/peer group configuration in the Router BGP context, it is enabled for the IPv6/Unicast AFI/SAFI. By using activate in the new context, the neighbor/peer group is enabled for AFI/SAFI.
neighbor advertisement-interval

Set the advertisement interval between BGP neighbors or within a BGP peer group.

Syntax

```
neighbor {ipv6-address | peer-group-name} advertisement-interval seconds
```

To return to the default value, use the `no neighbor {ipv6-address | peer-group-name} advertisement-interval` command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: Enter the name of the peer group to set the advertisement interval for all routers in the peer group.

- **seconds**: Enter a number as the time interval, in seconds, between BGP advertisements. The range is from 0 to 600 seconds. The default is 5 seconds for internal BGP peers and 30 seconds for external BGP peers.

Defaults

- `seconds = 5 seconds` (internal peers)
- `seconds = 30 seconds` (external peers)

Command Modes

```
ROUTER BGPV6-ADDRESS FAMILY
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor allowas-in

Set the number of times an AS number can occur in the AS path.

Syntax

```
neighbor {ip-address | peer-group-name} allowas-in number
```

To return to the default value, use the `no neighbor {ip-address | peer-group-name} allowas-in` command.
Parameters

ip-address
Enter the IPv6 address in the x:x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name
Enter the name of the peer group to set the advertisement interval for all routers in the peer group.

number
Enter a number of times to allow this neighbor ID to use the AS path. The range is from 1 to 10.

Defaults
Not configured.

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `bgp four-octet-as-support` — enables 4-Byte support for the BGP process.

neighbor default-originate

Inject the default route to a BGP peer or neighbor.

Syntax

```
neighbor {ipv6-address | peer-group-name} default-originate [route-map map-name]
```

To remove a default route, use the `no neighbor {ipv6-address | peer-group-name} default-originate [route-map map-name]` command.

Parameters

ipv6-address
Enter the IPv6 address in the x:x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name
Enter the name of the peer group to set the default route of all routers in that peer group.

route-map map-name
(Optional) Enter the keywords `route-map` then the name of a configured route map.

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY
neighbor description

Assign a character string describing the neighbor or group of neighbors (peer group).

Syntax

neighbor {ipv6-address | peer-group-name} description text

To delete a description, use the no neighbor {ipv6-address | peer-group-name} description text command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: Enter the name of the peer group.

- **text**: Enter a continuous text string up to 80 characters.

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor distribute-list

Distribute BGP information using an established prefix list.

Syntax

neighbor {ipv6-address | peer-group-name} distribute-list prefix-list-name {in | out}
To delete a neighbor distribution list, use the `no neighbor {ipv6-address | peer-group-name} distribute-list prefix-list-name {in | out}` command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: Enter the name of the peer group.

- **prefix-list-name**: Enter the name of an established prefix list. If the prefix list is not configured, the default is `permit` (to allow all routes).

- **in**: Enter the keyword in to distribute only inbound traffic.

- **out**: Enter the keyword out to distribute only outbound traffic.

Defaults

Not configured.

Command Modes

- ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `neighbor filter-list` — assigns a AS-PATH list to a neighbor or peer group.
- `neighbor route-map` — assigns a route map to a neighbor or peer group.

neighbor ebgp-multihop

Attempt and accept BGP connections to external peers on networks that are not directly connected.

Syntax

```
neighbor {ipv6-address | peer-group-name} ebgp-multihop [ttl]
```

To disallow and disconnect connections, use the `no neighbor {ipv6-address | peer-group-name} ebgp-multihop [ttl]` command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: Enter the name of the peer group.
ttl

(Optional) Enter the number of hops as the time to live (ttl) value. The range is from 1 to 255. The default is 255.

Defaults

Disabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To prevent loops, the neighbor ebgp-multihop command does not install default routes of the multihop peer. Networks not directly connected are not considered valid for best path selection.

neighbor fall-over

Enable or disable fast fall-over for BGP neighbors.

Syntax

neighbor {ipv6-address | peer-group-name} fall-over

To disable, use the no neighbor {ipv6-address | peer-group-name} fall-over command.

Parameters

ipv6-address

Enter the IPv6 address in the x:x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name

Enter the name of the peer group.

Defaults

Disabled.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable fall-over, BGP keeps track of IP or IPv6 reachability to the peer remote address and the peer local address. Whenever either address becomes unreachable (for example, no active route exists in the routing table for peer IP or IPv6 destination/local address), BGP brings down the session with the peer.

Related Commands

show ip bgp ipv6 unicast neighbors — displays IPv6 routing information exchanged by BGP neighbors.
neighbor filter-list

Configure a BGP filter based on the AS-PATH attribute.

Syntax
```
neighbor {ipv6-address | peer-group-name} filter-list as-path-name {in | out}
```

To delete a BGP filter, use the `no neighbor {ipv6-address | peer-group-name} filter-list as-path-name {in | out}` command.

Parameters
- `ipv6-address`: Enter the IPv6 address in the x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `peer-group-name`: Enter the name of the peer group to apply the filter to all routers in the peer group.

- `in`: Enter the keyword `in` to filter inbound BGP routes.

- `out`: Enter the keyword `out` to filter outbound BGP routes.

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor maximum-prefix

Control the number of network prefixes received.

Syntax
```
neighbor {ipv6-address | peer-group-name} maximum-prefix maximum [threshold] [warning-only]
```

To return to the default values, use the `no neighbor {ipv6-address | peer-group-name} maximum-prefix maximum [threshold] [warning-only]` command.

Parameters
- `ipv6-address`: Enter the IPv6 address in the x:x:x::x format.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name

Enter the name of the peer group.

maximum

Enter a number as the maximum number of prefixes allowed for this BGP router. The range is from 1 to 4294967295.

threshold

(Optional) Enter a number to be used as a percentage of the maximum value. When the number of prefixes reaches this percentage of the maximum value, the software sends a message. The range is from 1 to 100 percent. The default is 75.

warning-only

(Optional) Enter the keyword warning-only to set the router to send a log message when the maximum value is reached. If this parameter is not set, the router stops peering when the maximum number of prefixes is reached.

Defaults

threshold = 75

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you configure the neighbor maximum-prefix command and the neighbor receives more prefixes than allowed by the neighbor maximum-prefix command configuration, the neighbor goes down and the show ip bgp ipv6 unicast summary command displays (prfxd) in the State/PfxRcd column for that neighbor. The neighbor remains down until you enter the capture bgp-pdu max-buffer-size command for the neighbor or the peer group to which the neighbor belongs or you enter neighbor shutdown and neighbor no shutdown commands.

Related Commands

- **show ip bgp ipv6 unicast summary** — displays the current BGP configuration.

neighbor X:X::X::X password

Enable TCP MDS Authentication for an IPv6 BGP peer session.

Syntax

```
neighbor x:x:x::x password {7 <encrypt-pass> | <clear-pass>
```

To return to the default setting, use the no neighbor x:x:x::x password command.

Parameters

- **encrypt-pass**

 Enter the encrypted password.
clear-pass

Enter the clear text password.

Defaults

Disabled.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The TCP session is authentication and prevents the data from being compromised.

neighbor next-hop-self

Allows you to configure the router as the next hop for a BGP neighbor. (This command is used for IBGP).

Syntax

```
neighbor {ipv6-address | peer-group-name} next-hop-self
```

To return to the default setting, use the `no neighbor {ipv6-address | peer-group-name} next-hop-self` command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: (OPTIONAL) Enter the name of the peer group.

Defaults

Disabled.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you configure the `set ipv6 next-hop` command in ROUTE-MAP mode, its configuration takes precedence over the `neighbor next-hop-self` command.
neighbor peer-group (assigning peers)

Allows you to assign one peer to an existing peer group.

Syntax
```
neighbor ipv6-address peer-group peer-group-name
```
To delete a peer from a peer group, use the no neighbor ipv6-address peer-group peer-group-name command.

Parameters
- **ipv6-address**: Enter the IPv6 address in the x:x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.
- **peer-group peer-group-name**: Enter the keywords peer-group then the name of a configured peer group (maximum 16 characters).

Defaults
Not configured.

Command Modes
- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can assign up to 64 peers to one peer group.

When you add a peer to a peer group, it inherits all the peer group’s configured parameters. A peer cannot become part of a peer group if any of the following commands are configured on the peer:

- neighbor advertisement-interval
- neighbor distribute-list
- neighbor filter-list
- neighbor next-hop-self
- neighbor route-map
- neighbor route-reflector-client
- neighbor send-community

A neighbor may keep its configuration after it was added to a peer group if the neighbor's configuration is more specific than the peer group’s and the neighbor’s configuration does not affect outgoing updates.
A peer group must exist before you add a peer to it. If the peer group is disabled (shutdown) the peers within the group are also disabled (shutdown).

Related Commands

- `capture bgp-pdu max-buffer-size` — resets BGP sessions.
- `neighbor peer-group (creating group)` — creates a peer group.
- `show ip bgp ipv6 unicast peer-group` — views BGP peers.
- `show ip bgp ipv6 unicast neighbors` — views BGP neighbors configurations.

 neighbor peer-group (creating group)

Allows you to create a peer group and assign it a name.

Syntax

```
neighbor peer-group-name peer-group
```

To delete a peer group, use the `no neighbor peer-group-name peer-group` command.

Parameters

- `peer-group-name` Enter a text string up to 16 characters long as the name of the peer group.

Defaults

Not configured.

Command Modes

- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When a peer group is created, it is disabled (shut mode).

Related Commands

- `neighbor peer-group (assigning peers)` — assigns routers to a peer group.
- `neighbor remote-as` — assigns a indirectly connected AS to a neighbor or peer group.
- `neighbor shutdown` — disables a peer or peer group.
neighbor peer-group passive

Enable passive peering on a BGP peer group; that is, the peer group does not send an OPEN message, but does respond to one.

Syntax

```
neighbor peer-group-name peer-group passive
```

To delete a passive peer-group, use the `no neighbor peer-group-name peer-group passive` command.

Parameters

- `peer-group-name` Enter a text string up to 16 characters long as the name of the peer group.

Defaults

Not configured.

Command Modes

- ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you configure a peer group as passive, you must assign it a subnet using the `neighbor subnet` command.

Related Commands

- `neighbor subnet` — assigns a subnet to a dynamically configured BGP neighbor.

neighbor remote-as

Create and specify the remote peer to the BGP neighbor.

Syntax

```
neighbor {ipv6-address | peer-group-name} remote-as number
```

To delete a remote AS entry, use the `no neighbor {ipv6-address | peer-group-name} remote-as number` command.

Parameters

- `ipv6-address` Enter the IPv6 address in the x:x:x:x::x format.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.

- `peer-group-name` Enter a text string up to 16 characters long as the name of the peer group.
Enter a number of the AS. The range is from 1 to 65535.

Defaults
Not configured.

Command Modes
ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
If the `number` parameter is the same as the AS number used in the `router bgp` command, the remote AS entry in the neighbor is considered an internal BGP peer entry.
This command creates a peer and the newly created peer is disabled (`shutdown`).

Related Commands
`router bgp` — enters the ROUTER BGP mode and configure routes in an AS.

neighbor remove-private-as

Remove private AS numbers from the AS-PATH of outgoing updates.

Syntax
```
neighbor {ipv6-address | peer-group-name} remove-private-as
```

To return to the default, use the `no neighbor {ipv6-address | peer-group-name} remove-private-as` command.

Parameters

- `ipv6-address` Enter the IPv6 address in the x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `peer-group-name` Enter the name of the peer group to remove the private AS numbers.

Defaults
Disabled (that is, the private AS number are not removed).

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Applies to external border gateway protocol (EBGP) neighbors only.
If the AS-PATH contains both public and private AS number or contains AS numbers of an EBGP neighbor, the private AS numbers are not removed.

If a confederation contains private AS numbers in its AS-PATH, the software removes the private AS numbers only if they follow the confederation numbers in the AS path.

Private AS numbers are from 64512 to 65535.

neighbor route-map

Apply an established route map to either incoming or outbound routes of a BGP neighbor or peer group.

Syntax
neighbor {ipv6-address | peer-group-name} route-map map-name {in | out}

To remove the route map, use the no neighbor {ipv6-address | peer-group-name} route-map map-name {in | out} command.

Parameters

ipv6-address Enter the IPv6 address in the x:x:x::x format.

peer-group-name Enter the name of the peer group.

map-name Enter the name of an established route map. If the Route map is not configured, the default is deny (to drop all routes).

in Enter the keyword in to filter inbound routes.

out Enter the keyword out to filter outbound routes.

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you apply a route map to outbound routes, only routes that match at least one section of the route map are permitted.

If you identify a peer group by name, the peers in that peer group inherit the characteristics in the Route map used in this command. If you identify a peer by IP
The first time you enter this command it configures the neighbor as a route reflector and members of the route-reflector cluster. Internal BGP (IBGP) speakers do not need to be fully meshed if you configure a route reflector. When all clients of a route reflector are disabled, the neighbor is no longer a route reflector.

neighbor send-community

Send a COMMUNITY attribute to a BGP neighbor or peer group. A COMMUNITY attribute indicates that all routes with that attribute belong to the same community grouping.

Syntax

neighbor {ipv6-address | peer-group-name} send-community
To disable sending a COMMUNITY attribute, use the `no neighbor {ipv6-address | peer-group-name} send-community` command.

Parameters
- `ipv6-address`: Enter the IPv6 address in the x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.
- `peer-group-name`: Enter the name of the peer group. All routers in the peer group receive routes from a route reflector.

Defaults
Not configured and COMMUNITY attributes are not sent to neighbors.

Command Modes
ROUTER BGP

Command History
```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

neighbor shutdown

Disable a BGP neighbor or peer group.

Syntax
```
neighbor {ipv6-address | peer-group-name} shutdown
```

To enable a disabled neighbor or peer group, use the `no neighbor {ipv6-address | peer-group-name} shutdown` command.

Parameters
- `ipv6-address`: Enter the IPv6 address in the x:x:x::x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.
- `peer-group-name`: Enter the name of the peer group to disable or enable all routers within the peer group.

Defaults
Enabled (that is, BGP neighbors and peer groups are disabled.)

Command Modes
ROUTER BGP

Command History
```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```
Usage Information

Peers that are enabled within a peer group are disabled when their peer group is disabled.

The `neighbor shutdown` command terminates all BGP sessions on the BGP neighbor or BGP peer group. Use this command with caution as it terminates the specified BGP sessions. When a neighbor or peer group is shutdown, use the `show ip bgp ipv6 unicast summary` command to confirm its status.

Related Commands

- `show ip bgp ipv6 unicast summary` — displays the current BGP configuration.
- `show ip bgp ipv6 unicast neighbors` — displays IPv6 routing information exchanged by BGP neighbors.

neighbor soft-reconfiguration inbound

Enable a BGP soft-reconfiguration and start storing updates for inbound IPv6 unicast routes.

Syntax

```
neighbor {ipv4-address | ipv6-address | peer-group-name} soft-reconfiguration inbound
```

Parameters

- `ipv4-address` | `ipv6-address` | `peer-group-name` Enter the IP address of the neighbor for which you want to start storing inbound routing updates.
- `peer-group-name` Enter the name of the peer group for which you want to start storing inbound routing updates.

Defaults

Disabled.

Command Modes

- ROUTER BGPv6 ADDRESS FAMILY (conf-router_bgpv6_af)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command enables soft-reconfiguration for the specified BGP neighbor. BGP stores all updates for inbound IPv6 unicast routes the neighbor receives but does not reset the peer-session.

CAUTION: Inbound update storage is a memory-intensive operation. The entire BGP update database from the neighbor is stored in memory regardless of the inbound policy results applied on the neighbor.

Related Commands

- `show ip bgp ipv6 unicast neighbors` — displays IPv6 routing information exchanged by BGP neighbors.
neighbor subnet

Enable passive peering so that the members of the peer group are dynamic.

Syntax

```
neighbor peer-group-name subnet subnet-number mask
```

To remove passive peering, use the `no neighbor peer-group-name subnet subnet-number mask` command.

Parameters

- **subnet-number**
 - Enter a subnet number in dotted decimal format (A.B.C.D.) as the allowable range of addresses included in the Peer group. To allow all addresses, enter 0::0/0.

- **mask**
 - Enter a prefix mask in /prefix-length format (/x).

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor timers

Set keepalive and hold time timers for a BGP neighbor or a peer group.

Syntax

```
neighbor {ipv6-address | peer-group-name} timers keepalive holdtime
```

To return to the default values, use the `no neighbor {ipv6-address | peer-group-name} timers` command.

Parameters

- **ipv6-address**
 - Enter the IPv6 address in the x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**
 - Enter the name of the peer group to set the timers for all routers within the peer group.
keepalive

Enter a number for the time interval, in seconds, between keepalive messages sent to the neighbor routers. The range is from 1 to 65535. The default is **60 seconds**.

holdtime

Enter a number for the time interval, in seconds, between the last keepalive message and declaring the router dead. The range is from 3 to 65535. The default is **180 seconds**.

Defaults

- **keepalive = 60 seconds**
- **holdtime = 180 seconds**

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Timer values configured with the neighbor timers command override the timer values configured with the timers bgp command.

When two neighbors, configured with different keepalive and holdtime values, negotiate for new values, the resulting values are as follows:

- the lower of the holdtime values is the new holdtime value
- whichever is the lower value: one-third of the new holdtime value, or the configured keepalive value is the new keepalive value

neighbor update-source

Enable the software to use Loopback interfaces for TCP connections for BGP sessions.

Syntax

```
neighbor {ipv6-address | peer-group-name} update-source loopback interface
```

To use the closest interface, use the `no neighbor {ipv6-address | peer-group-name} update-source loopback interface` command.

Parameters

- **ipv6-address**

Enter the IPv6 address in the x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**

Enter the name of the peer group to set the timers for all routers within the peer group.
loopback interface

Enter the keyword `loopback` then a number of the loopback interface. The range is from 0 to 16383.

Defaults

Not configured.

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Loopback interfaces are up constantly and the BGP session may need one interface constantly up to stabilize the session. The `neighbor update-source` command is not necessary for directly connected internal BGP sessions.

neighbor weight

Assign a weight to the neighbor connection, which is used to determine the best path.

Syntax

```
neighbor {ipv6-address | peer-group-name} weight weight
```

To remove a weight value, use the `no neighbor {ipv6-address | peer-group-name} weight weight` command.

Parameters

- **ipv6-address**
 - Enter the IPv6 address in the x:x:x::x format.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**
 - Enter the name of the peer group to set the timers for all routers within the peer group.

- **weight**
 - Enter a number as the weight. The range is from 0 to 65535. The default is 0.

Defaults

0

Command Modes

ROUTER BGP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In the system best path selection process, the path with the highest weight value is preferred.
NOTE: To apply the weight to the connection and recompute the best path, reset the neighbor connection (the `capture bgp-pdu max-buffer-size *` command).

network

Specify the networks for the BGP process and enter them in the BGP routing table.

Syntax

```
network ipv6-address prefix-length [route-map map-name]
```

To remove a network, use the `no network ip-address mask [route-map map-name]` command.

Parameters

- `ipv6-address prefix-length` Enter the IPv6 address in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `mask` Enter the mask of the IP address in the slash prefix length format (for example, /24). The mask appears in command outputs in dotted decimal format (A.B.C.D).

- `route-map map-name` (OPTIONAL) Enter the keywords `route-map` then the name of an established route map. If the route map is not configured, the default is `deny` (to drop all routes).

Defaults

Not configured.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The software resolves the network address configured by the `network` command with the routes in the main routing table to ensure that the networks are reachable using non-BGP routes and non-default routes.

Related Commands

- `redistribute` — redistributes routes into BGP.
network backdoor

Specify this IGP route as the preferred route.

Syntax

```
network ipv6-address prefix-length backdoor
```

To remove a network, use the `no network ipv6-address prefix-length backdoor` command.

Parameters

- `ipv6-address`
- `prefix-length`

Enter the IPv6 address in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

Defaults

Not configured.

Command Modes

`ROUTER BGPV6-ADDRESS FAMILY`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Though the system does not generate a route due to backdoor config, there is an option for injecting/sourcing a local route in presence of network backdoor config on a learned route.

redistribute

Redistribute routes into BGP.

Syntax

```
redistribute {connected | static} [route-map map-name]
```

To disable redistribution, use the `no redistribution {connected | static}` command.

Parameters

- `connected`
- `static`

Enter the keyword `connected` to redistribute routes from physically connected interfaces.

Enter the keyword `static` to redistribute manually configured routes. These routes are treated as incomplete routes.
route-map map-name

(Optional) Enter the keywords route-map then the name of an established route map.
If the route map is not configured, the default is deny (to drop all routes).

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
If you do not configure the default-metric command, in addition to the redistribute command, or there is no route map to set the metric, the metric for redistributed static and connected is "0".

To redistribute the default route (0:0:0/0), configure the neighbor default-originate command.

Related Commands
neighbor default-originate — injects the default route.

redistribute isis

Redistribute IS-IS routes into BGP.

Syntax
redistribute isis [level-1 | level-1-2 | level-2] [metric metric-value | metric-type {external | internal}] [route-map map-name]

To stop redistribution of IS-IS routes, use the no redistribute isis command.

Parameters
level-1 | level-1-2 | level-2
(Optional) Enter the type (level) of routes to redistribute.
metric
(Optional) Assign metric to an interface for use with IPv6 information.
metric-type
(Optional) The external link type associated with the default route advertised into a routing domain. You must specify one of the following:
 • external
 • internal (default)
route-map map-name

(Optional) Enter the keywords route-map then the name of an established route map.
If the route map is not configured, the default is deny (to drop all routes).

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

redistribute ospf

Redistribute OSPFv3 routes into BGP.

Syntax

redistribute ospf process-id [[match external {1 | 2}] [match internal]] [route-map map-name]

To stop redistribution of OSPF routes, use the no redistribute ospf process-id command.

Parameters

- process-id
 - Enter the number of the OSPFv3 process. The range is from 1 to 65535.

- match external {1 | 2}
 - (Optional) Enter the keywords match external to redistribute OSPF external routes. You can specify 1 or 2 to redistribute those routes only.

- match internal
 - (Optional) Enter the keywords match internal to redistribute OSPFv3 internal routes only.

- route-map map-name
 - (Optional) Enter the keywords route-map then the name of an established route map.
If the route map is not configured, the default is deny (to drop all routes).

Defaults
Not configured.

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
Version | **Description**
--- | ---
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
When you enter the `redistribute ospf process-id` command without any other parameters, the system redistributes all OSPF internal routes, external type 1 routes, and external type 2 routes.

router bgp

Enter ROUTER BGP mode to configure and enable BGP.

Syntax
`router bgp as-number`

To disable BGP, use the `no router bgp as-number` command.

Parameters
- `as-number`
 Enter the AS number. The range is from 1 to 65535.

Defaults
Not enabled.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show capture bgp-pdu neighbor

Display BGP packet capture information for an IPv6 address.

Syntax
`show capture bgp-pdu neighbor ipv6-address`

Parameters
- `ipv6-address`
 Enter the IPv6 address (X:X::X::X) of a BGP neighbor.

Defaults

- EXEC
- EXEC Privilege

Command Modes
CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Command

capture bgp-pdu neighbor (ipv6) — enables capture of an IPv6 BGP neighbor packet.
capture bgp-pdu max-buffer-size — specifies a size for the capture buffer.

show config

View the current ROUTER BGP configuration.

Syntax

show config

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell(conf-router_bgp)#show config
!
router bgp 18508
neighbor RR-CLIENT peer-group
neighbor RR-CLIENT remote-as 18508
neighbor RR-CLIENT no shutdown
neighbor RR-CLIENT-PASSIV peer-group passive
neighbor RR-CLIENT-PASSIV remote-as 18508
neighbor RR-CLIENT-PASSIV subnet 9000::9:0/120
neighbor RR-CLIENT-PASSIV no shutdown
neighbor 1109::33 remote-as 18508
neighbor 1109::33 update-source Loopback 101
neighbor 1109::33 no shutdown
neighbor 2222::220 remote-as 18508
neighbor 2222::220 route-reflector-client
neighbor 2222::220 update-source Loopback 100
neighbor 2222::220 no shutdown
neighbor 4000::33 remote-as 18508
neighbor 4000::33 no shutdown
neighbor 4000::60 remote-as 18508
neighbor 4000::60 no shutdown
neighbor 9000::1:2 remote-as 640
no neighbor 9000::1:2 activate
neighbor 9000::1:2 no shutdown
!
Dell#
show ip bgp ipv6 unicast

View the current BGP information.

Syntax

```
show ip bgp ipv6 unicast [network [network-mask] [longer-prefixes]]
```

Parameters

- `network` (OPTIONAL) Enter the network address (in dotted decimal format) of the BGP network to view information only on that network.
- `network-mask` (OPTIONAL) Enter the keywords network mask (in slash prefix format) of the BGP network address.
- `longer-prefixes` (OPTIONAL) Enter the keywords longer-prefixes to view all routes with a common prefix.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MxL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable the `bgp non-deterministic-med` command, the `show ip bgp` command output for a BGP route does not list the INACTIVE reason.

show ip bgp ipv6 unicast cluster-list

View BGP neighbors in a specific cluster.

Syntax

```
show ip bgp ipv6 unicast cluster-list [cluster-id]
```

Parameters

- `cluster-id` (OPTIONAL) Enter the cluster id in dotted decimal format.

Command Modes

- EXEC
- EXEC Privilege
show ip bgp ipv6 unicast community

View information on all routes with community attributes or view specific BGP community groups.

Syntax

```
show ip bgp ipv6 unicast community [community-number] [local-as] [no-export] [no-advertise]
```

Parameters

- **community-number**: Enter the community number in AA:NN format where AA is the AS number (2 bytes) and NN is a value specific to that autonomous system. You can specify up to eight community numbers to view information on those community groups.

- **local-AS**: Enter the keywords `local-AS` to view all routes with the COMMUNITY attribute of NO_EXPORT_SUBCONFED. All routes with the NO_EXPORT_SUBCONFED (0xFFFFFF03) community attribute must not be advertised to external BGP peers.

- **no-advertise**: Enter the keywords `no-advertise` to view all routes containing the well-known community attribute of NO_ADVERTISE. All routes with the NO_ADVERTISE (0xFFFFFF02) community attribute must not be advertised to other BGP peers.

- **no-export**: Enter the keywords `no-export` to view all routes containing the well-known community attribute of NO_EXPORT. All routes with the NO_EXPORT (0xFFFFFF01) community attribute must not be advertised outside a BGP confederation boundary.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To view the total number of COMMUNITY attributes found, use the `show ip bgp ipv6 unicast summary` command. The text line above the route table states the number of COMMUNITY attributes found.
show ip bgp ipv6 unicast community-list

View routes that are affected by a specific community list.

Syntax

show ip bgp ipv6 unicast community-list community-list-name
[exact-match]

Parameters

community-list-name Enter the name of a configured IP community list.
exact-match

(Optional) Enter the keywords exact-match to display only for an exact match of the communities.

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

show ip bgp ipv6 unicast dampened-paths

View BGP routes that are dampened (non-active).

Syntax

show ip bgp ipv6 unicast dampened-paths

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
show ip bgp ipv6 unicast detail

Display BGP internal information for IPv6 Unicast address family.

Syntax
show ip bgp ipv6 unicast detail

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp ipv6 unicast extcommunity-list

View information on all routes with Extended Community attributes.

Syntax
show ip bgp ipv6 unicast extcommunity-list [list name]

Parameters

| list name | Enter the extended community list name you wish to view. |

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To view the total number of COMMUNITY attributes found, use the show ip bgp ipv6 unicast summary command. The text line above the route table states the number of COMMUNITY attributes found.
The `show ip bgp ipv6 unicast community` command without any parameters lists BGP routes with at least one BGP community attribute and the output is the same as for the `show ip bgp ipv6 unicast` command output.

show ip bgp ipv6 unicast filter-list

View the routes that match the filter lists.

Syntax

```
show ip bgp ipv6 unicast filter-list as-path-name
```

Parameters

- `as-path-name` Enter the name of an AS-PATH.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp ipv6 unicast flap-statistics

View flap statistics on BGP routes.

Syntax

```
show ip bgp ipv6 unicast flap-statistics [ipv6-address prefix-length] [filter-list as-path-name] [regexp regular-expression]
```

Parameters

- `ipv6-address prefix-length` Enter the IPv6 address in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `filter-list as-path-name` (OPTIONAL) Enter the keywords filter-list then the name of a configured AS-PATH ACL.

- `regexp regular-expression` Enter a regular expression then use one or a combination of the following characters to match:

 - . = (period) any single character (including a white space).
 - * = (asterisk) the sequences in a pattern (0 or more sequences).
+ = (plus) the sequences in a pattern (1 or more sequences).
• ? = (question mark) sequences in a pattern (either 0 or 1 sequences).

 NOTE: You must enter an escape sequence (CTRL +v) prior to entering the ? regular expression.
• [] = (brackets) a range of single-character patterns.
• ^ = (caret) the beginning of the input string. If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.
• $ = (dollar sign) the end of the output string.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp ipv6 unicast inconsistent-as

View routes with inconsistent originating autonomous system (AS) numbers; that is, prefixes that are announced from the same neighbor AS but with a different AS-Path.

Syntax

```
show ip bgp ipv6 unicast inconsistent-as
```

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show ip bgp ipv6 unicast neighbors

Displays information on IPv6 unicast routes exchanged by BGP neighbors.

Syntax

```
show ip bgp ipv6 unicast neighbors [ipv4-neighbor-addr | ipv6-neighbor-addr] [advertised-routes | dampened-routes | detail | flap-statistics | routes | received-routes [network [network-mask]] | denied-routes [network [network-mask]]]
```

Parameters

- `ipv6 unicast` Enter the keywords `ipv6 unicast` to view information only related to IPv6 unicast routes.
- `ipv4-neighbor-addr | ipv6-neighbor-addr` (OPTIONAL) Enter the IP address of the neighbor to view only BGP route information exchanged with that neighbor.
- `advertised-routes` (OPTIONAL) Enter the keywords `advertised-routes` to view only the routes the neighbor sent.
- `dampened-routes` (OPTIONAL) Enter the keywords `dampened-routes` to view information on dampened routes from the BGP neighbor.
- `detail` (OPTIONAL) Enter the keyword `detail` to view neighbor-specific internal information for the IPv4 Unicast address family.
- `flap-statistics` (OPTIONAL) Enter the keywords `flap-statistics` to view flap statistics on the neighbor’s routes.
- `routes` (OPTIONAL) Enter the keyword `routes` to view only the neighbor’s feasible routes.
- `received-routes [network [network-mask]]` (OPTIONAL) Enter the keywords `received-routes` then either the network address (in dotted decimal format) or the network mask (in slash prefix format) to view all information received from neighbors.
- `denied-routes [network [network-mask]]` (OPTIONAL) Enter the keywords `denied-routes` then either the network address (in dotted decimal format) or the network mask (in slash prefix format) to view all information on routes denied using neighbor inbound filters.

Command Modes

- EXEC
- EXEC Privilege

NOTE: You must configure the `neighbor soft-reconfiguration inbound` command prior to viewing all the information received from the neighbors.
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip bgp ipv6 unicast neighbors` command shown in the Example below.

<table>
<thead>
<tr>
<th>Lines Beginning With</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP neighbor</td>
<td>Displays the BGP neighbor address and its AS number. The last phrase in the line indicates whether the link between the BGP router and its neighbor is an external or internal one. If they are located in the same AS, then the link is internal; otherwise, the link is external.</td>
</tr>
<tr>
<td>BGP version</td>
<td>Displays the BGP version (always version 4) and the remote router ID.</td>
</tr>
<tr>
<td>BGP state</td>
<td>Displays the neighbor’s BGP state and the amount of time in hours:minutes:seconds it has been in that state.</td>
</tr>
<tr>
<td>Last read</td>
<td>This line displays the following information:</td>
</tr>
<tr>
<td></td>
<td>• last read is the time (hours:minutes:seconds) the router reads a message from its neighbor</td>
</tr>
<tr>
<td></td>
<td>• hold time is the number of seconds configured between messages from its neighbor</td>
</tr>
<tr>
<td></td>
<td>• keepalive interval is the number of seconds between keepalive messages to help ensure that the TCP session is still alive</td>
</tr>
<tr>
<td>Received messages</td>
<td>This line displays the number of BGP messages received, the number of notifications (error messages), and the number of messages waiting in a queue for processing.</td>
</tr>
<tr>
<td>Sent messages</td>
<td>The line displays the number of BGP messages sent, the number of notifications (error messages), and the number of messages waiting in a queue for processing.</td>
</tr>
<tr>
<td>Received updates</td>
<td>This line displays the number of BGP updates received and sent.</td>
</tr>
<tr>
<td>Soft reconfiguration</td>
<td>This line indicates that soft reconfiguration inbound is configured.</td>
</tr>
<tr>
<td>Minimum time</td>
<td>Displays the minimum time, in seconds, between advertisements.</td>
</tr>
<tr>
<td>(List of inbound and outbound policies)</td>
<td>Displays the policy commands configured and the names of the Route map, AS-PATH ACL, or Prefix list configured for the policy.</td>
</tr>
<tr>
<td>Lines Beginning With</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>For address family:</td>
<td>Displays IPv6 Unicast as the address family.</td>
</tr>
<tr>
<td>BGP table version</td>
<td>Displays which version of the primary BGP routing table the router and the neighbor are using.</td>
</tr>
<tr>
<td>Prefixes accepted</td>
<td>Displays the number of network prefixes accepted by the router and the amount of memory used to process those prefixes.</td>
</tr>
<tr>
<td>Prefixes advertised</td>
<td>Displays the number of network prefixes advertised, the number rejected, and the number withdrawn from the BGP routing table.</td>
</tr>
<tr>
<td>Connections established</td>
<td>Displays the number of TCP connections established and dropped between the two peers to exchange BGP information.</td>
</tr>
<tr>
<td>Last reset</td>
<td>Displays the amount of time since the peering session was last reset. Also states if the peer resets the peering session. If the peering session was never reset, the word “never” is displayed.</td>
</tr>
<tr>
<td>Local host:</td>
<td>Displays the peering address of the local router and the TCP port number.</td>
</tr>
<tr>
<td>Foreign host:</td>
<td>Displays the peering address of the neighbor and the TCP port number.</td>
</tr>
</tbody>
</table>

Example

Dell#show ip bgp ipv6 unicast neighbors

BGP neighbor is 5ffe:10::3, remote AS 1, external link
BGP version 4, remote router ID 5.5.5.3
BGP state ESTABLISHED, in this state for 00:00:32
Last read 00:00:32, last write 00:00:32
Hold time is 180, keepalive interval is 60 seconds
Received 1404 messages, 0 in queue
 3 opens, 1 notifications, 1394 updates
 6 keepalives, 0 route refresh requests
Sent 48 messages, 0 in queue
 3 opens, 2 notifications, 0 updates
 43 keepalives, 0 route refresh requests
Minimum time between advertisement runs is 30 seconds
Minimum time before advertisements start is 0 seconds

Capabilities received from neighbor for IPv6 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)

Capabilities advertised to neighbor for IPv6 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)

For address family: IPv6 Unicast
BGP table version 12, neighbor version 12
2 accepted prefixes consume 32 bytes

Prefixes accepted 1 (consume 4 bytes), withdrawn 0 by peer
Prefixes advertised 0, rejected 0, withdrawn 0 from peer
Connections established 3; dropped 2
Last reset 00:00:39, due to Closed by neighbor

Notification History
'OPEN error/Bad AS' Sent : 0 Recv: 1

Local host: 5ffe:10::4, Local port: 179
Foreign host: 5ffe:10::3, Foreign port: 35470

Notification History
'Connection Reset' Sent : 1 Recv: 0

BGP neighbor is 5ffe:11::3, remote AS 1, external link
BGP version 4, remote router ID 5.5.5.3
BGP state ESTABLISHED, in this state for 00:00:28
Last read 00:00:28, last write 00:00:28
Hold time is 180, keepalive interval is 60 seconds
Received 27 messages, 3 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Received 8 updates, Sent 0 updates
Route refresh request: received 0, sent 0
Minimum time between advertisement runs is 30 seconds
Minimum time before advertisements start is 0 seconds

Capabilities received from neighbor for IPv6 Unicast :
MULTIPROTO_EXT(1)
ROUTE_REFRESH(2)
CISCO_ROUTE_REFRESH(128)
Capabilities advertised to neighbor for IPv6 Unicast :
MULTIPROTO_EXT(1)
ROUTE_REFRESH(2)
CISCO_ROUTE_REFRESH(128)

For address family: IPv6 Unicast
BGP table version 12, neighbor version 12
2 accepted prefixes consume 32 bytes

Prefix advertised 0, rejected 0, withdrawn 0
Connections established 3; dropped 2
Last reset 00:00:41, due to Closed by neighbor

Notification History
'OPEN error/Bad AS' Sent : 0 Recv: 1

Local host: 5ffe:11::4, Local port: 179

show ip bgp ipv6 unicast peer-group

Allows you to view information on the BGP peers in a peer group.

Syntax
```
show ip bgp ipv6 unicast peer-group [peer-group-name [summary]]
```

Parameters
- `peer-group-name` (OPTIONAL) Enter the name of a peer group to view information about that peer group only.
detail (OPTIONAL) Enter the keyword `detail` to view peer-group-specific information for the IPv6 address family.

summary (OPTIONAL) Enter the keyword `summary` to view status information of the peers in that peer group. The output is the same as that found in the `show ip bgp ipv6 unicast summary` command.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip bgp peer-group
Peer-group RR-CLIENT, remote AS 18508
    BGP version 4
    Minimum time between advertisement runs is 5 seconds
    For address family: IPv4 Unicast
    BGP neighbor is RR-CLIENT, peer-group internal,
    Number of peers in this group 1
    Peer-group members (* - outbound optimized):
        9000::4:

Peer-group RR-CLIENT-PASSIV, remote AS 18508
    BGP version 4
    Minimum time between advertisement runs is 5 seconds
    For address family: IPv4 Unicast
    BGP neighbor is RR-CLIENT-PASSIV, peer-group internal,
    Number of peers in this group 1
    Peer-group members (* - outbound optimized):
        9000::9:2*
```

show ip bgp ipv6 unicast summary

Allows you to view the status of all BGP connections.

Syntax

```
show ip bgp ipv6 unicast summary
```

Command Modes
- EXEC
- EXEC Privilege
show ip bgp next-hop

View all next hops (using learned routes only) with current reachability and flap status. This command only displays one path, even if the next hop is reachable by multiple paths.

Syntax

show ip bgp next-hop [local-routes]

Parameters

local-routes (OPTIONAL) Show next-hop information for local routes.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell# show ip bgp next-hop
Next-hop Via RefCount Cost Flaps Time Elapsed
9000::5:2 9000::5:2, Gi 8/38 2 0 0 00:23:22

IPv6 Border Gateway Protocol (IPv6 BGP) | 841
show ip bgp paths

View all the BGP path attributes in the BGP database.

Syntax

show ip bgp paths [regexp regular-expression]

Parameters

regexp regular-expression

Enter a regular expression then use one or a combination of the following characters to match:

- . = (period) any single character (including a white space).
- * = (asterisk) the sequences in a pattern (0 or more sequences).
- + = (plus) the sequences in a pattern (1 or more sequences).
- ? = (question mark) sequences in a pattern (either 0 or 1 sequences).

NOTE: You must enter an escape sequence (CTRL +v) prior to entering the ? regular expression.

- [] = (brackets) a range of single-character patterns.
- ^ = (caret) the beginning of the input string. If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.
- $ = (dollar sign) the end of the output string.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show ip bgp paths as-path

View all unique AS-PATHs in the BGP database.

Syntax

```
show ip bgp paths as-path
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp paths community

View all unique COMMUNITY numbers in the BGP database.

Syntax

```
show ip bgp paths community
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp paths extcommunity

View all unique extended community information in the BGP database.

Syntax

```
show ip bgp paths extcommunity
```

Command Modes

- EXEC
- EXEC Privilege
show ip bgp regexp

Allows you to view the subset of BGP routing table matching the regular expressions specified.

Syntax

```
show ip bgp regexp regular-expression [character]
```

Parameters

- `regular-expression` [character]

 Enter a regular expression then use one or a combination of the following characters to match:

 - `.` = (period) any single character (including a white space).
 - `*` = (asterisk) the sequences in a pattern (0 or more sequences).
 - `+` = (plus) the sequences in a pattern (1 or more sequences).
 - `?` = (question mark) sequences in a pattern (either 0 or 1 sequences).

 NOTE: You must enter an escape sequence (CTRL +v) prior to entering the ? regular expression.

 - `[]` = (brackets) a range of single-character patterns.
 - `^` = (caret) the beginning of the input string. If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.
 - `$` = (dollar sign) the end of the output string.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
timers bgp

Allows you to adjust the BGP network timers for all neighbors.

Syntax

```
timers bgp keepalive holdtimer
```

To return to the default values, use the `no timers bgp` command.

Parameters

- `keepalive` Enter the time interval (in seconds) between which the system sends keepalive messages. The range is from 1 to 65535. The default is 60 seconds.
- `holdtimer` Enter the time interval (in seconds) that the system waits since the last keepalive message before declaring a BGP peer dead. The range is from 3 to 65535. The default is 180 seconds.

Defaults

- `keepalive = 60 seconds`
- `holdtimer = 180 seconds`

Command Modes

- `ROUTER BGP`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `neighbor timers` — adjusts BGP timers for a specific peer or peer group.
IPv6 MBGP Commands

Multiprotocol BGP (MBGP) is an enhanced BGP that enables multicast routing policy throughout the Internet and connecting multicast topologies between BGP and autonomous systems (AS). The Dell Networking MBGP is implemented as per IETF RFC 1858.

address family

This command changes the context to subsequent address family identifier (SAFI).

Syntax

```
address family ipv6 unicast
```

To remove SAFI context, use the `no address family ipv6 unicast` command.

Parameters

- **ipv6**
 - Enter the keyword `ipv6` to specify the address family as IPv6.
- **unicast**
 - Enter the keyword `unicast` to specify multicast as SAFI.

Defaults

IPv6 Unicast

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After this command is executed, all subsequent commands apply to this address family. You can exit from this AFI/SAFI to the IPv6 Unicast (the default) family by entering the `exit` command and returning to the Router BGP context.

aggregate-address

Summarize a range of prefixes to minimize the number of entries in the routing table.

Syntax

```
aggregate-address ipv6-address prefix-length [advertise-map map-name] [as-set] [attribute-map map-name] [summary-only] [suppress-map map-name]
```
Parameters

ipv6-address
Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

prefix-length

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

advertise-map

(OPTIONAL) Enter the keywords advertise-map then the name of a configured route map to set filters for advertising an aggregate route.

map-name

as-set

(OPTIONAL) Enter the keywords as-set to generate path attribute information and include it in the aggregate. AS_SET includes AS_PATH and community information from the routes included in the aggregated route.

attribute-map

(OPTIONAL) Enter the keywords attribute-map then the name of a configured route map to modify attributes of the aggregate, excluding AS_PATH and NEXT_HOP attributes.

map-name

summary-only

(OPTIONAL) Enter the keywords summary-only to advertise only the aggregate address. Specific routes are not advertised.

suppress-map

(OPTIONAL) Enter the keywords suppress-map then the name of a configured route map to identify which more-specific routes in the aggregate are suppressed.

map-name

Defaults

Not configured.

Command Modes

ROUTER-BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

At least one of the routes included in the aggregate address must be in the BGP routing table for the configured aggregate to become active.

Do not add the as-set parameter to the aggregate. If routes within the aggregate are constantly changing, the aggregate flaps to keep track of the changes in the AS_PATH.

In route maps used in the suppress-map parameter, routes meeting the deny clause are not suppress; in other words, they are allowed. The opposite is true: routes meeting the permit clause are suppressed.

If the route is injected using the network command, that route stills appear in the routing table if the summary-only parameter is configured in the aggregate-address command.
The summary-only parameter suppresses all advertisements. If you want to suppress advertisements to only specific neighbors, use the neighbor distribute-list command.

bgp dampening

Enable MBGP route dampening.

Syntax

```
bgp dampening [half-life time] [route-map map-name]
```

To disable route dampening, use the `no bgp dampening [half-life time] [route-map map-name]` command.

Parameters

- **half-life time** *(OPTIONAL)* Enter the number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half, after the half-life period expires. The range is from 1 to 45. The default is 15 minutes.

- **route-map map-name** *(OPTIONAL)* Enter the keywords `route-map` then the name of a configured route map. Only match commands in the configured route map are supported.

Defaults

Disabled.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip bgp ipv6 unicast

Reset MBGP sessions.

Syntax

```
clear ip bgp ipv6 unicast * ipv6-address prefix-length [dampening | flap-statistics] peer-group]
```

Parameters

- *** ** Enter the character * to clear all peers.

- **ipv6-address** Enter the IPv6 address in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **dampening** (OPTIONAL) Enter the keyword dampening to clear route flap dampening information.
- **flap-statistics** (OPTIONAL) Enter the keywords flap-statistics to reset the flap statistics on all prefixes from that neighbor.
- **peer-group** (OPTIONAL) Enter the keywords peer-group to clear all members of a peer-group.

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip bgp ipv6 unicast dampening

Clear information on route dampening.

Syntax

```plaintext
clear ip bgp dampening ipv6 unicast [network network-mask]
```

Parameters

- **network** (OPTIONAL) Enter the IPv6 network address in x:x:x:x::x format.
- **network-mask** If you enter the network address, next enter the network mask, from 0 to 128.

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip bgp ipv6 unicast flap-statistics

Clear BGP flap statistics, which includes the number of flaps and the time of the last flap.

Syntax

```plaintext
clear ip bgp ipv6 unicast flap-statistics [network | filter-list list | regexp regexp]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>(OPTIONAL) Enter the IPv6 network address in x:x:x:x::x format to clear flap statistics.</td>
</tr>
<tr>
<td>filter-list list</td>
<td>(OPTIONAL) Enter the keywords filter-list then the name of a configured AS-PATH list (maximum 16 characters).</td>
</tr>
<tr>
<td>regexp regexp</td>
<td>(OPTIONAL) Enter the keyword regexp then regular expressions. Use one or a combination of the following:</td>
</tr>
<tr>
<td></td>
<td>• . (period) matches on any single character, including white space.</td>
</tr>
<tr>
<td></td>
<td>• * (asterisk) matches on sequences in a pattern (zero or more sequences).</td>
</tr>
<tr>
<td></td>
<td>• + (plus sign) matches on sequences in a pattern (one or more sequences).</td>
</tr>
<tr>
<td></td>
<td>• ? (question mark) matches sequences in a pattern (0 or 1 sequences).</td>
</tr>
<tr>
<td></td>
<td>• [] (brackets) matches a range of single-character patterns.</td>
</tr>
<tr>
<td></td>
<td>• ^ (caret) matches the beginning of the input string. (If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.)</td>
</tr>
<tr>
<td></td>
<td>• $ (dollar sign) matches the end of the output string.</td>
</tr>
</tbody>
</table>

Command Modes

| Command Modes | EXEC Privilege |

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ip bgp ipv6 unicast dampening

View information on routes being dampened.

Syntax

depug ip bgp ipv6 unicast dampening

to disable debugging, use the no debug ip bgp ipv6 unicast dampening command.

Parameters

dampening

Enter the keyword dampening to clear route flap dampening information.

Command Modes

EXEC Privilege
debug ip bgp ipv6 unicast peer-group updates

View information about BGP peer-group updates.

Syntax

```
debug ip bgp ipv6 unicast peer-group peer-group-name updates [in | out]
```

To disable debugging, use the `no debug ip bgp ipv6 unicast peer-group peer-group-name updates [in | out]` command.

Parameters

- `peer-group peer-group-name`: Enter the keywords `peer-group` then the name of the peer-group.
- `updates`: Enter the keyword `updates` to view BGP update information.
- `in`: (OPTIONAL) Enter the keyword `in` to view only BGP updates received from neighbors.
- `out`: (OPTIONAL) Enter the keyword `out` to view only BGP updates sent to neighbors.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the S4820T.</td>
</tr>
</tbody>
</table>

debug ip bgp ipv6 unicast updates

View information about BGP updates.

Syntax

```
debug ip bgp ipv6 unicast ipv6-address prefix-length updates [in | out]
```

IPv6 Border Gateway Protocol (IPv6 BGP) | 851
Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 🔄 **NOTE**: The :: notation specifies successive hexadecimal fields of zeros.

- **prefix-length**: Enter the keyword updates to view BGP update information.

- **updates**: Enter the keyword **in** (OPTIONAL) to view only BGP updates received from neighbors.

- **out** (OPTIONAL) to view only BGP updates sent to neighbors.

Defaults

- Disabled.

Command Modes

- **EXEC Privilege**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

distance bgp

Define an administrative distance for routes.

Syntax

distance bgp external-distance internal-distance local-distance

To return to default values, use the no distance bgp command.

Parameters

- **external-distance**: Enter a number to assign to routes learned from a neighbor external to the AS. The range is from 1 to 255. The default is 20.

- **internal-distance**: Enter a number to assign to routes learned from a router within the AS. The range is from 1 to 255. The default is 200.

- **local-distance**: Enter a number to assign to routes learned from networks listed in the network command. The range is from 1 to 255. The default is 200.

Defaults

- external-distance = 20
- internal-distance = 200
- local-distance = 200

Command Modes

- ROUTER BGPV6-ADDRESS FAMILY
neighbor activate

Allows you to enable a specified neighbor/peer group for the current address and subsequent address family identifier (AFI/SAFI).

Syntax

```
neighbor [ipv6-address | peer-group-name] activate
```

To disable, use the `no neighbor [ipv6-address | peer-group-name] activate` command.

Parameters

- **ipv6-address**: Enter the IPv6 address in the x:x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**: Identify a peer group by name.

- **activate**: Enter the keyword `activate` to enable the identified neighbor or peer group in the new AFI/SAFI.

Defaults

Disabled.

Command Modes

- ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information
By default, when a neighbor/peer group configuration is created in the Router BGP context, it is enabled for the IPv6/Unicast AFI/SAFI. By using activate in the new context, the neighbor/peer group is enabled for AFI/SAFI.

Related Command
address family — changes the context to SAFI.

neighbor advertisement-interval

Set the advertisement interval between BGP neighbors or within a BGP peer group.

Syntax
neighbor {ipv6-address | peer-group-name} advertisement-interval seconds
To return to the default value, use the no neighbor {ipv6-address | peer-group-name} advertisement-interval command.

Parameters
ipv6-address Enter the IPv6 address in the x:x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name Enter the name of the peer group to set the advertisement interval for all routers in the peer group.

seconds Enter a number as the time interval, in seconds, between BGP advertisements. The range is from 0 to 600 seconds. The default is 5 seconds for internal BGP peers and 30 seconds for external BGP peers.

Defaults
- seconds = 5 seconds (internal peers)
- seconds = 30 seconds (external peers)

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
neighbor default-originate

Inject the default route to a BGP peer or neighbor.

Syntax

neighbor {ipv6-address | peer-group-name} default-originate
(route-map map-name)

To remove a default route, use the no neighbor {ipv6-address | peer-group-name} default-originate command.

Parameters

ipv6-address Enter the IPv6 address in the x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name Enter the name of the peer group to set the default route of all routers in that peer group.

route-map map-name (OPTIONAL) Enter the keywords route-map then the name of a configured route map.

Defaults Not configured.

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor distribute-list

Distribute BGP information using an established prefix list.

Syntax

neighbor {ipv6-address | peer-group-name} distribute-list prefix-list-name {in | out}

To delete a neighbor distribution list, use the no neighbor {ipv6-address | peer-group-name} distribute-list prefix-list-name {in | out} command.

Parameters

ipv6-address Enter the IPv6 address in the x:x:x::x format.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name Enter the name of the peer group.

prefix-list-name Enter the name of an established prefix list. If the prefix list is not configured, the default is permit (to allow all routes).

in Enter the keyword in to distribute only inbound traffic.

out Enter the keyword out to distribute only outbound traffic.

Defaults Not configured.

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

neighbor filter-list — assigns a AS-PATH list to a neighbor or peer group.

neighbor route-map — assigns a route map to a neighbor or peer group.

neighbor filter-list

Configure a BGP filter based on the AS-PATH attribute.

Syntax

```
neighbor [ipv6-address | peer-group-name] filter-list aspath access-list-name [in | out]
```

To delete a BGP filter, use the no neighbor [ipv6-address | peer-group-name] filter-list aspath access-list-name [in | out] command.

Parameters

- **ipv6-address** Enter the IPv6 address in the x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name** Enter the name of the peer group to apply the filter to all routers in the peer group.

- **access-list-name** Enter the name of an established AS-PATH access list. If the AS-PATH access list is not configured, the default is permit (to allow routes).

- **in** Enter the keyword in to filter inbound BGP routes.
neighbor maximum-prefix

Control the number of network prefixes received.

Syntax
neighbor {ipv6-address | peer-group-name} maximum-prefix maximum [threshold] [warning-only]

To return to the default values, use the no neighbor {ipv6-address | peer-group-name} maximum-prefix maximum [threshold] [warning-only] command.

Parameters
ipv6-address
Enter the IPv6 address in the x:x::x format.

peer-group-name
Enter the name of the peer group.

maximum
Enter a number as the maximum number of prefixes allowed for this BGP router. The range is from 1 to 4294967295.

threshold
(OPTIONAL) Enter a number to be used as a percentage of the maximum value. When the number of prefixes reaches this percentage of the maximum value, the software sends a message. The range is from 1 to 100 percent. The default is 75.

warning-only
(OPTIONAL) Enter the keyword warning-only to set the router to send a log message when the maximum value is reached. If this parameter is not set, the router stops peering when the maximum number of prefixes is reached.

Defaults
threshold = 75

Command Modes
ROUTER BGPV6-ADDRESS FAMILY

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
neighbor next-hop-self

Allows you to configure the router as the next hop for a BGP neighbor.

Syntax

```
neighbor {ipv6-address | peer-group-name} next-hop-self
```

To return to the default setting, use the `no neighbor {ipv6-address | peer-group-name} next-hop-self` command.

Parameters

- **ipv6-address**
 - Enter the IPv6 address in the x:x:x::x format.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name**
 - (OPTIONAL) Enter the name of the peer group.

Defaults

Disabled.

Command Modes

- ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you configure the `set ipv6 next-hop` command in ROUTE-MAP mode, its configuration takes precedence over the `neighbor next-hop-self` command.

neighbor remove-private-as

Remove private AS numbers from the AS-PATH of outgoing updates.

Syntax

```
neighbor {ipv6-address | peer-group-name} remove-private-as
```

To return to the default, use the `no neighbor {ipv6-address | peer-group-name} remove-private-as` command.

Parameters

- **ipv6-address**
 - Enter the IPv6 address in the x:x:x::x format.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name Enter the name of the peer group to remove the private AS numbers.

Defaults Disabled (that is, the private AS number are not removed).

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

neighbor route-map

Apply an established route map to either incoming or outbound routes of a BGP neighbor or peer group.

Syntax

```plaintext
neighbor {ipv6-address | peer-group-name} route-map map-name {in | out}
```

To remove the route map, use the **no neighbor {ipv6-address | peer-group-name} route-map map-name {in | out}** command.

Parameters

- **ipv6-address** Enter the IPv6 address in the x:x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- **peer-group-name** Enter the name of the peer group.

- **map-name** Enter the name of an established route map. If the Route map is not configured, the default is **deny** (to drop all routes).

- **in** Enter the keyword **in** to filter inbound routes.

- **out** Enter the keyword **out** to filter outbound routes.

Defaults Not configured.

Command Modes ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

When you apply a route map to outbound routes, only routes that match at least one section of the route map are permitted.

If you identify a peer group by name, the peers in that peer group inherit the characteristics in the Route map used in this command. If you identify a peer by IP address, the Route map overwrites either the inbound or outbound policies on that peer.

neighbor route-reflector-client

Configure a neighbor as a member of a route reflector cluster.

Syntax

neighbor {ipv6-address | peer-group-name} route-reflector-client

To indicate that the neighbor is not a route reflector client or to delete a route reflector configuration, use the no neighbor {ipv6-address | peer-group-name} route-reflector-client command.

Parameters

ipv6-address Enter the IPv6 address in the x:x:x:x::x format.

NOTE: The :: notation specifies successive hexadecimal fields of zeros.

peer-group-name Enter the name of the peer group. All routers in the peer group receive routes from a route reflector.

Defaults

Not configured.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The first time you enter this command it configures the neighbor as a route reflector and members of the route-reflector cluster. Internal BGP (IBGP) speakers do not need to be fully meshed if you configure a route reflector.

When all clients of a route reflector are disabled, the neighbor is no longer a route reflector.
network

Specify the networks for the BGP process and enter them in the BGP routing table.

Syntax

```
network ipv6-address [route-map map-name]
```

To remove a network, use the `no network ipv6-address [route-map map-name]` command.

Parameters

- `ipv6-address` Enter the IPv6 address in the `x:x:x:x::x` format.

 - **NOTE:** The `::` notation specifies successive hexadecimal fields of zeros.

- `route-map map-name` (OPTIONAL) Enter the keywords `route-map` then the name of an established route map.

 If the route map is not configured, the default is `deny` (to drop all routes).

Defaults

Not configured.

Command Modes

ROUTER BGPV6-ADDRESS FAMILY

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The software resolves the network address configured by the `network` command with the routes in the main routing table to ensure that the networks are reachable using non-BGP routes and non-default routes.

Related Commands

- `redistribute` — redistributes routes into BGP.

redistribute

Redistribute routes into BGP.

Syntax

```
redistribute {connected | static} [route-map map-name]
```

To disable redistribution, use the `no redistribution {connected | static}` command.

IPv6 Border Gateway Protocol (IPv6 BGP)
show ip bgp ipv6 unicast

View the current BGP information.

Syntax

```
show ip bgp ipv6 unicast [network [network-mask] [longer-prefixes]]
```

Parameters

- `network` (OPTIONAL) Enter the network address (in dotted decimal format) of the BGP network to view information only on that network.
- `network-mask` (OPTIONAL) Enter the keywords `network` `mask` (in slash prefix format) of the BGP network address.
- `longer-prefixes` (OPTIONAL) Enter the keywords `longer-prefixes` to view all routes with a common prefix.
show ip bgp ipv6 unicast cluster-list

View BGP neighbors in a specific cluster.

Syntax
show ip bgp ipv6 unicast cluster-list [cluster-id]

Parameters
- **cluster-id** (OPTIONAL) Enter the cluster id in dotted decimal format.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp ipv6 unicast community

View information on all routes with community attributes or view specific BGP community groups.

Syntax
show ip bgp ipv6 unicast community [community-number] [local-as] [no-export] [no-advertise]

Parameters
- **community-number** Enter the community number in AA:NN format where AA is the AS number (2 bytes) and NN is a value specific to that autonomous system. You can specify up to eight community numbers to view information on those community groups.
local-AS

Enter the keywords local-AS to view all routes with the COMMUNITY attribute of NO_EXPORT_SUBCONFED. All routes with the NO_EXPORT_SUBCONFED (0xFFFFFF03) community attribute must not be advertised to external BGP peers.

no-advertise

Enter the keywords no-advertise to view all routes containing the well-known community attribute of NO_ADVERTISE. All routes with the NO_ADVERTISE (0xFFFFFF02) community attribute must not be advertised to other BGP peers.

no-export

Enter the keywords no-export to view all routes containing the well-known community attribute of NO_EXPORT. All routes with the NO_EXPORT (0xFFFFFF01) community attribute must not be advertised outside a BGP confederation boundary.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To view the total number of COMMUNITY attributes found, use the show ip bgp ipv6 unicast summary command. The text line above the route table states the number of COMMUNITY attributes found.

show ip bgp ipv6 unicast community-list

View routes that are affected by a specific community list.

Syntax

show ip bgp ipv6 unicast community-list community-list-name

Parameters

community-list-name Enter the name of a configured IP community list.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
show ip bgp ipv6 unicast dampened-paths

View BGP routes that are dampened (non-active).

Syntax

```
show ip bgp ipv6 unicast dampened-paths
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
R2_Training#show ip bgp ipv6 unicast dampened-paths
```

Detail information for BGP Node

bipNdP 0x41a17000 : NdTmrP 0x41a17000 : NdKATmrP 0x41a17000 :
NdTics 327741 :
NhLocAS 1 : NdState 2 : NdRPMPrim 1 : NdListSoc 13
NdAuto 1 : NdEqCost 1 : NdSync 0 : NdDefOrg 0
NdV6ListSoc 14 NdDefDid 0 : NdConfedId 0 : NdMedConfed 0 :

show ip bgp ipv6 unicast detail

Display detailed BGP information.

Syntax

```
show ip bgp ipv6 unicast detail
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
R2_Training#show ip bgp ipv6 unicast detail
Detail information for BGP Node
bipNdP 0x41a17000 : NdTmrP 0x41a17000 : NdKATmrP 0x41a17000 :
NdTics 327741 :
NhLocAS 1 : NdState 2 : NdRPMPrim 1 : NdListSoc 13
NdAuto 1 : NdEqCost 1 : NdSync 0 : NdDefOrg 0
NdV6ListSoc 14 NdDefDid 0 : NdConfedId 0 : NdMedConfed 0 :
```
show ip bgp ipv6 unicast filter-list

View the routes that match the filter lists.

Syntax: show ip bgp ipv6 unicast filter-list as-path-name

Parameters:
- **as-path-name**: Enter the name of an AS-PATH.

Command Modes:
- EXEC
- EXEC Privilege

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip bgp ipv6 unicast flap-statistics

View flap statistics on BGP routes.

Syntax: show ip bgp ipv6 unicast flap-statistics [ipv6-address prefix-length] [filter-list as-path-name] [regexp regular-expression]

Parameters:
- **ipv6-address prefix-length**: Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.
NOTE: The :: notation specifies successive hexadecimal fields of zeros.

```
filter-list as-path-name
regexp regular-expression
```

(OPTIONAL) Enter the keywords filter-list then the name of a configured AS-PATH ACL.

Enter a regular expression then use one or a combination of the following characters to match:

- . = (period) any single character (including a white space).
- * = (asterisk) the sequences in a pattern (0 or more sequences).
- + = (plus) the sequences in a pattern (1 or more sequences).
- ? = (question mark) sequences in a pattern (either 0 or 1 sequences).

NOTE: You must enter an escape sequence (CTRL +v) prior to entering the ? regular expression.

- [] = (brackets) a range of single-character patterns.
- ^ = (caret) the beginning of the input string. If the caret is used at the beginning of a sequence or range, it matches on everything BUT the characters specified.
- $ = (dollar sign) the end of the output string.

Command Modes

- EXEC
- EXEC Privilege

Command History

```
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
```

Example

Dell#show ip bgp ipv6 unicast flap-statistics
BGP table version is 8, local router ID is 5.5.10.4
Status codes: s suppressed, S stale, d damped, h history, * valid, > best Path
source: I - internal, a - aggregate, c - confed-external, r - redistributed, n - network
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Flaps</th>
<th>Duration</th>
<th>Reuse Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h dead:1::/100 5ffe:10::3</td>
<td>1</td>
<td>00:03:20</td>
<td>1 i</td>
<td></td>
</tr>
<tr>
<td>h dead:1::/100 5ffe:11::3</td>
<td>1</td>
<td>00:03:20</td>
<td>1 i</td>
<td></td>
</tr>
<tr>
<td>h dead:4::/100 5ffe:10::3</td>
<td>1</td>
<td>00:04:39</td>
<td>1 i</td>
<td></td>
</tr>
<tr>
<td>h dead:4::/100 5ffe:11::3</td>
<td>1</td>
<td>00:04:39</td>
<td>1 i</td>
<td></td>
</tr>
</tbody>
</table>

Dell#
show ip bgp ipv6 unicast inconsistent-as

View routes with inconsistent originating autonomous system (AS) numbers; that is, prefixes that are announced from the same neighbor AS but with a different AS-Path.

Syntax

```
show ip bgp ipv6 unicast inconsistent-as
```

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

show ip bgp ipv6 unicast neighbors

Allows you to view the information exchanged by BGP neighbors.

Syntax

```
show ip bgp ipv6 unicast neighbors [ipv6-address prefix-length [advertised-routes | dampened-routes | detail | flap-statistics | routes]]
```

Parameters

- `ipv6-address prefix-length` (OPTIONAL) Enter the IPv6 address in the x:x:x:x::x format then the prefix length in the /x format. The range is from /0 to /128.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `advertised-routes` (OPTIONAL) Enter the keywords advertised-routes to view only the routes the neighbor sent.

- `dampened-routes` (OPTIONAL) Enter the keywords dampened-routes to view information on dampened routes from the BGP neighbor.

- `flap-statistics` (OPTIONAL) Enter the keywords flap-statistics to view flap statistics on the neighbor’s routes.

- `detail` (OPTIONAL) Display detailed neighbor information.
routes (OPTIONAL) Enter the keyword routes to view only the neighbor's feasible routes.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip bgp ipv6 unicast neighbors command shown in the Example below.

Lines Beginning With Description

BGP neighbor Displays the BGP neighbor address and its AS number. The last phrase in the line indicates whether the link between the BGP router and its neighbor is an external or internal one. If they are located in the same AS, then the link is internal; otherwise, the link is external.

BGP version Displays the BGP version (always version 4) and the remote router ID.

BGP state Displays the neighbor’s BGP state and the amount of time in hours:minutes:seconds it has been in that state.

Last read This line displays the following information:
- last read is the time (hours:minutes:seconds) the router reads a message from its neighbor
- hold time is the number of seconds configured between messages from its neighbor
- keepalive interval is the number of seconds between keepalive messages to help ensure that the TCP session is still alive

Received messages This line displays the number of BGP messages received, the number of notifications (error messages), and the number of messages waiting in a queue for processing.

Sent messages The line displays the number of BGP messages sent, the number of notifications (error messages), and the number of messages waiting in a queue for processing.

Received updates This line displays the number of BGP updates received and sent.

Minimum time Displays the minimum time, in seconds, between advertisements.
Lines Beginning With Description

(List of inbound and outbound policies) Displays the policy commands configured and the names of the Route map, AS-PATH ACL, or Prefix list configured for the policy.

For address family: Displays IPv6 Unicast as the address family.

BGP table version Displays which version of the primary BGP routing table the router and the neighbor are using.

Accepted Prefixes Displays the number of network prefixes accepted by the router and the amount of memory used to process those prefixes.

Prefixes advertised Displays the number of network prefixes advertised, the number rejected, and the number withdrawn from the BGP routing table.

Connections established Displays the number of TCP connections established and dropped between the two peers to exchange BGP information.

Last reset Displays the amount of time since the peering session was last reset. Also states if the peer resets the peering session. If the peering session was never reset, the word “never” is displayed.

Local host: Displays the peering address of the local router and the TCP port number.

Foreign host: Displays the peering address of the neighbor and the TCP port number.

Example

Dell#show ip bgp ipv6 unicast neighbors

BGP neighbor is 5ffe:10::3, remote AS 1, external link
BGP version 4, remote router ID 5.5.5.3
BGP state ESTABLISHED, in this state for 00:00:32
Last read 00:00:32, last write 00:00:32
Hold time is 180, keepalive interval is 60 seconds
Received 1404 messages, 0 in queue
 3 opens, 1 notifications, 1394 updates
 6 keepalives, 0 route refresh requests
Sent 48 messages, 0 in queue
 3 opens, 2 notifications, 0 updates
 43 keepalives, 0 route refresh requests
Minimum time between advertisement runs is 30 seconds
Minimum time before advertisements start is 0 seconds

Capabilities received from neighbor for IPv6 Unicast :
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)

Capabilities advertised to neighbor for IPv6 Unicast :
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)

For address family: IPv6 Unicast
show ip bgp ipv6 unicast peer-group

Allows you to view information on the BGP peers in a peer group.

Syntax

show ip bgp ipv6 unicast peer-group [peer-group-name [summary]]
Parameters

peer-group-name (OPTIONAL) Enter the name of a peer group to view information about that peer group only.

summary (OPTIONAL) Enter the keyword summary to view status information of the peers in that peer group. The output is the same as that found in the show ip bgp ipv6 unicast summary command.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

neighbor peer-group (assigning peers) — assigns a peer to a peer-group.
neighbor peer-group (creating group) — creates a peer group.

show ip bgp ipv6 unicast summary

Allows you to view the status of all BGP connections.

Syntax

show ip bgp ipv6 unicast summary

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip bgp ipv6 unicast summary command shown in the Example below.

Field | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP router identifier</td>
<td>Displays the local router ID and the AS number.</td>
</tr>
<tr>
<td>BGP table version</td>
<td>Displays the BGP table version and the main routing table version.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>network entries</td>
<td>Displays the number of network entries, route paths, and the amount of memory used to process those entries.</td>
</tr>
<tr>
<td>BGP path attribute entries</td>
<td>Displays the number of BGP path attributes and the amount of memory used to process them.</td>
</tr>
<tr>
<td>BGP AS-PATH entries</td>
<td>Displays the number of BGP AS_PATH attributes processed and the amount of memory used to process them.</td>
</tr>
<tr>
<td>BGP community entries</td>
<td>Displays the number of BGP COMMUNITY attributes processed and the amount of memory used to process them. The <code>show ip bgp ipv6 unicast community</code> command provides more details on the COMMUNITY attributes.</td>
</tr>
<tr>
<td>Dampening enabled</td>
<td>Displayed only when dampening is enabled. Displays the number of paths designated as history, dampened, or penalized.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Displays the BGP neighbor address.</td>
</tr>
<tr>
<td>AS</td>
<td>Displays the AS number of the neighbor.</td>
</tr>
<tr>
<td>MsgRcvd</td>
<td>Displays the number of BGP messages that neighbor received.</td>
</tr>
<tr>
<td>MsgSent</td>
<td>Displays the number of BGP messages that neighbor sent.</td>
</tr>
<tr>
<td>TblVer</td>
<td>Displays the version of the BGP table that was sent to that neighbor.</td>
</tr>
<tr>
<td>InQ</td>
<td>Displays the number of messages from that neighbor waiting to be processed.</td>
</tr>
<tr>
<td>OutQ</td>
<td>Displays the number of messages waiting to be sent to that neighbor. If a number appears in parentheses, the number represents the number of messages waiting to be sent to the peer group.</td>
</tr>
<tr>
<td>Up/Down</td>
<td>Displays the amount of time (in hours:minutes:seconds) that the neighbor is in the Established stage. If the neighbor has never moved into the Established stage, the word never is displayed.</td>
</tr>
<tr>
<td>State/Pfx</td>
<td>If the neighbor is in Established stage, the number of network prefixes received.</td>
</tr>
<tr>
<td></td>
<td>If a maximum limit was configured with the <code>neighbor maximum-prefix</code> command, (prfxd) appears in this column.</td>
</tr>
<tr>
<td></td>
<td>If the neighbor is not in Established stage, the current stage is displayed (Idle, Connect, Active, OpenSent, OpenConfirm). When the peer is transitioning between states and clearing the routes received, the phrase (Purging) may appear in this column.</td>
</tr>
<tr>
<td></td>
<td>If the neighbor is disabled, the phrase (Admin shut) appears in this column.</td>
</tr>
</tbody>
</table>
Example

Dell#show ip bgp ipv6 unicast summary
BGP router identifier 5.5.10.4, local AS number 100
BGP table version is 12, main routing table version 12
2 network entrie(s) and 4 paths using 536 bytes of memory
1 BGP path attribute entrie(s) using 112 bytes of memory
1 BGP AS-PATH entrie(s) using 39 bytes of memory
Dampening enabled. 0 history paths, 0 dampened paths, 0 penalized paths

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/Pfx</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ffe:10::3</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>00:01:01</td>
<td>2</td>
</tr>
<tr>
<td>5ffe:11::3</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>00:00:55</td>
<td>2</td>
</tr>
</tbody>
</table>

Dell#
iSCSI Optimization

Internet small computer system interface (iSCSI) optimization enables quality-of-service (QoS) treatment for iSCSI storage traffic.

To configure and verify the iSCSI optimization feature, use the following Dell Networking Operating System (OS) commands.

Topics:
- advertise dcbx-app-tlv
- iscsi aging time
- iscsi cos
- iscsi enable
- iscsi priority-bits
- iscsi profile-compellant
- iscsi target port
- show iscsi
- show iscsi session
- show iscsi session detailed
- show run iscsi

advertise dcbx-app-tlv

Configure DCBX to send iSCSI TLV advertisements.

Syntax

```
advertise dcbx-app-tlv iscsi
```

To disable DCBX iSCSI TLV advertisements, use the no advertise dcbx-app-tlv iscsi command.

Defaults

Disabled.

Command Modes

- PROTOCOL LLDP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information
You can configure iSCSI TLVs to send either globally or on a specified interface. The interface configuration takes priority over global configuration.

iscsi aging time

Set the aging time for iSCSI sessions.

Syntax
```
iscsi aging time time
```

To remove the iSCSI session aging time, use the `no iscsi aging time` command.

Parameters
- **time**

 Enter the aging time for the iSCSI session. The range is from 5 to 43,200 minutes.

Defaults

10 minutes

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

iscsi cos

Set the QoS policy that is applied to the iSCSI flows.

Syntax
```
iscsi cos {enable | disable | dot1p vlan-priority-value [remark] | dscp dscp-value [remark]}
```

To disable the QoS policy, use the `no iscsi cos dscp` command.

Parameters
- **enable**

 Enter the keyword `enable` to allow the application of preferential QoS treatment to iSCSI traffic so that the iSCSI packets are scheduled in the switch with a dot1p priority 4 regardless of the VLAN priority tag in the packet. The default is: the iSCSI packets are handled with dotp1 priority 4 without remark.

- **disable**

 Enter the keyword `disable` to disable the application of preferential QoS treatment to iSCSI frames.

- **dot1p vlan-priority-value**

 Enter the dot1p value of the VLAN priority tag assigned to the incoming packets in an iSCSI session. The range is from 0 to 7.
The default is the dot1p value in ingress iSCSI frames is not changed and is the same priority is used in iSCSI TLV advertisements if you did not enter the `iscsi priority-bits` command.

```
iscsi dscp dscp-value
```

Enter the DSCP value assigned to the incoming packets in an iSCSI session. The valid range is from 0 to 63. The default is: the DSCP value in ingress packets is not changed.

```
iscsi remark
```

Marks the incoming iSCSI packets with the configured dot1p or DSCP value when they egress to the switch. The default is: the dot1p and DSCP values in egress packets are not changed.

Defaults
The default dot1p VLAN priority value is 4 without the `remark` option.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

iscsi enable

Globally enable iSCSI optimization.

Syntax

```
iscsi enable
```

To disable iSCSI optimization, use the `no iscsi enable` command.

Parameters

- `enable`

Enter the keyword `enable` to enable the iSCSI optimization feature.

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable the iSCSI feature using the `iscsi enable` command, flow control settings are set to `rx on tx off` on all interfaces.
iscsi priority-bits

Configure the priority bitmap that advertises in the iSCSI application TLVs.

Syntax

```
iscsi priority-bits
```

To remove the configured priority bitmap, use the `no iscsi priority-bits` command.

Defaults

4 (0x10 in the bitmap)

Command Modes

PROTOCOL LLDP (only on the global, not on the interface)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

iscsi profile-compellant

Configure the auto-detection of Dell Compellent arrays on a port.

Syntax

```
iscsi profile-compellant
```

Defaults

Dell Compellent disk arrays are not detected.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

iscsi target port

Configure the iSCSI target ports and optionally, the IP addresses on which iSCSI communication is monitored.

Syntax

```
iscsi target port [tcp-port-2...tcp-port-16]ip-address [ip-address]
```
To remove the configured iSCSI target ports or IP addresses, use the `no iscsi target port` command.

Parameters

- `tcp-port-2...tcpport-16` Enter the tcp-port number of the iSCSI target ports. The `tcp-port-n` is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests. Separate port numbers with a comma. The default is `860, 3260`.

- `ip-address` (Optional) Enter the ip-address that the iSCSI monitors. The ip-address specifies the IP address of the iSCSI target.

Defaults

- `860, 3260`

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure up to 16 target TCP ports on the switch in one command or multiple commands.

When you use the `no iscsi target port` command and the TCP port you wish to delete is one bound to a specific IP address, the IP address value must be included in the command.

show iscsi

Display the currently configured iSCSI settings.

Syntax

`show iscsi`

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show iscsi
iSCSI is enabled
iSCSI session monitoring is disabled
iSCSI COS : dot1p is 4 no-remark
```
Session aging time: 10
Maximum number of connections is 256

iSCSI Targets and TCP Ports:

TCP Port Target IP Address
3260 860

Related Commands

- `show iscsi sessions` — displays information about active iSCSI sessions on the switch.
- `show iscsi sessions detailed` — displays detailed information about active iSCSI sessions on the switch.
- `show run iscsi` — shows run iscsi.

show iscsi session

Display information about active iSCSI sessions on the switch.

Syntax

`show iscsi session`

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch I/O Module.</td>
</tr>
</tbody>
</table>

Example

Dell# show iscsi session
Session 0:
--
Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010
Initiator: iqn.1991-05.com.microsoft:win-x9l8v27yajg
ISID: 400001370000

Session 1:

Target: iqn.2001-05.com.equallogic:0-8a0906-0f60c2002-0360018428d48c94-iom011
Initiator: iqn.1991-05.com.microsoft:win-x9l8v27yajg
ISID: 400001370000.

Related Commands

- `show iscsi` — displays the currently configured iSCSI settings.
- `show iscsi sessions detailed` — displays detailed information about active iSCSI sessions on the switch.
show iscsi session detailed

Display detailed information on active iSCSI sessions on the switch.

Syntax

show iscsi session detailed [session isid]

Parameters

isid Enter the session's iSCSI ID to display detailed information about
the specified iSCSI session.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell# show iscsi session detailed
Session 0 :

Up Time:00:00:01:28 (DD:HH:MM:SS)
Time for aging out:00:00:09:34 (DD:HH:MM:SS)
ISID:806978696102
Initiator Initiator Target Target Connection
IP Address TCP Port IP Address TCPPort ID
10.10.0.44 33345 10.10.0.101 3260 0

Session 1 :

Up Time:00:00:01:22 (DD:HH:MM:SS)
Time for aging out:00:00:09:31 (DD:HH:MM:SS)
ISID:806978696102
Initiator Initiator Target Target Connection
IP Address TCP Port IP Address TCPPort ID
10.10.0.53 33432 10.10.0.101 3260 0

Related Commands

- show iscsi — displays the currently configured iSCSI settings.
- show iscsi sessions — displays information about active iSCSI sessions on the switch.
- show run iscsi — shows run iscsi.
show run iscsi

Display all globally configured non-default iSCSI settings in the current session.

Syntax

```
show run iscsi
```

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show iscsi` — displays the currently configured iSCSI settings.
- `show iscsi sessions` — show iscsi session — displays detailed information about active iSCSI sessions on the switch.
- `show iscsi sessions detailed` — displays detailed information on active iSCSI sessions on the switch.
Intermediate System to Intermediate System (IS-IS)

The Dell Networking OS supports the intermediate system to intermediate system (IS-IS) protocol for IPv4 and IPv6.

IS-IS is an interior gateway protocol that uses a shortest-path-first algorithm. IS-IS facilitates the communication between open systems, supporting routers passing both IP and OSI traffic.

A router is considered an intermediate system. Networks are partitioned into manageable routing domains, called areas. Intermediate systems send, receive, and forward packets to other routers within their area (Level 1 and Level 1-2 devices). Only Level 1-2 and Level 2 devices communicate with other areas.

IS-IS protocol standards are listed in the Standard Compliance chapter in the Dell Networking OS Configuration Guide.

NOTE: The fundamental mechanisms of IS-IS are the same between IPv4 and IPv6. Where there are differences between the two versions, they are identified and clarified in this chapter. Except where identified, the information in this chapter applies to both protocol versions.

Topics:
- adjacency-check
- advertise
- area-password
- clear config
- clear isis
- clns host
- debug isis
- debug isis adj-packets
- debug isis local-updates
- debug isis snp-packets
- debug isis spf-triggers
- debug isis update-packets
- default-information originate
- description
- distance
- distribute-list in
- distribute-list out
- distribute-list redistributed-override
- domain-password
- graceful-restart ietf
- graceful-restart interval
- graceful-restart t1
- graceful-restart t2
- graceful-restart t3
- graceful-restart restart-wait
- hello padding
- hostname dynamic
- ignore-lsp-errors
- ip router isis
- ipv6 router isis
- isis circuit-type
- isis csnp-interval
- isis csnp-interval
- isis hello-multiplier
- isis hello padding
- isis ipv6 metric
- isis metric
- isis network point-to-point
- isis password
- isis priority
- is-type
- log-adjacency-changes
- lsp-gen-interval
- lsp-mtu
- lsp-refresh-interval
- max-area-addresses
- max-lsp-lifetime
- maximum-paths
- metric-style
- multi-topology
- net
- passive-interface
- redistribute
- redistribute bgp
- redistribute ospf
- router isis
- set-overload-bit
- show config
- show isis database
- show isis graceful-restart detail
- show isis hostname
- show isis interface
adjacency-check

Verify that the "protocols supported" field of the IS-IS neighbor contains matching values to this router.

Syntax

```plaintext
adjacency-check
To disable adjacency check, use the no adjacency-check command.
```

Defaults

Enabled.

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To perform protocol-support consistency checks on hello packets, use this command. The adjacency-check is enabled by default.

advertise

Leak routes between levels (distribute IP prefixes between Level 1 and Level 2 and vice versa).

Syntax

```plaintext
advertise {level1-into-level2 | level2-into-level1} prefix-list-name
To return to the default, use the no advertise {level1-into-level2 | level2-into-level1}[prefix-list-name] command.
```

Parameters

- **level1-into-level2**
 - Enter the keywords level1-into-level2 to advertise Level 1 routes into Level 2 LSPs. This setting is the default.
- **level2-into-level1**
 - Enter the keywords level2-into-level1 to advertise Level 2 inter-area routes into Level 1 LSPs. This behavior is described in RFC 2966.
prefix-list-name

Enter the name of a configured IP prefix list. Routes meeting the criteria of the IP Prefix list are leaked.

Defaults

level1-into-level2 (Level 1 to Level 2 leaking enabled.)

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You cannot disable leaking from one level to another; however, you can regulate the rate flow from one level to another using an IP Prefix list. If you do not configure the IP Prefix list, all routes are leaked.

You can find more information in IETF RFC 2966, Domain-wide Prefix Distribution with Two-Level IS-IS.

area-password

Configure a hash message authentication code (HMAC) password for an area.

Syntax

area-password [hmac-md5 | encryption-type] password
To delete a password, use the no area-password command.

Parameters

- hmac-md5 (OPTIONAL) Enter the keywords hmac-md5 to encrypt the password.
- encryption-type (OPTIONAL) Enter 7 to encrypt the password using DES.
- password Enter a 1 to 16-character length alphanumeric string to prevent unauthorized access or incorrect routing information corrupting the link state database. The password is processed as plain text, which only provides limited security.

Defaults

Not configured.

Command Modes

ROUTER ISIS

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
Version	**Description**
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To prevent the link state database from receiving incorrect routing information from unauthorized routers, use the `area-password` command on routers within an area.

The configured password injects into Level 1 LSPs, CSNPs, and PSNPs.

Related Commands

- `domain-password` — allows you to set the authentication password for a routing domain.
- `isis password` — allows you to configure an authentication password for an interface.

clear config

Clear IS-IS configurations that display under the `router isis` heading of the `show running-config` command output.

Syntax

```plaintext
clear config
```

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

⚠️ **CAUTION**: Use caution when you enter this command. Back up your configuration prior to using this command or your IS-IS configuration will be erased.

clear isis

Restart the IS-IS process. All IS-IS data is cleared.

Syntax

```plaintext
clear isis [tag] {*} | database | traffic)
```

Parameters

- `tag` *(Optional)*: Enter an alphanumeric string to specify the IS-IS routing tag area.
Enter the keyword * to clear all IS-IS information and restart the IS-IS process. This command removes IS-IS neighbor information and IS-IS LSP database information and the full SPF calculation is done.

database
Clears IS-IS LSP database information.

traffic
Clears IS-IS counters.

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clns host

Define a name-to-network service mapping point (NSAP) that you use with commands that require NSAPs and system IDs.

Syntax

`clns host name nsap`

Parameters

- `name` Enter an alphanumeric string to identify the name-to-NSAP mapping.
- `nsap` Enter a specific NSAP address that is associated with the name parameter.

Defaults
Not configured.

Command Modes
- ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To configure a shortcut name that you can use instead of entering a long string of numbers associated with an NSAP address, use this command.

Related Commands
- `hostname dynamic` — enables dynamic learning of host names from routers in the domain and allows the routers to advertise the host names in LSPs.
debug isis

Enable debugging for all IS-IS operations.

Syntax

```
debug isis
```

To disable debugging of IS-IS, use the `no debug isis` command.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Entering `debug isis` enables all debugging parameters. To display all debugging information in one output, use this command. To turn off debugging, you normally enter separate `no` forms of each command. To disable all debug messages for IS-IS at once, enter the `no debug isis` command.

debug isis adj-packets

Enable debugging on adjacency-related activity such as hello packets that are sent and received on IS-IS adjacencies.

Syntax

```
deb bug isis adj-packets [interface]
```

To turn off debugging, use the `no debug isis adj-packets [interface]` command.

Parameters

- `interface` (OPTIONAL) Identifies the interface type slot/port as one of the following:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Command Modes

EXEC Privilege
debug isis local-updates

To debug IS-IS local update packets, enable debugging on a specific interface and provides diagnostic information.

Syntax

```
debug isis local-updates [interface]
```

To turn off debugging, use the `no debug isis local-updates [interface]` command.

Parameters

- `interface` (OPTIONAL) Identifies the interface type slot/port as one of the following:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Command Modes

- EXEC Privilege

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

debug isis snp-packets

To debug IS-IS complete sequence number PDU (CSNP) and partial sequence number PDU (PSNP) packets, enable debugging on a specific interface and provides diagnostic information.

Syntax

```
debug isis snp-packets [interface]
```

To turn off debugging, use the `no debug isis snp-packets [interface]` command.
debug isis spf-triggers

Enable debugging on the events that triggered IS-IS shortest path first (SPF) events for debugging purposes.

Syntax

```
debug isis spf-triggers
```

To turn off debugging, use the `no debug isis spf-triggers` command.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug isis update-packets

Enable debugging on link state PDUs (LSPs) that a router detects.

Syntax

```
debug isis update-packets [interface]
```

To turn off debugging, use the `no debug isis update-packets [interface]` command.
Parameters

interface (OPTIONAL) Identifies the interface type slot/port as one of the following:

- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

default-information originate

Generates a default route into an IS-IS routing domain and controls the distribution of default information.

Syntax

default-information originate [always] [metric metric] [route-map map-name]

To disable the generation of a default route into the specified IS-IS routing domain, use the no default-information originate [always] [metric metric] [route-map map-name] command.

Parameters

always (OPTIONAL) Enter the keyword always to have the default route always advertised.
metric metric (OPTIONAL) Enter the keyword metric then a number to assign to the route. The range is from 0 to 16777215.
route-map map-name (OPTIONAL) A default route the routing process generates if the route map is satisfied.

Defaults

Not configured.

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
Usage Information

When you use this command to redistribute routes into a routing domain, the router becomes an autonomous system (AS) boundary router. An AS boundary router does not always generate a default route into a routing domain. The router still requires its own default route before it can generate one.

How a metric value assigned to a default route advertises depends on the metric-style command configuration. If the metric-style command is set for Narrow mode and the metric value in the default-information originate command is set to a number higher than 63, the metric value advertised in the LSPs is 63. If the metric-style command is set for Wide mode, the metric value in the default-information originate command is advertised.

Related Commands

- redistribute — redistributes routes from one routing domain to another routing domain.
- isis metric — configures a metric for an interface.
- metric-style — sets the metric style for the router.
- show isis database — displays the IS-IS link state database.

description

Enter a description of the IS-IS routing protocol.

Syntax
description {description}
To remove the description, use the no description {description} command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Enter a description to identify the IS-IS protocol (80 characters maximum).</td>
</tr>
</tbody>
</table>

Defaults

none

Command Modes

ROUTER ISIS

Command History

Version	Description
9.9(0.0) | Introduced on the FN IOM. |
9.2(0.0) | Introduced on the MXL 10/40GbE Switch IO Module. |

Related Commands

- router isis — Enter ROUTER mode on the switch.
distance

Define the administrative distance for learned routes.

Syntax

distance weight [ip-address mask [prefix-list]]

To return to the default values, use the no distance weight command.

Parameters

- **weight**
 The administrative distance value indicates the reliability of a routing information source. The range is from 1 to 255. (A higher relative value indicates lower reliability. Routes with smaller values are given preference.) The default is 115.

- **ip-address mask**
 (OPTIONAL) Enter an IP address in dotted decimal format and enter a mask in either dotted decimal or /prefix format.

- **prefix-list**
 (OPTIONAL) Enter the name of a prefix list name.

Defaults

weight = 115

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The administrative distance indicates the trust value of incoming packets. A low administrative distance indicates a high trust rate. A high value indicates a lower trust rate. For example, a weight of 255 is interpreted that the routing information source is not trustworthy and should be ignored.

distribute-list in

Filter network prefixes received in updates.

Syntax

distribute-list prefix-list-name in [interface]

To return to the default values, use the no distribute-list prefix-list-name in [interface] command.
Parameters
- **prefix-list-name**: Specify the prefix list to filter prefixes in routing updates.
- **interface**: (OPTIONAL) Identifies the interface type slot/port as one of the following:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Defaults
Not configured.

Command Modes
- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- **distribute-list out** — suppresses networks from being advertised in updates.
- **redistribute** — redistributes routes from one routing domain to another routing domain.

`distribute-list out`

Suppress network prefixes from being advertised in outbound updates.

Syntax
```
distribute-list prefix-list-name out [connected | bgp as number | ospf process-id | rip | static]
```

To return to the default values, use the `no distribute-list prefix-list-name` out [bgp as number connected | ospf process-id | rip | static] command.

Parameters
- **prefix-list-name**: Specify the prefix list to filter prefixes in routing updates.
- **connected**: (OPTIONAL) Enter the keyword `connected` for directly connected routing process.
- **ospf process-id**: (OPTIONAL) Enter the keyword `ospf` then the OSPF process-ID number. The range is from 1 to 65535.
bgp as number

(Optional) Enter the BGP then the AS Number. The range is from 1 to 65535.

rip

(Optional) Enter the keyword `rip` for RIP routes.

static

(Optional) Enter the keyword `static` for user-configured routing process.

Defaults

Not configured.

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can assign a name to a routing process so a prefix list IS applied to only the routes derived from the specified routing process.

Related Commands

- `distribute-list in` — filters the networks received in updates.
- `redistribute` — redistributes routes from one routing domain to another routing domain.

distribute-list redistributed-override

Suppress flapping of routes when the same route is redistributed into IS-IS from multiple routers in the network.

Syntax

```
distribute-list redistributed-override in
```

To return to the default, use the `no distribute-list redistributed-override in` command.

Defaults

`none`

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information
When you execute this command, IS-IS does not download the route to the routing table if the same route was redistributed into IS-IS routing protocol on the same router.

domain-password

Set the authentication password for a routing domain.

Syntax
```
domain-password [hmac-md5 | encryption-type] password
```

To disable the password, use the `no domain-password` command.

Parameters
- **hmac-md5** (OPTIONAL) Enter the keywords `hmac-md5` to encrypt the password using MD5.
- **encryption-type** (OPTIONAL) Enter 7 to encrypt the password using DES.
- **password** Enter an alphanumeric string up to 16 characters long. If you do not specify an encryption type or hmac-md5 keywords, the password is processed as plain text which provides limited security.

Defaults
No default password.

Command Modes
ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The domain password is inserted in Level 2 link state PDUs (LSPs), complete sequence number PDUs (CSNPs), and partial sequence number PDUs (PSNPs).

Related Commands
- `area-password` — configures an IS-IS area authentication password.
- `isis priority` — configures the authentication password for an interface.

graceful-restart ietf

Enable graceful restart on an IS-IS router.

Syntax
```
graceful-restart ietf
```

To return to the default, use the `no graceful-restart ietf` command.
Parameters

ietf

Enter ietf to enable graceful restart on the IS-IS router.

Defaults

Graceful restart disabled.

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Every graceful restart enabled router’s HELLO PDUs includes a restart TLV. This restart enables (re)starting as well as the existing ISIS peers to detect the GR capability of the routers on the connected network. A flag in the Restart TLV contains restart request (RR), restart acknowledge (RA) and suppress adjacency advertisement (SA) bit flags.

The ISIS graceful restart-enabled router can co-exist in mixed topologies where some routers are graceful restart-enabled and others are not. For neighbors that are not graceful restart-enabled, the restarting router brings up the adjacency per the usual methods.

graceful-restart interval

Set the graceful restart grace period, the time during that all graceful restart attempts are prevented.

Syntax

```
graceful-restart interval minutes
```

To return to the default, use the `no graceful-restart interval` command.

Parameters

```
minutes
```

Enter the graceful-restart interval minutes. The range is from 1 to 20 minutes. The default is 5 minutes.

Defaults

5 minutes

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
graceful-restart t1

Set the graceful restart wait time before unacknowledged restart requests are generated. This wait time is the interval before the system sends a restart request (an IIH with RR bit set in Restart TLV) until the CSNP is received from the helping router.

Syntax

graceful-restart t1 {interval seconds | retry-times value}
To return to the default, use the no graceful-restart t1 command.

Parameters

- **interval**
 - Enter the keyword interval to set the wait time. The range is from 5 to 120 seconds. The default is 5 seconds.
- **retry-times**
 - Enter the keywords retry-times to set the number of times the request interval is extended until a CSNP is received from the helping router. The range is from 1 to 10 attempts. The default is 1.

Defaults

Refer to Parameters.

Command Modes

ROUTER ISIS

Command History

- **Version**
 - **9.9(0.0)**
 - Introduced on the FN IOM.
 - **9.2(0.0)**
 - Introduced on the MXL 10/40GbE Switch IO Module.

graceful-restart t2

Configure the wait time for the graceful restart timer T2 that a restarting router uses as the wait time for each database to synchronize.

Syntax

graceful-restart t2 (level-1 | level-2) seconds
To return to the default, use the no graceful-restart t2 command.

Parameters

- **level-1, level-2**
 - Enter the keywords level-1 or level-2 to identify the database instance type to which the wait interval applies.
- **seconds**
 - Enter the graceful-restart t2 time in seconds. The range is from 5 to 120 seconds. The default is 30 seconds.

Defaults

30 seconds
graceful-restart t3

Configure the overall wait time before graceful restart completes.

Syntax

```
graceful-restart t3 {adjacency | manual} seconds
```

To return to the default, use the `no graceful-restart t3` command.

Parameters

- **adjacency**: Enter the keyword `adjacency` so that the restarting router receives the remaining time value from its peer and adjusts its T3 value so if you have configured this option.
- **manual**: Enter the keyword `manual` to specify a time value that the restarting router uses. The range is from 50 to 120 seconds. The default is **30 seconds**.

Defaults

- `manual, 30 seconds`

Command Modes

- `ROUTER ISIS`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The running router sets the remaining time value to the current adjacency hold time. You can override this setting by implementing this command.

Override the default restart-wait time by entering the `no graceful-restart restart-wait` command. When you disable restart-wait, the current adjacency hold time is used.

Set the t3 timer to `adjacency` on the restarting router when implementing this command. The restarting router gets the remaining time value from its peer and adjusts its T3 value so only when you have configured `graceful-restart t3 adjacency`.

Related Commands

- `graceful-restart restart-wait` — enables the graceful restart maximum wait time before a restarting peer comes up.
graceful-restart restart-wait

Enable the graceful restart maximum wait time before a restarting peer comes up.

Syntax

```plaintext
NOTE: Set the t3 timer to adjacency on the restarting router when implementing this command.

graceful-restart restart-wait seconds
```

To return to the default, use the `no graceful-restart restart-wait` command.

Parameters

- `seconds` Enter the graceful restart time in seconds. The range is from 5 to 300 seconds. The default is **30 seconds**.

Defaults

- **30 seconds**

Command Modes

- **ROUTER ISIS**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `graceful-restart t3` — configures the overall wait time before graceful restart completes.

hello padding

Use to turn ON or OFF padding for LAN and point-to-point hello PDUs or to selectively turn padding ON or OFF for LAN or point-to-point hello PDUs.

Syntax

```plaintext
hello padding [multi-point | point-to-point]
```

To return to the default, use the `no hello padding [multi-point | point-to-point]` command.

Parameters

- `multi-point` (OPTIONAL) Enter the keywords `multi-point` to pad only LAN hello PDUs.
- `point-to-point` (OPTIONAL) Enter the keywords `point-to-point` to pad only point-to-point PDUs.

Defaults

- Both LAN and point-to-point hello PDUs are padded.
hostname dynamic

Enables dynamic learning of hostnames from routers in the domain and allows the routers to advertise the hostname in LSPs.

Syntax

```
hostname dynamic
```

To disable this command, use the `no hostname dynamic` command.

Defaults

Enabled.

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To build name-to-systemID mapping tables through the protocol, use this command. All `show` commands that display systems also display the hostname.

Related Commands

- `clns host` — defines a name-to-NSAP mapping.

ignore-lsp-errors

Ignore LSPs with bad checksums instead of purging those LSPs.

Syntax

```
ignore-lsp-errors
```

To return to the default values, use the `no ignore-lsp-errors` command.
In IS-IS, the default deletes LSPs with internal checksum errors (no ignore-lsp-errors).

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

IS-IS normally purges LSPs with an incorrect data link checksum causing the LSP source to regenerate the message. A cycle of purging and regenerating LSPs can occur when a network link continues to deliver accurate LSPs even though there is a link causing data corruption. This process could cause disruption to your system operation.

ip router isis

Configure IS-IS routing processes on an interface and attach an area tag name to the routing process.

Syntax

```
ip router isis [tag]
```

To disable IS-IS on an interface, use the `no ip router isis [tag]` command.

Parameters

- **tag**

 (OPTIONAL) The tag you specify identifies a specific area routing process. If you do not specify a tag, a null tag is assigned.

Defaults

No processes are configured.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To assign a network entity title to enable IS-IS, use the `net` command.

Related Commands

- `net` — configures an IS-IS network entity title (NET) for the routing process.
- `router isis` — enables the IS-IS routing protocol.
ipv6 router isis

Enable the IPv6 IS-IS routing protocol and specify an IPv6 IS-IS process.

Syntax
ipv6 router isis [tag]

To disable IS-IS routing, use the no router isis [tag] command.

Parameters

tag (OPTIONAL) This parameter is a unique name for a routing process. A null tag is assumed if the tag option is not specified. The tag name must be unique for all IP router processes for a given router.

Defaults
Not configured.

Command Modes
ROUTER ISIS

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
Configure a network entity title (the net command) to specify the area address and the router system ID.

To establish adjacencies and establish dynamic routing, enable routing on one or more interfaces.

You can configure only one IS-IS routing process to perform Level 2 routing. A level-1-2 designation performs Level 1 and Level 2 routing at the same time.

Related Commands

- net — configures an IS-IS network entity title (NET) for the routing process.
- is-type — assigns a type for a given area.

isis circuit-type

Configure the adjacency type on interfaces.

Syntax
isis circuit-type {level-1 | level-1-2 | level-2-only}

To return to the default values, use the no isis circuit-type command.
Parameters

- **level-1**: You can form a Level 1 adjacency if there is at least one common area address between this system and neighbors. You cannot form Level 2 adjacencies on this interface.

- **level-1-2**: You can form a Level 1 and Level 2 adjacencies when the neighbor is also configured as Level-1-2 and there is at least one common area, if not, a Level 2 adjacency is established. This setting is the default.

- **level-2-only**: You can form a Level 2 adjacencies when other Level 2 or Level 1-2 routers and their interfaces are configured for Level 1-2 or Level 2. Level 1 adjacencies cannot be established on this interface.

Defaults

- **level-1-2**

Command Modes

- **INTERFACE**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Because the default establishes Level 1 and Level 2 adjacencies, you do not need to configure this command. Routers in an IS-IS system must be configured as a Level 1-only, Level 1-2, or Level 2-only system.

Only configure interfaces as Level 1 or Level 2 on routers that are between areas (for example, a Level 1-2 router) to prevent the software from sending unused hello packets and wasting bandwidth.

isis csnp-interval

Configure the IS-IS complete sequence number PDU (CSNP) interval on an interface.

Syntax

```plaintext
isis csnp-interval seconds [level-1 | level-2]
```

To return to the default values, use the `no isis csnp-interval [seconds] [level-1 | level-2]` command.

Parameters

- **seconds**: Interval of transmission time between CSNPs on multi-access networks for the designated intermediate system. The range is from 0 to 65535. The default is 10.

- **level-1**: (OPTIONAL) Independently configures the interval of time between transmission of CSNPs for Level 1.
isis csnp-interval

Configure the IS-IS complete sequence number PDU (CSNP) interval on an interface.

Syntax

```
isis csnp-interval seconds [level-1 | level-2]
```

To return to the default values, use the `no isis csnp-interval [seconds] [level-1 | level-2]` command.

Parameters

- `seconds`: Interval of transmission time between CSNPs on multi-access networks for the designated intermediate system. The range is from 0 to 65535. The default is 10.
- `level-1`: (OPTIONAL) Independently configures the interval of time between transmission of CSNPs for Level 1.
- `level-2`: (OPTIONAL) Independently configures the interval of time between transmission of CSNPs for Level 2.

Defaults

- `seconds = 10; level-1` (if not otherwise specified)

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The default values of this command are typically satisfactory transmission times for a specific interface on a designated intermediate system. To maintain database synchronization, the designated routers send CSNPs.

You can configure Level 1 and Level 2 CSNP intervals independently.
Usage Information
The default values of this command are typically satisfactory transmission times for a specific interface on a designated intermediate system. To maintain database synchronization, the designated routers send CSNPs.

You can configure Level 1 and Level 2 CSNP intervals independently.

isis hello-multiplier

Specify the number of IS-IS hello packets a neighbor must miss before the router declares the adjacency down.

Syntax

```plaintext
isis hello-multiplier multiplier [level-1 | level-2]
```

To return to the default values, use the `no isis hello-multiplier [multiplier] [level-1 | level-2]` command.

Parameters

- `multiplier`: Specifies an integer that sets the multiplier for the hello holding time. Never configure a hello-multiplier lower than the default (3). The range is from 3 to 1000. The default is 3.
- `level-1` (OPTIONAL) Select this value to configure the hello multiplier independently for Level 1 adjacencies. This value is the default.
- `level-2` (OPTIONAL) Select this value to configure the hello multiplier independently for Level 2 adjacencies.

Defaults

```
multiplier = 3, level-1 (if not otherwise specified)
```

Command Modes

```
INTERFACE
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The holdtime (the product of the hello-multiplier multiplied by the hello-interval) determines how long a neighbor waits for a hello packet before declaring the neighbor is down so routes can be recalculated.
isis hello padding

Turn ON or OFF padding of hello PDUs from INTERFACE mode.

Syntax

```plaintext
isis hello padding
```

To return to the default, use the `no isis hello padding` command.

Defaults

Padding of hello PDUs is enabled (ON).

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Hello PDUs are “padded” only when both the global and interface padding options are ON. Turning either one OFF disables padding for the corresponding interface.

Related Commands

- `hello padding` — turns ON or OFF padding for LAN and point-to-point hello PDUs.

isis ipv6 metric

Assign metric to an interface for use with IPv6 information.

Syntax

```plaintext
isis ipv6 metric default-metric [level-1 | level-2]
```

To return to the default values, use the `no ipv6 isis metric [default-metric] [level-1 | level-2]` command.

Parameters

- `default-metric` Metric assigned to the link and used to calculate the cost from each other router via the links in the network to other destinations. You can configure this metric for Level 1 or Level 2 routing. The range is from 0 to 16777215. The default is 10.
- `level-1` (OPTIONAL) Enter the keywords `level-1` to configure the shortest path first (SPF) calculation for Level 1 (intra-area) routing. This value is the default.
- `level-2` (OPTIONAL) Enter the keywords `level-2` to configure the SPF calculation for Level 2 (inter-area) routing.
isis metric

Assign a metric to an interface.

Syntax
isis metric default-metric [level-1 | level-2]
To return to the default values, use the no isis metric [default-metric]
[level-1 | level-2] command.

Parameters
default-metric Metric assigned to the link and used to calculate the cost from each other router via the links in the network to other destinations. You can configure this metric for Level 1 or Level 2 routing. The range is from 0 to 63 for narrow and transition metric styles and from 0 to 16777215 for wide metric styles. The default is 10.
level-1 (OPTIONAL) Enter the keywords level-1 to configure the shortest path first (SPF) calculation for Level 1 (intra-area) routing. This setting is the default.
level-2 (OPTIONAL) Enter the keywords level-2 to configure the SPF calculation for Level 2 (inter-area) routing.

Defaults
default-metric = 10; level-1 (if not otherwise specified)

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Dell Networking recommends configuring metrics on all interfaces. Without configuring this command, the IS-IS metrics are similar to hop-count metrics.
isis network point-to-point

Enable the software to treat a broadcast interface as a point-to-point interface.

Syntax

```
isis network point-to-point
```

To disable the feature, use the `no isis network point-to-point` command.

Defaults

Not enabled.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

isis password

Configure an authentication password for an interface.

Syntax

```
isis password [hmac-md5] password [level-1 | level-2]
```

To delete a password, use the `no isis password [password] [level-1 | level-2]` command.

Parameters

- `encryption-type` (OPTIONAL) Enter 7 to encrypt the password using DES.
- `hmac-md5` (OPTIONAL) Enter the keywords hmac-md5 to encrypt the password using MD5.
- `password` Assign the interface authentication password.
- `level-1` (OPTIONAL) Independently configures the authentication password for Level 1. The router acts as a station router for Level 1 routing. This setting is the default.
- `level-2` (OPTIONAL) Independently configures the authentication password for Level 2. The router acts as an area router for Level 2 routing.

Defaults

No default password. `level-1` (if not otherwise specified).

Command Modes

INTERFACE
isis priority

Set the priority of the designated router you select.

Syntax

```
isis priority value [level-1 | level-2]
```

To return to the default values, use the `no isis priority [value] [level-1 | level-2]` command.

Parameters

- **value**: This value sets the router priority. The higher the value, the higher the priority. The range is from 0 to 127. The default is 64.
- **level-1** (OPTIONAL) Specify the priority for Level 1. This setting is the default.
- **level-2** (OPTIONAL) Specify the priority for Level 2.

Defaults

- `value = 64; level-1` (if not otherwise specified).

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure priorities independently for Level 1 and Level 2. Priorities determine which router on a LAN is the designated router. Priorities are advertised within hellos. The router with the highest priority becomes the designated intermediate system (DIS).
NOTE: Routers with a priority of 0 cannot be a designated router.

Setting the priority to 0 lowers the chance of this system becoming the DIS, but does not prevent it. If all the routers have priority 0, one with highest MAC address becomes DIS even though its priority is 0.

is-type

Configure IS-IS operating level for a router.

Syntax

```
is-type {level-1 | level-1-2 | level-2-only}
```

To return to the default values, use the `no is-type` command.

Parameters

- **level-1**
 - Allows a router to act as a Level 1 router.

- **level-1-2**
 - Allows a router to act as both a Level 1 and Level 2 router. This setting is the default.

- **level-2-only**
 - Allows a router to act as a Level 2 router.

Defaults

- **level-1-2**

Command Modes

- **ROUTER ISIS**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The IS-IS protocol automatically determines area boundaries and are able to keep Level 1 and Level 2 routing separate. Poorly planned use of this feature may cause configuration errors, such as accidental area partitioning.

If you are configuring only one area in your network, you do not need to run both Level 1 and Level 2 routing algorithms. You can configure the IS type as Level 1.

log-adjacency-changes

Generate a log messages for adjacency state changes.

Syntax

```
log-adjacency-changes
```
To disable this function, use the `no log-adjacency-changes` command.

Defaults

Adjacency changes are not logged.

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command allows you to monitor adjacency state changes, which are useful when you monitor large networks. Messages are logged in the system’s error message facility.

lsp-gen-interval

Set the minimum interval between successive generations of link-state packets (LSPs).

Syntax

```
lsp-gen-interval [level-1 | level-2] interval seconds
[initial_wait_interval seconds [second_wait_interval seconds]]
```

To restore default values, use the `no lsp-gen-interval [level-1 | level-2] interval seconds [initial_wait_interval seconds [second_wait_interval seconds]]` command.

Parameters

- **level-1**: (OPTIONAL) Enter the keywords `level-1` to apply the configuration to generation of Level-1 LSPs.
- **level-2**: (OPTIONAL) Enter the keywords `level-2` to apply the configuration to generation of Level-2 LSPs.
- **interval seconds**: Enter the maximum number of seconds between LSP generations. The range is from 0 to 120 seconds. The default is **5 seconds**.
- **initial_wait_interval seconds**: (OPTIONAL) Enter the initial wait time, in seconds, before running the first LSP generation. The range is from 0 to 120 seconds. The default is **1 second**.
- **second_wait_interval seconds**: (OPTIONAL) Enter the wait interval, in seconds, between the first and second LSP generation. The range is from 0 to 120 seconds. The default is **5 seconds**.

Defaults

Refer to Parameters.

Command Modes

ROUTER ISIS
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

LSP throttling slows down the frequency at which LSPs are generated during network instability. Even though throttling LSP generations slows down network convergence, no throttling can result in a network not functioning as expected. If network topology is unstable, throttling slows down the scheduling of LSP generations until the topology regains its stability.

The first generation is controlled by the initial wait interval and the second generation is controlled by the second wait interval. Each subsequent wait interval is twice as long as the previous one until the wait interval reaches the maximum wait time specified (interval seconds). After the network calms down and there are no triggers for two times the maximum interval, fast behavior is restored (the initial wait time).

lsp-mtu

Set the maximum transmission unit (MTU) of IS-IS link-state packets (LSPs). This command only limits the size of LSPs this router generates.

Syntax

```
lsp-mtu size
```

To return to the default values, use the `no lsp-mtu` command.

Parameters

`size`

The maximum LSP size, in bytes. The range is from 128 to 1497 for Non-Jumbo mode and from 128 to 9195 for Jumbo mode. The default is **1497**.

Defaults

1497 bytes.

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The link MTU and the LSP MTU size must be the same.

Because each device can generate a maximum of 255 LSPs, consider carefully whether you use the `lsp-mtu` command.
lsp-refresh-interval

Set the link state PDU (LSP) refresh interval. LSPs must be refreshed before they expire. When the LSPs are not refreshed after a refresh interval, they are kept in a database until their `max-lsp-lifetime` reaches zero and then LSPs is purged.

Syntax

```
lsp-refresh-interval seconds
```

To restore the default refresh interval, use the `no lsp-refresh-interval` command.

Parameters

- **seconds**

The LSP refresh interval, in seconds. This value has to be less than the seconds value specified with the `max-lsp-lifetime` command. The range is from 1 to 65535 seconds. The default is 900.

Defaults

```
900 seconds
```

Command Modes

```
ROUTER ISIS
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The refresh interval determines the rate at which route topology information is transmitted preventing the information from becoming obsolete.

The refresh interval must be less than the LSP lifetime specified with the `max-lsp-lifetime` command. A low value reduces the amount of time that undetected link state database corruption can persist at the cost of increased link utilization. A higher value reduces the link utilization the flooding of refreshed packets causes.

Related Commands

- `max-lsp-lifetime` — sets the maximum interval that LSPs persist without being refreshed.

max-area-addresses

Configure manual area addresses.

Syntax

```
max-area-addresses number
```

To return to the default values, use the `no max-area-addresses` command.
max-lsp-lifetime

Set the maximum time that link-state packets (LSPs) exist without being refreshed.

Syntax

```
max-lsp-lifetime seconds
```

To restore the default time, use the no max-lsp-lifetime command.

Parameters

- **seconds**: The maximum lifetime of LSP in seconds. This value must be greater than the lsp-refresh-interval command. The higher the value the longer the LSPs are kept. The range is from 1 to 65535. The default is 1200.

Defaults

1200 seconds

Command Modes

ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Change the maximum LSP lifetime with this command. The maximum LSP lifetime must always be greater than the LSP refresh interval.

The seconds parameter enables the router to keep LSPs for the specified length of time. If the value is higher, the overhead is reduced on slower-speed links.
Maximum-paths

Allows you to configure the maximum number of equal cost paths allowed in a routing table.

Syntax

```
maximum-paths number
```

To return to the default values, use the `no maximum-paths` command.

Parameters

- `number`: Enter a number as the maximum number of parallel paths an IP routing installs in a routing table. The range is from 1 to 16. The default is 4.

Defaults

4

Command Modes

- `ROUTER ISIS (for IPv4)`
- `CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)`

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

Metric-style

To generate and accept old-style, new-style, or both styles of type, length, and values (TLV), configure a router.

Syntax

```
metric-style {narrow [transition] | transition | wide [transition]} [level-1 | level-2]
```

To return to the default values, use the `no metric-style {narrow [transition] | transition | wide [transition]} [level-1 | level-2]` command.

Parameters

- `narrow`: Allows you to generate and accept old-style TLVs. The metric range is from 0 to 63.
- `transition`: Allows you to generate both old-style and new-style TLVs. The metric range is from 0 to 63.
<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide</td>
</tr>
<tr>
<td>level-1</td>
</tr>
<tr>
<td>level-2</td>
</tr>
</tbody>
</table>

Defaults

- **narrow**: if no Level is specified, Level-1 and Level-2 are configured.

Command Modes

- ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- If you enter the `metric-style wide` command, the system generates and accepts only new-style TLVs. The router uses less memory and other resources rather than generating both old-style and new-style TLVs.

- The new-style TLVs have wider metric fields than old-style TLVs.

Related Commands

- `isis metric` — configures a metric for an interface.

multi-topology

Enables multi-topology IS-IS. It also allows enabling/disabling of old and new style TLVs for IP prefix information in the LSPs.

Syntax

```
multi-topology [transition]
```

To return to a single topology configuration, use the `no multi-topology [transition]` command.

Defaults

- Disabled

Command Modes

- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

net

To configure an IS-IS network entity title (NET) for a routing process, use this mandatory command. If you did not configure a NET, the IS-IS process does not start.

Syntax
```
net network-entity-title
```

To remove a net, use the `no net network-entity-title` command.

Parameters

- `network-entity-title` Specify the area address and system ID for an IS-IS routing process. The first 1 to 13 bytes identify the area address. The next 6 bytes identify the system ID. The last 1 byte is the selector byte, always identified as zero zero (00). This argument can be applied to an address or a name.

Defaults
Not configured.

Command Modes
ROUTER ISIS

Command History
```
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
```

passive-interface

Suppress routing updates on an interface. This command stops the router from sending updates on that interface.

Syntax
```
passive-interface interface
```

To delete a passive interface configuration, use the `no passive-interface interface` command.

Parameters

- `interface` Enter the following keywords and slot/port or number information:
 - For a 1-Gigabit Ethernet interface, enter the keyword `GigabitEthernet` then the slot/port information.
 - For Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
For a SONET interface, enter the keyword `sonet` then the slot/port information.

- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Defaults
Not configured.

Command Modes
ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Although the passive interface does not send nor receive routing updates, the network on that interface is still included in the IS-IS updates sent using other interfaces.

redistribute

Redistribute routes from one routing domain to another routing domain.

Syntax
```
redistribute {static | connected | rip} [level-1 | level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name]
```

To end redistribution or disable any of the specified keywords, use the `no redistribute {static | connected | rip} [level-1 | level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name]` command.

Parameters

- **connected**
 - Enter the keyword `connected` to redistribute active routes into IS-IS.

- **rip**
 - Enter the keyword `rip` to redistribute RIP routes into IS-IS.

- **static**
 - Enter the keyword `static` to redistribute user-configured routes into IS-IS.

- **metric metric-value**
 - (OPTIONAL) Assign a value to the redistributed route. The range is from 0 to 16777215. The default is 0. Use a value that is consistent with the destination protocol.

- **metric-type (external | internal)**
 - (OPTIONAL) The external link type associated with the default route advertised into a routing domain. Specify one of the following:
 - `external`
• internal

level-1
(Optional) Routes are independently redistributed into IS-IS as Level 1 routes.

level-1-2
(Optional) Routes are independently redistributed into IS-IS as Level-1-2 routes.

level-2
(Optional) Routes are independently redistributed into IS-IS as Level 2 routes. This setting is the default.

route-map map-name
(Optional) If you do not enter the route-map argument, all routes are redistributed. If a map-name value is not specified, no routers are imported.

Defaults
• metric metric-value = 0
• metric-type= internal; level-2

Command Modes
• ROUTER ISIS (for IPv4)
• CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To redistribute a default route (0.0.0.0/0), configure the default-information originate command.

Changing or disabling a keyword in this command does not affect the state of the other command keywords.

When an LSP with an internal metric is received, the system considers the route cost while considering the advertised cost to reach the destination.

Redistributed routing information is filtered with the distribute-list out command to ensure that the routes are properly are passed to the receiving routing protocol.

How a metric value assigned to a redistributed route is advertised depends on how on the configuration of the metric-style command. If the metric-style command is set for Narrow or Transition mode and the metric value in the redistribute command is set to a number higher than 63, the metric value advertised in LSPs is 63. If the metric-style command is set for Wide mode, the metric value in the redistribute command is advertised.

Related Commands
• default-information originate — generates a default route for the IS-IS domain.
distribute-list out — suppresses networks from being advertised in updates. This command filters redistributed routing information.

redistribute bgp

Redistribute routing information from a BGP process. (New command in Release 6.3.1.)

Syntax

```
redistribute bgp AS number [level-1 | level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name]
```

To return to the default values, use the no redistribute bgp command with the appropriate parameters.

Parameters

- **AS number**
 Enter a number that corresponds to the autonomous system number. The range is from 1 to 65535.

- **level-1**
 (OPTIONAL) Routes are independently redistributed into IS-IS Level 1 routes only.

- **level-1-2**
 (OPTIONAL) Routes are independently redistributed into IS-IS Level 1 and Level 2 routes.

- **level-2**
 (OPTIONAL) Routes are independently redistributed into IS-IS as Level 2 routes only. This setting is the default.

- **metric metric-value**
 (OPTIONAL) The value used for the redistributed route. Use a metric value that is consistent with the destination protocol. The range is from 0 to 16777215. The default is 0.

- **metric-type {external | internal}**
 (OPTIONAL) The external link type associated with the default route advertised into a routing domain. The two options are:
 - external
 - internal

- **route-map map-name**
 map-name is an identifier for a configured route map. The route map filters imported routes from the source routing protocol to the current routing protocol. If you do not specify a map-name, all routes are redistributed. If you specify a keyword, but fail to list route map tags, no routes are imported.

Defaults

IS-IS Level 2 routes only

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

BGP to IS-IS redistribution supports "match" options using route maps. You can set the metric value, level, and metric-type of redistributed routes by the redistribution command. You can "set" more advanced options using route maps.

Example

Dell(conf)#router is
Dell(conf-router_isis)#redistribute bgp 1 level-1 metric 32
metric-type
external route-map rmap-isis-to-bgp
Dell(conf-router_bgp)#show running-config isis
! router isis
redistribute bgp 1 level-1 metric 32 metric-type external route-map
rmap-isis-to-bgp

redistribute ospf

Redistribute routing information from an OSPF process.

Syntax

redistribute ospf process-id [level-1 | level-1-2 | level-2] [match {internal | external}] [metric metric-value] [metric-type {external | internal}] [route-map map-name]

To return to the default values, use the no redistribute ospf process-id [level-1 | level-1-2 | level-2] [match {internal | external}] [metric metric-value] [metric-type {external | internal}] [route-map map-name] command.

Parameters

- **process-id**: Enter a number that corresponds to the OSPF process ID to be redistributed. The range is from 1 to 65355.
- **metric metric-value**: (OPTIONAL) The value used for the redistributed route. Use a metric value that is consistent with the destination protocol. The range is from 0 to 16777215. The default is 0.
- **metric-type {external | internal}**: (OPTIONAL) The external link type associated with the default route advertised into a routing domain. The two options are:
 - external
 - internal
- **level-1**: (OPTIONAL) Routes are independently redistributed into IS-IS as Level 1 routes.
(OPTIONAL) Routes are independently redistributed into IS-IS as Level-1-2 routes.

level-2

(OPTIONAL) Routes are independently redistributed into IS-IS as Level 2 routes. This setting is the default.

match (external | internal)

(OPTIONAL) The command used for OSPF to route and redistribute into other routing domains. The values are

- internal
- external

route-map map-name

map-name is an identifier for a configured route map. The route map should filter imported routes from the source routing protocol to the current routing protocol.

If you do not specify a map-name, all routes are redistributed. If you specify a keyword, but fail to list route map tags, no routes are imported.

Defaults

Refer to Parameters.

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

How a metric value assigned to a redistributed route is advertised depends on how on the configuration of the metric-style command. If the metric-style command is set for Narrow mode and the metric value in the redistribute ospf command is set to a number higher than 63, the metric value advertised in LSPs is 63. If the metric-style command is set for wide mode, the metric value in the redistribute ospf command is advertised.

router isis

Allows you to enable the IS-IS routing protocol and to specify an IP IS-IS process.

Syntax

```
router isis [tag]
```

To disable IS-IS routing, use the `no router isis [tag]` command.
Parameters

tag
(Optional) This is a unique name for a routing process. A null tag is assumed if the `tag` option is not specified. The tag name must be unique for all IP router processes for a given router.

Defaults
Not configured.

Command Modes
ROUTER ISIS

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Configure a network entity title (the `net` command) to specify the area address and the router system ID.

Enable routing on one or more interfaces to establish adjacencies and establish dynamic routing.

You can configure only one IS-IS routing process to perform Level 2 routing. A `level-1-2` designation performs Level 1 and Level 2 routing at the same time.

Related Commands

- `ip router isis` — configures IS-IS routing processes for IP on interfaces and attaches an area designator to the routing process.
- `net` — configures an IS-IS network entity title (NET) for a routing process.
- `is-type` — assigns a type for a given area.

set-overload-bit

To set the overload bit in its non-pseudonode LSPs, configure the router. This setting prevents other routers from using it as an intermediate hop in their shortest path first (SPF) calculations.

Syntax

```plaintext
set-overload-bit
```

To return to the default values, use the `no set-overload-bit` command.

Defaults
Not set.

Command Modes

- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
show config

Display the changes you made to the IS-IS configuration. Default values are not shown.

Syntax
show config

Command Modes
- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Router-Isis)
The bold section identifies that Multi-Topology IS-IS is enabled in Transition mode.

```
Dell(conf-router_isis)#show config
!
router isis
clns host ISIS 49.0000.0001.F100.E120.0013.00
log-adjacency-changes
net 49.0000.0001.F100.E120.0013.00
!
address-family ipv6 unicast
maximum-paths 16
multi-topology transition
set-overload-bit
spf-interval level-1 100 15 20
spf-interval level-2 120 20 25
exit-address-family
```

Example (Address-Family_IPv6)
The bold section identifies that Multi-Topology IS-IS is enabled in Transition mode.

```
Dell(conf-router_isis-af_ipv6)#show conf
!
address-family ipv6 unicast
maximum-paths 16
multi-topology transition
set-overload-bit
spf-interval level-1 100 15 20
```

Version

9.2(0.0)

Description

Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Set the overload bit when a router experiences problems, such as a memory shortage due to an incomplete link state database which can result in an incomplete or inaccurate routing table. If you set the overload bit in its LSPs, other routers ignore the unreliable router in their SPF calculations until the router has recovered.

show config

Display the changes you made to the IS-IS configuration. Default values are not shown.

Syntax
show config

Command Modes
- ROUTER ISIS (for IPv4)
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 (for IPv6)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Router-Isis)
The bold section identifies that Multi-Topology IS-IS is enabled in Transition mode.

```
Dell(conf-router_isis)#show config
!
router isis
clns host ISIS 49.0000.0001.F100.E120.0013.00
log-adjacency-changes
net 49.0000.0001.F100.E120.0013.00
!
address-family ipv6 unicast
maximum-paths 16
multi-topology transition
set-overload-bit
spf-interval level-1 100 15 20
spf-interval level-2 120 20 25
exit-address-family
```

Example (Address-Family_IPv6)
The bold section identifies that Multi-Topology IS-IS is enabled in Transition mode.

```
Dell(conf-router_isis-af_ipv6)#show conf
!
address-family ipv6 unicast
maximum-paths 16
multi-topology transition
set-overload-bit
spf-interval level-1 100 15 20
```
show isis database

Display the IS-IS link state database.

Syntax

```
show isis database [level-1 | level-2] [local] [detail | summary] [lspid]
```  

Parameters

- **level-1** (OPTIONAL) Displays the Level 1 IS-IS link-state database.
- **level-2** (OPTIONAL) Displays the Level 2 IS-IS link-state database.
- **local** (OPTIONAL) Displays local link-state database information.
- **detail** (OPTIONAL) Detailed link-state database information of each LSP displays when specified. If not specified, a summary displays.
- **summary** (OPTIONAL) Summary of link-state database information displays when specified.
- **lspid** (OPTIONAL) Display only the specified LSP.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show isis database` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS Level-1/Level-2</td>
<td>Displays the IS-IS link state database for Level 1 or Level 2.</td>
</tr>
<tr>
<td>Link State Database</td>
<td></td>
</tr>
<tr>
<td>LSPID</td>
<td>Displays the LSP identifier.</td>
</tr>
<tr>
<td></td>
<td>The first six octets are the System ID of the originating router.</td>
</tr>
<tr>
<td></td>
<td>The first six octets are the System ID of the originating router.</td>
</tr>
<tr>
<td></td>
<td>The next octet is the pseudonode ID. If this byte is not zero, the</td>
</tr>
</tbody>
</table>

```
spf-interval level-2 120 20 25
exit-address-family
```
Field Description

LSP describes system links. If this byte is zero (0), the LSP describes the state of the originating router.

The designated router for a LAN creates and floods a pseudonode LSP and describes the attached systems.

The last octet is the LSP number. An LSP is divided into multiple LSP fragments if there is more data than cannot fit in a single LSP. Each fragment has a unique LSP number.

An * after the LSPID indicates that the system originates an LSP where this command was issued.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP Seq Num</td>
<td>This value is the sequence number for the LSP that allows other systems to determine if they have received the latest information from the source.</td>
</tr>
<tr>
<td>LSP Checksum</td>
<td>This is the checksum of the entire LSP packet.</td>
</tr>
<tr>
<td>LSP Holdtime</td>
<td>This value is the amount of time, in seconds, that the LSP remains valid. A zero holdtime indicates that this is a purged LSP and is being removed from the link state database. A value between brackets indicates the duration that the purged LSP stays in the database before being removed.</td>
</tr>
<tr>
<td>ATT</td>
<td>This value represents the Attach bit. This value indicates that the router is a Level 2 router and can reach other areas. Level 1-only routers and Level 1-2 routers that have lost connection to other Level 2 routers use the Attach bit to find the closest Level 2 router. They point a default route to the closest Level 2 router.</td>
</tr>
<tr>
<td>P</td>
<td>This value represents the P bit. This bit is always set to zero as Dell Networking does not support area partition repair.</td>
</tr>
<tr>
<td>OL</td>
<td>This value represents the overload bit, determining congestion. If the overload bit is set, other routers do not use this system as a transit router when calculating routes.</td>
</tr>
</tbody>
</table>

Example

The bold sections identify that MultiTopology IS-IS is enabled.

```markdown
Dell#show isis database

IS-IS Level-1 Link State Database
LSPID   LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
ISIS.00-00 * 0x00000006 0xCF43 580 0/0/0

IS-IS Level-2 Link State Database
LSPID   LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
ISIS.00-00 * 0x00000006 0xCF43 580 0/0/0

Dell#show isis database detail ISIS.00-00

IS-IS Level-1 Link State Database
LSPID   LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
ISIS.00-00 * 0x00000006 0xCF43 580 0/0/0
```

Intermediate System to Intermediate System (IS-IS) | 928
show isis graceful-restart detail

Display detailed IS-IS graceful restart related settings.

Syntax
show isis graceful-restart detail

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Example

Dell#show isis graceful-restart detail
Configured Timer Value
======================
Graceful Restart : Enabled
T3 Timer : Manual
T3 Timeout Value : 30
T2 Timeout Value : 30 (level-1), 30 (level-2)
T1 Timeout Value : 5, retry count: 1
Adjacency wait time : 30

Operational Timer Value
=======================
Current Mode/State : Normal/RUNNING
T3 Time left : 0
T2 Time left : 0 (level-1), 0 (level-2)
Restart ACK rcv count : 0 (level-1), 0 (level-2)
Restart Req rcv count : 0 (level-1), 0 (level-2)
Suppress Adj rcv count : 0 (level-1), 0 (level-2)
Restart CSNP rcv count : 0 (level-1), 0 (level-2)
Database Sync count : 0 (level-1), 0 (level-2)
Dell#

show isis hostname

Display IS-IS host names configured or learned on the system.

Syntax

 show isis hostname

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show isis hostname
System Id Dynamic Name Static Name
*F100.E120.0013 Force10 ISIS
Dell#

show isis interface

Display detailed IS-IS interface status and configuration information.

Syntax

 show isis interface [interface]
Parameters

interface (OPTIONAL) Enter the following keywords and slot/port or number information:

- For Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell>show isis int
GigabitEthernet 0/7 is up, line protocol is up
 MTU 1497, Encapsulation SAP
 Routing Protocol: IS-IS
 Circuit Type: Level-1-2
 Interface Index 37847070, Local circuit ID 1
 Level-1 Metric: 10, Priority: 64, Circuit ID: systest-3.01
 Hello Interval: 10, Hello Multiplier: 3, CSNP Interval: 10
 Number of active level-1 adjacencies: 1
 Level-2 Metric: 10, Priority: 64, Circuit ID: systest-3.01
 Hello Interval: 10, Hello Multiplier: 3, CSNP Interval: 10
 Number of active level-2 adjacencies: 1
 Next IS-IS LAN Level-1 Hello in 2 seconds
 Next IS-IS LAN Level-2 Hello in 1 seconds
 LSP Interval: 33
GigabitEthernet 0/8 is up, line protocol is up
 MTU 1497, Encapsulation SAP
 Routing Protocol: IS-IS
 Circuit Type: Level-1-2
 Interface Index 38371358, Local circuit ID 2
 Level-1 Metric: 10, Priority: 64, Circuit ID: systest-3.02
 Hello Interval: 10, Hello Multiplier: 3, CSNP Interval: 10
 Number of active level-1 adjacencies: 1
 Level-2 Metric: 10, Priority: 64, Circuit ID: systest-3.02
 Hello Interval: 10, Hello Multiplier: 3, CSNP Interval: 10
--More--
show isis neighbors

Display information about neighboring (adjacent) routers.

Syntax

```
show isis neighbors [level-1 | level-2] [detail] [interface]
```

Parameters

- **level-1** (OPTIONAL) Displays information about Level 1 IS-IS neighbors.
- **level-2** (OPTIONAL) Displays information about Level 2 IS-IS neighbors.
- **detail** (OPTIONAL) Displays detailed information about neighbors.
- **interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Use this command to confirm that the neighbor adjacencies are operating correctly. If you suspect that they are not, you can verify the specified area addresses of the routers by using the `show isis neighbors` command.

The following describes the `show isis neighbors` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Id</td>
<td>The value that identifies a system in an area.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface, slot, and port in which the router was discovered.</td>
</tr>
<tr>
<td>State</td>
<td>The value providing status about the adjacency state. The range is Up and Init.</td>
</tr>
<tr>
<td>Type</td>
<td>This value displays the adjacency type (Layer 2, Layer 2 or both).</td>
</tr>
</tbody>
</table>
show isis protocol

Display IS-IS routing information.

Syntax

```
show isis protocol
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

The bold section identifies that Multi-Topology IS-IS is enabled.

```
Dell#show isis protocol
IS-IS Router: <Null Tag>
  System Id: F100.E120.0013 IS-Type: level-1-2
  Manual area address(es):
    49.0000.0001
  Routing for area address(es):
    49.0000.0001
```
Interfaces supported by IS-IS:
GigabitEthernet 1/0 - IP - IPv6
GigabitEthernet 1/1 - IP - IPv6
GigabitEthernet 1/10 - IP - IPv6
Loopback 0 - IP - IPv6

Redistributing:
Distance: 115
Generate narrow metrics: level-1-2
Accept narrow metrics: level-1-2
Generate wide metrics: none
Accept wide metrics: none

Multi Topology Routing is enabled in transition mode.

Dell#

show isis traffic

This command allows you to display IS-IS traffic interface information.

Syntax
show isis traffic [interface]

Parameters
interface (OPTIONAL) Identifies the interface type slot/port as one of the following:

- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The following describes the show isis traffic command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1/Level-2 Hellos (sent/rcvd)</td>
<td>Displays the number of Hello packets sent and received.</td>
</tr>
<tr>
<td>PTP Hellos (sent/rcvd)</td>
<td>Displays the number of point-to-point Hellos sent and received.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Level-1/Level-2 LSPs sourced (new/refresh)</td>
<td>Displays the number of new and refreshed LSPs.</td>
</tr>
<tr>
<td>Level-1/Level-2 LSPs flooded (sent/rcvd)</td>
<td>Displays the number of flooded LSPs sent and received.</td>
</tr>
<tr>
<td>Level-1/Level-2 LSPs CSNPs (sent/rcvd)</td>
<td>Displays the number of CSNP LSPs sent and received.</td>
</tr>
<tr>
<td>Level-1/Level-2 LSPs PSNPs (sent/rcvd)</td>
<td>Displays the number of PSNP LSPs sent and received.</td>
</tr>
<tr>
<td>Level-1/Level-2 DR Elections</td>
<td>Displays the number of times designated router elections ran.</td>
</tr>
<tr>
<td>Level-1/Level-2 SPF Calculations</td>
<td>Displays the number of shortest path first calculations.</td>
</tr>
<tr>
<td>LSP checksum errors received</td>
<td>Displays the number of checksum errors LSPs received.</td>
</tr>
<tr>
<td>LSP authentication failures</td>
<td>Displays the number of LSP authentication failures.</td>
</tr>
</tbody>
</table>

Example

```
Dell#sho is traffic
IS-IS: Level-1 Hellos (sent/rcvd) : 0/721
IS-IS: Level-2 Hellos (sent/rcvd) : 900/943
IS-IS: PTP Hellos (sent/rcvd) : 0/0
IS-IS: Level-1 LSPs sourced (new/refresh) : 0/0
IS-IS: Level-2 LSPs sourced (new/refresh) : 1/3
IS-IS: Level-1 LSPs flooded (sent/rcvd) : 0/0
IS-IS: Level-2 LSPs flooded (sent/rcvd) : 5934/5217
IS-IS: Level-1 LSPs CSNPs (sent/rcvd) : 0/0
IS-IS: Level-2 LSPs CSNPs (sent/rcvd) : 472/238
IS-IS: Level-1 LSPs PSNPs (sent/rcvd) : 0/0
IS-IS: Level-2 LSPs PSNPs (sent/rcvd) : 10/337
IS-IS: Level-1 DR Elections : 4
IS-IS: Level-2 DR Elections : 4
IS-IS: Level-1 SPF Calculations : 0
IS-IS: Level-2 SPF Calculations : 389
IS-IS: LSP checksum errors received : 0
IS-IS: LSP authentication failures : 0
Dell#
```
spf-interval

Specify the minimum interval between shortest path first (SPF) calculations.

Syntax

```
spf-interval [level-1 | level-2] interval seconds
[initial_wait_interval seconds [second_wait_interval seconds]]
```

To restore default values, use the `no spf-interval [level-1 | level-2] interval seconds [initial_wait_interval seconds [second_wait_interval seconds]]` command.

Parameters

- `level-1` *(OPTIONAL)* Enter the keyword `level-1` to apply the configuration to Level-1 SPF calculations.
- `level-2` *(OPTIONAL)* Enter the keyword `level-2` to apply the configuration to Level-2 SPF calculations.
- `interval seconds` Enter the maximum number of seconds between SPF calculations. The range is from 0 to 120 seconds. The default is `10 seconds`.
- `initial_wait_interval seconds` *(OPTIONAL)* Enter the initial wait time, in seconds, before running the first SPF calculations. The range is from 0 to 120 seconds. The default is `5 seconds`.
- `second_wait_interval seconds` *(OPTIONAL)* Enter the wait interval, in seconds, between the first and second SPF calculations. The range is from 0 to 120 seconds. The default is `5 seconds`.

Defaults

Refer to Parameters.

Command Modes

- ROUTER ISIS *(for IPv4)*
- CONFIGURATION-ROUTER-ISIS-ADDRESS-FAMILY-IPV6 *(for IPv6)*

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command `spf-interval` in `CONFIG-ROUTER-ISIS-AF-IPV6` mode is used for IPv6 Multi-Topology route computation only. If using Single Topology mode, use the `spf-interval` command in `CONFIG-ROUTER-ISIS` mode for both IPv4 and IPv6 route computations.

SPF throttling slows down the frequency at which route calculations are performed during network instability. Even though throttling route calculations slows down
network convergence, not throttling can result in a network not functioning as expected. If network topology is unstable, throttling slows down the scheduling of route calculations until the topology regains its stability.

The first route calculation is controlled by the initial wait interval and the second calculation is controlled by the second wait interval. Each subsequent wait interval is twice as long as the previous one until the wait interval reaches the maximum wait time specified (interval seconds). After the network calms down and there are no triggers for two times the maximum interval, fast behavior is restored (the initial wait time).
This chapter contains commands for Dell Networks’s implementation of the link aggregation control protocol (LACP) for creating dynamic link aggregation groups (LAGs) — known as port-channels in the Dell Networking Operating System (OS).

For static LAG commands, refer to the `interfaces` chapter, based on the standards specified in the IEEE 802.3 Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

Topics:
- clear lacp counters
- debug lacp
- lacp long-timeout
- lacp port-priority
- lacp system-priority
- port-channel mode
- port-channel-protocol lacp
- show lacp

clear lacp counters

Clear port channel counters.

Syntax

```
clear lacp port-channel-number counters
```

Parameters

- `port-channel-number` Enter a port-channel number. The range is from 1 to 128.

Defaults

Without a Port Channel specified, the command clears all Port Channel counters.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.
debug lacp

Debug LACP (configuration, events, and so on).

Syntax

```
debug lacp [config | events | pdu [interface [in | out]]]
```

To disable LACP debugging, use the `no [config | events | pdu [interface [in | out]]]` command.

Parameters

- **config** (OPTIONAL) Enter the keyword `config` to debug the LACP configuration.
- **events** (OPTIONAL) Enter the keyword `events` to debug the LACP event information.
- **pdu** (OPTIONAL) Enter the keyword `pdu` to debug the LACP Protocol Data Unit information.
- **interface in | out** (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a Ten-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Optionsally, enter an `in` or `out` parameter:

- Receive enter `in`
- Transmit enter `out`

Defaults

```
none
```

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.
lacp long-timeout

Configure a long timeout period (30 seconds) for an LACP session.

Syntax

```
lacp long-timeout
```

To reset the timeout period to a short timeout (1 second), use the `no lacp long-timeout` command.

Defaults

1 second

Command Modes

INTERFACE (conf-if-po-number)

Command History

- **Version 9.2(0.0)**
 - Introduced on the M I/O Aggregator.

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command applies to dynamic port-channel interfaces only. When applied on a static port-channel, this command has no effect.

lacp port-priority

To influence which ports will be put in Standby mode when there is a hardware limitation that prevents all compatible ports from aggregating, configure the port priority.

Syntax

```
lacp port-priority priority-value
```

To return to the default setting, use the `no lacp port-priority priority-value` command.

Parameters

- **priority-value**

 Enter the port-priority value. The higher the value number, the lower the priority. The range is from 1 to 65535. The default is 32768.

Defaults

32768

Command Modes

INTERFACE

Command History

- **Version 9.2(0.0)**
 - Introduced on the M I/O Aggregator.

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.
lacp system-priority

Configure the LACP system priority.

Syntax

lacp system-priority priority-value

Parameters

priority-value

Enter the port-priority value. The higher the value number, the lower the priority. The range is from 1 to 65535. The default is 32768.

Defaults

32768

Command Modes

INTERFACE

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

port-channel mode

Configure the LACP port channel mode.

Syntax

port-channel number mode [active] [passive] [off]

Parameters

number

Enter the keywords number then a number.

active

Enter the keyword active to set the mode to the active state.

NOTE: LACP modes are defined in Usage Information.

passive

Enter the keyword passive to set the mode to the passive state.

NOTE: LACP modes are defined in Usage Information.

off

Enter the keyword off to set the mode to the off state.

NOTE: LACP modes are defined in Usage Information.

Defaults

off

Command Modes

INTERFACE
port-channel-protocol lacp

Enable LACP on any LAN port.

Syntax

```
port-channel-protocol lacp
```

To disable LACP on a LAN port, use the `no port-channel-protocol lacp` command.

Command Modes

INTERFACE

Command History

- **Version 9.2(0.0)** Introduced on the M I/O Aggregator.
- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Example

```
Dell(conf)#interface TenGigabitethernet 3/15
Dell(conf-if-tengig-3/15)#no shutdown
Dell(conf-if-tengig-3/15)#port-channel-protocol lacp
Dell(conf-if-tengig-3/15-lacp)#port-channel 32 mode active
...
Dell(conf)#interface TenGigabitethernet 3/16
Dell(conf-if-tengig-3/16)#no shutdown
Dell(conf-if-tengig-3/16)#port-channel-protocol lacp
Dell(conf-if-tengig-3/16-lacp)#port-channel 32 mode active
```
show lACP

Display the LACP matrix.

Syntax

```
show lACP [port-channel-number [sys-id | counters]]
```

Parameters

- `port-channel-number` Enter a port-channel number. The range is from 1 to 128.
- `sys-id` (OPTIONAL) Enter the keywords `sys-id` and the value that identifies a system.
- `counters` (OPTIONAL) Enter the keyword `counters` to display the LACP counters.

Defaults

Without a Port Channel specified, the command clears all Port Channel counters.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example (Port-Channel-Number)

```
Dell#show lACP 1
Port-channel 1 admin up, oper up, mode lacp
Actor   System ID:Priority 32768, Address 0001.e800.a12b
Partner System ID:Priority 32768, Address 0001.e801.45a5
   Actor Admin Key 1, Oper Key 1, Partner Oper Key 1
   LACP LAG 1 is an aggregatable link
   A-Active LACP, B-Passive LACP, C-Short Timeout, D-Long Timeout
   E-Aggregatable Link, F-Individual Link, G-IN_SYNC, H-OUT_OF_SYNC
   I-Collection enabled, J-Collection disabled, K-Distribution enabled
   L-Distribution disabled, M-Partner Defaulted, N-Partner Non-defaulted,
   O-Receiver is in expired state, P-Receiver is not in expired state
   Port Gi 10/6 is enabled, LACP is enabled and mode is lacp
      Actor   Admin: State ACEHJLMP Key 1 Priority 128
               Oper: State ACEGIKNP Key 1 Priority 128
      Partner Admin: State BDFHJLMP Key 0 Priority 0
                      Oper: State BCEGIKNP Key 1 Priority 128
Dell#
```

Example (Sys-id)

```
Dell#show lACP 1 sys-id
Actor   System ID: Priority 32768, Address 0001.e800.a12b
Partner  System ID: Priority 32768, Address 0001.e801.45a5
Dell#
```
Example (Counter)

```plaintext
Dell#show lacp 1 counters
----------------------------------------------------
                  LACP PDU  Marker PDU  Unknown  Illegal
Port          Xmit Recv  Xmit Recv  Pkts Rx  Pkts Rx
-----------------------------------------------------
Gi 10/6        200  200     0    0        0          0
Dell#
```

Related Commands

- `clear lacp counters` — clears the LACP counters.
- `show interfaces port-channel` — displays information on configured Port Channel groups.
This chapter describes commands to configure Layer 2 features.

This chapter contains:

- MAC Addressing Commands

Topics:

- MAC Addressing Commands
- clear mac-address-table
- mac-address-table aging-time
- mac-address-table disable-learning
- mac-address-table static
- mac-address-table station-move refresh-arp
- mac learning-limit
- mac learning-limit learn-limit-violation
- mac learning-limit station-move-violation
- mac learning-limit reset
- show cam mac stack-unit
- show mac-address-table
- show mac-address-table aging-time
- show mac learning-limit
- Virtual LAN (VLAN) Commands
- description
- default vlan-id
- default-vlan disable
- name
- show config
- show vlan
- tagged
- track ip
- untagged

MAC Addressing Commands

The following commands are related to configuring, managing, and viewing MAC addresses.
clear mac-address-table

Clear the MAC address table.

Syntax

```
clear mac-address-table dynamic {address mac-address | all | interface interface | vlan vlan-id}
```

Parameters

- **address mac-address**
 - Enter the keyword `address` then a MAC address in `nn:nn:nn:nn:nn:nn` format.
- **all**
 - Enter the keyword `all` to delete all MAC address entries in the MAC address table.
- **interface interface**
 - Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- **vlan vlan-id**
 - Enter the keyword `vlan` then a VLAN ID number from 1 to 4094.

Command Modes

EXEC Privilege

Command History

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

mac-address-table aging-time

Specify an aging time for MAC addresses to remove from the MAC address table.

Syntax

```
mac-address-table aging-time seconds
```

To delete the configured aging time, use the `no mac-address-table aging-time seconds` command.

Parameters

- **seconds**
 - Enter either zero (0) or a number as the number of seconds before MAC addresses are relearned. To disable aging of the MAC address table, enter 0. The range is from 10 to 1000000. The default is **1800 seconds**.
Defaults

- 1800 seconds

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

mac-address-table disable-learning

Disable MAC address learning from LACP or LLDP BPDUs.

Syntax

```
mac-address-table disable-learning [lacp | lldp]
```

Parameters

- lacp: Enter lacp to disable MAC address learning from LACP BPDUs.
- lldp: Enter LLDP to disable MAC address learning from LLDP BPDUs.

Defaults

Disabled

Command Modes

- CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the MXL .</td>
</tr>
</tbody>
</table>

Usage Information

If you use the `mac-address-table disable-learning` command without specifying any option, the system does not learn source MAC addresses from LACP or LLDP BPDUs.

mac-address-table static

Associate specific MAC or hardware addresses to an interface and virtual local area networks (VLANs).

Syntax

```
mac-address-table static mac-address output interface vlan vlan-id
```

To remove a MAC address, use the `no mac-address-table static mac-address output interface vlan vlan-id` command.
Parameters

mac-address
Enter the 48-bit hexadecimal address in nn:nn:nn:nn:nn:nn format.

output interface
Enter the keyword **output** then one of the following interfaces for which traffic is forwarded:

- For a Port Channel interface, enter the keywords **port-channel** then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword **TenGigabitEthernet** then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword **fortyGigE** then the slot/port information.

vlan vlan-id
Enter the keyword **vlan** then a VLAN ID number from 1 to 4094.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

mac-address-table station-move refresh-arp

Ensure that address resolution protocol (ARP) refreshes the egress interface when a station move occurs due to a topology change.

Syntax

[no] mac-address-table station-move refresh-arp

Defaults

Enabled

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Modified the default option from none to Enabled.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

For details about using this command, refer to the "NIC Teaming" section of the Layer 2 chapter in the *Dell Networking OS Configuration Guide*.
mac learning-limit

Limit the maximum number of MAC addresses (static + dynamic) learned on a selected interface.

Syntax

mac learning-limit address_limit [dynamic] [no-station-move] [station-move] [sticky]

Parameters

address_limit Enter the maximum number of MAC addresses that can be learned on the interface. The range is from 1 to 1000000.
dynamic (OPTIONAL) Enter the keyword dynamic to allow aging of MACs even though a learning limit is configured.
no-station-move (OPTIONAL) Enter the keywords no-station-move to disallow a station move (associate the learned MAC address with the most recently accessed port) on learned MAC addresses.
station-move (OPTIONAL) Enter the keywords station-move to allow a station move on learned MAC addresses.
sticky (OPTIONAL) Enter the keyword sticky to allow configuring the sticky mac feature along with the learning limit.

Defaults
dynamic

NOTE: “Static” means manually entered addresses, which do not age.

Command Modes

INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command and its options are supported on physical interfaces, static LAGs, LACP LAGs, and VLANs.

If you do not specify the vlan option, the MAC address counters are not VLAN-based. That is, the sum of the addresses learned on all VLANs (not having any learning limit configuration) is counted against the MAC learning limit.

MAC Learning Limit violation logs and actions are not available on a per-VLAN basis.

With the keyword no-station-move option, MAC addresses learned through this feature on the selected interface persist on a per-VLAN basis, even if received on another interface. Enabling or disabling this option has no effect on already learned MAC addresses.
After the MAC address learning limit is reached, the MAC addresses do not age out unless you add the dynamic option. To clear statistics on MAC address learning, use the clear counters command with the learning-limit parameter.

When a channel member is added to a port-channel and there is not enough ACL CAM space, the MAC limit functionality on that port-channel is undefined. When this occurs, un-configure the existing configuration first and then reapply the limit with a lower value.

Related Commands

- clear counters — Clear counters used in the show interface command.
- clear mac-address-table dynamic — clears the MAC address table of all MAC address learned dynamically.
- show mac learning-limit — displays MAC learning-limit configuration.

mac learning-limit learn-limit-violation

Configure an action for a MAC address learning-limit violation.

Syntax

mac learning-limit learn-limit-violation {log | shutdown}

To return to the default, use the no mac learning-limit learn-limit-violation {log | shutdown} command.

Parameters

- log
 - Enter the keyword log to generate a syslog message on a learning-limit violation.
- shutdown
 - Enter the keyword shutdown to shut down the port on a learning-limit violation.

Defaults

none

Command Modes

INTERFACE (conf-if-interface-slot/port)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command is supported on physical interfaces, static LAGs, and LACP LAGs.

Related Commands

- show mac learning-limit — displays details of the mac learning-limit.
mac learning-limit station-move-violation

Specify the actions for a station move violation.

Syntax

```
mac learning-limit station-move-violation {log | shutdown-both | shutdown-offending | shutdown-original}
```

To disable a configuration, use the `no mac learning-limit station-move-violation` command, then the configured keyword.

Parameters

- **log**
 - Enter the keyword `log` to generate a syslog message on a station move violation.
- **shutdown-both**
 - Enter the keyword `shutdown` to shut down both the original and offending interface and generate a syslog message.
- **shutdown-offending**
 - Enter the keywords `shutdown-offending` to shut down the offending interface and generate a syslog message.
- **shutdown-original**
 - Enter the keywords `shutdown-original` to shut down the original interface and generate a syslog message.

Defaults

none

Command Modes

INTERFACE (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is supported on physical interfaces, static LAGs, and LACP LAGs.

Related Commands

- `show mac learning-limit` — displays details of the mac learning-limit.

mac learning-limit reset

Reset the MAC address learning-limit error-disabled state.

Syntax

```
mac learning-limit reset
```

Defaults

none
show cam mac stack-unit

Display the content addressable memory (CAM) size and the portions allocated for MAC addresses and for MAC ACLs.

Syntax

```
show cam mac stack-unit [unit_number] [port-set port-pipe count [vlan vlan-id] [interface interface]]
```

Parameters

- **stack-unit unit_number** (REQUIRED) Enter the keyword `linecard` then a stack member number to select the linecard for which to gather information. The range is 0 to 5.
- **port-set port-pipe** (REQUIRED) Enter the keywords `port-set` then a Port-Pipe number to select the Port-Pipe for which to gather information. The range is 0.
- **address mac-addr** (OPTIONAL) Enter the keyword `address` then a MAC address in the `nn:nn:nn:nn:nn:nn` format to display information on that MAC address.
- **dynamic** (OPTIONAL) Enter the keyword `dynamic` to display only those MAC addresses learned dynamically by the switch.
- **static** (OPTIONAL) Enter the keyword `static` to display only those MAC address specifically configured on the switch.
- **interface interface** (OPTIONAL) Enter the keyword `interface` then the interface type, slot and port information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
`vlan vlan-id` (OPTIONAL) Enter the keyword `vlan` then the VLAN ID to display the MAC address assigned to the VLAN. The range is 1 to 4094.

Command Modes
- EXEC
- EXEC Privilege

Command History
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

show mac-address-table

Display the MAC address table.

Syntax
```
show mac-address-table [dynamic | static] [address mac-address | interface interface | vlan vlan-id] [count [vlan vlan-id] [interface interface-type [slot [/port]]]]
```

Parameters
- `dynamic` (OPTIONAL) Enter the keyword `dynamic` to display only those MAC addresses the switch dynamically learns. Optionally, you can also add one of these combinations: `address/mackAddress, interface/interface, or vlan vlan-id`
- `static` (OPTIONAL) Enter the keyword `static` to display only those MAC addresses specifically configured on the switch. Optionally, you can also add one of these combinations: `address/mackAddress, interface/interface, or vlan vlan-id`
- `address mac-address` (OPTIONAL) Enter the keyword `address` then a MAC address in the `nn:nn:nn:nn:nn:nn` format to display information on that MAC address.
- `interface interface` (OPTIONAL) Enter the keyword `interface` then the interface type, slot and port information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- `interface interface-type` (OPTIONAL) Instead of entering the keyword `interface` then the interface type, slot and port information, as above, you can enter the interface type, then just a slot number.
vlan vlan-id (OPTIONAL) Enter the keyword `vlan` then the VLAN ID to display the MAC address assigned to the VLAN. The range is 1 to 4094.

count (OPTIONAL) Enter the keyword `count`, then optionally, by an interface or VLAN ID, to display total or interface-specific static addresses, dynamic addresses, and MAC addresses in use.

Command Modes
- EXEC
- EXEC Privilege

Command History
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The following describes the `show mac-address-table` command shown in the following example.

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VlanId</td>
<td>Displays the VLAN ID number.</td>
</tr>
<tr>
<td>Mac Address</td>
<td>Displays the MAC address in nn:nn:nn:nn:nn format.</td>
</tr>
<tr>
<td>Type</td>
<td>Lists whether the MAC address was manually configured (Static), learned dynamically (Dynamic), or associated with a specific port (Sticky).</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the interface type and slot/port information. The following abbreviations describe the interface types:</td>
</tr>
<tr>
<td></td>
<td>• gi — Gigabit Ethernet then a slot/port.</td>
</tr>
<tr>
<td></td>
<td>• po — Port Channel then a number. The range is from 1 to 255 for TeraScale.</td>
</tr>
<tr>
<td></td>
<td>• so — SONET then a slot/port.</td>
</tr>
<tr>
<td></td>
<td>• te — 10 Gigabit Ethernet then a slot/port.</td>
</tr>
<tr>
<td>State</td>
<td>Lists if the MAC address is in use (Active) or not in use (Inactive).</td>
</tr>
</tbody>
</table>

Example
```
Dell#show mac-address-table
VlanId  Mac Address      Type        Interface  State
20      00:00:c9:ad:f6:12 Dynamic  Te 0/3      Active
Dell#
```

Usage Information
The following describes the `show mac-address-table` command shown in the following example.

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VlanId</td>
<td>Displays the VLAN ID number.</td>
</tr>
<tr>
<td>Column Heading</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Type</td>
<td>Lists whether the MAC address was manually configured (Static), learned (Dynamic), or associated with a specific port (Sticky). An (N) indicates that the specified MAC address has been learnt by a neighbor and is synced to the node.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the interface type and slot/port information. The following abbreviations describe the interface types:</td>
</tr>
<tr>
<td></td>
<td>• gi — Gigabit Ethernet then a slot/port</td>
</tr>
<tr>
<td></td>
<td>• po — Port Channel then a number. The range is from 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• so — SONET then a slot/port.</td>
</tr>
<tr>
<td></td>
<td>• te — 10–Gigabit Ethernet then a slot/port.</td>
</tr>
<tr>
<td>State</td>
<td>Lists if the MAC address is in use (Active) or not in use (Inactive).</td>
</tr>
</tbody>
</table>

The following describes the show mac-address-table count command shown in the following example.

Line Beginning With

Description

<table>
<thead>
<tr>
<th>Line Beginning With</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Entries...</td>
<td>Displays the number of MAC entries learned per VLAN.</td>
</tr>
<tr>
<td>Dynamic Address...</td>
<td>Lists the number of dynamically learned MAC addresses.</td>
</tr>
<tr>
<td>Static Address...</td>
<td>Lists the number of user-defined MAC addresses.</td>
</tr>
<tr>
<td>Total MAC...</td>
<td>Lists the total number of MAC addresses the switch uses.</td>
</tr>
</tbody>
</table>

Example (Count)

Dell#show mac-address-table count
MAC Entries for all vlans : 5
Dynamic Address Count : 5
Static Address (User-defined) Count : 0
Total MAC Addresses in Use: 5
Dell#

Related Commands

show mac-address-table aging-time — displays MAC aging time.

show mac-address-table aging-time

Display the aging times assigned to the MAC addresses on the switch.

Syntax

```
show mac-address-table aging-time [vlan vlan-id]
```
Parameters

vlan vlan-id
(OPTIONAL) Enter the keyword `vlan` then the VLAN ID to display the MAC address assigned to the VLAN. The range is from 1 to 4094.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show mac-address-table aging-time
  Mac-address-table aging time : 1800
Dell#
```

Related Commands

- `show mac-address-table` — displays the current MAC address configuration.

show mac learning-limit

Display MAC address learning limits set for various interfaces.

Syntax

```
show mac learning-limit [violate-action] [detail] [interface interface]
```

Parameters

- **violate-action**
 (OPTIONAL) Enter the keywords `violate-action` to display the MAC learning limit violation status.

- **detail**
 (OPTIONAL) Enter the keyword `detail` to display the MAC learning limit in detail.

- **interface interface**
 (OPTIONAL) Enter the keyword `interface` with the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.

Command Modes

- EXEC
Virtual LAN (VLAN) Commands

The following commands configure and monitor virtual LANs (VLANs). VLANs are a virtual interface and use many of the same commands as physical interfaces. You can configure an IP address and Layer 3 protocols on a VLAN called Inter-VLAN routing. FTP, TFTP, ACLs and SNMP are not supported on a VLAN.

Occasionally, while sending broadcast traffic over multiple Layer 3 VLANs, the VRRP state of a VLAN interface may continually switch between Master and Backup.

NOTE: For more information, refer to VLAN Stacking and VLAN-related commands, such as `portmode hybrid` in the Interfaces chapter.

description

Add a description about the selected VLAN.

Syntax

```plaintext
description description
```

Parameters

- `description` Enter a text string description to identify the VLAN (80 characters maximum).

Defaults

- `none`

Command Modes

- `INTERFACE VLAN`

Command History

- **Version 8.3.16.1**Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `show vlan` — displays the VLAN configuration.
default vlan-id

Specify a VLAN as the Default VLAN.

Syntax
default vlan-id vlan-id

To remove the default VLAN status from a VLAN and VLAN 1 does not exist, use the no default vlan-id vlan-id syntax.

Parameters

vlan-id

Enter the VLAN ID number of the VLAN to become the new Default VLAN. The range is from 1 to 4094. The default is 1.

Defaults

The Default VLAN is VLAN 1.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To return VLAN 1 as the Default VLAN, use the (default-vlan-id 1) command.

The Default VLAN contains only untagged interfaces.

Related Commands

interface vlan — configures a VLAN.

default-vlan disable

Disable the default VLAN so that all switchports are placed in the Null VLAN until they are explicitly configured as a member of another VLAN.

Defaults

Enabled.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information

The `no default vlan disable` command is not listed in the running-configuration, but when the default VLAN is disabled, `default-vlan disable` is listed in the running-configuration.

name

Assign a name to the VLAN.

Syntax

```plaintext
name vlan-name
```

To remove the name from the VLAN, use the `no name` command.

Parameters

`vlan-name` Enter up to 32 characters as the name of the VLAN.

Defaults
Not configured.

Command Modes

- INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To display information about a named VLAN, enter the `show vlan` command with the `name` parameter or the `show interfaces description` command.

Related Commands

- `description` — assigns a descriptive text string to the interface.
- `interface vlan` — configures a VLAN.
- `show vlan` — displays the current VLAN configurations on the switch.

show config

Display the current configuration of the selected VLAN.

Syntax

```plaintext
show config
```

Command Modes

- INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
show vlan

Display the current VLAN configurations on the switch.

Syntax

```
show vlan [brief | id vlan-id | name vlan-name]
```

Parameters

- `brief` (OPTIONAL) Enter the keyword brief to display the following information:
 - VLAN ID
 - VLAN name (left blank if none is configured)
 - Spanning Tree Group ID
 - MAC address aging time
 - IP address

- `id vlan-id` (OPTIONAL) Enter the keyword id then a number from 1 to 4094. Only information on the VLAN specified is displayed.

- `name vlan-name` (OPTIONAL) Enter the keyword name then the name configured for the VLAN. Only information on the VLAN named is displayed.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show vlan` command shown in the following example.
Column Heading

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Displays existing VLAN IDs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displays the word Inactive for inactive VLANs and the word Active for active VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q: U - Untagged, T - Tagged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x - Dot1x untagged, X - Dot1x tagged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G - GVRP tagged, M - Vlan-stack, H - VSN tagged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Po</th>
<th>Gi</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>port channel</td>
<td>gigabit Ethernet</td>
<td>ten-gigabit Ethernet</td>
</tr>
</tbody>
</table>

Example

```
Dell#show vlan

Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P - Primary, C - Community, I - Isolated Q: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged G - GVRP tagged, M - Vlan-stack, H - VSN tagged i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Inactive</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 20</td>
<td>Active</td>
<td></td>
<td>U</td>
<td>Te 0/3,5,13,53-56</td>
</tr>
</tbody>
</table>
```
Example (VLAN ID) Dell# show vlan id 40

Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P - Primary, C - Community, I - Isolated
Q: U - Untagged, T - Tagged
x - Dot1x untagged, X - Dot1x tagged
G - GVRP tagged, M - Vlan-stack, H - VSN tagged
i - Internal untagged, I - Internal tagged, v - VLT untagged, V
- VLT tagged
NUM Status Description Q Ports
 1 Inactive a

Example (Brief) Dell# show vlan brief
VLAN Name STG MAC Aging IP Address
---- ------------------------------
1 0 0 unassigned
2 0 0 unassigned
20 0 0 unassigned
1002 0 0 unassigned

Example (Name) Dell(conf-if-vl-222)#interface vlan 222
Dell(conf-if-vl-222)#name test
Dell(conf-if-vl-222)#do show vlan name test

Codes: * - Default VLAN, G - GVRP VLANs
Q: U - Untagged, T - Tagged
x - Dot1x untagged, X - Dot1x tagged
G - GVRP tagged, M - Vlan-stack

NUM Status Description Q Ports
222 Inactive U Gi 1/22

Related Commands

- `vlan-stack compatible` — enables the Stackable VLAN feature on the selected VLAN.
- `interface vlan` — configures a VLAN.

tagged

Add a Layer 2 interface to a VLAN as a tagged interface.

Syntax

```
tagged interface
```

To remove a tagged interface from a VLAN, use the `no tagged interface` command.
Parameters

- **interface** Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Defaults

All interfaces in Layer 2 mode are untagged.

Command Modes

- INTERFACE VLAN

Command History

- **Version 9.9(0.0)** Introduced on the FN IOM.
- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- When you use the no tagged command, the interface is automatically placed in the Default VLAN as an untagged interface unless the interface is a member of another VLAN. If the interface belongs to several VLANs, remove it from all VLANs to change it to an untagged interface.

- Tagged interfaces can belong to multiple VLANs, while untagged interfaces can only belong to one VLAN at a time.

Related Commands

- **interface vlan** — configures a VLAN.
- **untagged** — specifies which interfaces in a VLAN are untagged.

track ip

Track the Layer 3 operational state of a Layer 3 VLAN, using a subset of the VLAN member interfaces.

Syntax

- **track ip interface**

To remove the tracking feature from the VLAN, use the no track ip interface command.

Parameters

- **interface** Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
untagged

Add a Layer 2 interface to a VLAN as an untagged interface.

Syntax

```
untagged interface
```

To remove an untagged interface from a VLAN, use the `no untagged interface` command.

Parameters

```
interface
```
Enter the following keywords and slot/port or number information:

- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults
All interfaces in Layer 2 mode are untagged.

Command Modes
INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Untagged interfaces can only belong to one VLAN.

In the Default VLAN, you cannot use the `no untagged interface` command. To remove an untagged interface from all VLANs, including the Default VLAN, enter INTERFACE mode and use the `no switchport` command.

Related Commands

- `interface vlan` — configures a VLAN.
- `tagged` — specifies which interfaces in a VLAN are tagged.
Link Layer Discovery Protocol (LLDP)

Link layer discovery protocol (LLDP) advertises connectivity and management from the local station to the adjacent stations on an IEEE 802 LAN.

LLDP facilitates multi-vendor interoperability by using standard management tools to discover and make available a physical topology for network management. The Dell Networking operating software implementation of LLDP is based on IEEE standard 801.1ab.

The starting point for using LLDP is invoking LLDP with the `protocol lldp` command in either `CONFIGURATION` or `INTERFACE` mode.

The information LLDP distributes is stored by its recipients in a standard management information base (MIB). You can access the information by a network management system through a management protocol such as simple network management protocol (SNMP).

For details about implementing LLDP/LLDP-MED, refer to the Link Layer Discovery Protocol chapter of the *Dell Networking OS Configuration Guide*.

Topics:
- `advertise dot1-tlv`
- `advertise dot3-tlv`
- `advertise management-tlv`
- `clear lldp counters`
- `clear lldp neighbors`
- `debug lldp interface`
- `disable`
- `hello`
- `mode`
- `multiplier`
- `protocol lldp (Configuration)`
- `protocol lldp (Interface)`
- `show lldp neighbors`
- `show lldp statistics`
- `show running-config lldp`
- `LLDP-MED Commands`
- `advertise med guest-voice`
- `advertise med guest-voice-signaling`
- `advertise med location-identification`
- `advertise med power-via-mdi`
- `advertise med softphone-voice`
advertise med streaming-video
advertise med video-conferencing
advertise med voice-signaling
advertise med voice
advertise med voice-signaling

advertise dot1-tlv

Advertise dot1 TLVs (Type, Length, Value).

Syntax
advertise dot1-tlv {port-protocol-vlan-id | port-vlan-id | vlan-name}
To remove advertised dot1-tlv, use the no advertise dot1-tlv {port-
protocol-vlan-id | port-vlan-id | vlan-name} command.

Parameters
port-protocol-vlan-id Enter the keywords port-protocol-vlan-id to advertise the
port protocol VLAN identification TLV.

port-vlan-id Enter the keywords port-vlan-id to advertise the port VLAN
identification TLV.

vlan-name Enter the keywords vlan-name to advertise the vlan-name TLV.

Defaults
Disabled.

Command Modes
CONFIGURATION (conf-lldp) and INTERFACE (conf-if-interface-lldp)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
protocol lldp (Configuration) — enables LLDP globally.
debug lldp interface — debugs LLDP.
show lldp neighbors — displays the LLDP neighbors.
show running-config lldp — displays the LLDP running configuration.
advertise dot3-tlv

Advertise dot3 TLVs (Type, Length, Value).

Syntax
advertise dot3-tlv {max-frame-size}
To remove advertised dot3-tlv, use the no advertise dot3-tlv {max-frame-size} command.

Parameters
max-frame-size Enter the keywords max-frame-size to advertise the dot3 maximum frame size.

Defaults none

Command Modes CONFIGURATION (conf-lldp) and INTERFACE (conf-if-interface-lldp)

Command History
Version 9.2(0.0) Introduced on the M I/O Aggregator.
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

advertise management-tlv

Advertise management TLVs (Type, Length, Value).

Syntax
advertise management-tlv {system-capabilities | system-description | system-name}
To remove advertised management TLVs, use the no advertise management-tlv {system-capabilities | system-description | system-name} command.

Parameters
system-capabilities Enter the keywords system-capabilities to advertise the system capabilities TLVs to the LLDP peer.

system-description Enter the keywords system-description to advertise the system description TLVs to the LLDP peer.

system-name Enter the keywords system-name to advertise the system name TLVs to the LLDP peer.

Defaults none

Command Modes CONFIGURATION (conf-lldp)
clear lldp counters

Clear LLDP transmitting and receiving counters for all physical interfaces or a specific physical interface.

Syntax: clear lldp counters [interface]

Parameters:
- **interface**: Enter the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `tenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults: none

Command Modes: EXEC Privilege

Command History:
- **Version 9.2(0.0)**: Introduced on the M I/O Aggregator.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

clear lldp neighbors

Clear LLDP neighbor information for all interfaces or a specific interface.

Syntax: clear lldp neighbors [interface]

Parameters:
- **interface**: Enter the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `tenGigabitEthernet` then the slot/port information.

Defaults: none

Command Modes: EXEC Privilege

Command History:
- **Version 9.2(0.0)**: Introduced on the M I/O Aggregator.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.
For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

dbg lldp interface

To display timer events, neighbor additions or deletions, and other information about incoming and outgoing packets, enable LLDP debugging.

Syntax

dbg lldp interface {interface | all} {events | packet {brief | detail} {tx | rx | both}}

To disable debugging, use the no debug lldp interface {interface | all} {events} {packet {brief | detail} {tx | rx | both}} command.

Parameters

- **interface**
 Enter the following keywords and slot/port or number information:

 - For a 10-Gigabit Ethernet interface, enter the keyword tenGigabitEthernet then the slot/port information.

 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

- **all**
 (OPTIONAL) Enter the keyword all to display information on all interfaces.

- **events**
 (OPTIONAL) Enter the keyword events to display major events such as timer events.

- **packet**
 (OPTIONAL) Enter the keyword packet to display information regarding packets coming in or going out.

- **brief**
 (OPTIONAL) Enter the keyword brief to display brief packet information.

- **detail**
 (OPTIONAL) Enter the keyword detail to display detailed packet information.

- **tx**
 (OPTIONAL) Enter the keyword tx to display transmit-only packet information.
rx (OPTIONAL) Enter the keyword rx to display receive-only packet information.

both (OPTIONAL) Enter the keyword both to display both receive and transmit packet information.

Defaults none

Command Modes EXEC Privilege

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

disable

Enable or disable LLDP.

Syntax
disable

To enable LLDP, use the no disable command.

Defaults Enabled, that is no disable.

Command Modes CONFIGURATION (conf-lldp) and INTERFACE (conf-if-interface-lldp)

Command History

Version 9.2(0.0) Introduced on the M I/O Aggregator.

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

protocol lldp (Configuration) — enables LLDP globally.

debbug lldp interface — debbugs LLDP.

show lldp neighbors — displays the LLDP neighbors.

hello

Configure the rate at which the LLDP control packets are sent to its peer.

Syntax

hello seconds

To revert to the default, use the no hello seconds command.
Parameters

- **seconds**
 Enter the rate, in seconds, at which the control packets are sent to its peer. The rate is from 5 to 180 seconds. The default is 30 seconds.

Defaults

- 30 seconds

Command Modes

- CONFIGURATION (conf-lldp) and INTERFACE (conf-if-interface-lldp)

Command History

- **Version 9.2(0.0)**
 Introduced on the M I/O Aggregator.

- **Version 8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.

mode

To receive or transmit, set LLDP.

Syntax

```
mode {tx | rx}
```

To return to the default, use the `no mode {tx | rx}` command.

Parameters

- **tx**
 Enter the keyword `tx` to set the mode to transmit.

- **rx**
 Enter the keyword `rx` to set the mode to receive.

Defaults

- Both transmit and receive.

Command Modes

- CONFIGURATION (conf-lldp) and INTERFACE (conf-if-interface-lldp)

Command History

- **Version 9.2(0.0)**
 Introduced on the M I/O Aggregator.

- **Version 9.9(0.0)**
 Introduced on the FN IOM.

- **Version 8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `protocol lldp (Configuration)` — enables LLDP globally.

- `show lldp neighbors` — displays the LLDP neighbors.
multiplier

Set the number of consecutive misses before LLDP declares the interface dead.

Syntax

```
multiplier integer
```

To return to the default, use the `no multiplier integer` command.

Parameters

`integer` Enter the number of consecutive misses before the LLDP declares the interface dead. The range is from 2 to 10.

Defaults

4 x hello

Command Modes

- CONFIGURATION (conf-lldp)
- INTERFACE (conf-if-interface-lldp)

Command History

- Version 9.2(0.0) Introduced on the M I/O Aggregator.
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

protocol lldp (Configuration)

Enable the LLDP globally on the switch.

Syntax

```
protocol lldp
```

To disable LLDP globally on the chassis, use the `no protocol lldp` command.

Defaults

Enabled.

Command Modes

- CONFIGURATION (conf-lldp)

Command History

- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

protocol lldp (Interface)

Enter the LLDP protocol in INTERFACE mode.

Syntax

```
[no] protocol lldp
```
To return to the global LLDP configuration mode, use the `no protocol lldp` command from Interface mode.

Defaults

LLDP is not enabled on the interface.

Command Modes

INTERFACE (conf-if-interface-ldp)

Command History

Version 8.3.16.1

Usage Information

Before LLDP can be configured on an interface, it must be enabled globally from CONFIGURATION mode. This command places you in LLDP mode on the interface; it does not enable the protocol.

When you enter the LLDP protocol in the Interface context, it overrides global configurations. When you execute the `no protocol lldp` from INTERFACE mode, interfaces begin to inherit the configuration from global LLDP CONFIGURATION mode.

show lldp neighbors

Display LLDP neighbor information for all interfaces or a specified interface.

Syntax

```
show lldp neighbors [interface] [detail]
```

Parameters

- `interface` (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter the keyword `tenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- `detail` (OPTIONAL) Enter the keyword `detail` to display all the TLV information, remote management IP addresses, timers, and LLDP tx and rx counters.

Defaults

none

Command Modes

EXEC Privilege

Command History

Version 8.3.16.1

Introduced on MXL 10/40GbE Switch IO Module

Usage Information

Omitting the keyword `detail` displays only the remote chassis ID, Port ID, and Dead Interval.

Example

```
R1(conf-if-gi-1/31)#do show lldp neighbors
Loc PortID Rem Host Name       Rem      Port Id Rem Chassis Id
--------------------------------------------------------------
Link Layer Discovery Protocol (LLDP)                      974
```

show lldp statistics

Display the LLDP statistical information.

Syntax
show lldp statistics

Defaults
none

Command Modes
EXEC Privilege

Command History
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show lldp statistics
--------- LLDP GLOBAL STATISTICS ON CHASSIS -----------
Total number of neighbors: 2
Last table change time: 1w5d4h, In ticks: 52729764
Total number of Table Inserts: 56
Total number of Table Deletes: 54
Total number of Table Drops: 0
Total number of Table Age Outs: 12
Dell#

show running-config lldp

Display the current global LLDP configuration.

Syntax
show running-config lldp

Defaults
none

Command Modes
EXEC Privilege

Command History
9.9(0.0) Introduced on the FN IOM.
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show running-config lldp
!
protocol lldp
advertise dot1-tlv port-protocol-vlan-id port-vlan-id
advertise dot3-tlv max-frame-size
advertise management-tlv system-capabilities system-description
hello 15
multiplier 3
LLDP-MED Commands

The following are the LLDP-MED (Media Endpoint Discovery) commands. The LLDP-MED commands are an extension of the set of LLDP TLV advertisement commands.

As defined by ANSI/TIA-1057, LLDP-MED provides organizationally specific TLVs (Type Length Value), so that endpoint devices and network connectivity devices can advertise their characteristics and configuration information. The Organizational Unique Identifier (OUI) for the Telecommunications Industry Association (TIA) is 00-12-BB.

- LLDP-MED Endpoint Device — any device that is on an IEEE 802 LAN network edge, can communicate using IP, and uses the LLDP-MED framework.
- LLDP-MED Network Connectivity Device — any device that provides access to an IEEE 802 LAN to an LLDP-MED endpoint device, and supports IEEE 802.1AB (LLDP) and TIA-1057 (LLDP-MED). The Dell Networking system is an LLDP-MED network connectivity device.

Regarding connected endpoint devices, LLDP-MED provides network connectivity devices with the ability to:

- manage inventory
- manage Power over Ethernet (POE)
- identify physical location
- identify network policy

advertise med guest-voice

To advertise a separate limited voice service for a guest user with their own IP telephony handset or other appliances that support interactive voice services, configure the system.

Syntax

```
advertise med guest-voice {vlan-id layer2_priority DSCP_value} | {priority-tagged number}  
```

To return to the default, use the `no advertise med guest-voice {vlan-id layer2_priority DSCP_value} | {priority-tagged number}` command.

Parameters

- **vlan-id**: Enter the VLAN ID. The range is from 1 to 4094.
- **layer2_priority**: Enter the Layer 2 priority. The range is from 0 to 7.
- **DSCP_value**: Enter the DSCP value. The range is from 0 to 63.
- **priority-tagged number**: Enter the keywords `priority-tagged` followed the Layer 2 priority. The range is from 0 to 7.
advertise med guest-voice-signaling

To advertise a separate limited voice service for a guest user when the guest voice control packets use a separate network policy than the voice data, configure the system.

Syntax
advertise med guest-voice-signaling {vlan-id layer2_priority DSCP_value} | {priority-tagged number}

To return to the default, use the no advertise med guest-voice-signaling {vlan-id layer2_priority DSCP_value} | {priority-tagged number} command.

Parameters
- **vlan-id**
 - Enter the VLAN ID. The range is from 1 to 4094.
- **layer2_priority**
 - Enter the Layer 2 priority. The range is from 0 to 7.
- **DSCP_value**
 - Enter the DSCP value. The range is from 0 to 63.
- **priority-tagged number**
 - Enter the keywords priority-tagged then the Layer 2 priority. The range is from 0 to 7.

Defaults
unconfigured.

Command Modes
CONFIGURATION (conf-lldp)

Command History
- 9.9(0.0) Introduced on the FN IOM.
- 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
debug lldp interface — debugs LLDP.
show lldp neighbors — displays the LLDP neighbors.
show running-config lldp — displays the LLDP running configuration.

advertise med location-identification

To advertise a location identifier, configure the system.

Syntax
advertise med location-identification {coordinate-based value | civic-based value | ecs-elin value}

To return to the default, use the no advertise med location-identification {coordinate-based value | civic-based value | ecs-elin value} command.

Parameters
coordinate-based value
Enter the keywords coordinate-based then the coordinated based location in hexadecimal value of 16 bytes.

civic-based value
Enter the keywords civic-based then the civic based location in hexadecimal format. The range is from 6 to 255 bytes.

ecs-elin value
Enter the keywords ecs-elin then the Emergency Call Service (ecs) Emergency Location Identification Number (elin) numeric location string. The range is from 10 to 25 characters.

Defaults
unconfigured.

Command Modes
CONFIGURATION (conf-lldp)

Command History
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
- ECS — Emergency call service such as defined by TIA or the national emergency numbering association (NENA)
- ELIN — Emergency location identification number, a valid North America Numbering Plan format telephone number supplied for ECS purposes.

Related Commands
debug lldp interface — debugs LLDP.

show lldp neighbors — displays the LLDP neighbors.

show running-configure lldp — displays the LLDP running configuration.
advertise med power-via-mdi

To advertise the Extended Power via MDI TLV, configure the system.

Syntax

```
advertise med power-via-mdi
```

To return to the default, use the `no advertise med power-via-mdi` command.

Defaults

unconfigured.

Command Modes

CONFIGURATION (conf-lldp)

Command History

- **9.9(0.0)**: Introduced on the FN IOM.
- **9.8(7.0)**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Advertise the Extended Power via MDI on all ports that are connected to an 802.3af powered, LLDP-MED endpoint device.

Related Commands

- `debug lldp interface` — debugs LLDP.
- `show lldp neighbors` — displays the LLDP neighbors.
- `show running-config lldp` — displays the LLDP running configuration.

advertise med softphone-voice

To advertise softphone to enable IP telephony on a computer so that the computer can be used as a phone, configure the system.

Syntax

```
advertise med softphone-voice {vlan-id} | {priority-tagged number}
```

To return to the default, use the `no advertise med softphone-voice {vlan-id} | {priority-tagged number}` command.

Parameters

- `vlan-id`: Enter the VLAN ID. The range is from 1 to 4094.
- `priority-tagged`: Enter the keywords `priority-tagged` then the Layer 2 priority. The range is from 0 to 7.

Defaults

unconfigured.

Command Modes

CONFIGURATION (conf-lldp)

Command History

- **9.9(0.0)**: Introduced on the FN IOM.
advertise med streaming-video

To advertise streaming video services for broadcast or multicast-based video, configure the system. This command does not include video applications that rely on TCP buffering.

Syntax
advertise med streaming-video {vlan-id} | {priority-tagged number}

To return to the default, use the `no advertise med streaming-video {vlan-id} | {priority-tagged number}` command.

Parameters
- **vlan-id**: Enter the VLAN ID. The range is from 1 to 4094.
- **priority-tagged number**: Enter the keywords `priority-tagged` then the Layer 2 priority. The range is from 0 to 7.

Defaults
unconfigured.

Command Modes
- CONFIGURATION (conf-lldp)

Command History
- 9.9(0.0) Introduced on the FN IOM.
- Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
- `debug lldp interface` — debugs LLDP.
- `show lldp neighbors` — displays the LLDP neighbors.
- `show running-config lldp` — displays the LLDP running configuration.
advertise med video-conferencing

To advertise dedicated video conferencing and other similar appliances that support real-time interactive video, configure the system.

Syntax

advertise med video-conferencing {vlan-id} | {priority-tagged number}

To return to the default, use the no advertise med video-conferencing {vlan-id} | {priority-tagged number} command.

Parameters

- **vlan-id**
 - Enter the VLAN ID. The range is from 1 to 4094.

- **priority-tagged number**
 - Enter the keywords priority-tagged then the Layer 2 priority. The range is from 0 to 7.

Defaults

unconfigured.

Command Modes

CONFIGURATION (conf-lldp)

Command History

- **9.9(0.0)**
 - Introduced on the FN IOM.

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- **debug lldp interface** — debugs LLDP.
- **show lldp neighbors** — displays the LLDP neighbors.
- **show running-config lldp** — displays the LLDP running configuration.

advertise med voice-signaling

To advertise when voice control packets use a separate network policy than voice data, configure the system.

Syntax

advertise med voice-signaling {vlan-id} | {priority-tagged number}

To return to the default, use the no advertise med voice-signaling {vlan-id} | {priority-tagged number} command.

Parameters

- **vlan-id**
 - Enter the VLAN ID. The range is from 1 to 4094.

- **priority-tagged number**
 - Enter the keywords priority-tagged then the Layer 2 priority. The range is from 0 to 7.
advertise med voice

To advertise a dedicated IP telephony handset or other appliances supporting interactive voice services, configure the system.

Syntax
advertise med voice {vlan-id} | {priority-tagged number}
To return to the default, use the no advertise med voice {vlan-id} | {priority-tagged number} command.

Parameters
- **vlan-id**: Enter the VLAN ID. The range is from 1 to 4094.
- **priority-tagged number**: Enter the keywords priority-tagged then the Layer 2 priority. The range is from 0 to 7.

Defaults
unconfigured.

Command Modes
CONFIGURATION (conf-lldp)

Command History
9.9(0.0) Introduced on the FN IOM.
Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
dbog lldp interface — debugs LLDP.
show lldp neighbors — displays the LLDP neighbors.
show running-config lldp — displays the LLDP running configuration.
advertise med voice-signaling

To advertise when voice control packets use a separate network policy than voice data, configure the system.

Syntax

advertise med voice-signaling {vlan-id} | {priority-tagged number}

To return to the default, use the no advertise med voice-signaling {vlan-id} | {priority-tagged number} command.

Parameters

- **vlan-id**: Enter the VLAN ID. The range is from 1 to 4094.
- **priority-tagged number**: Enter the keywords priority-tagged then the Layer 2 priority. The range is from 0 to 7.

Defaults

unconfigured.

Command Modes

CONFIGURATION (conf-lldp)

Command History

- **9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `debug lldp interface` — debugs LLDP.
- `show lldp neighbors` — displays the LLDP neighbors.
- `show running-config lldp` — displays the LLDP running configuration.
Microsoft Network Load Balancing

Network Load Balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems. NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group. NLB combines the servers into a single multicast group and attempts to use the standard multicast IP or unicast IP addresses, and MAC addresses for the transmission of network traffic. At the same time, it also uses a single virtual IP address for all clients as the destination IP address, which enables servers to join the same multicast group in a way that is transparent to the clients (the clients do not notice the addition of new servers to the group). The clients use a cluster IP address to connect to the server. The NLB functionality enables flooding of traffic over the VLAN ports (for unicast mode) or a subset of ports in a VLAN (for multicast mode) to avoid overloading and effective performance of the servers for optimal processing of data packets. The maximum NLB entry limit from 8 to 11 is increased and support for more CAM-ACL to increase.

NLB functions in two modes, namely unicast mode and multicast mode. The cluster IP address and the associated cluster MAC address are configured in the NLB application running on the Windows Server. In the unicast mode, when the server IP address is attempted to be resolved to the MAC address using the ARP application, the switch determines whether the ARP reply, obtained from the server, is of an NLB type. The switch then maps the IP address (cluster IP) with the MAC address (cluster MAC address). In multicast mode, the cluster IP address is mapped to a cluster multicast MAC address that is configured using a static ARP CLI configuration command. After the NLB entry is learned, the traffic is forwarded to all the servers in the VLAN corresponding to the cluster virtual IP address.

NLB Unicast Mode Scenario

Consider a sample topology in which four servers, namely S1 through S4, are configured as a cluster or a farm. This set of servers is connected to a Layer 3 switch, which in turn is connected to the end-clients. The servers contain a single IP address (IP-cluster address of 172.16.2.20) and a single unicast MAC address (MAC-Cluster address of 00-bf-ac-10-00-01) for load-balancing. Because multiple ports of a switch cannot learn a single MAC address, the servers are assigned with MAC addresseses of MAC-s1 to MAC-s4 respectively on S1 through S4 in addition to the MAC cluster address. All the servers of the cluster belong to the VLAN named VLAN1.

In unicast NLB mode, the following sequence of events occurs:

- The switch sends an ARP request to resolve the IP address to the cluster MAC address.
- The ARP servers send an ARP response with the MAC cluster address in the ARP header and a MAC address of MAC-s1/s2/s3/s4 (for servers S1 through S4) in the Ethernet header.
- The switch associates the IP address with the MAC cluster address with the last ARP response it obtains. Assume that in this case, the last ARP reply is obtained from MAC-s4 (assuming that the ARP response with MAC-s4 is received as the last one). The interface associated with server, S4, is added to the ARP table.
• With NLB feature enabled, after learning the NLB ARP entry, all the subsequent traffic is flooded on all ports in VLAN1.

With NLB, the data frame is forwarded to all the servers for them to perform load-balancing.

NLB Multicast Mode Scenario

Consider a sample topology in which four servers, namely S1 through S4, are configured as a cluster or a farm. This set of servers is connected to a Layer 3 switch, which in turn is connected to the end-clients. They contain a single multicast MAC address (MAC-Cluster: 03-00-5E-11-11-11).

In the multicast NLB mode, a static ARP configuration command is configured to associate the cluster IP address with a multicast cluster MAC address.

With multicast NLB mode, the data is forwarded to all the servers based on the port specified using the Layer 2 multicast command, which is the `mac-address-table static <multicast_mac> multicast vlan <vlan_id> output-range <port1>, <port2>` command in CONFIGURATION mode.

Limitations With Enabling NLB on Switches

The following limitations apply to switches on which you configure NLB:

• The NLB unicast mode uses switch flooding to transmit all packets to all the servers that are part of the VLAN. When a large volume of traffic is processed, the clustering performance might be impacted in a small way. This limitation is applicable to switches that perform unicast flooding in the software.

• The `ip vlan-flooding` command applies globally across the system and for all VLANs. In cases where the NLB is applicable and the ARP replies contain a discrepancy in the Ethernet SHA and ARP header SHA frames, a flooding of packets over the relevant VLAN occurs.

• The maximum number of concurrent clusters that is supported is eight.

Benefits and Working of Microsoft Clustering

Microsoft clustering allows multiple servers using Microsoft Windows to be represented by one MAC address and IP address in order to provide transparent failover or balancing. Dell Networking OS does not recognize server clusters by default; it must be configured to do so. When an ARP request is sent to a server cluster, either the active server or all the servers send a reply, depending on the cluster configuration. If the active server sends a reply, the Dell switch learns the active server’s MAC address. If all servers reply, the switch...
registers only the last received ARP reply, and the switch learns one server’s actual MAC address; the virtual MAC address is never learned. Because the virtual MAC address is never learned, traffic is forwarded to only one server rather than the entire cluster, and failover and balancing are not preserved.

To preserve failover and balancing, the switch forwards the traffic destined for the server cluster to all member ports in the VLAN connected to the cluster. To ensure that this happens, you must configure the `ip vlan-flooding` command on the Dell switch at the time that the Microsoft cluster is configured. The server MAC address is given in the Ethernet frame header of the ARP reply, while the virtual MAC address representing the cluster is given in the payload. Then, all the traffic destined for the cluster is flooded out of all member ports. Since all the servers in the cluster receive traffic, failover and balancing are preserved.

Enable and Disable VLAN Flooding

- The older ARP entries are overwritten whenever newer NLB entries are learned.
- All ARP entries, learned after the feature is enabled, are deleted when the feature is disabled, and RP2 triggers an ARP resolution. The feature is disabled with the `no ip vlan-flooding` command.
- When a port is added to the VLAN, the port automatically receives traffic if the feature is enabled. Old ARP entries are not deleted or updated.
- When a member port is deleted, its ARP entries are also deleted from the CAM.
- Port channels in the VLAN also receive traffic.
- There is no impact on the configuration from saving the configuration.
- The feature, if enabled, is displayed in the `show running-config` command output that displays the `ip vlan-flooding` CLI configuration. Apart from it, there is no indication of the enabling of this capability.

Topics:

- `mac-address-table static` (for Multicast MAC Address)
- `ip vlan-flooding`

mac-address-table static (for Multicast MAC Address)

For multicast mode of network load balancing (NLB), configure a static multicast MAC address, associate the multicast MAC address with the VLAN used to switch Layer 2 multicast traffic, and add output ports that will receive multicast streams on the VLAN. To delete a configured static multicast MAC address from the MAC address table on the router, enter the `no mac-address-table static multicast-mac-address` command.
mac-address-table static multicast-mac-address multicast vlan vlan-id range-output {single-interface | interface-list | interface-range}

To remove a MAC address, use the no mac-address-table static multicast-mac-address output interface vlan vlan-id command.

Parameters

- **multicast-mac-address**
 - Enter the 48-bit hexadecimal address in nn:nn:nn:nn:nn:nn format.

- **multicast**
 - Enter a vlan port to where L2 multicast MAC traffic is forwarded.

 NOTE: Use this option if you want multicast functionality in an L2 VLAN without IGMP protocols.

- **output interface**
 - For a multicast MAC address, enter the keyword output then one of the following interfaces for which traffic is forwarded:

 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.

 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

- **output-range interface**
 - For a multicast MAC address, enter the keyword output-range then one of the following interfaces to indicate a range of ports for which traffic is forwarded:

 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.

 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

- **vlan vlan-id**
 - Enter the keyword vlan then a VLAN ID number from 1 to 4094.

Defaults

Not configured.

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Added support for multicast MAC address on the MXL platform.</td>
</tr>
</tbody>
</table>

Example

```shell
mac-address-table static 01:00:5E:01:00:01 {multicast vlan 2 output-range Te 0/2,Te 0/3}
```
ip vlan-flooding

Enable unicast data traffic flooding on VLAN member ports.

Syntax

```
ip vlan-flooding
To disable, use the no ip vlan-flooding command.
```

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL Switch.</td>
</tr>
</tbody>
</table>

Default

Disabled

Usage Information

By default this command is disabled. There might be some ARP table entries which are resolved through ARP packets which had Ethernet MAC SA different from MAC information inside the ARP packet. This unicast data traffic flooding occurs only for those packets which use these ARP entries.
Multicast Source Discovery Protocol (MSDP)

Multicast source discovery protocol (MSDP) connects multiple PIM Sparse-Mode (PIM-SM) domains together. MSDP peers connect using TCP port 639. Peers send keepalives every 60 seconds. A peer connection is reset after 75 seconds if no MSDP packets are received. MSDP connections are parallel with MBGP connections.

Topics:
- clear ip msdp peer
- clear ip msdp sa-cache
- clear ip msdp statistic
- debug ip msdp
- ip msdp cache-rejected-sa
- ip msdp default-peer
- ip msdp log-adjacency-changes
- ip msdp mesh-group
- ip msdp originator-id
- ip msdp peer
- ip msdp redistribute
- ip msdp sa-filter
- ip msdp sa-limit
- ip msdp shutdown
- ip multicast-msdp
- show ip msdp
- show ip msdp sa-cache rejected-sa

clear ip msdp peer

Reset the TCP connection to the peer and clear all the peer statistics.

Syntax

```plaintext
clear ip msdp peer {peer address}
```

Parameters

- `peer address` Enter the peer address in a dotted decimal format (A.B.C.D.)

Defaults

Not configured.
clear ip msdp sa-cache

Clears the entire source-active cache, the source-active entries of a particular multicast group, rejected, or local source-active entries.

Syntax
```
clear ip msdp sa-cache [group-address | rejected-sa | local]
```

Parameters
- `group-address`: Enter the group IP address in dotted decimal format (A.B.C.D.).
- `rejected-sa`: Enter the keywords `rejected-sa` to clear the cache source-active entries that are rejected because the RPF check failed, an SA filter or limit is configured, the RP or MSDP peer is unreachable, or because of a format error.
- `local`: Enter the keyword `local` to clear out local PIM advertised entries. It applies the redistribute filter (if present) while adding the local PIM SA entries to the SA cache.

Defaults
Without any options, this command clears the entire source-active cache.

Command Modes
EXEC Privilege

Command History
```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL Switch.</td>
</tr>
</tbody>
</table>
```

clear ip msdp statistic

Clears the entire source-active cache, the source-active entries of a particular multicast group, rejected, or local source-active entries.

Syntax
```
clear ip msdp sa-cache [group-address | rejected-sa | local]
```

Parameters
- `group-address`: Enter the group IP address in dotted decimal format (A.B.C.D.).

Multicast Source Discovery Protocol (MSDP) | 990
rejected-sa Enter the keyword rejected-sa to clear the cache source-active entries that are rejected because the RPF check failed, an SA filter or limit is configured, the RP or MSDP peer is unreachable, or because of a format error.

local Enter the keyword local to clear out local PIM advertised entries. It applies the redistribute filter (if present) while adding the local PIM SA entries to the SA cache.

Defaults Without any options, this command clears the entire source-active cache.

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

debug ip msdp

Turn on MSDP debugging.

Syntax

```
debug ip msdp {event peer address | packet peer address | pim}
```

To turn debugging off, use the `no debug ip msdp {event peer address | packet peer address | pim}` command.

Parameters

- **event peer address** Enter the keyword event then the peer address in a dotted decimal format (A.B.C.D.).
- **packet peer address** Enter the keyword packet then the peer address in a dotted decimal format (A.B.C.D.).
- **pim** Enter the keyword pim to debug advertisement from PIM.

Defaults Not configured.

Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip msdp cache-rejected-sa

Enable an MSDP cache for the rejected source-active entries.

Syntax

```
ip msdp cache-rejected-sa {number}
```

To clear the MSDP rejected source-active entries, use the `no ip msdp cache-rejected-sa {number}` command then the `ip msdp cache-rejected-sa {number}` command.

Parameters

- `number` Enter the number of rejected SA entries to cache. The range is from 0 to 32766.

Defaults

none

Command Modes

CONFIGURATION

Command History

- **Version 9.9(0.0)** Introduced on the FN IOM.
- **Version 9.3(0.0)** Introduced on the MXL 10/40GbE Switch IO Module.
- **Version 9.2(0.0)** Introduced on the MXL Switch.

Related Commands

- `show ip msdp sa-cache rejected-sa` — Displays the rejected SAs in the SA cache.

ip msdp default-peer

Define a default peer from which to accept all source-active (SA) messages.

Syntax

```
ip msdp default-peer peer address [list name]
```

To remove the default peer, use the `no ip msdp default-peer {peer address} list name` command.

Parameters

- `peer address` Enter the peer address in a dotted decimal format (A.B.C.D.)
- `list name` Enter the keywords `list name` and specify a standard access list that contains the RP address that should be treated as the default peer. If no access list is specified, then all SAs from the peer are accepted.
Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
If a list is not specified, all SA messages received from the default peer are accepted. You can enter multiple default peer commands.

ip msdp log-adjacency-changes

Enable logging of MSDP adjacency changes.

Syntax
```
ip msdp log-adjacency-changes
```
To disable logging, use the **no ip msdp log-adjacency-changes** command.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip msdp mesh-group

To be a member of a mesh group, configure a peer.

Syntax
```
ip msdp mesh-group {name} {peer address}
```
To remove the peer from a mesh group, use the **no ip msdp mesh-group {name} {peer address}** command.

Parameters
- **name**
 Enter a string of up to 16 characters long for the mesh group name.
- **peer address**
 Enter the peer address in a dotted decimal format (A.B.C.D.).

Defaults
Not configured.
An MSDP mesh group is a mechanism for reducing SA flooding, typically in an intra-domain setting. When some subset of a domain’s MSDP speakers are fully meshed, they can be configured into a mesh-group. If member X of a mesh-group receives a SA message from an MSDP peer that is also a member of the mesh-group, member X accepts the SA message and forwards it to all of its peers that are not part of the mesh-group. However, member X cannot forward the SA message to other members of the mesh-group.

ip msdp originator-id

Configure the MSDP Originator ID.

Syntax
`ip msdp originator-id {interface}`

To remove the originator-id, use the `no ip msdp originator-id {interface}` command.

Parameters

- `interface`

 Enter the following keywords and slot/port or number information:

 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

- **Version 9.9(0.0)**
 Introduced on the FN IOM.
ip msdp peer

Configure an MSDP peer.

Syntax

```
ip msdp peer peer address [connect-source] [description] [sa-limit number]
```

To remove the MSDP peer, use the `no ip msdp peer peer address [connect-source interface] [description name] [sa-limit number]` command.

Parameters

- **peer address**
 - Enter the peer address in a dotted decimal format (A.B.C.D.).

- **connect-source interface**
 - Enter the keywords `connect-source` then one of the interfaces and slot/port or number information:
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

- **description name**
 - (OPTIONAL) Enter the keyword `description` then a description name (maximum 80 characters) to designate a description for the MSDP peer.

- **sa-limit number**
 - (OPTIONAL) Enter the maximum number of SA entries in SA-cache. The range is from 1 to 500000. The default is **500000**.

Defaults

As described in the **Parameters** section.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

The `connect-source` option is used to supply a source IP address for the TCP connection. When an interface is specified using the `connect-source` option, the primary configured address on the interface is used.

If the total number of SA messages received from the peer is already larger than the limit when this command is applied, those SA messages continue to be accepted. To enforce the limit in such situation, use the `clear ip msdp peer` command to reset the peer.

Related Commands

- `ip msdp sa-limit` — configures the MSDP SA Limit.
- `clear ip msdp peer` — clears the MSDP peer.
- `show ip msdp` — displays the MSDP information.

ip msdp redistribute

Filter local PIM SA entries in the SA cache. SAs which the ACL denies time out and are not refreshed. Until they time out, they continue to reside in the MSDP SA cache.

Syntax

```
ip msdp redistribute [list acl-name]
```

Parameters

- `list acl-name` Enter the name of an extended ACL that contains permitted SAs. If you do not use this option, all local entries are blocked.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Modifications to the ACL do not have an immediate effect on the sa-cache.

To apply the redistribute filter to entries already present in the SA cache, use the `clear ip msdp sa-cache local` command.
ip msdp sa-filter

Permit or deny MSDP source active (SA) messages based on multicast source and/or group from the specified peer.

Syntax

```bash
ip msdp sa-filter {in | out} peer-address list [access-list name]
```

Remove this configuration using the `no ip msdp sa-filter {in | out} peer address list [access-list name]` command.

Parameters

- **in**
 - Enter the keyword `in` to enable incoming SA filtering.
- **out**
 - Enter the keyword `out` to enable outgoing SA filtering.
- **peer-address**
 - Enter the peer address of the MSDP peer in a dotted decimal format (A.B.C.D.).
- **access-list name**
 - Enter the name of an extended ACL that contains permitted SAs. If you do not use this option, all local entries are blocked.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip msdp sa-limit

Configure the upper limit of source-active (SA) entries in SA-cache.

Syntax

```bash
ip msdp sa-limit number
```

To return to the default, use the `no ip msdp sa-limit number` command.

Parameters

- **number**
 - Enter the maximum number of SA entries in SA-cache. The range is from 0 to 40000.

Defaults

50000

Command Modes

CONFIGURATION
The system counts the SA messages originated by itself and those messages received from the MSDP peers. When the total SA messages reach this limit, the subsequent SA messages are dropped (even if they pass RPF checking and policy checking).
If the total number of SA messages is already larger than the limit when this command is applied, those SA messages that are already in the software continue to be accepted. To enforce the limit in such situation, use the `clear ip msdp sa-cache` command.

Related Commands
- `ip msdp peer` — configures the MSDP peer.
- `clear ip msdp peer` — clears the MSDP peer.
- `show ip msdp` — displays the MSDP information

ip msdp shutdown

Administratively shut down a configured MSDP peer.

Syntax

```
ip msdp shutdown {peer address}
```

Parameters

`peer address` Enter the peer address in a dotted decimal format (A.B.C.D.).

Defaults

Not configured.

Command Modes

- CONFIGURATION

Command History

- Version 9.9(0.0)
 Introduced on the FN IOM.
- Version 9.2(0.0)
 Introduced on the MXL 10/40GbE Switch IO Module.

ip multicast-msdp

Enable MSDP.

Syntax

```
ip multicast-msdp
```

Usage Information

- The system counts the SA messages originated by itself and those messages received from the MSDP peers. When the total SA messages reach this limit, the subsequent SA messages are dropped (even if they pass RPF checking and policy checking).
- If the total number of SA messages is already larger than the limit when this command is applied, those SA messages that are already in the software continue to be accepted. To enforce the limit in such situation, use the `clear ip msdp sa-cache` command.

Related Commands

- `ip msdp peer` — configures the MSDP peer.
- `clear ip msdp peer` — clears the MSDP peer.
- `show ip msdp` — displays the MSDP information

Command History

- Version 9.9(0.0)
 Introduced on the FN IOM.
- Version 9.2(0.0)
 Introduced on the MXL 10/40GbE Switch IO Module.
To exit MSDP, use the `no ip multicast-msdp` command.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ip msdp

Display the MSDP peer status, SA cache, or peer summary.

Syntax

```
show ip msdp {peer peer address | sa-cache | summary}
```

Parameters

- **peer peer address**
 Enter the keyword `peer` then the peer address in a dotted decimal format (A.B.C.D.).
- **sa-cache**
 Enter the keywords `sa-cache` to display the Source-Active cache.
- **summary**
 Enter the keyword `summary` to display an MSDP peer summary.

Defaults
Not configured.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip msdp peer 100.1.1.1
Peer Addr: 100.1.1.1
  Local Addr: 100.1.1.2(639) Connect Source: none
  State: Established Up/Down Time: 00:00:08
  Timers: KeepAlive 60 sec, Hold time 75 sec
  SourceActive packet count (in/out): 0/0
  SAs learned from this peer: 0
  SA Filtering:
    Input (S,G) filter: none
    Output (S,G) filter: none
Dell#
```
show ip msdp sa-cache rejected-sa

Display the rejected SAs in the SA cache.

Syntax
show ip msdp sa-cache rejected-sa

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show ip msdp sa-cache rejected-sa
Multicast Source Discovery Protocol (MSDP)
MSDP Rejected SA Cache 200 rejected SAs received, cache-size 1000
UpTime GroupAddr SourceAddr RPAddr LearnedFrom Reason
00:00:13 225.1.2.1 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.2 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.3 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.4 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.5 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.6 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.7 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.8 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.9 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.10 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.11 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.12 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.13 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.14 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.15 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.16 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.17 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.18 10.1.1.4 110.1.1.1 13.1.1.2 Rpf-Fail
00:00:13 225.1.2.19 10.1.1.3 110.1.1.1 13.1.1.2 Rpf-Fail
Dell#
Multiple Spanning Tree Protocol (MSTP)

Multiple spanning tree protocol (MSTP), as implemented by the Dell Networking Operating System (OS), conforms to IEEE 802.1s.

Topics:
- debug spanning-tree mstp
- description
- disable
- forward-delay
- hello-time
- max-age
- max-hops
- msti
- name
- protocol spanning-tree mstp
- revision
- show config
- show spanning-tree mst configuration
- show spanning-tree msti
- spanning-tree
- spanning-tree msti
- spanning-tree mstp
- tc-flush-standard

debug spanning-tree mstp

Enable debugging of the multiple spanning tree protocol and view information on the protocol.

Syntax

```
debug spanning-tree mstp [all | bpdu interface {in | out} | events]
```

Parameters

- `all` (OPTIONAL) Enter the keyword all to debug all spanning tree operations.
bpdu interface (in | out)

(Optional) Enter the keyword bpdu to debug bridge protocol data units (BPDU).

(Optional) Enter the interface keyword along with the type slot/port of the interface you want displayed. Type slot/port options are the following:

- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Optionally, enter an in or out parameter with the optional interface:

- For Receive, enter the keyword in.
- For Transmit, enter the keyword out.

events

(Optional) Enter the keyword events to debug MSTP events.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```bash
Dell#debug spanning-tree mstp bpdu tengigabitethernet 0/16 ?
in Receive (in)
out Transmit (out)
Dell#
```

description

Enter a description of the multiple spanning tree.

Syntax

description {description}

To remove the description, use the no description {description} command.

Parameters

description Enter a description to identify the multiple spanning tree (maximum 80 characters).

Defaults

none

Command Modes

SPANNING TREE (The prompt is "config-mstp").
disable

Globally disable the multiple spanning tree protocol on the switch.

Syntax
disable

To enable MSTP, enter the no disable command.

Defaults
disabled.

Command Modes MULTIPLE SPANNING TREE

disable

Enable bridge protocol data units (BPDU) filter globally to filter transmission of BPDU on port-fast enabled interfaces.

Syntax edgem-port bpdufilter default

To disable global bpdu filter default, use the no edgem-port bpdufilter default command.

Defaults disabled.

Command Modes MULTIPLE SPANNING TREE

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
protocol spanning-tree mstp — enters MULTIPLE SPANNING TREE mode on the switch.
forward-delay

The amount of time the interface waits in the Blocking State and the Learning State before transitioning to the Forwarding State.

Syntax

```
forward-delay seconds
```

To return to the default setting, use the `no forward-delay` command.

Parameters

- `seconds` Enter the number of seconds the interface waits in the Blocking State and the Learning State before transiting to the Forwarding State. The range is from 4 to 30. The default is **15 seconds**.

Defaults

15 seconds

Command Modes

MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `max-age` — changes the wait time before MSTP refreshes protocol configuration information.
- `hello-time` — changes the time interval between bridge protocol data units (BPDUs).

hello-time

Set the time interval between generation of MSTB bridge protocol data units (BPDUs).

Syntax

```
hello-time seconds
```

To return to the default value, use the `no hello-time` command.

Parameters

- `seconds` Enter a number as the time interval between transmission of BPDUs. The range is from 1 to 10. The default is **2 seconds**.
Defaults
- 2 seconds

Command Modes
- MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- `edge-port bpdufilter default` — the amount of time the interface waits in the Blocking State and the Learning State before transitioning to the Forwarding State.

Syntax

```
max-age seconds
```

To return to the default values, use the `no max-age` command.

Parameters

- `max-age`

Enter a number of seconds the system waits before refreshing configuration information. The range is from 6 to 40. The default is 20 seconds.

Defaults
- 20 seconds

Command Modes
- MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
- `edge-port bpdufilter default` — the amount of time the interface waits in the Blocking State and the Learning State before transitioning to the Forwarding State.

- `hello-time` — changes the time interval between BPDUs.
max-hops

Configure the maximum hop count.

Syntax

```
max-hops number
```

To return to the default values, use the `no max-hops` command.

Parameters

```
range
```

Enter a number for the maximum hop count. The range is from 1 to 40. The default is 20.

Defaults

20 hops

Command Modes

MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `max-hops` command is a configuration command that applies to both the IST and all MST instances in the MSTP region. The BPDUs sent out by the root switch set the remaining-hops parameter to the configured value of max-hops. When a switch receives the BPDU, it decrements the received value of the remaining hops and uses the resulting value as remaining-hops in the BPDUs. If the remaining-hops reach zero, the switch discards the BPDU and ages out any information that it holds for the port.

msti

Configure multiple spanning tree instance, bridge priority, and one or multiple VLANs mapped to the MST instance.

Syntax

```
msti instance {vlan range | bridge-priority priority}
```

To disable mapping or bridge priority, use the `no msti instance {vlan range | bridge-priority priority}` command.

Parameters

```
msti instance
   vlan range
```

Enter the MSTP instance. The range is from zero (0) to 63.

Enter the keyword `vlan` then the identifier range value. The range is from 1 to 4094.
bridge-priority Enter the keywords bridge-priority then a value in increments of 4096 as the bridge priority. The range is from zero (0) to 61440.
Valid priority values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

Defaults default bridge-priority is 32768.

Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, all VLANs are mapped to MST instance zero (0) unless you use the vlan range command to map it to a non-zero instance. Although MSTP instance IDs range from 0 to 4094, only 64 active instances are supported on the switch.

name

The name you assign to the multiple spanning tree region.

Syntax name region-name

To remove the region name, use the no name command.

Parameters region-name Enter the MST region name. The range is 32 character limit.

Defaults no default name.

Command Modes MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

For two MSTP switches to be within the same MSTP region, the switches must share the same region name (including matching case).

Related Commands

msti — maps the VLAN(s) to an MST instance.
revision — assigns the revision number to the MST configuration.

protocol spanning-tree mstp

To enable and configure the multiple spanning tree group, enter MULTIPLE SPANNING TREE mode.

Syntax

```
protocol spanning-tree mstp
```

To disable the multiple spanning tree group, use the no protocol spanning-tree mstp command.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

MSTP is not enabled when you enter MULTIPLE SPANNING TREE mode. To enable MSTP globally on the switch, enter the no disable command while in MULTIPLE SPANNING TREE mode.

For more information about the multiple spanning tree protocol, refer to the Dell Networking OS Configuration Guide.

Example

```
Dell(conf)#protocol spanning-tree mstp
Dell(config-mstp)#no disable
```

Related Commands

- disable — disables multiple spanning tree.

revision

The revision number for the multiple spanning tree configuration.

Syntax

```
revision range
```

To return to the default values, use the no revision command.

Parameters

- `range` Enter the revision number for the MST configuration. The range is from 0 to 65535. The default is 0.
show config

View the current configuration for the mode. Only non-default values are shown.

Syntax

show config

Command Modes
MULTIPLE SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell(conf-mstp)#show config
!
protocol spanning-tree mstp
no disable
name CustomerSvc
revision 2
MSTI 10 VLAN 101-105
max-hops 5
Dell(conf-mstp)#

show spanning-tree mst configuration

View the multiple spanning tree configuration.

Syntax

show spanning-tree mst configuration
show spanning-tree msti

View the multiple spanning tree instance.

Syntax

`show spanning-tree msti [instance-number [brief]] [guard]`

Parameters

- `instance-number` (Optional) Enter the multiple spanning tree instance number. The range is from 0 to 63.
- `brief` (Optional) Enter the keyword `brief` to view a synopsis of the MST instance.
- `guard` (Optional) Enter the keyword `guard` to display the type of guard enabled on an MSTP interface and the current port state.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Enable the multiple spanning tree protocol prior to using this command.

Example

```
Dell#show spanning-tree mst configuration
MST region name: CustomerSvc
Revision: 2
MSTI VID:
  10 101-105
Dell#
```

```
Dell#show spanning-tree msti 0 brief
MSTI 0 VLANs mapped 1-4094
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 0001.e800.0204
```

Multiple Spanning Tree Protocol (MSTP)

1011
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID Priority 32768, Address 0001.e800.0204
We are the root of MSTI 0 (CIST)
Configured hello time 2, max age 20, forward delay 15, max hops 20
Bpdu filter disabled globally
CIST regional root ID Priority 32768, Address 0001.e800.0204
CIST external path cost 0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PortID</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Te 0/41</td>
<td>128.170</td>
</tr>
<tr>
<td>Te 0/42</td>
<td>128.171</td>
</tr>
<tr>
<td>Te 0/43</td>
<td>128.172</td>
</tr>
</tbody>
</table>

Interface Bpdu

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Link-type</th>
<th>Edge</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Gi 0/0</td>
<td>ErrDis</td>
<td>128.257</td>
<td>128</td>
<td>20000</td>
<td>EDS</td>
<td>0</td>
<td>P2P</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Dell#show spanning-tree msti 0 brief
MSTI 0 VLANs mapped 1-4094

Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 0001.e801.6aa8
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID Priority 32768, Address 0001.e801.6aa8
We are the root of MSTI 0 (CIST)
Configured hello time 2, max age 20, forward delay 15, max hops 20
CIST regional root ID Priority 32768, Address 0001.e801.6aa8
CIST external path cost 0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>PortID</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Gi 0/0</td>
<td>128.257</td>
</tr>
</tbody>
</table>

Interface

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Link-type</th>
<th>Edge</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi 0/0</td>
<td>ErrDis</td>
<td>128.257</td>
<td>128</td>
<td>20000</td>
<td>EDS</td>
<td>0</td>
<td>P2P</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Dell#show spanning-tree msti 0
MSTI 0 VLANs mapped 1-4094

Root Identifier has priority 32768, Address 0001.e801.6aa8
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge Identifier has priority 32768, Address 0001.e801.6aa8
Configured hello time 2, max age 20, forward delay 15, max hops 20
We are the root of MSTI 0 (CIST)
Current root has priority 32768, Address 0001.e801.6aa8
CIST regional root ID Priority 32768, Address 0001.e801.6aa8
CIST external path cost 0
Number of topology changes 1, last change occurred 00:00:15 ago on Gi 0/0

Port 257 (GigabitEthernet 0/0) is LBK_INC Discarding
Port path cost 20000, Port priority 128, Port Identifier 128.257
Designated root has priority 32768, address 0001.e801.6aa8
Designated bridge has priority 32768, address 0001.e801.6aa8
Designated port id is 128.257, designated path cost 0
Number of transitions to forwarding state 1
BPDU (MRecords): sent 21, received 9
The port is not in the Edge port mode

Usage Information
The following describes the show spanning-tree msti 5 guard command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Name</td>
<td>MSTP interface.</td>
</tr>
<tr>
<td>Instance</td>
<td>MSTP instance.</td>
</tr>
<tr>
<td>Sts</td>
<td>Port state: root-inconsistent (INCON Root), forwarding (FWD), listening (LIS), blocking (BLK), or shut down (EDS Shut).</td>
</tr>
<tr>
<td>Guard Type</td>
<td>Type of STP guard configured (Root, Loop, or BPDU guard).</td>
</tr>
</tbody>
</table>

Example (Guard)

Dell#show spanning-tree msti 0 guard
Executing IEEE compatible Spanning Tree Protocol
Bpdu filter disabled globally

<table>
<thead>
<tr>
<th>Interface</th>
<th>Name</th>
<th>Instance</th>
<th>Sts</th>
<th>Guard type</th>
<th>Bpdu Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Te 0/41</td>
<td>0</td>
<td>FWD</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Te 0/42</td>
<td>0</td>
<td>FWD</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Te 0/43</td>
<td>0</td>
<td>FWD</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

spanning-tree

Enable the multiple spanning tree protocol on the interface.

Syntax

```
spanning-tree
```

To disable the multiple spanning tree protocol on the interface, use the `no spanning-tree` command.

Parameters

- `spanning-tree` Enter the keywords `spanning-tree` to enable the MSTP on the interface.
spanning-tree msti

Configure multiple spanning tree instance cost and priority for an interface.

Syntax: spanning-tree msti instance {cost cost | priority priority}

Parameters:
- **msti instance**: Enter the keyword `msti` and the MST instance number. The range is from zero (0) to 63.
- **cost cost**: (OPTIONAL) Enter the keyword `cost` then the port cost value. The range is from 1 to 200000. The defaults are:
 - 40-Gigabit Ethernet interface = 1400
 - 10-Gigabit Ethernet interface = 2000
 - Port Channel interface with one 10 Gigabit Ethernet = 2000
 - Port Channel with two 10 Gigabit Ethernet = 1800
 - Port Channel with two 100 Mbps Ethernet = 180000
- **priority priority**: Enter keyword `priority` then a value in increments of 16 as the priority. The range is from 0 to 240. The default is 128.

Defaults:
- `cost` = depends on the interface type
- `priority` = 128

Command Modes: INTERFACE

Command History:
- **Version** 9.9(0.0) Introduced on the FN IOM.
- **Version** 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
spanning-tree mstp

Configures a Layer 2 MSTP interface as an edge port with (optionally) a bridge protocol data unit (BPDU) guard, or enables the root guard or loop guard feature on the interface.

Syntax

spanning-tree mstp {edge-port [bpduguard [shutdown-on-violation]] | bpdufilter | rootguard}

Parameters

- **edge-port**: Enter the keywords `edge-port` to configure the interface as a multiple spanning tree edge port.
- **bpduguard** (OPTIONAL): Enter the keyword `portfast` to enable Portfast to move the interface into forwarding mode immediately after the root fails. Enter the keyword `bpduguard` to disable the port when it receives a BPDU.
- **bpdufilter** (OPTIONAL): Enter the keyword `edgeport` to enable edge port configuration to move the interface into forwarding mode immediately after the root fails. Enter the keyword `bpdufilter` to stop sending and receiving BPDUs on the port-fast enabled ports.
- **shutdown-on-violation** (OPTIONAL): Enter the keywords `shutdown-on-violation` to hardware disable an interface when a BPDU is received and the port is disabled.
- **rootguard**: Enter the keyword `rootguard` to enable root guard on an MSTP port or port-channel interface.

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

On an MSTP switch, a port configured as an edge port immediately transitions to the forwarding state. Only ports connected to end-hosts should be configured as an edge port. Consider an edge port similar to a port with spanning-tree portfast enabled.

Root guard and loop guard cannot be enabled at the same time on a port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message is displayed:

```
% Error: RootGuard is configured. Cannot configure LoopGuard.
```
When used in an MSTP network, if root guard blocks a boundary port in the CIST, the port is also blocked in all other MST instances.

Enabling Portfast BPDU guard and loop guard at the same time on a port results in a port that remains in a blocking state and prevents traffic from flowing through it. For example, when Portfast BPDU guard and loop guard are both configured:

- If a BPDU is received from a remote device, BPDU guard places the port in an err-disabled blocking state and no traffic is forwarded on the port.
- If no BPDU is received from a remote device, loop guard places the port in a loop-inconsistent blocking state and no traffic is forwarded on the port.

tc-flush-standard

Enable the MAC address flushing after receiving every topology change notification.

Syntax
```
tc-flush-standard
```

To disable, use the `no tc-flush-standard` command.

Defaults
Disabled.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
By default, the system implements an optimized flush mechanism for MSTP. This mechanism helps in flushing the MAC addresses only when necessary (and less often) allowing for faster convergence during topology changes. However, if a standards-based flush mechanism is needed, this knob command can be turned on to enable flushing MAC addresses after receiving every topology change notification.
The multicast commands are supported by Dell Networking Operating System (OS).

This chapter contains the following sections:

- IPv4 Multicast Commands
- IPv6 Multicast Commands

Topics:

- IPv4 Multicast Commands
 - clear ip mroute
 - ip mroute
 - ip multicast-limit
 - ip multicast-routing
 - show ip mroute
 - show ip pim
 - IPv6 Multicast Commands
 - debug ipv6 mld_host
 - ip multicast-limit

IPv4 Multicast Commands

The following section contains the IPv4 multicast commands.

clear ip mroute

Clear learned multicast routes on the multicast forwarding table. To clear the protocol-independent multicast (PIM) tree information base, use the `clear ip pim tib` command.

Syntax

```
clear ip mroute {group-address [source-address] | * | snooping}
```

Parameters

- `group-address [source-address]`

 Enter the multicast group address and source address (if desired), in dotted decimal format, to clear information on a specific group.

- `*`

 Enter * to clear all multicast routes.
snooping

Enter the keyword snooping to delete multicast snooping route table entries.

Command Modes

EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

9.2.(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

show ip pim tib — shows the PIM tree information base.

ip mroute

Assign a static mroute.

Syntax

ip mroute destination mask {ip-address | null 0| {{bgp | ospf} process-id | isis | rip | static} {ip-address | tag | null 0}} [distance]

To delete a specific static mroute, use the ip mroute destination mask {ip-address | null 0| {{bgp | ospf} process-id | isis | rip | static} {ip-address | tag | null 0}} [distance] command.

To delete all mroutes matching a certain mroute, use the no ip mroute destination mask command.

Parameters

destination Enter the IP address in dotted decimal format of the destination device.

mask Enter the mask in slash prefix formation (/x) or in dotted decimal format.

null 0 (OPTIONAL) Enter the keyword null then zero (0).

[protocol [process-id | tag] ip-address] (OPTIONAL) Enter one of the routing protocols:

- Enter the BGP as-number then the IP address in dotted decimal format of the reverse path forwarding (RPF) neighbor. The range is from 1 to 65535.
- Enter the OSPF process identification number then the IP address in dotted decimal format of the RPF neighbor. the range is from 1 to 65535.
- Enter the IS-IS alphanumeric tag string then the IP address in dotted decimal format of the RPF neighbor.
- Enter the RIP IP address in dotted decimal format of the RPF neighbor.
static ip-address (OPTIONAL) Enter the Static IP address in dotted decimal format of the RPF neighbor.

ip-address (OPTIONAL) Enter the IP address in dotted decimal format of the RPF neighbor.

distance (OPTIONAL) Enter a number as the distance metric assigned to the mroute. The range is from 0 to 255.

Defaults Not configured.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

show ip mroute — views the multicast routing table.

ip multicast-limit

To limit the number of multicast entries on the system, use this feature.

Syntax

ip multicast-limit limit

Parameters

limit Enter the desired maximum number of multicast entries on the system. The range is from 1 to 50000.

Defaults 15000 routes.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This feature allows you to limit the number of multicast entries on the system. This number is the total of all the multicast entries on all line cards in the system. On each line card, the multicast module only installs the maximum number of entries, depending on the configured CAM profile.

To store multicast routes, use the IN-L3-McastFib CAM partition. It is a separate hardware limit that exists per port-pipe. This hardware space limitation can supersede any software-configured limit. The opposite is also true, the CAM partition might not be
exhausted at the time the system-wide route limit set by the `ip multicast-limit` command is reached.

ip multicast-routing

Enable IP multicast forwarding.

Syntax

```plaintext
ip multicast-routing
```

To disable multicast forwarding, use the `no ip multicast-routing` command.

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you enable multicast, you can enable IGMP and PIM on an interface. In INTERFACE mode, enter the `ip pim sparse-mode` command to enable IGMP and PIM on the interface.

Related Commands

- `ip pim sparse-mode` — enables IGMP and PIM on an interface.

show ip mroute

View the multicast routing table.

Syntax

```plaintext
show ip mroute [static | group-address [source-address] | count | snooping [vlan vlan-id] [group-address [source-address]] | summary | vlt [group-address [source-address] | count]
```

Parameters

- **static** *(OPTIONAL)* Enter the keyword `static` to view static multicast routes.

- **group-address** *(OPTIONAL)* Enter the multicast group-address to view only routes associated with that group.

 Enter the source-address to view routes with that group-address and source-address.
count (OPTIONAL) Enter the keyword count to view the number of multicast routes and packets.

snooping [vlan vlan-id] [group-address [source-address]]

Enter the keyword snooping to display information on the multicast routes PIM-SM snooping discovers.

Enter a VLAN ID to limit the information displayed to the multicast routes PIM-SM snooping discovers on a specified VLAN. The VLAN ID range is from 1 to 4094.

Enter a multicast group address and, optionally, a source multicast address in dotted decimal format (A.B.C.D) to limit the information displayed to the multicast routes PIM-SM snooping discovers for a specified multicast group and source.

summary (OPTIONAL) Enter the keyword summary to view a summary of all routes.

vlt (OPTIONAL) Enter the keyword vlt to view multicast routes with a spanned incoming interface. Enter a multicast group address in dotted decimal format (A.B.C.D) to limit the information displayed to the multicast routes for a specified multicast group and optionally a source multicast address in dotted decimal format (A.B.C.D) to limit the information displayed for a specified multicast source. Enter the keyword count to display the total number of multicast routes with the spanned IIF.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2.(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Static)

Dell#show ip mroute static
Mroute: 23.23.23.0/24, interface: Lo 2
Protocol: static, distance: 0, route-map: none, last change: 00:00:23

Example (Snooping)

Dell#show ip mroute snooping
IPv4 Multicast Snooping Table
(*, 224.0.0.0), uptime 17:46:23
Incoming vlan: Vlan 2
Outgoing interface list:
 TenGigabitEthernet 4/13
Information

Example

Dell#show ip mroute

IP Multicast Routing Table

(*, 224.10.10.1), uptime 00:05:12
Incoming interface: TenGigabitEthernet 1/2
Outgoing interface list:
 TenGigabitEthernet 2/13

(1.13.1.100, 224.10.10.1), uptime 00:04:03
Incoming interface: TenGigabitEthernet 1/4
Outgoing interface list:
 TenGigabitEthernet 0/6
 TenGigabitEthernet 0/7

(*, 224.20.20.1), uptime 00:05:12
Incoming interface: TenGigabitEthernet 1/2
Outgoing interface list:
 TenGigabitEthernet 1/4

Usage Information

The following describes the show ip mroute command shown in the following example.

Field Description
(S, G) Displays the forwarding entry in the multicast route table.
uptime Displays the amount of time the entry has been in the multicast forwarding table.
Incoming interface Displays the reverse path forwarding (RPF) information towards the source for (S,G) entries and the RP for (*,G) entries.
Outgoing interface list: Lists the interfaces that meet one of the following:
 • a directly connected member of the Group
 • statically configured member of the Group
 • received a (*,G) or (S,G) Join message

Example

Dell#show ip mroute

IP Multicast Routing Table

(*, 224.10.10.1), uptime 00:05:12
Incoming interface: TenGigabitEthernet 1/2
Outgoing interface list:
show ip rpf

View reverse path forwarding.

Syntax
show ip rpf

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Network administrators use static mroutes to control the reach-ability of the multicast sources. If a PIM-registered multicast source is reachable using static mroute as well as unicast route, the distance of each route is examined and the route with shorter distance is the one the PIM selects for reach-ability.

NOTE: The default distance of mroutes is zero (0) and is CLI configurable on a per route basis.

Example

Dell#show ip rpf
RPF information for 10.10.10.9
RPF interface: Te 0/4
RPF neighbor: 165.87.31.4
RPF route/mask: 10.10.10.9/255.255.255.255
RPF type: unicast

IPv6 Multicast Commands

The following section contains the IPv6 multicast commands.
debug ipv6 mld_host

Enable the collection of debug information for MLD host transactions.

Syntax

```
[no] debug ipv6 mld_host [int-count | interface type] [slot/port-range]
```

To discontinue collection of debug information for the MLD host transactions, use the no debug ipv6 mld_host command.

Parameters

- **int-count**: Enter the keyword count to indicate the number of required debug messages.
- **interface type**: Enter the following keywords and slot/port information:
 - For a 10G Ethernet interface, enter the keyword tengigabitethernet then the slot/port information.
 - For a 40G interface, enter the keyword fortyGigE then the slot/port information.
 - For a management interface, enter the keyword managementinterface then the slot/port information.
 - For a port-channel interface, enter the keywords port-channel then the slot/port information.
 - For a VLAN interface, enter the keyword vlan then the slot/port information.

Default

Disabled

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To debug the MLD protocol for all ports or for specified ports, use the debug ipv6 mld_host command. Displayed information includes when a query is received, when a report is sent, when a mcast joins or leaves a group, and some reasons why an MLD query is rejected.
ip multicast-limit

To limit the number of multicast entries on the system, use this feature.

Syntax

ip multicast-limit limit

Parameters

limit Enter the desired maximum number of multicast entries on the system. The range is from 1 to 50000.

Defaults

15000 routes.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This feature allows you to limit the number of multicast entries on the system. This number is the total of all the multicast entries on all line cards in the system. On each line card, the multicast module only installs the maximum number of entries, depending on the configured CAM profile.

To store multicast routes, use the IN-L3-McastFib CAM partition. It is a separate hardware limit that exists per port-pipe. This hardware space limitation can supersede any software-configured limit. The opposite is also true, the CAM partition might not be exhausted at the time the system-wide route limit set by the ip multicast-limit command is reached.
Neighbor Discovery Protocol (NDP)

The Dell Networking Operating System (OS) supports the network discovery protocol for IPv6. The neighbor discovery protocol for IPv6 is defined in RFC 2461 as part of the Stateless Address Autoconfiguration protocol. It replaces the Address Resolution Protocol used with IPv4. NDP defines mechanisms for solving the following problems:

- Router discovery: Hosts can locate routers residing on a link
- Prefix discovery: Hosts can discover address prefixes for the link
- Parameter discovery
- Address autoconfiguration — configuration of addresses for an interface
- Address resolution — mapping from IP address to link-layer address
- Next-hop determination
- Neighbor unreachability detection (NUD): Determine that a neighbor is no longer reachable on the link.
- Duplicate address detection (DAD): Allow a node to check whether a proposed address is already in use.
- Redirect: The router can inform a node about a better first-hop.

NDP uses the following five ICMPv6 packet types in its implementation:

- Router Solicitation
- Router Advertisement
- Neighbor Solicitation
- Neighbor Advertisement
- Redirect

Topics:

- clear ipv6 neighbors
- ipv6 neighbor
- show ipv6 neighbors

clear ipv6 neighbors

Delete all entries in the IPv6 neighbor discovery cache or neighbors of a specific interface. Static entries are not removed using this command.

Syntax

```
clear ipv6 neighbors [ipv6-address] [interface]
```

Parameters

- `ipv6-address`: Enter the IPv6 address of the neighbor in the x:x:x:x::x format to remove a specific IPv6 neighbor.
NOTE: The :: notation specifies successive hexadecimal fields of zero.

interface interface To remove all neighbor entries learned on a specific interface, enter the keyword `interface` then the interface type and slot/port or number information of the interface:

- For a Fast Ethernet interface, enter the keyword `fastEthernet` then the slot/port information.
- For a Port Channel interface, enter the keywords `port-channel` then a number.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a VLAN, enter the keyword `vlan` then the VLAN ID. The range is from 1 to 4094.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ipv6 neighbor

Configure a static entry in the IPv6 neighbor discovery.

Syntax

```
ipv6 neighbor {ipv6-address} {interface interface} {hardware_address}
```

To remove a static IPv6 entry from the IPv6 neighbor discovery, use the `no ipv6 neighbor {ipv6-address} {interface interface} command`.

Parameters

- `ipv6-address`: Enter the IPv6 address of the neighbor in the x:x:x:x::x format.

 NOTE: The :: notation specifies successive hexadecimal fields of zero.

- `interface interface`: Enter the keyword `interface` then the interface type and slot/port or number information:
For a Fast Ethernet interface, enter the keyword `fastEthernet` then the slot/port information.

For a Port Channel interface, enter the keywords `port-channel` then a number.

For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

hardware_address

Defaults
none

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show ipv6 neighbors

Display IPv6 discovery information. Entering the command without options shows all the IPv6 neighbor addresses stored on the control processor (CP).

Syntax
```
show ipv6 neighbors [ipv6-address] [cpu {rp1 [ipv6-address] | rp2 [ipv6-address]}] [interface interface]
```  

Parameters

- **ipv6-address**
 Enter the IPv6 address of the neighbor in the `x:x:x:x:x` format.

 NOTE: The :: notation specifies successive hexadecimal fields of zero.

- **CPU**
 Enter the keyword `cpu` then either `rp1` or `rp2` (Route Processor 1 or 2), optionally then an IPv6 address to display the IPv6 neighbor entries stored on the designated RP.

- **interface interface**
 Enter the keyword `interface` then the interface type and slot/port or number information:

 - For a Fast Ethernet interface, enter the keyword `fastEthernet` then the slot/port information.

 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
For a VLAN, enter the keyword \texttt{vlan} then the VLAN ID. The range is from 1 to 4094.

\begin{itemize}
 \item \texttt{vlan} \begin{itemize}
 \item Enter the VLAN ID. The range is from 1 to 4094.
 \end{itemize}
\end{itemize}

Defaults

\texttt{none}

Command Modes

- \texttt{EXEC}
- \texttt{EXEC Privilege}

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show ipv6 neighbors
IPv6 Address Expires(min) Hardware Address State Interface VLAN CPU
------------------------------------- ------------------------------------- ------------------------------------- --------------------- ------
100::1 0.03 00:00:00:00:00:22 DELAY Te 0/12 - CP
fe80::200::ff:fe00:22 232 00:00:00:00:00:22 STALE Te 0/12 - CP
500::1 0.60 00:01:e8:17:5c:af REACH Te 0/13 - CP
fe80::200::ff:fe00:17 232 00:00:00:00:00:29 REACH Te 0/14 - CP
900::1 0.60 00:01:e8:17:5c:bl STALE Po 23 - CP
400::1 0.60 00:01:e8:17:5:acr REACH te 0/2 Vl 100 CP
Dell#
```
Object Tracking supports IPv4 and IPv6, and is available on the Dell Networking platforms. Object tracking allows you to define objects of interest, monitor their state, and report to a client when a change in an object’s state occurs. The following tracked objects are supported:

- Link status of Layer 2 interfaces
- Routing status of Layer 3 interfaces (IPv4 and IPv6)
- Reachability of IPv4 and IPv6 routes
- Metric thresholds of IPv4 and IPv6 routes

You can configure client applications, such as virtual router redundancy protocol (VRRP), to receive a notification when the state of a tracked object changes.

Topics:

- IPv4 Object Tracking Commands
- IPv6 Object Tracking Commands

IPv4 Object Tracking Commands

The following section describes the IPv4 VRRP commands.

debugee track

Enables debugging for tracked objects.

Syntax

debug track [all | notifications | object-id]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables debugging on the state and notifications of all tracked objects.</td>
</tr>
<tr>
<td>notifications</td>
<td>Enables debugging on the notifications of all tracked objects.</td>
</tr>
<tr>
<td>object-id</td>
<td>Enables debugging on the state and notifications of the specified tracked object. The range is 1 to 500.</td>
</tr>
</tbody>
</table>

Defaults

Enable debugging on the state and notifications of all tracked objects (debug track all).
Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Example

Dell#debug track all
04:35:04: %RPM0-P:RP2 %OTM-5-STATE: track 6 - Interface TenGigabitEthernet 1/2 line-protocol DOWN
04:35:04: %RPM0-P:RP2 %OTM-5-NOTIF: VRRP notification: resource ID 6 DOWN

delay

Configure the time delay used before communicating a change in the status of a tracked object to clients.

Syntax

delay {
 [up seconds]
 [down seconds]}

To return to the default setting, use the no delay command.

Parameters

- **seconds**

Enter the number of seconds the object tracker waits before sending a notification about the change in the UP and/or DOWN state of a tracked object to clients. The range is 0 to 180. The default is 0 seconds.

Defaults

0 seconds

Command Modes

OBJECT TRACKING (conf_track_object-id)

Usage Information

You can configure an UP and/or DOWN timer for each tracked object to set the time delay before a change in the state of a tracked object is communicated to clients. The configured time delay starts when the state changes from UP to DOWN or vice-versa.

If the state of an object changes back to its former UP/DOWN state before the timer expires, the timer is cancelled and the client is not notified. For example, if the DOWN timer is running when an interface goes down and comes back up, the DOWN timer is cancelled and the client is not notified of the event.

If the timer expires and an object's state has changed, a notification is sent to the client. If no delay is configured, a notification is sent immediately after a change in the state of
a tracked object is detected. The time delay in communicating a state change is specified in seconds.

description

Enter a description of a tracked object.

Syntax

```
description {text}
```

To remove the description, use the `no description {text}` command.

Parameters

- **text**
 - Enter a description to identify a tracked object (80 characters maximum).

Defaults

- none

Command Modes

- OBJECT TRACKING (`conf_track_object-id`) `conf_track_object-id`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Related Commands

- `track interface ip routing` – configures object tracking on the routing status of an IPv4 Layer 3 interface.
- `track interface line-protocol` – configures object tracking on the line-protocol state of a Layer 2 interface.
- `track ip route metric threshold` – configures object tracking on the threshold of an IPv4 route metric.
- `track ip route reachability` – configures object tracking on the reachability of an IPv4 route.

show running-config track

Display the current configuration of tracked objects.

Syntax

```
show running-config track [object-id]
```

Parameters

- **object-id**
 - (OPTIONAL) Display information on the specified tracked object. The range is 1 to 500.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>
Example

Dell#show running-config track

track 1 ip route 23.0.0.0/8 reachability
track 2 ipv6 route 2040::/64 metric threshold
delay down 3
delay up 5
threshold metric up 200
track 3 ipv6 route 2050::/64 reachability
track 4 interface TenGigabitEthernet 1/2 ip routing
track 5 ip route 192.168.0.0/24 reachability vrf red
track resolution ip route isis 20
track resolution ip route ospf 10

Example (Object-id)

Dell#show running-config track 300

track 300 ip route 10.0.0.0/8 metric threshold
delay down 3
delay up 5
threshold metric up 100

Related Commands

- track ip route metric threshold – configures object tracking on the threshold of an IPv4 route metric.
- track ip route reachability – configures object tracking on the reachability of an IPv4 route.

show track

Display information about tracked objects, including configuration, current tracked state (UP or DOWN), and the clients which are tracking an object.

Syntax

Parameters

- **object-id** (OPTIONAL) Display information on the specified tracked object. The range is 1 to 500.
- **interface** (OPTIONAL) Display information on all tracked interfaces (Layer 2 and IPv4 Layer 3).
- **ip route** (OPTIONAL) Display information on all tracked IPv4 routes.
- **resolution** (OPTIONAL) Display information on the configured resolution values used to scale protocol-specific route metrics. The range is 0 to 255.
brief (OPTIONAL) Display a single line summary of the tracking information for a specified object, object type, or all tracked objects.

Command Modes EXEC Privilege

Command History

Version Description
9.7(0.0) Introduced on the MXL.

Usage Information The following describes the show track command shown in the Example below.

Output Description
Track object-id Displays the number of the tracked object.

Interface type slot/port, IP route ip-address, IPv6 route ipv6-address

object is Up/Down Up/Down state of tracked object; for example, IPv4 interface, reachability or metric threshold of an IP route.

number changes, last change time

Number of times that the state of the tracked object has changed and the time since the last change in hours:minutes:seconds.

First hop interface Displays the type and slot/port number of the first-hop interface of the tracked route.

Tracked by Client that is tracking an object’s state; for example, VRRP.

Example

Dell#show track

Track 1
 IP route 23.0.0.0/8 reachability
 Reachability is Down (route not in route table)
 2 changes, last change 00:16:08
 Tracked by:

Track 2
 IPv6 route 2040::/64 metric threshold
 Metric threshold is Up (STATIC/0/0)
 5 changes, last change 00:02:16
 Metric threshold down 255 up 254
 First-hop interface is TenGigabitEthernet 1/2
 Tracked by:
 VRRP TenGigabitEthernet 2/3 IPv6 VRID 1

Track 3
 IPv6 route 2050::/64 reachability
 Reachability is Up (STATIC)
 5 changes, last change 00:02:16
 First-hop interface is TenGigabitEthernet 1/2
Tracked by:
VRRP TenGigabitEthernet 2/3 IPv6 VRID 1

Usage Information
The following describes the `show track brief` command shown in the Example below.

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResID</td>
<td>Number of the tracked object.</td>
</tr>
<tr>
<td>Resource</td>
<td>Type of tracked object.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Detailed description of the tracked object.</td>
</tr>
<tr>
<td>State</td>
<td>Up or Down state of the tracked object.</td>
</tr>
<tr>
<td>Last Change</td>
<td>Time since the last change in the state of the tracked object.</td>
</tr>
</tbody>
</table>

Example (Brief)
```bash
dell>show track brief
ResId Resource               Parameter   State LastChange
1     IP route reachability   10.16.0.0/16 Up   00:01:08
2     Interface line-protocol Ethernet0/2 Down 00:05:00
3     Interface ip routing    VLAN100      Up   01:10:05
```

threshold metric

Configure the metric threshold used to determine the UP and/or DOWN state of a tracked IPv4 or IPv6 route.

Syntax
```
threshold metric {up number | down number}
```

To return to the default setting, use the `no threshold metric {up number | down number}` command.

Parameters
- `up number`: Enter a number for the UP threshold to be applied to the scaled metric of an IPv4 or IPv6 route. The default UP threshold is 254. The routing state is UP if the scaled route metric is less than or equal to the UP threshold.
- `down number`: Enter a number for the DOWN threshold to be applied to the scaled metric of an IPv4 or IPv6 route. The default DOWN threshold is 255. The routing state is DOWN if the scaled route metric is greater than or equal to the DOWN threshold.

Defaults
none

Command Modes
OBJECT TRACKING (conf_track_object-id)

Command History
```
Version 9.7(0.0)  Introduced on the MXL.
```
Usage Information

Use this command to configure the UP and/or DOWN threshold for the scaled metric of a tracked IPv4 or IPv6 route.

Determine the UP/DOWN state of a tracked route by the threshold for the current value of the route metric in the routing table. To provide a common tracking interface for different clients, route metrics are scaled in the range 0 to 255, where 0 is connected and 255 is inaccessible. The scaled metric value communicated to a client always considers a lower value to have priority over a higher value.

The resulting scaled value is compared against the configured threshold values to determine the state of a tracked route as follows:

- If the scaled metric for a route entry is less than or equal to the UP threshold, the state of a route is UP.
- If the scaled metric for a route is greater than or equal to the DOWN threshold or the route is not entered in the routing table, the state of a route is DOWN.

Configure the UP and DOWN thresholds for each tracked route with the `threshold metric` command. The default UP threshold is 254; the default DOWN threshold is 255. The notification of a change in the state of a tracked object is sent when a metric value crosses a configured threshold.

The tracking process uses a protocol-specific resolution value to convert the actual metric in the routing table to a scaled metric in the range 0 to 255. You can configure the resolution value used to scale route metrics for supported protocols with the `track resolution ip route` and `track resolution ipv6 route` commands.

track interface ip routing

Configure object tracking on the routing status of an IPv4 Layer 3 interface.

Syntax

```
track object-id interface interface ip routing
```

To return to the default setting, use the `no track object-id` command.

Parameters

- **object-id**
 - Enter the ID number of the tracked object. The range is 1 to 500.
- **interface**
 - Enter one of the following values:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a port channel interface, enter the keywords `port-channel` then a number.
 - For a tunnel interface, enter the keyword `tunnel`.

Object Tracking
For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults
none

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL. Added support for <code>tunnel</code> interface.</td>
</tr>
</tbody>
</table>

Usage Information
Use this command to create an object that tracks the routing state of an IPv4 Layer 2 interface:

- The status of the IPv4 interface is UP only if the Layer 2 status of the interface is UP and the interface has a valid IP address.
- The Layer 3 status of an IPv4 interface goes DOWN when its Layer 2 status goes down (for a Layer 3 VLAN, all VLAN ports must be down) or the IP address is removed from the routing table.

track interface line-protocol

Configure object tracking on the line-protocol state of a Layer 2 interface.

Syntax

```
track object-id interface interface line-protocol
```

To return to the default setting, use the `no track object-id` command.

Parameters

- **object-id**
 Enter the ID number of the tracked object. The range is 1 to 500.
- **interface**
 Enter one of the following values:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a port channel interface, enter the keywords `port-channel` then a number.
 - For a tunnel interface, enter the keyword `tunnel`.
 - For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults
none

Command Modes
CONFIGURATION
track ip route metric threshold

Configure object tracking on the threshold of an IPv4 route metric.

Syntax
```
track object-id ip route ip-address/prefix-len metric threshold
```

To return to the default setting, use the `no track object-id` command.

Parameters
- **object-id**
 - Enter the ID number of the tracked object. The range is 1 to 500.
- **ip-address/prefix-len**
 - Enter an IPv4 address in dotted decimal format. The valid IPv4 prefix lengths are from /0 to /32.

Defaults
none

Command Modes
- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Use this command to create an object that tracks the UP and/or DOWN threshold of an IPv4 route metric. In order for a route's metric to be tracked, the route must appear as an entry in the routing table.

A tracked IPv4 route is considered to match an entry in the routing table only if the exact IPv4 address and prefix length match a table entry. For example, when configured as a tracked route, 10.0.0.0/24 does not match the routing table entry 10.0.0.0/8. If no route-table entry has the exact IPv4 address and prefix length, the status of the tracked route is considered to be DOWN.

When you configure the threshold of an IPv4 route metric as a tracked object, the UP/DOWN state of the tracked route is also determined by the current metric for the route in the routing table.

To provide a common tracking interface for different clients, route metrics are scaled in the range 0 to 255, where 0 is connected and 255 is inaccessible. The scaled metric value communicated to a client always considers a lower value to have priority over a
higher value. The resulting scaled value is compared against the configured threshold values to determine the state of a tracked route as follows:

- If the scaled metric for a route entry is less than or equal to the UP threshold, the state of a route is UP.
- If the scaled metric for a route is greater than or equal to the DOWN threshold or the route is not entered in the routing table, the state of a route is DOWN.

You configure the UP and DOWN thresholds for each tracked route by using the `threshold metric` command. The default UP threshold is 254; the default DOWN threshold is 255. The notification of a change in the state of a tracked object is sent when a metric value crosses a configured threshold.

Related Commands

- `show track` — displays information about tracked objects, including configuration, current state, and clients which track the object.
- `threshold metric` — configures the metric threshold used to determine the UP and/or DOWN state of a tracked route.
- `track resolution ip route` — configures the protocol-specific resolution value used to scale an IPv4 route metric.

track ip route reachability

Configure object tracking on the reachability of an IPv4 route.

Syntax

```
track object-id ip route ip-address/prefix-len reachability [vrf vrf-name]
```

To return to the default setting, use the `no track object-id` command.

Parameters

- `object-id` Enter the ID number of the tracked object. The range is 1 to 500.
- `ip-address/prefix-len` Enter an IPv4 address in dotted decimal format. The valid IPv4 prefix lengths are from /0 to /32.
- `vrf vrf-name` (Optional) E-Series only: You can configure a VPN routing and forwarding (VRF) instance to specify the virtual routing table to which the tracked route belongs.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>
Usage Information

Use this command to create an object that tracks the reachability of an IPv4 route. In order for a route’s reachability to be tracked, the route must appear as an entry in the routing table.

A tracked IPv4 route is considered to match an entry in the routing table only if the exact IPv4 address and prefix length match a table entry. For example, when configured as a tracked route, 10.0.0.0/24 does not match the routing table entry 10.0.0.0/8. If no route-table entry has the exact IPv4 address and prefix length, the status of the tracked route is considered to be DOWN.

When you configure IPv4 route reachability as a tracked object, the UP/DOWN state of the tracked route is also determined by the entry of the next-hop address in the ARP cache. A tracked route is considered to be reachable if there is an ARP cache entry for the route’s next-hop address.

If the next-hop address in the ARP cache ages out for a route tracked for its reachability, an attempt is made to regenerate the ARP cache entry to if the next-hop address appears before considering the route DOWN.

Related Commands

- `show track` - displays information about tracked objects, including configuration, current state, and clients which track the object.
- `track ip route metric threshold` - configures object tracking on the threshold of an IPv4 route metric.

track resolution ip route

Configure the protocol-specific resolution value used to scale an IPv4 route metric.

Syntax

```
track resolution ip route {isis resolution-value | ospf resolution-value}
```

To return to the default setting, use the `no track object-id` command.

Parameters

- `object-id` (Required) Enter the ID number of the tracked object. The range is 1 to 500.
- `isis resolution-value` Enter the resolution used to convert the metric in the routing table for ISIS routes to a scaled metric.
- `ospf resolution-value` Enter the resolution used to convert the metric in the routing table for OSPF routes to a scaled metric.

Defaults

- `none`

Command Modes

- `CONFIGURATION`

Command History

- `Version 9.7(0.0)` - Introduced on the MXL.
Usage Information

Use this command to configure the protocol-specific resolution value that converts the actual metric of an IPv4 route in the routing table to a scaled metric in the range 0 to 255.

The UP/DOWN state of a tracked IPv4 route is determined by a user-configurable threshold (the threshold metric command) for the route’s metric in the routing table. To provide a common tracking interface for different clients, route metrics are scaled in the range 0 to 255, where 0 is connected and 255 is inaccessible.

The protocol-specific resolution value calculates the scaled metric by dividing a route’s cost by the resolution value set for the route protocol:

- For ISIS, you can set the resolution in the range 1 to 1000, where the default is 10.
- For OSPF, you can set the resolution in the range 1 to 1592, where the default is 1.
- The resolution value used to map static routes is not configurable. By default, Dell Networking OS assigns a metric of 0 to static routes.
- The resolution value used to map RIP routes is not configurable. The RIP hop-count is automatically multiplied by 16 to scale it. For example, a RIP metric of 16 (unreachable) scales to 256, which considers the route to be DOWN.

IPv6 Object Tracking Commands

The following object tracking commands apply to IPv4 and IPv6:

- `debug track`
- `delay`
- `description`
- `show running-config track`
- `threshold metric`
- `track interface line-protocol`

show track ipv6 route

Display information about all tracked IPv6 routes, including configuration, current tracked state (UP or DOWN), and the clients which are tracking an object.

Syntax

```
show track ipv6 route [brief]
```

Parameters

- `brief` (OPTIONAL) Display a single line summary of information for tracked IPv6 routes.

Command Modes

- EXEC
- EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show track ipv6 route` command shown in the Example below.

Output

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track <code>object-id</code></td>
</tr>
<tr>
<td>Displays the number of the tracked object.</td>
</tr>
<tr>
<td>Interface type <code>slot/port, IP route ip-address, IPv6 route ipv6-address</code></td>
</tr>
<tr>
<td>Displays the interface type and slot/port number or address of the IPv4/IPv6 route that is being tracked.</td>
</tr>
<tr>
<td><code>object is Up/Down</code></td>
</tr>
<tr>
<td>Up/Down state of tracked object; for example, IPv4 interface, reachability or metric threshold of an IP route.</td>
</tr>
<tr>
<td><code>number changes, last change time</code></td>
</tr>
<tr>
<td>Number of times that the state of the tracked object has changed and the time since the last change in hours:minutes:seconds.</td>
</tr>
<tr>
<td>First hop interface</td>
</tr>
<tr>
<td>Displays the type and slot/port number of the first-hop interface of the tracked route.</td>
</tr>
<tr>
<td>Tracked by</td>
</tr>
<tr>
<td>Client that is tracking an object’s state; for example, VRRP.</td>
</tr>
</tbody>
</table>

Example

```plaintext
Dell#show track ipv6 route

Track 2
   IPv6 route 2040::/64 metric threshold
   Metric threshold is Up (STATIC/0/0)
      5 changes, last change 00:02:30
   Metric threshold down 255 up 254
   First-hop interface is TenGigabitEthernet 1/2
   Tracked by:
      VRRP TenGigabitEthernet 2/4 IPv6 VRID 1

Track 3
   IPv6 route 2050::/64 reachability
   Reachability is Up (STATIC)
      5 changes, last change 00:02:30
   First-hop interface is TenGigabitEthernet 1/2
   Tracked by:
      VRRP TenGigabitEthernet 2/4 IPv6 VRID 1
```

Usage Command

The following describes the `show track ipv6 route brief` command shown in the Example below.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResID</td>
</tr>
<tr>
<td>Number of the tracked object.</td>
</tr>
<tr>
<td>Resource</td>
</tr>
<tr>
<td>Type of tracked object.</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Detailed description of the tracked object.</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>Last Change</td>
</tr>
</tbody>
</table>

Example (Brief)

```
Dell#show track ipv6 route brief
```

<table>
<thead>
<tr>
<th>ResId</th>
<th>Resource</th>
<th>Parameter</th>
<th>State</th>
<th>LastChange</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IPv6 route metric threshold</td>
<td>2040::/64</td>
<td>Up</td>
<td>00:02:36</td>
</tr>
<tr>
<td>3</td>
<td>IPv6 route reachability</td>
<td>2050::/64</td>
<td>Up</td>
<td>00:02:36</td>
</tr>
</tbody>
</table>

track interface ipv6 routing

Configure object tracking on the routing status of an IPv6 Layer 3 interface.

Syntax

```
track object-id interface interface ipv6 routing
```

To return to the default setting, use the `no track object-id` command.

Parameters

- **object-id**
 - Enter the ID number of the tracked object. The range is 1 to 500.

- **interface**
 - Enter one of the following values:
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a port channel interface, enter the keywords `port-channel` then a number.
 - For a tunnel interface, enter the keyword `tunnel`.
 - For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

```
none
```

Command Modes

```
CONFIGURATION
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Use this command to create an object that tracks the routing state of an IPv6 Layer 3 interface:

- The status of the IPv6 interface is UP only if the Layer 2 status of the interface is UP and the interface has a valid IP address.
The Layer 3 status of an IPv6 interface goes DOWN when its Layer 2 status goes down (for a Layer 3 VLAN, all VLAN ports must be down) or the IP address is removed from the routing table.

Related Commands

- show track ipv6 route – displays information about tracked IPv6 routes, including configuration, current state, and clients which track the route.
- track interface ip routing - configures object tracking on the routing status of an IPv4 Layer 3 interface.

track ipv6 route metric threshold

Configure object tracking on the threshold of an IPv4 route metric.

Syntax

```
track object-id ipv6 route ipv6-address/prefix-len metric threshold
```

To return to the default setting, use the `no track object-id` command.

Parameters

- **object-id**
 - Enter the ID number of the tracked object. The range is 1 to 500.

- **ipv6-address/prefix-len**
 - Enter an IPv6 address in X:X:X:X::X format. The valid IPv6 prefix lengths are from /0 to /128.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Use this command to create an object that tracks the UP and/or DOWN threshold of an IPv6 route metric. In order for a route’s metric to be tracked, the route must appear as an entry in the routing table.

A tracked IPv6 route is considered to match an entry in the routing table only if the exact IPv6 address and prefix length match a table entry. For example, when configured as a tracked route, 3333:100:200:300:400::/80 does not match routing table entry 3333:100:200:300:400::/64. If no route-table entry has the exact IPv6 address and prefix length, the status of the tracked route is considered to be DOWN.

When you configure the threshold of an IPv6 route metric as a tracked object, the UP/DOWN state of the tracked route is also determined by the current metric for the route in the routing table.

To provide a common tracking interface for different clients, route metrics are scaled in the range 0 to 255, where 0 is connected and 255 is inaccessible. The scaled metric value communicated to a client always considers a lower value to have priority over a
higher value. The resulting scaled value is compared against the configured threshold values to determine the state of a tracked route as follows:

- If the scaled metric for a route entry is less than or equal to the UP threshold, the state of a route is UP.
- If the scaled metric for a route is greater than or equal to the DOWN threshold or the route is not entered in the routing table, the state of a route is DOWN.

You configure the UP and DOWN thresholds for each tracked IPv6 route by using the `threshold metric` command. The default UP threshold is 254; the default DOWN threshold is 255. The notification of a change in the state of a tracked object is sent when a metric value crosses a configured threshold.

Related Commands

- `show track ipv6 route` - displays information about tracked IPv6 routes, including configuration, current state, and clients which track the route.
- `threshold metric` – configures the metric threshold used to determine the UP and/or DOWN state of a tracked route.
- `track resolution ipv6 route` – configures the protocol-specific resolution value used to scale an IPv6 route metric.

track ipv6 route reachability

Configure object tracking on the reachability of an IPv6 route.

Syntax

```
track object-id ipv6 route ip-address/prefix-len reachability
```

To return to the default setting, use the `no track object-id` command.

Parameters

- `object-id` Enter the ID number of the tracked object. The range is 1 to 500.
- `ipv6-address/prefix-len` Enter an IPv6 address in X:X:X:X::X format. The valid IPv6 prefix lengths are from /0 to /128.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Use this command to create an object that tracks the reachability of an IPv6 route. In order for a route’s reachability to be tracked, the route must appear as an entry in the routing table.

A tracked route is considered to match an entry in the routing table only if the exact IPv6 address and prefix length match a table entry. For example, when configured as a tracked route, 3333:100:200:300:400:/:80 does not match routing table entry.
If no route-table entry has the exact IPv6 address and prefix length, the tracked route is considered to be DOWN.

When you configure IPv6 route reachability as a tracked object, the UP/DOWN state of the tracked route is also determined by the entry of the next-hop address in the ARP cache. A tracked route is considered to be reachable if there is an ARP cache entry for the route's next-hop address.

If the next-hop address in the ARP cache ages out for a route tracked for its reachability, an attempt is made to regenerate the ARP cache entry to if the next-hop address appears before considering the route DOWN.

Related Commands

- `show track ipv6 route` - displays information about tracked IPv6 routes, including configuration, current state, and clients which track the route.

track resolution ipv6 route

Configure the protocol-specific resolution value used to scale an IPv6 route metric.

Syntax

```
track resolution ipv6 route {isis resolution-value | ospf resolution-value}
```

To return to the default setting, use the `no track object-id` command.

Parameters

- `object-id`
 Enter the ID number of the tracked object. Use the range to 1 to 500.

- `isis resolution-value`
 Enter the resolution used to convert the metric in the routing table for ISIS routes to a scaled metric.

- `ospf resolution-value`
 Enter the resolution used to convert the metric in the routing table for OSPF routes to a scaled metric.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Use this command to configure the protocol-specific resolution value that converts the actual metric of an IPv6 route in the routing table to a scaled metric in the range 0 to 255.

The UP/DOWN state of a tracked IPv6 route is determined by the user-configurable threshold (the `threshold metric` command) for a route's metric in the routing table.
To provide a common tracking interface for different clients, route metrics are scaled in the range 0 to 255, where 0 is connected and 255 is inaccessible.

The protocol-specific resolution value calculates the scaled metric by dividing a route's cost by the resolution value set for the route protocol:

- For ISIS, you can set the resolution in the range 1 to 1000, where the default is 10.
- For OSPF, you can set the resolution in the range 1 to 1592, where the default is 1.
- The resolution value used to map static routes is not configurable. By default, Dell Networking OS assigns a metric of 0 to static routes.
- The resolution value used to map RIP routes is not configurable. The RIP hop-count is automatically multiplied by 16 to scale it. For example, a RIP metric of 16 (unreachable) scales to 256, which considers the route to be DOWN.

Related Commands

- `threshold metric` — configures the metric threshold used to determine the UP and/or DOWN state of a tracked route.
- `track ipv6 route metric threshold` — configures object tracking on the threshold of an IPv6 route metric.
Open Shortest Path First (OSPFv2 and OSPFv3)

The Switch supports open shortest path first version 2 (OSPFv2) for IPv4 and version 3 (OSPFv3) for IPv6. Up to 16 OSPF instances can be run simultaneously on the Switch.

OSPF is an Interior Gateway Protocol (IGP), which means that it distributes routing information between routers in a single Autonomous System (AS). OSPF is also a link-state protocol in which all routers contain forwarding tables derived from information about their links to their neighbors.

The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same for OSPFv2 and OSPFv3. OSPFv3 runs on a per-link basis instead of on a per-IP-subnet basis.

This chapter is divided into two sections. There is no overlap between the two sets of commands. You cannot use an OSPFv2 command in the IPv6 OSPFv3 mode.

- OSPFv2 Commands
- OSPFv3 Commands

Topics:
- OSPFv2 Commands
- area default-cost
- area nssa
- area range
- area stub
- auto-cost
- clear ip ospf
- clear ip ospf statistics
- debug ip ospf
- default-information originate
- default-metric
- description
- distance
- distance ospf
- distribute-list in
- distribute-list out
- fast-convergence
- flood-2328
- graceful-restart grace-period
- graceful-restart helper-reject
- graceful-restart mode
- graceful-restart role
- ip ospf auth-change-wait-time
- ip ospf authentication-key
- ip ospf cost
- ip ospf dead-interval
- ip ospf hello-interval
- ip ospf message-digest-key
- ip ospf mtu-ignore
- ip ospf network
- ip ospf priority
- ip ospf retransmit-interval
- ip ospf transmit-delay
- log-adjacency-changes
- maximum-paths
- mib-binding
- network area
- passive-interface
- redistribute
- redistribute bgp
- redistribute isis
- router-id
- router ospf
- show config
- show ip ospf
- show ip ospf asbr
- show ip ospf database
- show ip ospf database asbr-summary
- show ip ospf database external
- show ip ospf database network
- show ip ospf database nssa-external
- show ip ospf database opaque-area
- show ip ospf database opaque-as
- show ip ospf database opaque-link
- show ip ospf database router
- show ip ospf database summary
- show ip ospf interface
- show ip ospf neighbor
- show ip ospf routes
- show ip ospf statistics
- show ip ospf timers rate-limit
- show ip ospf topology
- summary-address
- timers spf
- timers throttle lsa all
- timers throttle lsa arrival
- OSPFv3 Commands
- area authentication
- area encryption
- auto-cost
- clear ipv6 ospf process
- debug ipv6 ospf bfd
- debug ipv6 ospf
- default-information originate
- graceful-restart grace-period
- graceful-restart mode
- ipv6 ospf area
- ipv6 ospf authentication
- ipv6 ospf bfd all-neighbors
- ipv6 ospf cost
- ipv6 ospf dead-interval
- ipv6 ospf encryption
- ipv6 ospf graceful-restart helper-reject
- ipv6 ospf hello-interval
- ipv6 ospf priority
- ipv6 router ospf
- maximum-paths
- passive-interface
- redistribute
- router-id
- show crypto ipsec policy
- show crypto ipsec sa ipv6
- show ipv6 ospf database
- show ipv6 ospf interface
- show ipv6 ospf neighbor
- timers spf
OSPFv2 Commands

The Dell Networking implementation of OSPFv2 is based on IETF RFC 2328.

area default-cost

Set the metric for the summary default route the area border router (ABR) generates into the stub area. Use this command on the border routers at the edge of a stub area.

Syntax

```
area area-id default-cost cost
To return default values, use the no area area-id default-cost command.
```

Parameters

- **area-id**: Specify the OSPF area in dotted decimal format (A.B.C.D.) or enter a number from zero (0) to 65535.
- **cost**: Specifies the stub area's advertised external route metric. The range is from zero (0) to 65535.

Defaults

cost = 1; no areas are configured.

Command Modes

ROUTER OSPF

Command History

- **9.9(0.0)**: Introduced on the FN IOM.
- **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

In the Dell Networking operating software, cost is defined as reference bandwidth.

Related Commands

- area stub — creates a stub area.

area nssa

Specify an area as a not so stubby area (NSSA).

Syntax

```
area area-id nssa [default-information-originate] [no-redistribution] [no-summary]
To delete an NSSA, use the no area area-id nssa command.
```

Open Shortest Path First (OSPFv2 and OSPFv3)
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>Specify the OSPF area in dotted decimal format (A.B.C.D.) or enter a number from zero (0) to 65535.</td>
</tr>
<tr>
<td>no-redistribution</td>
<td>(OPTIONAL) Specify that the redistribute command does not distribute routes into the NSSA. Only use this command in an NSSA area border router (ABR).</td>
</tr>
<tr>
<td>default-information originate</td>
<td>(OPTIONAL) Allows external routing information to be imported into the NSSA by using Type 7 default.</td>
</tr>
<tr>
<td>no-summary</td>
<td>(OPTIONAL) Specify that no summary LSAs should be sent into the NSSA.</td>
</tr>
</tbody>
</table>

Defaults

Not configured.

Command Modes

- **ROUTER OSPF**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

area range

Summarize routes matching an address/mask at an area border router (ABR).

Syntax

```
area area-id range ip-address mask [not-advertise]
```

To disable route summarization, use the `no area area-id range ip-address mask` command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>Specify the OSPF area in dotted decimal format (A.B.C.D.) or enter a number from zero (0) to 65535.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Specify an IP address in dotted decimal format.</td>
</tr>
<tr>
<td>mask</td>
<td>Specify a mask for the destination prefix. Enter the full mask (for example, 255.255.255.0).</td>
</tr>
<tr>
<td>not-advertise</td>
<td>(OPTIONAL) Enter the keywords <code>not-advertise</code> to set the status to DoNotAdvertise (that is, the Type 3 summary-LSA is suppressed and the component networks remain hidden from other areas.)</td>
</tr>
</tbody>
</table>

Defaults

Not configured.

Command Modes

- **ROUTER OSPF**
area stub

Configure a stub area, which is an area not connected to other areas.

Syntax

```
area area-id stub [no-summary]
```

To delete a stub area, use the `no area area-id stub` command.

Parameters

- `area-id` Specify the OSPF area in dotted decimal format (A.B.C.D.) or enter a number from zero (0) to 65535.
- `no-summary` (OPTIONAL) Enter the keywords `no-summary` to prevent the ABR from sending summary Link State Advertisements (LSAs) into the stub area.

Defaults

Disabled.

Command Modes

- ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To configure all routers and access servers within a stub, use this command.

Related Commands

- `router ospf` — enters ROUTER OSPF mode to configure an OSPF instance.
auto-cost

Specify how the OSPF interface cost is calculated based on the reference bandwidth method.

Syntax

```
auto-cost [reference-bandwidth ref-bw]
```

To return to the default bandwidth or to assign cost based on the interface type, use the `no auto-cost [reference-bandwidth]` command.

Parameters

- **ref-bw** *(OPTIONAL)* Specify a reference bandwidth in megabits per second. The range is from 1 to 4294967. The default is 100 megabits per second.

Defaults

100 megabits per second.

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip ospf

Clear all OSPF routing tables.

Syntax

```
clear ip ospf process-id [process]
```

Parameters

- **process-id** Enter the OSPF Process ID to clear a specific process. If no Process ID is entered, all OSPF processes are cleared.
- **process** *(OPTIONAL)* Enter the keyword process to reset the OSPF process.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
clear ip ospf statistics

Clear the packet statistics in interfaces and neighbors.

Syntax

clear ip ospf process-id statistics [interface name {neighbor router-id}]

Parameters

- **process-id**: Enter the OSPF Process ID to clear a specific process. If no Process ID is entered, all OSPF processes are cleared.
- **interface name** (OPTIONAL): Enter the keyword interface then one of the following interface keywords and slot/port or number information:
 - For Port Channel groups, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- **neighbor router-id** (OPTIONAL): Enter the keyword neighbor then the neighbor’s router-id in dotted decimal format (A.B.C.D.).

Defaults

none

Command Modes

EXEC Privilege

Command History

- **Version**: 9.9(0.0)
 - Introduced on the FN IOM.
- **Version**: 8.3.16.1
 - Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- **show ip ospf statistics** — displays the OSPF statistics.
debug ip ospf

Display debug information on OSPF. Entering the debug ip ospf commands enables OSPF debugging for the first OSPF process.

Syntax

debug ip ospf process-id [bfd | event | packet | spf | database-timer rate-limit]

To cancel the debug command, use the no debug ip ospf command.

Parameters

- **process-id**: Enter the OSPF Process ID to clear a specific process. If no Process ID is entered, all OSPF processes are cleared.
- **bfd**: (OPTIONAL) Enter the keyword bfd to debug only OSPF BFD information.
- **event**: (OPTIONAL) Enter the keyword event to debug only OSPF event information.
- **packet**: (OPTIONAL) Enter the keyword packet to debug only OSPF packet information.
- **spf**: (OPTIONAL) Enter the keyword spf to display the Shortest Path First information.
- **database-timer rate-limit**: (OPTIONAL) Enter the keywords database-timer rate-limit to display the LSA throttling timer information.

Command Modes

- EXEC Privilege

Command History

- **Version** 9.9(0.0) Introduced on the FN IOM.
- **Version** 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the debug ip ospf command shown in the Example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:14</td>
<td>Displays the time stamp.</td>
</tr>
<tr>
<td>OSPF</td>
<td>Displays the OSPF process ID: instance ID.</td>
</tr>
<tr>
<td>v:</td>
<td>Displays the OSPF version. The system supports version 2 only.</td>
</tr>
<tr>
<td>t:</td>
<td>Displays the type of packet sent:</td>
</tr>
<tr>
<td></td>
<td>- 1 - Hello packet</td>
</tr>
<tr>
<td></td>
<td>- 2 - database description</td>
</tr>
<tr>
<td></td>
<td>- 3 - link state request</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>l:</td>
<td>Displays the packet length.</td>
</tr>
<tr>
<td>rid:</td>
<td>Displays the OSPF router ID.</td>
</tr>
<tr>
<td>aid:</td>
<td>Displays the Autonomous System ID.</td>
</tr>
<tr>
<td>chk:</td>
<td>Displays the OSPF checksum.</td>
</tr>
<tr>
<td>aut:</td>
<td>States if OSPF authentication is configured. One of the following is listed:</td>
</tr>
<tr>
<td></td>
<td>• 0 - no authentication configured</td>
</tr>
<tr>
<td></td>
<td>• 1 - simple authentication configured using the <code>ip ospf authentication-key</code> command</td>
</tr>
<tr>
<td></td>
<td>• 2 - MD5 authentication configured using the <code>ip ospf message-digest-key</code> command</td>
</tr>
<tr>
<td>auk:</td>
<td>If the <code>ip ospf authentication-key</code> command is configured, this field displays the key used.</td>
</tr>
<tr>
<td>keyid:</td>
<td>If the <code>ip ospf message-digest-key</code> command is configured, this field displays the MD5 key</td>
</tr>
<tr>
<td>to:</td>
<td>Displays the interface to which the packet is intended.</td>
</tr>
<tr>
<td>dst:</td>
<td>Displays the destination IP address.</td>
</tr>
<tr>
<td>netmask:</td>
<td>Displays the destination IP address mask.</td>
</tr>
<tr>
<td>pri:</td>
<td>Displays the OSPF priority</td>
</tr>
<tr>
<td>N, MC, E, T</td>
<td>Displays information available in the Options field of the HELLO packet:</td>
</tr>
<tr>
<td></td>
<td>• N + (N-bit is set)</td>
</tr>
<tr>
<td></td>
<td>• N - (N-bit is not set)</td>
</tr>
<tr>
<td></td>
<td>• MC+ (bit used by MOSPF is set and router is able to forward IP multicast packets)</td>
</tr>
<tr>
<td></td>
<td>• MC- (bit used by MOSPF is not set and router cannot forward IP multicast packets)</td>
</tr>
<tr>
<td></td>
<td>• E + (router is able to accept AS External LSAs)</td>
</tr>
<tr>
<td></td>
<td>• E - (router cannot accept AS External LSAs)</td>
</tr>
<tr>
<td></td>
<td>• T + (router can support TOS)</td>
</tr>
<tr>
<td></td>
<td>• T - (router cannot support TOS)</td>
</tr>
<tr>
<td>hi:</td>
<td>Displays the amount of time configured for the HELLO interval.</td>
</tr>
<tr>
<td>di:</td>
<td>Displays the amount of time configured for the DEAD interval.</td>
</tr>
<tr>
<td>dr:</td>
<td>Displays the IP address of the designated router.</td>
</tr>
</tbody>
</table>
Field Description
bdr: Displays the IP address of the Border Area Router.

Example
Dell#debug ip ospf 1 packet
OSPF process 90, packet debugging is on

Dell# 08:14:24 : OSPF(100:00):
 Xmt. v:2 t:1(HELLO) l:44 rid:192.1.1.1
 aid:0.0.0.1 chk:0xa098 aut:0 auk: keyid:0 to:Gi 4/3 dst:
 224.0.0.5
 netmask:255.255.255.0 pri:1 N-, MC-, E+, T-
 hi:10 di:40 dr:90.1.1.1 bdr:0.0.0.0

default-information originate

To generate a default external route into an OSPF routing domain, configure the system.

Syntax
default-information originate [always] [metric metric-value]
[metric-type type-value] [route-map map-name]

To return to the default values, use the no default-information originate command.

Parameters
always (OPTIONAL) Enter the keyword always to specify that default route information must always be advertised.

metric metric-value (OPTIONAL) Enter the keyword metric then a number to configure a metric value for the route. The range is from 1 to 16777214.

metric-type type-value (OPTIONAL) Enter the keywords metric-type then an OSPF link state type of 1 or 2 for default routes. The values are:

- 1 = Type 1 external route
- 2 = Type 2 external route

route-map map-name (OPTIONAL) Enter the keywords route-map then the name of an established route map.

Defaults Disabled.
Command Modes ROUTER OSPF
Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
default-metric

Change the metrics of redistributed routes to a value useful to OSPF. Use this command with the redistribute command.

Syntax

```
default-metric number
```

To return to the default values, use the `no default-metric [number]` command.

Parameters

- `number` Enter a number as the metric. The range is from 1 to 16777214.

Defaults

Disabled.

Command Modes

- ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `redistribute` — redistributes routes from other routing protocols into OSPF.

description

Add a description about the selected OSPF configuration.

Syntax

```
description description
```

To remove the OSPF description, use the `no description` command.

Parameters

- `description` Enter a text string description to identify the OSPF configuration (80 characters maximum).

Defaults

none

Command Modes

- ROUTER OSPF
distance

Define an administrative distance for particular routes to a specific IP address.

Syntax

```
distance weight [ip-address mask access-list-name]
```

To delete the settings, use the no distance weight [ip-address mask access-list-name] command.

Parameters

- **weight**: Specify an administrative distance. The range is from 1 to 255. The default is **110**.
- **ip-address**: (OPTIONAL) Enter a router ID in the dotted decimal format. If you enter a router ID, include the mask for that router address.
- **mask**: (OPTIONAL) Enter a mask in dotted decimal format or /n format.
- **access-list-name**: (OPTIONAL) Enter the name of an IP standard access list, up to 140 characters.

Defaults

- **110**

Command Modes

- ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

distance ospf

Configure an OSPF distance metric for different types of routes.

Syntax

```
distance ospf [external dist3] [inter-area dist2] [intra-area dist1]
```

Related Commands

- `show ip ospf asbr` — displays the VLAN configuration.
To delete these settings, use the `no distance ospf` command.

Parameters

- `external dist3` *(OPTIONAL)* Enter the keyword `external` then a number to specify a distance for external type 5 and 7 routes. The range is from 1 to 255. The default is **110**.
- `inter-area dist2` *(OPTIONAL)* Enter the keywords `inter-area` then a number to specify a distance metric for routes between areas. The range is from 1 to 255. The default is **110**.
- `intra-area dist1` *(OPTIONAL)* Enter the keywords `intra-area` then a number to specify a distance metric for all routes within an area. The range is from 1 to 255. The default is **110**.

Defaults

- `external dist3 = 110`
- `inter-area dist2 = 110`
- `intra-area dist1 = 110`

Command Modes

- `ROUTER OSPF`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To specify a distance for routes learned from other routing domains, use the `redistribute` command.

distribute-list in

Apply a filter to incoming routing updates from OSPF to the routing table.

Syntax

```
distribute-list prefix-list-name in [interface]
```

To delete a filter, use the `no distribute-list prefix-list-name in [interface]` command.

Parameters

- `prefix-list-name` Enter the name of a configured prefix list.
- `interface` *(OPTIONAL)* Enter one of the following keywords and slot/port or number information:
 - For Port Channel groups, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
• For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.
• For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults
Not configured.

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

distribute-list out

To restrict certain routes destined for the local routing table after the SPF calculation, apply a filter.

Syntax
```
distribute-list prefix-list-name out [bgp | connected | isis | rip | static]
```
To remove a filter, use the no distribute-list prefix-list-name out [bgp | connected | isis | rip | static] command.

Parameters
- `prefix-list-name` Enter the name of a configured prefix list.
- `bgp` (OPTIONAL) Enter the keyword `bgp` to specify that BGP routes are distributed.
- `connected` (OPTIONAL) Enter the keyword `connected` to specify that connected routes are distributed.
- `isis` (OPTIONAL) Enter the keyword `isis` to specify that IS-IS routes are distributed.
- `rip` (OPTIONAL) Enter the keyword `rip` to specify that RIP routes are distributed.
- `static` (OPTIONAL) Enter the keyword `static` to specify that only manually configured routes are distributed.

Defaults
Not configured.

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
Version Description heading

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The `distribute-list out` command applies to routes autonomous system boundary routers (ASBRs) redistributes into OSPF. It can be applied to external type 2 and external type 1 routes, but not to intra-area and inter-area routes.

fast-convergence

This command sets the minimum LSA origination and arrival times to zero (0), allowing more rapid route computation so that convergence takes less time.

Syntax

```
fast-convergence {number}
```

To cancel fast-convergence, use the `no fast convergence` command.

Parameters

- `number`

Enter the convergence level desired. The higher this parameter is set, the faster OSPF converge takes place. The range is from 1 to 4.

Defaults

none.

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The higher this parameter is set, the faster OSPF converge takes place.

- **NOTE:** The faster the convergence, the more frequent the route calculations and updates. This behavior impacts CPU utilization and may impact adjacency stability in larger topologies.

Generally, convergence level 1 meets most convergence requirements. Higher convergence levels should only be selected following consultation with Dell Networking technical support.
flood-2328

Enable RFC-2328 flooding behavior.

Syntax

```plaintext
flood-2328
To disable, use the no flood-2328 command.
```

Defaults

Disabled.

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In OSPF, flooding is the most resource-consuming task. The flooding algorithm, described in RFC-2328, requires that OSPF flood LSAs (Link State Advertisements) on all interfaces, as governed by LSA’s flooding scope (see Section 13 of the RFC). When multiple direct links connect two routers, the RFC-2328 flooding algorithm generates significant redundant information across all links.

By default, the system implements an enhanced flooding procedure that dynamically and intelligently determines when to optimize flooding. Whenever possible, the OSPF task attempts to reduce flooding overhead by selectively flooding on a subset of the interfaces between two routers.

When you enable `flood-2328`, this command configures the system to flood LSAs on all interfaces.

graceful-restart grace-period

Specifies the time duration, in seconds, that the router’s neighbors continue to advertise the router as fully adjacent regardless of the synchronization state during a graceful restart.

Syntax

```plaintext
graceful-restart grace-period seconds
To disable the grace period, use the no graceful-restart grace-period command.
```
Parameters

seconds
Time duration, in seconds, that specifies the duration of the restart process before OSPF terminates the process. The range is from 40 to 1800 seconds.

Defaults
Not Configured

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

graceful-restart helper-reject

Specify the OSPF router to not act as a helper during graceful restart.

Syntax

```
graceful-restart helper-reject ip-address
```

To return to default value, use the `no graceful-restart helper-reject` command.

Parameters

- **ip-address**: Enter the OSPF router-id, in IP address format, of the restart router that will not act as a helper during graceful restart.

Defaults
Not configured.

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

graceful-restart mode

Enable the graceful restart mode.

Syntax

```
graceful-restart mode [planned-only | unplanned-only]
```

To disable graceful restart mode, use the `no graceful-restart mode` command.
graceful-restart role

Specify the role for your OSPF router during graceful restart.

Syntax
```
graceful-restart role [helper-only | restart-only]
```

To disable graceful restart role, use the `no graceful-restart role` command.

Parameters
- `role helper-only` (OPTIONAL) Enter the keywords `helper-only` to specify the OSPF router is a helper only during graceful restart.
- `role restart-only` (OPTIONAL) Enter the keywords `restart-only` to specify the OSPF router is a restart only during graceful-restart.

Defaults
By default, OSPF routers are both helper and restart routers during a graceful restart.

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip ospf auth-change-wait-time

OSPF provides a grace period while OSPF changes its interface authentication type. During the grace period, OSPF sends out packets with new and old authentication scheme until the grace period expires.

Syntax

ip ospf auth-change-wait-time seconds

To return to the default, use the no ip ospf auth-change-wait-time command.

Parameters

seconds

Enter the seconds. The range is from 0 to 300.

Defaults
zero (0) seconds.

Command Modes
INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

ip ospf authentication-key

Enable authentication and set an authentication key on OSPF traffic on an interface.

Syntax

ip ospf authentication-key [encryption-type] key

To delete an authentication key, use the no ip ospf authentication-key command.

Parameters

encryption-type

(Optional) Enter 7 to encrypt the key.

key

Enter an eight-character string. Strings longer than eight characters are truncated.

Defaults
Not configured.

Command Modes
INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
ip ospf cost

Change the cost associated with the OSPF traffic on an interface.

Syntax

```
ip ospf cost cost
To return to default value, use the no ip ospf cost command.
```

Parameters

- **cost**
 - Enter a number as the cost. The range is from 1 to 65535.

Defaults

The default cost is based on the reference bandwidth.

Command Modes

- INTERFACE

Command History

```
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

- If this command is not configured, cost is based on the `auto-cost` command.
- When you configure OSPF over multiple vendors, to ensure that all routers use the same cost, use the `ip ospf cost` command. Otherwise, OSPF routes improperly.

Related Commands

- `auto-cost` — controls how the OSPF interface cost is calculated.

ip ospf dead-interval

Set the time interval since the last hello-packet was received from a router. After the interval elapses, the neighboring routers declare the router dead.

Syntax

```
ip ospf dead-interval seconds
To return to the default values, use the no ip ospf dead-interval command.
```

Parameters

- **seconds**
 - Enter the number of seconds for the interval. The range is from 1 to 65535. The default is **40 seconds**.

Defaults

- 40 seconds
Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
By default, the dead interval is four times the default hello-interval.

Related Commands
ip ospf hello-interval — sets the time interval between the hello packets.

ip ospf hello-interval

Specify the time interval between the hello packets sent on the interface.

Syntax
ip ospf hello-interval seconds
To return to the default value, use the no ip ospf hello-interval command.

Parameters
seconds
Enter the number of seconds for the interval. The range is from 1 to 65535. The default is 10 seconds.

Defaults
10 seconds

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The time interval between the hello packets must be the same for routers in a network.

Related Commands
ip ospf dead-interval — sets the time interval before a router is declared dead.

ip ospf message-digest-key

Enable OSPF MD5 authentication and send an OSPF message digest key on the interface.

Syntax
ip ospf message-digest-key keyid md5key
To delete a key, use the no ip ospf message-digest-key keyid command.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keyid</td>
<td>Enter a number as the key ID. The range is from 1 to 255.</td>
</tr>
<tr>
<td>key</td>
<td>Enter a continuous character string as the password.</td>
</tr>
</tbody>
</table>

Defaults

No MD5 authentication is configured.

Command Modes

`INTERFACE`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure a maximum of six digest keys on an interface. Of the available six digest keys, the switches select the MD5 key that is common. The remaining MD5 keys are unused.

To change to a different key on the interface, enable the new key while the old key is still enabled. The system sends two packets: the first packet authenticated with the old key and the second packet authenticated with the new key. This process ensures that the neighbors learn the new key and communication is not disrupted by keeping the old key enabled.

After the reply is received and the new key is authenticated, delete the old key. Dell recommends keeping only one key per interface.

NOTE: The MD5 secret is stored as plain text in the configuration file with service password encryption. Write down or otherwise record the key. You cannot learn the key once it is configured. Use caution when changing the key.

ip ospf mtu-ignore

Disable OSPF MTU mismatch detection upon receipt of database description (DBD) packets.

Syntax

```
ip ospf mtu-ignore
```

To return to the default, use the `no ip ospf mtu-ignore` command.

Defaults

Enabled.

Command Modes

`INTERFACE`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip ospf network

Set the network type for the interface.

Syntax:
```
ip ospf network {broadcast | point-to-point}
```

To return to the default, use the `no ip ospf network` command.

Parameters:
- **broadcast**: Enter the keyword `broadcast` to designate the interface as part of a broadcast network.
- **point-to-point**: Enter the keywords `point-to-point` to designate the interface as part of a point-to-point network.

Defaults: Not configured.

Command Modes: ROUTER OSPF

Command History:
- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

ip ospf priority

To determine the designated router for the OSPF network, set the priority of the interface.

Syntax:
```
ip ospf priority number
```

To return to the default setting, use the `no ip ospf priority` command.

Parameters:
- **number**: Enter a number as the priority. The range is from 0 to 255. The default is 1.

Defaults: 1

Command Modes: INTERFACE

Command History:
- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.
ip ospf retransmit-interval

Set the retransmission time between lost link state advertisements (LSAs) for adjacencies belonging to the interface.

Syntax

```
ip ospf retransmit-interval seconds
```

To return to the default values, use the `no ip ospf retransmit-interval` command.

Parameters

- `seconds`
 Enter the number of seconds as the interval between retransmission. The range is from 1 to 3600. The default is 5 seconds.
 This interval must be greater than the expected round-trip time for a packet to travel between two routers.

Defaults

5 seconds

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Set the time interval to a number large enough to prevent unnecessary retransmissions. For example, the interval must be larger for interfaces connected to virtual links.

ip ospf transmit-delay

To send a link state update packet on the interface, set the estimated time elapsed.

Syntax

```
ip ospf transmit-delay seconds
```

To return to the default value, use the `no ip ospf transmit-delay` command.
Parameters

seconds
Enter the number of seconds as the interval between retransmission. The range is from 1 to 3600. The default is 1 second.
This value must be greater than the transmission and propagation delays for the interface.

Defaults

1 second

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

log-adjacency-changes

To send a Syslog message about changes in the OSPF adjacency state, set the system.

Syntax

```plaintext
log-adjacency-changes
```

To disable the Syslog messages, use the `no log-adjacency-changes` command.

Defaults

Disabled.

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

maximum-paths

Enable the software to forward packets over multiple paths.

Syntax

```plaintext
maximum-paths number
```

To disable packet forwarding over multiple paths, use the `no maximum-paths` command.
Parameters

number
Specify the number of paths. The range for OSPFv2 is from 1 to 16. The default for OSPFv2 is **4 paths**. The range for OSPFv3 is from 1 to 64. The default for OSPFv3 is **8 paths**.

Defaults
4

Command Modes
ROUTER OSPF for OSPFv2
ROUTER OSPFv3 for OSPFv3

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Added support for OSPFv3.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

mib-binding

Enable this OSPF process ID to manage the SNMP traps and process SNMP queries.

Syntax

mib-binding
To mib-binding on this OSPF process, use the no mib-binding command.

Defaults
none.

Command Modes
ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command is either enabled or disabled. If no OSPF process is identified as the MIB manager, the first OSPF process is used.

If an OSPF process has been selected, it must be disabled prior to assigning new process ID the MIB responsibility.
network area

Define which interfaces run OSPF and the OSPF area for those interfaces.

Syntax

```
network ip-address mask area area-id
```

To disable an OSPF area, use the `no network ip-address mask area area-id` command.

Parameters

- **ip-address**: Specify a primary or secondary address in dotted decimal format. The primary address is required before adding the secondary address.
- **mask**: Enter a network mask in /prefix format. (/x)
- **area-id**: Enter the OSPF area ID as either a decimal value or in a valid IP address. Decimal value range is from 0 to 65535. IP address format is dotted decimal format A.B.C.D.

NOTE: If the area ID is smaller than 65535, it is converted to a decimal value. For example, if you use an area ID of 0.0.0.1, it is converted to 1.

Command Modes

- ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To enable OSPF on an interface, the `network area` command must include, in its range of addresses, the primary IP address of an interface.

NOTE: An interface can be attached only to a single OSPF area.

If you delete all the network area commands for Area 0, the `show ip ospf` command output does not list Area 0.

passive-interface

Suppress both receiving and sending routing updates on an interface.

Syntax

```
passive-interface {default | interface}
```
To enable both the receiving and sending routing, use the `no passive-interface interface` command.

To return all OSPF interfaces (current and future) to active, use the `no passive-interface default` command.

Parameters

- **default**

 Enter the keyword `default` to make all OSPF interfaces (current and future) passive.

- **interface**

 Enter the following keywords and slot/port or number information:

 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For Port Channel groups, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Command Modes

- **ROUTER OSPF**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.19.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Although the passive interface does not send or receive routing updates, the network on that interface is still included in OSPF updates sent using other interfaces.

The `default` keyword sets all interfaces as passive. You can then configure individual interfaces, where adjacencies are desired, using the `no passive-interface interface` command. The `no` form of this command is inserted into the configuration for individual interfaces when the `no passive-interface interface` command is issued while `passive-interface default` is configured.

This command behavior has changed as follows:

- **passive-interface interface**

 - The previous `no passive-interface interface` is removed from the running configuration.
 - The ABR status for the router is updated.
 - Save `passive-interface interface` into the running configuration.

- **passive-interface default**

 - All present and future OSPF interfaces are marked as `passive`.

Open Shortest Path First (OSPFv2 and OSPFv3) 1076
- Any adjacency is explicitly terminated from all OSPF interfaces.
- All previous `passive-interface interface` commands are removed from the running configuration.
- All previous `no passive-interface interface` commands are removed from the running configuration.

`no passive-interface interface`
- Remove the interface from the passive list.
- The ABR status for the router is updated.
- If `passive-interface default` is specified, then save `no passive-interface interface` into the running configuration.

`no passive-interface default`
- Clear everything and revert to the default behavior.
- All previously marked passive interfaces are removed.
- May update ABR status.

redistribute

Redistribute information from another routing protocol throughout the OSPF process.

Syntax

```
redistribute {connected | rip | static} [metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value]
```

To disable redistribution, use the `no redistribute {connected | isis | rip | static}` command.

Parameters

- `connected` Enter the keyword `connected` to specify that information from active routes on interfaces is redistributed.
- `rip` Enter the keyword `rip` to specify that RIP routing information is redistributed.
- `static` Enter the keyword `static` to specify that information from static routes is redistributed.
- `metric metric-value` (OPTIONAL) Enter the keyword `metric` then a number. The range is from 0 (zero) to 16777214.
- `metric-type type-value` (OPTIONAL) Enter the keywords `metric-type` then one of the following:
 - 1 = OSPF External type 1
 - 2 = OSPF External type 2
- `route-map map-name` (OPTIONAL) Enter the keywords `route-map` then the name of the route map.
redistribute bgp

Redistribute BGP routing information throughout the OSPF instance.

Syntax

```
redistribute bgp as number [metric metric-value] | [metric-type type-value] | [tag tag-value]
```

To disable redistribution, use the `no redistribute bgp as number [metric metric-value] | [metric-type type-value] | [tag tag-value]` command.

Parameters

- **as number**
 - Enter the autonomous system number. The range is from 1 to 65535.
- **metric metric-value**
 - (OPTIONAL) Enter the keyword `metric` then the metric-value number. The range is from 0 to 16777214.
- **metric-type type-value**
 - (OPTIONAL) Enter the keywords `metric-type` then one of the following:
 - 1 = for OSPF External type 1
 - 2 = for OSPF External type 2
- **tag tag-value**
 - (OPTIONAL) Enter the keyword `tag` to set the tag for routes redistributed into OSPF. The range is from 0 to 4294967295.

Defaults

- none

Command Modes

- ROUTER OSPF
redistribute isis

Redistribute IS-IS routing information throughout the OSPF instance.

Syntax

```plaintext
redistribute isis [tag] [level-1 | level-1-2 | level-2] [metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value]
```

To disable redistribution, use the `no redistribute isis [tag] [level-1 | level-1-2 | level-2] [metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value]` command.

Parameters

- **tag**

 (OPTIONAL) Enter the name of the IS-IS routing process.

- **level-1**

 (OPTIONAL) Enter the keywords `level-1` to redistribute only IS-IS Level-1 routes.

- **level-1-2**

 (OPTIONAL) Enter the keywords `level-1-2` to redistribute both IS-IS Level-1 and Level-2 routes.

- **level-2**

 (OPTIONAL) Enter the keywords `level-2` to redistribute only IS-IS Level-2 routes.

- **metric** **metric-value**

 (OPTIONAL) Enter the keyword `metric` then a number. The range is from 0 (zero) to 4294967295.

- **metric-type** **type-value**

 (OPTIONAL) Enter the keywords `metric-type` then one of the following:

 - 1 = for OSPF External type 1
 - 2 = for OSPF External type 2

- **route-map** **map-name**

 (OPTIONAL) Enter the keywords `route-map` then the name of the route map.

- **tag** **tag-value**

 (OPTIONAL) Enter the keyword `tag` to set the tag for routes redistributed into OSPF. The range is from 0 to 4294967295.

Defaults

Not configured.

Command Modes

ROUTER OSPF
router-id

To configure a fixed router ID, use this command.

Syntax

```
router-id ip-address
```

To remove the fixed router ID, use the `no router-id ip-address` command.

Parameters

- `ip-address`: Enter the router ID in the IP address format.

Defaults

- none.

Command Modes

- ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can configure an arbitrary value in the IP address format for each router. However, each router ID must be unique. If you use this command on an OSPF router process, which is already active (that is, has neighbors), a prompt reminding you that changing the router-id brings down the existing OSPF adjacency. The new router ID is effective at the next reload.

Example

```
Dell(conf)#router ospf 100
Dell(conf-router_ospf)#router-id 1.1.1.1
Changing router-id will bring down existing OSPF adjacency [y/n]:

Dell(conf-router_ospf)#show config
!
router ospf 100
router-id 1.1.1.1
Dell(conf-router_ospf)#no router-id
Changing router-id will bring down existing OSPF adjacency [y/n]:
Dell#
```
router ospf

To configure an OSPF instance, enter ROUTER OSPF mode.

Syntax
```
router ospf process-id
```

To clear an OSPF instance, use the `no router ospf process-id` command.

Parameters
- **process-id**
 - Enter a number for the OSPF instance. The range is from 1 to 65535.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History
- **Version**
 - **9.9(0.0)**: Introduced on the FN IOM.
 - **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You must have an IP address assigned to an interface to enter ROUTER OSPF mode and configure OSPF.

Example
```
Dell(conf)#router ospf 2
Dell(conf-router_ospf)#
```

show config

Display the non-default values in the current OSPF configuration.

Syntax
```
show config
```

Command Modes
- ROUTER OSPF

Command History
- **Version**
 - **9.9(0.0)**: Introduced on the FN IOM.
 - **9.2(0.0)**: Introduced on the M I/O Aggregator.
 - **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Example
```
Dell(conf-router_ospf)#show config
!
router ospf 3
```
show ip ospf

Display information on the OSPF process configured on the switch.

Syntax

```
show ip ospf process-id
```

Parameters

- `process-id` Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you delete all the network area commands for Area 0, the `show ip ospf` command output does not list Area 0.

The following describes the `show ip ospf` command shown in the following example.

<table>
<thead>
<tr>
<th>Line Beginning with</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Routing Process..."</td>
<td>Displays the OSPF process ID and the IP address associated with the process ID.</td>
</tr>
<tr>
<td>"Supports only..."</td>
<td>Displays the number of Type of Service (TOS) route supported.</td>
</tr>
<tr>
<td>"SPF schedule..."</td>
<td>Displays the delay and hold time configured for this process ID.</td>
</tr>
<tr>
<td>"Convergence Level"</td>
<td>Displays the intervals set for LSA transmission and acceptance.</td>
</tr>
<tr>
<td>"Min LSA..."</td>
<td>Displays the number and type of areas configured for this process ID.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip ospf 10
Routing Process ospf 10 with ID 1.1.1.1 Virtual router default-vrf
Supports only single TOS (TOS0) routes
SPF schedule delay 5 secs, Hold time between two SPF 10 secs
```

passive-interface FastEthernet 0/1
Dell(conf-router_ospf)#
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 1 stub 0 nssa 0
Area BACKBONE (0)
Number of interface in this area is 1
SPF algorithm executed 205 times
Area ranges are

Dell#

show ip ospf database — displays information about the OSPF routes configured.
show ip ospf interface — displays the OSPF interfaces configured.
show ip ospf neighbor — displays the OSPF neighbors configured.

show ip ospf asbr

Display all autonomous system boundary router (ASBR) routers visible to OSPF.

Syntax

show ip ospf process-id asbr

Parameters

process-id Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Defaults

none

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To isolate problems with external routes, use this command. In OSPF, external routes are calculated by adding the LSA cost to the cost of reaching the ASBR router. If an external route does not have the correct cost, use this command to determine if the path to the originating router is correct. The display output is not sorted in any order.

NOTE: ASBRs that are not in directly connected areas are also displayed.

You can determine if an ASBR is in a directly connected area (or not) by the flags. For ASBRs in a directly connected area, E flags are set. In the following example, router
1.1.1.1 is in a directly connected area since the Flag is E/-/-/. For remote ASBRs, the E flag is clear (-/-/-/).

Example

Dell#show ip ospf 1asbr

<table>
<thead>
<tr>
<th>RouterID</th>
<th>Flags</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.3</td>
<td>-/-/-</td>
<td>2</td>
<td>10.0.0.2</td>
<td>Gi 0/1</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>E/-/-</td>
<td>0</td>
<td>0.0.0.0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Dell#

show ip ospf database

Display all LSA information. If you do not enable OSPF on the switch, no output is generated.

Syntax

show ip ospf process-id database [database-summary]

Parameters

- **process-id**: Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.
- **database-summary** (OPTIONAL) Enter the keywords database-summary to the display the number of LSA types in each area and the total number of LSAs.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ip ospf process-id database command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link ID</td>
<td>Identifies the router ID.</td>
</tr>
<tr>
<td>ADV Router</td>
<td>Identifies the advertising router’s ID.</td>
</tr>
<tr>
<td>Age</td>
<td>Displays the link state age.</td>
</tr>
<tr>
<td>Seq#</td>
<td>Identifies the link state sequence number. This number allows you to identify old or duplicate link state advertisements.</td>
</tr>
<tr>
<td>Checksum</td>
<td>Displays the Fletcher checksum of an LSA’s complete contents.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link count</td>
<td>Displays the number of interfaces for that router.</td>
</tr>
</tbody>
</table>

Example

Dell>show ip ospf 1 database

```
OSPF Router with ID (11.1.2.1) (Process ID 1)
Router (Area 0.0.0.0)
Link ID    ADV Router   Age  Seq#       Checksum Link count
11.1.2.1   11.1.2.1     673  0x80000005 0x707e   2
13.1.1.1   13.1.1.1     676  0x8000000f 0x1035   2
192.68.135.2 192.68.135.2 1419 0x80000294 0x9cb1d  1

Network (Area 0.0.0.0)
Link ID    ADV Router   Age  Seq#       Checksum
10.2.3.2   13.1.1.1     676  0x80000003 0x6592
10.2.4.2   192.68.135.2 908  0x80000005 0x683e

Type-5 AS External
Link ID    ADV Router   Age  Seq#       Checksum Tag
0.0.0.0    192.68.135.2 908  0x80000002 0xeb83 100
1.1.1.1    192.68.135.2 908  0x8000002a 0x3bd7  0
10.1.1.0   11.1.2.1     718  0x80000002 0x9012  0
10.1.2.0   11.1.2.1     718  0x80000000 0x851c  0
10.2.2.0   11.1.2.1     718  0x80000000 0x7927  0
10.2.2.3.0 11.1.2.1     718  0x80000000 0x6e31  0
10.2.4.0   13.1.1.1     1184 0x80000006 0x45db  0
11.1.1.0   11.1.2.1     718  0x80000002 0x831e  0
11.1.2.0   11.1.2.1     718  0x80000002 0x7828  0
12.1.2.0   192.68.135.2 1663 0x80000000 0xd8d6  0
12.1.2.1.0 13.1.1.1     1192 0x8000000b 0x2718  0
13.1.2.0   13.1.1.1     1184 0x80000006 0x1c22  0
172.16.1.0 13.1.1.1     148  0x80000006 0x533b  0
```

Related Commands

- `show ip ospf database asbr-summary` — displays only ASBR summary LSA information.

show ip ospf database asbr-summary

Display information about autonomous system (AS) boundary LSAs.

Syntax

```
show ip ospf process-id database asbr-summary [link-state-id] [adv-router ip-address]
```

Parameters

- **process-id**
 - Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

- **link-state-id**
 - (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:
 - the network’s IP address for Type 3 LSAs or Type 5 LSAs
the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs

• the default destination (0.0.0.0) for Type 5 LSAs

adv-router ip-address *(OPTIONAL) Enter the keywords **adv-router** and the **ip-address** to display only the LSA information about that router.*

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf database asbr-summary` command shown in the following example.

Field

- LS Age
- Options
- LS Type
- Link State ID
- Advertising Router
- Checksum
- Length
- Network Mask
- TOS
- Metric

Description

- Displays the LSA’s age.
- Displays the optional capabilities available on router. The following options can be found in this item:
 - TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service.
 - DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits.
 - E or No E is displayed on whether the originating router can accept AS External LSAs.
- Displays the LSA’s type.
- Displays the Link State ID.
- Identifies the advertising router’s ID.
- Displays the Fletcher checksum of the LSA’s complete contents.
- Displays the length in bytes of the LSA.
- Displays the network mask implemented on the area.
- Displays the Type of Service (TOS) options. Option 0 is the only option.
- Displays the LSA metric.

Example

```
Dell#show ip ospf 100 database asbr-summary

OSPF Router with ID (1.1.1.10) (Process ID 100)

    Summary Asbr (Area 0.0.0.0)
```
Related Commands

show ip ospf database — displays OSPF database information.

show ip ospf database external

Display information on the AS external (type 5) LSAs.

Syntax

show ip ospf process-id database external [link-state-id] [adv-router ip-address]

Parameters

process-id Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

link-state-id (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:

• the network’s IP address for Type 3 LSAs or Type 5 LSAs
• the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
• the default destination (0.0.0.0) for Type 5 LSAs

adv-router ip-address (OPTIONAL) Enter the keywords adv-router and the ip-address to display only the LSA information about that router.

Command Modes

• EXEC
• EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf process-id database external` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Age</td>
<td>Displays the LSA's age.</td>
</tr>
<tr>
<td>Options</td>
<td>Displays the optional capabilities available on router. The following options can be found in this item:</td>
</tr>
<tr>
<td></td>
<td>• TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service.</td>
</tr>
<tr>
<td></td>
<td>• DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits.</td>
</tr>
<tr>
<td></td>
<td>• E or No E is displayed on whether the originating router can accept AS External LSAs.</td>
</tr>
<tr>
<td>LS Type</td>
<td>Displays the LSA's type.</td>
</tr>
<tr>
<td>Link State ID</td>
<td>Displays the Link State ID.</td>
</tr>
<tr>
<td>Advertising Router</td>
<td>Identifies the router ID of the LSA's originating router.</td>
</tr>
<tr>
<td>LS Seq Number</td>
<td>Identifies the link state sequence number. This number enables you to identify old or duplicate LSAs.</td>
</tr>
<tr>
<td>Checksum</td>
<td>Displays the Fletcher checksum of the LSA's complete contents.</td>
</tr>
<tr>
<td>Length</td>
<td>Displays the length in bytes of the LSA.</td>
</tr>
<tr>
<td>Network Mask</td>
<td>Displays the network mask implemented on the area.</td>
</tr>
<tr>
<td>Metrics Type</td>
<td>Displays the external type.</td>
</tr>
<tr>
<td>TOS</td>
<td>Displays the Type of Service (TOS) options. Option 0 is the only option.</td>
</tr>
<tr>
<td>Metric</td>
<td>Displays the LSA metric.</td>
</tr>
<tr>
<td>Forward Address</td>
<td>Identifies the address of the forwarding router. Data traffic is forwarded to this router. If the forwarding address is 0.0.0.0, data traffic is forwarded to the originating router.</td>
</tr>
<tr>
<td>External Route Tag</td>
<td>Displays the 32-bit field attached to each external route. The OSPF protocol does not use this field, but you can use the field for external route management.</td>
</tr>
</tbody>
</table>

Example

Dell#show ip ospf 1 database external

 OSPF Router with ID (20.20.20.5) (Process ID 1)
Type-5 AS External

LS age: 612
Options: (No TOS-capability, No DC, E)
LS type: Type-5 AS External
Link State ID: 12.12.12.2
Advertising Router: 20.31.3.1
LS Seq Number: 0x80000007
Checksum: 0x4cde
Length: 36
Network Mask: /32
 Metrics Type: 2
 TOS: 0
 Metrics: 25
 Forward Address: 0.0.0.0
 External Route Tag: 43

LS age: 1868
Options: (No TOS-capability, DC)
LS type: Type-5 AS External
Link State ID: 24.216.12.0
Advertising Router: 20.20.20.8
LS Seq Number: 0x80000005
Checksum: 0xa00e
Length: 36
Network Mask: /24
 Metrics Type: 2
 TOS: 0
 Metrics: 1
 Forward Address: 0.0.0.0
 External Route Tag: 701
Dell#

Related Commands
 show ip ospf database — displays OSPF database information.

show ip ospf database network

Display the network (type 2) LSA information.

Syntax
 show ip ospf process-id database network [link-state-id] [adv-router ip-address]

Parameters
 process-id
 Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

 link-state-id
 (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:
 • the network’s IP address for Type 3 LSAs or Type 5 LSAs
 • the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
the default destination (0.0.0.0) for Type 5 LSAs

adv-router ip-address
(Optional) Enter the keywords `adv-router` and the `ip-address` to display only the LSA information about that router.

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf process-id database network` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Age</td>
<td>Displays the LSA's age.</td>
</tr>
</tbody>
</table>
| Options | Displays the optional capabilities available on router. The following options can be found in this item:
 - TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service.
 - DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits.
 - E or No E is displayed on whether the originating router can accept AS External LSAs. |
| LS Type | Displays the LSA's type. |
| Link State ID | Displays the Link State ID. |
| Advertising Router | Identifies the router ID of the LSA's originating router. |
| Checksum | Identifies the link state sequence number. This number enables you to identify old or duplicate LSAs. |
| Length | Displays the Fletcher checksum of an LSA's complete contents. |
| Network Mask | Displays the length in bytes of the LSA. |
| Attached Router | Identifies the IP address of routers attached to the network. |

Example

Dell#show ip ospf 1 data network

OSPF Router with ID (20.20.20.5) (Process ID 1)

Network (Area 0.0.0.0)
LS age: 1372
Options: (No TOS-capability, DC, E)
LS type: Network
show ip ospf database nssa-external

Display NSSA-External (type 7) LSA information.

Syntax

```
show ip ospf database nssa-external [link-state-id] [adv-router ip-address]
```

Parameters

- `link-state-id` (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:
 - the network’s IP address for Type 3 LSAs or Type 5 LSAs
 - the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
 - the default destination (0.0.0.0) for Type 5 LSAs

- `adv-router ip-address` (OPTIONAL) Enter the keywords adv-router and the ip-address to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege
show ip ospf database opaque-area

Display the opaque-area (type 10) LSA information.

Syntax

show ip ospf process-id database opaque-area [link-state-id] [adv-router ip-address]

Parameters

process-id
Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

link-state-id
(Optional) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:

- the network’s IP address for Type 3 LSAs or Type 5 LSAs
- the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
- the default destination (0.0.0.0) for Type 5 LSAs

adv-router ip-address
(Optional) Enter the keywords adv-router and the ip-address to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ip ospf process-id database opaque-area command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Age</td>
<td>Displays the LSA’s age.</td>
</tr>
</tbody>
</table>
Item | Description
--- | ---
Options | Displays the optional capabilities available on router. The following options can be found in this item:
- TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service.
- DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits.
- E or No E is displayed on whether the originating router can accept AS External LSAs.

LS Type | Displays the LSA’s type.

Link State ID | Displays the Link State ID.

Advertising Router | Identifies the advertising router’s ID.

Checksum | Displays the Fletcher checksum of the LSA’s complete contents.

Length | Displays the length in bytes of the LSA.

Opaque Type | Displays the Opaque type field (the first 8 bits of the Link State ID).

Opaque ID | Displays the Opaque type-specific ID (the remaining 24 bits of the Link State ID).

Example

```
Dell>show ip ospf 1 database opaque-area

OSPF Router with ID (3.3.3.3) (Process ID 1)
    Type-10 Opaque Link Area (Area 0)

    LS age: 1133
    Options: (No TOS-capability, No DC, E)
    LS type: Type-10 Opaque Link Area
    Link State ID: 1.0.0.1
    Advertising Router: 10.16.1.160
    LS Seq Number: 0x80000416
    Checksum: 0x376
    Length: 28
    Opaque Type: 1
    Opaque ID: 1
    Unable to display opaque data

    LS age: 833
    Options: (No TOS-capability, No DC, E)
    LS type: Type-10 Opaque Link Area
    Link State ID: 1.0.0.2
    Advertising Router: 10.16.1.160
    LS Seq Number: 0x80000002
    Checksum: 0x19c2
    --More--
```

Related Commands

- `show ip ospf database` — displays OSPF database information.
show ip ospf database opaque-as

Display the opaque-as (type 11) LSA information.

Syntax

```
show ip ospf process-id database opaque-as [link-state-id] [adv-router ip-address]
```

Parameters

- **process-id**: Enter the OSPF process ID to show a specific process. If you do not enter the process ID, the command applies only to the first OSPF process.
- **link-state-id**: (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:
 - the network's IP address for Type 3 LSAs or Type 5 LSAs
 - the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
 - the default destination (0.0.0.0) for Type 5 LSAs
- **adv-router ip-address**: (OPTIONAL) Enter the keywords `adv-router` and the ip-address to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show ip ospf database` — displays OSPF database information.

show ip ospf database opaque-link

Display the opaque-link (type 9) LSA information.

Syntax

```
show ip ospf process-id database opaque-link [link-state-id] [adv-router ip-address]
```
Parameters

process-id Enter the OSPF process ID to show a specific process. If you do not enter the process ID, the command applies only to the first OSPF process.

link-state-id (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:

- the network’s IP address for Type 3 LSAs or Type 5 LSAs
- the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
- the default destination (0.0.0.0) for Type 5 LSAs

adv-router ip-address (OPTIONAL) Enter the keywords adv-router then the IP address of an Advertising Router to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

show ip ospf database — displays OSPF database information.

show ip ospf database router

Display the router (type 1) LSA information.

Syntax

show ip ospf process-id database router [link-state-id] [adv-router ip-address]

Parameters

process-id Enter the OSPF Process ID to show a specific process. If you do not enter a process ID, the command applies only to the first OSPF process.

link-state-id (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:

- the network’s IP address for Type 3 LSAs or Type 5 LSAs
- the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
the default destination (0.0.0.0) for Type 5 LSAs

```
adv-router ip-address
```

(Optional) Enter the keywords `adv-router` then the IP address of an Advertising Router to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf process-id database router` command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Age</td>
<td>Displays the LSA age.</td>
</tr>
</tbody>
</table>
| Options | Displays the optional capabilities available on router. The following options can be found in this item:
| | • TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service. |
| | • DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits. |
| | • E or No E is displayed on whether the originating router can accept AS External LSAs. |
| LS Type | Displays the LSA type. |
| Link State ID | Displays the Link State ID. |
| Advertising Router | Identifies the router ID of the LSA’s originating router. |
| LS Seq Number | Displays the link state sequence number. This number detects duplicate or old LSAs. |
| Checksum | Displays the Fletcher checksum of an LSA’s complete contents. |
| Length | Displays the length in bytes of the LSA. |
| Number of Links | Displays the number of active links to the type of router (Area Border Router or AS Boundary Router) listed in the previous line. |
| Link connected to: | Identifies the type of network to which the router is connected. |
| (Link ID) | Identifies the link type and address. |
| (Link Data) | Identifies the router interface address. |

Open Shortest Path First (OSPFv2 and OSPFv3)
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TOS Metric</td>
<td>Lists the number of TOS metrics.</td>
</tr>
<tr>
<td>TOS 0 Metric</td>
<td>Lists the number of TOS 0 metrics.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip ospf 100 database router
    OSPF Router with ID (1.1.1.10) (Process ID 100)
    Router (Area 0)
    LS age: 967
    Options: (No TOS-capability, No DC, E)
    LS type: Router
    Link State ID: 1.1.1.10
    Advertising Router: 1.1.1.10
    LS Seq Number: 0x8000012f
    Checksum: 0x3357
    Length: 144
    AS Boundary Router
    Area Border Router
    Number of Links: 10
    Link connected to: a Transit Network
        (Link ID) Designated Router address: 192.68.129.1
        (Link Data) Router Interface address: 192.68.129.1
        Number of TOS metric: 0
        TOS 0 Metric: 1
    Link connected to: a Transit Network
        (Link ID) Designated Router address: 192.68.130.1
        (Link Data) Router Interface address: 192.68.130.1
        Number of TOS metric: 0
        TOS 0 Metric: 1
    Link connected to: a Transit Network
        (Link ID) Designated Router address: 192.68.142.2
        (Link Data) Router Interface address: 192.68.142.2
        Number of TOS metric: 0
        TOS 0 Metric: 1
    Link connected to: a Transit Network
        (Link ID) Designated Router address: 192.68.141.2
        (Link Data) Router Interface address: 192.68.141.2
        Number of TOS metric: 0
        TOS 0 Metric: 1
    Link connected to: a Transit Network
        (Link ID) Designated Router address: 192.68.140.2
        (Link Data) Router Interface address: 192.68.140.2
        Number of TOS metric: 0
        TOS 0 Metric: 1
    Link connected to: a Stub Network
        (Link ID) Network/subnet number: 11.1.5.0
--More--
```

Related Commands

`show ip ospf database` — displays OSPF database information.
show ip ospf database summary

Display the network summary (type 3) LSA routing information.

Syntax

```
show ip ospf process-id database summary [link-state-id] [adv-router ip-address]
```

Parameters

- **process-id**: Enter the OSPF process ID to show a specific process. If you do not enter a process ID, the command applies only to the first OSPF process.
- **link-state-id**: (OPTIONAL) Specify LSA ID in dotted decimal format. The LSA ID value depends on the LSA type, and it can be one of the following:
 - the network’s IP address for Type 3 LSAs or Type 5 LSAs
 - the router’s OSPF router ID for Type 1 LSAs or Type 4 LSAs
 - the default destination (0.0.0.0) for Type 5 LSAs
- **adv-router ip-address**: (OPTIONAL) Enter the keywords `adv-router` then the IP address of an Advertising Router to display only the LSA information about that router.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ip ospf process-id database summary` command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Age</td>
<td>Displays the LSA age.</td>
</tr>
<tr>
<td>Options</td>
<td>Displays the optional capabilities available on router. The following options can be found in this item:</td>
</tr>
<tr>
<td></td>
<td>• TOS-capability or No TOS-capability is displayed depending on whether the router can support Type of Service.</td>
</tr>
<tr>
<td></td>
<td>• DC or No DC is displayed depending on whether the originating router can support OSPF over demand circuits.</td>
</tr>
</tbody>
</table>
Item Description
- E or No E is displayed on whether the originating router can accept AS External LSAs.

LS Type
- Displays the LSA type.

Link State ID
- Displays the Link State ID.

Advertising Router
- Identifies the router ID of the LSA's originating router.

LS Seq Number
- Displays the link state sequence number. This number allows you to identify old or duplicate LSAs.

Checksum
- Displays the Fletcher checksum of an LSA’s complete contents.

Length
- Displays the length in bytes of the LSA.

Network Mask
- Displays the network mask implemented on the area.

TOS
- Displays the TOS options. Option 0 is the only option.

Metric
- Displays the LSA metrics.

Example
```
#show ip ospf 100 database summary

OSPF Router with ID (1.1.1.10) (Process ID 100)

Summary Network (Area 0.0.0.0)

   LS age: 1551
   Options: (No TOS-capability, DC, E)
   LS type: Summary Network
   Link State ID: 192.68.16.0
   Advertising Router: 192.168.17.1
   LS Seq Number: 0x80000054
   Checksum: 0xb5a2
   Length: 28
   Network Mask: /24
   TOS: 0 Metric: 1

LS age: 9
Options: (No TOS-capability, No DC, E)
LS type: Summary Network
Link State ID: 192.68.32.0
Advertising Router: 1.1.1.10
LS Seq Number: 0x80000016
Checksum: 0x987c
Length: 28
Network Mask: /24
   TOS: 0 Metric: 1

LS age: 7
Options: (No TOS-capability, No DC, E)
LS type: Summary Network
Link State ID: 192.68.33.0
Advertising Router: 1.1.1.10
LS Seq Number: 0x80000016
Checksum: 0x1241
Length: 28
Network Mask: /26
   TOS: 0 Metric: 1
```
show ip ospf interface

Display the OSPF interfaces configured. If OSPF is not enabled on the switch, no output is generated.

Syntax

```
show ip ospf process-id interface [interface]
```

Parameters

- **process-id**
 - Enter the OSPF process ID to show a specific process. If you do not enter a process ID, the command applies only to the first OSPF process.

- **interface**
 - (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For the null interface, enter the keyword null then zero (0).
 - For Loopback interfaces, enter the keyword loopback then a number from 0 to 16383.
 - For Port Channel groups, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN, enter the keyword vlan then the VLAN ID. The range is from 1 to 4094.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf process-id interface` command shown in the following example.
Item	Description
TenGigabitEthernet... | This line identifies the interface type slot/port and the status of the OSPF protocol on that interface.
Internet Address... | This line displays the IP address, network mask and area assigned to this interface.
Process ID... | This line displays the OSPF Process ID, Router ID, Network type and cost metric for this interface.
Transmit Delay... | This line displays the interface's settings for Transmit Delay, State, and Priority. In the State setting, BDR is Backup Designated Router.
Designated Router... | This line displays the ID of the Designated Router and its interface address.
Backup Designated... | This line displays the ID of the Backup Designated Router and its interface address.
Timer intervals... | This line displays the interface's timer settings for Hello interval, Dead interval, Transmit Delay (Wait), and Retransmit Interval.
Hello due... | This line displays the amount time until the next Hello packet is sent out this interface.
Neighbor Count... | This line displays the number of neighbors and adjacent neighbors. Listed below this line are the details about each adjacent neighbor.

Example

Dell>show ip ospf int

TenGigabitEthernet 1/1 is up, line protocol is up
 Internet Address 192.168.1.2/30, Area 0.0.0.1
 Process ID 1, Router ID 192.168.253.2, Network Type BROADCAST,
 Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 192.168.253.2, Interface address 192.168.1.2
 Backup Designated Router (ID) 192.168.253.1, Interface address 192.168.1.1
 Timer intervals configured, Hello 10, Dead 40, Wait 40,
 Retransmit 5
 Hello due in 00:00:02
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 192.168.253.1 (Backup Designated Router)

TenGigabitEthernet 1/2 is up, line protocol is up
 Internet Address 192.168.0.1/24, Area 0.0.0.1
 Process ID 1, Router ID 192.168.253.2, Network Type BROADCAST,
 Cost: 1
 Transmit Delay is 1 sec, State DROTHER, Priority 1
 Designated Router (ID) 192.168.253.5, Interface address 192.168.0.4
 Backup Designated Router (ID) 192.168.253.3, Interface address 192.168.0.2
 Timer intervals configured, Hello 10, Dead 40, Wait 40,
 Retransmit 5

Open Shortest Path First (OSPFv2 and OSPFv3) | 1101
Hello due in 00:00:08
Neighbor Count is 3, Adjacent neighbor count is 2
Adjacent with neighbor 192.168.253.5 (Designated Router)
Adjacent with neighbor 192.168.253.3 (Backup Designated Router)
Loopback 0 is up, line protocol is up
 Internet Address 192.168.253.2/32, Area 0.0.0.1
 Process ID 1, Router ID 192.168.253.2, Network Type LOOPBACK,
 Cost: 1
Loopback interface is treated as a stub Host.
Dell>

show ip ospf neighbor

Display the OSPF neighbors connected to the local router.

Syntax

```
show ip ospf process-id neighbor
```

Parameters

- `process-id`
Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Command Modes

- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip ospf process-id neighbor` command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor ID</td>
<td>Displays the neighbor router ID.</td>
</tr>
<tr>
<td>Pri</td>
<td>Displays the priority assigned neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the OSPF state of the neighbor.</td>
</tr>
<tr>
<td>Dead Time</td>
<td>Displays the expected time until the system declares the neighbor dead.</td>
</tr>
<tr>
<td>Address</td>
<td>Displays the IP address of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Displays the interface type slot/port information.</td>
</tr>
<tr>
<td>Area</td>
<td>Displays the neighbor’s area (process ID).</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip ospf 34 neighbor

Neighbor ID Pri State    Dead Time Address  Interface Area
```

Open Shortest Path First (OSPFv2 and OSPFv3)
show ip ospf routes

Display routes OSPF calculates and stores in OSPF RIB.

Syntax

```
show ip ospf process-id routes
```

Parameters

- **process-id**
 - Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - **9.9(0.0)**
 - Introduced on the FN IOM.
 - **8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command is useful in isolating routing problems between the OSPF and the RTM. For example, if a route is missing from the RTM/FIB but is visible from the display output of this command, the problem is with downloading the route to the RTM.

This command has the following limitations:

- The display output is sorted by prefixes; intra-area ECMP routes are not displayed together.
- For Type 2 external routes, Type 1 cost is not displayed.

Example

```
Dell#show ip ospf 100 route

Prefix        Cost Nexthop   Interface Area  Type
1.1.1.1        1   0.0.0.0   Lo 0      0     Intra-Area
3.3.3.3        2   13.0.0.3  Te 0/4    1     Intra-Area
13.0.0.0       1   0.0.0.0   Te 0/4    0     Intra-Area
150.150.150.0  2   13.0.0.3  Te 0/4    -     External
172.30.1.0     2   13.0.0.3  Te 0/4    1     Intra-Area
Dell#
```
show ip ospf statistics

Display OSPF statistics.

Syntax

```
show ip ospf process-id statistics global | [interface name (neighbor router-id)]
```

Parameters

- **process-id**: Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

- **global**: Enter the keyword global to display the packet counts received on all running OSPF interfaces and packet counts OSPF neighbors receive and transmit.

- **interface name**: (OPTIONAL) Enter the keyword interface then one of the following interface keywords and slot/port or number information:
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
 - For Port Channel groups, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

- **neighbor router-id**: (OPTIONAL) Enter the keyword neighbor then the neighbor’s router-id in dotted decimal format (A.B.C.D.).

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ip ospf statistics process-id global command shown in the following example.
<table>
<thead>
<tr>
<th>Row Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Displays the total number of packets the OSPF process receives/transmits.</td>
</tr>
<tr>
<td>Error</td>
<td>Displays the error count while receiving and transmitting packets by the OSPF process.</td>
</tr>
<tr>
<td>Hello</td>
<td>Number of OSPF Hello packets.</td>
</tr>
<tr>
<td>DDiscr</td>
<td>Number of database description packets.</td>
</tr>
<tr>
<td>LSReq</td>
<td>Number of link state request packets.</td>
</tr>
<tr>
<td>LSUpd</td>
<td>Number of link state update packets.</td>
</tr>
<tr>
<td>LSAck</td>
<td>Number of link state acknowledgement packets.</td>
</tr>
<tr>
<td>TxQ-Len</td>
<td>The transmission queue length.</td>
</tr>
<tr>
<td>RxQ-Len</td>
<td>The reception queue length.</td>
</tr>
<tr>
<td>Tx-Mark</td>
<td>The highest number mark in the transmission queue.</td>
</tr>
<tr>
<td>Rx-Mark</td>
<td>The highest number mark in the reception queue.</td>
</tr>
<tr>
<td>Hello-Q</td>
<td>The queue, for transmission or reception, for the hello packets.</td>
</tr>
<tr>
<td>LSR-Q</td>
<td>The queue, for transmission or reception, for the link state request packets.</td>
</tr>
<tr>
<td>Other-Q</td>
<td>The queue, for transmission or reception, for the link state acknowledgement, database description, and update packets.</td>
</tr>
</tbody>
</table>

The following describes the error definitions for the `show ip ospf statistics process-id global` command.

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intf_Down</td>
<td>Received packets on an interface that is either down or OSPF is not enabled.</td>
</tr>
<tr>
<td>Non-Dr</td>
<td>Received packets with a destination address of ALL_DRS even though SELF is not a designated router.</td>
</tr>
<tr>
<td>Self-Org</td>
<td>Receive the self originated packet.</td>
</tr>
<tr>
<td>Wrong_Len</td>
<td>The received packet length is different to what was indicated in the OSPF header.</td>
</tr>
<tr>
<td>InvlD-Nbr</td>
<td>LSA, LSR, LSU, and DDB are received from a peer which is not a neighbor peer.</td>
</tr>
<tr>
<td>Nbr-State</td>
<td>LSA, LSR, and LSU are received from a neighbor with stats less than the loading state.</td>
</tr>
<tr>
<td>Auth-Error</td>
<td>Simple authentication error.</td>
</tr>
<tr>
<td>MD5-Error</td>
<td>MD5 error</td>
</tr>
<tr>
<td>Cksum-Err</td>
<td>Checksum Error</td>
</tr>
<tr>
<td>Error Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Version</td>
<td>Version mismatch</td>
</tr>
<tr>
<td>AreaMismatch</td>
<td>Area mismatch</td>
</tr>
<tr>
<td>Conf-Issue</td>
<td>The received hello packet has a different hello or dead interval than the configuration.</td>
</tr>
<tr>
<td>No-Buffer</td>
<td>Buffer allocation failure.</td>
</tr>
<tr>
<td>Seq-no</td>
<td>A sequence no errors occurred during the database exchange process.</td>
</tr>
<tr>
<td>Socket</td>
<td>Socket Read/Write operation error.</td>
</tr>
<tr>
<td>Q-overflow</td>
<td>Packets dropped due to queue overflow.</td>
</tr>
<tr>
<td>Unknown-Pkt</td>
<td>Received packet is not an OSPF packet.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip ospf 10 statistics global

OSPF Packet Count
Total Error Hello DDiscr LSReq LSUpd
LSAck
RX   34    0   26    2    1  3  2
TX   34    0   25    3    1  3  2

OSPF Global Queue Length
TxQ-Len RxQ-Len Tx-Mark Rx-Mark
Hello-Q     0   0  1     1
LSR-Q       0   0  1     1
Other-Q     0   0  2     2

Error packets (Receive statistics)
Intf-Down  0   Non-Dr  0   Self-Org 0
Wrong-Len  0   Invl-Nbr 0   Nbr-State 0
Auth-Err   0   MD5-Err 0   Chksum 0
Version    0   AreaMis 0   Conf-Issues 0
No-Buffer  0   Seq-No  0   Socket 0
Q-Overflow 0   Unknown-Pkt 0   RtidZero 0

Error packets (Transmit statistics)
Socket Errors 0

Dell#
```

Usage Information

The `show ip ospf process-id statistics` command displays the error packet count received on each interface as:

- The hello-timer remaining value for each interface
- The wait-timer remaining value for each interface
- The grace-timer remaining value for each interface
- The packet count received and transmitted for each neighbor
- Dead timer remaining value for each neighbor
- Transmit timer remaining value for each neighbor
• The LSU Q length and its highest mark for each neighbor
• The LSR Q length and its highest mark for each neighbor

Example (Statistics)

Dell#show ip ospf 10 statistics
Interface TenGigabitEthernet 4/45
 Error packets (Receive statistics)
 Intf-Down 0 Non-Dr 0 Self-Org 0
 Wrong-Len 0 Invld-Nbr 0 Nbr-State 0
 Auth-Error 0 MD5-Error 0 Cksum-Err 0
 Version 0 AreaMisMatch 0 Conf-Issue 0
 SeqNo-Err 0 Unknown-Pkt 0 Bad-LsReq 0
 RtidZero 0
 Neighbor ID 3.1.1.2
 Packet Statistics
 Hello DDiscr LSReq LSUpd LSAck
 RX 47 2 1 3 2
 TX 46 3 1 3 2
 Timers
 Hello 1 Wait 0 Grace 0
 Dead 37 Transmit 0
 Queue Statistics
 LSU-Q-Len 0 LSU-Q-Wmark 1
 LSR-Q-Len 0 LSR-Q-Wmark 1
Dell#

Related Commands

clear ip ospf statistics — clears the packet statistics in all interfaces and neighbors.

show ip ospf timers rate-limit

Show the LSA currently in the queue waiting for timers to expire.

Syntax

show ip ospf process-id timers rate-limit

Parameters

process-id Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Defaults

none

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Example

Dell#show ip ospf 10 timers rate-limit

List of LSAs in rate limit Queue
LSA id: 1.1.1.0 Type: 3 Adv Rtld: 3.3.3.3 Expiry time: 00:00:09.111
LSA id: 3.3.3.3 Type: 1 Adv Rtld: 3.3.3.3 Expiry time: 00:00:23.96
Dell#

show ip ospf topology

Display routers in directly connected areas.

Syntax

show ip ospf process-id topology

Parameters

process-id

Enter the OSPF Process ID to show a specific process. If no Process ID is entered, command applies only to the first OSPF process.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To isolate problems with inter-area and external routes, use this command. In OSPF inter-area and external routes are calculated by adding LSA cost to the cost of reaching the router. If an inter-area or external route is not of correct cost, the display can determine if the path to the originating router is correct or not.

Example

Dell#show ip ospf 1 topology

<table>
<thead>
<tr>
<th>Router ID</th>
<th>Flags</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.3</td>
<td>E/B/-/1</td>
<td>20.0.0.3</td>
<td>Te 0/6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>E/-/-/1</td>
<td>10.0.0.1</td>
<td>Te 0/6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Dell#
summary-address

To advertise one external route, set the OSPF ASBR.

Syntax

```
summary-address ip-address mask [not-advertise] [tag tag-value]
```

To disable summary address, use the `no summary-address ip-address mask` command.

Parameters

- `ip-address`
 Specify the IP address in dotted decimal format of the address to summarize.

- `mask`
 Specify the mask in dotted decimal format of the address to summarize.

- `not-advertise`
 (OPTIONAL) Enter the keywords `not-advertise` to suppress that match the network prefix/mask pair.

- `tag tag-value`
 (OPTIONAL) Enter the keyword `tag` then a value to match on routes redistributed through a route map. The range is from 0 to 4294967295.

Defaults

Not configured.

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `area range` command summarizes routes for the different areas.

With the `not-advertise` parameter configured, you can use this command to filter out some external routes. For example, if you want to redistribute static routes to OSPF, but you don’t want OSPF to advertise routes with prefix 1.1.0.0, you can configure the `summary-address 1.1.0.0 255.255.0.0 not-advertise` to filter out all the routes fall in range 1.1.0.0/16.

Related Commands

- `area range` — summarizes routes within an area.
timers spf

Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.

Syntax

```
timers spf delay holdtime
```

To return to the default, use the `no timers spf` command.

Parameters

- **delay**
 - Enter a number as the delay. The range is from 0 to 4294967295. The default is **5 seconds**.
- **holdtime**
 - Enter a number as the hold time. The range is from 0 to 4294967295. The default is **10 seconds**.

Defaults

- delay = 5 seconds
- holdtime = 10 seconds

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Setting the `delay` and `holdtime` parameters to a low number enables the switch to an alternate path quickly but requires more CPU usage.

Example for IPv4 and IPv6

```
Dell#
Dell(conf)#router ospf 1
Dell(conf-router_ospf-1)#timer spf 2 5
Dell(conf-router_ospf-1)#
Dell(conf-router_ospf-1)#show config
!
router ospf 1
  timers spf 2 5
Dell(conf-router_ospf-1)#
Dell(conf-router_ospf-1)#end
Dell#
```
timers throttle lsa all

Configure LSA transmit intervals.

Syntax

```
timers throttle lsa all {start-interval | hold-interval | max-interval}
```

To return to the default, use the `no timers throttle lsa` command.

Parameters

- **start-interval**: Set the minimum interval between initial sending and resending the same LSA. The range is from 0 to 600,000 milliseconds.
- **hold-interval**: Set the next interval to send the same LSA. This interval is the time between sending the same LSA after the start-interval has been attempted. The range is from 1 to 600,000 milliseconds.
- **max-interval**: Set the maximum amount of time the system waits before sending the LSA. The range is from 1 to 600,000 milliseconds.

Defaults

- start-interval: 0 msec
- hold-interval: 5000 msec
- max-interval: 5000 msec

Command Modes

ROUTER OSPF

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

LSAs are sent after the start-interval and then after hold-interval until the maximum interval is reached. In throttling, exponential backoff is used when sending same LSA, so that the interval is multiplied until the maximum time is reached. For example, if the `start-interval 5000` and `hold-interval 1000` and `max-interval 100,000`, the LSA is sent at 5000 msec, then 1000 msec, then 2000 msec, them 4000 until 100,000 msec is reached.

timers throttle lsa arrival

Configure the LSA acceptance intervals.

Syntax

```
timers throttle lsa arrival arrival-time
```

Open Shortest Path First (OSPFv2 and OSPFv3)
To return to the default, use the no timers throttle lsa command.

Parameters

- **arrival-time**
 - Set the interval between receiving the same LSA repeatedly, to allow sufficient time for the system to accept the LSA. The range is from 0 to 600,000 milliseconds.

Defaults

- **1000 msec**

Command Modes

- **ROUTER OSPF**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

OSPFv3 Commands

The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) remain unchanged. However, OSPFv3 runs on a per-link basis instead of on a per-IP-subnet basis. Most changes were necessary to handle the increased address size of IPv6.

The Dell Networking implementation of OSPFv3 is based on IETF RFC 2740.

area authentication

Configure an IPsec authentication policy for OSPFv3 packets in an OFSPFv3 area.

Syntax

```
area area-id authentication ipsec spi number {MD5 | SHA1} [key-encryption-type] key
```

Parameters

- **area area-id**
 - Area for which OSPFv3 traffic is to be authenticated. For area-id, you can enter a number.
 - The range is from 0 to 4294967295.

- **ipsec spi number**
 - Security Policy index (SPI) value that identifies an IPsec security policy.
 - The range is from 256 to 4294967295.
area encryption

Configure an IPsec encryption policy for OSPFv3 packets in an OSPFv3 area.

Syntax

```
area area-id encryption ipsec spi number esp encryption-algorithm [key-encryption-type] key authentication-algorithm [key-encryption-type] key | null
```

Description

Before you enable IPsec authentication on an OSPFv3 area, you must first enable OSPFv3 globally on the router. Configure the same authentication policy (same SPI and key) on each interface in an OSPFv3 link.

An SPI number must be unique to one IPsec security policy (authentication or encryption) on the router.

If you have enabled IPsec encryption in an OSPFv3 area with the `area encryption` command, you cannot use the `area authentication` command in the area at the same time.

The configuration of IPsec authentication on an interface-level takes precedence over an area-level configuration. If you remove an interface configuration, an area authentication policy that has been configured is applied to the interface.
To remove an IPsec encryption policy from an interface, use the `no area area-id encryption spi number` command.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area area-id</td>
<td>Area for which OSPFv3 traffic is to be encrypted. For <code>area-id</code>, enter a number. The range is from 0 to 4294967295.</td>
</tr>
<tr>
<td>ipsec spi number</td>
<td>Security Policy index (SPI) value that identifies an IPsec security policy. The range is from 256 to 4294967295.</td>
</tr>
<tr>
<td>esp encryption-algorithm</td>
<td>Encryption algorithm used with ESP. Valid values are: 3DES, DES, AES-CBC, and NULL. For AES-CBC, only the AES-128 and AES-192 ciphers are supported.</td>
</tr>
<tr>
<td>key-encryption-algorithm</td>
<td>(OPTIONAL) Specifies if the key is encrypted. Valid values: 0 (key is not encrypted) or 7 (key is encrypted).</td>
</tr>
<tr>
<td>key</td>
<td>Text string used in encryption. The required lengths of a non-encrypted or encrypted key are: 3DES - 48 or 96 hex digits; DES - 16 or 32 hex digits; AES-CBC -32 or 64 hex digits for AES-128 and 48 or 96 hex digits for AES-192.</td>
</tr>
<tr>
<td>authentication-algorithm</td>
<td>Specifies the authentication algorithm to use for encryption. Valid values are MD5 or SHA1.</td>
</tr>
<tr>
<td>key-encryption-type</td>
<td>(OPTIONAL) Specifies if the authentication key is encrypted. Valid values: 0 (key is not encrypted) or 7 (key is encrypted).</td>
</tr>
<tr>
<td>key</td>
<td>Text string used in authentication. For MD5 authentication, the key must be 32 hex digits (non-encrypted) or 64 hex digits (encrypted).</td>
</tr>
</tbody>
</table>
null

Causes an encryption policy configured for the area to not be inherited on the interface.

auto-cost

Specify how the OSPF interface cost is calculated based on the reference bandwidth method.

Syntax

auto-cost [reference-bandwidth ref-bw]

To return to the default bandwidth or to assign cost based on the interface type, use the no auto-cost [reference-bandwidth ref-bw] command.
Parameters

- **ref-bw**

 (OPTIONAL) Specify a reference bandwidth in megabits per second. The range is from 1 to 4294967. The default is **100 megabits per second**.

Defaults

- **100 megabits per second**.

Command Modes

- **ROUTER OSPFv3**

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Example

```
Dell#show running-config ospf
!
ipv6 router ospf 10
  log-adjacency-changes
  auto-cost reference-bandwidth 2000

Dell(conf-ipv6-router_ospf)#auto-cost reference-bandwidth ?
<1-4294967>             Reference bandwidth in Mbits/second
(default = 100)
Dell(conf-ipv6-router_ospf)#no auto-cost ?
reference-bandwidth     Use reference bandwidth method to assign OSPF cost
<cr>
Dell(conf-ipv6-router_ospf)#
```

clear ipv6 ospf process

Reset an OSPFV3 router process without removing or re-configuring the process.

Syntax

```
clear ipv6 ospf process
```

Command Modes

- **EXEC**
- **EXEC Privilege**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
debug ipv6 ospf bfd

Display debug information and interface types for BFD on OSPF IPv6 packets.

Syntax

[no] debug ipv6 ospf bfd [interface]

To cancel the debug command, use the no debug ipv6 ospf command.

Parameters

interface (OPTIONAL) Enter one of the following keywords and slot/port or number information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a tunnel interface, enter the keyword tunnel then a number. The range is from 1 to 16383.
- For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes

EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following section describes the command fields.

Lines Beginning With or Including Description

OSPFv3... Debugging is on for all OSPFv3 packets and all interfaces.
05:21:01 Displays the time stamp.
Sending Ver:3 Sending OSPFv3 version..

Example

Dell(conf-if-te-0/2)#do debug ipv6 ospf bfd te 0/2
OSPFv3 bfd related debugging is on for TenGigabitEthernet 0/2
00:59:26 : OSPFv3INFO: Received Interface mode bfd config command on interface Te 0/2 Enable 1, interval 0, min_rx 0, Multiplier 0, role 0, Disable 0
00:59:26 : OSPFv3INFO: Enabling BFD on interface Te 0/2 Cmd Add
debug ipv6 ospf

Display debug information and interface types on OSPF IPv6 packets or events.

Syntax

display debug ipv6 ospf {packet | events} [interface]

Parameters

interface (OPTIONAL) Enter one of the following keywords and slot/port
or number information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a Port Channel interface, enter the keyword port-channel then a number. The range is 1 to 128.
- For a tunnel interface, enter the keyword tunnel then a number. The range is 1 to 16383.
- For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Command Modes EXEC Privilege
default-information originate

Configure the system to generate a default external route into an OSPFv3 routing domain.

Syntax

```
default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]
```

To return to the default values, use the no default-information originate command.

Parameters

- **always** (OPTIONAL) Enter the keyword always to specify that default route information must always be advertised.
- **metric metric-value** (OPTIONAL) Enter the keyword metric then a number to configure a metric value for the route. The range is from 1 to 16777214.
- **metric-type type-value** (OPTIONAL) Enter the keywords metric-type then an OSPFv3 link state type of 1 or 2 for default routes. The values are:
 - 1 = Type 1 external route
 - 2 = Type 2 external route
- **route-map map-name** (OPTIONAL) Enter the keywords route-map then the name of an established route map.

Defaults

Disabled.

Command Modes

- ROUTER OSPFv3

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
graceful-restart grace-period

Enable OSPFv3 graceful restart globally by setting the grace period (in seconds) that an OSPFv3 router’s neighbors continues to advertise the router as adjacent during a graceful restart.

Syntax

```plaintext
graceful-restart grace-period seconds
```

To disable OSPFv3 graceful restart, enter `no graceful-restart grace-period`.

Parameters

- `seconds`: Time duration, in seconds, that specifies the duration of the restart process before OSPFv3 terminates the process. The range is from 40 to 1800 seconds.

Defaults

OSPFv3 graceful restart is disabled and functions in a helper-only role.

Command Modes

- `ROUTER OSPFv3`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, OSPFv3 graceful restart is disabled and functions only in a helper role to help restarting neighbor routers in their graceful restarts when it receives a Grace LSA.

To enable OSPFv3 graceful restart, enter the `ipv6 router ospf` command to enter OSPFv3 configuration mode and then configure a grace period using the `graceful-restart grace-period` command. The grace period is the length of time that OSPFv3 neighbors continue to advertise the restarting router as though it is fully adjacent. When graceful restart is enabled (restarting role), an OSPFv3 restarting expects its OSPFv3 neighbors to help when it restarts by not advertising the broken link.

When you enable the helper-reject role on an interface with the `ipv6 ospf graceful-restart helper-reject` command, you reconfigure OSPFv3 graceful restart to function in a ‘restarting-only’ role. In a ‘restarting-only’ role, OSPFv3 does not participate in the graceful restart of a neighbor.

graceful-restart mode

Specify the type of events that trigger an OSPFv3 graceful restart.

Syntax

```plaintext
graceful-restart mode {planned-only | unplanned-only}
```

Open Shortest Path First (OSPFv2 and OSPFv3) | 1120
To disable graceful restart mode, enter `no graceful-restart mode`.

Parameters

| planned-only (OPTIONAL) Enter the keywords planned-only to indicate graceful restart is supported in a planned restart condition only. |
| unplanned-only (OPTIONAL) Enter the keywords unplanned-only to indicate graceful restart is supported in an unplanned restart condition only. |

Defaults

OSPFv3 graceful restart supports both planned and unplanned failures.

Command Modes

| ROUTER OSPFv3 |

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

OSPFv3 graceful restart supports planned-only and/or unplanned-only restarts. The default is support for both planned and unplanned restarts.

- A planned restart occurs when you enter the `redundancy force-failover rpm` command to force the primary RPM to switch to the backup RPM. During a planned restart, OSPF sends out a Type-11 Grace LSA before the system switches over to the backup RPM.
- An unplanned restart occurs when an unplanned event causes the active RPM to switch to the backup RPM, such as when an active process crashes, the active RPM is removed, or a power failure happens. During an unplanned restart, OSPF sends out a Grace LSA when the backup RPM comes online.

By default, both planned and unplanned restarts trigger an OSPFv3 graceful restart. Selecting one or the other mode restricts OSPFv3 to the single selected mode.

ipv6 ospf area

Enable IPv6 OSPF on an interface.

Syntax

```
ipv6 ospf process id area area id
```

To disable OSPFv6 routing for an interface, use the `no ipv6 ospf process-id area area-id` command.

Parameters

- `process-id` Enter the process identification number.
- `area area-id` Specify the OSPF area. The range is from 0 to 65535.

Defaults

none
ipv6 ospf authentication

Enable IPv6 OSPF on an interface.

Syntax
ipv6 ospf authentication {null | ipsec spi number {MD5 | SHA1} [key-encryption-type] key}}

To remove an IPsec authentication policy from an interface, use the no ipv6 ospf authentication spi number command.

To remove null authentication on an interface to allow the interface to inherit the authentication policy configured for the OSPFv3 area, use the no ipv6 ospf authentication null command.

Parameters

null
Causes an authentication policy configured for the area to not be inherited on the interface.

ipsec spi number
Security Policy index (SPI) value that identifies an IPsec security policy. The range is from 256 to 4294967295.

MD5 | SHA1
Authentication type: Message Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1).

key-encryption-type
(Optional) Specifies if the key is encrypted.
Valid values: 0 (key is not encrypted) or 7 (key is encrypted).

key
Text string used in authentication.
For MD5 authentication, the key must be 32 hex digits (non-encrypted) or 64 hex digits (encrypted).
For SHA-1 authentication, the key must be 40 hex digits (non-encrypted) or 80 hex digits (encrypted).

Defaults
Not configured.

Command Modes
INTERFACE
ipv6 ospf bfd all-neighbors

Establish BFD sessions with all OSPFv3 neighbors on a single interface or use non-default BFD session parameters.

Syntax

```
ipv6 ospf bfd all-neighbors [disable | [interval interval min_rx min_rx multiplier value role {active | passive}]]
```

To disable all BFD sessions on an OSPFv3 interface implicitly, use the `no ipv6 ospf bfd all-neighbors disable` command.

Parameters

- **disable** (OPTIONAL) Enter the keyword `disable` to disable BFD on this interface.
- **interval milliseconds** (OPTIONAL) Enter the keyword `interval` to specify non-default BFD session parameters beginning with the transmission interval. The range is from 50 to 1000. The default is 100.
- **min_rx milliseconds** Enter the keywords `min_rx` to specify the minimum rate at which the local system would like to receive control packets from the remote system. The range is from 50 to 100. The default is 100.
- **multiplier value** Enter the keyword `multiplier` to specify the number of packets that must be missed in order to declare a session down. The range is from 3 to 50. The default is 3.
- **role [active | passive]** Enter the role that the local system assumes:
 - **active** — The active system initiates the BFD session. Both systems can be active for the same session.
 - **passive** — The passive system does not initiate a session. It only responds to a request for session initialization from the active system.
The default is **Active**.

Defaults

See Parameters.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command provides the flexibility to fine-tune the timer values based on individual interface needs when you configure the `ipv6 ospf bfd` command in CONFIGURATION mode. Any timer values specified with this command overrides timers set using the `bfd all-neighbors` command. Using the `no` form of this command does not disable BFD if you configured BFD in CONFIGURATION mode.

To disable BFD on a specific interface while BFD is configured in CONFIGURATION mode, use the keyword `disable`.

`ipv6 ospf cost`

Explicitly specify the cost of sending a packet on an interface.

Syntax

```
ipv6 ospf interface-cost
```

Parameters

- `interface-cost` Enter a unsigned integer value expressed as the link-state metric. The range is from 1 to 65535.

Defaults

Default cost based on the bandwidth.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In general, the path cost is calculated as:

\[10^8 \div \text{bandwidth} \]
Using this formula, the default path cost is calculated as:

- TenGigabitEthernet—Default cost is 1
- FortygigEthernet — Default cost is 1
- Ethernet—Default cost is 10

ipv6 ospf dead-interval

Set the time interval since the last hello-packet was received from a router. After the time interval elapses, the neighboring routers declare the router down.

Syntax

```
ip6 ospf dead-interval seconds
```

Parameters

- `seconds`: Enter the time interval in seconds. The range is from 1 to 65535 seconds.

Defaults

40 seconds (Ethernet).

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, the dead interval is four times longer than the default `ipv6 ospf hello-interval` command.

ipv6 ospf encryption

Configure an IPsec encryption policy for OSPFv3 packets on an IPv6 interface.

Syntax

```
ip6 ospf encryption (null | ipsec spi number esp encryption-algorithm [key-encryption-type] key authentication-algorithm [key-encryption-type] key)
```

To remove an IPsec encryption policy from an interface, use the `no ipv6 ospf encryption spi number` command.
To remove null authentication on an interface to allow the interface to inherit the authentication policy configured for the OSPFv3 area, use the `no ipv6 ospf encryption null` command.

Parameters

- **null**
 - Causes an encryption policy configured for the area to not be inherited on the interface.

- **ipsec spi number**
 - Security Policy index (SPI) value that identifies an IPsec security policy. The range is from 256 to 4294967295.

- **esp encryption-algorithm**
 - Encryption algorithm used with ESP.
 - Valid values are: 3DES, DES, AES-CBC, and NULL.
 - For AES-CBC, only the AES-128 and AES-192 ciphers are supported.

- **key-encryption-type**
 - (OPTIONAL) Specifies if the key is encrypted.
 - Valid values: 0 (key is not encrypted) or 7 (key is encrypted).

- **key**
 - Text string used in authentication.
 - The required lengths of a non-encrypted or encrypted key are:
 - 3DES - 48 or 96 hex digits; DES - 16 or 32 hex digits; AES-CBC -32 or 64 hex digits for AES-128 and 48 or 96 hex digits for AES-192.

- **authentication-algorithm**
 - Specifies the authentication algorithm to use for encryption.
 - Valid values are MD5 or SHA1.

- **key-encryption-type**
 - (OPTIONAL) Specifies if the authentication key is encrypted.
 - Valid values: 0 (key is not encrypted) or 7 (key is encrypted).

- **key**
 - Text string used in authentication.
 - For MD5 authentication, the key must be 32 hex digits (non-encrypted) or 64 hex digits (encrypted).
 - For SHA-1 authentication, the key must be 40 hex digits (non-encrypted) or 80 hex digits (encrypted).

Defaults

- Not configured.

Command Modes

- INTERFACE
ipv6 ospf graceful-restart helper-reject

Configure an OSPFv3 interface to not act upon the Grace LSAs that it receives from a restarting OSPFv3 neighbor.

Syntax

ipv6 ospf graceful-restart helper-reject

To disable the helper-reject role, use the no ipv6 ospf graceful-restart helper-reject command.

Defaults

The helper-reject role is not configured.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Command

By default, OSPFv3 graceful restart is disabled and functions only in a helper role to help restarting neighbor routers in their graceful restarts when it receives a Grace LSA.

When configured in a helper-reject role, an OSPFv3 router ignores the Grace LSAs that it receives from a restarting OSPFv3 neighbor.

The graceful-restart role command is not supported in OSPFv3. When you enable the helper-reject role on an interface, you reconfigure an OSPFv3 router to function in a “restarting-only” role.
ipv6 ospf hello-interval

Specify the time interval between the hello packets sent on the interface.

Syntax
ipv6 ospf hello-interval seconds

Parameters
- **seconds**: Enter the time interval in seconds as the time between hello packets. The range is from 1 to 65525 seconds.

Defaults
10 seconds (Ethernet).

Command Modes
INTERFACE

Command History
- **Version**: Description
 - 9.9(0.0): Introduced on the FN IOM.
 - 9.2(0.0): Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The time interval between hello packets must be the same for routers in a network.

ipv6 ospf priority

To determine the Designated Router for the OSPFv3 network, set the priority of the interface.

Syntax
ipv6 ospf priority number

Parameters
- **number**: Enter the number as the priority. The range is from 1 to 255.

Defaults
1

Command Modes
INTERFACE

Command History
- **Version**: Description
 - 9.9(0.0): Introduced on the FN IOM.
 - 9.2(0.0): Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information

Setting a priority of 0 makes the router ineligible for election as a Designated Router or Backup Designated Router.

Use this command for interfaces connected to multi-access networks, not point-to-point networks.

ipv6 router ospf

Enable OSPF for IPv6 router configuration.

Syntax
ipv6 router ospf process-id
To exit OSPF for IPv6, use the no ipv6 router ospf process-id command.

Parameters
process-id
Enter the process identification number. The range is from 1 to 65535.

Defaults
none

Command Modes
CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

maximum-paths

Enable the software to forward packets over multiple paths.

Syntax
maximum-paths number
To disable packet forwarding over multiple paths, use the no maximum-paths command.

Parameters
number
Specify the number of paths. The range is from 1 to 64. The default is 8 paths.

Defaults
4

Command Modes
ROUTER OSPF for OSPFv3
passive-interface

Disable (suppress) sending routing updates on an interface.

Syntax

```
passive-interface {default | interface}
```

To enable sending routing updates on an interface, use the `no passive-interface interface` command.

To return all OSPF interfaces (current and future) to active, use the `no passive-interface default` command.

Parameters

- **Default**: Enter the keyword `default` to make all OSPF interfaces (current and future) passive.
- **interface**: Enter the following keywords and slot/port or number information:
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

Command Modes

- ROUTER OSPF for OSPFv2
- ROUTER OSPFv3 for OSPFv3

Command History

- **Version**
 - **9.9(0.0)**: Introduced on the FN IOM.
 - **9.2(0.0)**: Added support for OSPFv3.
 - **8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information

By default, no interfaces are passive. Routing updates are sent to all interfaces on which the routing protocol is enabled.

If you disable the sending of routing updates on an interface, the particular address prefix continues to be advertised to other interfaces, and updates from other routers on that interface continue to be received and processed.

OSPFv3 for IPv6 routing information is not sent or received through the specified router interface. The specified interface address appears as a stub network in the OSPFv3 for IPv6 domain.

redistribute

Redistribute information from another routing protocol into OSPFv3 throughout the OSPF process.

Syntax

redistribute {bgp as number}{connected | static}[metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value]

To disable redistribution, use the no redistribute {connected | static} command.

Parameters

bgp as number Enter the keyword bgp then the autonomous system number.

The range is from 1 to 65535.

connected Enter the keyword connected to redistribute routes from physically connected interfaces.

static Enter the keyword static to redistribute manually configured routes.

metric metric-value Enter the keyword metric then the metric value.

The range is from 0 to 16777214.

The default is 20.

metric-type type-value (OPTIONAL) Enter the keywords metric-type then the OSPFv3 link state type of 1 or 2 for default routes. The values are:

- 1 for a type 1 external route
- 2 for a type 2 external route
The default is 2.

route-map map-name (OPTIONAL) Enter the keywords route-map then the name of an established route map. If the route map is not configured, the default is deny (to drop all routes).

tag tag-value (OPTIONAL) Enter the keyword tag to set the tag for routes redistributed into OSPFv3.

The range is from 0 to 4294967295

The default is 0.

Defaults Not configured.

Command Modes ROUTER OSPF for OSPFv2

ROUTER OSPFv3 for OSPFv3

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Added support for OSPFv3.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information To redistribute the default route (x:x::x::x), use the default-information originate command.

Related Commands

default-information originate — generates a default route into the OSPF routing domain.

router-id

Designate a fixed router ID.

Syntax router-id ip-address

To return to the previous router ID, use the no router-id ip-address command.

Parameters ip-address Enter the router ID in the dotted decimal format.
Defaults
The router ID is selected automatically from the set of IPv4 addresses configured on a router.

Command Modes
ROUTER OSPFv3 for OSPFv3

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Added support for OSPFv3.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You can configure an arbitrary value in the IP address for each router. However, each router ID must be unique.

If this command is used on an OSPFv3 process that is already active (has neighbors), all the neighbor adjacencies are brought down immediately and new sessions are initiated with the new router ID.

Example

Dell(conf)#router ospf 100
Dell(conf-router_ospf)#router-id 1.1.1.1
Changing router-ID will bring down existing OSPF adjacency [y/n]:

Dell(conf-router_ospf)#show config
!
router ospf 100
router-id 1.1.1.1
Dell(conf-router_ospf)#no router-id
Changing router-ID will bring down existing OSPF adjacency [y/n]:
Dell#

show crypto ipsec policy

Display the configuration of IPsec authentication and encryption policies.

Syntax

show crypto ipsec policy [name name]

Parameters

name name (OPTIONAL) Displays configuration details about a specified policy.

Defaults

none

Command Modes

EXEC
EXEC Privilege

Open Shortest Path First (OSPFv2 and OSPFv3)
Usage Information

The `show crypto ipsec policy` command output displays the AH and ESP parameters configured in IPsec security policies, including the SPI number, keys, and algorithms used.

When configured in a helper-reject role, an OSPFv3 router ignores the Grace LSAs that it receives from a restarting OSPFv3 neighbor.

show crypto ipsec sa ipv6

Display the IPsec security associations (SAs) used on OSPFv3 interfaces.

Syntax

```
show crypto ipsec sa ipv6 [interface interface]
```

Parameters

`interface interface` (OPTIONAL) Displays information about the SAs used on a specified OSPFv3 interface, where `interface` is one of the following values:

- For a Port Channel interface, enter `port-channel` then the port channel number.
- For a 10-Gigabit Ethernet interface, enter `TenGigabitEthernet` then the slot/port number.
- For a 40–Gigabit Ethernet interface, enter `fortyGigE` then the slot/port number.
- For a VLAN interface, enter `vlan` `vlan-id`. The valid VLAN IDs range is from 1 to 4094.

Defaults

`none`

Command Modes

`EXEC`

`EXEC Privilege`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show ipv6 ospf database

Display information in the OSPFv3 database, including link-state advertisements (LSAs).

Syntax
show ipv6 ospf database [database-summary | grace-lsa]

Parameters
- database-summary
 (OPTIONAL) Enter the keywords database-summary to view a summary of database LSA information.
- grace-lsa
 (OPTIONAL): Enter the keywords grace-lsa to display the Type-11 Grace LSAs sent and received on an OSPFv3 router.

Defaults
none

Command Modes
- EXEC
- EXEC Privilege

Command History
- Version Description
 9.9(0.0) Introduced on the FN IOM.
 9.2(0.0) Introduced on the M I/O Aggregator.

Usage Information
The show crypto ipsec sa ipv6 command output displays security associations set up for OSPFv3 links in IPsec authentication and encryption policies on the router.

show ipv6 ospf interface

View OSPFv3 interface information.

Syntax
show ipv6 ospf [interface]
(OPTIONAL) Enter one of the following keywords and slot/port or number information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet and the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE and the slot/port information.
- For a Port Channel interface, enter the keywords port-channel and a number. The range is from 1 to 128.
- For a Tunnel interface, enter the keywords tunnel and a number. The range is from 1 to 16383.
- For a VLAN, enter the keyword vlan and a number from 1 to 4094.

Defaults none

Command Modes EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable BFD at the global level, `show ipv6 ospf interface` shows the BFD provisioning.

If you enable BFD at the interface level, `show ipv6 ospf interface` shows the BFD interval timers.

Example

```
Dell#show ipv6 ospf interface TenGigabitethernet 1/0
TenGigabitEthernet 1/0 is up, line protocol is up
  Link Local Address fe80::201:e8ff:fe17:5bbd, Interface ID 67420217
  Area 0, Process ID 1, Instance ID 0, Router ID 11.1.1.1
  NetworkType BROADCAST, Cost: 1, Passive: No
  Transmit Delay is 100 sec, State DR, Priority 1
  Interface is using OSPF global mode BFD configuration.
  Designated router on this network is 11.1.1.1 (local)
  No backup designated router on this network
  Timer intervals configured, Hello 10, Dead 40, Wait 1, Retransmit 5
Dell#
```
show ipv6 ospf neighbor

Display the OSPF neighbor information on a per-interface basis.

Syntax

show ipv6 ospf neighbor [interface]

Parameters

interface (OPTIONAL) Enter the following keywords and slot/port or number information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a VLAN, enter the keyword vlan then the VLAN ID. The range is 1 to 4094.

Defaults

none

Command Modes

EXEC
EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.

Timers spf

Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.

Syntax

timers spf delay holdtime

To return to the default, use the no timers spf command.

Parameters

delay Enter a number as the delay. The range is from 0 to 4294967295. The default is 5 seconds.
holdtime

Enter a number as the hold time. The range is from 0 to 4294967295. The default is **10 seconds**.

Defaults

- delay = 5 seconds
- holdtime = 10 seconds

Command Modes

ROUTER OSPFv3 for OSPFv3

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant *Dell Networking OS Command Line Reference Guide*.

The following is a list of the *Dell Networking OS* version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Setting the delay and holdtime parameters to a low number enables the switch to an alternate path quickly but requires more CPU usage.

Example

```
Dell#
Dell(conf)>
Dell(conf)#ipv6 router ospf 1
Dell(conf-ipv6-router_ospf)#timer spf 2 5
Dell(conf-ipv6-router_ospf)#
Dell(conf-ipv6-router_ospf)#show config
!
ipv6 router ospf 1
timers spf 2 5
Dell(conf-ipv6-router_ospf)#
Dell(conf-ipv6-router_ospf)#end
Dell#
```
Policy-based Routing (PBR)

Policy-based routing (PBR) allows you to apply routing policies to specific interfaces. To enable PBR, create a redirect list and apply it to the interface. After the redirect list is applied to the interface, all traffic passing through the interface is subject to the rules defined in the redirect list. PBR is supported by the Dell Networking operating software (OS).

You can apply PBR to physical interfaces and logical interfaces (such as a link aggregation group [LAG] or virtual local area network [VLAN]). Trace lists and redirect lists do not function correctly when you configure both in the same configuration.

NOTE: Apply PBR to Layer 3 interfaces only.

Topics:

- description
- ip redirect-group
- ip redirect-list
- permit
- redirect
- seq
- show cam pbr
- show ip redirect-list

description

Add a description to this redirect list.

Syntax

```
description {description}
```

To remove the description, use the `no description {description}` command.

Parameters

- `description` Enter a description to identify the IP redirect list (16 characters maximum).

Defaults

none

Command Modes

REDIRECT-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
ip redirect-group

Apply a redirect list (policy-based routing) on an interface. You can apply multiple redirect lists to an interface by entering this command multiple times.

Syntax

```
ip redirect-group redirect-list-name
```

To remove a redirect list from an interface, use the `no ip redirect-group name` command.

Parameters

- `redirect-list-name` Enter the name of a configured redirect list.

Defaults

none

Command Modes

INTERFACE (conf-if-vl-)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Introduced on the C-Series and S-Series.</td>
</tr>
<tr>
<td>8.4.2.0</td>
<td>Introduced on the E-Series TeraScale.</td>
</tr>
<tr>
<td>7.4.2.0</td>
<td>Added support for LAG and VLAN interfaces.</td>
</tr>
<tr>
<td>7.7.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
</tbody>
</table>

Usage Information

You can apply any number of redirect-groups to an interface. A redirect list can contain any number of configured rules. These rules includes the next-hop IP address where the incoming traffic is to be redirected.

If the next hop address is reachable, traffic is forwarded to the specified next hop. Otherwise, the normal routing table is used to forward traffic. When a redirect-group is applied to an interface and the next-hop is reachable, the rules are added into the PBR CAM region. When incoming traffic hits an entry in the CAM, the traffic is redirected to the corresponding next-hop IP address specified in the rule.

NOTE: Apply the redirect list to physical, VLAN, or LAG interfaces only.
Related Commands

- `show cam pbr` – displays the content of the PBR CAM.
- `show ip redirect-list` – displays the redirect-list configuration.

ip redirect-list

Configure a redirect list and enter REDIRECT-LIST mode.

Syntax

```
ip redirect-list redirect-list-name
```

To remove a redirect list, use the `no ip redirect-list` command.

Parameters

- `redirect-list-name` Enter the name of a redirect list.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Introduced on the C-Series and S-Series.</td>
</tr>
<tr>
<td>8.4.2.0</td>
<td>Introduced on the E-Series TeraScale.</td>
</tr>
<tr>
<td>6.5.3.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
</tbody>
</table>

permit

Configure a permit rule. A permit rule excludes the matching packets from PBR classification and routes them using conventional routing.

Syntax

```
permit {ip-protocol-number | protocol-type} {source mask | any | host ip-address} {destination mask | any | host ip-address} [bit] [operators]
```

To remove the rule, use one of the following:

- If you know the filter sequence number, use the `no seq sequence-number` syntax command.
You can also use the `no permit {ip-protocol-number | protocol-type} {source mask | any | host ip-address} {destination mask | any | host ip-address} [bit] [operators] command.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-protocol-number</code></td>
<td>Enter a number from 0 to 255 for the protocol identified in the IP protocol header.</td>
</tr>
<tr>
<td><code>protocol-type</code></td>
<td>Enter one of the following keywords as the protocol type:</td>
</tr>
<tr>
<td></td>
<td>• icmp for internet control message protocol</td>
</tr>
<tr>
<td></td>
<td>• ip for any internet protocol</td>
</tr>
<tr>
<td></td>
<td>• tcp for transmission control protocol</td>
</tr>
<tr>
<td></td>
<td>• udp for user datagram protocol</td>
</tr>
<tr>
<td><code>source</code></td>
<td>Enter the IP address of the network or host from which the packets were sent.</td>
</tr>
<tr>
<td><code>mask</code></td>
<td>Enter a network mask in /prefix format (/x).</td>
</tr>
<tr>
<td><code>any</code></td>
<td>Enter the keyword <code>any</code> to specify that all traffic is subject to the filter.</td>
</tr>
<tr>
<td><code>host ip-address</code></td>
<td>Enter the keyword <code>host</code> then the IP address to specify a host IP address.</td>
</tr>
<tr>
<td><code>destination</code></td>
<td>Enter the IP address of the network or host to which the packets are sent.</td>
</tr>
<tr>
<td><code>bit</code></td>
<td>(OPTIONAL) For the TCP protocol type only, enter one or a combination of the following TCP flags:</td>
</tr>
<tr>
<td></td>
<td>• ack = acknowledgement</td>
</tr>
<tr>
<td></td>
<td>• fin = finish (no more data from the user)</td>
</tr>
<tr>
<td></td>
<td>• psh = push function</td>
</tr>
<tr>
<td></td>
<td>• rst = reset the connection</td>
</tr>
<tr>
<td></td>
<td>• syn = synchronize sequence number</td>
</tr>
<tr>
<td></td>
<td>• urg = urgent field</td>
</tr>
<tr>
<td><code>operator</code></td>
<td>(OPTIONAL) For TCP and UDP parameters only. Enter one of the following logical operand:</td>
</tr>
<tr>
<td></td>
<td>• eq = equal to</td>
</tr>
<tr>
<td></td>
<td>• neq = not equal to</td>
</tr>
<tr>
<td></td>
<td>• gt = greater than</td>
</tr>
<tr>
<td></td>
<td>• lt = less than</td>
</tr>
<tr>
<td></td>
<td>• range = inclusive range of ports (you must specify two ports for the <code>port</code> command parameter.)</td>
</tr>
</tbody>
</table>

Defaults none

Command Modes REDIRECT-LIST
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Introduced on the C-Series and S-Series.</td>
</tr>
<tr>
<td>8.4.2.0</td>
<td>Introduced on the E-Series TeraScale.</td>
</tr>
<tr>
<td>7.5.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
</tbody>
</table>

redirect

Configure a rule for the redirect list.

Syntax

`redirect {ip-address | slot/port} | tunnel tunnel-id}[track <obj-id>][ip-protocol-number | protocol-type [bit]] {source mask | any | host ip-address} {destination mask | any | host ip-address} [operator]

To remove this filter, use one of the following:

- Use the no seq sequence-number command if you know the filter's sequence number.
- You can also use the no redirect {ip-address | slot/port} | tunnel tunnel-id}[track <obj-id>][ip-protocol-number | protocol-type] {source mask | any | host ip-address} [operator] command.

Parameters

- **ip-address**: Enter the IP address of the forwarding router.
- **slot/port**: Enter the keyword slot / port followed by the slot/port information.
- **ip-protocol-number**: Enter a number from 0 to 255 for the protocol identified in the IP protocol header.
- **tunnel**: Enter the keyword tunnel to configure the tunnel setting.
- **tunnel-id**: Enter the keyword tunnel-id to redirect the traffic.
- **track**: Enter the keyword track to enable the tracking.
- **track <obj-id>**: Enter the keyword track <obj-id> to track object-id.
- **protocol-type**: Enter one of the following keywords as the protocol type:
 - icmp for internet control message protocol
 - ip for any internet protocol
 - tcp for transmission control protocol
- ud for user datagram protocol

bit
(Optional) For the TCP protocol type only, enter one or a combination of the following TCP flags:

- **ack** = acknowledgement
- **fin** = finish (no more data from the user)
- **psh** = push function
- **rst** = reset the connection
- **syn** = synchronize sequence number
- **urg** = urgent field

source
Enter the IP address of the network or host from which the packets were sent.

mask
Enter a network mask in /prefix format (/x).

any
Enter the keyword any to specify that all traffic is subject to the filter.

host ip-address
Enter the keyword host then the IP address to specify a host IP address.

destination
Enter the IP address of the network or host to which the packets are sent.

operator
(Optional) For TCP and UDP parameters only. Enter one of the following logical operand:

- **eq** = equal to
- **neq** = not equal to
- **gt** = greater than
- **lt** = less than
- **range** = inclusive range of ports (you must specify two ports for the port command parameter.)

Defaults
none

Command Modes
REDIRECT-LIST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Added the keyword track-id on the MXL.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Introduced on the C-Series.</td>
</tr>
<tr>
<td>8.4.2.0</td>
<td>Introduced on the E-Series TeraScale.</td>
</tr>
</tbody>
</table>
seq

Configure a filter with an assigned sequence number for the redirect list.

Syntax

```
seq sequence-number \{permit | redirect \{ip-address | tunnel tunnel-id\}\}\{ip-protocol-number | protocol-type\}\{source mask | any | host ip-address\} \{destination mask | any | host ip-address\}\{source-port | source-port-range start-port - end-port\}\{destination-port | destination-port-range start-port - end-port\}
```

To delete a filter, use the no seq sequence-number command.

Parameters

- **sequence-number**: Enter a number from 1 to 65535.
- **permit**: Enter the keyword permit to assign the sequence to the permit list.
- **redirect**: Enter the keyword redirect to assign the sequence to the redirect list.
- **ip-address**: Enter the IP address of the forwarding router.
- **tunnel**: Enter the keyword tunnel to configure the tunnel setting.
- **tunnel-id**: Enter the keyword tunnel-id to redirect the traffic.
- **track**: Enter the keyword track to enable the tracking.
- **track <obj-id>**: Enter the keyword track <obj-id> to track object-id.
- **ip-protocol-number**: Enter the keyword ip-protocol-number then the number from 0 to 255 for the protocol identified in the IP protocol header.
- **protocol-type**: Enter one of the following keywords as the protocol type:
 - icmp for internet control message protocol
 - ip for any internet protocol
 - tcp for transmission control protocol
 - udp for user datagram protocol
- **source**: Enter the IP address of the network or host from which the packets were sent.
- **mask**: Enter a network mask in /prefix format (/x).
- **any**: Enter the keyword any to specify that all traffic is subject to the filter.
host ip-address
Enter the keyword `host` then the IP address to specify a host IP address.

destination
Enter the IP address of the network or host to which the packets are sent.

bit
(OPTIONAL) For the TCP protocol type only, enter one or a combination of the following TCP flags:
- `ack` = acknowledgement
- `fin` = finish (no more data from the user)
- `psh` = push function
- `rst` = reset the connection
- `syn` = synchronize sequence number
- `urg` = urgent field

operator
(OPTIONAL) For the TCP and UDP parameters only. Enter one of the following logical operand:
- `eq` = equal to
- `neq` = not equal to
- `gt` = greater than
- `lt` = less than
- `range` = inclusive range of ports (you must specify two ports for the port command parameter.)

source port
Enter the keywords `source-port` then the port number to be matched in the ACL rule in the ICAP rule.

destination-port
Enter the keywords `destination-port` then the port number to be matched in the ACL rule in the ICAP rule.

source-port-range
Enter the keywords `Source-port-range` then the range of the start port to end port to be matched in the ACL rule in the ICAP rule.

destination-port-range
Enter the keywords `destination-port-range` then the range of the start port to end port to be matched in the ACL rule in the ICAP rule.

Defaults
`none`

Command Modes
`REDIRECT-LIST`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Added support for the <code>track-id</code> on the MXL.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for removing the Sonet interface on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show cam pbr

Display the PBR CAM content.

Syntax

```
show cam pbr {[interface interface] | stack-unit slot-number port-set number} [summary]
```

Parameters

- **interface interface**: Enter the keyword `interface` then the name of the interface.
- **stack–unit number**: Enter the keyword `stack-unit` then the slot number. The range is from 0 to 11.
- **port-set number**: Enter the keywords `port-set` then the port-pipe number. The range is from 0 to 0.
- **summary**: Enter the keyword `summary` to view only the total number of CAM entries.

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for removing the Sonet interface on the MXL 10/40GbE Switch IO Module.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Introduced.</td>
</tr>
</tbody>
</table>

Usage Information

The `show cam pbr` command displays the PBR CAM content.

Example

```
Dell#show cam pbr stack-unit 0 po 0
TCP Flag: Bit 5 - URG, Bit 4 - ACK, Bit 3 - PSH, Bit 2 - RST,
Bit 1 - SYN, Bit 0 - FIN
Cam Port VlanID Proto Tcp Src Dst SrcIp DstIp Next-hop Egress
Flag Port
Port------------------------------------------------------------
0000 5 N/A IP 0x0 0 22.22.2.22/32 33.33.3.0/24 00:01:e8:8a:fd:76 0/0
00001 5 N/A 145 0x0 0 0.0.0.0/0 44.4.4.4/32
00002 5 N/A TCP 0x0 0 55.1.3.0/24 66.6.6.6/32 00:01:e8:8a:fd:76 Po 128
00003 5 N/A UDP 0x0 0 55.1.3.0/24 66.6.6.6/32 00:01:e8:8a:fd:76 Po 128
00004 5 N/A IP 0x0 0 0.0.0.0/0 0.0.0.0/0 00:01:e8:8a:fd:76 Vl 1020(Po 100)
```

Related Commands

- **ip redirect-group** – applies a redirect group to an interface.
- **show ip redirect-list** – displays the redirect-list configuration.
- **show cam-usage** – displays the CAM usage on ACL, router, or switch.
show ip redirect-list

View the redirect list configuration and the interfaces it is applied to.

Syntax

```
show ip redirect-list redirect-list-name
```

Parameters

- `redirect-list-name` Enter the name of a configured Redirect list.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for removing the Sonet interface on the MXL.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Introduced.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip redirect-list explicit_tunnel
IP redirect-list explicit_tunnel:
Defined as:
  seq 5 redirect tunnel 1 track 1 tcp 155.55.2.0/24 222.22.2.0/24,
    Track 1 [up], Next-hop reachable (via Te 1/32)
  seq 10 redirect tunnel 1 track 1 tcp any any,
    Track 1 [up], Next-hop reachable (via Te 1/32)
  seq 15 redirect tunnel 2 udp 155.55.0.0/16 host 144.144.144.144,
    Track 1 [up], Next-hop reachable (via Te 1/32)
  seq 35 redirect 155.1.1.2 track 5 ip 7.7.7.0/24 8.8.8.0/24,
    Track 5 [up], Next-hop reachable (via Po 5)
  seq 30 redirect 155.1.1.2 track 6 icmp host 8.8.8.8 any,
    Track 5 [up], Next-hop reachable (via Po 5)
  seq 35 redirect 42.1.1.2 icmp host 8.8.8.8 any,
    Next-hop reachable (via Vl 20)
  seq 40 redirect 43.1.1.2 tcp 155.55.2.0/24 222.22.2.0/24,
    Next-hop reachable (via Vl 30)
  seq 45 redirect 31.1.1.2 track 200 ip 12.0.0.0 255.0.0.197 13.0.0.0
    255.0.0.197, Track 200 [up], Next-hop reachable (via Te 1/32)
    , Track
    , Track
    , Track
    , Track
200 [up], Next-hop reachable (via Vl 20)
200 [up], Next-hop reachable (via Po 5)
200 [up], Next-hop reachable (via Po 7)
200 [up], Next-hop reachable (via Te 2/188)
200 [up], Next-hop reachable (via Te 2/189)
```
The protocol-independent multicast (PIM) commands are supported by the Dell Networking Operating System (OS).

This chapter contains the following sections:

- IPv4 PIM-Sparse Mode Commands
- IPv6 PIM-Sparse Mode Commands

Topics:

- IPv4 PIM-Sparse Mode Commands
- clear ip pim rp-mapping
- clear ip pim tib
- debug ip pim
- ip pim bsr-border
- ip pim bsr-candidate
- ip pim dr-priority
- ip pim join-filter
- ip pim ingress-interface-map
- ip pim neighbor-filter
- ip pim query-interval
- ip pim register-filter
- ip pim rp-address
- ip pim rp-candidate
- ip pim sparse-mode
- ip pim sparse-mode sg-expiry-timer
- ip pim spt-threshold
- no ip pim snooping dr-flood
- show ip pim bsr-router
- show ip pim interface
- show ip pim neighbor
- show ip pim rp
- show ip pim snooping interface
- show ip pim snooping neighbor
- show ip pim snooping tib
- show ip pim summary
- show ip pim tib
- show running-config pim
- IPv6 PIM-Sparse Mode Commands
IPv6 PIM-Sparse Mode Commands

The following describes the IPv6 PIM-sparse mode (PIM-SM) commands.

clear ip pim rp-mapping

The bootstrap router (BSR) feature uses this command to remove all or particular rendezvous point (RP) advertisement.

Syntax

```plaintext
clear ip pim rp-mapping rp-address
```

Parameters

- `rp-address`
 (OPTIONAL) Enter the RP address in dotted decimal format (A.B.C.D).

Command Modes

- EXEC Privilege

Command History

- **Version**
 - 9.9(0.0): Introduced on the FN IOM.
 - 9.2(0.0): Introduced on the MXL 10/40GbE Switch IO Module.
clear ip pim tib

Clear PIM tree information from the PIM database.

Syntax

```
clear ip pim tib [group]
```

Parameters

- **group** (OPTIONAL) Enter the multicast group address in dotted decimal format (A.B.C.D).

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you use this command on a local VLT node, all multicast routes from the local PIM TIB, the entire multicast route table, and all the entries in the data plane are deleted. The local VLT node sends a request to the peer VLT node to download multicast routes learned by the peer. Both local and synced routes are removed from the local VLT node multicast route table. The peer VLT node clears synced routes from the node.

If you use this command on a peer VLT node, only the synced routes are deleted from the multicast route table.

debug ip pim

View IP PIM debugging messages.

Syntax

```
debug ip pim [bsr | events | group | packet [in | out] | register | state | timer [assert | hello | joinprune | register]]
```

To disable PIM debugging, use the `no debug ip pim` command or use the `undebug all` to disable all the debugging commands.

Parameters

- **bsr** (OPTIONAL) Enter the keyword `bsr` to view PIM Candidate RP/BSR activities.
- **events** (OPTIONAL) Enter the keyword `group` to view PIM messages for a specific group.
- **group** (OPTIONAL) Enter the keyword `group` to view PIM messages for a specific group.
packet [in | out] (OPTIONAL) Enter the keyword packet to view PIM packets. Enter one of the optional parameters:
 • in: to view incoming packets
 • out: to view outgoing packets

register (OPTIONAL) Enter the keyword register to view PIM register address in dotted decimal format (A.B.C.D).

state (OPTIONAL) Enter the keyword state to view PIM state changes.

timer [assert | hello | joinprune | register] (OPTIONAL) Enter the keyword timer to view PIM timers. Enter one of the optional parameters:
 • assert: to view the assertion timer
 • hello: to view the PIM neighbor keepalive timer
 • joinprune: to view the expiry timer (join/prune timer)
 • register: to view the register suppression timer

Defaults Disabled.
Command Modes EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip pim bsr-border

Define the border of PIM domain by filtering inbound and outbound PIM-BSR messages per interface.

Syntax

```
ip pim bsr-border
```

To return to the default value, use the `no ip pim bsr-border` command.

Defaults Disabled.
Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

This command is applied to the subsequent PIM-BSR. Existing BSR advertisements are cleaned up by time-out. To clean the candidate RP advertisements, use the `clear ip pim rp-mapping` command.

ip pim bsr-candidate

To join the Bootstrap election process, configure the PIM router.

Syntax

```
ip pim bsr-candidate interface [hash-mask-length] [priority]
```

To return to the default value, use the `no ip pim bsr-candidate` command.

Parameters

- `interface` Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

- `hash-mask-length` (OPTIONAL) Enter the hash mask length. The range is from zero (0) to 32. The default is 30.

- `priority` (OPTIONAL) Enter the priority used in Bootstrap election process. The range is from zero (0) to 255. The default is zero (0).

Defaults

Not configured.

Command Modes

`CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip pim dr-priority

Change the designated router (DR) priority for the interface.

Syntax

```
ip pim dr-priority priority-value
```

To remove the DR priority value assigned, use the `no ip pim dr-priority` command.

Parameters

- `priority-value` Enter a number. Preference is given to larger/higher number. The range is from 0 to 4294967294. The default is 1.

Defaults

- 1

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The router with the largest value assigned to an interface becomes the designated router. If two interfaces contain the same designated router priority value, the interface with the largest interface IP address becomes the designated router.

ip pim join-filter

Permit or deny PIM Join/Prune messages on an interface using an extended IP access list. This command prevents the PIM-SM router from creating state based on multicast source and/or group.

Syntax

```
ip pim join-filter ext-access-list {in | out}
```

To remove the access list, use the `no ip pim join-filter ext-access-list {in | out}` command.

Parameters

- `ext-access-list` Enter the name of an extended access list.
- `in` Enter this keyword to apply the access list to inbound traffic.
- `out` Enter this keyword to apply the access list to outbound traffic.

Defaults

- none

Command Modes

- INTERFACE
ip access-list extended

To configure an access list based on IP addresses or protocols.

Syntax

```
ip access-list extended [access-list-name]
```

Parameters

- `access-list-name` (Optional): Enter the name of an extended access list.

Defaults

None

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
P Constitutional Law Department
Dell(config)# ip access-list extended iptv-channels
Dell(config-ext-nacl)# permit ip 10.1.2.3/24 225.1.1.0/24
Dell(config-ext-nacl)# permit ip any 232.1.1.0/24
Dell(config-ext-nacl)# permit ip 100.1.1.0/16 any
Dell(config-if-te-1/1)# ip pim join-filter iptv-channels in
Dell(config-if-te-1/1)# ip pim join-filter iptv-channels out
```

Related Commands

- **ip pim ingress-interface-map** — configure an ingress interface map.
- **ip pim neighbor-filter** — prevent a router from participating in PIM.

ip pim ingress-interface-map

When the Dell Networking system is the RP, statically map potential incoming interfaces to (*,G) entries to create a lossless multicast forwarding environment.

Syntax

```
ip pim ingress-interface-map std-access-list
```

Parameters

- `std-access-list` (Required): Enter the name of a standard access list.

Defaults

None

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
P Constitutional Law Department
Dell(conf)# ip access-list standard map1
Dell(config-standard-nacl)# permit 224.0.0.1/24
Dell(config-standard-nacl)# exit
Dell(conf)# int te 0/1
Dell(config-if-te-0/1)# ip pim ingress-interface-map map1
```

ip pim neighbor-filter

To prevent a router from participating in PIM, configure this feature.

Syntax

```
ip pim neighbor-filter {access-list}
```

Example

```
P Constitutional Law Department
Dell(conf)# ip access-list standard map1
Dell(config-standard-nacl)# permit 224.0.0.1/24
Dell(config-standard-nacl)# exit
Dell(conf)# int te 0/1
Dell(config-if-te-0/1)# ip pim neighbor-filter map1
```
To remove the restriction, use the `no ip pim neighbor-filter {access-list}` command.

Parameters

- `access-list` Enter the name of a standard access list. Maximum 16 characters.

Defaults

- none

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Do not enter this command before creating the access-list.

ip pim query-interval

Change the frequency of PIM Router-Query messages.

Syntax

```
ip pim query-interval seconds
```

To return to the default value, use the `no ip pim query-interval seconds` command.

Parameters

- `seconds` Enter a number as the number of seconds between router query messages. The range is from 0 to 65535. The default is 30 seconds.

Defaults

- 30 seconds

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ip pim register-filter

To prevent a PIM source DR from sending register packets to an RP for the specified multicast source and group, use this feature.

Syntax

```
ip pim register-filter access-list
```

To return to the default, use the `no ip pim register-filter access-list` command.

Parameters

- **access-list**
 - Enter the name of an extended access list. Maximum 16 characters.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The access name is an extended IP access list that denies PIM register packets to RP at the source DR based on the multicast and group addresses. Do not enter this command before creating the access-list.

ip pim rp-address

Configure a static PIM rendezvous point (RP) address for a group or access-list.

Syntax

```
ip pim rp-address address {group-address group-address mask} override
```

To remove an RP address, use the `no ip pim rp-address address {group-address group-address mask} override` command.

Parameters

- **address**
 - Enter the RP address in dotted decimal format (A.B.C.D).

- **group-address**
 - Enter the keywords `group-address` then a group-address mask, in dotted decimal format (/xx), to assign that group address to the RP.
override Enter the keyword override to override the BSR updates with static RP. The override takes effect immediately during enable/disable.

NOTE: This option is applicable to multicast group range.

Defaults Not configured.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information First-hop routers use this address by to send register packets on behalf of source multicast hosts. The RP addresses are stored in the order in which they are entered. The RP is chosen based on a longer prefix match for a group. The RP selection does not depend on dynamic or static RP assignments.

ip pim rp-candidate

To send out a Candidate-RP-Advertisement message to the bootstrap (BS) router or define group prefixes that are defined with the RP address to PIM BSR, configure a PIM router.

Syntax

```
ip pim rp-candidate {interface [priority]}
```

To return to the default value, use the no ip pim rp-candidate {interface [priority]} command.

Parameters

- **interface** Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword loopback then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

- **priority** (OPTIONAL) Enter the priority used in Bootstrap election process. The range is zero (0) to 255. The default is 192.

Defaults

Not configured.
Command Modes

Configuration

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
Priority is stored at BSR router when receiving a Candidate-RP-Advertisement.

ip pim sparse-mode

Enable PIM sparse mode and IGMP on the interface.

Syntax

ip pim sparse-mode
To disable PIM sparse mode and IGMP, use the no ip pim sparse-mode command.

Defaults
Disabled.

Command Modes
INTERFACE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The interface must be enabled (the no shutdown command) and not have the switchport command configured. Multicast must also be enabled globally (using the ip multicast-lag-hashing command). PIM is supported on the port-channel interface.

ip pim sparse-mode sg-expiry-timer

Enable expiry timers globally for all sources, or for a specific set of (S,G) pairs an access list defines.

Syntax

ip pim sparse-mode sg-expiry-timer seconds [access-list name]
To disable configured timers and return to default mode, use the no ip pim sparse-mode sg-expiry-timer command.

Parameters

seconds Enter the number of seconds the S, G entries are retained. The range is from 211 to 86400.
access-list name

(OPTIONAL) Enter the name of a previously configured Extended ACL to enable the expiry time to specified S.G entries.

Defaults
Disabled. The default expiry timer (with no times configured) is 210 sec.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command configures an expiration timer for all S.G entries, unless they are assigned to an Extended ACL.

ip pim spt-threshold

To switch to the shortest path tree when the traffic reaches the specified threshold value, configure the PIM router.

Syntax

ip pim spt-threshold value | infinity
To return to the default value, use the no ip pim spt-threshold command.

Parameters

- **value** (OPTIONAL) Enter the traffic value in kilobits per second. The default is 10 packets per second. A value of zero (0) causes a switchover on the first packet.

- **infinity** (OPTIONAL) Enter the keyword infinity to never switch to the source-tree.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command is applicable to last hop routers on the shared tree towards the rendezvous point (RP).
no ip pim snooping dr-flood

Disable the flooding of multicast packets to the PIM designated router.

Syntax

no ip pim snooping dr-flood

To re-enable the flooding of multicast packets to the PIM designated router, use the `ip pim snooping dr-flood` command.

Defaults

Enabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, when you enable PIM-SM snooping, a switch floods all multicast traffic to the PIM designated router (DR), including unnecessary multicast packets. To minimize the traffic sent over the network to the designated router, you can disable designated-router flooding.

When designated-router flooding is disabled, PIM-SM snooping only forwards the multicast traffic, which belongs to a multicast group for which the switch receives a join request, on the port connected towards the designated router.

If the PIM DR flood is not disabled (default setting):

- Multicast traffic is transmitted on the egress port towards the PIM DR if the port is not the incoming interface.
- Multicast traffic for an unknown group is sent on the port towards the PIM DR. When DR flooding is disabled, multicast traffic for an unknown group is dropped.

Related Commands

- `ip pim sparse-mode` — enables PIM-SM snooping.

show ip pim bsr-router

View information on the Bootstrap router.

Syntax

show ip pim bsr-router

Command Modes

- EXEC
show ip pim interface

View information on the interfaces with IP PIM enabled.

Syntax

```
show ip pim interface
```

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 9.9(0.0)**
 Introduced on the FN IOM.
- **Version 9.2(0.0)**
 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ip pim interface` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Lists the IP addresses of the interfaces participating in PIM.</td>
</tr>
<tr>
<td>Interface</td>
<td>List the interface type, with either slot/port information or ID (VLAN or Port Channel), of the interfaces participating in PIM.</td>
</tr>
<tr>
<td>Ver/Mode</td>
<td>Displays the PIM version number and mode for each interface participating in PIM:</td>
</tr>
<tr>
<td></td>
<td>• v2 = PIM version 2</td>
</tr>
<tr>
<td></td>
<td>• S = PIM Sparse mode</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Nbr Count</td>
<td>Displays the number of PIM neighbors discovered over this interface.</td>
</tr>
<tr>
<td>Query Intvl</td>
<td>Displays the query interval for Router Query messages on that interface (configured with <code>ip pim query-interval</code> command).</td>
</tr>
<tr>
<td>DR Prio</td>
<td>Displays the Designated Router priority value configured on the interface (use the <code>ip pim dr-priority</code> command).</td>
</tr>
<tr>
<td>DR</td>
<td>Displays the IP address of the Designated Router for that interface.</td>
</tr>
</tbody>
</table>

Example

```
E600-7-RPM0#show ip pim interface
Address  Interface Ver/ Nbr Count Intvl Prio
172.21.200.254 te 0/5 v2/S 0 30 1 172.21.200.254
172.60.1.2 te 0/1 v2/S 0 30 1 172.60.1.2
192.3.1.1   te 1/8 v2/S 1 30 1 192.3.1.1
192.4.1.1   te 1/8 v2/S 0 30 1 192.4.1.1
172.21.110.1 te 1/6 v2/S 0 30 1 172.21.110.1
172.21.203.1 te 1/7 v2/S 0 30 1 172.21.203.1
```

show ip pim neighbor

View PIM neighbors.

Syntax

`show ip pim neighbor`

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip pim neighbor` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor address</td>
<td>Displays the IP address of the PIM neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>List the interface type, with either slot/port information or ID (VLAN or Port Channel), on which the PIM neighbor was found.</td>
</tr>
</tbody>
</table>
Field Description

Uptime/expires Displays the amount of time the neighbor has been up then the amount of time until the neighbor is removed from the multicast routing table (that is, until the neighbor hold time expires).

Ver Displays the PIM version number.

• v2 = PIM version 2

DR prio/Mode Displays the Designated Router priority and the mode.

• 1 = default Designated Router priority (use the ip pim dr-priority command)
• DR = Designated Router
• S = Sparse mode

Example

Dell#show ip pim neighbor
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
127.87.3.4 te 1/7 09:44:58/00:01:24 v2 1 / S
Dell#

show ip pim rp

View all multicast groups-to-RP mappings.

Syntax

show ip pim rp [mapping | group-address]

Parameters

mapping (OPTIONAL) Enter the keyword mapping to display the multicast groups-to-RP mapping and information on how RP is learnt.

group-address (OPTIONAL) Enter the multicast group address mask in dotted decimal format to view RP for a specific group.

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#sh ip pim rp
Group RP
224.2.197.115 165.87.20.4
224.2.217.146 165.87.20.4
Example (Mapping) Dell# sh ip pim rp mapping
Group(s): 224.0.0.0/4
 RP: 165.87.20.4, v2
 Info source: 165.87.20.5, via bootstrap, priority 0
 Uptime: 00:03:11, expires: 00:02:46
 RP: 165.87.20.3, v2
 Info source: 165.87.20.5, via bootstrap, priority 0
 Uptime: 00:03:11, expires: 00:03:03
Dell#

Example (Address) Dell# sh ip pim rp 229.1.2.1
Group RP
229.1.2.1 165.87.20.4
Dell#

show ip pim snooping interface

Display information on VLAN interfaces with PIM-SM snooping enabled.

Syntax show ip pim snooping interface [vlan vlan-id]

Parameters

 vlan vlan-id (OPTIONAL) Enter a VLAN ID to display information about a
 specified VLAN configured for PIM-SM snooping. The valid VLAN
 IDs range is from 1 to 4094.

Command Modes

 • EXEC
 • EXEC Privilege

Command History

 Version Description
 9.9(0.0) Introduced on the FN IOM.
 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

 The following describes the show ip pim snooping interface commands shown
 in the following example.

 Field Description
 Interface Displays the VLAN interfaces with PIM-SM snooping enabled.
Field Description

Ver/Mode Displays the PIM version number for each VLAN interface with PIM-SM snooping enabled:
- v2 = PIM version 2
- S = PIM Sparse mode

Nbr Count Displays the number of neighbors learned through PIM-SM snooping on the interface.

DR Prio Displays the Designated Router priority value configured on the interface (ip pim dr-priority command).

DR Displays the IP address of the Designated Router for that interface.

show ip pim snooping neighbor

Display information on PIM neighbors learned through PIM-SM snooping.

Syntax

```
show ip pim snooping neighbor [vlan vlan-id]
```

Parameters

- **vlan vlan-id** (OPTIONAL) Enter a VLAN ID to display information about PIM neighbors that PIM-SM snooping discovered on a specified VLAN. The valid VLAN IDs range is from 1 to 4094.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip pim snooping neighbor` commands shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor address</td>
<td>Displays the IP address of the neighbor learned through PIM-SM snooping.</td>
</tr>
</tbody>
</table>
Field Description

Interface Displays the VLAN ID number and slot/port on which the PIM-SM-enabled neighbor was discovered.

Uptime/expires Displays the amount of time the neighbor has been up then the amount of time until the neighbor is removed from the multicast routing table (that is, until the neighbor hold time expires).

Ver Displays the PIM version number:

- v2 = PIM version 2

DR prio/Mode Displays the Designated Router priority and the mode:

- 1 = default Designated Router priority (use the `ip pim dr-priority` command)
- DR = Designated Router
- S = Sparse mode

Example

Dell#show ip pim snooping neighbor

<table>
<thead>
<tr>
<th>Neighbor Address</th>
<th>Interface</th>
<th>Uptime/Expires</th>
<th>Ver</th>
<th>DR Prio</th>
</tr>
</thead>
<tbody>
<tr>
<td>165.87.32.2</td>
<td>Vl 2 [tei 4/8] 00:04:03/00:01:42 v2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.87.32.10</td>
<td>Vl 2 [te 4/8] 00:00:46/00:01:29 v2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.87.32.12</td>
<td>Vl 2 [te 4/8] 00:00:51/00:01:24 v2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ip pim snooping tib

Display information from the tree information base (TIB) PIM-SM snooping discovered about multicast group members and states.

Syntax

```
show ip pim snooping tib [vlan vlan-id] [group-address [source-address]]
```

Parameters

- **vlan vlan-id** (OPTIONAL) Enter a VLAN ID to display TIB information PIM-SM snooping discovered on a specified VLAN. The valid VLAN IDs range is from 1 to 4094.

- **group-address** (OPTIONAL) Enter the group address in dotted decimal format (A.B.C.D) to display TIB information PIM-SM snooping discovered for a specified multicast group.

- **source-address** (OPTIONAL) Enter the source address in dotted decimal format (A.B.C.D) to display TIB information PIM-SM snooping discovered for a specified multicast source.
Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip pim snooping tib` commands shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S, G)</td>
<td>Displays the entry in the PIM multicast snooping database.</td>
</tr>
<tr>
<td>uptime</td>
<td>Displays the amount of time the entry has been in the PIM multicast route table.</td>
</tr>
<tr>
<td>expires</td>
<td>Displays the amount of time until the entry expires and is removed from the database.</td>
</tr>
<tr>
<td>RP</td>
<td>Displays the IP address of the RP/source for this entry.</td>
</tr>
<tr>
<td>flags</td>
<td>List the flags to define the entries:</td>
</tr>
<tr>
<td></td>
<td>• S = PIM Sparse Mode</td>
</tr>
<tr>
<td></td>
<td>• C = directly connected</td>
</tr>
<tr>
<td></td>
<td>• L = local to the multicast group</td>
</tr>
<tr>
<td></td>
<td>• P = route was pruned</td>
</tr>
<tr>
<td></td>
<td>• R = the forwarding entry is pointing toward the RP</td>
</tr>
<tr>
<td></td>
<td>• F = Dell Networking OS is registering this entry for a multicast source</td>
</tr>
<tr>
<td></td>
<td>• T = packets were received via Shortest Tree Path</td>
</tr>
<tr>
<td></td>
<td>• J = first packet from the last hop router is received and the entry is ready to switch to SPT</td>
</tr>
<tr>
<td></td>
<td>• K=acknowledge pending state</td>
</tr>
<tr>
<td>Incoming interface</td>
<td>Displays the reverse path forwarding (RPF) interface towards the RP/ source.</td>
</tr>
<tr>
<td>RPF neighbor</td>
<td>Displays the next hop from this interface towards the RP/source.</td>
</tr>
<tr>
<td>Outgoing interface list:</td>
<td>Lists the interfaces that meet one of the following criteria:</td>
</tr>
<tr>
<td></td>
<td>• a directly connect member of the Group</td>
</tr>
<tr>
<td></td>
<td>• statically configured member of the Group</td>
</tr>
<tr>
<td></td>
<td>• received a (*,G) Join message</td>
</tr>
</tbody>
</table>

Example

Dell#show ip pim snooping tib

PIM Multicast Snooping Table
show ip pim summary

View information about PIM-SM operation.

Syntax

```
show ip pim summary
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip pim summary

PIM TIB version 495
Uptime 22:44:52
Entries in PIM-TIB/MFC : 2/2

Active Modes :
  PIM-SNOOPING

Interface summary:
  1 active PIM interface
```
0 passive PIM interfaces
3 active PIM neighbors

TIB summary:
1/1 (*,G) entries in PIM-TIB/MFC
1/1 (S,G) entries in PIM-TIB/MFC
0/0 (S,G,Rpt) entries in PIM-TIB/MFC

0 PIM nexthops
0 RPs
0 sources
0 Register states

Message summary:
2582/2583 Joins sent/received
5/0 Prunes sent/received
0/0 Candidate-RP advertisements sent/received
0/0 BSR messages sent/received
0/0 State-Refresh messages sent/received
0/0 MSDP updates sent/received
0/0 Null Register messages sent/received
0/0 Register-stop messages sent/received

Data path event summary:
0 no-cache messages received
0 last-hop switchover messages received
0/0 pim-assert messages sent/received
0/0 register messages sent/received

Memory usage:
 TIB : 3768 bytes
 Nexthop cache : 0 bytes
 Interface table : 992 bytes
 Neighbor table : 528 bytes
 RP Mapping : 0 bytes

show ip pim tib

View the PIM tree information base (TIB).

Syntax
show ip pim tib [group-address [source-address]]

Parameters
 group-address (OPTIONAL) Enter the group address in dotted decimal format (A.B.C.D).
 source-address (OPTIONAL) Enter the source address in dotted decimal format (A.B.C.D).

Command Modes
 • EXEC
 • EXEC Privilege
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip pim tib` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S, G)</td>
<td>Displays the entry in the multicast PIM database.</td>
</tr>
<tr>
<td>uptime</td>
<td>Displays the amount of time the entry has been in the PIM route table.</td>
</tr>
<tr>
<td>expires</td>
<td>Displays the amount of time until the entry expires and is removed from the database.</td>
</tr>
<tr>
<td>RP</td>
<td>Displays the IP address of the RP/source for this entry.</td>
</tr>
<tr>
<td>flags</td>
<td>List the flags to define the entries:</td>
</tr>
<tr>
<td></td>
<td>• D = PIM Dense Mode</td>
</tr>
<tr>
<td></td>
<td>• S = PIM Sparse Mode</td>
</tr>
<tr>
<td></td>
<td>• C = directly connected</td>
</tr>
<tr>
<td></td>
<td>• L = local to the multicast group</td>
</tr>
<tr>
<td></td>
<td>• P = route was pruned</td>
</tr>
<tr>
<td></td>
<td>• R = the forwarding entry is pointing toward the RP</td>
</tr>
<tr>
<td></td>
<td>• F = Dell Networking OS is registering this entry for a multicast source</td>
</tr>
<tr>
<td></td>
<td>• T = packets were received via Shortest Tree Path</td>
</tr>
<tr>
<td></td>
<td>• J = first packet from the last hop router is received and the entry is ready to switch to SPT</td>
</tr>
<tr>
<td></td>
<td>• K = acknowledge pending state</td>
</tr>
<tr>
<td>Incoming interface</td>
<td>Displays the reverse path forwarding (RPF) interface towards the RP/source.</td>
</tr>
<tr>
<td>RPF neighbor</td>
<td>Displays the next hop from this interface towards the RP/source.</td>
</tr>
<tr>
<td>Outgoing interface list:</td>
<td>Lists the interfaces that meet one of the following criteria:</td>
</tr>
<tr>
<td></td>
<td>• a directly connect member of the Group</td>
</tr>
<tr>
<td></td>
<td>• statically configured member of the Group</td>
</tr>
<tr>
<td></td>
<td>• received a (*.G) Join message</td>
</tr>
</tbody>
</table>

Example

```
Dell#show ip pim tib
PIM Multicast Routing Table
Flags:D- Dense, S- Sparse, C- Connected, L- Local, P- Pruned,
R- RP-bit set, F- Register flag, T- SPT-bit set, J- Join
SPT,
```
show running-config pim

Display the current configuration of PIM-SM snooping.

Syntax

show running-config pim

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show running-config pim
! ip pim snooping enable

Related Commands

ip pim sparse-mode — enables PIM-SM snooping.
IPv6 PIM-Sparse Mode Commands

The following describes the IPv6 PIM-sparse mode (PIM-SM) commands.

ipv6 pim bsr-border

Define the border of PIM domain by filtering inbound and outbound PIM-BSR messages per interface.

Syntax

```plaintext
ipv6 pim bsr-border
```

Defaults

Disabled.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is applied to the subsequent PIM-BSR messages. Existing BSR advertisements are cleaned up by time-out.

ipv6 pim bsr-candidate

Configure the router as a bootstrap (BSR) candidate.

Syntax

```plaintext
to ipv6 pim bsr-candidate [interface [hash-mask-length] [priority]]
```

To disable the bootstrap candidate, use the `no ipv6 pim bsr-candidate` command.

Parameters

interface
Enter the following keywords and slot/port or number information:

- For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
- For a Port Channel interface, enter the keywords `port-channel` then a number.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

`hash-mask-length` (OPTIONAL) Enter the hash mask length for RP selection. The range is from 0 to 128. The default is 126.

`priority` (OPTIONAL) Enter the priority value for Bootstrap election process. The range is from 0 to 255. The default is 0.

Defaults
Refer to Parameters.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ipv6 pim dr-priority

Change the designated router (DR) priority for the IPv6 interface.

Syntax
```
ipv6 pim dr-priority priority-value
```
To remove the DR priority value assigned, use the `no ipv6 pim dr-priority` command.

Parameters

`priority-value` Enter a number. Preference is given to larger/higher number. The range is from 0 to 4294967294. The default is 1.

Defaults

1

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The router with the largest value assigned to an interface becomes the designated router. If two interfaces contain the same designated router priority value, the interface with the largest interface IP address becomes the designated router.
ipv6 pim join-filter

Permit or deny PIM Join/Prune messages on an interface using an access list. This command prevents the PIM-SM router from creating state based on multicast source and/or group.

Syntax

```
ipv6 pim join-filter access-list
```

Parameters

- `access-list` Enter the name of an extended access list.
- `in` Enter the keyword `in` to apply the access list to inbound traffic.
- `out` Enter the keyword `out` to apply the access list to outbound traffic.

Defaults

none

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(conf)#ipv6 access-list JOIN-FIL_ACL
Dell(conf-ipv6-acl)#permit ipv6 165:87:34::0/112 ff0e::
Dell(conf-ipv6-acl)#permit ipv6 any ff0e::225:1:2:0/112
Dell(conf-ipv6-acl)#permit ipv6 165:87:32::0/112 any
Dell(conf-ipv6-acl)#exit
Dell(conf)#interface tengigabitethernet 0/84
Dell(conf-if-te-0/84)#ipv6 pim join-filter JOIN-FIL_ACL in
Dell(conf-if-te-0/84)#ipv6 pim join-filter JOIN-FIL_ACL out
```

ipv6 pim query-interval

Change the frequency of IPv6 PIM router-query messages.

Syntax

```
ipv6 pim query-interval seconds
```

To return to the default value, use the `no ipv6 pim query-interval seconds` command.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>Enter a number as the number of seconds between router query messages. The range is from 0 to 65535. The default is 30 seconds.</td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERFACE</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

`ipv6 pim neighbor-filter`

Prevent the system from forming a PIM adjacency with a neighboring system.

Syntax

```
ipv6 pim neighbor-filter {access-list}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>access-list</code></td>
<td>Enter the name of a standard access list. Maximum 16 characters.</td>
</tr>
</tbody>
</table>

Defaults

```
none
```

Command Modes

```
CONFIGURATION
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Do not enter this command before creating the access-list.

`ipv6 pim register-filter`

Configure the source DR so that it does not send register packets to the RP for the specified sources and groups.

Syntax

```
ipv6 pim register-filter access-list
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>access-list</code></td>
<td>Enter the name of the extended ACL that contains the sources and groups to filter.</td>
</tr>
</tbody>
</table>
CONFIGURATION

Example

Dell(conf)#ipv6 pim register-filter REG-FIL_ACL
Dell(conf)#ipv6 access-list REG-FIL_ACL
Dell(conf-ipv6-acl)#deny ipv6 165:87:34::10/128 ff0e::<225:1:2:0/112
Dell(conf-ipv6-acl)#permit ipv6 any any
Dell(conf-ipv6-acl)#exit

ipv6 pim rp-address

Configure a static PIM rendezvous point (RP) address for a group. First-hop routers use this address to send register packets on behalf of the source multicast host.

Syntax

ipv6 pim rp-address address group-address group-address mask
override

To remove an RP address, use the no ipv6 pim re-address address group-address group-address mask override command.

Parameters

- **address**: Enter the IPv6 RP address in the x:x:x:x format.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zero.
- **group-address**: Enter the keywords group-address then the group address in the x:x:x:x format and then the mask in /nn format to assign that group address to the RP.
 - **NOTE**: The :: notation specifies successive hexadecimal fields of zero.
- **override**: Enter the keyword override to override the BSR updates with static RP. The override takes effect immediately during enable/disable.
 - **NOTE**: This option is applicable to multicast group range.

Defaults

- none

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

PIM-Sparse Mode (PIM-SM)
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The RP addresses are stored in the order in which they are entered. RP addresses learned via BSR take priority over static RP addresses.

Without the override option, the BSR-advertised RPs updates take precedence over the statically configured RPs.

ipv6 pim rp-candidate

Specify an interface as an RP candidate.

Syntax

```plaintext
ipv6 pim rp-candidate interface [priority-value]
```

Parameters

- **interface**
 - Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

- **priority-value**
 - (OPTIONAL) Enter a number as the priority of this RP Candidate, which is included in the Candidate-RP-Advertisements. The range is 0 (highest) to 255 (lowest).

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ipv6 pim sparse-mode

Enable IPv6 PIM sparse mode on the interface.

Syntax

```
ipv6 pim sparse-mode
```

To disable IPv6 PIM sparse mode, use the `no ipv6 pim sparse-mode` command.

Defaults

Disabled.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Enable the interface (use the `no shutdown` command) and not have the `switchport` command configured. Also enable Multicast globally. PIM is supported on the port-channel interface.

ipv6 pim spt-threshold

Specifies when a PIM leaf router should join the shortest path tree.

Syntax

```
ipv6 pim spt-threshold {kbps | infinity}
```

To return to the default value, use the `no ipv6 pim spt-threshold` command.

Parameters

- `kbps`
 - Enter a traffic rate in kilobytes per second. The range is from 0 to 4294967 kbps. The default is **10 kbps**.
- `infinity`
 - Enter the keyword `infinity` to have all sources for the specified group use the shared tree and never join shortest path tree (SPT).

Defaults

10 kbps

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information
PIM leaf routers join the shortest path tree immediately after the first packet arrives from a new source.

show ipv6 pim bsr-router

View information on the Bootstrap router (v2).

Syntax
show ipv6 pim bsr-router

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show ipv6 pim bsr-router
PIMv2 Bootstrap information
This system is the Bootstrap Router (v2)
BSR address: 14::2
 Uptime: 00:02:54, BSR Priority: 0, Hash mask length: 126
 Next bootstrap message in 00:00:06

This system is a candidate BSR
 Candidate BSR address: 14::2, priority: 0, hash mask length: 126
Dell

show ipv6 pim interface

Display IPv6 PIM enabled interfaces.

Syntax
show ipv6 pim interface

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

PIM-Sparse Mode (PIM-SM) | 1180
Example

Dell#show ipv6 pim interface
Interface Ver/ Nbr Query DR
Mode Count Intvl Prio
Te 0/3 v2/S 1 30 1
 Address : fe80::201:e8ff:fe02:140f
 DR : this router
Te 0/1 v2/S 0 30 1
 Address : fe80::201:e8ff:fe02:1417
 DR : this router
Dell#

show ipv6 pim neighbor

Displays IPv6 PIM neighbor information.

Syntax

show ipv6 pim neighbor [detail]

Parameters

detail (OPTIONAL) Enter the keyword detail to displayed PIM neighbor detailed information.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show ipv6 pim neighbor detail
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
fe80::201:e8ff:fe00:6265 Te 0/3 00:07:39/00:01:42 v2 1 / S 165:87:50::6
Dell#

show ipv6 pim rp

View all multicast groups-to-RP mappings.

Syntax

show ipv6 pim rp [mapping | group-address]
show ipv6 pim rp

View the IPv6 PIM multicast-routing database (tree information base — tib).

Syntax

```
show ipv6 pim tib [group-address [source-address]]
```

Parameters

- **group-address**
 (OPTIONAL) Enter the multicast group address in the x:x:x::x format to view RP mappings for a specific group.

 NOTE: The :: notation specifies successive hexadecimal fields of zero.

- **source-address**
 (OPTIONAL) Enter the source address in the x:x:x::x format.
NOTE: The :: notation specifies successive hexadecimal fields of zero.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show ipv6 pim tib

PIM Multicast Routing Table
Flags: D - Dense, S - Sparse, C - Connected, L - Local, P - Pruned,
 R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT,
 M - MSDP created entry, A - Candidate for MSDP Advertisement
 K - Ack-Pending State
Timers: Uptime/Expires
Interface state: Interface, next-Hop, State/Mode

(25::1, ff0e::225:1:2:1), uptime 00:09:53, expires 00:00:00, flags: CJ
 RPF neighbor: TenGigabitEthernet 0/3, fe80::201:e8ff:fe00:6265
 Outgoing interface list: TenGigabitEthernet 1/1

(25::1, ff0e::225:1:2:2), uptime 00:09:54, expires 00:00:00, flags: CJ
 RPF neighbor: TenGigabitEthernet 0/3, fe80::201:e8ff:fe00:6265
 Outgoing interface list: TenGigabitEthernet 1/1

(25::2, ff0e::225:1:2:2), uptime 00:09:54, expires 00:00:00, flags: CJ
 RPF neighbor: TenGigabitEthernet 0/3, fe80::201:e8ff:fe00:6265
 Outgoing interface list: TenGigabitEthernet 1/1

(25::1, ff0e::226:1:2:1), uptime 00:09:54, expires 00:00:00, flags: CJ
 RPF neighbor: TenGigabitEthernet 0/3, fe80::201:e8ff:fe00:6265
 Outgoing interface list: TenGigabitEthernet 1/1

Dell#
Port Monitoring

The port monitoring feature allows you to monitor network traffic by forwarding a copy of each incoming or outgoing packet from one port to another port.

Important Points to Remember

- Port monitoring is supported on physical ports and logical interfaces, such as Port Channels and virtual local area networks (VLANs).
- The monitoring (destination, "MG") and monitored (source, "MD") ports must be on the same switch.
- In general, a monitoring port should have `no ip address` and `no shutdown` as the only configuration; Dell Networking operating software permits a limited set of commands for monitoring ports; display them using the `?` command. A monitoring port also may not be a member of a VLAN.
- A total of 4 MG can be configured in a single port-pipe.
- MG and MD ports can reside anywhere across a port-pipe.
- Dell Networking operating software supports multiple source ports to be monitored by a single destination port in one monitor session.
- One monitor session can have only one MG port.

NOTE: The monitoring port should not be a part of any other configuration.

Topics:

- Description
- flow-based enable
- monitor session
- rate-limit
- show config
- show monitor session
- show running-config monitor session
- source (port monitoring)

Description

Enter a description of this monitoring session.

Syntax

description \{description\}
To remove the description, use the no description {description} command.

Parameters

- **description**
 - Enter a description regarding this session (80 characters maximum).

Defaults

- none

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for the RPM / ERPM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Related Commands

- monitor session — enables a monitoring session.

flow-based enable

Enable flow-based monitoring.

Syntax

```
flow-based enable
```

To disable flow-based monitoring, use the no flow-based enable command.

Defaults

Disabled, that is flow-based monitoring is not applied.

Command Modes

- MONITOR SESSION (conf-mon-sess-session-ID)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for the RPM/ERPM.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.1.1.0</td>
<td>Introduced on the E-Series ExaScale.</td>
</tr>
<tr>
<td>7.4.1.0</td>
<td>Introduced on the E-Series.</td>
</tr>
</tbody>
</table>

Usage Information

To monitor traffic with particular flows the interface, appropriate ACLs has be applied in ingress direction. Flow- based is not supported in the tx direction. Even though we can configure it in both the direction, only rx will work.

The flow- based enable command has to be applied as a monitor session with some configuration which is already present in it, otherwise flow- based will not take effect.
Related Commands

`monitor session` — enables a monitoring session.

`monitor session`

Create a session for monitoring traffic with port monitoring.

Syntax

```
monitor session session-ID (type { rpm | erpm }) [drop]
```

To delete a session, use the `no monitor session session-ID` command.

To delete all monitor sessions, use the `no monitor session all` command.

Parameters

- `session-ID` Enter a session identification number. The range is from 0 to 65535.
- `type rpm | erpm` Specifies one of the following type:
 - `rpm`: to create remote port monitoring session.
 - `erpm`: to create encapsulated remote port monitoring session.
 - If no option is specified, by default SPAN will be created.
- `drop` Monitors only the dropped packets in the Ingress.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.8(0.0)</td>
<td>Added the drop parameter.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for rpm / erpm.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Usage Information

The `monitor` command is saved in the running configuration at Monitor Session mode level and can be restored after a chassis reload.

Example

```
Dell(conf)# monitor session 60
Dell(conf-mon-sess-60)
```

Related Command

- `show monitor session` — displays the monitor session.
- `show running-config monitor session` — displays the running configuration of a monitor session.
rate-limit

Configure the rate-limit to limit the mirrored packets.

Syntax

 rate-limit limit

 To remove the limit, use the no rate-limit limit command.

Parameters

 limit Enter the rate-limit value. The range is from 0 to 40000
 Megabits per second.

Defaults

 60

Command Modes

 CONFIGURATION

Command History

 This guide is platform-specific. For command information about other platforms, refer
 to the relevant Dell Networking OS Command Line Reference Guide.

 The following is a list of the Dell Networking OS version history for this command.

 Version Description
 9.9(0.0) Introduced on the FN IOM.
 9.8(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

 monitor session — enables a monitoring session.

 show monitor session — displays the monitor session.

show config

Display the current monitor session configuration.

Syntax

 show config

Defaults

 none

Command Modes

 MONITOR SESSION (conf-mon-sess-session-ID)

Command History

 Version Description
 9.9(0.0) Introduced on the FN IOM.
 8.3.16.1 Introduced on the M I/O Aggregator.
Example

Dell(conf-mon-sess-1)#show config
!
monitor session 1
 source TenGigabitEthernet 0/1 destination Port-channel 1
direction rx

show monitor session

Display the monitor information of a particular session or all sessions.

Syntax

show monitor session {session-ID}

To display monitoring information for all sessions, use the show monitor session command.

Parameters

session-ID (OPTIONAL) Enter a session identification number. The range is from 0 to 65535.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
--------- -----------
9.9(0.0) Introduced on the FN IOM.
9.4(0.0) Added support for the RPM / ERPM.
8.3.16.1 Introduced on the M I/O Aggregator.

Example

Dell#show monitor session
SessID Source Destination Dir Mode Source IP Dest IP
------- -------- ---------- ---- ----- ---------- ------
 1 Vl 10 Te 0/8 rx Flow N/A N/A

Related Commands

monitor session — creates a session for monitoring.

show running-config monitor session

Display the running configuration of all monitor sessions or a specific session.

Syntax

show running-config monitor session {session-ID}
To display the running configuration for all monitor sessions, use the `show running-config monitor session` command.

Parameters

- **session-ID** (OPTIONAL) Enter a session identification number. The range from 0 to 65535.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Usage Information

The `monitoring` command is saved in the running configuration at the Monitor Session mode level and can be restored after a chassis reload.

Example

```
Dell# show running-config monitor session
!
monitor session 1
source TenGigabitEthernet 0/1 destination TenGigabitEthernet 0/2 direction rx
```

Related Commands

- `monitor session` — creates a session for monitoring.
- `show monitor session` — displays a monitor session.

source (port monitoring)

Configure a port monitor source.

Syntax

```
source {interface | range | any} destination interface direction {rx | tx | both}
```

To disable a monitor source, use the `no source interface destination interface direction {rx | tx | both}` command.

Parameters

- **source interface**

Enter the one of the following keywords and slot/port information:

- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

- For a VLAN interface enter the keyword `VLAN` then by a number range from 1 to 4094.
- For a port channel interface, enter the keyword `LAG` then port channel and the port-channel id.

`range` Enter the keyword `range` to specify a list of interfaces.

`any` Enter the keyword `any` to specify all interfaces.

NOTE: This option is applicable only with drop monitor session.

`destination` Enter the keyword `destination` to specify the destination interface.

- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a port channel interface, enter the keyword `LAG` then port channel and the port-channel id.

`interface` Enter the one of the following keywords and slot/port information:

- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a VLAN interface enter the keyword `VLAN` followed by a number from 1 to 4094.
- For a port channel interface, enter the keyword `LAG` then port channel and the port-channel id.

`direction {rx | tx | both}` Enter the keyword `direction` then one of the packet directional indicators.

- `rx`: to monitor receiving packets only.
- `tx`: to monitor transmitting packets only.
- `both`: to monitor both transmitting and receiving packets.
<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Added support for Source and destination.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
</tbody>
</table>

Example

```
Dell# monitor session 0
source Port-channel 10 destination TenGigabitEthernet 0/8
direction tx
```
Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same private VLAN. A private VLAN partitions a traditional VLAN into subdomains identified by a primary and secondary VLAN pair.

The Dell Networking OS private VLAN implementation is based on RFC 3069.

For more information, refer to the following commands. The command output is augmented in the Dell Networking OS version 7.8.1.0 at later to provide PVLAN data:

- `show arp`
- `show vlan`

Private VLAN Concepts

Primary VLAN:

The primary VLAN is the base VLAN and can have multiple secondary VLANs. There are two types of secondary VLAN — community VLAN and isolated VLAN:

- A primary VLAN can have any number of community VLANs and isolated VLANs.
- Private VLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports or trunk ports.

Community VLAN:

A community VLAN is a secondary VLAN of the primary VLAN:

- Ports in a community VLAN can talk to each other. Also, all ports in a community VLAN can talk to all promiscuous ports in the primary VLAN and vice versa.
- Devices on a community VLAN can communicate with each other using member ports, while devices in an isolated VLAN cannot.

Isolated VLAN:

An isolated VLAN is a secondary VLAN of the primary VLAN:

- Ports in an isolated VLAN cannot talk to each other. Servers would be mostly connected to isolated VLAN ports.
- Isolated ports can talk to promiscuous ports in the primary VLAN, and vice versa.

Port Types:

- **Community port**: A community port is a port that belongs to a community VLAN and is allowed to communicate with other ports in the same community VLAN and with promiscuous ports.
• **Isolated port**: An isolated port is a port that, in Layer 2, can only communicate with promiscuous ports that are in the same PVLAN.

• **Promiscuous port**: A promiscuous port is a port that is allowed to communicate with any other port type.

• **Trunk port**: A trunk port carries VLAN traffic across switches:
 - A trunk port in a PVLAN is always tagged.
 - A trunk port in Tagged mode carries primary or secondary VLAN traffic. The tag on the packet helps identify the VLAN to which the packet belongs.
 - A trunk port can also belong to a regular VLAN (non-private VLAN).

Topics:
- ip local-proxy-arp
- private-vlan mapping secondary-vlan
- private-vlan mode
- show interfaces private-vlan
- show vlan private-vlan
- show vlan private-vlan mapping
- switchport mode private-vlan

ip local-proxy-arp

Enable/disable Layer 3 communication between secondary VLANs in a private VLAN.

Syntax

```plaintext
[no] ip local-proxy-arp
```

To disable Layer 3 communication between secondary VLANs in a private VLAN, use the `no ip local-proxy-arp` command in INTERFACE VLAN mode for the primary VLAN.

To disable Layer 3 communication in a particular secondary VLAN, use the `no ip local-proxy-arp` command in INTERFACE VLAN mode for the selected secondary VLAN.

NOTE: Even after you disable ip-local-proxy-arp (use `no ip-local-proxy-arp`) in a secondary VLAN, Layer 3 communication may happen between some secondary VLAN hosts, until the address resolution protocol (ARP) timeout happens on those secondary VLAN hosts.

Defaults

Layer 3 communication is disabled between secondary VLANs in a private VLAN.

Command Modes

INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
private-vlan mapping secondary-vlan

Map secondary VLANs to the selected primary VLAN.

Syntax

```
[no] private-vlan mapping secondary-vlan vlan-list
```

To remove specific secondary VLANs from the configuration, use the `no private-vlan mapping secondary-vlan vlan-list` command syntax.

Parameters

- **vlan-list**: Enter the list of secondary VLANs to associate with the selected primary VLAN. The list can be in comma-delimited or hyphenated-range format, following the convention for the range input.

Defaults

- none

Command Modes

- INTERFACE VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The list of secondary VLANs can be:

- Specified in comma-delimited or hyphenated-range format.
- Specified with this command even before they have been created.
• Amended by specifying the new secondary VLAN to be added to the list.

Related Commands

private-vlan mode — sets the mode of the selected VLAN to community, isolated, or primary.

show interfaces private-vlan — displays the type and status of the PVLAN interfaces.

show vlan private-vlan — displays the PVLANs and/or interfaces that are part of a PVLAN.

show vlan private-vlan mapping — displays the primary-secondary VLAN mapping.

switchport mode private-vlan — sets PVLAN mode of the selected port.

private-vlan mode

Set PVLAN mode of the selected VLAN to community, isolated, or primary.

Syntax

[no] private-vlan mode {community | isolated | primary}

To remove the PVLAN configuration, use the no private-vlan mode {community | isolated | primary} command syntax.

Parameters

community Enter the keyword community to set the VLAN as a community VLAN.

isolated Enter the keyword isolated to configure the VLAN as an isolated VLAN.

primary Enter the keyword primary to configure the VLAN as a primary VLAN.

Defaults

none

Command Modes INTERFACE VLAN

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The VLAN:

• can be in only one mode, either community, isolated, or primary.

• mode ode to community or isolated even before associating it to a primary VLAN. This secondary VLAN continues to work normally as a normal VLAN even though it is not associated to a primary VLAN. (A syslog message indicates this.)
must not have a port in it when VLAN mode is being set.

Only ports (and port channels) configured as promiscuous, host, or PVLAN trunk ports (as previously described) can be added to the PVLAN. No other regular ports can be added to the PVLAN.

After using this command to configure a VLAN as a primary VLAN, use the private-vlan mapping secondary-vlan command to map secondary VLANs to this VLAN.

show interfaces private-vlan — displays the type and status of the PVLAN interfaces.
show vlan private-vlan — displays the PVLANs and/or interfaces that are part of a PVLAN.
show vlan private-vlan mapping — displays the primary-secondary VLAN mapping.
switchport mode private-vlan — sets PVLAN mode of the selected port.

show interfaces private-vlan

Display type and status of PVLAN interfaces.

Syntax

show interfaces private-vlan [interface interface]

Parameters

interface interface (OPTIONAL) Enter the keyword interface then the ID of the specific interface for which to display PVLAN status.

Defaults

none

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command has two types of display — a list of all PVLAN interfaces or for a specific interface. Examples of both types of output are shown below.

The following describes the show interfaces private-vlan command shown in the following examples.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Displays the type of interface and associated slot and port number.</td>
</tr>
<tr>
<td>Vlan</td>
<td>Displays the VLAN ID of the designated interface.</td>
</tr>
<tr>
<td>PVLAN-Type</td>
<td>Displays the type of VLAN in which the designated interface resides.</td>
</tr>
<tr>
<td>Interface Type</td>
<td>Displays the PVLAN port type of the designated interface.</td>
</tr>
<tr>
<td>Status</td>
<td>States whether the interface is operationally up or down.</td>
</tr>
</tbody>
</table>

Example (All)

Dell# show interfaces private-vlan
Interface Vlan PVLAN-Type Interface Type Status
--------- ---- ---------- -------------- --------
Gi 2/1 10 Primary Promiscuous Up
Gi 2/2 100 Isolated Host Down
Gi 2/3 10 Primary Trunk Up
Gi 2/4 101 Community Host Up

Example (Specific)

Dell# show interfaces private-vlan Gi 2/2
Interface Vlan PVLAN-Type Interface Type Status
--------- ---- ---------- -------------- --------
Gi 2/2 100 Isolated Host Up

Related Commands

private-vlan mode — sets the mode of the selected VLAN to community, isolated, or primary.

show vlan private-vlan — displays the PVLANs and/or interfaces that are part of a PVLAN.

show vlan private-vlan mapping — displays the primary-secondary VLAN mapping.

switchport mode private-vlan — sets PVLAN mode of the selected port.

show vlan private-vlan

Display PVLANs and/or interfaces that are part of a PVLAN.

Syntax

show vlan private-vlan [community | interface | isolated | primary | primary_vlan | interface interface]

Parameters

community (OPTIONAL) Enter the keyword community to display VLANs configured as community VLANs, along with their interfaces.

interface (OPTIONAL) Enter the keyword interface to display VLANs configured as community VLANs, along with their interfaces.
isolated (OPTIONAL) Enter the keyword isolated to display VLANs configured as isolated VLANs, along with their interfaces.

primary (OPTIONAL) Enter the keyword primary to display VLANs configured as primary VLANs, along with their interfaces.

primary_vlan (OPTIONAL) Enter a private VLAN ID or secondary VLAN ID to display interface details about the designated PVLAN.

interface interface (OPTIONAL) Enter the keyword interface and an interface ID to display the PVLAN configuration of the designated interface.

Defaults

none

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Examples of all types of command output are shown below. The first type of output is the result of not entering an optional keyword. It displays a detailed list of all PVLANs and their member VLANs and interfaces. The other types of output show details about PVLAN subsets.

The following describes the show private-vlan command shown in the Examples below.

Field Description

Primary Displays the VLAN ID of the designated or associated primary VLAN(s).

Secondary Displays the VLAN ID of the designated or associated secondary VLAN(s).

Type Displays the type of VLAN in which the listed interfaces reside.

Active States whether the interface is operationally up or down.

Ports Displays the interface IDs in the listed VLAN.

Example (All)

Dell# show vlan private-vlan
Primary Secondary Type Active Ports
------- --------- ------ ------ -----------
10 primary Yes Gi 2/1,3
 100 isolated Yes Gi 2/2
 101 community Yes Gi 2/10
20 primary Yes Po 10, 12-13
 200 isolated Yes Gi 3/1
 200 isolated Yes Gi 3/2,4-6
Example (Primary)
```
Dell# show vlan private-vlan primary
Primary Secondary Type    Active  Ports
------- --------- --------- ------ -------
10    primary Yes    Gi 2/1,3
20    primary Yes    Gi 3/1,3
```

Example (Isolated)
```
Dell# show vlan private-vlan isolated
Primary Secondary Type      Active  Ports
------- --------- --------- ------ -------
10    primary Yes    Gi 2/1,3
100   isolated Yes    Gi 2/2,4-6
200   isolated Yes    Gi 3/2,4-6
```

Example (Community)
```
Dell# show vlan private-vlan community
Primary Secondary Type      Active  Ports
------- --------- --------- ------ ------
10    primary Yes    Gi 2/1,3
101   community Yes    Gi 2/7-10
20    primary Yes    Po 10, 12-13
201   community No
202   community Yes    Gi 3/11-12
```

Example (Specific)
```
Dell# show vlan private-vlan interface Gi 2/1
Primary Secondary Type     Active  Ports
------- --------- --------- --------------------
10    primary Yes    Gi 2/1
```

Usage Information
If the VLAN ID is that of a primary VLAN, the entire private VLAN output is displayed, as shown below. If the VLAN ID is a secondary VLAN, only its primary VLAN and its particular secondary VLAN properties are displayed, as shown in the second Example.

Example
```
Dell# show vlan private-vlan 10
Primary Secondary Type     Active  Ports
------- --------- --------- --------------------
10    primary Yes    Gi 2/1,3
102   isolated Yes    Gi 0/4
101   community Yes    Gi 2/7-10
```

Example
```
Dell#show vlan private-vlan 102
Primary Secondary Type     Active  Ports
------- --------- --------------------
10    Primary Yes    Po 1
      Gi 0/2
102   Isolated Yes    Gi 0/4
```

Related Commands
- `private-vlan mode` — sets the mode of the selected VLAN to community, isolated, or primary.
- `show interfaces private-vlan` — displays type and status of PVLAN interfaces.
- `show vlan private-vlan mapping` — displays the primary-secondary VLAN mapping.
show vlan private-vlan mapping

Display primary-secondary VLAN mapping.

Syntax

show vlan private-vlan mapping

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced the on MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The output of this command, shown below, displays the community and isolated VLAN IDs that are associated with each primary VLAN.

Example

```
Dell# show vlan private-vlan mapping
Private Vlan:
   Primary : 100
   Isolated : 102
   Community : 101
   Unknown : 200
```

Related Commands

- `private-vlan mode` — sets the mode of the selected VLAN to community, isolated, or primary.
- `show vlan private-vlan` — displays type and status of PVLAN interfaces.
- `show vlan private-vlan mapping` — displays the primary-secondary VLAN mapping.
- `switchport mode private-vlan` — sets PVLAN mode of the selected port.

switchport mode private-vlan

Set PVLAN mode of the selected port.

Syntax

```
[no] switchport mode private-vlan {host | promiscuous | trunk}
```

switchport mode private-vlan — sets PVLAN mode of the selected port.
To remove PVLAN mode from the selected port, use the no switchport mode private-vlan command.

Parameters

- **host**
 - Enter the keyword host to configure the selected port or port channel as an isolated interface in a PVLAN.

- **promiscuous**
 - Enter the keyword promiscuous to configure the selected port or port channel as a promiscuous interface.

- **trunk**
 - Enter the keyword trunk to configure the selected port or port channel as a trunk port in a PVLAN.

Defaults

- Disabled.

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The assignment of the various PVLAN port types to port and port channel (LAG) interfaces is shown in the following example.

Example

```
Dell#conf
Dell(conf)#interface GigabitEthernet 2/1
Dell(conf-if-te-2/1)#switchport mode private-vlan promiscuous

Dell(conf)#interface GigabitEthernet 2/2
Dell(conf-if-te-2/2)#switchport mode private-vlan host

Dell(conf)#interface GigabitEthernet 2/3
Dell(conf-if-te-2/3)#switchport mode private-vlan trunk

Dell(conf)#interface port-channel 10
Dell(conf-if-te-2/3)#switchport mode private-vlan promiscuous
```

Related Commands

- **private-vlan mode** — sets the mode of the selected VLAN to community, isolated, or primary.
- **private-vlan mapping secondary-vlan** — sets the mode of the selected VLAN to primary and then associates the secondary VLANs to it.
- **show interfaces private-vlan** — displays type and status of PVLAN interfaces.
- **show vlan private-vlan mapping** — displays the primary-secondary VLAN mapping.
Per-VLAN Spanning Tree Plus (PVST+)

The Dell Networking Operating System (OS) implementation of per-VLAN spanning tree plus (PVST+) is based on the IEEE 802.1w standard spanning tree protocol, but it creates a separate spanning tree for each VLAN configured.

NOTE: For easier command line entry, the plus (+) sign is not used at the command line.

Topics:
- description
- disable
- edge-port bpdufilter default
- extend system-id
- protocol spanning-tree pvst
- show spanning-tree pvst
- spanning-tree pvst
- spanning-tree pvst err-disable
- tc-flush-standard
- vlan bridge-priority
- vlan forward-delay
- vlan hello-time
- vlan max-age

description

Enter a description of the PVST+.

Syntax

```
description {description}
```

To remove the description, use the `no description {description}` command.

Parameters

- **description** Enter a description to identify the spanning tree (80 characters maximum).

Defaults

- none
Command Modes

SPANNING TREE PVST+ (The prompt is "config-pvst".)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `protocol spanning-tree pvst` — enter SPANNING TREE mode on the switch.

disable

Disable PVST+ globally.

Syntax

disable

To enable PVST+, use the `no disable` command.

Defaults

Disabled.

Command Modes

CONFIGURATION (conf-pvst)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `protocol spanning-tree pvst` — enter PVST+ mode.

edge-port bpdufilter default

Enable BPDU Filter globally to filter transmission of BPDU on port fast enabled interfaces.

Syntax

edge-port bpdufilter default

To disable global bpdu filter default, use the `no edge-port bpdufilter default` command.

Defaults

Disabled

Command Modes

CONFIGURATION (The prompt is "config-pvst").
extend system-id

To augment the Bridge ID with a VLAN ID so that PVST+ differentiate between BPDUs for each VLAN, use extend system ID. If the VLAN receives a BPDU meant for another VLAN, PVST+ does not detect a loop, and both ports can remain in Forwarding state.

Syntax
extend system-id

Defaults
Disabled

Command Modes
PROTOCOL PVST

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell(conf-pvst)#do show spanning-tree pvst vlan 2 brief
VLAN 2
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 001e.c9f1.00f3
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32768, Address 001e.c9f1.00f3
We are the root of Vlan 2
Configured hello time 2, max age 20, forward delay 15
Bpdu filter disabled globally

Interface Designated
Name PortID Prio Cost Sts Cost Bridge ID
PortID --------------
-------------------- -------- ------ -------- ------------- ---------------
Po 23 128.24 128 1600 FWD 0 32768 001e.c9f1.00f3 128.24
Te 5/41 128.450 128 2000 DIS 0 32768 001e.c9f1.00f3 128.450
Te 5/50 128.459 128 2000 FWD 0 32768 001e.c9f1.00f3 128.459

Interface PortID Prio Cost Sts Cost Link-type
Name PortID Prio Cost Sts Cost Edge BpduFilter
Role -------------- ---- ---- ---- ---------
-------------------- ---- ---- ---- ---- --------
Po 23 Desg 128.24 128 1600 FWD 0 P2P No
Te 5/41 Dis 128.450 128 2000 DIS 0 P2P No

Per-VLAN Spanning Tree Plus (PVST+) 1204
Related Commands

- `protocol spanning-tree pvst` — enter SPANNING TREE mode on the switch.

protocol spanning-tree pvst

To enable PVST+ on a device, enter the PVST+ mode.

Syntax

```
protocol spanning-tree pvst
```

To disable PVST+, use the `disable` command.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#conf
Dell(conf)#protocol spanning-tree pvst
Dell(conf-pvst)#no disable
Dell(conf-pvst)#vlan 2 bridge-priority 4096
Dell(conf-pvst)#vlan 3 bridge-priority 16384
Dell(conf-pvst)#
Dell(conf-pvst)#show config
!
protocol spanning-tree pvst
no disable
  vlan 2 bridge-priority 4096
  vlan 3 bridge-priority 16384
Dell#
```

Usage Information

After you enable PVST+, the device runs an STP instance for each VLAN it supports.

Related Commands

- `disable` — disables PVST+.
- `show spanning-tree pvst` — displays the PVST+ configuration.
show spanning-tree pvst

View the Per-VLAN spanning tree configuration.

Syntax

```
show spanning-tree pvst [vlan vlan-id] [brief] [guard]
```

Parameters

- `vlan vlan-id` (OPTIONAL) Enter the keyword `vlan` then the VLAN ID. The range is 1 to 4094.
- `brief` (OPTIONAL) Enter the keyword `brief` to view a synopsis of the PVST+ configuration information.
- `interface` (OPTIONAL) Enter one of the interface keywords along with the slot/port information:
 - For a Port Channel interface, enter the keyword `port-channel` then a number: The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- `guard` (OPTIONAL) Enter the keyword `guard` to display the type of guard enabled on a PVST interface and the current port state.

Defaults

`none`

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show spanning-tree pvst command shown in the following examples.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Name</td>
<td>PVST interface.</td>
</tr>
<tr>
<td>Instance</td>
<td>PVST instance.</td>
</tr>
<tr>
<td>Sts</td>
<td>Port state: root-inconsistent (INCON Root), forwarding (FWD), listening (LIS), blocking (BLK), or shut down (EDS Shut).</td>
</tr>
<tr>
<td>Guard Type</td>
<td>Type of STP guard configured (Root, Loop, or BPDGU guard).</td>
</tr>
</tbody>
</table>
Field Description

Bpdu Filter
- Yes - Bpdu filter Enabled
- No - Bpdu filter Disabled

Example (Brief)

Dell# show spanning-tree pvst vlan 2 brief
VLAN 2
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 001e.c9f1.00f3
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32768, Address 001e.c9f1.00f3
We are the root of Vlan 2
Configured hello time 2, max age 20, forward delay 15
Bpdu filter disabled globally

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po 23</td>
<td>Desg</td>
<td>128.24</td>
<td>128</td>
<td>1600</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
<td>001e.c9f1.00f3</td>
</tr>
<tr>
<td>Te 5/41</td>
<td>Dis</td>
<td>128.450</td>
<td>128</td>
<td>2000</td>
<td>DIS</td>
<td>0</td>
<td>32768</td>
<td>001e.c9f1.00f3</td>
</tr>
<tr>
<td>Te 5/50</td>
<td>Desg</td>
<td>128.459</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
<td>001e.c9f1.00f3</td>
</tr>
</tbody>
</table>

Example

Dell#show spanning-tree pvst vlan 2
VLAN 2
Root Identifier has priority 32768, Address 001e.c9f1.00f3
Root Bridge hello time 2, max age 20, forward delay 15
Bridge Identifier has priority 32768, Address 001e.c9f1.00f3
Configured hello time 2, max age 20, forward delay 15
Bpdu filter disabled globally
We are the root of VLAN 2
Current root has priority 32768, Address 001e.c9f1.00f3
Number of topology changes 0, last change occurred 3dh ago on

Port 24 (Port-channel 23) is designated Discarding
Port path cost 1600, Port priority 128, Port Identifier 128.24
Designated root has priority 32768, address 001e.c9f1.00f3
Designated bridge has priority 32768, address 001e.c9f1.00f3
Designated port id is 128.24 , designated path cost 0
Number of transitions to forwarding state 0
BPDU sent 8, received 0
The port is not in the Edge port mode, bpdu filter is disabled

Port 450 (TenGigabitEthernet 0/1) is disabled Discarding
Port path cost 2000, Port priority 128, Port Identifier 128.450
Designated root has priority 32768, address 001e.c9f1.00f3
Designated bridge has priority 32768, address 001e.c9f1.00f3
Designated port id is 128.450 , designated path cost 0
Number of transitions to forwarding state 0
BPDU sent 0, received 0
The port is not in the Edge port mode, bpdu filter is disabled
Port 459 (TenGigabitEthernet 0/5) is designated Forwarding
Port path cost 2000, Port priority 128, Port Identifier 128.459
Designated root has priority 32768, address 001e.c9f1.00:f3
Designated bridge has priority 32768, address 001e.c9f1.00:f3
Designated port id is 128.459 , designated path cost 0
Number of transitions to forwarding state 1
BPDU sent 16, received 0
The port is not in the Edge port mode, bpdu filter is disabled

Example (EDS/LBK)
Dell#show spanning-tree pvst vlan 2 interface gigabitethernet 1/0

TenGigabitEthernet 0/1 of VLAN 2 is LBK_INC discarding
Edge port:no (default) port guard :none (default)
Link type: point-to-point (auto) bpdu filter:disable (default)
Bpdu guard :disable (default)
Bpdus sent 152, received 27562

Interface Designated
Name PortID Prio Cost Sts Cost Bridge ID PortID

Te 0/2 128.1223 128 20000 EDS 0 32768 0001.e800.a12b 128.1223

Example (EDS/PVID)
Dell#show spanning-tree pvst vlan 2 interface gigabitethernet 1/0

TenGigabitEthernet 1/0 of VLAN 2 is PVID_INC discarding
Edge port:no (default) port guard :none (default)
Link type: point-to-point (auto) bpdu filter:disable (default)
Bpdu guard :disable (default)
Bpdus sent 1, received 0

Interface Designated
Name PortID Prio Cost Sts Cost Bridge ID PortID

Te 0/6 128.1223 128 20000 EDS 0 32768 0001.e800.a12b 128.1223

Example (Guard)
Dell#show spanning-tree pvst vlan 5 guard

Interface
Name Instance Sts Guard type Bpdu Filter
------- -------- --------- ---------- -----------
Te 0/1 INCON(Root) Rootguard No
Te 0/2 FWD Loopguard No
Te 0/3 EDS(Shut) Bpduguard No

Related Commands
spanning-tree pvst — configure PVST+ on an interface.
spanning-tree pvst

Configure a PVST+ interface with one of these settings: edge port with optional bridge port data unit (BPDU) guard, port disablement if an error condition occurs, port priority or cost for a VLAN range, loop guard, or root guard.

Syntax

```
spanning-tree pvst {edge-port [bpduguard [shutdown-on-violation]] | bpdufilter] | err-disable | vlan vlan-range {cost number | priority value} | rootguard}
```

Parameters

- **edge-port**
 - Enter the keywords `edge-port` to configure the interface as a PVST+ edge port.

- **bpduguard**
 - Enter the keyword `portfast` to enable Portfast to move the interface into Forwarding mode immediately after the root fails.
 - Enter the keyword `bpduguard` to disable the port when it receives a BPDU.

- **shutdown-on-violation** (OPTIONAL)
 - Enter the keywords `shutdown-on-violation` to hardware disable an interface when a BPDU is received and the port is disabled.

- **bpdufilter** (OPTIONAL)
 - Enter the keyword `bpdufilter` to stop sending and receiving BPDUs on port fast enabled ports.

- **err-disable**
 - Enter the keywords `err-disable` to enable the port to be put into the error-disable state (EDS) if an error condition occurs.

- **vlan vlan-range**
 - Enter the keyword `vlan` then the VLAN numbers. The range is from 1 to 4094.

- **cost number**
 - Enter the keyword `cost` then the port cost value. The range is from 1 to 200000.
 - Defaults:
 - 10-Gigabit Ethernet interface = 2000.
 - 40-Gigabit Ethernet interface = 1400.
 - Port Channel interface with one 10 Gigabit Ethernet = 2000.
 - Port Channel with two 10 Gigabit Ethernet = 1800.
 - Port Channel with two 40 Mbps Ethernet = 600.

- **priority value**
 - Enter the keyword `priority` then the Port priority value in increments of 16. The range is from 0 to 240. The default is 128.
rootguard

Enter the keyword rootguard to enable root guard on a PVST+ port or port-channel interface.

Defaults
Not configured.

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The BPDU guard option prevents the port from participating in an active STP topology in case a BPDU appears on a port unintentionally, or is misconfigured, or is subject to a DOS attack. This option places the port into the Error Disable state if a BPDU appears, and a message is logged so that the administrator can take corrective action. When BPDU guard and BPDU filter is enabled on the port, then BPDU filter takes the highest precedence.

NOTE: A port configured as an edge port, on a PVST switch, will immediately transition to the forwarding state. Only ports connected to end-hosts should be configured as an edge port. Consider an edge port similar to a port with a spanning-tree portfast enabled.

Example

Dell(conf-if-te-0/1)#spanning-tree pvst vlan 3 cost 18000
Dell(conf-if-te-0/1)#end
Dell(conf-if-te-0/1)#show config
!
interface TenGigabitEthernet 0/1
 no ip address
 switchport
 spanning-tree pvst vlan 3 cost 18000
 no shutdown
Dell(conf-if-te-0/1)#end
Dell#

Related Commands
show spanning-tree pvst — views the PVST+ configuration.

spanning-tree pvst err-disable

Place ports in an Err-Disabled state if they receive a PVST+ BPDU when they are members an untagged VLAN.

Syntax

spanning-tree pvst err-disable cause invalid-pvst-bpdu

Defaults
Enabled; ports are placed in the Err-Disabled state if they receive a PVST+ BPDU when they are members of an untagged VLAN.

Command Modes
INTERFACE
Usage Information

Some non-Dell Networking systems which have hybrid ports participating in PVST+
transmit two kinds of BPDUs: an 802.1D BPDU and an untagged PVST+ BPDU.

Dell Networking systems do not expect PVST+ BPDU on an untagged port. If this
happens, the system places the port in the Error-Disable state. This behavior might
result in the network not converging. To prevent the system from executing this action,
use the `no spanning-tree pvst err-disable` command cause `invalid-pvst-
bpdu`.

Related Commands

- `show spanning-tree pvst` — views the PVST+ configuration.

tc-flush-standard

Enable the MAC address flushing after receiving every topology change notification.

Syntax

```
tc-flush-standard
```

To disable, use the `no tc-flush-standard` command.

Defaults

Disabled.

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, the system implements an optimized flush mechanism for PVST+. This
implementation helps in flushing the MAC addresses only when necessary (and less
often) allowing for faster convergence during topology changes. However, if a
standards-based flush mechanism is needed, you can turn this knob command on to
enable flushing MAC addresses after receiving every topology change notification.
vlan bridge-priority

Set the PVST+ bridge-priority for a VLAN or a set of VLANs.

Syntax

```
vlan vlan-id bridge-priority value
```

To return to the default value, use the `no vlan bridge-priority` command.

Parameters

- **vlan vlan-range**
 - Enter the keyword `vlan` then the VLAN numbers. The range is from 1 to 4094.

- **bridge-priority value**
 - Enter the keywords `bridge-priority` then the bridge priority value in increments of 4096. The range is from 0 to 61440. The default is 32768.

Defaults

32768

Command Modes

CONFIGURATION (conf-pvst)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **vlan forward-delay** — changes the time interval before the system transitions to the Forwarding state.
- **vlan hello-time** — change the time interval between BPDUs.
- **vlan max-age** — changes the time interval before PVST+ refreshes.
- **show spanning-tree pvst** — displays the PVST+ configuration.

vlan forward-delay

Set the amount of time the interface waits in the Listening state and the Learning state before transitioning to the Forwarding state.

Syntax

```
vlan vlan-id forward-delay seconds
```

To return to the default setting, use the `no vlan forward-delay` command.
Parameters

- **vlan vlan-range**
 Enter the keyword `vlan` then the VLAN numbers. The range is from 1 to 4094.

- **forward-delay seconds**
 Enter the keywords `forward-delay` then the time interval, in seconds, that the system waits before transitioning PVST+ to the forwarding state. The range is from 4 to 30 seconds. The default is **15 seconds**.

Defaults

- **15 seconds**

Command Modes

- **CONFIGURATION (conf-pvst)**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `vlan bridge-priority` — sets the bridge-priority value.
- `vlan hello-time` — changes the time interval between BPDUs.
- `vlan max-age` — changes the time interval before PVST+ refreshes.
- `show spanning-tree pvst` — displays the PVST+ configuration.

vlan hello-time

Set the time interval between generation of PVST+ and BPDUs.

Syntax

```
vlan vlan-id hello-time seconds
```

To return to the default value, use the `no vlan hello-time` command.

Parameters

- **vlan vlan-range**
 Enter the keyword `vlan` then the VLAN numbers. The range is from 1 to 4094.

- **hello-time seconds**
 Enter the keywords `hello-time` then the time interval, in seconds, between transmission of BPDUs. The range is from 1 to 10 seconds. The default is **2 seconds**.

Defaults

- **2 seconds**

Command Modes

- **CONFIGURATION (conf-pvst)**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
To maintain configuration information before refreshing that information, set the time interval for the PVST+ bridge.

Syntax

```
vlan vlan-range max-age seconds
```

To return to the default, use the `no vlan max-age` command.

Parameters

- `vlan vlan-range` Enter the keyword `vlan` then the VLAN numbers. The range is from 1 to 4094.
- `max-age seconds` Enter the keywords `max-age` then the time interval, in seconds, that the system waits before refreshing configuration information. The range is from 6 to 40 seconds. The default is 20 seconds.

Defaults

20 seconds

Command Modes

CONFIGURATION (conf-pvst)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `vlan bridge-priority` — sets the bridge-priority value.
- `vlan forward-delay` — changes the time interval before the system transitions to the forwarding state.
- `vlan hello-time` — changes the time interval between BPDUs.
show spanning-tree pvst — displays the PVST+ configuration.
Quality of Service (QoS)

The Dell Networking Operating System (OS) commands for quality of service (QoS) include traffic conditioning and congestion control.

This chapter contains the following sections:

- Global Configuration Commands
- Per-Port QoS Commands
- Policy-Based QoS Commands

Topics:

- Global Configuration Commands
- qos-rate-adjust
- service-class dot1p-mapping
- Per-Port QoS Commands
- dot1p-priority
- rate police
- rate shape
- service-class dynamic dot1p
- service-class bandwidth-percentage
- strict-priority unicast
- Policy-Based QoS Commands
- bandwidth-percentage
- class-map
- clear qos statistics
- crypto key zeroize rsa
- ip ssh rekey
- match ip access-group
- match ip vlan
- match ip vrf
- description
- match ip dscp
- match ip precedence
- match mac access-group
- match mac dot1p
- match mac vlan
- policy-aggregate
- policy-map-input
- policy-map-output
Global Configuration Commands

There are only two global configuration QoS commands.

qos-rate-adjust

By default, while rate limiting, policing, and shaping, the system does not include the Preamble, SFD, or the IFG fields. These fields are overhead; only the fields from MAC destination address to the CRC are used for forwarding and are included in these rate metering calculations. You can optionally include overhead fields in rate metering calculations by enabling QoS Rate Adjustment.

Syntax

qos-rate-adjustment overhead-bytes
Parameters

overhead-bytes Include a specified number of bytes of packet overhead to include in rate limiting, policing, and shaping calculations. The range is from 1 to 31.

Defaults QoS rate adjustment is disabled by default, and no qos-rate-adjust is listed in the running-configuration

Command Modes

Command History

Command

Version Description

9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

service-class dot1p-mapping

This command maps an 802.1p priority to an internal traffic class.

Syntax
service-class dot1p-mapping user-priority

Parameters

user-priority The user-priority value ranges from 0 to 7.

Command Modes

CONFIGURATION

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Per-Port QoS Commands

Per-port QoS (port-based QoS) allows you to define the QoS configuration on a per-physical-port basis.

dot1p-priority

Assign a value to the IEEE 802.1p bits on the traffic this interface receives.

Syntax
dot1p-priority priority-value
To delete the IEEE 802.1p configuration on the interface, use the `no dot1p-priority` command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-value</code></td>
<td>Enter a value from 0 to 7.</td>
</tr>
</tbody>
</table>

dot1p Queue Number

<table>
<thead>
<tr>
<th>dot1p</th>
<th>Queue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Defaults

`none`

Command Modes

`INTERFACE`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `dot1p-priority` command changes the priority of incoming traffic on the interface. The system places traffic marked with a priority in the correct queue and processes that traffic according to its queue.

When you set the priority for a port channel, the physical interfaces assigned to the port channel are configured with the same value. You cannot assign the `dot1p-priority` command to individual interfaces in a port channel.

rate police

Police the incoming traffic rate on the selected interface.

Syntax

```
rate police [kbps] committed-rate [burst-KB] [peak [kbps] peak-rate [burst-KB]] [vlan vlan-id]
```
Parameters

kbps
Enter the keyword **kbps** to specify the rate limit in Kilobits per second (Kbps). Make the following value a multiple of 64. The range is from 0 to 40000000. The default granularity is Megabits per second (Mbps).

committed-rate
Enter the bandwidth in Mbps. The range is from 0 to 10000.

burst-KB
(Optional) Enter the burst size in KB. The range is from 16 to 200000. The default is 50.

peak peak-rate
(Optional) Enter the keyword **peak** then a number to specify the peak rate in Mbps. The range is from 0 to 10000.

vlan vlan-id
(Optional) Enter the keyword **vlan** then a VLAN ID to police traffic to those specific VLANs. The range is from 1 to 4094.

Defaults

Granularity for **committed-rate** and **peak-rate** is Mbps unless you use the **kbps** option.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

NOTE: Per port rate police is supported for Layer 2 tagged and untagged switched traffic and for Layer 3 traffic. Per VLAN rate police is supported on only tagged ports with Layer 2 switched traffic.

On one interface, you can configure the **rate police** command for a VLAN or you can configure the **rate police** command for an interface. For each physical interface, you can configure three **rate police** commands specifying different VLANS.

For each physical interface, you can configure three **rate police** commands specifying different VLANS.

Related Commands

rate-policy — specifies traffic policing on the selected interface.

rate shape

Shape the traffic output on the selected interface.

Syntax

```
rate shape [kbps] rate [burst-KB]
```
Parameters

kbps

Enter the keyword *kbps* to specify the rate limit in Kilobits per second (Kbps). Make the following value a multiple of 64. The range is from 0 to 40000000. The default granularity is Megabits per second (Mbps).

rate

Enter the outgoing rate in multiples of 10 Mbps. The range is from 10 to 10000.

burst-KB

(Optional) Enter the burst size in KB. The range is from 0 to 10000. The default is **50**.

Defaults

Granularity for rate is **Mbps** unless you use the *kbps* option.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

`rate-shape` — shapes traffic output as part of the designated policy.

service-class dynamic dot1p

Honor all 802.1p markings on incoming switched traffic on an interface (from INTERFACE mode) or on all interfaces (from CONFIGURATION mode). A CONFIGURATION mode entry supersedes an INTERFACE mode entry.

Syntax

```
service-class dynamic dot1p
```

To return to the default setting, use the `no service-class dynamic dot1p` command.

Defaults

All dot1p traffic is mapped to Queue 0 unless you enable the `service-class dynamic dot1p` command. The default mapping is as follows:

<table>
<thead>
<tr>
<th>dot1p</th>
<th>Queue ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
dot1p Queue ID

<table>
<thead>
<tr>
<th>dot1p</th>
<th>Queue ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Command Modes

- INTERFACE
- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To honor all incoming 802.1p markings on incoming switched traffic on the interface, enter this command. By default, this facility is not enabled (that is, the 802.1p markings on incoming traffic are not honored).

You can apply this command on both physical interfaces and port channels. When you set the service-class dynamic for a port channel, the physical interfaces assigned to the port channel are automatically configured; you cannot assign the `service-class dynamic dot1p` command to individual interfaces in a port channel.

- All dot1p traffic is mapped to Queue 0 unless you enable the `service-class dynamic dot1p` command on an interface or globally.
- Layer 2 or Layer 3 service policies supersede dot1p service classes.

service-class bandwidth-percentage

Specify a minimum bandwidth for queues.

Syntax

```
service-class bandwidth-percentage queue0 number queue1 number
queue2 number queue3 number
```

Parameters

- `number`: Enter the bandwidth-weight, as a percentage. The range is from 1 to 100.

Defaults

- none

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
strict-priority unicast

Configure a unicast queue as a strict-priority (SP) queue.

Syntax

```
strict-priority unicast queue number
```

Parameters

- `unicast number` Enter the keyword `unicast` then the queue number. The range is from 1 to 3.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you configure a unicast queue as strict-priority, that particular queue, on the entire chassis, is treated as a strict-priority queue. Traffic for a strict priority is scheduled before any other queues are serviced. For example, if you send 100% line rate traffic over the SP queue, it starves all other queues on the ports on which this traffic is flowing. To assign the strict priority schedule type to egress queues, use the scheduler strict command in QOS-POLICY-OUT mode. The system OS does not support bandwidth configuration on strict priority scheduler queues.

When you enable ETS, the egress QoS features in the output QoS policy-map (such as `strict priority unicast <0-3>` and `scheduler strict`), default scheduler for

Version

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Guarantee a minimum bandwidth to different queues globally using the `service-class bandwidth-percentage` command from CONFIGURATION mode. The command is applied in the same way as the `bandwidth-percentage` command in an output QoS policy. The `bandwidth-percentage` command in QOS-POLICY-OUT mode supersedes the `service-class bandwidth-percentage` command.

When you enable ETS, the egress QoS features in the output QoS policy-map (such as `service-class bandwidth-percentage` and `bandwidth-percentage`), the default bandwidth allocation ratio for egress queues are superseded by ETS configurations. This is to provide compatibility with DCBX. Therefore, Dell Networking OS recommends disabling ETS when you wish to apply these features exclusively. After you disable ETS on an interface, the configured parameters are applied.
egress queues are superseded by ETS configurations. This is to provide compatibility with DCBX. Therefore, Dell Networking OS recommends disabling ETS when you wish to apply these features exclusively. After you disable ETS on an interface, the configured parameters are applied.

Policy-Based QoS Commands

Policy-based traffic classification is handled with class maps. These maps classify unicast traffic into one of four classes. The system allows you to match multiple class maps and specify multiple match criteria. Policy-based QoS is not supported on logical interfaces, such as port-channels, VLANs, or Loopbacks.

bandwidth-percentage

Assign a percentage of weight to the class/queue.

Syntax

```
bandwidth-percentage percentage
```

To remove the bandwidth percentage, use the `no bandwidth-percentage` command.

Parameters

- **percentage**
 - Enter the percentage assignment of weight to the class/queue.
 - The range is from 1 to 100% (granularity 1%).

Defaults

none

Command Modes

- CONFIGURATION (conf-qos-policy-out)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The unit of bandwidth percentage is 1%. If the sum of the bandwidth percentages given to all eight classes exceeds 100%, the bandwidth percentage automatically scales down to 100%.

Related Commands

- `qos-policy-output` — creates a QoS output policy.
class-map

Create/access a class map. Class maps differentiate traffic so that you can apply separate quality-of-service policies to each class.

Syntax

```plaintext
class-map {match-all | match-any} class-map-name [layer2]
```

Parameters

- **match-all**
 - Determines how packets are evaluated when multiple match criteria exist. Enter the keywords `match-all` to determine that the packets must meet all the match criteria in order to be a member of the class.

- **match-any**
 - Determines how packets are evaluated when multiple match criteria exist. Enter the keywords `match-any` to determine that the packets must meet at least one of the match criteria in order to be a member of the class.

- **class-map-name**
 - Enter a name of the class for the class map in a character format (32 character maximum).

- **layer2**
 - Enter the keyword `layer2` to specify a Layer 2 Class Map. The default is Layer 3.

Defaults

Layer 3

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Packets arriving at the input interface are checked against the match criteria configured using this command to determine if the packet belongs to that class. This command accesses CLASS-MAP mode, where the configuration commands include the `match ip` and `match mac` options.

Related Commands

- `ip access-list extended` — configures an extended IP ACL.
- `ip access-list standard` — configures a standard IP ACL.
- `match ip access-group` — configures the match criteria based on the access control list (ACL).
- `match ip precedence` — identifies the IP precedence values as match criteria.
match ip dscp — configures the match criteria based on the DSCP value.

match ip access-group — configures a match criterion for a class map based on the contents of the designated MAC ACL.

match mac dot1p — configures a match criterion for a class map based on a dot1p value.

match mac vlan — configures a match criterion for a class map based on VLAN ID.

service-queue — assigns a class map and QoS policy to different queues.

show qos class-map — views the current class map information.

clear qos statistics

Clears matched packets.

Syntax
clear qos statistics interface-name

Parameters

interface-name

Enter one of the following keywords:

- For a 40-Gigabit Ethernet interface, enter the keyword FortyGigabitEthernet then the slot/port information.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you issue this command, statistical information stored regarding QoS clears and resets to 0. You can access these statistics using the show qos statistics command in EXEC mode. When the traffic pattern matches the QoS classification criteria flows, the corresponding counters increment.

Related Commands

- show qos statistics — displays the QoS statistics.
crypto key zeroize rsa

Removes the generated RSA host keys and zeroize the key storage location.

Syntax: `crypto key zeroize rsa`

Defaults: none

Command Modes: CONFIGURATION

Command History: This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000–ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, MXL</td>
</tr>
</tbody>
</table>

ip ssh rekey

Configures the time rekey-interval or volume rekey-limit threshold at which to re-generate the SSH key during an SSH session.

Syntax: `ip ssh rekey [time rekey-interval] [volume rekey-limit]`

To reset to the default, use `no ip ssh rekey [time rekey-interval] [volume rekey-limit]` command.

Parameters:

- `time minutes`: Enter the keywords `time` then the amount of time in minutes. The range is from 10 to 1440 minutes. The default is 60 minutes

- `volume rekey-limit`: Enter the keywords `volume` then the amount of volume in megabytes. The range is from 1 to 4096 to megabytes. The default is 1024 megabytes

Defaults: The default time is 60 minutes. The default volume is 1024 megabytes.
match ip access-group

Configure match criteria for a class map, based on the access control list (ACL).

Syntax

```
match ip access-group access-group-name [set-ip-dscp value]
```

To remove ACL match criteria from a class map, use the
```
no match ip access-group access-group-name [set-ip-dscp value]
```

Parameters

- `access-group-name` Enter the ACL name whose contents are used as the match criteria in determining if packets belong to the class the class-map specifies.
- `set-ip-dscp value` (OPTIONAL) Enter the keywords `set-ip-dscp` then the IP DSCP value. The matched traffic is marked with the DSCP value. The range is from 0 to 63.

Defaults

none

Command Modes

CLASS-MAP CONFIGURATION (config-class-map)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM..</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the `class-map` command. After the class map is identified, you can configure the match criteria. For class-map match-any, a maximum of five ACL match criteria are allowed. For class-map match-all, only one ACL match criteria is allowed.
class-map — identifies the class map.

match ip vlan

Uses a VLAN as the match criterion for an L3 class map.

Syntax

match ip vlan vlan-id

To remove VLAN as the match criterion, use the no match ip vlan vlan-id command.

Parameters

vlan vlan-id Enter the keyword vlan and then the ID of the VLAN. The range is from 1 to 4094.

Defaults none

Command Modes CONF-CLASS-MAP

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL switch.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the class-map command. After the class map is identified, you can configure the match criteria. Use this command to match an IP class-map against a single VLAN ID.

Related Commands
class-map — identifies the class map.

match ip vrf

Uses a VRF as the match criterion for an L3 class map.

Syntax

match ip vrf vrf-id

Usage Information

To access this command, enter the class-map command. After the class map is identified, you can configure the match criteria. Use this command to match an IP class-map against a single VRF.
To remove VRF as the match criterion, use the `no match ip vrf vrf-id` command.

Parameters

- **vlan vlan-id**

 Enter the keyword `vrf` and then the ID of the VRF. The range is from 1 to 63.

Defaults

- none

Command Modes

- CONF-CLASS-MAP

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL switch.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the `class-map` command. After the class map is identified, you can configure the match criteria. Use this command to match an IP class-map against a single VRF ID.

Related Commands

- `class-map` — identifies the class map.

description

Add a description to the selected policy map or QoS policy.

Syntax

```
description {description}
```

To remove the description, use the `no description {description}` command.

Parameters

- **description**

 Enter a description to identify the policies (80 characters maximum).

Defaults

- none

Command Modes

- CONFIGURATION (policy-map-input and policy-map-output; conf-qos-policy-in and conf-qos-policy-out; wred)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
match ip dscp

Use a differentiated services code point (DSCP) value as a match criteria.

Syntax

```
match {ip | ipv6 | ip-any} dscp dscp-list [set-ip-dscp value]
```

To remove a DSCP value as a match criteria, use the no match {ip | ipv6 | ip-

Parameters

- **ip**
 - Enter the keyword `ip` to support IPv4 traffic.
- **ipv6**
 - Enter the keyword `ipv6` to support IPv6 traffic.
- **ip-any**
 - Enter the keyword `ip-any` to support IPv4 and IPv6 traffic.
- **dscp-list**
 - Enter the IP DSCP values that is to be the match criteria. Separate values by commas — no spaces (1,2,3) or indicate a list of values separated by a hyphen (1-3). The range is from 0 to 63.
- **set-ip-dscp value**
 - (OPTIONAL) Enter the keywords `set-ip-dscp` then the IP DSCP value. The matched traffic is marked with the DSCP value. The range is from 0 to 63.

Defaults

- none

Command Modes

- CLASS-MAP CONFIGURATION (config-class-map)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the <code>ipv6</code> and <code>ip-any</code> options on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the class-map command. After the class map is identified, you can configure the match criteria.
The `match ip dscp` and `match ip precedence` commands are mutually exclusive.

Up to 64 IP DSCP values can be matched in one match statement. For example, to indicate IP DCSP values 0 1 2 3 4 5 6 7, enter either the `match ip dscp 0,1,2,3,4,5,6,7` or `match ip dscp 0-7` command.

NOTE: Only one of the IP DSCP values must be a successful match criterion, not all of the specified IP DSCP values must match.

Related Commands

- class-map — identifies the class map.

match ip precedence

Use IP precedence values as a match criteria.

Syntax

```
match {ip | ipv6 | ip-any} precedence ip-precedence-list [set-ip-dscp value]
```

To remove IP precedence as a match criteria, use the `no match {ip | ipv6 | ip-any} precedence ip-precedence-list [set-ip-dscp value]` command.

Parameters

- **ip**
 - Enter the keyword `ip` to support IPv4 traffic.
- **ipv6**
 - Enter the keyword `ipv6` to support IPv6 traffic.
- **ip-any**
 - Enter the keyword `ip-any` to support IPv4 and IPv6 traffic.
- **ip-precedence-list**
 - Enter the IP precedence value(s) as the match criteria. Separate values by commas — no spaces (1,2,3) or indicate a list of values separated by a hyphen (1-3). The range is from 0 to 7.
- **set-ip-dscp value** (OPTIONAL)
 - Enter the keywords `set-ip-dscp` then the IP DSCP value. The matched traffic is marked with the DSCP value. The range is from 0 to 63.

Defaults

- `none`

Command Modes

- CLASS-MAP CONFIGURATION (config-class-map)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for ipv6 and ip-any options on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

To access this command, enter the `class-map` command. After the class map is identified, you can configure the match criteria.

The `match ip precedence` command and the `match ip dscp` command are mutually exclusive.

Up to eight precedence values can be matched in one match statement. For example, to indicate the IP precedence values 0 1 2 3, enter either the `match ip precedence 0-3` or `match ip precedence 0,1,2,3` command.

NOTE: Only one of the IP precedence values must be a successful match criterion, not all of the specified IP precedence values must match.

Related Commands

- `class-map` — identifies the class map.

match mac access-group

Configure a match criterion for a class map, based on the contents of the designated MAC ACL.

Syntax

```
match mac access-group {mac-acl-name}
```

Parameters

- `mac-acl-name` Enter a MAC ACL name. Its contents is used as the match criteria in the class map.

Defaults

None

Command Modes

CLASS-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the `class-map` command. After the class map is identified, you can configure the match criteria.

Related Commands

- `class-map` — identifies the class map.
match mac dot1p

Configure a match criterion for a class map based on a dot1p value.

Syntax

```
match mac dot1p {dot1p-list}
```

Parameters

- **dot1p-list**
 Enter a dot1p value. The range is from 0 to 7.

Defaults

none

Command Modes

CLASS-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the `class-map` command. After the class map is identified, you can configure the match criteria.

Related Commands

- `class-map` — identifies the class map.

match mac vlan

Configure a match criterion for a class map based on VLAN ID.

Syntax

```
match mac vlan number
```

Parameters

- **number**
 Enter the VLAN ID. The range is from 1 to 4094.

Defaults

none

Command Modes

CLASS-MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To access this command, enter the `class-map` command. You can match against only one VLAN ID.
Related Commands

class-map — identifies the class map.

policy-aggregate

Allow an aggregate method of configuring per-port QoS via policy maps. An aggregate QoS policy is part of the policy map (input/output) applied on an interface.

Syntax

```
policy-aggregate qos-policy-name
```

To remove a policy aggregate configuration, use the `no policy-aggregate qos-policy-name` command.

Parameters

- **qos-policy-name**

 Enter the name of the policy map in character format (32 characters maximum).

Defaults

none

Command Modes

CONFIGURATION (policy-map-input and policy-map-output)

Command History

- **Version**
 - **9.9(0.0)** Introduced on the FN IOM.
 - **9.2(0.0)** Introduced on the M I/O Aggregator.
 - **8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

If the rate shape exists in both aggregate and per-queue qos-policy, minimum of two take effect. Some of all Queue-rate will not exceed aggregate.

Related Commands

- **policy-map-output** — creates an output policy map.

policy-map-input

Create an input policy map.

Syntax

```
policy-map-input policy-map-name [layer2]
```

To remove an input policy map, use the `no policy-map-input policy-map-name [layer2]` command.
policy-map-name

Enter the name of the policy map in character format (32 characters maximum).

layer2

(Optional) Enter the keyword layer2 to specify a Layer 2 Class Map. The default is Layer 3.

Defaults

Layer 3

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.2(0.0) Introduced on the M I/O Aggregator.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The input policy map is used to classify incoming traffic to different flows using class-map, QoS policy, or incoming packets DSCP. This command enables Policy-Map-Input Configuration mode (conf-policy-map-in).

Related Commands

service-queue — assigns a class map and QoS policy to different queues.
policy-aggregate — allows an aggregate method of configuring per-port QoS using policy maps.
service-policy input — applies an input policy map to the selected interface.

policy-map-output

Create an output policy map.

Syntax

policy-map-output policy-map-name

To remove a policy map, use the no policy-map-output policy-map-name command.

Parameters

policy-map-name

Enter the name for the policy map in character format (32 characters maximum).

Defaults

none

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
qos-policy-input

Create a QoS input policy on the router.

Syntax

```
qos-policy-input qos-policy-name [layer2]
```

To remove an existing input QoS policy from the router, use the `no qos-policy-input qos-policy-name [layer2]` command.

Parameters

- `qos-policy-name` Enter the name for the policy map in character format (32 characters maximum).
- `layer2` (OPTIONAL) Enter the keyword `layer2` to specify a Layer 2 Class Map. The default is Layer 3.

Defaults

Layer 3

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To specify the name of the input QoS policy, use this command. After the input policy is specified, rate-police is defined. This command enables Qos-Policy-Input Configuration mode — `conf-qos-policy-in`.

When changing a Service-Queue configuration in a QoS policy map, all QoS rules are deleted and re-added automatically to ensure that the order of the rules is maintained.
As a result, the Matched Packets value shown in the `show qos statistics` command is reset.

Related Commands

- `rate police` — incoming traffic policing function.

qos-policy-output

Create a QoS output policy.

Syntax

```plaintext
qos-policy-output qos-policy-name
```

To remove an existing output QoS policy, use the `no qos-policy-output qos-policy-name` command.

Parameters

- `qos-policy-name` Enter your output QoS policy name in character format (32 characters maximum).

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To specify the name of the output QoS policy, use this command. After the output policy is specified, rate shape, scheduler strict, bandwidth-percentage, and WRED can be defined. This command enables Qos-Policy-Output Configuration mode — (conf-qos-policy-out).

Related Commands

- `bandwidth-percentage` — assigns weight to the class/queue percentage.

rate police

Police the incoming traffic rate on the selected interface.

Syntax

```plaintext
rate police [kbps] committed-rate [burst-KB] [peak [kbps] peak-rate [burst-KB]]
```
rate shape

Shape the traffic output on the selected interface.

Syntax

```
rate shape [kbps] rate [burst-KB]
```

Parameters

- **kbps**
 - Enter the keyword `kbps` to specify the rate limit in Kilobits per second (Kbps). Make the following value a multiple of 64. The range is from 0 to 40000000. The default granularity is Megabits per second (Mbps).

- **rate**
 - Enter the outgoing rate in multiples of 10 Mbps. The range is from 10 to 10000.

- **burst-KB**
 - (OPTIONAL) Enter the burst size in KB. The range is from 0 to 10000. The default is 50.

Defaults

Granularity for rate is Mbps unless you use the `kbps` option.

Related Commands

- `rate police` — specifies traffic policing on the selected interface.
- `qos-policy-input` — creates a QoS output policy.
service-policy input

Apply an input policy map to the selected interface.

Syntax

```
service-policy input policy-map-name [layer2]
```

To remove the input policy map from the interface, use the `no service-policy input policy-map-name [layer2]` command.

Parameters

- `policy-map-name` Enter the name for the policy map in character format (16 characters maximum). You can identify an existing policy map or name one that does not yet exist.
- `layer2` (OPTIONAL) Enter the keyword `layer2` to specify a Layer 2 Class Map. The default is Layer 3.

Defaults

Layer 3

Command Modes

- INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can attach a single policy-map to one or more interfaces to specify the service-policy for those interfaces. A policy map attached to an interface can be modified.

NOTE: The `service-policy` commands are not allowed on a port channel. The `service-policy input policy-map-name` command and the `service-class dynamic dot1p` command are not allowed simultaneously on an interface.
service-policy output

Apply an output policy map to the selected interface.

Syntax

```
service-policy output policy-map-name
```

To remove the output policy map from the interface, use the `no service-policy output policy-map-name` command.

Parameters

```
policy-map-name  Enter the name for the policy map in character format (16 characters maximum). You can identify an existing policy map or name one that does not yet exist.
```

Defaults

none

Command Modes

INTERFACE

Command History

```
Version  Description
9.9(0.0)   Introduced on the FN IOM.
9.2(0.0)   Introduced on the M I/O Aggregator.
8.3.16.1   Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

A single policy-map can be attached to one or more interfaces to specify the service-policy for those interfaces. A policy map attached to an interface can be modified.

Related Commands

```
policy-map-output — creates an output policy map.
```

service-queue

Assign a class map and QoS policy to different queues.

Syntax

```
service-queue queue-id [class-map class-map-name] [qos-policy qos-policy-name]
```

To remove the queue assignment, use the `no service-queue queue-id [class-map class-map-name] [qos-policy qos-policy-name]` command.
Parameters

queue-id
Enter the value used to identify a queue. The range is from 0 to 3 (four queues per interface; four queues are reserved for control traffic).

class-map class-map-name
(Optional) Enter the keyword class-map then the class map name assigned to the queue in character format (32 character maximum).

NOTE: This option is available under policy-map-input only.

qos-policy qos-policy-name
(Optional) Enter the keywords qos-policy then the QoS policy name assigned to the queue in text format (32 characters maximum). This specifies the input QoS policy assigned to the queue under policy-map-input and output QoS policy under policy-map-output context.

Defaults none

Command Modes CONFIGURATION (conf-policy-map-in and conf-policy-map-out)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

There are four queues per interface on the MXL switch. This command assigns a class map or QoS policy to different queues.

Related Commands

`service-policy output` — applies an output policy map to the selected interface.

set

Mark outgoing traffic with a differentiated service code point (DSCP) or dot1p value.

Syntax

`set (ip-dscp value | mac-dot1p value)`

Parameters

ip-dscp value
(Optional) Enter the keywords ip-dscp then the IP DSCP value. The range is from 0 to 63.

mac-dot1p value
Enter the keywords mac-dot1p then the dot1p value. The range is from 0 to 7.

Defaults none

Command Modes CONFIGURATION (conf-qos-policy-in)
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
After the IP DSCP bit is set, other QoS services can then operate on the bit settings.

show qos class-map

View the current class map information.

Syntax
show qos class-map [class-name]

Parameters
class-name (Optional) Enter the name of a configured class map.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show qos class-map
Class-map match-any CM
 Match ip access-group ACL

Related Commands
class-map — identifies the class map.

show qos policy-map

View the QoS policy map information.

Syntax
show qos policy-map {summary [interface] | detail [interface]}

Quality of Service (QoS) | 1243
Parameters

summary
To view a policy map interface summary, enter the keyword summary and optionally one of the following keywords and slot/port or number information:

- For a 40 Gigabit Ethernet interface, enter the keyword FortyGigabitEthernet then the slot/port information.
- For a 10 Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

interface

detail
To view a policy map interface in detail, enter the keyword detail and optionally one of the following keywords and slot/port or number information:

- For a 40 Gigabit Ethernet interface, enter the keyword FortyGigabitEthernet then the slot/port information.
- For a 10 Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

Defaults
none

Command Modes
- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (IPv4)

Dell#show qos policy-map detail tengigabitethernet 0/0

Interface tenGigabitEthernet 0/4
Policy-map-input policy
Trust diffserv
Queue# Class-map-name Qos-policy-name
 0 - q0
 1 CM1 q1
 2 CM2 q2
 3 CM3 q3

Example (Summary IPv4)

Dell#show qos policy-map summary

Interface policy-map-input policy-map-output
Gi 4/1 PM1 -
Te 4/2 PM2 PMOut
Dell#
show qos policy-map-input

View the input QoS policy map details.

Syntax
show qos policy-map-input [policy-map-name] [class class-map-name]
[qos-policy-input qos-policy-name]

Parameters

- **policy-map-name**
 - Enter the policy map name.

- **class** **class-map-name**
 - Enter the keyword `class` then the class map name.

- **qos-policy-input qos-policy-name**
 - Enter the keyword `qos-policy-input` then the QoS policy name.

Defaults
none

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version** 9.9(0.0)
 - Introduced on the FN IOM.

- **Version** 8.3.16.1
 - Introduced on the MXL 10/40GbE Switch IO Module.

Example

```
Dell#show qos policy-map-input
Policy-map-input PolicyMapInput
Aggregate Qos-policy-name AggPolicyIn
Queue# Class-map-name Qos-policy-name
0 ClassMap1 qosPolicyInput
Dell#
```

show qos policy-map-output

View the output QoS policy map details.

Syntax
show qos policy-map-output [policy-map-name] [qos-policy-output qos-policy-name]

Parameters

- **policy-map-name**
 - Enter the policy map name.
show qos qos-policy-output

Enter the keyword qos-policy-output then the QoS policy name.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show qos policy-map-output
Policy-map-output PolicyMapOutput
Aggregate Qos-policy-name AggPolicyOut
Queue# Qos-policy-name
 0 qosPolicyOutput
Dell#

show qos qos-policy-input

View the input QoS policy details.

Syntax
show qos qos-policy-input [qos-policy-name]

Parameters
 qos-policy-name Enter the QoS policy name.

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show qos qos-policy-input
Qos-policy-input QosInput
 Rate-police 100 50 peak 100 50
 Dscp 32
Dell#
show qos qos-policy-output

View the output QoS policy details.

Syntax

```
show qos qos-policy-output [qos-policy-name]
```

Parameters

- `qos-policy-name` Enter the QoS policy name.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show qos qos-policy-output
Qos-policy-output qmap_out
Bandwidth-percentage 10
Qos-policy-output qmap_wg
Rate-shape 100 50
Wred yellow wy
Wred green wg
Dell#
```

show qos statistics

View QoS statistics.

Syntax

```
show qos statistics {egress-queue [interface]} | {wred-profile [interface]} | [interface]
```

Parameters

- `egress-queue` Enter the keyword `egress-queue` to display the egress-queue statistics and optionally one of the following keywords and slot/port or number information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Example

```
Dell#show qos statistics
Qos-policy-output qmap_out
Bandwidth-percentage 10
Qos-policy-output qmap_wg
Rate-shape 100 50
Wred yellow wy
Wred green wg
Dell#
```
For a 10–Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

```plaintext
wred-profile  
interface
```

Enter the keywords `wred-profile` and optionally one of the following keywords and slot/port or number information:

- For a 40–Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a 10–Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

```plaintext
interface
```

Enter one of the following keywords and slot/port or number information:

- For a 40–Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a 10–Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

Defaults
```
none
```

Command Modes
```
- EXEC
- EXEC Privilege
```

Command History
```
Version  Description
9.9(0.0)  Introduced on the FN IOM.
9.8(0.0)  Added the `egress-queue` keyword.
8.3.16.1  Introduced on the MXL 10/40GbE Switch IO Module.
```

Example
```
Dell#show qos statistics
Interface Te 0/2
Queue# Matched Pkts
0    0
1    0
2    0
3    0
Dell#
```

show qos wred-profile

View the WRED profile details.

Syntax
```
show qos wred-profile wred-profile-name
```

Quality of Service (QoS) 1248
Parameters

- **wred-profile-name**: Enter the WRED profile name to view the profile details.

Defaults

- **none**

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show qos wred-profile
Wred-profile-name min-threshold max-threshold
wred_drop                0             0
wred_teng_y             467           4671
wred_teng_g             467           4671
wred_fortyg_y           467           4671
wred_fortyg_g           467           4671
```

test cam-usage

Checks the Input Policy Map configuration for the CAM usage.

Syntax

```
test cam-usage service-policy input policy-map stack-unit {
  number |
  all}
```

Parameters

- **policy-map**: Enter the policy map name.
- **stack-unit number** (OPTIONAL): Enter the keywords stack-unit then the stack-unit number.
- **stack-unit all** (OPTIONAL): Enter the keywords stack-unit all all to indicate all the stack-units.

Defaults

- **none**

Command Modes

- EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Quality of Service (QoS) | 1249
Usage Information

This feature allows you to determine if the CAM has enough space available before applying the configuration on an interface.

An input policy map with both Trust and Class-map configuration, the Class-map rules are ignored and only the Trust rule is programmed in the CAM. In such an instance, the Estimated CAM output column contains the size of the CAM space required for the Trust rule and not the Class-map rule.

The following describes the `test cam-usage service-policy input policy-map linecard` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack-unit</td>
<td>Indicates the line card slot number.</td>
</tr>
<tr>
<td>Portpipe</td>
<td>Indicates the portpipe number.</td>
</tr>
<tr>
<td>CAM Partition</td>
<td>The CAM space where the rules are added.</td>
</tr>
<tr>
<td>Available CAM</td>
<td>Indicates the free CAM space, in the partition, for the classification rules.</td>
</tr>
</tbody>
</table>

NOTE: The CAM entries reserved for the default rules are not included in the Available CAM column; free entries, from the default rules space, cannot be used as a policy map for the classification rules.

<table>
<thead>
<tr>
<th>Estimated CAM per Port</th>
<th>Indicates the number of free CAM entries required (for the classification rules) to apply the input policy map on a single interface.</th>
</tr>
</thead>
</table>

NOTE: The CAM entries for the default rule are not included in this column; a CAM entry for the default rule is always dedicated to a port and is always available for that interface.

| Status (Allowed ports) | Indicates if the input policy map configuration on an interface belonging to a linecard/port-pipe is successful — Allowed (n) — or not successful — Exception. The allowed number (n) indicates the number of ports in that port-pipe on which the Policy Map can be applied successfully. |

NOTE: In a Layer 2 Policy Map, IPv4/IPv6 rules are not allowed; therefore, the output contains only L2ACL CAM partition entries.

Example

```
Dell# test cam-usage service-policy input pmap_12 stack-unit all
For a L2 Input Policy Map pmap_12, the output must be as follows,

Stack-unit|Portpipe|CAM Partition|Available CAM|Estimated CAM|Status
-----|------|-------------|--------------|-------------|-----
|      |      |             |              |             |
| (Allowed ports) |      |             |              |             |
| 0    | 0    | L2ACL       | 500          | 200         |
| Allowed (2) |      |             |              |             |
| 1    |      | L2ACL       | 100          | 200         |
```

Quality of Service (QoS) | 1250
trust

Specify dynamic classification (DSCP) or dot1p to trust.

Syntax

trust {diffserv [fallback] | dot1p [fallback]}

Parameters

diffserv

Enter the keyword diffserv to specify trust of DSCP markings.

dot1p

Enter the keyword dot1p to specify trust dot1p configuration.

fallback

Enter the keyword fallback to classify packets according to their DSCP value as a secondary option in case no match occurs against the configured class maps.

Defaults

none

Command Modes

CONFIGURATION (conf-policy-map-in)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you configure trust, matched bytes/packets counters are not incremented in the show qos statistics command.

Dynamic mapping honors packets marked according to the standard definitions of DSCP. The following lists the default mapping.
Table 2. Default Mapping

<table>
<thead>
<tr>
<th>DSCP/CP hex Range (XXX)</th>
<th>DSCP Definition</th>
<th>Traditional IP Precedence</th>
<th>MXL Switch Internal Queue ID</th>
<th>DSCP/CP Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>111XXX</td>
<td>Network Control</td>
<td>3</td>
<td>48–63</td>
<td></td>
</tr>
<tr>
<td>110XXX</td>
<td>Internetwork Control</td>
<td>3</td>
<td>48–63</td>
<td></td>
</tr>
<tr>
<td>101XXX</td>
<td>EF (Expedited Forwarding)</td>
<td>CRITIC/ECP</td>
<td>2</td>
<td>32–47</td>
</tr>
<tr>
<td>100XXX</td>
<td>AF4 (Assured Forwarding)</td>
<td>Flash Override</td>
<td>2</td>
<td>32–47</td>
</tr>
<tr>
<td>011XXX</td>
<td>AF3</td>
<td>Flash</td>
<td>1</td>
<td>16–31</td>
</tr>
<tr>
<td>010XXX</td>
<td>AF2</td>
<td>Immediate</td>
<td>1</td>
<td>16–31</td>
</tr>
<tr>
<td>001XXX</td>
<td>AF1</td>
<td>Priority</td>
<td>0</td>
<td>0–15</td>
</tr>
<tr>
<td>000XXX</td>
<td>BE (Best Effort)</td>
<td>Best Effort</td>
<td>0</td>
<td>0–15</td>
</tr>
</tbody>
</table>

wred

Designate the WRED profile to yellow or green traffic.

Syntax

```
wred [([yellow | green] profile-name) ecn]
```

To remove the WRED drop precedence, use the `no wred {yellow | green} [profile-name]` command.

Parameters

- **yellow | green**
 - Enter the keyword `yellow` for yellow traffic. A DSCP value of xxx110 and xxx101 maps to yellow.
 - Enter the keyword `green` for green traffic. A DSCP value of xxx0xx maps to green.

- **profile-name**
 - Enter your WRED profile name in character format (16 character maximum). Or use one of the five pre-defined WRED profile names.

 Pre-defined Profiles: `wred_drop`, `wred_ge_y`, `wred_ge_g`, `wred_teng_y`, `wred_teng_g`.

Quality of Service (QoS) | 1252
When you configure `wred ecn <cr>` command, instead of dropping the packets exponentially, Explicit Congestion Notification (ECN) marking is made on the packets.

Defaults

```
none
```

Command Modes

```
CONFIGURATION (conf-qos-policy-out)
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the M I/O Aggregator.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To assign drop precedence to green or yellow traffic, use this command. If there is no honoring enabled on the input, all the traffic defaults to green drop precedence.

Related Commands

- `wred-profile` — creates a WRED profile and name that profile.
- `trust` — defines the dynamic classification to trust DSCP.

wred ecn

To indicate network congestion, rather than dropping packets, use explicit congestion notification (ECN).

Syntax

```
wred ecn
```

To stop marking packets, use the `no wred ecn` command.

Defaults

```
none
```

Command Modes

```
CONFIGURATION (conf-qos-policy-out)
```

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant *Dell Networking OS Command Line Reference Guide*.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.0.2.0</td>
<td>Introduced on the S6000.</td>
</tr>
<tr>
<td>8.3.19.0</td>
<td>Introduced on the S4820t.</td>
</tr>
<tr>
<td>8.3.11.1</td>
<td>Introduced on the Z9000.</td>
</tr>
<tr>
<td>8.3.7.0</td>
<td>Introduced on the S4810.</td>
</tr>
</tbody>
</table>
Usage Information

When you enable `wred ecn`, and the number of packets in the queue is below the minimum threshold, packets are transmitted per the usual WRED treatment.

When you enable `wred ecn`, and the number of packets in the queue is between the minimum threshold and the maximum threshold, one of the following two scenarios can occur:

- If the transmission endpoints are ECN-capable and traffic is congested, and the WRED algorithm determines that the packet should have been dropped based on the drop probability, the packet is transmitted and marked so the routers know the system is congested and can slow transmission rates.
- If neither endpoint is ECN-capable, the packet may be dropped based on the WRED drop probability. This behavior is the identical treatment that a packet receives when WRED is enabled without ECN configured on the router.

When you enable `wred ecn`, and the number of packets in the queue is above the maximum threshold, packets are dropped based on the drop probability. This behavior is the identical treatment a packet receives when WRED is enabled without ECN configured on the router.

Related Commands

- `wred-profile` — creates a WRED profile and name that profile.

wred-profile

Create a WRED profile and name the profile.

Syntax

```
wred-profile wred-profile-name
```

To remove an existing WRED profile, use the `no wred-profile` command.

Parameters

- `wred-profile-name` Enter your WRED profile name in character format (16 character maximum). Or use one of the pre-defined WRED profile names. You can configure up to 26 WRED profiles plus the five pre-defined profiles, for a total of 31 WRED profiles.

 Pre-defined Profiles: `wred_drop`, `wred_ge_y`, `wred_ge_g`, `wred_teng_y`, `wred_teng_g`.

Defaults

The five pre-defined WRED profiles. When you configure a new profile, the minimum and maximum threshold defaults to predefined `wred_ge_g` values.

Command Modes

- `CONFIGURATION`

Command History

- **Version 9.9(0.0)**

 Introduced on the FN IOM.
Version | **Description**
--- | ---
9.2(0.0) | Introduced on the M I/O Aggregator.
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information Use the default pre-defined profiles or configure your own profile. You cannot delete the pre-defined profiles or their default values. This command enables WRED configuration mode — (conf-wred).

dscp

Sets the number of specific DSCP values for a color map profile to yellow or red.

Syntax
```
dscp {yellow | red} [list-dscp-values]
```

To remove a color policy map profile, use the `no dscp {yellow | red} [dscp-list]` command.

Parameters

- **Yellow**
 - Enter the `yellow` keyword. Traffic marked as yellow delivers traffic to the egress queue which either transmits the packet if it has available bandwidth or drops the packet due to no ability to send.

- **Red**
 - Enter the `red` keyword. Traffic marked as red is dropped.

- **dscp-list**
 - Enter a list of IP DSCP values. The `dscp-list` parameter specifies the full list of IP DSCP value(s) for the specified color. Each DSCP value in a list is separate values by commas — no spaces (1,2,3) or indicates a list of values separated by a hyphen (1-3). Range is 0 to 63.

Defaults None

Command Modes CONFIG-COLOR-MAP

Command History This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version	**Description**
9.8(1.0) | Introduced on the Z9100-ON.
9.8(0.0P5) | Introduced on the S4048-ON.
9.8(0.0P2) | Introduced on the S3048-ON.
9.7(0.0) | Introduced on the S6000-ON.
9.5(0.1) | Introduced on the Z9500.
Version Description
9.5.0.0 Introduced on the Z9000, S6000, S4820T, S4810, and MXL.

Usage Information
If the specified color-map does not exist, the Diffserv Manager (DSM) creates a color map and sets all the DSCP values to green (low drop precedence).
The default setting for each DSCP value (0-63) is green (low drop precedence). This command allows setting the number of specific DSCP values to yellow or red.

Important Points to Remember
• All DSCP values that are not specified as yellow or red are colored green.
• A DSCP value cannot be in both the yellow and red lists. Setting the red or yellow list with any DSCP value that is already in the other list results in an error and no update to that list is made.
• Each color map can only have one list of DSCP values for each color; any DSCP values previously listed for that color that are not in the new DSCP list are colored green.

Example
Dell(conf-dscp-color-map)# dscp yellow 9,10,11,13,15,16

Related Commands
• qos dscp-color-map — configures the DSCP color map.
• qos dscp-color-policy — configures a DSCP color policy.

qos dscp-color-map

Configure the DSCP color map.

Syntax
qos dscp-color-map map-name

To remove a color map, use the no qos dscp-color-map map-name command.

Parameters
map-name Enter the name of the DSCP color map. The map name can have a maximum of 32 characters.

Defaults
None

Command Modes
CONFIGURATION

Command History
This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version Description
9.8(1.0) Introduced on the Z9100-ON.
Usage Information
A color map outlines the codepoint mappings to the appropriate color mapping (green, yellow, red) for the traffic. The system uses this information to handle the traffic on the interface based on the traffic priority and places it into the appropriate shaping queue. You cannot delete a DSCP color map when it is configured on an interface. If you do, all the DSCP values are set to green (low drop precedence). To delete the DSCP color map that is being used by one or more interfaces, remove the DSCP map from each interface.

Example
Dell(conf)#qos dscp-color-map mymap

Related Commands
- `qos dscp-color-map` — associates the DSCP color map profile with an interface so that all IP packets received on it is given a color based on that color map.
- `dscp` — sets the number of specific DSCP values for color map profile to yellow or red.

qos dscp-color-policy

Associates the DSCP color map profile with an interface so that all IP packets received on it is given a color based on that color map.

Syntax
```
dscp-color-policy color-map-profile-name
```
To remove a color policy map profile, use the `no dscp-color-policy color-map-profile-name` command.

Parameters
- `color-map-profile-name` Enter the color map profile name. The name can have a maximum of 32 characters.

Defaults
None

Command Modes
CONFIG-INTERFACE

Command History
This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version
- 9.8(1.0) Introduced on the Z9100-ON.

-%Quality of Service (QoS) | 1257
show qos dscp-color-policy

Display DSCP color policy configuration for one or all interfaces.

Syntax

```
show qos dscp-color-policy {summary [interface] | detail [interface]}
```

Parameters

- **summary**
 - Enter the `summary` keyword to display summary information about a color policy on one or more interfaces.

- **Detail**
 - Enter the `detail` keyword to display detailed information about a color policy on one or more interfaces.

- **interface**
 - Enter the name of the interface that has color policy configured.

Defaults

- None

Command Modes

- EXEC

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version

- **9.8(0.0P5)**
 - Introduced on the S4048-ON.

- **9.8(0.0P2)**
 - Introduced on the S3048-ON.

- **9.7(0.0)**
 - Introduced on the S6000-ON.

- **9.5(0.1)**
 - Introduced on the Z9500.

- **Version 9.5.0.0**
 - Introduced on the Z9000, S6000, S4820T, S4810, and MXL.

Usage Information

If the specified color-map does not exist, the Diffserv Manager (DSM) creates a color map and sets all the DSCP values to green (low drop precedence).

Example

The following example assigns the color map, `bat-enclave-map`, to interface.

Related Commands

- `dscp` — sets the number of specific DSCP values for color map profile to yellow or red.
- `qos dscp-color-map` — configures the DSCP color map.
show qos dscp-color-map

Display the DSCP color map for one or all interfaces.

Syntax

```
show qos dscp-color-map map-name
```

Parameters

- **map-name**

 Enter the name of the color map.

Defaults

None

Command Modes

EXEC

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5.0.0</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, and Mxl.</td>
</tr>
</tbody>
</table>

Example

Display all DSCP color maps.

```
Dell# show qos dscp-color-map
Dscp-color-map mapONE
  yellow 4,7
  red 20,30
Dscp-color-map mapTWO
  yellow 16,55
```

Display a specific DSCP color map.

```
Dell# show qos dscp-color-map mapTWO
Dscp-color-map mapTWO
```
yellow 16,55
Dell#
Routing Information Protocol (RIP)

Routing information protocol (RIP) is a distance vector routing protocol. The Dell Networking Operating System (OS) supports both RIP version 1 (RIPv1) and RIP version 2 (RIPv2).

The implementation of RIP is based on IETF RFCs 2453 and RFC 1058. For more information about configuring RIP, refer to the Dell Networking OS Configuration Guide.

Topics:

- auto-summary
- clear ip rip
- debug ip rip
- default-information originate
- default-metric
- description
- distance
- distribute-list in
- distribute-list out
- ip poison-reverse
- ip rip receive version
- ip rip send version
- ip split-horizon
- maximum-paths
- neighbor
- network
- offset-list
- output-delay
- passive-interface
- redistribute
- redistribute ospf
- router rip
- show config
- show ip rip database
- show running-config rip
- timers basic
- version
auto-summary

Restore the default behavior of automatic summarization of subnet routes into network routes. This command applies only to RIP version 2.

Syntax

```
auto-summary
```

To send sub-prefix routing information, use the no auto-summary command.

Defaults

Enabled.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

clear ip rip

Update all the RIP routes in the routing table.

Syntax

```
clear ip rip
```

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command triggers updates of the main RIP routing tables.

debug ip rip

Examine RIP routing information for troubleshooting.

Syntax

```
```
To turn off debugging output, use the `no debug ip rip` command.

Parameters

- **interface** *(OPTIONAL)* Enter the interface type and ID as one of the following:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.

- **database** *(OPTIONAL)* Enter the keyword `database` to display messages when there is a change to the RIP database.

- **events** *(OPTIONAL)* Enter the keyword `events` to debug only RIP protocol changes.

- **trigger** *(OPTIONAL)* Enter the keyword `trigger` to debug only RIP trigger extensions.

Command Modes

- EXEC Privilege

Command History

- **Version**
 - **9.9(0.0)** Introduced on the FN IOM.
 - **8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

default-information originate

Generate a default route for the RIP traffic.

Syntax

```
default-information originate [always] [metric metric-value] [route-map map-name]
```

To return to the default values, use the `no default-information originate` command.

Parameters

- **always** *(OPTIONAL)* Enter the keyword `always` to enable the switch software to always advertise the default route.

- **metric metric-value** *(OPTIONAL)* Enter the keyword `metric` then a number as the metric value. The range is from 1 to 16. The default is 1.
route-map map-name

(Optional) Enter the keywords route-map then the name of a configured route-map.

Defaults

Command Modes ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The default route must be present in the switch routing table for the default-information originate command to take effect.

default-metric

Change the default metric for routes. To ensure that all redistributed routes use the same metric value, use this command with the redistribute command.

Syntax
default-metric number

To return the default metric to the original values, use the no default-metric command.

Parameters
number Specify a number. The range is from 1 to 16. The default is 1.

Defaults
1

Command Modes ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command ensures that route information being redistributed is converted to the same metric value.

Related Commands
redistribute — allows you to redistribute routes learned by other methods.
description

Enter a description of the RIP routing protocol.

Syntax

description {description}

To remove the description, use the no description {description} command.

Parameters

- **description**
 - Enter a description to identify the RIP protocol (80 characters maximum).

Defaults

- none

Command Modes

- ROUTER RIP

Command History

- **Version**
 - 9.9(0.0) Introduced on the FN IOM.
 - 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `router rip` — enters ROUTER mode on the switch.

distance

Assign a weight (for prioritization) to all routes in the RIP routing table or to a specific route. Lower weights ("administrative distance") are preferred.

Syntax

distance weight [ip-address mask [prefix-name]]

To return to the default values, use the no distance weight [ip-address mask] command.

Parameters

- **weight**
 - Enter a number from 1 to 255 for the weight (for prioritization).
 - The default is 120.

- **ip-address**
 - (OPTIONAL) Enter the IP address, in dotted decimal format (A.B.C.D), of the host or network to receive the new distance metric.

- **mask**
 - If you enter an IP address, also enter a mask for that IP address, in either dotted decimal format or /prefix format (/x).

- **prefix-name**
 - (OPTIONAL) Enter a configured prefix list name.
distribute-list in

Configure a filter for incoming routing updates.

Syntax

distribute-list prefix-list-name in [interface]

To delete the filter, use the no distribute-list prefix-list-name in command.

Parameters

- **prefix-list-name**: Enter the name of a configured prefix list.
- **interface** (Optional): Identifies the interface type slot/port as one of the following:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Defaults

Not configured.

Command Modes

- ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **ip prefix-list** — enters PREFIX-LIST mode and configures a prefix list.
distribute-list out

Configure a filter for outgoing routing updates.

Syntax

distribute-list prefix-list-name out [interface | bgp | connected | ospf | static]

To delete the filter, use the no distribute-list prefix-list-name out command.

Parameters

- **prefix-list-name**
 - Enter the name of a configured prefix list.

- **interface**
 - (OPTIONAL) Identifies the interface type slot/port as one of the following:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

- **connected**
 - (OPTIONAL) Enter the keyword connected to filter only directly connected routes.

- **ospf**
 - (OPTIONAL) Enter the keyword ospf to filter all OSPF routes.

- **static**
 - (OPTIONAL) Enter the keyword static to filter manually configured routes.

Defaults

Not configured.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `ip prefix-list` — enters PREFIX-LIST mode and configures a prefix list.
ip poison-reverse

Set the prefix of the RIP routing updates to the RIP infinity value.

Syntax

```
ip poison-reverse
```

To disable poison reverse, use the `no ip poison-reverse` command.

Defaults

Disabled.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `ip split-horizon` — sets the RIP routing updates to exclude routing prefixes.

ip rip receive version

To receive specific versions of RIP, set the interface. The RIP version you set on the interface overrides the version command in ROUTER RIP mode.

Syntax

```
ip rip receive version [1] [2]
```

To return to the default, use the `no ip rip receive version` command.

Parameters

- **1** (OPTIONAL) Enter the number 1 for RIP version 1.
- **2** (OPTIONAL) Enter the number 2 for RIP version 2.

Defaults

RIPv1 and RIPv2

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you want the interface to receive both versions of RIP, use the `ip rip receive version 1 2` command.

Related Commands

ip rip send version — sets the RIP version for sending RIP traffic on an interface.

version — sets the RIP version the switch software uses.

ip rip send version

To send a specific version of RIP, set the interface. The version you set on the interface overrides the version command in ROUTER RIP mode.

Syntax

```
ip rip send version [1] [2]
```

To return to the default value, use the **no ip rip send version** command.

Parameters

- **1** *(OPTIONAL)* Enter the number 1 for RIP version 1. The default is RIPv1.
- **2** *(OPTIONAL)* Enter the number 2 for RIP version 2.

Defaults

RIPv1

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To enable the interface to send both version of RIP packets, use the **ip rip send version 1 2** command.

Related Commands

ip rip receive version — sets the RIP version for the interface to receive traffic.

version — sets the RIP version for the switch software.

ip split-horizon

Enable split-horizon for RIP data on the interface. As described in RFC 2453, the split-horizon scheme prevents any routes learned over a specific interface to be sent back out that interface.

Syntax

```
ip split-horizon
```

To disable split-horizon, use the **no ip split-horizon** command.
Defaults
Enabled

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
ip poison-reverse — sets the prefix for RIP routing updates.

maximum-paths

Set RIP to forward packets over multiple paths.

Syntax
maximum-paths number
To return to the default values, use the no maximum-paths commands.

Parameters
number
Enter the number of paths. The range is from 1 to 16. The default is 4 paths.

Defaults
4

Command Modes
ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
RIP supports a maximum of 16 ECMP paths.

neighbor

Define a neighbor router with which to exchange RIP information.

Syntax
neighbor ip-address
To delete a neighbor setting, use the no neighbor ip-address command.
Parameters

- **ip-address**: Enter the IP address, in dotted decimal format, of a router with which to exchange information.

Defaults

Not configured.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When a neighbor router is identified, unicast data exchanges occur. Multiple neighbor routers are possible.

To ensure that only specific interfaces are receiving and sending data, use the `passive-interface` command with the `neighbor` command.

Related Commands

- `passive-interface` — sets the interface to only listen to RIP broadcasts.

network

Enable RIP for a specified network. To enable RIP on all networks connected to the switch, use this command.

Syntax

```
network ip-address
```

To disable RIP for a network, use the `no network ip-address` command.

Parameters

- **ip-address**: Specify an IP network address in dotted decimal format. You cannot specify a subnet.

Defaults

No RIP network is configured.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can enable an unlimited number of RIP networks.
RIP operates over interfaces configured with any address the network command specifies.

offset-list

Specify a number to add to the incoming or outgoing route metrics learned using RIP.

Syntax

offset-list prefix-list-name {in | out} offset [interface]

To delete an offset list, use the no offset-list prefix-list-name {in | out} offset [interface] command.

Parameters

- **prefix-list-name**: Enter the name of an established Prefix list to determine which incoming routes are modified.
- **offset**: Enter a number from zero (0) to 16 to be applied to the incoming route metric matching the access list specified. If you set an offset value to zero (0), no action is taken.
- **interface**: (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
 - For a VLAN, enter the keyword vlan then a number from 1 to 4094.

Defaults

Not configured.

Command Modes

- ROUTER RIP

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When the offset metric is applied to an interface, that value takes precedence over an offset value that is not extended to an interface.

Related Commands

- ip prefix-list — enters PREFIX-LIST mode and configure a prefix list.
output-delay

Set the interpacket delay of successive packets to the same neighbor.

Syntax

```
output-delay delay
```

To return to the switch software defaults for interpacket delay, use the `no output-delay` command.

Parameters

- `delay` Specify a number of milliseconds as the delay interval. The range is from 8 to 50.

Defaults

Not configured.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is intended for low-speed interfaces.

passive-interface

Suppress routing updates on a specified interface.

Syntax

```
passive-interface interface
```

To delete a passive interface, use the `no passive-interface interface` command.

Parameters

- `interface` Enter the following information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For a VLAN, enter the keyword `vlan` then a number from 1 to 4094.
Defaults
Not configured.

Command Modes
ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Although the passive interface does not send or receive routing updates, the network on that interface still includes in RIP updates sent using other interfaces.

Related Commands
neighbor — enables RIP for a specified network.
network — defines a neighbor.

redistribute

Redistribute information from other routing instances.

Syntax
redistribute {connected | static}
To disable redistribution, use the no redistribute {connected | static} command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connected</td>
<td>Enter the keyword connected to specify that information from active routes on interfaces is redistributed.</td>
</tr>
<tr>
<td>static</td>
<td>Enter the keyword static to specify that information from static routes is redistributed.</td>
</tr>
</tbody>
</table>

Defaults
Not configured.

Command Modes
ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To redistribute the default route (0.0.0.0/0), configure the default-information originate command.

Related Commands
default-information originate — generates a default route for RIP traffic.
redistribute ospf

Redistribute routing information from an OSPF process.

Syntax

```plaintext
redistribute ospf process-id [match external {1 | 2} | match internal | metric metric-value] [route-map map-name]
```

To disable redistribution, use the no redistribute ospf process-id [match external {1 | 2} | match internal | metric metric-value] [route-map map-name] command.

Parameters

- **process-id**
 - Enter a number that corresponds to the OSPF process ID to redistribute. The range is from 1 to 65535.

- **match external (1 | 2)**
 - (OPTIONAL) Enter the keywords match external then the numbers 1 or 2 to indicated that external 1 routes or external 2 routes should be redistributed.

- **match internal**
 - (OPTIONAL) Enter the keywords match internal to indicate that internal routes should be redistributed.

- **metric metric-value**
 - (OPTIONAL) Enter the keyword metric then a number as the metric value. The range is from 0 to 16.

- **route-map map-name**
 - (OPTIONAL) Enter the keywords route-map then the name of a configured route map.

Defaults

Not configured.

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

router rip

To configure and enable RIP, enter ROUTER RIP mode.

Syntax

```plaintext
router rip
```

To disable RIP, use the no router rip command.

Defaults

Disabled.
Command Modes

Command History

Version	Description
9.9(0.0) | Introduced on the FN IOM.
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

To enable RIP, assign a network address using the `network` command.

Example

```bash
Dell(conf)#router rip
Dell(conf-router_rip)#
```

Related Commands

`network` — enables RIP.

show config

Display the changes you made to the RIP configuration. The default values are not shown.

Syntax

```bash
show config
```

Command Modes

ROUTER RIP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```bash
Dell(conf-router_rip)#show config
!
router rip
  network 172.31.0.0
  passive-interface TenGigabitEthernet 0/1
Dell(conf-router_rip)#
```

show ip rip database

Display the routes that RIP learns. If the switch learned no RIP routes, no output is generated.

Syntax

```bash
show ip rip database [ip-address mask]
```

Parameters

- `ip-address` (OPTIONAL) Specify an IP address in dotted decimal format to view RIP information on that network only. If you enter an IP address, also enter a mask for that IP address.
(OPTIONAL) Specify a mask, in /network format, for the IP address.

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show ip rip database` command shown in the following example.

Field
- **Total number of routes in RIP database**: Displays the number of RIP routes stored in the RIP database.
- **100.10.10.0/24 directly connected**: Lists the routes directly connected.
- **150.100.0.0 redistributed**: Lists the routes learned through redistribution.
- **209.9.16.0/24...**: Lists the routes and the sources advertising those routes.

Example

```
Dell#show ip rip database  
Total number of routes in RIP database: 1624  
  204.250.54.0/24  
       [50/1] via 192.14.1.3, 00:00:12, TenGigabitEthernet 0/1  
  204.250.54.0/24  auto-summary  
  203.250.49.0/24  
       [50/1] via 192.13.1.3, 00:00:12, TenGigabitEthernet 0/1  
  203.250.49.0/24  auto-summary  
  210.250.40.0/24  
       [50/2] via 1.1.18.2, 00:00:14, Vlan 18  
       [50/2] via 1.1.130.2, 00:00:12, Port-channel 30  
  210.250.40.0/24  auto-summary  
  207.250.53.0/24  
       [50/2] via 1.1.120.2, 00:00:55, Port-channel 20  
       [50/2] via 1.1.130.2, 00:00:12, Port-channel 30  
       [50/2] via 1.1.10.2, 00:00:18, Vlan 10  
  207.250.53.0/24  auto-summary  
  208.250.42.0/24  
       [50/2] via 1.1.120.2, 00:00:55, Port-channel 20  
       [50/2] via 1.1.130.2, 00:00:12, Port-channel 30  
       [50/2] via 1.1.10.2, 00:00:18, Vlan 10  
  208.250.42.0/24  auto-summary  
```
show running-config rip

Display the current RIP configuration.

Syntax: show running-config rip

Defaults: none

Command Modes: EXEC Privilege

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example:

show running-config rip
!
router rip
distribute-list Test1 in
distribute-list Test21 out
network 10.0.0.0
passive-interface TenGigabitEthernet 1/4
neighbor 20.20.20.20
redistribute ospf 999
version 2

timers basic

Manipulate the RIP timers for routing updates, invalid, holddown times, and flush time.

Syntax: timers basic update invalid holddown flush

To return to the default settings, use the no timers basic command.

Parameters:

- **update**: Enter the number of seconds to specify the rate at which RIP routing updates are sent. The range is from zero (0) to 4294967295. The default is 30 seconds.
- **invalid**: Enter the number of seconds to specify the time interval before routing updates are declared invalid or expired. The invalid value should be at least three times the update timer value. The range is from zero (0) to 4294967295. The default is 180 seconds.
- **holddown**: Enter the number of seconds to specify a time interval during which the route is marked as unreachable but still sending RIP packets. The holddown value should be at least three times the
update timer value. The range is from zero (0) to 4294967295. The default is 180 seconds.

flush

Enter the number of seconds to specify the time interval during which the route is advertised as unreachable. When this interval expires, the route is flushed from the routing table. The flush value should be greater than the update value. The range is from zero (0) to 4294967295. The default is 240 seconds.

Defaults

- update = 30 seconds
- invalid = 180 seconds
- holddown = 180 seconds
- flush = 240 seconds

Command Modes

ROUTER RIP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

If you change the timers on one router, also synchronize the timers on all routers in the RIP domain.

version

Specify either RIP version 1 or RIP version 2.

Syntax

version {1 | 2}

To return to the default version setting, use the no version command.

Parameters

1 Enter the keyword 1 to specify RIP version 1.
2 Enter the keyword 2 to specify RIP version 2.

Defaults

The system sends RIPv1 and receives RIPv1 and RIPv2.

Command Modes

ROUTER RIP

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Related Commands

- `ip rip receive version` — sets the RIP version the interface receives.
- `ip rip send version` — sets the RIP version the interface sends.
Remote Monitoring (RMON)

The Dell Networking Operating System (OS) remote monitoring (RMON) is based on IEEE standards, providing both 32-bit and 64-bit monitoring and long-term statistics collection.

RMON supports the following RMON groups, as defined in RFC-2819, RFC-3273, RFC-3434 and RFC-4502:

- Ethernet Statistics Table; RFC-2819
- Ethernet Statistics High-Capacity Table; RFC-3273, 64bits
- Ethernet History Control Table; RFC-2819
- Ethernet History Table; RFC-2819
- Ethernet History High-Capacity Table; RFC-3273, 64bits
- Alarm Table; RFC-2819
- High-Capacity Alarm Table (64bits); RFC-3434, 64bits
- Event Table; RFC-2819
- Log Table; RFC-2819
- User History; RFC-4502
- Probe Configuration (Capabilities, SoftwareRev, HardwareRev, Date Time and ResetControl); RFC-4502

RMON does not support the following statistics:

- etherStatsCollisions
- etherHistoryCollisions
- etherHistoryUtilization

NOTE: Only simple network management protocol (SNMP) GET/GETNEXT access is supported. Configure RMON using the RMON commands. Collected data is lost during a chassis reboot.

Topics:

- `rmon alarm`
- `rmon collection history`
- `rmon collection statistics`
- `rmon event`
- `rmon hc-alarm`
- `show rmon`
- `show rmon alarms`
- `show rmon events`
- `show rmon hc-alarm`
- `show rmon history`
- `show rmon log`
- `show rmon statistics`
rmon alarm

Set an alarm on any MIB object.

Syntax

```
rmon alarm number variable interval {delta | absolute} rising-threshold value event-number falling-threshold value event-number [owner string]
```

To disable the alarm, use the `no rmon alarm number` command.

Parameters

- **number**: Enter the alarm integer number from 1 to 65535. The value must be unique in the RMON alarm table.
- **variable**: Enter the MIB object to monitor. The variable must be in the SNMP OID format; for example, 1.3.6.1.2.1.1.3. The object type must be a 32-bit integer.
- **interval**: Time, in seconds, the alarm monitors the MIB variables; this is the alarmSampleType in the RMON alarm table. The range is from 5 to 3600 seconds.
- **delta**: Enter the keyword `delta` to test the change between MIB variables. This is the alarmSampleType in the RMON alarm table.
- **absolute**: Enter the keyword `absolute` to test each MIB variable directly. This is the alarmSampleType in the RMON alarm table.
- **rising-threshold value event-number**: Enter the keywords `rising-threshold` then the value (32 bit) the rising-threshold alarm is either triggered or reset. Then enter the event-number to trigger when the rising threshold exceeds its limit. This value is the same as the alarmRisingEventIndex or alarmTable of the RMON MIB. If there is no corresponding rising-threshold event, the value is zero.
- **falling-threshold value event-number**: Enter the keywords `falling-threshold` then the value (32 bit) the falling-threshold alarm is either triggered or reset. Then enter the event-number to trigger when the falling threshold exceeds its limit. This value is the same as the alarmFallingEventIndex or the alarmTable of the RMON MIB. If there is no corresponding falling-threshold event, the value is zero.
- **owner string**: (OPTIONAL) Enter the keyword `owner` then the owner name to specify an owner for the alarm. This is the alarmOwner object in the alarmTable of the RMON MIB.

Defaults

```
owner
```

Command Modes

```
CONFIGURATION
```
rmon collection history

Enable the RMON MIB history group of statistics collection on an interface.

Syntax

```
rmon collection history {controlEntry integer} [owner name] [buckets number] [interval seconds]
```

To remove a specified RMON history group of statistics collection, use the `no rmon collection history {controlEntry integer}` command.

Parameters

- **controlEntry integer**
 - Enter the keyword `controlEntry` to specify the RMON group of statistics using a value. Then enter an integer value from 1 to 65535 that identifies the RMON group of statistics. The integer value must be a unique index in the RMON history table.

- **owner name**
 - (OPTIONAL) Enter the keyword `owner` then the owner name to record the owner of the RMON group of statistics.

- **buckets number**
 - (OPTIONAL) Enter the keyword `buckets` then the number of buckets for the RMON collection history group of statistics. The bucket range is from 1 to 1000. The default is 50.

- **interval seconds**
 - (OPTIONAL) Enter the keyword `interval` then the number of seconds in each polling cycle. The range is from 5 to 3600 seconds. The default is 1800 seconds.

Defaults

- none

Command Modes

- CONFIGURATION INTERFACE (config-if)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
rmon collection statistics

Enable RMON MIB statistics collection on an interface.

Syntax

rmon collection statistics {controlEntry integer} [owner name]

To remove RMON MIB statistics collection on an interface, use the no rmon collection statistics {controlEntry integer} command.

Parameters

controlEntry integer
 Enter the keyword controlEntry to specify the RMON group of statistics using a value. Then enter an integer value from 1 to 65535 that identifies the RMON Statistic Table. The integer value must be a unique in the RMON statistic table.

owner name
 (OPTIONAL) Enter the keyword owner then the owner name to record the owner of the RMON group of statistics.

Defaults
none

Command Modes
CONFIGURATION INTERFACE (config-if)

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

rmon event

Add an event in the RMON event table.

Syntax

rmon event number [log] [trap community] [description string] [owner name]

To disable RMON on an interface, use the no rmon event number command.

Parameters

number
 Assign an event number in integer format from 1 to 65535. The number value must be unique in the RMON event table.

log
 (OPTIONAL) Enter the keyword log to generate an RMON log entry. The log entry is triggered and sets the eventType in the RMON MIB to log or log-and-trap. The default is No log.

trap community
 (OPTIONAL) Enter the keyword trap then an SNMP community string to configure the eventType setting in the RMON MIB. This
Set an alarm on any MIB object.

Syntax
rmon hc-alarm number variable interval (delta | absolute) rising-threshold value event-number [owner string] falling-threshold value event-number

To disable the alarm, use the no rmon hc-alarm number command.

Parameters

- **number**
 Enter the alarm integer number from 1 to 65535. The value must be unique in the RMON alarm table.

- **variable**
 The MIB object to monitor. The variable must be in the SNMP OID format; for example, 1.3.6.1.2.1.1.3 The object type must be a 64-bit integer.

- **interval**
 Time, in seconds, the alarm monitors the MIB variables; this is the alarmSampleType in the RMON alarm table. The range is from 5 to 3600 seconds.

- **delta**
 Enter the keyword delta to test the change between MIB variables. This is the alarmSampleType in the RMON alarm table.

- **absolute**
 Enter the keyword absolute to test each MIB variable directly. This is the alarmSampleType in the RMON alarm table.

- **rising-threshold value event-number**
 Enter the keywords rising-threshold then the value (64 bit) the rising-threshold alarm is either triggered or reset. Then enter the event-number to trigger when the rising threshold exceeds its limit. This value is the same as the alarmRisingEventIndex or

Defaults

As noted in the Parameters section.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
alarmTable of the RMON MIB. If there is no corresponding rising-threshold event, the value is zero.

falling-threshold value event-number

Enter the keywords `falling-threshold` then the value (64 bit) the falling-threshold alarm is either triggered or reset. Then enter the event-number to trigger when the falling threshold exceeds its limit. This value is the same as the alarmFallingEventIndex or the alarmTable of the RMON MIB. If there is no corresponding falling-threshold event, the value is zero.

owner string

(Optional) Enter the keyword `owner` then the owner name to specify an owner for the alarm. This is the alarmOwner object in the alarmTable of the RMON MIB.

Defaults

owner

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

show rmon

Display the RMON running status including the memory usage.

Syntax

```
show rmon
```

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show rmon
RMON status
  total memory used 218840 bytes.
  ether statistics table: 8 entries, 4608 bytes
  ether history table: 8 entries, 6000 bytes
  alarm table: 390 entries, 102960 bytes
  high-capacity alarm table: 5 entries, 1680 bytes
  event table: 500 entries, 206000 bytes
  log table: 2 entries, 552 bytes
Dell#
```
show rmon alarms

Display the contents of the RMON alarm table.

Syntax

```
show rmon alarms [index] [brief]
```

Parameters

- `index` (OPTIONAL) Enter the table index number to display just that entry.
- `brief` (OPTIONAL) Enter the keyword `brief` to display the RMON alarm table in an easy-to-read format.

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Index)

```
Dell#show rmon alarm 1
RMON alarm entry 1
  sample Interval: 5
  object: 1.3.6.1.2.1.1.3
  sample type: absolute value.
  value: 255161
  alarm type: rising or falling alarm.
  rising threshold: 1, RMON event index: 1
  falling threshold: 501, RMON event index: 501
  alarm owner: 1
  alarm status: OK
Dell#
```

Example (Brief)

```
Dell#show rmon alarm br
index   SNMP OID
-------- ----------------
  1       1.3.6.1.2.1.1.3
  2       1.3.6.1.2.1.1.3
  3       1.3.6.1.2.1.1.3
  4       1.3.6.1.2.1.1.3
  5       1.3.6.1.2.1.1.3
  6       1.3.6.1.2.1.1.3
  7       1.3.6.1.2.1.1.3
  8       1.3.6.1.2.1.1.3
  9       1.3.6.1.2.1.1.3
 10      1.3.6.1.2.1.1.3
 11      1.3.6.1.2.1.1.3
 12      1.3.6.1.2.1.1.3
 13      1.3.6.1.2.1.1.3
 14      1.3.6.1.2.1.1.3
 15      1.3.6.1.2.1.1.3
 16      1.3.6.1.2.1.1.3
```
show rmon events

Display the contents of the RMON event table.

Syntax

```
show rmon events [index] [brief]
```

Parameters

- **index** (OPTIONAL) Enter the table index number to display just that entry.
- **brief** (OPTIONAL) Enter the keyword `brief` to display the RMON event table in an easy-to-read format.

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Index)

```
Dell# show rmon event 1
RMON event entry 1
  description: 1
  event type: LOG and SNMP TRAP.
  event community: public
  event last time sent: none
  event owner: 1
  event status: OK
Dell#
```

Example (Brief)

```
Dell# show rmon event br
index  description
-------------------------
 1      1
 2      2
 3      3
 4      4
 5      5
 6      6
 7      7
 8      8
 9      9
10     10
11     11
```
show rmon hc-alarm

Display the contents of RMON High-Capacity alarm table.

Syntax

show rmon hc-alarm [index] [brief]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>(OPTIONAL) Enter the table index number to display just that entry.</td>
</tr>
<tr>
<td>brief</td>
<td>(OPTIONAL) Enter the keyword brief to display the RMON High-Capacity alarm table in an easy-to-read format.</td>
</tr>
</tbody>
</table>

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Index)

Dell#show rmon hc-alarm 1
RMON high-capacity alarm entry 2
 object: 1.3.6.1.2.1.2.2.1.4.2099844
 sample interval: 10
 sample type: delta value.
 value: 0, value status: positive
 alarm type: rising or falling alarm.
 alarm rising threshold value: positive.
 rising threshold: 500, RMON event index: 3
 alarm falling threshold value: positive.
 falling threshold: 300, RMON event index: 4
 alarm sampling failed 0 times.
 alarm owner:
 alarm storage type: non-volatile.
 alarm status: OK

Dell#

Example (Brief)

Dell#show rmon hc-alarm brief
index SNMP OID
show rmon history

Display the contents of the RMON Ethernet history table.

Syntax

```
show rmon history [index] [brief]
```

Parameters

- `index` (OPTIONAL) Enter the table index number to display just that entry.
- `brief` (OPTIONAL) Enter the keyword `brief` to display the RMON Ethernet history table in an easy-to-read format

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Index)

```
Dell#show rmon history 6001
RMON history control entry 6001
  interface: ifIndex.100974631 GigabitEthernet 2/0
  bucket requested: 1
  bucket granted: 1
  sampling interval: 5 sec
  owner: 1
  status: OK
Dell#
```

Example (Brief)

```
Dell#show rmon history brief
index   ifIndex   interface
---------------------------------------
6001    100974631 GigabitEthernet 2/0
6002    100974631 GigabitEthernet 2/0
6003    101236775 GigabitEthernet 2/1
6004    101236775 GigabitEthernet 2/1
9001    134529054 GigabitEthernet 3/0
9002    134529054 GigabitEthernet 3/0
9003    134791198 GigabitEthernet 3/1
9004    134791198 GigabitEthernet 3/1
Dell#
```
show rmon log

Display the contents of the RMON log table.

Syntax

```
show rmon log [index] [brief]
```

Parameters

- **index** (OPTIONAL) Enter the table index number to display just that entry.
- **brief** (OPTIONAL) Enter the keyword `brief` to display the RMON log table in an easy-to-read format.

Defaults

`none`

Command Modes

`EXEC`

Command History

```
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

The log table has a maximum of 500 entries. If the log exceeds that maximum, the oldest log entry is purged to allow room for the new entry.

Example (Index)

```
Dell#show rmon log 2
  RMON log entry, alarm table index 2, log index 1
    log time: 14638 (THU AUG 12 22:10:40 2004)
    description: 2
Dell#
```

Example (Brief)

```
Dell#show rmon log br
  eventIndex  description
  ------------------------
    2          2
    4          4
Dell#
```

show rmon statistics

Display the contents of RMON Ethernet statistics table.

Syntax

```
show rmon statistics [index] [brief]
```

Parameters

- **index** (OPTIONAL) Enter the table index number to display just that entry.
brief (OPTIONAL) Enter the keyword brief to display the RMON Ethernet statistics table in an easy-to-read format.

Defaults none

Command Modes EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Index)

```
Dell#show rmon statistics 6001
RMON statistics entry 6001
  interface: ifIndex.100974631 GigabitEthernet 2/0
  packets dropped: 0
  bytes received: 0
  packets received: 0
  broadcast packets: 0
  multicast packets: 0
  CRC error: 0
  under-size packets: 0
  over-size packets: 0
  fragment errors: 0
  jabber errors: 0
  collision: 0
  64 bytes packets: 0
  65-127 bytes packets: 0
  128-255 bytes packets: 0
  256-511 bytes packets: 0
  512-1024 bytes packets: 0
  1024-1518 bytes packets: 0
  owner: 1
  status: OK
  <high-capacity data>
    HC packets received overflow: 0
    HC packets received: 0
    HC bytes received overflow: 0
    HC bytes received: 0
    HC 64 bytes packets overflow: 0
    HC 64 bytes packets: 0
    HC 65-127 bytes packets overflow: 0
    HC 65-127 bytes packets: 0
    HC 128-255 bytes packets overflow: 0
    HC 128-255 bytes packets: 0
    HC 256-511 bytes packets overflow: 0
    HC 256-511 bytes packets: 0
    HC 512-1023 bytes packets overflow: 0
    HC 512-1023 bytes packets: 0
    HC 1024-1518 bytes packets overflow: 0
    HC 1024-1518 bytes packets: 0

Dell#
```

Example (Brief)

```
Dell#show rmon statistics br
index    ifIndex    interface
---------------------------------------------------------
  6001    100974631    GigabitEthernet 2/0
  6002    100974631    GigabitEthernet 2/0
  6003    101236775    GigabitEthernet 2/1

Remote Monitoring (RMON) | 1292
```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6004</td>
<td>101236775</td>
<td>GigabitEthernet 2/1</td>
</tr>
<tr>
<td>9001</td>
<td>134529054</td>
<td>GigabitEthernet 3/0</td>
</tr>
<tr>
<td>9002</td>
<td>134529054</td>
<td>GigabitEthernet 3/0</td>
</tr>
<tr>
<td>9003</td>
<td>134791198</td>
<td>GigabitEthernet 3/1</td>
</tr>
<tr>
<td>9004</td>
<td>134791198</td>
<td>GigabitEthernet 3/1</td>
</tr>
</tbody>
</table>

Dell#
Rapid Spanning Tree Protocol (RSTP)

The Dell Networking Operating System (OS) implementation of rapid spanning tree protocol (RSTP) is based on the IEEE 802.1w standard spanning-tree protocol. The RSTP algorithm configures connectivity throughout a bridged local area network (LAN) that is comprised of LANs interconnected by bridges.

bridge-priority

Set the bridge priority for RSTP.

Syntax

```
bridge-priority priority-value
```

To return to the default value, use the `no bridge-priority` command.

Parameters

- `priority-value` Enter a number as the bridge priority value in increments of 4096. The range is from 0 to 61440. The default is `32768`.

Defaults

`32768`

Command Modes

CONFIGURATION RSTP (conf-rstp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `protocol spanning-tree rstp` — enters rapid spanning tree mode.

debug spanning-tree rstp

Enable debugging of RSTP and view information on the protocol.

Syntax

```
deploy spanning-tree rstp [all | bpdu interface {in | out} | events]
```

To disable debugging, use the `no debug spanning-tree rstp` command.
Parameters

all
(OPTIONAL) Enter the keyword all to debug all spanning tree operations.

bpdu interface (in | out)
(OPTIONAL) Enter the keyword bpdu to debug the bridge protocol data units.

(OPTIONAL) Enter the keyword interface along with the type slot/port of the interface you want displayed. Type slot/port options are the following:

- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Optionally, enter an in or out parameter with the optional interface:

- For Receive, enter in.
- For Transmit, enter out.

events
(OPTIONAL) Enter the keyword events to debug RSTP events.

Command Modes
EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#debug spanning-tree rstp bpdu gigabitethernet 2/0 ?
in Receive (in) out Transmit (out)

description

Enter a description of the rapid spanning tree.

Syntax
description {description}

To remove the description, use the no description {description} command.
Parameters

- **description**: Enter a description to identify the rapid spanning tree (80 characters maximum).

Defaults

none

Command Modes

SPANNING TREE (The prompt is "config-rstp").

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `protocol spanning-tree rstp` — enters SPANNING TREE mode on the switch.

disable

Disable RSTP globally on the system.

Syntax

disable

To enable Rapid Spanning Tree Protocol, use the `no disable` command.

Defaults

RSTP is disabled.

Command Modes

CONFIGURATION RSTP (conf-rstp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `protocol spanning-tree rstp` — enters SPANNING TREE mode on the switch.

forward-delay

Configure the amount of time the interface waits in the Listening State and the Learning State before transitioning to the Forwarding State.

Syntax

`forward-delay seconds`

To return to the default setting, use the `no forward-delay` command.
Parameters

seconds: Enter the number of seconds that the system waits before transitioning RSTP to the forwarding state. The range is from 4 to 30. The default is 15 seconds.

Defaults

15 seconds

Command Modes

CONFIGURATION RSTP (conf-rstp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **hello-time** — changes the time interval between BPDUs.
- **max-age** — changes the wait time before RSTP refreshes the protocol configuration information.

hello-time

Set the time interval between the generation of the RSTP bridge protocol data units (BPDUs).

Syntax

```
hello-time [milli-second] seconds
```

To return to the default value, use the no hello-time command.

Parameters

- **seconds**: Enter a number as the time interval between transmission of BPDUs. The range is from 1 to 10 seconds. The default is 2 seconds.
- **milli-second**: Enter the keywords milli-second to configure a hello time on the order of milliseconds. The range is from 50 to 950 milliseconds.

Defaults

2 seconds

Command Modes

CONFIGURATION RSTP (conf-rstp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The hello time is encoded in BPDUs in increments of 1/256ths of a second. The standard minimum hello time in seconds is 1 second, which is encoded as 256.
Millisecond hello times are encoded using values less than 256; the millisecond hello
time equals (x/1000)*256.

When you configure millisecond hellos, the default hello interval of 2 seconds is still
used for edge ports; the millisecond hello interval is not used.

Related
Commands
forward-delay — changes the wait time before RSTP transitions to the Forwarding state.
max-age — changes the wait time before RSTP refreshes the protocol configuration
information.

max-age

To maintain configuration information before refreshing that information, set the time interval for the RSTP bridge.

Syntax

 max-age seconds

 To return to the default values, use the no max-age command.

Parameters

 max-age

Enter a number of seconds that the waits before refreshing
configuration information. The range is from 6 to 40 seconds.
The default is 20 seconds.

Defaults

 20 seconds

Command Modes

 CONFIGURATION RSTP (conf-rstp)

Command History

 Version 9.9(0.0) Introduced on the FN IOM.
 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related
Commands

 forward-delay — changes the wait time before RSTP transitions to the Forwarding state.
 hello-time — changes the time interval between BPDUs.

edge-port bpdufilter default

To filter transmission of BPDU on port fast enabled interfaces, enable BPDU Filter globally.

Syntax

 edge-port bpdufilter default
To disable global bpdu filter default, use the `no edge-port bpdufilter default` command.

Parameters

- `priority-value` Enter a number as the bridge priority value in increments of 4096. The range is from 0 to 61440. The default is **32768**.

Defaults

- Disabled

Command Modes

- **CONFIGURATION (conf-rstp)**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

protocol spanning-tree rstp

To configure RSTP, enter RSTP mode.

Syntax

```
protocol spanning-tree rstp
```

To exit RSTP mode, use the `exit` command.

Defaults

- Not configured

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

RSTP is not enabled when you enter RSTP mode. To enable RSTP globally on the system, use the `no disable` command from RSTP mode.

Example

```
Dell(conf)#protocol spanning-tree rstp
Dell(config-rstp)#no disable
```

Related Commands

- `disable` — disables RSTP globally on the system.
show config

View the current configuration for the mode. Only non-default values are displayed.

Syntax
show config

Command Modes
CONFIGURATION RSTP (conf-rstp)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell(conf-rstp)#show config
!
protocol spanning-tree rstp
no disable
bridge-priority 16384

spanning-tree rstp

Configure an RSTP interface with one of these settings: port cost, edge port with optional bridge port data unit (BPDU) guard, port priority, loop guard, or root guard.

Syntax
spanning-tree rstp {cost port-cost | edge-port [bpdu-guard [shutdown-on-violation]] | bpdu-filter | priority priority | [root-guard]}

Parameters

- **cost port-cost**: Enter the keyword cost then the port cost value. The range is from 1 to 200000. The defaults are:
 - 10-Gigabit Ethernet interface = 2000
 - 40-Gigabit Ethernet interface = 1400
 - Port Channel interface with one 10 Gigabit Ethernet = 2000
 - Port Channel interface with one 40 Gigabit Ethernet = 1400
 - Port Channel with two 10 Gigabit Ethernet = 1800
 - Port Channel with two 40 Gigabit Ethernet = 600

- **edge-port**: Enter the keywords edge-port to configure the interface as a rapid spanning tree edge port.
bpduguard (OPTIONAL) Enter the keyword portfast to enable Portfast to move the interface into Forwarding mode immediately after the root fails.

Enter the keyword bpduguard to disable the port when it receives a BPDU.

shutdown-on-violation (OPTIONAL) Enter the keywords shutdown-on-violation to hardware disable an interface when a BPDU is received and the port is disabled.

bpdufilter (OPTIONAL) Enter the keyword bpdufilter to enable BPDU Filter to stop sending and receiving BPDUs on port enabled interfaces.

priority priority Enter keyword priority then a value in increments of 16 as the priority. The range is from 0 to 240. The default is 128.

rootguard Enter the keyword rootguard to enable root guard on an RSTP port or port-channel interface.

Defaults Not configured.

Command Modes INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The BPDU guard option prevents the port from participating in an active STP topology in case a BPDU appears on a port unintentionally, or is misconfigured, or is subject to a DOS attack. This option places the port into an Error Disable state if a BPDU appears and a message is logged so that the administrator can take corrective action.

NOTE: A port configured as an edge port, on an RSTP switch, immediately transitions to the Forwarding state. Only configure ports connected to end-hosts as edge ports. Consider an edge port similar to a port with a spanning-tree portfast enabled.

If you do not enable shutdown-on-violation, BPDUs are still sent to the RPM CPU.

You cannot enable STP root guard and loop guard at the same time on a port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message displays: % Error: RootGuard is configured. Cannot configure LoopGuard.

Enabling Portfast BPDU guard and loop guard at the same time on a port results in a port that remains in a Blocking state and prevents traffic from flowing through it. For example, when Portfast BPDU guard and loop guard are both configured:
• If a BPDU is received from a remote device, BPDU guard places the port in an Err-Disabled Blocking state and no traffic is forwarded on the port.
• If no BPDU is received from a remote device, loop guard places the port in a Loop-Inconsistent Blocking state and no traffic is forwarded on the port.

Example

Dell(conf)#interface gigabitethernet 4/0
Dell(conf-if-gi-4/0)#spanning-tree rstp edge-port
Dell(conf-if-gi-4/0)#show config
!
interface GigabitEthernet 4/0
 no ip address
 switchport
 spanning-tree rstp edge-port
 no shutdown
Dell#

spanning-tree rstp

Configure an RSTP interface with one of these settings: port cost, edge port with optional bridge port data unit (BPDU) guard, port priority, loop guard, or root guard.

Syntax

spanning-tree rstp {cost port-cost | edge-port [bpduguard [shutdown-on-violation]] | bpdufilter | priority priority | {rootguard}}

Parameters

cost port-cost Enter the keyword cost then the port cost value. The range is from 1 to 200000. The defaults are:
• 10-Gigabit Ethernet interface = 2000
• 40-Gigabit Ethernet interface = 1400
• Port Channel interface with one 10 Gigabit Ethernet = 2000
• Port Channel interface with one 40 Gigabit Ethernet = 1400
• Port Channel with two 10 Gigabit Ethernet = 1800
• Port Channel with two 40 Gigabit Ethernet = 600

edge-port Enter the keywords edge-port to configure the interface as a rapid spanning tree edge port.

bpduguard (OPTIONAL) Enter the keyword portfast to enable Portfast to move the interface into Forwarding mode immediately after the root fails.

Enter the keyword bpduguard to disable the port when it receives a BPDU.
shutdown-on-violation (OPTIONAL) Enter the keywords shutdown-on-violation to hardware disable an interface when a BPDU is received and the port is disabled.

bpdufilter (OPTIONAL) Enter the keyword bpdufilter to enable BPDU Filter to stop sending and receiving BPDUs on port enabled interfaces.

priority priority Enter keyword priority then a value in increments of 16 as the priority. The range is from 0 to 240. The default is 128.

rootguard Enter the keyword rootguard to enable root guard on an RSTP port or port-channel interface.

Defaults Not configured.

Command Modes INTERFACE

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The BPDU guard option prevents the port from participating in an active STP topology in case a BPDU appears on a port unintentionally, or is misconfigured, or is subject to a DOS attack. This option places the port into an Error Disable state if a BPDU appears and a message is logged so that the administrator can take corrective action.

NOTE: A port configured as an edge port, on an RSTP switch, immediately transitions to the Forwarding state. Only configure ports connected to end-hosts as edge ports. Consider an edge port similar to a port with a spanning-tree portfast enabled.

If you do not enable shutdown-on-violation, BPDUs are still sent to the RPM CPU.

You cannot enable STP root guard and loop guard at the same time on a port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message displays: % Error: RootGuard is configured. Cannot configure LoopGuard.

Enabling Portfast BPDU guard and loop guard at the same time on a port results in a port that remains in a Blocking state and prevents traffic from flowing through it. For example, when Portfast BPDU guard and loop guard are both configured:

- If a BPDU is received from a remote device, BPDU guard places the port in an Err-Disabled Blocking state and no traffic is forwarded on the port.
- If no BPDU is received from a remote device, loop guard places the port in a Loop-Inconsistent Blocking state and no traffic is forwarded on the port.

Example

Dell(conf)#interface gigabitethernet 4/0
Dell(conf-if-gi-4/0)#spanning-tree rstp edge-port
Dell(conf-if-gi-4/0)#show config

!
interface GigabitEthernet 4/0
 no ip address
 switchport
 spanning-tree rstp edge-port
 no shutdown
Dell#

tc-flush-standard

Enable the MAC address flushing after receiving every topology change notification.

Syntax

tc-flush-standard

To disable, use the no tc-flush-standard command.

Defaults

Disabled

Command Modes

CONFIGURATION (conf-rstp)

Command History

Version Description
---------------- ---
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

By default, the system implements an optimized flush mechanism for RSTP. This implementation helps in flushing MAC addresses only when necessary (and less often), allowing for faster convergence during topology changes. However, if a standards-based flush mechanism is needed, you can turn on this knob command to enable flushing MAC addresses after receiving every topology change notification.
This chapter contains various types of security commands offered in the Dell Networking Operating System (OS).

The commands are listed in the following sections:

- AAA Accounting Commands
- Authorization and Privilege Commands
- Authentication and Password Commands
- RADIUS Commands
- TACACS+ Commands
- SSH Server and SCP Commands
- Secure DHCP Commands

For configuration details, refer to the Security chapter in the Dell Networking OS Configuration Guide.

NOTE: Starting with the Dell Networking OS version 7.2.1.0, LEAP with MSCHAP v2 supplicant is implemented.

Topics:

- AAA Accounting Commands
- aaa accounting
- aaa accounting suppress
- accounting
- crypto key zeroize rsa
- show accounting
- Authorization and Privilege Commands
- authorization
- aaa authorization commands
- aaa authorization role-only
- aaa authorization config-commands
- aaa authorization exec
- privilege level (CONFIGURATION mode)
- privilege level (LINE mode)
- Authentication and Password Commands
- aaa authentication enable
- aaa authentication login
- access-class
- enable password
- enable restricted
- enable secret
- enable sha256-password
- login authentication
- password
- password-attributes
- service password-encryption
- show privilege
- show users
- timeout login response
- username
- RADIUS Commands
 - debug radius
 - ip radius source-interface
 - radius-server deadtime
 - radius-server host
 - radius-server key
 - radius-server retransmit
 - radius-server timeout
 - role
- TACACS+ Commands
 - debug tacacs+
 - ip tacacs source-interface
 - tacacs-server host
 - tacacs-server key
- SSH Server and SCP Commands
 - crypto key generate
 - debug ip ssh
 - ip scp topdir
 - ip ssh authentication-retries
 - ip ssh cipher
 - ip ssh connection-rate-limit
 - ip ssh hostbased-authentication
 - ip ssh key-size
 - ip ssh mac
 - ip ssh password-authentication
 - ip ssh pub-key-file
 - ip ssh rekey
 - ip ssh rhostsfile
 - ip ssh rsa-authentication (Config)
 - ip ssh rsa-authentication (EXEC)
 - ip ssh server
 - show accounting
 - show crypto
AAA Accounting Commands

AAA Accounting enables tracking of services that users are accessing and the amount of network resources being consumed by those services. When you enable AAA Accounting, the network server reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record is comprised of accounting AV pairs and is stored on the access control server.

As with authentication and authorization, you must configure AAA Accounting by defining a named list of accounting methods, and then applying that list to various interfaces.

aaa accounting

Enable AAA Accounting and create a record for monitoring the accounting function.

Syntax

```
aaa accounting {system | exec | commands level role role-name} {name | default} {start-stop | wait-start | stop-only} {tacacs+}
```

To disable AAA Accounting, use the `no aaa accounting {system | exec | command level} {name | default} {start-stop | wait-start | stop-only} {tacacs+} command.`
Parameters

system Enter the keyword system to send accounting information of any other AAA configuration.

exec Enter the keyword exec to send accounting information when a user has logged in to EXEC mode.

commands (level|role role-name) Enter the keyword command then a privilege level for accounting of commands executed at that privilege level or enter the keyword role then the role name for accounting of commands executed by a user with that user role.

name | default Enter one of the following:

- For name, enter a user-defined name of a list of accounting methods.
- For default, the default accounting methods used.

start-stop Enter the keywords start-stop to send a "start accounting" notice at the beginning of the requested event and a "stop accounting" notice at the end of the event.

wait-start Enter the keywords wait-start to ensure that the TACACS+ security server acknowledges the start notice before granting the user's process request.

stop-only Enter the keywords stop-only to instruct the TACACS+ security server to send a "stop record accounting" notice at the end of the requested user process.

tacacs+ Enter the keyword tacacs+ to use TACACS+ data for accounting. The Dell Networking OS currently supports only TACACS+ accounting.

Defaults none

Command Modes CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.5(0.0) Introduced the support for roles on the MXL 10/40GbE Switch.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

In the example above, TACACS+ accounting is used to track all usage of EXEC command and commands on privilege level 15.

Privilege level 15 is the default. If you want to track usage at privilege level 1 for example, use the aaa accounting command 1 command.
Example
Dell(conf)# aaa accounting exec default start-stop tacacs+
Dell(conf)# aaa accounting command 15 default start-stop tacacs+
Dell(config)#

Related Commands
enable password — changes the password for the enable command.
login authentication — enables AAA login authentication on the terminal lines.
password — creates a password.
tacacs-server host — specifies a TACACS+ server host.

aaa accounting suppress
Prevent the generation of accounting records of users with the user name value of NULL.

Syntax
aaa accounting suppress null-username
To permit accounting records to users with user name value of NULL, use the no aaa accounting suppress null-username command.

Defaults
Accounting records are recorded for all users.

Command Modes
CONFIGURATION

Command History
Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The system issues accounting records for all users on the system, including users whose username string, due to protocol translation, is NULL. For example, a user who comes on line with the aaa authentication login method-list none command is applied. To prevent the accounting records from being generated for sessions that do not have user names associated to them, use the aaa accounting suppress command.

accounting
Apply an accounting method list to terminal lines.

Syntax
accounting {exec | commands {level | role role-name} method-list
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exec</td>
<td>Enter the keyword exec to apply an EXEC level accounting method list.</td>
</tr>
<tr>
<td>commands (level</td>
<td>role role-name)</td>
</tr>
<tr>
<td>method-list</td>
<td>Enter a method list that you defined using the <code>aaa accounting exec</code> or <code>aaa accounting commands</code>.</td>
</tr>
</tbody>
</table>

Defaults

- none

Command Modes

- LINE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `aaa accounting` — enables AAA Accounting and creates a record for monitoring the accounting function.

crypto key zeroize rsa

Removes the generated RSA host keys and zeroize the key storage location.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>crypto key zeroize rsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>none</td>
</tr>
<tr>
<td>Command Modes</td>
<td>CONFIGURATION</td>
</tr>
</tbody>
</table>

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
</tbody>
</table>
show accounting

Display the active accounting sessions for each online user.

Syntax

```
show accounting
```

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command steps through all active sessions and then displays the accounting records for the active account functions.

Example

```
Dell#show accounting
Active accounted actions on tty2, User guest Priv 1 Role <none>
   Task ID 1, EXEC Accounting record, 00:02:03
   Elapsed,service=shell
Active accounted actions on tty3, User ad Priv 15 Role <none>
   Task ID 2, EXEC Accounting record, 00:01:22
   Elapsed,service=shell
Active accounted actions on tty4, User ad Priv 15 Role <none>
   Task ID 11, EXEC Accounting record, 00:00:35 Elapsed,
   service=shell
Active accounted actions on tty5, User ad Priv 1 Role sysadmin
   Task ID 16, EXEC Accounting record, 00:00:04 Elapsed,
   service=shell
Dell#
```

Related Commands

- `aaa accounting` — enables AAA Accounting and creates a record for monitoring the accounting function.
Authorization and Privilege Commands

To set command line authorization and privilege levels, use the following commands.

authorization

Apply an authorization method list to terminal lines.

Syntax

```
authorization {exec | commands {level | role role-name}} method-list
```

Parameters

- **exec**

Enter the keyword `exec` to apply an EXEC level accounting method list.

- **commands {level | role role-name}**

Enter the keywords `commands` followed by either a privilege level for accounting of commands executed at that privilege level, or enter the keyword `role` then the role name for authorization of commands executed by a user with that user role.

- **method-list**

Enter a method list that you defined using the `aaa accounting exec` or `aaa accounting commands`.

Defaults

`none`

Command Modes

`LINE`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `aaa authorization commands` — sets the parameters that restrict (or permit) a user's access to EXEC and CONFIGURATION level commands

- `aaa authorization exec` — sets the parameters that restrict (or permit) a user's access to EXEC level commands.
aaa authorization commands

Set parameters that restrict (or permit) a user’s access to EXEC and CONFIGURATION level commands.

Syntax

```
aaa authorization commands {level | role role-name}{name | default} {local | tacacs+ | none}
```

Undo a configuration with the `no aaa authorization commands {level | role role-name}{name | default} {local | tacacs+ | none}` command.

Parameters

- **commands level**
 - Enter the keyword `commands` then the command privilege level for command level authorization.
- **role role-name**
 - Enter the keyword `role` then the role name.
- **name**
 - Define a name for the list of authorization methods.
- **default**
 - Define the default list of authorization methods.
- **local**
 - Use the authorization parameters on the system to perform authorization.
- **tacacs+**
 - Use the TACACS+ protocol to perform authorization.
- **none**
 - Enter the keyword `none` to apply no authorization.

Defaults

- `none`

Command Modes

- **CONFIGURATION**

Command History

```
Version                      Description
9.9(0.0)                      Introduced on the FN IOM.
9.5(0.0)                      Introduced the support for roles on the MXL 10/40GbE Switch.
8.3.16.1                      Introduced on the MXL 10/40GbE Switch IO Module.
```

aaa authorization role-only

Configure authentication to use the user’s role only when determining if access to commands is permitted.

Syntax

```
aaa authorization role-only
```

To return to the default setting, use the `no aaa authentication role-only` command.
Parameters

- **name**
 - Enter a text string for the name of the user up to 63 characters. It cannot be one of the system defined roles (sysadmin, secadmin, netadmin, netoperator).

- **inherit existing-role-name**
 - Enter the `inherit` keyword then specify the system defined role to inherit permissions from (sysadmin, secadmin, netadmin, netoperator).

Defaults

- none

Command Modes

- CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, and M400.</td>
</tr>
</tbody>
</table>

Usage Information

By default, access to commands are determined by the user's role (if defined) or by the user's privilege level. If the `aaa authorization role-only` command is enabled, then only the user's role is used.

Before you enable role-based only AAA authorization:

1. Locally define a system administrator user role. This will give you access to login with full permissions even if network connectivity to remote authentication servers is not available.
2. Configure login authentication on the console. This ensures that all users are properly identified through authentication no matter the access point.
3. Specify an authentication method (RADIUS, TACACS+, or Local).
4. Specify authorization method (RADIUS, TACACS+ or Local).
5. Verify the configuration has been applied to the console or VTY line.

Related Commands

- login authentication, password, radius-server host, tacacs-server host
aaa authorization config-commands

Set parameters that restrict (or permit) a user’s access to EXEC level commands.

Syntax

```
aaa authorization config-commands
```

Disable authorization checking for CONFIGURATION level commands using the no aaa authorization config-commands command.

Defaults

Enabled when you configure aaa authorization commands command.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

By default, the aaa authorization commands command configures the system to check both EXEC level and CONFIGURATION level commands. To enable only EXEC-level command checking, use the command no aaa authorization config-commands.

aaa authorization exec

Set parameters that restrict (or permit) a user’s access to EXEC-level commands.

Syntax

```
aaa authorization exec {name | default} {local | tacacs+ | if-authenticated | none}
```

To disable authorization checking for EXEC level commands, use the no aaa authorization exec command.

Parameters

- `name` : Define a name for the list of authorization methods.
- `default` : Define the default list of authorization methods.
- `local` : Use the authorization parameters on the system to perform authorization.
- `tacacs+` : Use the TACACS+ protocol to perform authorization.
- `none` : Enter the keyword none to apply no authorization.

Defaults

- `default` : Use the default list of authorization methods.
Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

privilege level (CONFIGURATION mode)

Change the access or privilege level of one or more commands.

Syntax

```
privilege mode {level level command | reset command}
```

To delete access to a level and command, use the `no privilege mode level command` command.

Parameters

- **mode**
 - Enter one of the following keywords as the mode for which you are controlling access:
 - `configure` for CONFIGURATION mode
 - `exec` for EXEC mode
 - `interface` for INTERFACE modes
 - `line` for LINE mode
 - `route-map` for ROUTE-MAP mode
 - `router` for ROUTER OSPF, ROUTER RIP, ROUTER ISIS and ROUTER BGP modes

- **level level**
 - Enter the keyword `level` then a number for the access level. The range is from 0 to 15. Level 1 is EXEC mode and Level 15 allows access to all CLI modes and commands.

- **reset**
 - Enter the keyword `reset` to return the security level to the default setting.

- **command**
 - Enter the command’s keywords to assign the command to a certain access level. You can enter one or all of the keywords.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
Version | Description
--- | ---
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
To define a password for the level to which you are assigning privilege or access, use the `enable password` command.

privilege level (LINE mode)

Change the access level for users on the terminal lines.

Syntax
```
privilege level level
```
To delete access to a terminal line, use the `no privilege level level` command.

Parameters
```
level level
```
Enter the keyword `level` then a number for the access level. The range is from 0 to 15.

Level 1 is EXEC mode and Level 15 allows access to all CLI modes.

Defaults
```
level = 15
```

Command Modes
```
LINE
```

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Authentication and Password Commands

To manage access to the system, use the following the commands.

aaa authentication enable

Configure AAA Authentication method lists for user access to EXEC privilege mode (the “Enable” access).

Syntax

```
aaa authentication enable {default | method-list-name} method [... method2]
```

To return to the default setting, use the no aaa authentication enable {default | method-list-name} method [... method2] command.

Parameters

- **default**: Enter the keyword default then the authentication methods to use as the default sequence of methods for the Enable login. The default is default enable.
- **method-list-name**: Enter a text string (up to 16 characters long) to name the list of enabled authentication methods activated at login.
- **method**: Enter one of the following methods:
 - `enable`: use the password the enable password command defines in CONFIGURATION mode.
 - `line`: use the password the password command defines in LINE mode.
 - `none`: no authentication.
 - `radius`: use the RADIUS servers configured with the radius-server host command.
 - `tacacs+`: use the TACACS+ server(s) configured with the tacacs-server host command.

- **... method2**: (OPTIONAL) In the event of a “no response” from the first method, the system applies the next configured method.

Defaults

Use the enable password.

Command Modes

CONFIGURATION
aaa authentication login

Configure AAA Authentication method lists for user access to EXEC mode (Enable log-in).

Syntax

```
aaa authentication login {method-list-name | default} method [... method4]
```

Parameters

- **method-list-name**: Enter a text string (up to 16 characters long) as the name of a user-configured method list that can be applied to different lines.
- **default**: Enter the keyword default to specify that the method list specified is the default method for all terminal lines.
- **method**: Enter one of the following methods:
 - **enable**: use the password the enable password command defines in CONFIGURATION mode.

Usage Information

Methods configured with the `aaa authentication enable` command are evaluated in the order they are configured. If authentication fails using the primary method, the system employs the second method (or third method, if necessary) automatically. For example, if the TACACS+ server is reachable, but the server key is invalid, the system proceeds to the next authentication method. The TACACS+ is incorrect, but the user is still authenticated by the secondary method.
• line: use the password the `password` command defines in LINE mode. Not available if role-only is in use.
• none: no authentication. Not available if role-only is in use.
• radius: use the RADIUS servers configured with the `radius-server host` command.
• tacacs+: use the TACACS+ servers configured with the `tacacs-server host` command.

... `method4` (OPTIONAL) Enter up to four additional methods. In the event of a "no response" from the first method, the system applies the next configured method (up to four configured methods).

Defaults
Not configured (that is, no authentication is performed).

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for role on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
By default, the locally configured username password is used. If you configure `aaa authentication login default`, the system uses the methods this command defines for login instead.

Methods configured with the `aaa authentication login` command are evaluated in the order they are configured. If users encounter an error with the first method listed, the Dell Networking OS applies the next method configured. If users fail the first method listed, no other methods are applied. The only exception is the local method. If the user's name is not listed in the local database, the next method is applied. If the correct user name/password combination is not entered, the user is not allowed access to the switch.

NOTE: If authentication fails using the primary method, the system employs the second method (or third method, if necessary) automatically. For example, if the TACACS+ server is reachable, but the server key is invalid, the system proceeds to the next authentication method. The TACACS+ is incorrect, but the user is still authenticated by the secondary method.

After configuring the `aaa authentication login` command, configure the `login authentication` command to enable the authentication scheme on terminal lines.

Connections to the SSH server work with the following login mechanisms: local, radius, and tacacs.

Related Commands
`login authentication` — enables AAA login authentication on the terminal lines.
`password` — creates a password.
radius-server host — specifies a RADIUS server host.

tacacs-server host — specifies a TACACS+ server host.

access-class

Restrict incoming connections to a particular IP address in a defined IP access control list (ACL).

Syntax

```
access-class access-list-name
```

To delete a setting, use the `no access-class` command.

Parameters

- `access-list-name` Enter the name of an established IP Standard ACL.

Defaults

Not configured.

Command Modes

LINE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `line` — applies an authentication method list to the designated terminal lines.
- `ip access-list standard` — names (or selects) a standard access list to filter based on the IP address.
- `ip access-list extended` — names (or selects) an extended access list based on the IP addresses or protocols.

enable password

Change the password for the `enable` command.

Syntax

```
enable password [level level] [encryption-type] password
```

To delete a password, use the `no enable password [encryption-type] password [level level]` command.

Parameters

- `level level` (OPTIONAL) Enter the keyword `level` then a number as the level of access. The range is from 1 to 15.
encryption-type

(OPTIONAL) Enter the number 7 or 0 as the encryption type.

Enter a 7 then a text string as the hidden password. The text string must be a password that was already encrypted by a Dell Networking router.

Use this parameter only with a password that you copied from the show running-config file of another Dell Networking router.

password

Enter a text string, up to 32 characters long, as the clear text password.

Defaults

No password is configured. level = 15.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To control access to command modes, use this command to define a password for a level and use the privilege level (CONFIGURATION mode) command.

Passwords must meet the following criteria:

- Start with a letter, not a number.
- Passwords can have a regular expression as the password. To create a password with a regular expression in it, use CNTL + v prior to entering regular expression. For example, to create the password `abcd\]e`, you type `abcd CNTL v \]e`. When the password is created, you do not use the CNTL + v key combination and enter `"abcd\]e"`.

NOTE: The question mark (?) and the tilde (~) are not supported characters.

Related Commands

- `show running-config` — views the current configuration.
- `privilege level (CONFIGURATION mode)` — controls access to the command modes within the switch.

enable restricted

Allows Dell Networking technical support to access restricted commands.

Syntax

`enable restricted [encryption-type] password`

Related Commands

- `enable` — enters the EXEC Privilege mode.
- `enable password` — creates or changes an authentication password for the enable command.
- `enable secret` — creates or changes an authentication password for the enable command and sets the level above which the password is not echoed.
To disallow access to restricted commands, use the `no enable restricted` command.

Parameters

- **encryption-type** (OPTIONAL) Enter the number 7 as the encryption type.

 Enter 7 followed a text string as the hidden password. The text string must be a password that was already encrypted by a Dell Networking router.

 Use this parameter only with a password that you copied from the `show running-config` file of another Dell Networking router.

- **password**

 Enter a text string, up to 32 characters long, as the clear text password.

Defaults

Not configured.

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Only Dell Networking Technical Support staff use this command.

enable secret

Change the password for the `enable` command.

Syntax

```
enable secret [level level] [encryption-type] password
```

To delete a password, use the `no enable secret [encryption-type] password [level level]` command.

Parameters

- **level level** (OPTIONAL) Enter the keyword `level` then a number as the level of access. The range is from 1 to 15.

- **encryption-type** (OPTIONAL) Enter the number 5 or 0 as the encryption type.

 Enter a 5 then a text string as the hidden password. The text string must be a password that was already encrypted by a Dell Networking router.
Use this parameter only with a password that you copied from the show running-config file of another Dell Networking router.

password
Enter a text string, up to 32 characters long, as the clear text password.

Defaults
No password is configured. *level* = 15.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To control access to command modes, use this command to define a password for a level and use the `privilege level (CONFIGURATION mode)` command.

Passwords must meet the following criteria:

- Start with a letter, not a number.
- Passwords can have a regular expression as the password. To create a password with a regular expression in it, use CNTL + v prior to entering regular expression. For example, to create the password `abcd\]e`, you type `abcd CNTL v \]e`. When the password is created, you do not use the CNTL + v key combination and enter `"abcd\]e"`.

NOTE: The question mark (?) and the tilde (~) are not supported characters.

Related Commands
- `show running-config` — views the current configuration.
- `privilege level (CONFIGURATION mode)` — controls access to the command modes within the switch.

enable sha256-password

Configure SHA-256 based password for the enable command.

Syntax
```
enable sha256-password [level level] [encryption-type] password
```

To delete a password, use the `no enable sha256-password [encryption-type] password [level level]` command.

Parameters
- `sha256-password` Enter the keyword `sha256-password` then the encryption-type or the password.
level level (OPTIONAL) Enter the keyword level then a number as the level of access. The range is from 1 to 15.

encryption-type (OPTIONAL) Enter the number 8 or 0 as the encryption type.

Enter 8 to enter the sha256–based hashed password.

password Enter a text string, up to 32 characters long, as the clear text password.

Defaults No password is configured. level = 15.

Command Modes CONFIGURATION

Command History This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Related Commands

- show running-config — views the current configuration.
- privilege level (CONFIGURATION mode) — controls access to the command modes within the switch.

login authentication

To designate the terminal lines, apply an authentication method list.

Syntax login authentication {method-list-name | default}

To use the local user/password database for login authentication, use the no login authentication command.

Parameters

- **method-list-name** Enter the keywords method-list-name to specify that method list, created in the aaa authentication login command, to be applied to the designated terminal line.

- **default** Enter the keyword default to specify that the default method list, created in the aaa authentication login command, is applied to the terminal line.

Defaults No authentication is performed on the console lines. Local authentication is performed on the virtual terminal and auxiliary lines.

Command Modes LINE
password

Specify a password for users on terminal lines.

Syntax

password [encryption-type] password

To delete a password, use the no password password command.

Parameters

encryption-type (OPTIONAL) Enter either zero (0) or 7 as the encryption type for the password entered. The options are

- 0 is the default and means the password is not encrypted and stored as clear text.
- 7 means that the password is encrypted and hidden.

password Enter a text string up to 32 characters long. The first character of the password must be a letter. You cannot use spaces in the password.

Defaults

No password is configured.

Command Modes

LINE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The system prompts users for these passwords when the method for authentication or authorization used is "line".

Related Commands

enable password — sets the password for the enable command.
login authentication — configures an authentication method to log in to the switch.
service password-encryption — encrypts all passwords configured in the system.

radius-server key — configures a key for all RADIUS communications between the switch and the RADIUS host server.

tacacs-server key — configures a key for communication between a TACACS+ server and client.

username — establishes an authentication system based on user names.

password-attributes

Configure the password attributes (strong password).

Syntax

```
password-attributes [min-length number] [max-retry number] [lockout-period minutes] [character-restriction [upper number] [lower number] [numeric number] [special-char number]]
```

To return to the default, use the no password-attributes [min-length number] [max-retry number] [lockout-period minutes] [character-restriction [upper number] [lower number] [numeric number] [special-char number]] command.

Parameters

- **min-length number** (OPTIONAL) Enter the keywords min-length then the number of characters. The range is from 0 to 32 characters.
- **max-retry number** (OPTIONAL) Enter the keywords max-retry then the number of maximum password retries. The range is from 0 to 16.
- **lockout-period minutes** (OPTIONAL) Enter the keyword lockout-period then the number of minutes. The range is from 1 to 1440 minutes. The default is 0 minutes and the lockout-period is not enabled. This parameter enhances the security of the switch by locking out sessions on the Telnet or SSH sessions for which there has been a consecutive failed login attempts. The console is not locked out.
- **character-restriction** (OPTIONAL) Enter the keywords character-restriction to indicate a character restriction for the password.
- **upper number** (OPTIONAL) Enter the keyword upper then the upper number. The range is from 0 to 31.
- **lower number** (OPTIONAL) Enter the keyword lower then the lower number. The range is from 0 to 31.
- **numeric number** (OPTIONAL) Enter the keyword numeric then the numeric number. The range is from 0 to 31.
special-char number

(Optional) Enter the keywords special-char then the number of special characters permitted. The range is from 0 to 31.

The following special characters are supported:

`! " # % & ' () ; < = > ? [] ^ _ { | } ~ @ $`

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.6(0.0)</td>
<td>Introduced the special-characters on the MXL Switch.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the lockout-period option on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

password — specifies a password for users on terminal lines.

service password-encryption

Encrypt all passwords configured in the system.

Syntax

```
service password-encryption

To store new passwords as clear text, use the no service password-encryption command.
```

Defaults

Enabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

⚠️ **CAUTION:** Encrypting passwords with this command does not provide a high level of security. When the passwords are encrypted, you cannot return them to plain text unless you re-configure them. To remove an encrypted password, use the no password password command.
To keep unauthorized people from viewing passwords in the switch configuration file, use the `service password-encryption` command. This command encrypts the clear-text passwords created for user name passwords, authentication key passwords, the privileged command password, and console and virtual terminal line access passwords.

To view passwords, use the `show running-config` command.

show privilege

View your access level.

Syntax

```
show privilege
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show privilege
Current privilege level is 15
Dell#

Dell#show privilege
Current privilege level is 14.
Dell#

Dell#show privilege
Current privilege level is 10.
Dell#
```

Related Commands

- `privilege level (CONFIGURATION mode)` — assigns access control to different command modes.

show users

Allows you to view information on all users logged in to the switch.

Syntax

```
show users [all]
```
Parameters

all (OPTIONAL) Enter the keyword all to view all terminal lines in the switch.

Command Modes

EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
9.5(0.0) Introduced the support for roles on the MXL 10/40GbE Switch.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show user command shown in the following example.

Field Description
(untitled) Indicates with an asterisk (*) which terminal line you are using.
Line Displays the terminal lines currently in use.
User Displays the user name of all users logged in.
Host(s) Displays the terminal line status.
Location Displays the IP address of the user.

Example

Dell# show users
Authorization Mode: role or privilege
Line User Role Priv Host(s) Location
* 0 console 0 unassigned 1 idle
 2 vty 0 admin unassigned 1 idle 10.16.127.35
 3 vty 1 ad unassigned 15 idle 10.16.127.145
 4 vty 2 ad1 sysadmin 1 idle 10.16.127.141
 5 vty 3 ad1 sysadmin 1 idle 10.16.127.145
 6 vty 4 admin unassigned 1 idle 10.16.127.141
 7 vty 5 ad unassigned 15 idle 10.16.127.141
Dell#

Related Commands

username — enables a user.

timeout login response

Specify how long the software waits for the login input (for example, the user name and password) before timing out.

Syntax

timeout login response seconds

To return to the default values, use the no timeout login response command.
Parameters

seconds

Enter a number of seconds the software waits before logging you out. The range is:

- VTY: the range is from 1 to 30 seconds, the default is 30 seconds.
- Console: the range is from 1 to 300 seconds, the default is 0 seconds (no timeout).
- AUX: the range is from 1 to 300 seconds, the default is 0 seconds (no timeout).

Defaults

See the defaults settings shown in Parameters.

Command Modes

LINE

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The software measures the period of inactivity defined in this command as the period between consecutive keystrokes. For example, if your password is “password” you can enter ‘p’ and wait 29 seconds to enter the next letter.

username

Establish an authentication system based on user names.

Syntax

username name [access-class access-list-name] [nopassword | password | secret | sha256-password] [encryption-type] password [privilege level] [role role-name]

If you do not want a specific user to enter a password, use the nopassword option.

To delete authentication for a user, use the no username name command.

Parameters

name

Enter a text string for the name of the user up to 63 characters.

access-class

Enter the keywords access-class then the name of a configured access control list (either an IP access control list or MAC access control list).

access-list-name

nopassword

Enter the keyword nopassword to specify that the user should not enter a password.

password

Enter the keyword password then the encryption-type or the password.
secret
Enter the keyword `secret` then the encryption-type or the password.

encryption-type
Enter an encryption type for the `password` that you enter.

- **0** directs the system to store the password as clear text. It is the default encryption type when using the `password` option.
- **8** to indicate that a password encrypted using a sha256 hashing algorithm follows. This encryption type is available with the `sha256-password` option only, and is the default encryption type for this option.
- **7** to indicate that a password encrypted using a DES hashing algorithm follows. This encryption type is available with the `password` option only.
- **5** to indicate that a password encrypted using an MD5 hashing algorithm follows. This encryption type is available with the `secret` option only, and is the default encryption type for this option.

password
Enter a string up to 32 characters long.

privilege level
Enter the keyword `privilege` then a number from zero (0) to 15.

role role-name
Enter the keyword `role` followed by the role name to associate with that user ID.

secret
Enter the keyword `secret` then the encryption type.

sha256-password
Enter the keyword `sha256-password` then the encryption-type or the password.

Defaults
The default encryption type for `password` option is **0**. The default encryption type for `secret` option is **5**. The default encryption type for `sha256-password` option is **8**. The default value of `privilege level` is **1**.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Added support for the <code>sha256-password</code> option.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To view the defined user names, use the `show running-config user` command.

Related Commands
- `password` — specifies a password for users on terminal lines.
- `show running-config` — views the current configuration.
RADIUS Commands

The following RADIUS commands are supported by Dell Networking operating system.

debug radius

View RADIUS transactions to assist with troubleshooting.

Syntax
debug radius

To disable debugging of RADIUS, use the no debug radius command.

Defaults
Disabled.

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip radius source-interface

Specify an interface’s IP address as the source IP address for RADIUS connections.

Syntax

ip radius source-interface interface

To delete a source interface, use the no ip radius source-interface command.

Parameters

<table>
<thead>
<tr>
<th>interface</th>
</tr>
</thead>
</table>

Enter the following keywords and slot/port or number information:

- For Loopback interfaces, enter the keyword loopback then a number from zero (0) to 16838.
- For the Null interface, enter the keywords null 0.
- For a Port Channel interface, enter the keywords port-channel then a number. The range is from 1 to 128.
- For a ten-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
• For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
• For VLAN interface, enter the keyword vlan then a number from 1 to 4094.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

radius-server deadtime

Configure a time interval during which non-responsive RADIUS servers to authentication requests are skipped.

Syntax
radius-server deadtime seconds

To disable this function or return to the default value, use the no radius-server deadtime command.

Parameters
seconds

Enter a number of seconds during which non-responsive RADIUS servers are skipped. The range is from 0 to 2147483647 seconds. The default is 0 seconds.

Defaults
0 seconds

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
radius-server host

Configure a RADIUS server host.

 Syntax

```
radius-server host {hostname | ipv4-address} [auth-port port-number] [retransmit retries] [timeout seconds] [key [encryption-type] key]
```

 Parameters

- **hostname**
 - Enter the name of the RADIUS server host.

- **ipv4-address**
 - Enter the IPv4 address (A.B.C.D) of the RADIUS server host.

- **auth-port port-number**
 - (OPTIONAL) Enter the keywords auth-port then a number as the port number. The range is from zero (0) to 65535. The default port-number is 1812.

- **retransmit retries**
 - (OPTIONAL) Enter the keyword retransmit then a number as the number of attempts. This parameter overwrites the radius-server retransmit command. The range is from zero (0) to 100. The default is 3 attempts.

- **timeout seconds**
 - (OPTIONAL) Enter the keyword timeout then the seconds the time interval the switch waits for a reply from the RADIUS server. This parameter overwrites the radius-server timeout command. The range is from 0 to 1000. The default is 5 seconds.

- **key [encryption-type] key**
 - (OPTIONAL) Enter the keyword key then an optional encryption-type and a string up to 42 characters long as the authentication key. The RADIUS host server uses this authentication key and the RADIUS daemon operating on this switch.

 For the encryption-type, enter either zero (0) or 7 as the encryption type for the key entered. The options are:

 - 0 is the default and means the password is not encrypted and stored as clear text.
 - 7 means that the password is encrypted and hidden.

 Configure this parameter last because leading spaces are ignored.

 Defaults

Not configured.

 Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To configure any number of RADIUS server hosts for each server host that is configured, use this command. The system searches for the RADIUS hosts in the order they are configured in the software.

The global default values for the timeout, retransmit, and key optional parameters are applied, unless those values are specified in the radius-server host or other commands. To return to the global default values, if you configure the timeout, retransmit, or key values, include those keywords when using the no radius-server host command syntax.

Related Commands

- `login authentication` — sets the database to be checked when a user logs in.
- `radius-server key` — sets an authentication key for RADIUS communications.
- `radius-server retransmit` — sets the number of times the RADIUS server attempts to send information.
- `radius-server timeout` — sets the time interval before the RADIUS server times out.

radius-server key

Configure a key for all RADIUS communications between the switch and the RADIUS host server.

Syntax

```
radius-server key [encryption-type] key
```

To delete a password, use the `no radius-server key` command.

Parameters

- `encryption-type` (OPTIONAL) Enter either zero (0) or 7 as the encryption type for the key entered. The options are:
 - 0 is the default and means the key is not encrypted and stored as clear text.
 - 7 means that the key is encrypted and hidden.

- `key` Enter a string that is the key to be exchanged between the switch and RADIUS servers. It can be up to 42 characters long.

Defaults

Not configured.

Command Modes

- `CONFIGURATION`
The key configured on the switch must match the key configured on the RADIUS server daemon.

If you configure the `key` parameter in the `radius-server host` command, the key configured with the `radius-server key` command is the default key for all RADIUS communications.

Related Commands

- `radius-server host` — configures a RADIUS host.

radius-server retransmit

Configure the number of times the switch attempts to connect with the configured RADIUS host server before declaring the RADIUS host server unreachable.

Syntax

```plaintext
radius-server retransmit retries
```

To configure zero retransmit attempts, use the `no radius-server retransmit` command.

To return to the default setting, use the `radius-server retransmit 3` command.

Parameters

- `retries`

Enter a number of attempts that the system tries to locate a RADIUS server. The range is from zero (0) to 100. The default is 3 retries.

Defaults

3 retries

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `radius-server host` — configures a RADIUS host.
radius-server timeout

To reply to a request, configure the amount of time the RADIUS client (the switch) waits for a RADIUS host server.

Syntax

```
radius-server timeout seconds
```

To return to the default value, use the `no radius-server timeout` command.

Parameters

- **seconds**: Enter the number of seconds between an unsuccessful attempt and the system times out. The range is from zero (0) to 1000 seconds. The default is **5 seconds**.

Defaults

- **5 seconds**

Command Modes

- **CONFIGURATION**

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- **radius-server host**: configures a RADIUS host.

role

Changes command permissions for roles.

Syntax

```
role mode{{{ addrole | deleterole } role-name } | reset} command
```

To delete access to a command, use the `no role mode role-name` command.

Parameters

- **mode**: Enter one of the following keywords as the mode for which you are controlling access:
 - configure for **CONFIGURATION** mode
 - exec for **EXEC** mode
 - interface for **INTERFACE** modes
 - line for **LINE** mode

Defaults

- **Command Modes**: CONFIGURATION

Command History

- **Version 9.9(0.0)**: Introduced on the FN IOM.
- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.
route-map for Route-map mode

router for Router mode

addrole

Enter the keyword `addrole` to add permission to the command. You cannot add or delete rights for the sysadmin role.

deleterole

Enter the keyword `deleterole` to remove access to the command. You cannot add or delete rights for the sysadmin role.

role-name

Enter a text string for the name of the user role up to 63 characters. These are 3 system defined roles you can modify: secadmin, netadmin, and netoperator.

reset

Enter the keyword `reset` to reset all roles back to default for that command.

command

Enter the command's keywords to assign the command to a certain access level. You can enter one or more keywords.

Defaults

none

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, and MXL.</td>
</tr>
</tbody>
</table>

Related Commands

- `userrole` — creates user roles.
TACACS+ Commands

The Dell Networking OS supports TACACS+ as an alternate method for login authentication.

debug tacacs+

To assist with troubleshooting, view TACACS+ transactions.

Syntax
```
debug tacacs+
```

To disable debugging of TACACS+, use the `no debug tacacs+` command.

Defaults
Disabled.

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip tacacs source-interface

Specify an interface's IP address as the source IP address for TACACS+ connections.

Syntax
```
ip tacacs source-interface interface
```

To delete a source interface, use the `no ip tacacs source-interface` command.

Parameters

```
interface
```

Enter the following keywords and slot/port or number information:

- For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16838.
- For the Null interface, enter the keywords `null 0`.
- For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
- For a ten-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
- For VLAN interface, enter the keyword vlan then a number from 1 to 4094.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

tacacs-server host

Description
Specify a TACACS+ host.

Syntax
tacacs-server host {hostname | ipv4-address} [port number] [timeout seconds] [key key]

Parameters
- **hostname**
 Enter the name of the TACACS+ server host.
- **ipv4-address**
 Enter the IPv4 address (A.B.C.D) of the TACACS+ server host.
- **port number**
 (OPTIONAL) Enter the keyword port then a number as the port to be used by the TACACS+ server. The range is from zero (0) to 65535. The default is 49.
- **timeout seconds**
 (OPTIONAL) Enter the keyword timeout then the number of seconds the switch waits for a reply from the TACACS+ server. The range is from 0 to 1000. The default is 10 seconds.
- **key key**
 (OPTIONAL) Enter the keyword key then a string up to 42 characters long as the authentication key. This authentication key must match the key specified in the tacacs-server key for the TACACS+ daemon.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

To list multiple TACACS+ servers to be used by the `aaa authentication login` command, configure this command multiple times.

If you are not configuring the switch as a TACACS+ server, you do not need to configure the `port`, `timeout` and `key` optional parameters. If you do not configure a key, the key assigned in the `tacacs-server key` command is used.

Related Commands

`aaa authentication login` — specifies the login authentication method.
`tacacs-server key` — configures a TACACS+ key for the TACACS server.

tacacs-server key

Configure a key for communication between a TACACS+ server and a client.

Syntax

```
tacacs-server key [encryption-type] key
```

To delete a key, use the `no tacacs-server key key` command.

Parameters

- `encryption-type` (OPTIONAL) Enter either zero (0) or 7 as the encryption type for the key entered. The options are:
 - 0 is the default and means the key is not encrypted and stored as clear text.
 - 7 means that the key is encrypted and hidden.
- `key` Enter a text string, up to 42 characters long, as the clear text password. Leading spaces are ignored.

Defaults

Not configured.

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The key configured with this command must match the key configured on the TACACS+ daemon.
SSH Server and SCP Commands

The Dell Networking OS supports secure shell (SSH) protocol versions 1.5 and 2.0. SSH is a protocol for secure remote login over an insecure network. SSH sessions are encrypted and use authentication.

crypto key generate

Generates keys for the SSH server.

Syntax

crypto key generate {rsa | rsa1}

Parameters

rsa
Enter the keyword rsa then the key size to generate a SSHv2
RSA host keys. The range is from 1024 to 2048 if you did not
enable FIPS mode; if you enabled FIPS mode, you can only
generate a 2048-bit key. The default is 1024.

rsa1
Enter the keyword rsa1 then the key size to generate a SSHv1
RSA host keys. The range is from 1024 to 2048. The default is
1024.

Defaults

Key size 1024; if you enable FIPS mode, the key size is 2048.

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The host keys are required for key-exchange by the SSH server. If the keys are not
found when you enable the server (ip ssh server enable), the keys are
automatically generated.

This command requires user interaction and generates a prompt prior to overwriting
any existing host keys.

NOTE: Only a user with superuser permissions should generate host-keys.

Example

Dell(conf)#crypto key generate rsa
Enter key size <1024-2048>. Default<1024> :
Host key already exists. Overwrite (y/n)?y
Generating 1024-bit SSHv2 RSA key.
Dell(conf)#
Dell(conf)#crypto key generate rsa1
Enter key size <1024-2048>. Default<1024> :
Host key already exists. Overwrite (y/n)?y
Generating 1024-bit SSHv1 RSA key.

Dell(conf)#

Related Commands

ip ssh server — enables the SSH server.

show crypto — displays the SSH host public keys.

debug ip ssh

Enables collecting SSH debug information.

Syntax

debug ip ssh {client | server}

To disable debugging, use the no debug ip ssh {client | server} command.

Parameters

client Enter the keyword client to enable collecting debug information on the client.

server Enter the keyword server to enable collecting debug information on the server.

Defaults

Disabled on both client and server.

Command Modes

EXEC

Command History

Version Description

9.9(0.0) Introduced on the FN IOM.

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Debug information includes details for key-exchange, authentication, and established session for each connection.

ip scp topdir

Identify a location for files used in secure copy transfer.

Syntax

ip scp topdir directory

To return to the default setting, use the no ip scp topdir command.

Parameters

directory Enter a directory name.
Defaults The internal flash (flash:) is the default directory.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information To configure the switch as an SCP server, use the `ip ssh server` command.

Related Commands `ip ssh server` — enables the SSH and SCP server on the switch.

ip ssh authentication-retries

Configure the maximum number of attempts that should be used to authenticate a user.

Syntax

```
ip ssh authentication-retries 1-10
```

Parameters

- `1-10` Enter the number of maximum retries to authenticate a user. The range is from 1 to 10. The default is 3.

Defaults 3

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information This command specifies the maximum number of attempts to authenticate a user on an SSH connection with the remote host for password authentication. SSH disconnects when the number of password failures exceeds authentication-retries.

ip ssh cipher

Configure the list of ciphers supported on both SSH client and SCP.

Syntax

```
ip ssh cipher cipher-list
```
Parameters

cipher cipher-list Enter the keyword cipher and then a space-delimited list of ciphers that the SSH client supports. The following ciphers are available.

- aes256-ctr
- aes256-cbc
- aes192-ctr
- aes192-cbc
- aes128-ctr
- aes128-cbc
- 3des-cbc

Defaults

The default list of ciphers is in the order as shown below:

- aes256-ctr
- aes256-cbc
- aes192-ctr
- aes192-cbc
- aes128-ctr
- aes128-cbc
- 3des-cbc

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version Description
9.10(0.0) Introduced on the S6100–ON, S6000, S6000–ON, S5000, S4810, S4820T, S3048–ON, S4048–ON, MXL, C9010, S3100 series, and Z9100–ON.

Usage Information

- You can select one or more ciphers from the list.
- The default list of supported ciphers is same irrespective of whether FIPS mode is enabled or disabled.
- Client-supported cipher list gets preference over the server-supported cipher list in selecting the cipher for the SSH session.
- When the cipher (-c) option is used with the SSH CLI, it overrides the configured or default cipher list.
- When FIPS is enabled or disabled, the client ciphers get default configuration.
ip ssh connection-rate-limit

Configure the maximum number of incoming SSH connections per minute.

Syntax

```
ip ssh connection-rate-limit 1-10
```

Parameters

- **1-10**

 Enter the number of maximum numbers of incoming SSH connections allowed per minute. The range is from 1 to 10 per minute. The default is **10 per minute**.

Defaults

- **10 per minute**

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip ssh hostbased-authentication

Enable hostbased-authentication for the SSHv2 server.

Syntax

```
ip ssh hostbased-authentication enable
```

To disable hostbased-authentication for SSHv2 server, use the **no ip ssh hostbased-authentication enable** command.

Parameters

- **enable**

 Enter the keyword *enable* to enable hostbased-authentication for SSHv2 server.

Defaults

- **Disabled**.

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable this command, clients can log in without a password prompt. This command provides two levels of authentication:
- rhost-authentication is done with the file specified in the `ip ssh rhostfile` command.
- checking client host-keys is done with the file specified in the `ip ssh pub-key-file` command.

NOTE: Administrators must specify the two files (rhosts and pub-key-file) to configure host-based authentication.

Related Commands
- `ip ssh pub-key-file` — public keys of trusted hosts from a file.
- `ip ssh rhostsfile` — trusted hosts and users for rhost authentication.

ip ssh key-size

Configure the size of the server-generated RSA SSHv1 key.

Syntax

```
ip ssh key-size 512-869
```

Parameters

- `512-869`

Enter the key-size number for the server-generated RSA SSHv1 key. The range is from 512 to 869. The default is 768.

Defaults

Key size 768

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The server-generated key is used for SSHv1 key-exchange.

ip ssh mac

Configure the list of MAC algorithms supported on both SSH client and SCP.

Syntax

```
ip ssh mac mac-list
```

Parameters

- `mac` `mac-list`

Enter the keyword `mac` then a space-delimited list of message authentication code (MAC) algorithms supported by the SSH client. The following MAC algorithms are available.
When FIPS mode is enabled:

- hmac-sha2–256
- hmac-sha1
- hmac-sha1–96

When FIPS mode is disabled:

- hmac-sha2–256
- hmac-sha1
- hmac-sha1–96
- hmac-md5
- hmac-md5-96

Defaults

The default list of MAC algorithm is in the order as shown below:

When FIPS mode is enabled:

- hmac-sha2–256
- hmac-sha1
- hmac-sha1–96

When FIPS mode is disabled:

- hmac-sha2–256
- hmac-sha1
- hmac-sha1–96
- hmac-md5
- hmac-md5-96

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6100–ON, S6000, S6000–ON, S5000, S4810, S4820T, S3048–ON, S4048–ON, MXL, C9010, S3100 series, and Z9100–ON.</td>
</tr>
</tbody>
</table>

Usage Information

- You can select one or more MAC algorithms from the list.
- Client-supported MAC list gets preference over the server-supported MAC list in selecting the MAC algorithm for the SSH session.
- When the MAC (-m) option is used with the SSH CLI, it overrides the configured or default MAC list.
- When FIPS is enabled or disabled, the client MACs get default configuration.
ip ssh password-authentication

Enable password authentication for the SSH server.

Syntax

 ip ssh password-authentication enable

To disable password-authentication, use the no ip ssh password-authentication enable command.

Parameters

 enable

Enter the keyword enable to enable password-authentication for the SSH server.

Defaults

 Enabled

Command Modes

 CONFIGURATION

Command History

 Version Description
 9.9(0.0) Introduced on the FN IOM.
 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

 With password authentication enabled, you can authenticate using the local, RADIUS, or TACACS+ password fallback order as configured.

ip ssh pub-key-file

Specify the file used for host-based authentication.

Syntax

 ip ssh pub-key-file {WORD}

Parameters

 WORD

Enter the file name for the host-based authentication.

Defaults

 none

Command Modes

 CONFIGURATION

Command History

 Version Description
 9.9(0.0) Introduced on the FN IOM.
 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information
This command specifies the file used for the host-based authentication. The `creates/` file overwrites the `flash://ADMIN_DIR/ssh/knownhosts` file and deletes the user-specified file. Even though this command is a global configuration command, it does not appear in the running configuration because you only need to run this command once.

The file contains the OpenSSH-compatible public keys of the host for which host-based authentication is allowed. An example known host file format:

```
poclab4,123.12.1.123 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAox/QQp8xYhzOxn07yh4VGPA0UfgKoieTHO9G4sNV+ui +DWEc3cgYAcU5Lai1MU20DrzhCwyDNp05tKBU3t ReGlo8AxLi6+S4hyEMqHzkzBFNVqHzpQc +Rs4p2urzV0F4pRKnaXdf3Lk4D460H2RhhVrxqeNxDpEn WIMPJi0ds= ashwani@poclab4
```

NOTE: For `rhostfile` and `pub-key-file`, the administrator must FTP the file to the chassis.

Example
```
Dell#conf
Dell(conf)# ip ssh pub-key-file flash://knownhosts
Dell(conf)#
```

Related Commands
```
show ip ssh client-pub-keys — displays the client-public keys used for the host-based authentication.
```

ip ssh rekey

Configures the time rekey-interval or volume rekey-limit threshold at which to re-generate the SSH key during an SSH session.

Syntax
```
ip ssh rekey [time rekey-interval] [volume rekey-limit]
```

To reset to the default, use `no ip ssh rekey [time rekey-interval] [volume rekey-limit]` command.

Parameters
- `-time rekey-interval` Enter the keywords `time` then the amount of time in minutes. The range is from 10 to 1440 minutes. The default is 60 minutes.
- `-volume rekey-limit` Enter the keywords `volume` then the amount of volume in megabytes. The range is from 1 to 4096 megabytes. The default is 1024 megabytes.

Defaults
The default time is 60 minutes. The default volume is 1024 megabytes.

Command Modes
`CONFIGURATION` mode
Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, MXL</td>
</tr>
</tbody>
</table>

ip ssh rhostsfile

Specify the rhost file used for host-based authorization.

Syntax

```
ip ssh rhostsfile {WORD}
```

Parameters

- `WORD`: Enter the rhost file name for the host-based authentication.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(conf)# ip ssh rhostsfile flash://shosts
Dell(conf)#
```

Usage Information

This command specifies the rhost file used for host-based authentication. This creates/ file overwrites the flash:/ADMIN_DIR/ssh/shosts file and deletes the user-specified file. Even though this command is a global configuration command, it does not appear in the running configuration because you only need to run this command once.

This file contains hostnames and usernames, for which hosts and users, rhost-authentication can be allowed.

NOTE: For rhostfile and pub-key-file, the administrator must FTP the file to the switch.
ip ssh rsa-authentication (Config)

Enable RSA authentication for the SSHv2 server.

Syntax
ip ssh rsa-authentication enable
To disable RSA authentication, use the no ip ssh rsa-authentication enable command.

Parameters
enable
Enter the keyword enable to enable RSA authentication for the SSHv2 server.

Defaults
Disabled.

Command Modes
CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
Enabling RSA authentication allows the user to log in without being prompted for a password. In addition, the OpenSSH compatible SSHv2 RSA public key must be added to the list of authorized keys (ip ssh rsa-authentication my-authorized-keys device://filename command).

Related Commands
ip ssh rsa-authentication (EXEC) — adds keys for RSA authentication.

ip ssh rsa-authentication (EXEC)

Add keys for the RSA authentication.

Syntax
ip ssh rsa-authentication {my-authorized-keys WORD}
To delete the authorized keys, use the no ip ssh rsa-authentication {my-authorized-keys} command.

Parameters
my-authorized-keys WORD
Enter the keywords my-authorized-keys then the filename of the RSA authorized-keys.

Defaults
none
Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you want to log in without being prompted for a password, log in through RSA authentication. To do that, first add the SSHv2 RSA public keys to the list of authorized keys. This command adds the specified RSA keys to the following file: flash://ADMIN_DIR/ssh/authorized-keys-username (where username is the user associated with this terminal).

NOTE: The no form of this command deletes the file flash://ADMIN_DIR/ssh/authorized-keys-username file.

Related Commands

- `show ip ssh rsa-authentication` — displays the RSA authorized keys.
- `ip ssh rsa-authentication (Config)` — enables RSA authentication.

ip ssh server

Configure an SSH server.

Syntax

```
ip ssh server {ciphers cipher-list} {enable | port port-number} [kex key-exchange-algorithm] [mac hmac-algorithm] [version {1 | 2}]
```

To disable SSH server functions, use the `no ip ssh server {ciphers cipher-list} {enable | port port-number} [kex key-exchange-algorithm] command.

Parameters

- **enable**
 - Enter the keyword `enable` to start the SSH server.
- **ciphers cipher-list**
 - Enter the keyword `ciphers` and then a space-delimited list of ciphers that the SSH server supports. The following ciphers are available:
 - 3des-cbc
 - aes128-cbc
 - aes192-cbc
 - aes256-cbc
 - aes128-ctr
 - aes192-ctr
The default cipher list is used.

- 3des-cbc
- aes128-cbc
- aes192-cbc
- aes256-cbc
- aes128-ctr
- aes192-ctr
- aes256-ctr

mac hmac-algorithm

Enter the keyword `mac` then a space-delimited list of hash message authentication code (HMAC) algorithms supported by the SSH server for keying hashing for the message authentication.

The following HMAC algorithms are available:

- hmac-sha1
- hmac-sha1-96
- hmac-sha2-256

When FIPS is enabled, the default HMAC algorithm is `hmac-sha1-96`.

When FIPS is not enabled, the default HMAC algorithms are the following:

- hmac-md5
- hmac-md5-96
- hmac-sha1
- hmac-sha1-96
- hmac-sha2-256

kex key-exchange-algorithm

Enter the keyword `kex` and then a space-delimited list of key exchange algorithms supported by the SSH server.

The following key exchange algorithms are available:

- diffie-hellman-group-exchange-sha1
- diffie-hellman-group1-sha1
- diffie-hellman-group14-sha1

When FIPS is enabled, the default key-exchange-algorithm is `diffie-hellman-group14-sha1`.
When FIPS is not enabled, the default key-exchange-algorithms are the following:

- `diffie-hellman-group-exchange-sha1`
- `diffie-hellman-group1-sha1`,
- `diffie-hellman-group14-sha1`

`port port-number` (OPTIONAL) Enter the keyword `port` then the port number of the listening port of the SSH server. The range is from 1 to 65535. The default is `22`.

`[version {1 | 2}]` (OPTIONAL) Enter the keyword `version` then the SSH version 1 or 2 to specify only SSHv1 or SSHv2.

NOTE: If you enable FIPS mode, you can only select version 2.

Defaults
Default listening port is `22`.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the cipher, kex and mac options on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command enables the SSH server and begins listening on a port. If a port is not specified, listening is on SSH default port 22.

NOTE: Starting with Dell Networking OS Release 9.2(0.0), SSH server is enabled by default.

Example

```
Dell# conf
Dell(conf)# ip ssh server port 45
Dell(conf)# ip ssh server enable
Dell#
```

Related Commands
- `show ip ssh` — displays the ssh information.

show accounting

Display the active accounting sessions for each online user.

Syntax

```
show accounting
```
Defaults
none

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command steps through all active sessions and then displays the accounting records for the active account functions.

Example
Dell#show accounting
Active accounted actions on tty2, User guest Priv 1 Role <none>
 Task ID 1, EXEC Accounting record, 00:02:03
 Elapsed,service=shell
Active accounted actions on tty3, User ad Priv 15 Role <none>
 Task ID 2, EXEC Accounting record, 00:01:22
 Elapsed,service=shell
Active accounted actions on tty4, User ad Priv 15 Role <none>
 Task ID 11, EXEC Accounting record, 00:00:35 Elapsed, service=shell
Active accounted actions on tty5, User ad Priv 1 Role sysadmin
 Task ID 16, EXEC Accounting record, 00:00:04 Elapsed, service=shell
Dell#

Related Commands
aaa accounting — enables AAA Accounting and creates a record for monitoring the accounting function.

show crypto

Displays the public part of the SSH host-keys.

Syntax
show crypto key mypubkey {rsa | rsa1}

Parameters

- **Key**
 - Enter the keyword key to display the host public key.
 - mypubkey
 - Enter the keyword mypubkey to display the host public key.
 - rsa
 - Enter the keyword rsa to display the host SSHv2 RSA public key.
 - rsa1
 - Enter the keyword rsa1 to display the host SSHv1 RSA public key.

Defaults
none

Command Modes
EXEC
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command is useful if the remote SSH client implements Strict Host Key Checking. You can copy the host key to your list of known hosts.

Example

Dell#show crypto key mypubkey rsa1
1024 65537 15047757932966762034442
036788963493870885070479991994
81529207062670596651487238987338851
388872604558748599801007073218
24149290306920275440337838368480816
5051718757388498176247894646
7706560683627207710939806628138071534
8265219018664838324451688712
041531630245739774496043353643022514
81307373438756957374121

Dell#show crypto key mypubkey rsa
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQC9IYgcUcc8wQm+5KUQgW/zAs8V5S
TaLG4/+S+6H9xpxonA+A0xweeo5iR5hvPF6Vc+HS+uWcQH+VOJ8H5Jxsm347XnYv/
gpSghgj2/C5UwFiucVKvYu8RDcJVIuQhLvFEeb1F5Q+sD8K89MXU90MAS/Ud0iJZSO
IlbaCuSTW1Q==
Dell#

show ip ssh

Display information about established SSH sessions.

Syntax

```
show ip ssh
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Removed the support for hmac-sha2-256-96 algorithm.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Security
Example

Dell# show ip ssh
SSH server : enabled.
SSH server version : v1 and v2.
SSH server vrf : default.
SSH server macs : hmac-sha2-256, hmac-shal, hmac-shal-96, hmac-md5, hmac-md5-96.
Password Authentication : enabled.
Hostbased Authentication : disabled.
RSA Authentication : disabled.

<table>
<thead>
<tr>
<th>Vty</th>
<th>Encryption</th>
<th>HMAC</th>
<th>Remote IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>aes128-cbc</td>
<td>hmac-md5</td>
<td>10.16.127.141</td>
</tr>
<tr>
<td>4</td>
<td>aes128-cbc</td>
<td>hmac-md5</td>
<td>10.16.127.141</td>
</tr>
<tr>
<td>*</td>
<td>aes128-cbc</td>
<td>hmac-md5</td>
<td>10.16.127.141</td>
</tr>
</tbody>
</table>

Dell#

Related Commands

- `ip ssh server` — configures an SSH server.
- `show ip ssh client-pub-keys` — displays the client-public keys.

show ip ssh client-pub-keys

Display the client public keys used in host-based authentication.

Syntax

```
show ip ssh client-pub-keys
```

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command displays the contents of the flash://ADMIN_DIR/ssh/knownhosts file.

Example

Dell# show ip ssh client-pub-keys
4.8.1.2 ssh-rsa
AAAAAB3NzaC1yc2EAAAABIwAAEAEu5NoTbmnLxBknaeXZmUJMuNwuNUoGlo1
/yLPT5eehQTyal5RHPtGyP1cmMbCH
+QJkqtyiWPmH4njyDMYDCCX85v55ibWsNqalagklnh2cj
2q4nYj5x8+8OOhYeFPaHiygd8U/4Xict61jWs84Co1UTsAgRzDJ9aUsS75TVac=
root@dt-maa-linux-1.force10networks.com
AAAAB3NzaC1yc2EAAAABIwAAEAEu5NoTbmnLx
BknaeXZmUJMuNwuNUoGlo1/yLPT5eehQTyal5RHPtGyP1cmMbCH
+QJkqtyiWPmH4njyDMYDCCX85v55ibWsNqalagklnh2cj
2q4nYj5x8+8OOhYeFPaHiygd8U/
show ip ssh rsa-authentication

Display the authorized-keys for the RSA authentication.

Syntax
show ip ssh rsa-authentication {my-authorized-keys}

Parameters
my-authorized-keys
Display the RSA authorized keys.

Defaults
none

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
This command displays the contents of the flash:/ADMIN_DIR/ssh/authorized-keys.username file.

Example
Dell#show ip ssh rsa-authentication my-authorized-keys ssh-rsa
AAAAB3NzaC1yc2EAAAABiVwAAAIEAYB17L4gFp4r2DRHIvMc1VZd05g5GqRxV1y1XJMOmeO5D0WuYzrrQM4qJaoBwthneOxFILBcHF3V2hcMIqaZIN+CRCc/4zCMlncyF0+qVTD1oofease5r09k50xT0CNgfH8XZ3NuGc90v33m9+U9tMwhS8vy8AVxdH4x4km3c3t5Jvc=fordom@poclab4
Dell#

Related Commands
- ip ssh rsa-authentication (Config) — configures the RSA authorized keys.
show role

Display information on permissions assigned to a command, including user role and/or permission level.

Syntax

```
show role mode {mode} {command}
```

Parameters

- **command**

 Enter the command’s keywords to assign the command to a certain access level. You can enter one or all of the keywords.

- **mode mode**

 Enter keyword then one of the following modes.

 - configure
 - exec
 - interface
 - line
 - route-map
 - router

Defaults

none

Command Modes

EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, MXL</td>
</tr>
</tbody>
</table>

Examples

```
Dell# show role mode configure username
Role access: sysadmin

Dell# show role mode configure management route
Role access: netadmin, sysadmin

Dell# show role mode configure management crypto-policy
Role access: secadmin, sysadmin
```
show users

Allows you to view information on all users logged in to the switch.

Syntax

```
show users [all]
```

Parameters

- `all` (OPTIONAL) Enter the keyword `all` to view all terminal lines in the switch.

Command Modes

- EXEC Privilege

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

Usage Information

The following describes the `show user` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(untitled)</td>
<td>Indicates with an asterisk (*) which terminal line you are using.</td>
</tr>
<tr>
<td>Line</td>
<td>Displays the terminal lines currently in use.</td>
</tr>
<tr>
<td>User</td>
<td>Displays the user name of all users logged in.</td>
</tr>
<tr>
<td>Host(s)</td>
<td>Displays the terminal line status.</td>
</tr>
<tr>
<td>Location</td>
<td>Displays the IP address of the user.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show users
Authorization Mode: role or privilege
Line   User   Role       Priv Host(s) Location
* 0    console 0      unassigned 1     idle 10.16.127.35
 2 vty  0 admin unassigned 1     idle 10.16.127.145
 3 vty  1 ad unassigned 15  idle 10.16.127.141
 4 vty  2 adl sysadmin 1      idle 10.16.127.141
 5 vty  3 adl sysadmin 1      idle 10.16.127.145
 6 vty  4 admin unassigned 1     idle 10.16.127.141
 7 vty  5 adl unassigned 15  idle 10.16.127.141
Dell#
```

Related Commands

- `username` — enables a user.
show userroles

Display information on all defined user roles.

Syntax

```
show userroles
```

Example

```
Dell# show userroles
Role          Inheritance  Modes
netoperator                Exec
netadmin                   Exec Config Interface Line Router IP
                        Route-map Protocol MAC
secadmin                   Exec Config
sysadmin                   Exec Config Interface Line Router IP
                        Route-map Protocol MAC
netoperator
testadmin     netadmin     Exec Config Interface Line Router IP
                        Route-map Protocol MAC
```

Command Modes

EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

```
Version     Description
9.8(1.0)     Introduced on the Z9100-ON.
9.8(0.0P5)   Introduced on the S4048-ON.
9.8(0.0P2)   Introduced on the S3048-ON.
9.7(0.0)     Introduced on the S6000-ON.
9.5(0.1)     Introduced on the Z9500.
9.5(0.0)     Introduced on the Z9000, S6000, S4820T, S4810, MXL.
```

Example

```
Dell# show userroles
Role          Inheritance  Modes
netoperator                Exec
netadmin                   Exec Config Interface Line Router IP
                        Route-map Protocol MAC
secadmin                   Exec Config
sysadmin                   Exec Config Interface Line Router IP
                        Route-map Protocol MAC
netoperator
testadmin     netadmin     Exec Config Interface Line Router IP
                        Route-map Protocol MAC
```

Related Commands

- `userrole` — create user roles.
ssh

Open an SSH connection specifying the host name, username, port number and version of the SSH client.

Syntax

```
ssh {hostname | ipv4 address} [-l username | -p port-number | -v {1 | 2}]
```

Parameters

- **hostname**
 - (OPTIONAL) Enter the IP address or the host name of the remote device.

- **ipv4 address**
 - (OPTIONAL) Enter the IP address in dotted decimal format A.B.C.D.

- **-l username**
 - (OPTIONAL) Enter the keyword `-l` then the user name used in this SSH session. The default is the user name of the user associated with the terminal.

- **-p port-number**
 - (OPTIONAL) Enter the keyword `-p` then the port number. The range is from 1 to 65536. The default is 22.

- **-v {1 | 2}**
 - (OPTIONAL) Enter the keyword `-v` then the SSH version 1 or 2. The default is the version from the protocol negotiation.

Defaults

As shown in the `Parameters` section.

Command Modes

EXEC Privilege

Command History

- **Version**
 - 9.10(0.0): Removed the support for hmac-sha2-256-96 algorithm.
 - 9.9(0.0): Introduced on the FN IOM.
 - 8.3.16.1: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The system supports both inbound and outbound SSH sessions using IPv4 or IPv6 addressing. Inbound SSH supports accessing the system through the management interface as well as through a physical Layer 3 interface.

Example

```
Dell#ssh 10.16.151.48 -l anvltest
Trying 10.16.151.48...
01:18:16: %STKUNIT0-M:CP %SEC-5-SSH_USAGE: Initiated SSH Client v2 (FIPS Disabled) to anvltest@10.16.151.48 by default from console
anvltest@10.16.151.48's password:
Last login: Thu Jan  5 00:17:47 2012 from login-maa-101
[anvltest@dt-maa-linux-1 ~]# exit
logout
Dell#
```
Secure DHCP Commands

The dynamic host configuration protocol (DHCP) as defined by RFC 2131 provides no authentication or security mechanisms. Secure DHCP is a suite of features that protects networks that use dynamic address allocation from spoofing and attacks.

clear ip dhcp snooping

Clear the DHCP binding table.

Syntax

`clear ip dhcp snooping binding`

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

`show ip dhcp snooping` — displays the contents of the DHCP binding table.

ip dhcp relay

Enable Option 82.

Syntax

`ip dhcp relay information-option [trust-downstream]`

Parameters

- `trust-downstream` Configure the system to trust Option 82 when it is received from the previous-hop router.

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
ip dhcp snooping

Enable DHCP Snooping globally.

Syntax

[no] ip dhcp snooping

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When enabled, no learning takes place until you enable snooping on a VLAN. After disabling DHCP Snooping, the binding table is deleted and Option 82, IP Source Guard, and Dynamic ARP Inspection are disabled.

Related Commands

ip dhcp snooping vlan — enables DHCP Snooping on one or more VLANs.

ip dhcp snooping database

Delay writing the binding table for a specified time.

Syntax

ip dhcp snooping database write-delay minutes

Parameters

minutes

The range is from 5 to 21600.

Defaults

none

Command Modes

CONFIGURATION

Command History

Version Description
9.9(0.0) Introduced on the FN IOM.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
ip dhcp snooping binding

Create a static entry in the DHCP binding table.

Syntax

```
[no] ip dhcp snooping binding mac address vlan-id vlan-id ip ip-address interface type slot/port lease number
```

Parameters

- `mac address` Enter the keyword `mac` then the MAC address of the host to which the server is leasing the IP address.
- `vlan-id vlan-id` Enter the keywords `vlan-id` then the VLAN to which the host belongs. The range is from 2 to 4094.
- `ip ip-address` Enter the keyword `ip` then the IP address that the server is leasing.
- `interface type` Enter the keyword `interface` then the type of interface to which the host is connected.
 - For a ten-Gigabit Ethernet interface, enter the keyword `tengigabitethernet`.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE`.
- `slot/port` Enter the slot and port number of the interface.
- `lease time` Enter the keyword `lease` then the amount of time the IP address is leased. The range is from 1 to 4294967295.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show ip dhcp snooping` — displays the contents of the DHCP binding table.
ip dhcp snooping database renew

Renew the binding table.

Syntax: ip dhcp snooping database renew

Defaults: none

Command Modes:
- EXEC
- EXEC Privilege

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
| 8.3.19.0 |Introduced on the MXL 10/40GbE Switch IO Module.

ip dhcp snooping trust

Configure an interface as trusted.

Syntax: [no] ip dhcp snooping trust

Defaults: Untrusted

Command Modes: INTERFACE

Command History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
</tbody>
</table>
| 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

ip dhcp source-address-validation

Enable IP source guard.

Syntax: [no] ip dhcp source-address-validation

Defaults: Disabled.

Command Modes: INTERFACE
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ip dhcp snooping vlan

Enable DHCP Snooping on one or more VLANs.

Syntax

```
[no] ip dhcp snooping vlan name
```

Parameters

- `name` Enter the name of a VLAN on which to enable DHCP Snooping.

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When enabled, the system begins creating entries in the binding table for the specified VLANs.

NOTE: Learning only happens if there is a trusted port in the VLAN.

Related Commands

- `ip dhcp snooping trust` — configures an interface as trusted.

show ip dhcp snooping

Display the contents of the DHCP binding table.

Syntax

```
show ip dhcp snooping binding
```

Defaults

none

Command Modes

- EXEC
- EXEC Privilege
username

Establish an authentication system based on user names.

Syntax

```
username name [access-class access-list-name] [nopassword | (password | secret | sha256-password) [encryption-type] password] [privilege level] [role role-name]
```

If you do not want a specific user to enter a password, use the `nopassword` option.

To delete authentication for a user, use the `no username name` command.

Parameters

- **name**: Enter a text string for the name of the user up to 63 characters.
- **access-class access-list-name**: Enter the keywords `access-class` then the name of a configured access control list (either an IP access control list or MAC access control list).
- **nopassword**: Enter the keyword `nopassword` to specify that the user should not enter a password.
- **password**: Enter the keyword `password` then the encryption-type or the password.
- **secret**: Enter the keyword `secret` then the encryption-type or the password.
- **encryption-type**: Enter an encryption type for the `password` that you enter.
 - 0 directs the system to store the password as clear text. It is the default encryption type when using the `password` option.
 - 8 to indicate that a password encrypted using a sha256 hashing algorithm follows. This encryption type is available with the `sha256-password` option only, and is the default encryption type for this option.
 - 7 to indicate that a password encrypted using a DES hashing algorithm follows. This encryption type is available with the `password` option only.
 - 5 to indicate that a password encrypted using an MD5 hashing algorithm follows. This encryption type is available.
with the `secret` option only, and is the default encryption type for this option.

- **password**
 Enter a string up to 32 characters long.

- **privilege level**
 Enter the keyword `privilege` then a number from zero (0) to 15.

- **role role-name**
 Enter the keyword `role` followed by the role name to associate with that user ID.

- **secret**
 Enter the keyword `secret` then the encryption type.

- **sha256-password**
 Enter the keyword `sha256-password` then the encryption type or the password.

Defaults
The default encryption type for `password` option is 0. The default encryption type for `secret` option is 5. The default encryption type for `sha256-password` option is 8. The default value of `privilege level` is 1.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Added support for the <code>sha256-password</code> option.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN IOM.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for roles on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
To view the defined user names, use the `show running-config user` command.

Related Commands
- `password` — specifies a password for users on terminal lines.
- `show running-config` — views the current configuration.

userrole

Create user roles for the role-based security model.

Syntax

```
userrole name inherit existing-role-name
```

To delete a role name, use the `no userrole name` command. Note that the reserved role names may not be deleted.

Parameters

- **name**
 Enter a text string for the name of the user up to 63 characters. It cannot be one of the system defined roles (sysadmin, secadmin, netadmin, netoperator).
inherit existing-role-name

Enter the inherit keyword then specify the system defined role to inherit permissions from (sysadmin, secadmin, netadmin, netoperator).

Defaults

none

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Instead of using the system defined user roles, you can create a new user role that best matches your organization. When you create a new user role, you first inherit permissions from one of the system defined roles. Otherwise you would have to create a user role from scratch. You then restrict commands or add commands to that role. For information about this topic, See Modifying Command Permissions for Roles.

NOTE: You can change user role permissions on system pre-defined user roles or user-defined user roles.

Important Points to Remember

Consider the following when creating a user role:

- Only the system administrator and user-defined roles inherited from the system administrator can create roles and usernames. Only the system administrator, security administrator, and roles inherited from these can use the role command to modify command permissions. The security administrator and roles inherited by security administrator can only modify permissions for commands they already have access to.

- Make sure you select the correct role you want to inherit.

NOTE: If you inherit a user role, you cannot modify or delete the inheritance. If you want to change or remove the inheritance, delete the user role and create it again. If the user role is in use, you cannot delete the user role.

role mode { { addrole | deleterole } role-name } | reset

command — Modifies (adds or deletes) command permissions for newly created user roles and system defined roles.
• **role mode** \(\{ \{ \text{addrole} | \text{deleterole} \} \text{ role-name } \} | \text{reset} \) command — modifies (adds or deletes) command permissions for newly created user roles and system defined roles.
sFlow monitoring system includes an sFlow Agent and an sFlow Collector.

- The sFlow Agent combines the flow samples and interface counters into sFlow datagrams and forwards them to the sFlow Collector.
- The sFlow Collector analyses the sFlow Datagrams received from the different devices and produces a network-wide view of traffic flows.

Important Points to Remember

- Dell Networking OS recommends that the sFlow Collector be connected to the Dell Networking chassis through a line card port rather than the route processor module (RPM) Management Ethernet port.
- The system exports all sFlow packets to the sFlow Collector. A small sampling rate can equate to many exported packets. A backoff mechanism is automatically applied to reduce this amount. Some sampled packets may be dropped when the exported packet rate is high and the backoff mechanism is about to or is starting to take effect. The dropEvent counter, in the sFlow packet, is always zero.
- sFlow sampling is done on a per-port basis.
- Community list and local preference fields are not filled up in the extended gateway element in the sFlow datagram.
- The 802.1P source priority field is not filled up in the extended switch element in the sFlow datagram.
- Only Destination and Destination Peer AS numbers are packed in the dst-as-path field in the extended gateway element.
- If the packet being sampled is redirected using policy-based routing (PBR), the sFlow datagram may contain incorrect extended gateway/router information.
- The source virtual local area network (VLAN) field in the extended switch element is not packed if there is a routed packet.
- The destination VLAN field in the extended switch element is not packed if there is a multicast packet.
- The maximum number of packets that can be sampled and processed per second is:
 - 7500 packets when no extended information packing is enabled.
 - 7500 packets when only extended-switch information packing is enabled (refer to `sflow extended-switch enable`).
 - 1600 packets when you enable extended-router and/or extended-gateway information packing.

Topics:

- sflow collector
- sflow enable (Global)
- sflow ingress-enable
- sflow extended-switch enable
- sflow max-header-size extended
sflow collector

Configure a collector device to which sFlow datagrams are forwarded.

Syntax

```
sflow collector {ip-address} agent-addr {ip-address} [number [max-datagram-size number]] | [max-datagram-size number]
```

To delete a configured collector, use the no sflow collector {ip-address} agent-addr {ipv4-address} [number [max-datagram-size number]] | [max-datagram-size number] command.

Parameters

- `sflow collector ip-address` Enter the IPv4 (A.B.C.D) of the sFlow collector device.
- `agent-addr ip-address` Enter the IPv4 (A.B.C.D) of the sFlow agent in the router.
- `number` (OPTIONAL) Enter the user datagram protocol (UDP) port number. The range is from 0 to 65535. The default is 6343.
- `max-datagram-size number` (OPTIONAL) Enter the keyword max-datagram-size then the size number in bytes. The range is from 400 to 1500. The default is 1400.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You can configure up to two sFlow collectors (IPv4 or IPv6). If two collectors are configured, traffic samples are sent to both.

The sFlow agent address is carried in a field in SFlow packets and is used by the collector to identify the sFlow agent.

In sFlow, the agent address is a single invariant IPv4 or IPv6 address used to identify the agent to the collector. It is usually assigned the address of a loopback interface on the

sFlow | 1375
agent, which provides invariance. The agent address is carried as a field in the payload of the sFlow packets.

As part of the sFlow-MIB, if the SNMP request originates from a configured collector, the system returns the corresponding configured agent IP in the MIB requests. The system checks to ensure that two entries are not configured for the same collector IP with a different agent IP. Should that happen, the system generates the following error: %Error: Different agent-addr attempted for an existing collector.

sflow enable (Global)

Enable sFlow globally.

Syntax

```
sflow enable
```

To disable sFlow, use the `no sflow enable` command.

Defaults

Disabled.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

sFlow is disabled by default. In addition to this command, you must enable sFlow on individual interfaces where you want sFlow sampling.

Related Commands

- `sflow enable (Global)` — enables sFlow on interfaces.

sflow ingress-enable

Enable sFlow ingress on interfaces.

Syntax

```
sflow ingress-enable
```

To disable sFlow, use the `no sflow ingress enable` command.

Defaults

Disabled.

Command Modes

INTERFACE

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.
The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL switch.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable ingress sFlow on an interface, flow sampling is done on any incoming traffic.

NOTE: After a physical port is a member of a LAG, it inherits the sFlow configuration from the LAG port.

Related Commands

- `sflow enable (Global)` — turns sFlow globally.

sflow extended-switch enable

Enable packing information on a switch only.

Syntax

```plaintext
sflow extended-switch enable
```

To disable packing information, use the `no sflow extended-switch [enable]` command.

Parameters

- `enable`

 Enter the keyword `enable` to enable global extended information.

Defaults

Disabled.

Command Modes

- `CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The Dell Networking OS version 7.8.1.0 and later enhances the sFlow implementation for real time traffic analysis to provide extended gateway information in cases where the destination IP addresses are learned by different routing protocols and for cases where the destination is reachable over ECMP.

Related Commands

- `show sflow` — displays the sFlow configuration.
sflow max-header-size extended

Set the maximum header size of a packet to 256 bytes.

Syntax

sflow max-header-size extended

To reset the maximum header size of a packet, use the [no] sflow max-header-size extended command.

Parameters

- **extended**
 - Enter the keyword extended to copy 256 bytes from the sample packets to sFlow datagram.

Defaults

- 128 bytes

Command Modes

- CONFIGURATION
- INTERFACE

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the MXL switch.</td>
</tr>
</tbody>
</table>

Example

Dell(conf)#sflow max-header-size extended

sflow polling-interval (Global)

Set the sFlow polling interval at a global level.

Syntax

sflow polling-interval interval value

To return to the default, use the no sflow polling-interval interval command.

Parameters

- **interval value**
 - Enter the interval value in seconds. The range is from 15 to 86400 seconds. The default is 20 seconds.

Defaults

- 20 seconds
Command Modes

CONFIGURATION

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The polling interval for an interface is the maximum number of seconds between successive samples of counters sent to the collector. This command changes the global default counter polling (20 seconds) interval. You can configure an interface to use a different polling interval.

sflow polling-interval (Interface)

Set the sFlow polling interval at an interface (overrides the global-level setting).

Syntax

sflow polling-interval interval value

To return to the default, use the no sflow polling-interval interval command.

Parameters

interval value Enter the interval value in seconds. The range is from 15 to 86400 seconds. The default is the global counter polling interval.

Defaults

The same value as the current global default counter polling interval.

Command Modes

INTERFACE

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command sets the counter polling interval for an interface.

Related Commands

sflow polling-interval (Global) — globally sets the polling interval.

sflow sample-rate (Global)

Change the global default sampling rate.

Syntax

sflow sample-rate value

To return to the default sampling rate, use the no sflow sample-rate command.
Parameters

value

Enter the sampling rate value. The range is from 256 to 8388608 packets. Enter values in powers of 2 only; for example, 4096, 8192, 16384, and so on. The default is 32768 packets.

Defaults

32768 packets

Command Modes

CONFIGURATION

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

Sample-rate is the average number of packets skipped before the sample is taken. This command changes the global default sampling rate. You can configure an interface to use a different sampling rate than the global sampling rate. If the value entered is not a correct power of 2, the command generates an error message with the previous and next power of 2 value. Select one of these two packet numbers and re-enter the command.

Related Commands

sflow sample-rate (Interface) — changes the interface sampling rate.

sflow sample-rate (Interface)

Change the interface default sampling rate.

Syntax

sflow sample-rate value

To return to the default sampling rate, use the no sflow sample-rate command.

Parameters

value

Enter the sampling rate value. The range is from 256 to 8388608 packets. Enter values in powers of 2 only; for example, 4096, 8192, 16384. The default is the Global default sampling.

Defaults

The Global default sampling.

Command Modes

CONFIGURATION

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command changes the sampling rate for an interface. By default, the sampling rate of an interface is set to the same value as the current global default sampling rate. If the value you enter is not a correct power of 2, the command generates an error message with the previous and next power-of-2 value. Select one of these two numbers and re-enter the command.
Related Commands

`sflow sample-rate (Global)` — changes the sampling rate globally.

show sflow

Display the current sFlow configuration.

Syntax

```
show sflow [interface]
```

Parameters

`interface`
(Optional) Enter the following keywords and slot/port or number information:

- For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
- For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The dropEvent counter (sFlow samples dropped due to sub-sampling) shown in the following example always displays a value of zero.

Example

```
Dell#show sflow
sFlow services are enabled
Egress Management Interface sFlow services are disabled
Global default sampling rate: 2048
Global default counter polling interval: 20
Global extended information enabled: none
0 collectors configured
0 UDP packets exported
0 UDP packets dropped
0 sFlow samples collected

stack-unit 0 Port set 0
   Te 0/1: configured rate 256, actual rate 256
Dell#
Dell#show running-config sflow
! sflow enable
sflow sample-rate 2048
Dell#show running-config interface tengigabitethernet 0/1
```

sFlow | 1381
show sflow stack-unit

Display the sFlow information on a stack unit.

Syntax

show sflow stack-unit {unit number}

Parameters

unit number (OPTIONAL) Enter a unit number to view information on the stack unit in that slot. The range is from 0 to 5.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The dropEvent counter (sFlow samples dropped due to sub-sampling) shown in the following example below always displays a value of zero.

Example

Dell#show sflow stack-unit 1
Stack-Unit 1
Samples rcvd from h/w :0
Total UDP packets exported :0
UDP packets dropped :0
Dell#
Service Provider Bridging

Service provider bridging is composed of virtual local area network (VLAN) Stacking, Layer 2 Protocol Tunneling, and Provider Backbone Bridging as described in the Dell Networking OS Configuration Guide. This chapter includes commands for the Dell Networking operating software Layer 2 Protocol Tunneling (L2PT). L2PT enables protocols to tunnel through an 802.1q tunnel.

For more information, see VLAN Stacking, Spanning Tree Protocol (STP), and GARP VLAN Registration (GVRP).

Important Points to Remember

- L2PT is enabled at the interface VLAN-Stack VLAN level. For more information about Stackable VLAN (VLAN-Stacking) commands, see VLAN Stacking.
- The default behavior is to disable protocol packet tunneling through the 802.1q tunnel.
- Rate-limiting is required to protect against bridge protocol data units (BPDU) attacks.
- A port channel (including through link aggregation control protocol [LACP]) can be configured as a VLAN-Stack access or trunk port.
- Address resolution protocol (ARP) packets work as expected across the tunnel.
- Far-end failure detection (FEFD) works the same as with Layer 2 links.
- Protocols that use Multicast MAC addresses (for example, open shortest path first [OSPF]) work as expected and carry over to the other end of the VLAN-Stack VLAN.

Topics:

- debug protocol-tunnel
- protocol-tunnel
- protocol-tunnel destination-mac
- protocol-tunnel enable
- protocol-tunnel rate-limit
- show protocol-tunnel

debug protocol-tunnel

Enable debugging to ensure incoming packets are received and rewritten to a new MAC address.

Syntax

debug protocol-tunnel interface {in | out | both} [vlan vlan-id] [count value]
To disable debugging, use the **no debug protocol-tunnel interface {in | out | both} [vlan vlan-id] [count value]** command.

Parameters

- **interface**
 Enter one of the following interfaces and slot/port information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

- **in | out | both**
 Enter the keyword `in`, `out`, or `both` to debug incoming interfaces, outgoing interfaces, or both incoming and outgoing interfaces.

- **vlan vlan-id**
 Enter the keyword `vlan` then the VLAN ID. The range is from 1 to 4094.

- **count value**
 Enter the keyword `count` then the number of debug outputs. The range is from 1 to 100.

Defaults

- Debug disabled.

Command Modes

- EXEC Privilege

Command History

- **Version 9.2(0.0)**
 Introduced on the MXL 10/40GbE Switch IO Module.

protocol-tunnel

Enable protocol tunneling on a stacked (Q-in-Q) VLAN for specified protocol packets.

Syntax

```
protocol-tunnel {rate-limit rate|stp}
```

To disable protocol tunneling for a Layer 2 protocol, use the `no protocol-tunnel` command.

Parameters

- **rate-limit rate**
 Enter the keyword `rate-limit` then a number for the rate-limit for tunneled packets on the VMAN. The range is from 64 to 320.

- **stp**
 Enter the keyword `stp` to enable protocol tunneling on a spanning tree, including STP, MSTP, RSTP, and PVST.

Defaults

- none

Command Modes

- CONF-IF-VLAN
protocol-tunnel destination-mac

Overwrite the BPDU destination MAC address with a specific value.

Syntax

```
protocol-tunnel destination-mac xstp address
```

Parameters

- `xstp address`
 - Change the default destination MAC address used for L2PT to another value.

Defaults

The default destination MAC is 01:01:e8:00:00:00.

Command Modes

- `CONFIGURATION`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you enable VLAN-Stacking, no protocol packets are tunneled.

Related Command

- `show protocol-tunnel` — displays tunneling information for all VLANs.

protocol-tunnel enable

Enable protocol tunneling globally on the system.

Syntax

```
protocol-tunnel enable
```

To disable protocol tunneling, use the `no protocol-tunnel enable` command.

Defaults

Disabled.

Command Modes

- `CONFIGURATION`
protocol-tunnel rate-limit

Enable traffic rate limiting per box.

Syntax

```
protocol-tunnel rate-limit rate
```

To reset the rate limit to the default, use the `no protocol-tunnel rate-limit rate` command.

Parameters

- **rate**: Enter the rate in frames per second. The range is from 75 to 3000. The default is 75.

Defaults

75 frames per second.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#
Dell(conf)#
Dell(conf)#protocol-tunnel rate-limit 1000
Dell(conf)#
```

Related Commands

- `show protocol-tunnel` — displays tunneling information for all VLANs.
- `show running-config` — displays the current configuration.

show protocol-tunnel

Display protocol tunnel information for all or a specified VLAN-Stack VLAN.

Syntax

```
show protocol-tunnel [vlan vlan-id]
```
Parameters

`vlan vlan-id` (OPTIONAL) Enter the keyword `vlan` then the VLAN ID to display information for the one VLAN. The range is from 1 to 4094.

Defaults

none

Command Modes

EXEC

Command History

Version Description
--------- --
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show protocol-tunnel
System Rate-Limit: 75 frames/second
VLAN Protocols Interface
1000 STP,PVST Gi 5/7,Gi 5/6
1001 LLDP,GVRP Gi 5/7,Gi 5/6
1002 MMRP,MVRP Gi 5/7,Gi 5/6
1003 LACP, DOT1X Gi 5/7,Gi 5/6
1004 OAM, PAUSE Gi 5/7,Gi 5/6
1005 E-LMI Gi 5/7,Gi 5/6

Example (Specific VLAN)

Dell#show protocol-tunnel vlan 2
System Rate-Limit: 1000 Frames/second
Interface Vlan Protocol(s)
Gi1/2 2 STP, PVST

Dell#

Related Commands

`show running-config` — displays the current configuration.
Simple Network Management Protocol (SNMP) and Syslog

This chapter contains commands to configure and monitor the simple network management protocol (SNMP) v1/v2/v3 and Syslog.

The chapter contains the following sections:

- SNMP Commands
- Syslog Commands

Topics:

- SNMP Commands
 - clear logging auditlog
 - show snmp
 - show snmp engineID
 - show snmp group
 - show snmp user
 - snmp ifmib ifalias long
 - snmp-server community
 - snmp-server contact
 - snmp-server enable traps
 - snmp-server engineID
 - snmp-server group
 - snmp-server host
 - snmp-server location
 - snmp-server packetsize
 - snmp-server trap-source
 - snmp-server user
 - snmp-server user (for AES128-CFB Encryption)
 - snmp-server view
 - snmp trap link-status
- Syslog Commands
 - clear logging
 - default logging buffered
 - default logging console
 - logging extended
 - default logging monitor
SNMP Commands

The following SNMP commands are available in the Dell Networking OS.
The simple network management protocol (SNMP) is used to communicate management information between the network management stations and the agents in the network elements. The system supports SNMP versions 1, 2c, and 3, supporting both read-only and read-write modes. The system sends SNMP traps, which are messages informing an SNMP management system about the network. The system supports up to 16 SNMP trap receivers.

Important Points to Remember

- Typically, 5-second timeout and 3-second retry values on an SNMP server are sufficient for both local area network (LAN) and wide area network (WAN) applications. If you experience a timeout with these values, the recommended best practice on Dell Networking switches (to accommodate their high port density) is to increase the timeout and retry values on your SNMP server to the following:
 - SNMP Timeout — greater than 3 seconds.
 - SNMP Retry count — greater than 2 seconds.
- If you are using access control lists (ACLs) in an SNMP v3 configuration, group ACL overrides user ACL if the user is part of that group.
- SNMP operations are not supported on a virtual local area network (VLAN).
clear logging auditlog

Clears audit log.

Syntax

 clear logging auditlog

Defaults

 None

Command Modes

 EXEC

Command History

 This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

 Version Description
 9.10(0.0) Introduced on the S6100-ON.
 9.8(0.0P5) Introduced on the S4048-ON.
 9.8(0.0P2) Introduced on the S3048-ON.
 9.5(0.1) Introduced on the Z9500.
 9.5(0.0) Introduced on the MXL.

Example

 Dell(conf)# clear logging auditlog

Related

 Commands

 • show logging auditlog — display the audit log.

show snmp

Display the status of SNMP network elements.

Syntax

 show snmp

Command Modes

 • EXEC
 • EXEC Privilege

Command History

 Version Description
 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

 Dell#show snmp
 32685 SNMP packets input
 0 Bad SNMP version errors
0 Unknown community name
0 Illegal operation for community name supplied
0 Encoding errors
96988 Number of requested variables
0 Number of altered variables
31681 Get-request PDUs
968 Get-next PDUs
0 Set-request PDUs
61727 SNMP packets output
0 Too big errors (Maximum packet size 1500)
9 No such name errors
0 Bad values errors
0 General errors
32649 Response PDUs
29078 Trap PDUs

Dell#

Related Commands

snmp-server community — enables the SNMP and set community string.

show snmp engineID

Display the identification of the local SNMP engine and all remote engines that are configured on the router.

Syntax

show snmp engineID

Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show snmp engineID
Local SNMP engineID: 0000178B02000001E80214A8
Remote Engine ID IP-addr Port
80001F880431323335 172.31.1.3 5009
80001F88043938373635 172.31.1.3 5008

Dell#

Related Commands

snmp-server engineID — configures local and remote SNMP engines on the router.
show snmp group

Display the group name, security model, status, and storage type of each group.

Syntax

```
show snmp group
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following Example displays a group named `ngroup`. The `ngroup` has a security model of version 3 (v3) with authentication (`auth`), the read and notify name is `nview` with no write view name specified, and finally the row status is active.

Example

```
Dell#show snmp group

  groupname: ngroup          security model: v3 auth
  readview : nview           writeview: no write view specified
  notifyview: nview
  row status: active

Dell#
```

Related Commands

- `snmp-server group` — configures an SNMP server group.

show snmp user

Display the information configured on each SNMP user name.

Syntax

```
show snmp user
```

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show snmp user

  User name: v1v2creadu
```

Simple Network Management Protocol (SNMP) and Syslog
snmp ifmib ifalias long

Display the entire description string through the Interface MIB, which would be truncated otherwise to 63 characters.

Syntax

```
snmp ifmib ifalias long
```

Defaults

Interface description truncated beyond 63 characters.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
!----command run on host connected to switch:-------!
> snmpwalk -c public 10.10.10.130 .1.3.6.1.2.1.31 | grep -i alias | more
IF-MIB::ifAlias.134530304 = STRING: This is a port connected to Router2. This is a port connected to Router2.
IF-MIB::ifAlias.134792448 = STRING:

!----command run on Force10 switch:-----------!
Dell#snmp ifmib ifalias long

!----command run on server connected to switch:------!
> snmpwalk -c public 10.10.10.130 .1.3.6.1.2.1.31 | grep -i alias | more
IF-MIB::ifAlias.134530304 = STRING: This is a port connected to Router2. This is a port connected to Router2.
IF-MIB::ifAlias.134792448 = STRING:
```

snmp-server community

Configure a new community string access for SNMPv1 v2 and v3.

Syntax

```
snmp-server community community-name {ro | rw} [security-name name][access-list-name]
```
To remove access to a community, use the `no snmp-server community
community-string {ro | rw} [security-name name [access-list-name]]
` command.

Parameters

- `community-name`: Enter a text string (up to 20 characters long) to act as a password for SNMP.
- `ro`: Enter the keyword `ro` to specify read-only permission.
- `rw`: Enter the keyword `rw` to specify read-write permission.
- `security-name name` *(Optional)*: Enter the keywords `security-name` then the security name as defined by the community MIB.
- `access-list-name` *(Optional)*: Enter a standard IPv4 access list name (a string up to 16 characters long).

Defaults

- none

Command Modes

- CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following example configures a community named `public` that is mapped to the security named `guestuser` with Read Only (`ro`) permissions.

The `security-name` parameter maps the community string to an SNMPv3 user/security name as defined by the community MIB.

If a community string is configured without a `security-name` (for example, `snmp-server community public ro`), the community is mapped to a default security-name/group:

- `v1v2creadu / v1v2creadg` — maps to a community with `ro` (read-only) permissions.
- `v1v2cwriteu/ v1v2cwriteg` — maps to a community with `rw` (read-write) permissions.

The `community-name` parameter indexes this command.

If you do not configure the `snmp-server community` command, you cannot query SNMP data. Only Standard IPv4 ACL and IPv6 ACL is supported in the optional `access-list-name`.

The command options `ipv6`, `security-name`, and `access-list-name` are recursive. In other words, each option can, in turn, accept any of the three options as a sub-option, and each of those sub-options can accept any of the three sub-options as a sub-option, and so forth. The second Example shows the creation of a standard IPv4 ACL called `snmp-ro-acl` and then assigning it to the SNMP community `guest`.

Simple Network Management Protocol (SNMP) and Syslog | 1394
NOTE: For IPv6 ACLs, only IPv6 and UDP types are valid for SNMP; TCP and ICMP rules are not valid for SNMP. In IPv6 ACLs, port rules are not valid for SNMP.

Example

Dell#config
Dell(conf)# snmp-server community public ro
Dell(conf)# snmp-server community guest ro security-name guestuser
Dell(conf)#

Example

Dell(conf)# ip access-list standard snmp-ro-acl
Dell(config-std-nacl)#seq 5 permit host 10.10.10.224
Dell(config-std-nacl)#seq 10 deny any count
!

Dell(conf)#snmp-server community guest ro snmp-ro-acl
Dell(conf)#

Related Commands

- `ip access-list standard` — names (or selects) a standard access list to filter based on IP address.
- `show running-config` — displays the current SNMP configuration and defaults.

snmp-server contact

Configure contact information for troubleshooting this SNMP node.

Syntax

```
snmp-server contact text
```

To delete the SNMP server contact information, use the `no snmp-server contact` command.

Parameters

- `text` Enter an alphanumeric text string, up to 55 characters long.

Defaults

none

Command Modes

CONFIGURATION

Command History

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.
snmp-server enable traps

Enable SNMP traps.

Syntax

```
snmp-server enable traps [notification-type] [notification-option]
```

To disable traps, use the `no snmp-server enable traps [notification-type] [notification-option]` command.

Parameters

- **notification-type**
 - Enter the type of notification from the following list:
 - `ecfm` — Notification of changes to ECFM.
 - `entity` — Notification of changes to entity.
 - `envmon` — For Dell Networking device notifications when an environmental threshold is exceeded.
 - `eoam` — Notification of changes to the EOAM state.
 - `ets` — Notification of changes to the ets traps.
 - `fips` — Notification of changes to the FIP snooping state.
 - `lacp` — Notification of changes.
 - `pfc` — Notification of changes to pfc traps.
 - `snmp` — Notification of RFC 1157 traps.
 - `stp` — Notification of a state change in the spanning tree protocol (RFC 1493).
 - `vrrp` — Notification of a state change in a VRRP group.
 - `xstp` — Notification of a state change in MSTP (802.1s), RSTP (802.1w), and PVST+.

- **notification-option**
 - For the `envmon` notification-type, enter one of the following optional parameters:
 - `temperature`
 - For the `snmp` notification-type, enter one of the following optional parameters:
 - `authentication`
 - `coldstart`
 - `linkdown`
 - `linkup`
 - `syslog-reachable`
 - `syslog-unreachable`

Defaults

Not enabled.
Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8(0.0)</td>
<td>Added the following two SNMP notification options: syslog-reachable and syslog-unreachable.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The system supports up to 16 SNMP trap receivers.

If you do not configure this command, no traps controlled by this command are sent. If you do not specify a notification-type and notification-option, all traps are enabled.

Related Commands

- `snmp-server community` — enables SNMP and sets the community string.

snmp-server engineID

Configure the name for both the local and remote SNMP engines on the router.

Syntax

```
snmp-server engineID [local engineID] [remote ip-address udp-port port-number engineID]
```

To return to the default, use the `no snmp-server engineID [local engineID] [remote ip-address udp-port port-number engineID]` command.

Parameters

- **local engineID**
 - Enter the keyword `local` then the engine ID number that identifies the copy of the SNMP on the local device.
 - Format (as specified in RFC 3411): 12 octets.
 - The first four octets are set to the private enterprise number.
 - The remaining eight octets are the MAC address of the chassis.

- **remote ip-address**
 - Enter the keyword `remote` then the IP address that identifies the copy of the SNMP on the remote device.

- **udp-port port-number engineID**
 - Enter the keywords `udp-port` then the user datagram protocol (UDP) port number on the remote device. The range is from 0 to 65535. The default is **162**.

Defaults

As above.

Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Changing the value of the SNMP Engine ID has important side effects. A user’s password (entered on the command line) is converted to a message digest algorithm (MD5) or secure hash algorithm (SHA) security digest. This digest is based on both the password and the local Engine ID. The command line password is then destroyed, as required by RFC 2274. Because of this deletion, if the local value of the Engine ID changes, the security digests of SNMPv3 users is invalid and you must reconfigure the users.

For the remote Engine ID, the host IP and UDP port are the indexes to the command that are matched to either overwrite or remove the configuration.

Related Commands

- `show snmp engineID` — displays the SNMP engine and all the remote engines that are configured on the router.
- `show running-config` — displays the SNMP running configuration.

snmp-server group

Configure a new SNMP group or a table that maps SNMP users to SNMP views.

Syntax

```
snmp-server group [group_name {1 | 2c | 3 {auth | noauth | priv}}]
[read name] [write name] [notify name] [ access-list-name | access-list-name]
```

To remove a specified group, use the `no snmp-server group [group_name {v1
| v2c | v3 {auth | noauth | priv}}] [read name] [write name] [notify name] [access-list-name | access-list-name]` command.

Parameters

- **group_name**
 - Enter a text string (up to 20 characters long) as the name of the group. The following groups are created for mapping to read/write community/security-names (defaults):
 - v1v2creadg — maps to a community/security-name with ro permissions.
 - v1v2cwriteg — maps to a community/security-name rw permissions.

- **1 | 2c | 3**
 - (OPTIONAL) Enter the security model version number (1, 2c, or 3):
 - 1 is the least secure version.
- 3 is the most secure of the security modes.
- 2c allows transmission of informs and counter 64, which allows for integers twice the width of what is normally allowed.

The default is 1.

auth

(Optional) Enter the keyword **auth** to specify authentication of a packet without encryption.

noauth

(Optional) Enter the keyword **noauth** to specify no authentication of a packet.

priv

(Optional) Enter the keyword **priv** to specify both authentication and then scrambling of the packet.

read name

(Optional) Enter the keyword **read** then a name (a string of up to 20 characters long) as the read view name. The default is **GlobalView** and is assumed to be every object belonging to the internet (1.3.6.1) OID space.

write name

(Optional) Enter the keyword **write** then a name (a string of up to 20 characters long) as the write view name.

notify name

(Optional) Enter the keyword **notify** then a name (a string of up to 20 characters long) as the notify view name.

access-list-name

(Optional) Enter the standard IPv4 access list name (a string up to 16 characters long).

Defaults

As above.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following Example specifies the group named **harig** as a version 3 user requiring both authentication and encryption and read access limited to the read named **rview**.

>NOTE: The number of configurable groups is limited to 16 groups.

Example

```
Dell#conf
Dell(conf)# snmp-server group harig 3 priv read rview
Dell#
```

Related Commands

- **show snmp group** — displays the group name, security model, view status, and storage type of each group.
- **show running-config** — displays the SNMP running configuration.
snmp-server host

Configure the recipient of an SNMP trap operation.

Syntax

snmp-server host ip-address [traps | informs] [version 1 | 2c | 3] [auth | no auth | priv] [community-string] [udp-port port-number] [notification-type]

To remove the SNMP host, use the no snmp-server host ip-address [traps | informs] [version 1 | 2c | 3] [auth | noauth | priv] [community-string] [udp-port number] [notification-type] command.

Parameters

- **ip-address**: Enter the keyword host then the IP address of the host (configurable hosts is limited to 16).
- **traps**: (OPTIONAL) Enter the keyword traps to send trap notifications to the specified host. The default is traps.
- **informs**: (OPTIONAL) Enter the keyword informs to send inform notifications to the specified host. The default is traps.
- **version 1 | 2c | 3**: (OPTIONAL) Enter the keyword version to specify the security model then the security model version number 1, 2c, or 3:
 - Version 1 is the least secure version.
 - Version 3 is the most secure of the security modes.
 - Version 2c allows transmission of informs and counter 64, which allows for integers twice the width of what is normally allowed.

The default is version 1.

- **auth**: (OPTIONAL) Enter the keyword auth to specify authentication of a packet without encryption.
- **noauth**: (OPTIONAL) Enter the keyword noauth to specify no authentication of a packet.
- **priv**: (OPTIONAL) Enter the keyword priv to specify both authentication and then scrambling of the packet.
- **community-string**: Enter a text string (up to 20 characters long) as the name of the SNMP community.
NOTE: For version 1 and version 2c security models, this string represents the name of the SNMP community. The string can be set using this command; however, Dell Networking OS recommends setting the community string using the `snmp-server community` command before executing this command. For version 3 security model, this string is the USM user security name.

`udp-port port-number` (OPTIONAL) Enter the keywords `udp-port` then the port number of the remote host to use. The range is from 0 to 65535. The default is 162.

`notification-type` (OPTIONAL) Enter one of the following keywords for the type of trap to send to the host:

- `ecfm` — Notification of ECFM state changes.
- `entity` — Notification of entity changes.
- `envmon` — Environment monitor trap.
- `eoam` — Notification of EOAM state changes.
- `ets` — Notification of ets trap changes.
- `fips` — Notification of FIP snooping state changes.
- `lacp` — Notification of LACP state changes.
- `snmp` — SNMP notification (RFC 1157).
- `stp` — Spanning tree protocol notification (RFC 1493).
- `vrrp` — State change in a VRRP group.
- `xstp` — State change in MSTP (802.1s), RSTP (802.1w), and PVST+.

The default is all trap types are sent to host.

Defaults

As above.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

In order to configure the router to send SNMP notifications, enter at least one `snmp-server host` command. If you enter the command with no keywords, all trap types are enabled for the host. If you do not enter an `snmp-server host` command, no notifications are sent.

In order to enable multiple hosts, issue a separate `snmp-server host` command for each host. You can specify multiple notification types in the command for each host.

When multiple `snmp-server host` commands are given for the same host and type of notification (trap or inform), each succeeding command overwrites the previous
command. Only the last `snmp-server host` command is in effect. For example, if you enter an `snmp-server host inform` command for a host and then enter another `snmp-server host inform` command for the same host, the second command replaces the first command.

The `snmp-server host` command is used with the `snmp-server enable` command. Use the `snmp-server enable` command to specify which SNMP notifications are sent globally. For a host to receive most notifications, at least one `snmp-server enable` command and the `snmp-server host` command for that host must be enabled.

NOTE: For v1 / v2c trap configuration, if the community-string is not defined using the `snmp-server community` command prior to using this command, the default form of the `snmp-server community` command automatically is configured with the community-name the same as specified in the `snmp-server host` command.

Configuring Informs

To send an inform, use the following steps:

1. Configure a remote engine ID.
2. Configure a remote user.
3. Configure a group for this user with access rights.
4. Enable traps.
5. Configure a host to receive informs.

Related Commands

- `snmp-server enable traps` — enables SNMP traps.
- `snmp-server community` — configures a new community SNMPv1 or SNMPv2c.

`snmp-server location`

Configure the location of the SNMP server.

Syntax

```
snmp-server location text
```

To delete the SNMP location, use the `no snmp-server location` command.

Parameters

| text | Enter an alpha-numeric text string, up to 55 characters long. |

Defaults

Not configured.

Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

snmp-server packetsize

Set the largest SNMP packet size permitted. When the SNMP server is receiving a request or generating a reply, use the `snmp-server packetsize` global configuration command.

Syntax

```
snmp-server packetsize byte-count
```

Parameters

- `byte-count`
 Enter one of the following values 8, 16, 24 or 32. Packet sizes are 8000 bytes, 16000 bytes, 32000 bytes, and 64000 bytes.

Defaults

8

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

snmp-server trap-source

Configure a specific interface as the source for SNMP traffic.

Syntax

```
snmp-server trap-source interface
```

To disable sending traps out a specific interface, use the `no snmp trap-source` command.

Parameters

- `interface`
 Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

Defaults

The IP address assigned to the management interface is the default.
Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To enable this `snmp-server trap-source` command, configure an IP address on the interface and enable the interface configured as an SNMP trap source.

Related Commands

`snmp-server community` — sets the community string.

snmp-server user

Configure a new user to an SNMP group.

Syntax

```
snmp-server user name {group_name remote ip-address udp-port port-number} [1 | 2c | 3] [encrypted] [auth {md5 | sha} auth-password] [priv des56 | aes128-cfb] priv-password [access access-list-name | ipv6 access-list-name | access-list-name ipv6 access-list-name]
```

To remove a user from the SNMP group, use the `no snmp-server user name {group_name remote ip-address udp-port port-number} [1 | 2c | 3] [encrypted] [auth {md5 | sha} auth-password] [priv des56 | aes128-cfb] priv-password [access access-list-name | ipv6 access-list-name]` command.

Parameters

- **name**

Enter the name of the user (not to exceed 20 characters), on the host that connects to the agent.

- **group_name**

Enter a text string (up to 20 characters long) as the name of the group. The following groups are created for mapping to read/write community/security-names (defaults):

 - `v1v2creadu` — maps to a community with ro permissions.
 - `v1v2cwriteu` — maps to a community rw permissions.

- **remote ip-address**

Enter the keywords `udp-port` then the user datagram protocol (UDP) port number on the remote device. The range is from 0 to 65535. The default is 162.

- **udp-port port-number**

Enter the keywords `udp-port` then the UDP (User Datagram Protocol) port number on the remote device. The range is from 0 to 65535. The default is 162.

- **1 | 2c | 3**

 (OPTIONAL) Enter the security model version number (1, 2c, or 3):
• 1 is the least secure version.
• 3 is the most secure of the security modes.
• 2c allows transmission of informs and counter 64, which allows for integers twice the width of what is normally allowed.

The default is 1.

encrypted (OPTIONAL) Enter the keyword encrypted to specify the password appear in encrypted format (a series of digits, masking the true characters of the string).

auth (OPTIONAL) Enter the keyword auth to specify authentication of a packet without encryption.

md5 | sha (OPTIONAL) Enter the keyword md5 or sha to designate the authentication level.
 • md5 — Message Digest Algorithm
 • sha — Secure Hash Algorithm

auth-password (OPTIONAL) Enter a text string (up to 20 characters long) password that enables the agent to receive packets from the host and to send packets to the host. Minimum: eight characters long.

priv des56 (OPTIONAL) Enter the keywords priv des56 to initiate a privacy authentication level setting using the CBC-DES privacy authentication algorithm (des56).

aes128 (OPTIONAL) Enter the keyword aes128 to initiate the AES128-CFB encryption algorithm for transmission of SNMP packets.

priv password (OPTIONAL) Enter a text string (up to 20 characters long) password that enables the host to encrypt the contents of the message it sends to the agent and decrypt the contents of the message it receives from the agent. Minimum: eight characters long.

access-list-name (Optional) Enter the standard IPv4 access list name (a string up to 16 characters long).

Defaults If no authentication or privacy option is configured, then the messages are exchanged (attempted anyway) without any authentication or encryption.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Added support for the AES128-CFB encryption algorithm on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

No default values exist for authentication or privacy algorithms and no default password exists. If you forget a password, you cannot recover it; the user must be reconfigured. You can specify either a plain-text password or an encrypted cypher-text password. In either case, the password is stored in the configuration in an encrypted form and displayed as encrypted in the `show running-config` command.

If you have an encrypted password, you can specify the encrypted string instead of the plain-text password. The following command is an Example of how to specify the command with an encrypted string.

```
NOTE: The number of configurable users is limited to 16.

Example

Dell# snmp-server user privuser v3group v3 encrypted auth md5 9fc53d9d908118b2804fe80e3ba8763d priv des56 d0452401a8c3ce42804fe80e3ba8763d
```

Usage Information

The following command is an example of how to enter a plain-text password as the string `authpasswd` for user `authuser` of group `v3group`.

```
Example

Dell#conf
Dell(conf)# snmp-server user authuser v3group v3 auth md5 authpasswd
```

Usage Information

The following command configures a remote user named `n3user` with a v3 security model and a security level of `authNOPriv`.

```
Example

Dell#conf
Dell(conf)# snmp-server user n3user ngroup remote 172.31.1.3 udp-port 5009 3 auth md5 authpasswd
```

Related Commands

`show snmp user` — displays the information configured on each SNMP user name.

snmp-server user (for AES128-CFB Encryption)

Specify that AES128-CFB encryption algorithm needs to be used for transmission of SNMP information. The Advanced Encryption Standard (AES) Cipher Feedback (CFB) 128-bit encryption algorithm is in compliance with RFC 3826. RFCs for SNMPv3 define two authentication hash algorithms, namely, HMAC-MD5-96 and HMAC-SHA1-96. These are the full forms or editions of the truncated versions, namely, HMAC-MD5 and HMAC-SHA1 authentication algorithms.

Syntax

```
snmp-server user name {group_name remote ip-address udp-port port-number} [1 | 2c | 3] [encrypted] [auth {md5 | sha} auth-password] [priv {des56 | aes128-cfb} priv-password] [access access-list-name | ipv6 access-list-name | access-list-name ipv6 access-list-name]
```
To remove a user from the SNMP group, use the `no snmp-server user {group_name} remote ip-address udp-port port-number} [1 | 2c | 3] [encrypted] [auth {md5 | sha} auth-password] [priv {des56 | aes128-cfb} priv-password] [access access-list-name | ipv6 access-list-name | access-list-name ipv6 access-list-name] command.

Parameters

- `auth-password` (OPTIONAL) Enter a text string (up to 20 characters long) password that enables the agent to receive packets from the host and to send packets to the host. Minimum: eight characters long.
- `aes128` (OPTIONAL) Enter the keyword `aes128` to initiate the AES128-CFB encryption algorithm for transmission of SNMP packets.
- `priv-password` (OPTIONAL) Enter a text string (up to 20 characters long) password that enables the host to encrypt the contents of the message it sends to the agent and to decrypt the contents of the message it receives from the agent. Minimum: eight characters long.

Defaults

If no authentication or privacy option is configured, then the messages are exchanged (attempted anyway) without any authentication or encryption.

Command Modes

- CONFIGURATION

Supported Modes

- Full-Switch Mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Added support for the AES128-CFB encryption algorithm on the MXL 10/40GbE Switch IO Module platform</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To enable robust, effective protection and security for SNMP packets transferred between the server and the client, you can use the `snmp-server user username group groupname 3 auth authentication-type auth-password priv aes128 priv-password` command to specify that AES128-CFB encryption algorithm needs to be used.

You cannot modify the FIPS mode if SNMPv3 users are already configured and present in the system. An error message is displayed if you attempt to change the FIPS mode by using the `fips mode enable` command in Global Configuration mode. You can enable or disable FIPS mode only if SNMPv3 users are not previously set up. Otherwise, you must remove the previously configured users before you change the FIPS mode.

Example

```
Dell# snmp-server user privuser v3group v3 encrypted auth md5 9fc53d9d08118b2804f8e0e3ba8763d priv aes128
d0452401a853ce42804f8e0e3ba8763d
```

Related Commands

- `show snmp user` — Displays the information configured on each SNMP user name.
snmp-server view

Configure an SNMPv3 view.

Syntax
```
snmp-server view view-name oid-tree {included | excluded}
```

To remove an SNMPv3 view, use the `no snmp-server view view-name oid-tree {included | excluded}` command.

Parameters

- **view-name**: Enter the name of the view (not to exceed 20 characters).
- **oid-tree**: Enter the OID sub tree for the view (not to exceed 20 characters).
- **included** (OPTIONAL): Enter the keyword included to include the MIB family in the view.
- **excluded** (OPTIONAL): Enter the keyword excluded to exclude the MIB family in the view.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The `oid-tree` variable is a full sub-tree starting from 1.3.6 and cannot specify the name of a sub-tree or a MIB. The following Example configures a view named `rview` that allows access to all objects under 1.3.6.1.

Example
```
Dell#(conf) snmp-server view rview 1.3.6.1 included
```

Related Commands

- `show running-config` — displays the SNMP running configuration.

snmp trap link-status

Enable the interface to send SNMP link traps, which indicate whether the interface is up or down.

Syntax
```
snmp trap link-status
```

To disable sending link trap messages, use the `no snmp trap link-status` command.
Syslog Commands

The following commands allow you to configure logging functions on all Dell Networking switches.

clear logging

Clear the messages in the logging buffer.

Syntax

```
clear logging
```

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `show logging` — displays logging settings and system messages in the internal buffer.

default logging buffered

Return to the default setting for messages logged to the internal buffer.

Syntax

```
default logging buffered
```

Defaults

`size = 40960`; level = 7 or debugging

Command Modes

CONFIGURATION
default logging console

Return the default settings for messages logged to the console.

Syntax

```
default logging console
```

Defaults

```
level = 7 or debugging
```

Command Modes

`CONFIGURATION`

Command History

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
```

Related Commands

```
default logging buffered — sets the logging buffered parameters.
logging console — sets the logging console parameters.
```

logging extended

Logs security and audit events to a system log server.

Syntax

```
logging extended
```

Defaults

```
none
```

Command Modes

`CONFIGURATION`

Command History

This guide is platform-specific. For command information about other platforms, see the relevant `Dell Networking OS Command Line Reference Guide`.

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6100–ON.</td>
</tr>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100–ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
</tbody>
</table>
```
Usage Information

This command is available with or without RBAC enabled. When RBAC is enabled you can restrict access to audit and security logs based on the CLI sessions’ user roles. If extended logging is disabled, you can only view system events, regardless of RBAC user role.

When you enabled RBAC and extended logging:

- Only the system administrator role can execute this command.
- The system administrator and system security administrator roles can view security events and system events.
- The system administrator role can view audit, security, and system events.
- The network administrator and network operator roles can view system events.

Examples

```
Dell(conf)#logging extended
```

Related Commands

- `show logging auditlog` — display the audit log.
- `clear logging auditlog` — clear the audit log.

default logging monitor

Return to the default settings for messages logged to the terminal.

Syntax

```
default logging monitor
```

Defaults

`level = 7 or debugging`

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `logging monitor` — sets the logging monitor parameters.
- `terminal monitor` — sends system messages to the terminal/monitor.
default logging trap

Return to the default settings for logging messages to the Syslog servers.

Syntax

```
default logging trap
```

Defaults

level = 6 or informational

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- [logging trap](#) — limit messages logged to the Syslog servers based on severity.

logging

Configure an IP address or host name of a Syslog server where logging messages are sent. You can configure multiple logging servers of both IPv4 and/or IPv6.

Syntax

```
logging {ip-address | ipv6-address | hostname} {{udp {port}} | {tcp {port}}}
```

To disable logging, use the `no logging` command.

Parameters

- `ip-address`
Enter the IPv4 address in dotted decimal format.

- `ipv6-address`
Enter the IPv6 address in the x:x:x:x::X format.

 NOTE: The :: notation specifies successive hexadecimal fields of zeros.

- `hostname`
Enter the name of a host already configured and recognized by the switch.

- `udp`
Enter the keyword `udp` to enable transmission of log message over UDP followed by port number. The default port is 514

- `tcp`
Enter the keyword `tcp` to enable transmission of log message over TCP followed by port number.

Defaults

Disabled.

Command Modes

CONFIGURATION
logging buffered

Enable logging and specify which messages are logged to an internal buffer. By default, all messages are logged to the internal buffer.

Syntax
logging buffered [level] [size]

To return to the default values, use the default logging buffered command.

To disable logging stored to an internal buffer, use the no logging buffered command.

Parameters

- **level** (OPTIONAL) Indicate a value from 0 to 7 or enter one of the following equivalent words: emergencies, alerts, critical, errors, warnings, notifications, informational, or debugging. The default is 7 or debugging.

- **size** (OPTIONAL) Indicate the size, in bytes, of the logging buffer. The number of messages buffered depends on the size of each message. The range is from 40960 to 524288. The default is 40960 bytes.

Defaults
level = 7; size = 40960 bytes

Command Modes
CONFIGURATION

Command History

- **Version 8.3.16.1** Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- When you decrease the buffer size, all messages stored in the buffer are lost. Increasing the buffer size does not affect messages stored in the buffer.

Related Commands

clear logging — clears the logging buffer.
default logging buffered — returns the logging buffered parameters to the default setting.

show logging — displays the logging setting and system messages in the internal buffer.

logging console

Specify which messages are logged to the console.

Syntax

```
logging console [level]
```

To return to the default values, use the `default logging console` command.

To disable logging to the console, use the `no logging console` command.

Parameters

- `level` (OPTIONAL) Indicate a value from 0 to 7 or enter one of the following parameters: emergencies, alerts, critical, errors, warnings, notifications, informational, or debugging. The default is 7 or debugging.

Defaults

- `level = 7; size = debugging`

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `clear logging` — clears the logging buffer.
- `default logging console` — returns the logging console parameters to the default setting.
- `show logging` — displays the logging setting and system messages in the internal buffer.

logging facility

Configure the Syslog facility used for error messages sent to Syslog servers.

Syntax

```
logging facility [facility-type]
```

To return to the default values, use the `no logging facility` command.
Parameters

facility-type

(Optional) Enter one of the following parameters:

- **auth** (authorization system)
- **cron** (Cron/at facility)
- **deamon** (system daemons)
- **kern** (kernel)
- **local0** (local use)
- **local1** (local use)
- **local2** (local use)
- **local3** (local use)
- **local4** (local use)
- **local5** (local use)
- **local6** (local use)
- **local7** (local use)
- **lpr** (line printer system)
- **mail** (mail system)
- **news** (USENET news)
- **sys9** (system use)
- **sys10** (system use)
- **sys11** (system use)
- **sys12** (system use)
- **sys13** (system use)
- **sys14** (system use)
- **syslog** (Syslog process)
- **user** (user process)
- **uucp** (Unix to Unix copy process)

The default is **local7**.

Defaults

local7

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **logging** — enables logging to a Syslog server.
- **logging on** — enables logging.
logging history

Specify which messages are logged to the history table of the switch and the SNMP network management station (if configured).

Syntax

```
logging history level
```

To return to the default values, use the `no logging history` command.

Parameters

- **level**
 - Indicate a value from 0 to 7 or enter one of the following equivalent words: emergencies, alerts, critical, errors, warnings, notifications, informational, or debugging. The default is `4` or `warnings`.

Defaults

- `warnings` or `4`

Command Modes

- **CONFIGURATION**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you configure the `snmp-server trap-source` command, the system messages logged to the history table are also sent to the SNMP network management station.

Related Commands

- `show logging` — displays information logged to the history buffer.

logging history size

Specify the number of messages stored in the system logging history table.

Syntax

```
logging history size size
```

To return to the default values, use the `no logging history size` command.

Parameters

- **size**
 - Indicate a value as the number of messages to be stored. The range is from 0 to 500. The default is `1 message`.

Defaults

- `1 message`

Command Modes

- **CONFIGURATION**
logging monitor

Specify which messages are logged to Telnet applications.

Syntax:
```
logging monitor [level]
```

To disable logging to terminal connections, use the `no logging monitor` command.

Parameters:
- `level`: Indicate a value from 0 to 7 or enter one of the following parameters: emergencies, alerts, critical, errors, warnings, notifications, informational, or debugging. The default is 7 or `debugging`.

Defaults:
7 or `debugging`

Command Modes:
CONFIGURATION

Command History:

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands:
- `default logging monitor` — returns the logging monitor parameters to the default setting.

logging on

Specify that debug or error messages are asynchronously logged to multiple destinations, such as the logging buffer, Syslog server, or terminal lines.

Syntax:
```
logging on
```

To disable logging to logging buffer, Syslog server and terminal lines, use the `no logging on` command.
logging source-interface

Specify that the IP address of an interface is the source IP address of Syslog packets sent to the Syslog server.

Syntax

```text
logging source-interface interface
```

To disable this command and return to the default setting, use the `no logging source-interface` command.

Parameters

- `interface` Enter the following keywords and slot/port or number information:
 - For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16383.
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a ten-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

- Not configured.

Command Modes

- CONFIGURATION

Command History

- **Version 8.3.16.1**
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you use the `no logging on` command, messages are logged only to the console.

Related Commands

- `logging` — enables logging to the Syslog server.
- `logging buffered` — sets the logging buffered parameters.
- `logging console` — sets the logging console parameters.
- `logging monitor` — sets the logging parameters for the terminal connections.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information Syslog messages contain the IP address of the interface used to egress the router. By configuring the `logging source-interface` command, the Syslog packets contain the IP address of the interface configured.

Related Commands

logging — enables logging to the Syslog server.

logging synchronous

Synchronize unsolicited messages and output.

Syntax

`logging synchronous [level level | all] [limit number-of-buffers]`

To disable message synchronization, use the `no logging synchronous [level level | all] [limit number-of-buffers]` command.

Parameters

- `all` Enter the keyword `all` to ensure that all levels are printed asynchronously.
- `level level` Enter the keyword `level` then a number as the severity level. A high number indicates a low severity level and vice versa. The range is from 0 to 7. The default is 2.
- `all` Enter the keyword `all` to turn off all.
- `limit number-of-buffers` Enter the keyword `limit` then the number of buffers to be queued for the terminal after which new messages are dropped. The range is from 20 to 300. The default is 20.

Defaults

Disabled. If enabled without the `level` or `number-of-buffers` options specified, `level = 2` and `number-of-buffers = 20` are the defaults.

Command Modes

LINE

Command History

Version Description

8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you enable `logging synchronous`, unsolicited messages appear between software prompts and outputs. Only the messages with a severity at or below the set level are sent to the console.

If the message queue limit is reached on a terminal line and messages are discarded, a system message appears on that terminal line. Messages may continue to appear on other terminal lines.
logging trap

Specify which messages are logged to the Syslog server based on the message severity.

Syntax

```
logging trap [level]
```

To return to the default values, use the `default logging trap` command.

To disable logging, use the `no logging trap` command.

Parameters

- **level**

 Indicate a value from 0 to 7 or enter one of the following parameters: `emergencies`, `alerts`, `critical`, `errors`, `warnings`, `notifications`, `informational`, or `debugging`. The default is 6 or `informational`.

Defaults

6 or `informational`

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `logging` — enables the logging to another device.
- `logging on` — enables logging.

logging version

Displays syslog messages in a RFC 3164 or RFC 5424 format.

Syntax

```
logging version {0|1}
```

Defaults

0

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.
Version Description

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6100-ON.</td>
</tr>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the S4810, S4820T, S6000, Z9000, and MXL.</td>
</tr>
</tbody>
</table>

Usage Information

To display syslog messages in a RFC 3164 or RFC 5424 format, use the `log version` command in configuration mode. By default, the system log version is set to 0.

The following describes the two supported log messages formats:

- **0** – Displays syslog messages format as described in RFC 3164, The BSD syslog Protocol
- **1** – Displays SYSLOG message format as described in RFC 5424, The Syslog Protocol

Example

```
Dell(conf)#logging version?
<0-1> Select syslog version (default = 0)
Dell(conf)#logging version 1
```

show logging

Display the logging settings and system messages logged to the internal buffer of the switch.

Syntax

```
show logging [number | history [reverse][number] | reverse [number] | summary]
```

Parameters

- **number**
 - (OPTIONAL) Enter the number of messages displayed in the output. The range is from 1 to 65535.
- **history**
 - (OPTIONAL) Enter the keyword `history` to view only information in the Syslog history table.
- **reverse**
 - (OPTIONAL) Enter the keyword `reverse` to view the Syslog messages in FIFO (first in, first out) order.
- **summary**
 - (OPTIONAL) Enter the keyword `summary` to view a table showing the number of messages per type and per slot. Slots *7* and *8* represent RPMs.
Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Partial)

Dell#show logging
Syslog logging: enabled
 Console logging: level debugging
 Monitor logging: level debugging
 Buffer logging: level debugging, 311 Messages Logged, Size (40960 bytes)
 Trap logging: level informational
 Logging to 172.16.1.162
 Logging to 10.10.1.4
 Logging to 172.31.1.4
 Logging to 133.33.33.4
May 22 10:21:10: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin
May 22 10:16:35: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin
May 22 09:39:12: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin
May 22 09:03:56: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin
May 22 09:01:51: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin
May 22 08:53:09: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable password authentication success on vty0 (10.11.68.22)
May 22 08:53:04: %STKUNIT0-M:CP %SEC-5LOGIN_SUCCESS: Login successful for user admin on vty0 (10.11.68.22)
May 22 08:50:09: %STKUNIT0-M:CP %SEC-5-LOGOUT: Exec session is terminated for user admin on vty2 (10.11.68.22)
May 19 16:58:32: %STKUNIT0-M:CP %SEC-5-LOGOUT: Exec session is terminated for user admin on line vty2 (10.11.68.22)
May 19 14:22:48: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty2 (10.11.68.22) by admin
May 19 12:05:43: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty2 (10.11.68.22) by admin
May 19 10:23:59: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 (10.11.68.22) by admin

Example (History)

Dell#show logging history
Syslog History Table: 1 maximum table entries, saving level warnings or higher
 SNMP notifications not Enabled
May 22 08:53:09: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable password authentication success on vty0 (10.11.68.22)
Dell#
show logging driverlog stack-unit

Display the driver log for the specified stack member.

Syntax

```
show logging driverlog stack-unit unit#
```

Parameters

- `stack-unit unit#`

 Enter the keywords `stack-unit` then the stack member ID of the switch for which you want to display the driver log. The range is from 0 to 1.

Defaults

`none`

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 8.3.16.1**

 Introduced on the MXL 10/40Gbe Switch IO Module.

Usage Information

This command displays internal software driver information, which may be useful during troubleshooting switch initialization errors, such as a downed Port-Pipe.

show logging auditlog

Displays an audit log.

Syntax

```
show logging auditlog
```

Defaults

None

Command Modes

EXEC

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6100-ON.</td>
</tr>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100-ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
</tbody>
</table>
terminal monitor

Configure the system to display messages on the monitor/terminal.

Syntax

```
terminal monitor
```

To return to default settings, use the `terminal no monitor` command.

defaults

Disabled.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `logging monitor` — sets the logging parameters on the monitor/terminal.
Stacking

For more information about using the Switch stacking feature, see the *Stacking MXL 10/40GbE Switches* chapter in the *Dell Networking OS Configuration Guide*.

redundancy disable-auto-reboot

Prevent the switch stack management unit from rebooting if it fail.

Syntax

```
redundancy disable-auto-reboot stack-unit [0-5 | members]
```

To return to the default, use the `no redundancy disable-auto-reboot stack-unit [0-5 | members]` command.

Defaults

Disabled (the failed switch is automatically rebooted).

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When the command is given as `redundancy disable-auto-reboot stack-unit`, it prevents the switch stack management unit and standby unit from rebooting if they fail.

When a particular unit number in the range from 0 to 5 is issued as part of the CLI, it prevents that particular unit from rebooting after failure.

When members are issued as part of the CLI, all the units part of the stack are prevented from rebooting after failure.

The unit does not reboot until it is manually rebooted.

Related Commands

- `show redundancy` — displays the current redundancy status.
redundancy force-failover stack-unit

Force the standby unit in the stack to become the management unit.

Syntax

```
redundancy force-failover stack-unit
```

Defaults

Not enabled.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

reset stack-unit

Reset any designated stack member except the management unit (master unit).

Syntax

```
reset stack-unit 0–5 hard
```

Parameters

- **0–5**

 Enter the stack member unit identifier of the stack member to reset.

- **hard**

 Reset the stack unit if the unit is in a problem state.

Defaults

none

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Resetting the management unit is not allowed, and an error message displays if you try to do so. Resetting is a soft reboot, including flushing the forwarding tables.

Starting with the Dell Networking OS version 7.8.1.0, you can run this command directly on the stack standby unit (standby master) to reset the standby. You cannot reset any other unit from the standby unit.

The first two bold lines in the following example show the output of a not allowed reset action. The third bold line shows the output of a successful reset action.

Example

```
Dell# show system brief
```
Stack MAC : 00:1e:c9:f1:00:7b

Reload Type : jump-start [Next boot : normal-reload]

-- Stack Info --

<table>
<thead>
<tr>
<th>Unit</th>
<th>UnitType</th>
<th>Status</th>
<th>ReqTyp</th>
<th>CurTyp</th>
<th>Version</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Management</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
<tr>
<td>1</td>
<td>Standby</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Member</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Member</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Member</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Member</td>
<td>online</td>
<td>MXL-10/40GbE</td>
<td>MXL-10/40GbE</td>
<td>9-1-0-853</td>
<td>56</td>
</tr>
</tbody>
</table>

Dell#reset stack-unit ?
<0-5> Unit number id
Dell#reset stack-unit 0
% Error: Reset of master unit is not allowed.
Dell(standby)#reset stack-unit 3
% Error: Reset of stack units from standby is not allowed.
Dell(standby)#
Dell(standby)#reset stack-unit 1
<00:02:50: %STKUNIT4-S:CP %CHMGR-5-STACKUNIT_RESET: Stack unit 4 being reset
00:02:50: %STKUNIT4-S:CP %CHMGR-2-STACKUNIT_DOWN: Stack unit 4 down - reset
00:02:50: %STKUNIT4-S:CP %IFMGR-1-DEL_PORT: Removed port: TenGig 4/1-48
Dell#rebooting
U-Boot 1.1.4 (June 6 2012 - 00:00:04)

Related Commands
 • reload — reboots the system.
 • redundancy disable-auto-reboot — resets the designated stack member.

show redundancy

Display the current redundancy configuration (status of automatic reboot configuration on stack management unit).

Syntax
 show redundancy

Command Modes
 • EXEC
 • EXEC Privilege

Command History
 Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
 Dell#show redundancy

-- Stack-unit Status --

Mgmt ID: 0
Stack-unit ID: 0
Stack-unit Redundancy Role: Primary
Stack-unit State: Active
Stack-unit SW Version: E8-3-16-160
Link to Peer: Down
Peer Stack-unit: not present

-- Stack-unit Redundancy Configuration --
--
Primary Stack-unit: mgmt-id 0
Auto Data Sync: Full
Failover Type: Hot Failover
Auto reboot Stack-unit: Enabled
Auto failover limit: 3 times in 60 minutes

-- Stack-unit Failover Record --
--
Failover Count: 0
Last failover timestamp: None
Last failover Reason: None
Last failover type: None

-- Last Data Block Sync Record: --
--
Stack Unit Config: no block sync done
Start-up Config: no block sync done
Runtime Event Log: no block sync done
Running Config: no block sync done
ACL Mgr: no block sync done
LACP: no block sync done
STP: no block sync done
SPAN: no block sync done

Dell#

Related Commands
redundancy disable-auto-reboot — prevents the system from auto-rebooting if it fails.

show system stack-ports

Display information about the stacking ports on all switches in the switch stack.

Syntax
show system stack-ports [status | topology]

Parameters
status (OPTIONAL) Enter the keyword status to display the command output without the Connection field.
topology (OPTIONAL) Enter the keyword topology to limit the table to just the Interface and Connection fields.

Defaults
none

Command Modes
• EXEC
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show interfaces` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Lists the topology of stack ports connected: Ring, Daisy chain, or Standalone.</td>
</tr>
<tr>
<td>Interface</td>
<td>The unit/port ID of the connected stack port on this unit.</td>
</tr>
<tr>
<td>Link Speed</td>
<td>Link Speed of the stack port (10 or 40) in Gb/s.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>The only currently listed status is Up.</td>
</tr>
<tr>
<td>Connection</td>
<td>The stack port ID to which this unit’s stack port is connected.</td>
</tr>
</tbody>
</table>

Example

Dell# show system stack-ports
Topology: Ring

<table>
<thead>
<tr>
<th>Interface</th>
<th>Connection</th>
<th>Link Speed (Gb/s)</th>
<th>Admin Status</th>
<th>Link Status</th>
<th>Trunk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/33</td>
<td>1/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/37</td>
<td>2/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/41</td>
<td>1/49</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/45</td>
<td>2/53</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/33</td>
<td>2/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/37</td>
<td>0/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/49</td>
<td>0/41</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/53</td>
<td>2/49</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/33</td>
<td>0/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/37</td>
<td>1/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/49</td>
<td>1/53</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/53</td>
<td>0/45</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>

Example (Status)

Dell# show system stack-ports status
Topology: Ring

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link Speed (Gb/s)</th>
<th>Admin Status</th>
<th>Link Status</th>
<th>Trunk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/41</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>0/45</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/49</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>1/53</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/33</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/37</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/49</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>2/53</td>
<td>40</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>
Example

(Topology)

Dell# show system stack-ports
Topology: Ring

<table>
<thead>
<tr>
<th>Interface</th>
<th>Connection</th>
<th>Trunk Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/33</td>
<td>1/37</td>
<td></td>
</tr>
<tr>
<td>0/37</td>
<td>2/33</td>
<td></td>
</tr>
<tr>
<td>0/41</td>
<td>1/49</td>
<td></td>
</tr>
<tr>
<td>0/45</td>
<td>2/53</td>
<td></td>
</tr>
<tr>
<td>1/33</td>
<td>2/37</td>
<td></td>
</tr>
<tr>
<td>1/37</td>
<td>0/33</td>
<td></td>
</tr>
<tr>
<td>1/49</td>
<td>0/41</td>
<td></td>
</tr>
<tr>
<td>1/53</td>
<td>2/49</td>
<td></td>
</tr>
<tr>
<td>2/33</td>
<td>0/37</td>
<td></td>
</tr>
<tr>
<td>2/37</td>
<td>1/33</td>
<td></td>
</tr>
<tr>
<td>2/49</td>
<td>1/53</td>
<td></td>
</tr>
<tr>
<td>2/53</td>
<td>0/45</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

- redundancy disable-auto-reboot — resets the designated stack member.
- show hardware stack-unit — displays the data plane or management plane input and output statistics of the designated component of the designated stack member.
- show system — displays the current status of all stack members or a specific member.

show system stack-unit stack-group

Display the stack-groups present/configured for a switch stack unit.

Syntax

show system stack-unit unit-number stack-group [configured]

Parameters

- `unit number <0–5>`: Number of the member stack unit. The valid values are from 0 to 5. The default is 0.

Command Modes

EXEC Privilege

Command History

Version
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- reload — reboots the system.
- show system — displays the current status of all stack members or a specific member.
stack-unit stack-group

Configure a 40GbE port for stacking mode.

Syntax

```
stack-unit unit number stack-group group number
```

Parameters

- `unit number <0–5>`: Number of the member stack unit. The valid values are from 0 to 5.
- `group number <0–5>`: Number of the stacked port on the unit. The valid values are from 0 to 5.

Command Modes

- CONFIGURATION

Command History

8.3.16.1: Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `reload` — reboots the system.
- `show system` — displays the current status of all stack members or a specific member.
- `show system stack-unit stack-group` displays the stack-groups present/configured for a MXL 10/40GbE switch stack unit.

stack-unit priority

Configure the ability of switch to become the management unit of a stack.

Syntax

```
stack-unit 0–5 priority 1–14
```

Parameters

- `0–5`: Enter the stack member unit identifier, from 0 to 5, of the switch on which you want to set the management priority.
- `1–14`: This preference parameter allows you to specify the management priority of one backup switch over another, with 1 the lowest priority and 14 the highest. The switch with the highest priority value will be chosen to become the management unit.

Defaults

0

Command Modes

- CONFIGURATION

Stacking | 1431
stack-unit provision

Preconfigure a logical stacking ID of a switch that joins the stack. This is an optional command that is executed on the management unit.

Syntax

```
stack-unit 0–5 provision {MXL-10/40GbE}
```

Parameters

- **0–5**
 - Enter a stack member identifier, from 0 to 5, of the switch that you want to add to the stack.
- **MXL-10/40GbE**
 - Enter the model identifier of the switch to be added as a stack member. This identifier is also referred to as the provision type.

Command Modes

CONFIGURATION

Command History

Version 8.3.16.1

Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

- `reload` — reboots the system.
- `show system` — displays the status of all stack members or a specific member.

stack-unit renumber

Change the stack member ID of any stack member or a stand-alone unit.

Syntax

```
stack-unit stack-unit-number renumber stack-unit-number
```

Parameters

- **stack-unit-number**
 - The first instance of this value is the stack member unit identifier, from 0 to 5, of the switch that you want to add to the stack. The range is from 0 to 5.
The second instance of this value is the desired new unit identifier number.

Defaults
none

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You can renumber any switch, including the management unit or a stand-alone unit.

You cannot renumber a unit to a number of an active member in the stack.

When executing this command on the master, the stack reloads. When the members are renumbered, only that specific unit is reset and comes up with the new unit number.

Example

```
Dell#stack-unit 0 renumber 2
Renumbering master unit will reload the stack. Proceed to renumber [confirm yes/no]:
```

Related Commands
- `reload` — reboots the system.
- `redundancy disable-auto-reboot` — resets the designated stack member.
- `show system` — displays the current status of all stack members or a specific member.
The Dell Networking Operating System (OS) storm control feature allows you to limit or suppress traffic during a traffic storm.

Storm control is supported on the Dell Networking OS.

Important Points to Remember

- Interface commands can only be applied on physical interfaces (virtual local area networks [VLANs] and link aggregation group [LAG] interfaces are not supported).
- An INTERFACE-level command only supports storm control configuration on ingress.
- An INTERFACE-level command overrides any CONFIGURATION-level ingress command for that physical interface, if both are configured.
- Do not apply per-VLAN quality of service (QoS) on an interface that has storm control enabled (either on an interface or globally).

Topics:

- show storm-control broadcast
- show storm-control multicast
- show storm-control unknown-unicast
- storm-control broadcast (Configuration)
- storm-control broadcast (Interface)
- storm-control PFC/LLFC
- storm-control multicast (Configuration)
- storm-control multicast (Interface)
- storm-control unknown-unicast (Configuration)
- storm-control unknown-unicast (Interface)

show storm-control broadcast

Display the storm control broadcast configuration.

Syntax

```
show storm-control broadcast [interface]
```

Parameters

- `interface` (OPTIONAL) Enter one of the following interfaces to display the interface-specific storm control configuration:
For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Defaults none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
</table>
| 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show storm-control broadcast tengigabitethernet 3/8

Broadcast storm control configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>Direction</th>
<th>Packets/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>TenGig 3/8</td>
<td>Ingress</td>
<td>1000</td>
</tr>
</tbody>
</table>

Dell#

show storm-control multicast

Display the storm control multicast configuration.

Syntax

show storm-control multicast [interface]

Parameters

- **interface** (OPTIONAL) Enter one of the following interfaces to display the interface specific storm control configuration:
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.

Defaults none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
</table>

Storm Control | 1435
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

Dell#show storm-control multicast gigabitethernet 1/1
Multicast storm control configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>Direction</th>
<th>Packets/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi 1/0</td>
<td>Ingress</td>
<td>5</td>
</tr>
</tbody>
</table>

Dell#

show storm-control unknown-unicast

Display the storm control unknown-unicast configuration.

Syntax

```
show storm-control unknown-unicast [interface]
```

Parameters

- **interface** (OPTIONAL) Enter one of the following interfaces to display the interface specific storm control configuration:

 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.

 - For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/ port information.

Defaults

none

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on MXL 10/40GbE Switch IO Module</td>
</tr>
</tbody>
</table>

Example

Dell#show storm-control unknown-unicast tengigabitethernet 3/1
Unknown-unicast storm control configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>Direction</th>
<th>Packets/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>TenGig 3/1</td>
<td>Ingress</td>
<td>1000</td>
</tr>
</tbody>
</table>

Dell#
storm-control broadcast (Configuration)

Configure the percentage of broadcast traffic allowed in the network.

Syntax

```
storm-control broadcast [packets_per_second in]
```

To disable broadcast rate-limiting, use the `no storm-control broadcast [packets_per_second in]` command.

Parameters

- `packets_per_second`

 Enter the packets per second of broadcast traffic allowed into the network. The range is from 0 to 33554368.

Defaults

none

Command Modes

CONFIGURATION (conf)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Broadcast storm control is valid on Layer 2/Layer 3 interfaces only. Layer 2 broadcast traffic is treated as unknown-unicast traffic.

storm-control broadcast (Interface)

Configure the percentage of broadcast traffic allowed on an interface.

Syntax

```
storm-control broadcast [packets_per_second in]
```

To disable broadcast storm control on the interface, use the `no storm-control broadcast [packets_per_second in]` command.

Parameters

- `packets_per_second`

 Enter the packets per second of broadcast traffic allowed into the network. The range is from 0 to 33554368.

Defaults

none

Command Modes

INTERFACE (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

storm-control PFC/LLFC

Shut down the port if it receives the PFC/LLFC frames more than the configured rate.

Syntax

```
storm-control pfc-llfc [pps] in shutdown
```

Parameters

- `pfc-llfc in` Enter the keyword `pfc-llfc` to get the flow control traffic. The range is from 0 to 33554368 packets per second.
- `shutdown` Enter the keyword `shutdown` to shut down the port when the rate exceeds.

Defaults

none

Command Modes

INTERFACE (conf-if-slot/port)

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

- **NOTE:** PFC/LLFC storm control enabled interfaces disable the interfaces if it receives continuous PFC/LLFC packets. It can be a result of a faulty NIC/Switch that sends spurious PFC/LLFC packets.

storm-control multicast (Configuration)

Configure the packets per second (pps) of multicast traffic.

Syntax

```
storm-control multicast packets_per_second in
```

To disable storm-control for multicast traffic into the network, use the `no storm-control multicast packets_per_second in` command.

Parameters

- `packets_per_second` Enter the packets per second of multicast traffic allowed into the network. The range is from 0 to 33554368.
Defaults none
Command Modes CONFIGURATION (conf)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Broadcast traffic (all 0xFs) should be counted against the broadcast storm control meter, not against the multicast storm control meter. It is possible, however, that some multicast control traffic may get dropped when storm control thresholds are exceeded.

storm-control multicast (Interface)

Configure the percentage of multicast traffic allowed on the switch interface (ingress only).

Syntax

```plaintext
storm-control multicast packets_per_second in
```

To disable multicast storm control on the interface, use the `no storm-control multicast packets_per_second in` command.

Parameters

- `packets_per_second` Enter the packets per second of broadcast traffic allowed into the network. The range is from 0 to 33554368.

Defaults

`none`

Command Modes

`INTERFACE (conf-if-interface-slot/port)`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

storm-control unknown-unicast (Configuration)

Configure the percentage of unknown-unicast traffic allowed on the switch (ingress rate only).

Syntax

```plaintext
storm-control unknown-unicast [packets_per_second in]
```

To disable storm control for unknown-unicast traffic, use the `no storm-control unknown-unicast [packets_per_second in]` command.
Parameters

packets_per_second
Enter the packets per second of broadcast traffic allowed into the network. The range is from 0 to 33554431.

Defaults

none

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Unknown Unicast Storm-Control is valid for Layer 2 and Layer 2/Layer 3 interfaces.

storm-control unknown-unicast

(Interface)

Configure percentage of unknown-unicast traffic allowed on the switch interface (ingress only).

Syntax

```
storm-control unknown-unicast [packets_per_second in]
```

To disable unknown-unicast storm control on the interface, use the `no storm-control unknown-unicast [packets_per_second in]` command.

Parameters

*packets_per_second*Enter the packets per second of broadcast traffic allowed into the network. The range is from 0 to 33554431.

Defaults

none

Command Modes

INTERFACE (conf-if-interface-slot/port)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Spanning Tree Protocol (STP)

The commands in this chapter configure and monitor the IEEE 802.1d spanning tree protocol (STP).

Topics:
- bridge-priority
- debug spanning-tree
- description
- disable
- forward-delay
- hello-time
- max-age
- portfast bpdufilter default
- protocol spanning-tree
- show config
- show spanning-tree 0
- spanning-tree 0

bridge-priority

Set the bridge priority of the switch in an IEEE 802.1D spanning tree.

Syntax

bridge-priority {priority-value | primary | secondary}

To return to the default value, use the no bridge-priority command.

Parameters

- **priority-value**
 - Enter a number as the bridge priority value. The range is from 0 to 65535. The default is **32768**.
- **primary**
 - Enter the keyword primary to designate the bridge as the root bridge.
- **secondary**
 - Enter the keyword secondary to designate the bridge as a secondary root bridge.

Defaults

priority-value = **32768**

Command Modes

SPANNING TREE (The prompt is "config-stp.")

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

debug spanning-tree

Enable debugging of the spanning tree protocol and view information on the protocol.

Syntax

```
debug spanning-tree {stp-id [all | bpdu | events | exceptions] | protocol}
```

To disable debugging, use the `no debug spanning-tree` command.

Parameters

- **stp-id**
 Enter zero (0). The switch supports one spanning tree group with a group ID of 0.

- **protocol**
 Enter the keyword for the type of STP to debug, either `mstp`, `pvst`, or `rstp`.

- **all**
 (OPTIONAL) Enter the keyword `all` to debug all spanning tree operations.

- **bpdu**
 (OPTIONAL) Enter the keyword `bpdu` to debug bridge protocol data units.

- **events**
 (OPTIONAL) Enter the keyword `events` to debug STP events.

Command Modes

- EXEC Privilege

Command History

- **Version**

 - **8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

When you enable `debug spanning-tree bpdu` for multiple interfaces, the software only sends information on BPDUs for the last interface specified.

Related Commands

- `portfast bpdufilter default` — enters SPANNING TREE mode on the switch.

description

Enter a description of the spanning tree.

Syntax

```
description {description}
```

To remove the description from the spanning tree, use the `no description {description}` command.
Parameters

description Enter a description to identify the spanning tree (80 characters maximum).

Defaults

none

Command Modes

SPANNING TREE (The prompt is “config-stp.”)

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

portfast bpdufilter default — enters SPANNING TREE mode on the switch.

disable

Disable the spanning tree protocol globally on the switch.

Syntax

disable

To enable Spanning Tree Protocol, use the no disable command.

Defaults

Enabled (that is, the spanning tree protocol is disabled.)

Command Modes

SPANNING TREE

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

portfast bpdufilter default — enters SPANNING TREE mode.

forward-delay

The amount of time the interface waits in the Listening state and the Learning state before transitioning to the Forwarding state.

Syntax

forward-delay seconds

To return to the default setting, use the no forward-delay command.
Parameters

- **seconds**
 Enter the number of seconds that the system waits before transitioning STP to the Forwarding state. The range is from 4 to 30. The default is **15 seconds**.

Defaults

- **15 seconds**

Command Modes

- **SPANNING TREE**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **max-age** — changes the wait time before STP refreshes protocol configuration information.
- **hello-time** — changes the time interval between BPDUs.

hello-time

Set the time interval between generation of the spanning tree bridge protocol data units (BPDUs).

Syntax

```
hello-time seconds
```

To return to the default value, use the **no hello-time** command.

Parameters

- **seconds**
 Enter a number as the time interval between transmission of BPDUs. The range is from 1 to 10. The default is **2 seconds**.

Defaults

- **2 seconds**

Command Modes

- **SPANNING TREE**

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- **forward-delay** — changes the wait time before STP transitions to the Forwarding state.
- **max-age** — changes the wait time before STP refreshes protocol configuration information.
max-age

To maintain configuration information before refreshing that information, set the time interval for the spanning tree bridge.

Syntax

max-age seconds

To return to the default values, use the no max-age command.

Parameters

seconds

Enter a number of seconds the system waits before refreshing configuration information. The range is from 6 to 40. The default is 20 seconds.

Defaults

20 seconds

Command Modes

SPANNING TREE

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

forward-delay — changes the wait time before STP transitions to the Forwarding state.

hello-time — changes the time interval between BPDUs.

portfast bpdufilter default

Enable BPDU Filter globally to filter transmission of BPDUs on port fast enabled interfaces.

Syntax

portfast bpdufilter default

To disable global bpdu filter default, use the no edge-port bpdufilter default command.

Defaults

Disabled

Command Modes

SPANNING TREE

Command History

Version Description
9.9(0.0) Introduced on the FN MXL.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
protocol spanning-tree

To enable and configure the spanning tree group, enter SPANNING TREE mode.

Syntax

```
protocol spanning-tree stp-id
```

To disable the Spanning Tree group, use the `no protocol spanning-tree stp-id` command.

Parameters

- **stp-id**

 Enter zero (0). The system supports one spanning tree group, group 0.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

STP is not enabled when you enter SPANNING TREE mode. To enable STP globally on the switch, use the `no disable` command from SPANNING TREE mode.

Example

```
Dell(conf)#protocol spanning-tree 0
Dell(config-stp)#
```

Related Commands

- **disable** — disables spanning tree group 0. To enable spanning tree group 0, use the `no disable` command.

show config

Display the current configuration for the mode. Only non-default values display.

Syntax

```
show config
```

Command Modes

SPANNING TREE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell(config-stp)#show config
protocol spanning-tree 0
no disable
Dell(config-stp)#
```
show spanning-tree 0

Display the spanning tree group configuration and status of interfaces in the spanning tree group.

Syntax

```
show spanning-tree 0 [active | brief | guard | interface interface | root | summary]
```

Parameters

- **0**
 - Enter 0 (zero) to display information about that specific spanning tree group.

- **active**
 - (OPTIONAL) Enter the keyword `active` to display only active interfaces in spanning tree group 0.

- **brief**
 - (OPTIONAL) Enter the keyword `brief` to display a synopsis of the spanning tree group configuration information.

- **guard**
 - (OPTIONAL) Enter the keyword `guard` to display the type of guard enabled on an STP interface and the current port state.

- **interface interface**
 - (OPTIONAL) Enter the keyword `interface` and the type slot/port of the interface you want displayed. Type slot/port options are the following:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.

- **root**
 - (OPTIONAL) Enter the keyword `root` to display configuration information on the spanning tree group root.

- **summary**
 - (OPTIONAL) Enter the keyword `summary` to only the number of ports in the spanning tree group and their state.

Command Modes

- EXEC Privilege

Command History

- **Version**
 - 8.3.16.1
 - Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- Enable spanning tree group 0 prior to using this command.

 The following describes the `show spanning-tree 0` command shown in the example.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Bridge Identifier...”</td>
<td>Lists the bridge priority and the MAC address for this STP bridge.</td>
</tr>
<tr>
<td>“Configured hello...”</td>
<td>Displays the settings for hello time, max age, and forward delay.</td>
</tr>
<tr>
<td>“We are...”</td>
<td>States whether this bridge is the root bridge for the STG.</td>
</tr>
<tr>
<td>“Current root...”</td>
<td>Lists the bridge priority and MAC address for the root bridge.</td>
</tr>
<tr>
<td>“Topology flag...”</td>
<td>States whether the topology flag and the detected flag were set.</td>
</tr>
<tr>
<td>“Number of...”</td>
<td>Displays the number of topology changes, the time of the last topology change, and on what interface the topology change occurred.</td>
</tr>
<tr>
<td>“Timers”</td>
<td>Lists the values for the following bridge timers: hold time, topology change, hello time, max age, and forward delay.</td>
</tr>
<tr>
<td>“Times”</td>
<td>List the number of seconds since the last:</td>
</tr>
<tr>
<td></td>
<td>• hello time</td>
</tr>
<tr>
<td></td>
<td>• topology change</td>
</tr>
<tr>
<td></td>
<td>• notification</td>
</tr>
<tr>
<td></td>
<td>• aging</td>
</tr>
<tr>
<td>“Port 1...”</td>
<td>Displays the Interface type slot/port information and the status of the interface (Disabled or Enabled).</td>
</tr>
<tr>
<td>“Port path...”</td>
<td>Displays the path cost, priority, and identifier for the interface.</td>
</tr>
<tr>
<td>“Designated root...”</td>
<td>Displays the priority and MAC address of the root bridge of the STG that the interface belongs.</td>
</tr>
<tr>
<td>“Designated port...”</td>
<td>Displays the designated port ID.</td>
</tr>
</tbody>
</table>

Example

```
Dell#show spann 0

Executing IEEE compatible Spanning Tree Protocol
Bridge Identifier has priority 32768, Address 0001.e800.0a56
Configured hello time 2, max age 20, forward delay 15
We are the root of the spanning tree
Current root has priority 32768 address 0001.e800.0a56
Topology change flag set, detected flag set
Number of topology changes 1 last change occurred 0:00:05 ago
  from GigabitEthernet 1/3
  Timers:hold 1, topology change 35
  hello 2, max age 20, forward_delay 15
  Times:hello 1, topology change 1, notification 0, aging 2

Port 26 (GigabitEthernet 1/1) is Forwarding
Port path cost 4, Port priority 8, Port Identifier 8.26
Designated root has priority 32768, address 0001.e800.0a56
Designated bridge has priority 32768, address 0001.e800.0a56
Designated port id is 8.26, designated path cost 0
Timers: message age 0, forward_delay 0, hold 0
```
Dell\#show spanning-tree 0 brief

Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768
 Address 0001.e800.0a56
 Root Bridge hello time 2, max age 20, forward delay 15
 Bridge ID Priority 32768,
 Address 0001.e800.0a56
 Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface</th>
<th>Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi 1/1</td>
<td>8.26</td>
<td>8</td>
<td>4</td>
<td>FWD 0</td>
<td>0</td>
<td>32768 0001.e800.0a56 8.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi 1/2</td>
<td>8.27</td>
<td>8</td>
<td>4</td>
<td>FWD 0</td>
<td>0</td>
<td>32768 0001.e800.0a56 8.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi 1/3</td>
<td>8.28</td>
<td>8</td>
<td>4</td>
<td>FWD 0</td>
<td>0</td>
<td>32768 0001.e800.0a56 8.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dell\#

Usage Information

The following describes the `show spanning-tree 0 guard` command shown in the example.
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Name</td>
<td>STP interface.</td>
</tr>
<tr>
<td>Instance</td>
<td>STP 0 instance.</td>
</tr>
<tr>
<td>Sts</td>
<td>Port state: root-inconsistent (INCON Root), forwarding (FWD), listening (LIS), blocking (BLK), or shut down (EDS Shut).</td>
</tr>
<tr>
<td>Guard Type</td>
<td>Type of STP guard configured (Root, Loop, or BPDU guard).</td>
</tr>
<tr>
<td>Bpdu Filter</td>
<td>BPDU Filter enabled - Yes, BPDU Filter disabled - No</td>
</tr>
</tbody>
</table>

Example (Guard)

```
Dell#show spanning-tree 0 guard
Interface          Name Instance Sts          Guard type
------------------- -------- --------- ----------
Gi 0/1 0          INCON(Root)  Rootguard
Gi 0/2 0          LIS          Loopguard
Gi 0/3 0          EDS (Shut)   Bpduguard
```

spanning-tree 0

Assigns a Layer 2 interface to STP instance 0 and configures a port cost or port priority, or enables loop guard, root guard, or the Portfast feature on the interface.

Syntax

```
spanning-tree stp-id {cost cost | {rootguard} | portfast [bpduguard [shutdown-on-violation] | bpdufilter] | priority priority}
```

To disable Spanning Tree group on an interface, use the `no spanning-tree stp-id {cost cost | {rootguard} | portfast [bpduguard [shutdown-on-violation] | bpdufilter] | priority priority} command.

Parameters

- **stp-id**
 - Enter the STP instance ID. The range is 0.
- **cost cost**
 - Enter the keyword `cost` then a number as the cost. The range is 1 to 65535. The defaults are:
 - 40-Gigabit Ethernet interface = 1.
 - 10-Gigabit Ethernet interface = 2.
 - Port Channel interface with 40-Gigabit Ethernet = 1.
 - Port Channel interface with 10-Gigabit Ethernet = 1.
- **rootguard**
 - Enter the keyword `rootguard` to enable STP root guard on a port or port-channel interface.
- **portfast [bpduguard [shutdown-on-violation] | bpdufilter] | priority priority**
 - Enter the keyword `portfast` to enable Portfast to move the interface into Forwarding mode immediately after the root fails.
Enter the optional keyword `bpdufilter` to disable the port when it receives a BPDU.

Enter the optional keywords `shutdown-on-violation` to hardware disable an interface when a BPDU is received and the port is disabled.

Enter the keyword `bpdufilter` to enable on an interface; it should stop sending and receiving BPDUs on the port fast enabled ports.

```
priority priority
```
Enter keyword `priority` then a number as the priority. The range is zero (0) to 15. The default is 8.

Defaults

```
cost = depends on the interface type; priority = 8
```

Command Modes

`INTERFACE`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you enable `portfast bpduguard` on an interface and the interface receives a BPDU, the software disables the interface and sends a message stating that fact. The port is in `ERR_DISABLE` mode, yet appears in the `show interface` commands as enabled. If you do not enable `shutdown-on-violation`, BPDUs still are sent to the RPM CPU.

STP root guard is supported on a port or port-channel enabled in any Spanning Tree mode: Spanning Tree Protocol (STP), Rapid Spanning Tree Protocol (RSTP), Multiple Spanning Tree Protocol (MSTP), and Per-VLAN Spanning Tree Plus (PVST+).

Root guard is supported on any STP-enabled port or port-channel except when used as a stacking port. When enabled on a port, root guard applies to all VLANs configured on the port.
SupportAssist sends troubleshooting data securely to Dell. SupportAssist in this Dell Networking OS release does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports. SupportAssist requires Dell Networking OS 9.9(0.0) and SmartScripts 9.7 or later to be installed on the Dell Networking device. For more information on SmartScripts, see Dell Networking Open Automation guide.

NOTE: SupportAssist is enabled by default on the system. To disable SupportAssist, enter the `eula-consent support-assist reject` command in Global Configuration mode and save the configuration.

Topics:
- `eula-consent`
- `support-assist`
- `support-assist activate`
- `support-assist activity`
- `SupportAssist Commands`
- `SupportAssist Activity Commands`
- `SupportAssist Company Commands`
- `SupportAssist Person Commands`
- `SupportAssist Server Commands`
- `show eula-consent`
- `show running-config`
- `show support-assist status`

eula-consent

Accept or reject the end user license agreement (EULA).

Syntax

```
eula-consent {support-assist} {accept | reject}
```

Parameters

- **support-assist**
 - Enter the keywords `support-assist` to either accept or reject the EULA for the specified service.
- **accept**
 - Enter the keyword `accept` to accept the EULA for the specified service.
reject

Enter the keyword **reject** to reject the EULA for the specified service.

Defaults

None

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version	**Description**
9.10(0.0) | Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.
9.9(0.0) | Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.

Usage Information

- When you run the command, the system displays a message with the information directing to the URL for further information.
- Even before you accept or reject the EULA, the configuration data is sent to the default centrally deployed SupportAssist Server. If you reject the EULA, the configuration data is not transmitted to the SupportAssist server.
- If there is an existing SupportAssist configuration, the configuration is not removed and the feature is disabled.

Example

```
Dell(conf)# eula-consent support-assist accept
I accept the terms of the license agreement. You can reject the license agreement by configuring this command 'eula-consent support-assist reject'.

By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.

Dell SupportAssist also collects and stores machine diagnostic information, which may include but is not limited to configuration information, user supplied contact information, names of data volumes, IP addresses, access control lists, diagnostics & performance information, network configuration information, host/server configuration & performance information and related data ("Collected Data") and transmits this information to Dell. By downloading SupportAssist and agreeing to be bound by these terms and the Dell end user license agreement, available at: www.dell.com/aeula, you agree to allow Dell to provide remote monitoring services of your IT environment and you give Dell the right to collect the Collected Data in accordance with Dells Privacy Policy, available at: www.dell.com/privacypolicycountry specific, in order to enable the performance of all of the various functions of SupportAssist during your entitlement to receive related repair services from Dell,. You further agree to allow Dell to transmit and store the Collected Data from SupportAssist in accordance with these terms. You agree
```
that the provision of SupportAssist may involve international transfers of data from you to Dell and/or to Dells affiliates, subcontractors or business partners. When making such transfers, Dell shall ensure appropriate protection is in place to safeguard the Collected Data being transferred in connection with SupportAssist. If you are downloading SupportAssist on behalf of a company or other legal entity, you are further certifying to Dell that you have appropriate authority to provide this consent on behalf of that entity. If you do not consent to the collection, transmission and/or use of the Collected Data, you may not download, install or otherwise use SupportAssist.

Related Commands

- support-assist — moves to the SupportAssist Configuration mode.

support-assist

Move to the SupportAssist configuration mode.

Syntax

```
support-assist
```

To remove all the configuration of the SupportAssist service, use the `no support-assist` command.

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

If you reject the EULA, the data is not transmitted to the SupportAssist server.

Related Commands

- `eula-consent` — accept or reject the EULA.

support-assist activate

Enable the SupportAssist service.

Syntax

```
support-assist activate
```

SupportAssist | 1454
Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

You are guided through a series of queries to configure SupportAssist. The generated commands are added to the running configuration, including the DNS resolve commands, if configured.

This command starts the configuration wizard for the SupportAssist. At any time, you can exit by entering Ctrl-C. If necessary, you can skip some data entry.

support-assist activity

Trigger an activity event immediately.

Syntax

```plaintext
support-assist activity {full-transfer} start now
```

Parameters

- `full-transfer` Enter the keywords `full-transfer` to specify transfer of configuration, inventory, logs, and other information.

Command Modes

EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>
SupportAssist Commands

Dell Networking OS supports the following SupportAssist mode commands.

activity

Move to the SupportAssist Activity mode for an activity. Allow the user to configure customized details for a specific activity.

Syntax

activity {activity-name}

To remove all customized detail for a specific activity, use the no activity {activity-name} command.

Parameters

activity-name

Enter one of the following keywords:

- Enter the keywords full-transfer to specify transfer of configuration, inventory, logs, and other information.

Command Modes

SUPPORTASSIST

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version	Description
9.10(0.0) | Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.
9.9(0.0) | Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.

Usage Information

By default, each activity follows a set of default actions using a default schedule. Using this command, you can customize the set of actions and disable a certain activity.

contact-company

Configure the contact information for the company.

Syntax

contact-company name {company-name} [company-next-name] ...

[company-next-name]
To remove the contact company information, use the `no contact-company` command.

Parameters

- **company-name**
 - Enter the name for the company. If there are multiple words in the name, use optional additional fields.

- **company-next-name**
 - (OPTIONAL) Enter the next components of the company name, up to 5 components are allowed.

Command Modes

- SUPPORTASSIST

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100—ON, S6100—ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048—ON, S4048—ON, S5000, S6000, S6000—ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

- You can configure only one contact-company.

- It is not possible to remove the components of the company name. The no form of the command removes the entire contact-company entry.

- This command is optional for SupportAssist service configuration.

contact-person

Configure the contact name for an individual.

Syntax

```
contact-person [first <first-name>] last <last-name>
```

To remove the contact person and all their details, use the `no contact-person [first <first-name>] last <last-name>` command.

Parameters

- **first-name**
 - (Optional) Enter the first name for the contact person. This is optional provided each contact person name is unique. To include a space, enter a space within double quotes.

- **last-name**
 - Enter the last name for the contact person. To include a space, enter a space within double quotes.

Command Modes

- SUPPORTASSIST
Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Each contact person must be unique by their name.

You can configure only one contact person.

It is not possible to remove the first name or last name. The no form of the command removes the entire contact-person entry.

This command is optional for SupportAssist service configuration.

enable

Enable all activities and severs for the SupportAssist service.

Syntax

```
enable all
```

To return to the default setting, use the `no enable all` command.

Parameters

- **all**

 Enter the keyword all to enable all SupportAssist service activities.

Defaults

Enabled or All Enabled

Command Modes

SUPPORTASSIST

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>
server

Configure the name of the remote SupportAssist Server and move to SupportAssist Server mode.

Syntax

server {default | server-name}

To delete a server, use the no server server-name command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Enter the keyword default for the default server.</td>
</tr>
<tr>
<td>server-name</td>
<td>Enter the name of the remote SupportAssist Server. To include a space, enter a space within double quotes.</td>
</tr>
</tbody>
</table>

Defaults

Default server has URL stor.g3.ph.dell.com

Command Modes

SUPPORTASSIST

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The server-name is used as a reference only and is not required to be used as part of a URL definition.

There is a reserved name of default for the default server at stor.g3.ph.dell.com. You can customize the defaults for this server by entering the server default command and use the custom commands.

You can configure one additional server.

SupportAssist Activity Commands

Dell Networking OS supports the following SupportAssist Activity mode commands.
action-manifest get

Copy an action-manifest file for an activity to the system.

Syntax

```plaintext
action-manifest get tftp | ftp | flash <file-specification>
<local-file-name>
```

Parameters

- `file-specification` Enter the full file specification for the action-manifest file. For example:
 - tftp://hostip/filepath
 - ftp://userid:password@hostip/filepath
 - scp://userid:password@hostip/filepath

- `local-file-name` Enter the name of the local action-manifest file, up to 32 characters long. Allowable characters are: a to z, A to Z, 0 to 9, -, _, and space.

Command Modes
SUPPORTASSIST ACTIVITY

Command History
This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100—ON, S6100—ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048—ON, S4048—ON, S5000, S6000, S6000—ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information
The remote file specification includes the protocol that is used to copy the file from the remote system.

Related Commands
- `action-manifest install` — configure the action-manifest to use for a specific activity.
- `action-manifest show` — view the list of action-manifest for a specific activity.
- `action-manifest remove` — remove the action-manifest file for an activity.

action-manifest install

Configure the action-manifest to use for a specific activity.

Syntax

```plaintext
action-manifest install {default | <local-file-name>}
```
To revert to the default action-manifest file, use the `action-manifest install default` command.

Parameters

- `default` Enter the keyword `default` to revert back to the default set of actions for an activity.
- `local-file-name` Enter the name of the local action-manifest file. Allowable characters are: a to z, A to Z, 0 to 9, -, _, and space.

Defaults

Default

Command Modes

SUPPORTASSIST ACTIVITY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

To replace the default action-manifest with a customized one, copy the action-manifest file to the system using the `action-manifest put` command and then use the `action-manifest install` command. To revert to the default action-manifest file, use the `action-manifest install default` command.

Related Commands

- `action-manifest get` — copy an action-manifest file for an activity to the system.
- `action-manifest show` — view the list of action-manifest for a specific activity.
- `action-manifest remove` — remove the action-manifest file for an activity.

action-manifest remove

Remove the action-manifest file for an activity.

Syntax

```
action-manifest remove <local-file-name>
```

Parameters

- `local-file-name` Enter the name of the local action-manifest file. Allowable characters are: a to z, A to Z, 0 to 9, -, _, and space.

Command Modes

SUPPORTASSIST ACTIVITY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.
action-manifest show

View the list of action-manifest for a specific activity.

Syntax

action-manifest show {all}

Parameters

all

Enter the keyword all to view the entire list of action-manifests that are available for an activity.

Command Modes

SUPPORTASSIST ACTIVITY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version Description

9.10(0.0) Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.

9.9(0.0) Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.

Related Commands

- action-manifest get — copy an action-manifest file for an activity to the system.
- action-manifest install — configure the action-manifest to use for a specific activity.
- action-manifest remove — remove the action-manifest file for an activity.
enable

Enable a specific SupportAssist activity.

Syntax

 enable

To disable a particular SupportAssist activity, use the no enable command.

Defaults

Enabled

Command Modes

SUPPORTASSIST ACTIVITY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100-ON, S6100-ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048-ON, S4048-ON, S5000, S6000, S6000-ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Related Commands

- activity — move user to the SupportAssist Activity mode for that activity.

SupportAssist Company Commands

Dell Networking OS supports the following SupportAssist Company mode commands.

address

Configure the address information for the company.

Syntax

 address [city company-city] [{province | region | state} name] [country company-country] [{postalcode | zipcode} company-code]

To remove a portion of the company address information, use the no address [city | province | region | state | country | postalcode | zipcode] command.

To remove the complete company contact information, use the no address command.
Parameters

city company-city (OPTIONAL) Enter the keyword `city` then the city or town for the company site. To include a space, enter a space within double quotes.

province | region | state name (OPTIONAL) Enter the keyword `province`, `region` or `state` then the name of province, region or state for the company site. To include a space, enter a space within double quotes.

country company-country (OPTIONAL) Enter the keyword `country` then the country for the company site. To include a space, enter a space within double quotes.

postalcode | zipcode | company-code (OPTIONAL) Enter the keyword `postalcode` or `zipcode` then the postal code or zip code for the company site, as one string with no spaces.

Command Modes

SUPPORTASSIST COMPANY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The optional parameters must be provided in the following order: `city state country postalcode`. If specified in a different order, the command returns an error as follows:

```
Dell(conf-supportassist-cmpy-test)# address city Minneapolis
postcode 55344 country USA state Minnesota
```

% Error: Invalid input at "^" marker.

This command is optional for SupportAssist service configuration.

Example

```
Dell(conf-supportassist-cmpy-test)# address city Minneapolis state Minnesota country USA postalcode 55344
```

street-address

Configure the street address information for the company.

Syntax

```
street-address {address1} [address2]...[address8]
```

To remove the street address, use the no street-address command.
Parameters

- **address1**: Enter the street address for the company.
- **address2..address8**: (OPTIONAL) Enter the street address of the company site. Up to 8 fields are allowed.

Command Modes

SUPPORTASSIST COMPANY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

This command is optional for SupportAssist service configuration.

territory

Configure the territory and set the coverage for the company site.

Syntax

```
territory company-territory
```

To remove the company territory information, use the **no territory** command.

Parameters

- **company-territory**: Enter the territory name for the company. To include a space, enter a space within double quotes.

Command Modes

SUPPORTASSIST COMPANY

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

This command is optional for SupportAssist service configuration.
SupportAssist Person Commands

Dell Networking OS supports the following SupportAssist Person mode commands.

email-address

Configure the email addresses to reach the contact person.

Syntax

```
email-address primary email-address [alternate email-address]
To remove an email address, use either the no email-address primary or no
email-address alternate commands.
```

Parameters

- `primary email-address`
 - Enter the keyword `primary` then the primary email address for the person.
- `alternate email-address`
 - Enter the keyword `alternate` then the alternate email address for the person.

Command Modes

SUPPORTASSIST PERSON

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The email addresses must have the standard form of `<username>@<email system>` to be considered valid.

This command is optional for SupportAssist service configuration.

Related Commands

- `preferred-method` — configure the preferred method for contacting the person.
phone

Configure phone numbers to reach the contact person.

Syntax

 phone primary phone [alternate phone]

To remove a phone number, use either the no phone primary or no phone alternate commands.

Parameters

- **primary phone**: Enter the keyword primary then the primary phone number for the person.
- **alternate phone**: Enter the keyword alternate then the alternate phone number for the person.

Command Modes

SUPPORTASSIST PERSON

Command History

This guide is platform-specific. For command information about other platforms, see the relevant **Dell Networking OS Command Line Reference Guide**.

Version	**Description**
9.10(0.0) | Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.
9.9(0.0) | Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.

Usage Information

The phone numbers may contain country codes, area codes and extensions, if necessary. Allowable characters are 0 to 9, x, (), - and +.

This command is optional for SupportAssist service configuration.

Related Commands

- **preferred-method** — configure the preferred method for contacting the person.

preferred-method

Configure the preferred method for contacting the person.

Syntax

 preferred-method {email | no-contact | phone}

Parameters

- **email**: Enter the keyword email to specify email as preferred method.
- **no-contact**: Enter the keywords no-contact to specify that there is no preferred method.
phone

Enter the keyword `phone` to specify phone as preferred method.

Defaults

no-contact

Command Modes

SUPPORTASSIST PERSON

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version	Description
9.10(0.0) | Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.
9.9(0.0) | Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.

Related Commands

- `email-address` — configure email addresses to reach the contact person.
- `phone` — configure phone numbers to reach the contact person.

time-zone

Configure the time zone for contacting the person.

Syntax

time-zone zone +HH:MM[start-time HH:MM] [end-time HH:MM]

To remove the time zone, use the `no time-zone [zone | start-time | end-time]` command.

Parameters

- **zone +HH:MM**

Enter the keyword `zone` then a time difference from GMT expressed as HH:MM. This number may be preceded by either a + or − sign.

- **start-time HH:MM**

Enter the keywords `start-time` then a starting time expressed as HH:MM. Use the 24-hour clock format.

- **stop-time HH:MM**

Enter the keywords `stop-time` then a stopping time expressed as HH:MM. Use the 24-hour clock format.

Command Modes

SUPPORTASSIST PERSON

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

Version	Description
9.10(0.0) | Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.
SupportAssist Server Commands

Dell Networking OS supports the following SupportAssist Server mode commands.

proxy-ip-address

Configure a proxy for reaching the SupportAssist remote server.

Syntax
```
proxy-ip-address {ipv4-address | ipv6-address} port port-number
[ username userid password [encryption-type] password ]
```

To remove the proxy, use the **no proxy-ip-address** command.

Parameters

- **ipv4-address** Enter the IP address of the proxy server in a dotted decimal format (A.B.C.D).
- **ipv6-address** Enter the IPv6 address of the proxy server in the x:x:x:x::x format.
 - **NOTE:** The :: notation specifies successive hexadecimal fields of zeros.
 - **NOTE:** To use the IPv6 address, the Open Automation package should also support IPv6 communications. For this purpose, SupportAssist requires Dell Networking Open Automation 9.10(0.0) package or later.
- **port port-number** Enter the keyword **port** then the TCP/IP port number. The port number range is from 80 to 100000.
- **username userid** (OPTIONAL) Enter the keyword **username** then the user ID used for the proxy server.
- **password** Enter the keyword **password** then the encryption-type or the user password.
- **encryption-type** (OPTIONAL) Enter an encryption type for the **password** you enter.
 - 0 directs the system to interpret the password as clear text.
• 7 indicates that the password is encrypted using a DES hashing algorithm.

password Enter a string up to 32 characters long.

Defaults
encryption-type for the password is 0.

Command Modes
SUPPORTASSIST SERVER

Command History
This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information
The passwords are stored encrypted in the running configuration.

enable

Enable communication with the SupportAssist server.

Syntax
```
enable
```

To disable communication to a specific SupportAssist server, use the `no enable` command.

Defaults
Enabled

Command Modes
SUPPORTASSIST SERVER

Command History
This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Related Commands
- `server` — configure the name of the remote SupportAssist server.
url

Configure the URL to reach the SupportAssist remote server.

Syntax

`url uniform-resource-locator`

To delete the URL for the server, use the `no url` command.

Parameters

- `uniform-resource-locator`: Enter a text string for the URL using one of the following formats:
 - `http://[username:password@]<hostip>:<portNum>[/filepath]`
 - `https://[username:password@]<hostip>:<portNum>[/filepath]`

 NOTE: The host IP for the server may be specified as an IPv4 address, an IPv6 address or as a DNS hostname. If using the DNS hostname, the DNS resolver will need to be configured and enabled.

Command Modes

- `SUPPORTASSIST SERVER`

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The URL should be formatted to follow the ISO format.

show eula-consent

Display the EULA for the feature.

Syntax

`show eula-consent {support-assist | other feature}`

Parameters

- `support-assist`: Enter the keywords `support-assist` or the text corresponding to other feature.

Command Modes

- `EXEC Privilege`
Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Example

Dell# show eula-consent
SupportAssist EULA has been: Accepted
Additional information about the SupportAssist EULA is as follows:
By installing SupportAssist, you allow Dell to save your contact information
(e.g. name, phone number and/or email address) which would be used to provide
technical support for your Dell products and services. Dell may use the information
for providing recommendations to improve your IT infrastructure.

Dell SupportAssist also collects and stores machine diagnostic information, which
may include but is not limited to configuration information, user supplied contact
information, names of data volumes, IP addresses, access control
lists, diagnostics & performance information, network configuration information, host/
server configuration & performance information and related data (Collected Data) and
transmits this information to Dell. By downloading SupportAssist and agreeing to be bound by these
terms and the Dell end user license agreement, available at: www.dell.com/aeula,
you agree to allow Dell to provide remote monitoring services of your IT environment
and you give Dell the right to collect the Collected Data in accordance with Dells Privacy Policy, available at: www.dell.com/privacypolicycountryspecific, in order to enable the performance of all of the various functions of SupportAssist during your entitlement to receive related repair services from Dell,. You further agree to allow Dell to transmit and store the Collected Data from SupportAssist in accordance
with these terms. You agree that the provision of SupportAssist may involve
international transfers of data from you to Dell and/or to Dells affiliates,
subcontractors or business partners. When making such transfers, Dell shall ensure
appropriate protection is in place to safeguard the Collected Data being transferred
in connection with SupportAssist. If you are downloading SupportAssist on behalf
of a company or other legal entity, you are further certifying to Dell that you have appropriate authority to provide this consent on behalf of that entity. If you do not consent to the collection, transmission and/or use of the Collected Data, you may not download, install or otherwise use SupportAssist.

Dell#

show running-config

Display the current configuration and changes from the default values.

Syntax

```
show running-config support-assist
```

Parameters

- **support-assist**

 Enter the keyword `support-assist` to view the detailed configuration for the feature.

Command Modes

EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show running-config support-assist
!

support-assist
!
activity full-transfer
  enable
activity-manifest install testing
!
contact-company name My Company
  street-address 123 Main Street
  address city MyCity country MyCountry
!
contact-person first john last doe
  email-address primary jdoe@mycompany.com
  preferred-method email
!
server default
  enable
  url https://192.168.1.1/index.htm

Dell#
```
show support-assist status

Display information on SupportAssist feature status including any activities, status of communication, last time communication sent, and so on.

Syntax

```
show support-assist status
```

Command Modes

EXEC Privilege

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the C9010, Z9100–ON, S6100–ON, and S3100 series.</td>
</tr>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the S4810, S4820T, S3048–ON, S4048–ON, S5000, S6000, S6000–ON, Z9500, MXL.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show support-assist status
SupportAssist Service: Installed
EULA: Accepted
Server: default
  Enabled: Yes
  URL: https://stor.g3.ph.dell.com
Service status: Enabled
Server: chennai
  Enabled: Yes
  URL: http://10.16.148.19/

Activity      State   Last Start             Last Success
------------  --------  -------------------         ------------

Dell#
```

```
Dell# show support-assist status
SupportAssist Service: Installed
EULA: Accepted
Server: default
  Enabled: Yes
  URL: https://stor.g3.ph.dell.com
Service status: Enabled
Server: chennai
  Enabled: Yes
  URL: http://10.16.148.19/

Activity      State   Last Start             Last Success
------------  --------  -------------------         ------------

Dell#
```
The commands in this chapter configure time values on the system, either using the Dell Networking Operating System (OS), or the hardware, or using the network time protocol (NTP). With NTP, the switch can act only as a client to an NTP clock host.

For more information, refer to the “Network Time Protocol” section of the Management chapter in the Dell Networking OS Configuration Guide.

Topics:
- clock set
- clock summer-time date
- clock summer-time recurring
- clock timezone
- debug ntp
- ntp authenticate
- ntp authentication-key
- ntp broadcast client
- ntp disable
- ntp multicast client
- ntp master <stratum>
- ntp offset-threshold
- ntp server
- ntp source
- ntp trusted-key
- show clock
- show ntp associations
- show ntp vrf associations
- show ntp status

clock set

Set the software clock in the switch.

Syntax
```
clock set time month day year
```

Parameters
- **time**

 Enter the time in hours:minutes:seconds. For the hour variable, use the 24-hour format; example, 17:15:00 is 5:15 pm.
Enter the name of one of the 12 months, in English. You can enter the number of a day and change the order of the display to time day month year.

Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time month day year.

Enter a four-digit number as the year. The range is from 1993 to 2035.

Defaults
Not configured.

Command Modes
EXEC Privilege

Command History
Version Description
9.9(0.0) Introduced on the FN MXL.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You can change the order of the month and day parameters to enter the time and date as time day month year. You cannot delete the software clock.

The software clock runs only when the software is up. The clock restarts, based on the hardware clock, when the switch reboots.

Dell Networking OS recommends using an outside time source, such as NTP, to ensure accurate time on the switch.

Example
Dell#clock set 12:11:00 21 may 2012
Dell#

clock summer-time date

Set a date (and time zone) on which to convert the switch to daylight saving time on a one-time basis.

Syntax
clock summer-time time-zone date start-month start-day start-year start-time end-month end-day end-year end-time [offset]

To delete a daylight saving time zone configuration, use the no clock summer-time command.

Parameters
time-zone Enter the three-letter name for the time zone. This name is displayed in the show clock output.
start-month Enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year.

start-day Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year.

start-year Enter a four-digit number as the year. The range is from 1993 to 2035.

start-time Enter the time in hours:minutes. For the hour variable, use the 24-hour format; example, 17:15 is 5:15 pm.

end-day Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year.

day-month Enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year.

day-time Enter the time in hours:minutes. For the hour variable, use the 24-hour format; example, 17:15 is 5:15 pm.

day-year Enter a four-digit number as the year. The range is from 1993 to 2035.

offset (OPTIONAL) Enter the number of minutes to add during the summer-time period. The range is from 1 to 1440. The default is 60 minutes.

Defaults Not configured.

Command Modes CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN MXL.</td>
</tr>
</tbody>
</table>
| 8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands

clock summer-time recurring — sets a date (and time zone) on which to convert the switch to daylight saving time each year.

show clock — displays the current clock settings.

System Time and Date | 1477
clock summer-time recurring

Set the software clock to convert to daylight saving time on a specific day each year.

Syntax

```
clock summer-time time-zone recurring [start-week start-day start-month start-time end-week end-day end-month end-time [offset]]
```

To delete a daylight saving time zone configuration, use the `no clock summer-time` command.

Parameters

- **time-zone**: Enter the three-letter name for the time zone. This name is displayed in the show clock output. You can enter up to eight characters.

- **start-week** (OPTIONAL): Enter one of the following as the week that daylight saving begins and then enter values for start-day through end-time:
 - `week-number`: Enter a number from 1 to 4 as the number of the week in the month to start daylight saving time.
 - `first`: Enter this keyword to start daylight saving time in the first week of the month.
 - `last`: Enter this keyword to start daylight saving time in the last week of the month.

- **start-day**: Enter the name of the day that you want daylight saving time to begin. Use English three letter abbreviations; for example, Sun, Sat, Mon, and so on. The range is from Sun to Sat.

- **start-month**: Enter the name of one of the 12 months in English.

- **start-time**: Enter the time in hours:minutes. For the hour variable, use the 24-hour format; example, 17:15 is 5:15 pm.

- **end-week**: Enter the one of the following as the week that daylight saving ends:
 - `week-number`: enter a number from 1 to 4 as the number of the week to end daylight saving time.
 - `first`: enter the keyword first to end daylight saving time in the first week of the month.
 - `last`: enter the keyword last to end daylight saving time in the last week of the month.

- **end-day**: Enter the weekday name that you want daylight saving time to end. Enter the weekdays using the three letter abbreviations; for example Sun, Sat, Mon, and so on. The range is from Sun to Sat.

- **end-month**: Enter the name of one of the 12 months in English.
end-time
Enter the time in hours:minutes:seconds. For the hour variable, use the 24-hour format; example, 17:15:00 is 5:15 pm.

offset
(OPTIONAL) Enter the number of minutes to add during the summer-time period. The range is from 1 to 1440. The default is 60 minutes.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN MXL.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands
clock summer-time date — sets a date (and time zone) on which to convert the switch to daylight saving time on a one-time basis.

show clock — displays the current clock settings.

clock timezone

Configure a timezone for the switch.

Syntax
clock timezone timezone-name offset

To delete a timezone configuration, use the no clock timezone command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timezone-name</td>
<td>Enter the name of the timezone. You cannot use spaces.</td>
</tr>
<tr>
<td>offset</td>
<td>Enter one of the following:</td>
</tr>
<tr>
<td></td>
<td>a number from 1 to 23 as the number of hours in addition to universal time coordinated (UTC) for the timezone.</td>
</tr>
<tr>
<td></td>
<td>a minus sign (-) then a number from 1 to 23 as the number of hours.</td>
</tr>
</tbody>
</table>

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9(0.0)</td>
<td>Introduced on the FN MXL.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

Coordinated universal time (UTC) is the time standard based on the International Atomic Time standard, commonly known as Greenwich Mean time. When determining system time, include the differentiator between UTC and your local timezone. For example, San Jose, CA is the Pacific Timezone with a UTC offset of -8.

debug ntp

Display network time protocol (NTP) transactions and protocol messages for troubleshooting.

Syntax
dbg ntp {adjust | all | authentication | events | loopfilter | packets | select | sync}

To disable debugging of NTP transactions, use the no debug ntp {adjust | all | authentication | events | loopfilter | packets | select | sync} command.

Parameters

- adjust: Enter the keyword adjust to display information on NTP clock adjustments.
- all: Enter the keyword all to display information on all NTP transactions.
- authentication: Enter the keyword authentication to display information on NTP authentication transactions.
- events: Enter the keyword events to display information on NTP events.
- loopfilter: Enter the keyword loopfilter to display information on NTP local clock frequency.
- packets: Enter the keyword packets to display information on NTP packets.
- select: Enter the keyword select to display information on the NTP clock selection.
- sync: Enter the keyword sync to display information on the NTP clock synchronization.

Command Modes
EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
ntp authenticate

Enable authentication of NTP traffic between the switch and the NTP time serving hosts.

Syntax

ntp authenticate
To disable NTP authentication, use the no ntp authentication command.

Defaults

Not enabled.

Command Modes

CONFIGURATION

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
You also must configure an authentication key for NTP traffic using the ntp authentication-key command.

Related Commands

ntp authentication-key — configures the authentication key for NTP traffic.
ntp trusted-key — configures a key to authenticate.

ntp authentication-key

Specify a key for authenticating the NTP server.

Syntax

ntp authentication-key number md5 [0 | 7] key

Parameters

number Specify a number for the authentication key. The range is from 1 to 4294967295.
This number must be the same as the number parameter configured in the ntp trusted-key command.

md5 Specify that the authentication key is encrypted using MD5 encryption algorithm.

0 Specify that authentication key is entered in an unencrypted format (default).

7 Specify that the authentication key is entered in DES encrypted format.

key Enter the authentication key in the previously specified format.
NTP authentication is not configured by default. If you do not specify the option [0 | 7], 0 is selected by default.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
After configuring the `ntp authentication-key` command, configure the `ntp trusted-key` command to complete NTP authentication.

The Dell Networking OS versions 8.2.1.0 and later use an encryption algorithm to store the authentication key that is different from previous versions; beginning in version 8.2.1.0, the system uses DES encryption to store the key in the startup-config when you enter the `ntp authentication-key` command. Therefore, if your system boots with a startup-configuration from an versions prior to 8.2.1.0 in which you have configured `ntp authentication-key`, the system cannot correctly decrypt the key, and cannot authenticate NTP packets. In this case you must re-enter this command and save the running-config to the startup-config.

Related Commands
- `ntp authenticate` — enables NTP authentication.
- `ntp trusted-key` — configures a trusted key.

ntp broadcast client

Set up the interface to receive NTP broadcasts from an NTP server.

Syntax
```
ntp broadcast client
```

To disable broadcast, use the `no ntp broadcast client` command.

<table>
<thead>
<tr>
<th>Defaults</th>
<th>Disabled.</th>
</tr>
</thead>
</table>

Command Modes
INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
ntp disable

Prevent an interface from receiving NTP packets.

Syntax

```
ntp disable
```

To re-enable NTP on an interface, use the `no ntp disable` command.

Defaults

Disabled (that is, if you configure an NTP host, all interfaces receive NTP packets)

Command Modes

INTERFACE

Command History

Version 8.3.16.1

Introduced on the MXL 10/40GbE Switch IO Module.

ntp multicast client

To receive NTP information from the network via multicast, configure the switch.

Syntax

```
ntp multicast client [multicast-address]
```

To disable multicast reception, use the `no ntp multicast client [multicast-address]` command.

Parameters

- `multicast-address` (OPTIONAL) Enter a multicast address. Enter either an IPv4 address in dotted decimal format. If you do not enter a multicast address, the address 224.0.1.1 is configured if the interface address is IPv4.

Defaults

Not configured.

Command Modes

INTERFACE

Command History

Version 8.3.16.1

Introduced on the MXL 10/40GbE Switch IO Module.
ntp master <stratum>

Configure the switch as NTP Server.

Syntax

```
ntp master <stratum>
```

Parameters

- `ntp` Enter the keyword `stratum` number to identify the NTP Server's hierarchy.
- `master<stratum>`

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9.6(0.0) | Introduced on the MxL.

ntp offset-threshold

Configure the threshold time interval before which the system generates an NTP audit log message if the time difference from the NTP server is greater than a threshold value (offset-threshold).

Syntax

```
ntp offset-threshold threshold-value
```

To disable the threshold value, use the `no ntp offset-threshold` command.

Parameters

- `offset-threshold`
- `threshold-value`

(Optional) Enter the keyword `offset-threshold` and then the threshold value. The range is from 0 to 999.

Defaults

Not enabled.

Command Modes

CONFIGURATION

Command History

This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.
ntp server

Configure an NTP time-serving host.

Syntax
```
ntp server[vrf vrf-name] {hostname | ipv4-address | ipv6-address} [key keyid] [prefer] [version number]
```

Parameters
- `vrf vrf-name` (Optional) Enter the keyword `vrf` and then the name of the VRF to configure a NTP time-serving host corresponding to that VRF.
- `ipv4-address | ipv6-address`
- `hostname`
- `key keyid` (OPTIONAL) Enter the keyword `key` and a number as the NTP peer key. The range is from 1 to 4294967295.
- `prefer` (OPTIONAL) Enter the keyword `prefer` to indicate that this peer has priority over other servers.
- `version number` (OPTIONAL) Enter the keyword `version` and a number to correspond to the NTP version used on the server. The range is from 1 to 4.

Defaults
Not configured.

Command Modes
CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6(0.0)</td>
<td>Added support for VRF.</td>
</tr>
<tr>
<td>8.3.11.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You can configure multiple time-serving hosts (up to 250). From these time-serving hosts, the system chooses one NTP host with which to synchronize. To determine which server was selected, use the `show ntp associations` command.
Because many polls to NTP hosts can impact network performance, Dell Networking OS recommends limiting the number of hosts configured.

Related Commands

show ntp associations — displays the NTP servers configured and their status.

ntp source

Specify an interface's IP address to be included in the NTP packets.

Syntax

```plaintext
ntp source interface
```

To delete the configuration, use the `no ntp source` command.

Parameters

- **interface**

 Enter the following keywords and slot/port or number information:

 - For Loopback interfaces, enter the keyword `loopback` then a number from zero (0) to 16383.
 - For a Port Channel interface, enter the keyword `lag` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a 40-Gigabit Ethernet interface, enter the keyword `fortyGigE` then the slot/port information.
 - For VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

ntp trusted-key

Set a key to authenticate the system to which NTP synchronizes.

Syntax

```plaintext
ntp trusted-key number
```

To delete the key, use the `no ntp trusted-key number` command.
Parameters

number Enter a number as the trusted key ID. The range is from 1 to 4294967295.

Defaults Not configured.

Command Modes CONFIGURATION

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information
The number parameter in the ntp trusted-key command must be the same number as the number parameter in the ntp authentication-key command. If you change the ntp authentication-key command, you must also change the ntp trusted-key command.

Related Commands
ntp authentication-key — sets an authentication key for NTP.
ntp authenticate — enables the NTP authentication parameters you set.

show clock

Display the current clock settings.

Syntax

show clock [detail]

Parameters
detail (OPTIONAL) Enter the keyword detail to view the source information of the clock.

Command Modes

• EXEC
• EXEC Privilege

Command History

Version Description
9.9(0.0) Introduced on the FN MXL.
8.3.16.1 Introduced the MXL 10/40GbE Switch IO Module.

Example

Dell#show clock
12:30:04.402 pacific Tue May 22 2012
Dell#

Example (Detail)

Dell#show clock detail
12:30:26.892 pacific Tue May 22 2012
Time source is RTC hardware
Summer time starts 00:00:00 UTC Wed Mar 14 2012

System Time and Date | 1487
show ntp associations

Display the NTP master and peers.

Syntax

show ntp associations

Command Modes

- EXEC
- EXEC Privilege

Command History

Version 8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the show ntp associations command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote</td>
<td>Displays the remote IP address of the NTP peer.</td>
</tr>
<tr>
<td>ref clock</td>
<td>Displays the IP address of the remote peer’s reference clock.</td>
</tr>
<tr>
<td>st</td>
<td>Displays the peer’s stratum, that is, the number of hops away from the external time source. A 16 in this column means the NTP peer cannot reach the time source.</td>
</tr>
<tr>
<td>when</td>
<td>Displays the last time the switch received an NTP packet.</td>
</tr>
<tr>
<td>poll</td>
<td>Displays the polling interval (in seconds).</td>
</tr>
<tr>
<td>reach</td>
<td>Displays the reachability to the peer (in octal bitstream).</td>
</tr>
<tr>
<td>delay</td>
<td>Displays the time interval or delay for a packet to complete a round-trip to the NTP time source (in milliseconds).</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
offset | Displays the relative time of the NTP peer's clock to the switch clock (in milliseconds).
disp | Displays the dispersion.

Example
```
Dell# show ntp associations
remote        ref clock  st when poll reach delay  offset  disp
=============================================================
10.10.120.5  0.0.0.0       16   -   256    0 0.00 0.000 16000.0
*172.16.1.33  127.127.1.0   11   6   16     377   -0.08 -1499.9
104.16
172.31.1.33  0.0.0.0       16   -   256    0 0.00 0.000 16000.0
192.200.0.2  0.0.0.0       16   -   256    0 0.00 0.000 16000.0
* master (synced), # master (unsynced), + selected, - candidate
Dell#
```

Related Commands
- `show ntp status` — displays the current NTP status.

show ntp vrf associations
Displays the NTP servers configured for the VRF instance `<vrf-name>`.

Syntax
```
show ntp [vrf] <vrf-name> associations.
```

Command Modes
- EXEC
- EXEC Privilege

Command History
This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

The following is a list of the Dell Networking OS version history for this command.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6(0.0)</td>
<td>Added support for VRF.</td>
</tr>
<tr>
<td>9.4(0.0)</td>
<td>Added support for VRF.</td>
</tr>
</tbody>
</table>

show ntp status
Display the current NTP status.

Syntax
```
show ntp status
```
Command Modes

- EXEC
- EXEC Privilege

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The following describes the `show ntp status` command shown in the following example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Clock is..."</td>
<td>States whether the switch clock is synchronized, which NTP stratum the system is assigned and the IP address of the NTP peer.</td>
</tr>
<tr>
<td>"frequency is..."</td>
<td>Displays the frequency (in ppm), stability (in ppm) and precision (in Hertz) of the clock in this system.</td>
</tr>
<tr>
<td>"reference time is..."</td>
<td>Displays the reference time stamp.</td>
</tr>
<tr>
<td>"clock offset is..."</td>
<td>Displays the system offset to the synchronized peer and the time delay on the path to the NTP root clock.</td>
</tr>
<tr>
<td>"root dispersion is..."</td>
<td>Displays the root and path dispersion.</td>
</tr>
<tr>
<td>"peer mode is..."</td>
<td>State what NTP mode the switch is. This should be Client mode.</td>
</tr>
</tbody>
</table>

Example

Dell#show ntp status
Clock is unsynchronized, stratum 16, no reference clock
frequency is 0.000 ppm, stability is 0.000 ppm, precision is 4294967279
reference time is 00000000.00000000 (6:28:16.000 UTC Thu Feb 7 2036)
clock offset is 0.000000 msec, root delay is 0.00000 sec
root dispersion is 0.00000 sec, peer dispersion is 0.00000 msec
peer mode is unspec
Dell#

Related Commands

- `show ntp associations` — displays information on the NTP master and peer configurations.
Tunneling

Tunneling is supported on the Dell Networking OS.

tunnel-mode

Enable a tunnel interface.

Syntax

```
tunnel mode {ipip | ipv6 | ipv6ip}[decapsulate-any]
```

To disable an active tunnel interface, use the **no tunnel mode** command.

Parameters

- **ipip**
 - Enable tunnel in RFC 2003 mode and encapsulate IPv4 and/or IPv6 datagrams inside an IPv4 tunnel.

- **ipv6**
 - Enable tunnel in RFC 2473 mode and encapsulate IPv4 and/or IPv6 datagrams inside an IPv6 tunnel.

- **ipv6ip**
 - Enable tunnel in RFC 4213 mode and encapsulate IPv6 datagrams inside an IPv4 tunnel.

- **decapsulate-any**
 - (Optional) Enable tunnel in multipoint receive-only mode.

Defaults

None

Command Modes

INTERFACE TUNNEL

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Added the decapsulate-any command.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To enable a tunnel interface, use this command. You must define a tunnel mode for the tunnel to function. If you previously defined the tunnel destination or source address, the tunnel mode must be compatible.

Including the decapsulate-any option causes the command to fail if any of the following tunnel transmit options are configured: tunnel destination, tunnel dscp, tunnel flow-label, tunnel hop-limit, or tunnel keepalive. Conversely, if you configure any tunnel allow-remote entries, the **tunnel-mode** command fails unless the decapsulate-any option is included.

Configuration of IPv6 commands over decapsulate-any tunnel causes an error.
tunnel source

Set a source address for the tunnel.

Syntax

```
tunnel source {ip-address | ipv6-address | interface-type-number}
```

To delete the current tunnel source address, use the `no tunnel source` command.

Parameters

- `ip-address`: Enter the source IPv4 address in A.B.C.D format.
- `ipv6-address`: Enter the source IPv6 address in X:X:X::X format.
- `interface-type-number`:
 - For a 100/1000 Ethernet interface, enter the keyword `GigabitEthernet` then the slot/port information.
 - For a 1-Gigabit Ethernet interface, enter the keyword `GigabitEthernet` then the slot/port information.
 - For a Port Channel interface, enter the keywords `port-channel` then a number from 1 to 128.
 - For a 10–Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN interface, enter the keyword `vlan` then a number from 1 to 4094.

Defaults none

Command Modes INTERFACE TUNNEL (conf-if-tu)

Command History

```
Version Description
9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

If you configure a tunnel interface or destination address, the tunnel source must be compatible.

If you configure a tunnel source address as an interface, the tunnel does not function until the compatible address is present on the particular interface.

tunnel keepalive

Configure the tunnel keepalive target, interval and attempts.

Syntax

```
tunnel keepalive {ip-address | ipv6-address}[interval {seconds}] [attempts {count | unlimited}]
```
Use the no tunnel keepalive command to disable tunnel keepalive probes.

Parameters

- **ip-address ipv6 address**: Enter the IPv4 or IPv6 address of the peer to which the keepalive probes will be sent.

- **interval seconds**: Enter the keyword interval followed by the interval time, in seconds, after which the restart process to keepalive probe packets.

The range is from 5-255. Default range is 5.

- **count**: (OPTIONAL) Enter the keyword count to count packets processed by the filter.

The range is from 3-10, Default range is 3.

- **unlimited**: Enter the keyword unlimited to specify the unlimited number of keepalive probe packets.

Defaults
Tunnel keepalive is disabled.

Command Modes
INTERFACE TUNNEL

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information
When configured, the system will send ICMP echo probe packets at the configured interval and expect a response within the configured number of attempts, else the tunnel interface will be declared operational down.

tunnel allow-remote

Configure an IPv4 or IPv6 address or prefix whose tunneled packets will be accepted for decapsulation. If no allow-remote entries are configured, tunneled packets from any remote peer address will be accepted.

Syntax

```
tunnel allow-remote {ip-address | ipv6-address} [mask]
```

Use the no tunnel allow-remote command to delete a configured allow-remote entry. Any specified address/mask values must match an existing entry for the delete to succeed. If the address and mask are not specified, this command deletes all allow-remote entries.
Parameters

- `ip-address`: Enter the source IPv4 address in A.B.C.D format.
- `ipv6-address`: Enter the source IPv6 address in X:X:X::X format.
- `mask`: (OPTIONAL) Enter a network mask in /prefix format (/x) or A.B.C.D to match a range of remote addresses. The default mask is /32 for IPv4 addresses and /128 for IPv6 addresses, which match only the specified address.

Defaults

If no tunnel allow remote is configured, all traffic which is destined to tunnel source address will be decapsulated.

Command Modes

`INTERFACE TUNNEL`

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

Up to eight allow-remote entries can be configured on any particular multipoint receive-only tunnel.

This command will fail if the address family entered does not match the outer header address family of the tunnel mode, tunnel source, or any other tunnel allow-remote.

If any allow-remote are configured, the tunnel source or tunnel mode commands will fail if the outer header address family does not match that of the configured allow-remote.

tunnel dscp

Configure the method to set the DSCP in the outer tunnel header.

Syntax

```
tunnel dscp {mapped | <value>}
```

To use the default tunnel mapping behavior, use the `no tunnel dscp value` command.

Parameters

- `mapped`: Enter the keyword `mapped` to map the original packet DSCP (IPv4)/Traffic Class (IPv6) to the tunnel header DSCP (IPv4)/Traffic Class (IPv6) depending on the mode of tunnel.
- `value`: Enter a value to set the DSCP value in the tunnel header. The range is from 0 to 63. The default value of 0 denotes mapping of original packet DSCP (IPv4)/Traffic Class (IPv6) to the tunnel header DSCP (IPv4)/Traffic Class (IPv6) depending on the mode of tunnel.
tunnel destination

Set a destination endpoint for the tunnel.

Syntax

tunnel destination {ip-address | ipv6-address}

To delete a tunnel destination address, use the no tunnel destination {ip-address | ipv6-address} command.

Parameters

- **ip-address**
 - Enter the destination IPv4 address for the tunnel.
- **ipv6-address**
 - Enter the destination IPv6 address for the tunnel.

Defaults

- none

Command Modes

- INTERFACE TUNNEL (conf-if-tu)

Command History

- **Version**
 - **9.3(0.0)**

 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

- The tunnel interface is inoperable without a valid tunnel destination address for the configured Tunnel mode.

- To establish a logical tunnel to the particular destination address, use the destination address of the outer tunnel header. If you configure a tunnel interface or source address, the tunnel destination must be compatible.
tunnel flow-label

Configure the method to set the IPv6 flow label value in the outer tunnel header.

Syntax

tunnel flow-label value

To return to the default value of 0, use the `no tunnel flow-label value` command.

Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Enter a value to set the IPv6 flow label value in the tunnel header. The range is from 0 to 1048575. The default value is 0.</td>
</tr>
</tbody>
</table>

Defaults

0 (Mapped original packet flow-label value to tunnel header flow-label value)

Command Modes

INTERFACE TUNNEL (conf-if-tu)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

This command is only valid for tunnel interfaces with an IPv6 outer header.

tunnel hop-limit

Configure the method to set the IPv4 time-to-live or the IPv6 hop limit value in the outer tunnel header.

Syntax

tunnel hop-limit value

To restore the default tunnel hop-limit, use the `no tunnel hop-limit command` command.

Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Enter the hop limit (ipv6) or time-to-live (ipv4) value to include in the tunnel header. The range is from 0 to 255. The default is 64.</td>
</tr>
</tbody>
</table>

Defaults

64 (Time-to-live for IPv4 outer tunnel header or hop limit for IPv6 outer tunnel header)

Command Modes

INTERFACE TUNNEL (conf-if-tu)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
A value of 0 copies the inner packet hop limit (ipv6) or time-to-live (ipv4) in the encapsulated packet to the tunnel header hop limit (ipv6) or time-to-live (ipv4) value.

ip unnumbered

Configure a tunnel interface to operate without a unique explicit IPv4 address and select the interface from which the tunnel will borrow its address.

Syntax

```
ip unnumbered (interface-type interface-number)
```

Use the `no ip unnumbered` command to set the tunnel back to default logical address. If the tunnel was previously operational, this will make the tunnel interface operationally down, unless the tunnel also has an IPv6 address configured.

Parameters

- `interface-type`
- `interface-number`

 Enter the interface type, followed by a slot number.

Defaults

None

Command Modes

INTERFACE TUNNEL

Command History

- **Version**
 - **9.4(0.0)**
 - Introduced on the MXL.

Usage Information

The `ip unnumbered` command will fail in two condition:

- If the logical ip address is configured.
- If the tunnel mode is ipv6ip (where ip address over tunnel interface is not possible).

To ping the unnumbered tunnels the logical address route information should be present in both the ends.

NOTE: The `ip unnumbered` command can specify an interface name that does not yet exist, or does not yet have a configured IPv6 address. The tunnel interface is not changed to the operationally up state until logically ip address is identified from the one of the address family.
ipv6 unnumbered

Configure a tunnel interface to operate without a unique explicit IPv6 address and select the interface from which the tunnel will borrow its address.

Syntax

ipv6 unnumbered {interface-type interface-number}

Use the no ipv6 unnumbered command to set the tunnel back to default logical address. If the tunnel was previously operational, this will make the tunnel interface operationally down, unless the tunnel also has an IPv4 address configured.

Parameters

- **interface-type**
 - Enter the interface type, followed by the type, slot and port information.

- **interface-number**
 - Enter the interface number.

Defaults

None.

Command Modes

INTERFACE TUNNEL

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Introduced on the MXL.</td>
</tr>
</tbody>
</table>

Usage Information

The ip unnumbered command will fail in two condition:

- If the logical ip address is configured.
- If the tunnel mode is ipv6ip (where ip address over tunnel interface is not possible).

To ping the unnumbered tunnels the logical address route information should be present in both the ends.

NOTE: The ipv6 unnumbered command can specify an interface name that does not yet exist, or does not yet have a configured IPv6 address. But the tunnel interface will not go operationally up until it has determined a logical address to use of at least one address family.
All commands in this chapter are in u-Boot mode. These commands are supported on the Dell Networking Operating System (OS) MXL 10/40GbE Switch Module platform.

To access this mode, press any key when the following line appears on the console during a system boot.

Hit any key to stop autoboot:

Enter u-Boot immediately, as the BOOT_USER# prompt.

NOTE: This chapter describes only a few commands available in u-Boot mode.

NOTE: You cannot use the Tab key to complete commands in this mode.

Topics:

• boot change
• boot selection
• boot show net config retries
• boot write net config retries
• boot zero
• default gateway
• enable
• help
• ignore enable password
• enable sha256-password
• ignore startup config
• interface management ethernet ip address
• no default-gateway
• no interface management ethernet ip address
• reload
• show boot blc
• show boot selection
• show bootflash
• show bootvar
• show default-gateway
• show interface management Ethernet
• show interface management port config
• syntax help
boot change

Change the operating system boot parameters.

Syntax

```
boot change [primary | secondary | default]
```

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

boot selection

Change the ROM bootstrap bootflash partition.

Syntax

```
boot selection [a | b]
```

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

boot show net config retries

Show the number of retries for network boot configuration failure.

Syntax

```
boot show net config retries
```

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER# boot show net config retries
Number of Network Boot Config Retries is : 0
BOOT_USER #
```
boot write net config retries

Set the number of retries for network boot configuration failure.

Syntax

```
boot write net config retries <int>
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER # boot write net config retries 2
Updated number of Network Boot Config retries to 2.
BOOT_USER #
```

boot zero

Clears the primary, secondary, or default boot parameters.

Syntax

```
boot zero [primary | secondary | default]
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

default gateway

Set the default gateway IP address.

Syntax

```
default-gateway <ip-address>
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
enable

Change the access privilege level.

Syntax

```
enable [user | admin]
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

help

Display the help menu.

Syntax

```
help
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER # help
***** Dell Force10 Boot Interface Help Information *****
Current access level: USER LEVEL
Use "syntax help" for more information on syntax.
Available command list (22 commands total):
  boot change [primary|secondary|default]
  change operating system boot parameters
  boot selection [a|b]
  change the rom bootstrap bootflash partition
  boot show net config retries
  show number of retries for network boot config failure
  boot write net config retries <int>
  write number of retries for network boot config failure
  boot zero [primary|secondary|default]
  zero operating system boot parameters
  default-gateway <ip-address>
  default-gateway - set the default gateway ip address
  enable [user|admin]
  change access privilege level
  help
  display help menu
-(36%)-Use <CR> to continue, q to stop:
BOOT_USER #
```
ignore enable password

Ignore the enabled password.

Syntax
ignore enable-password

Command Modes
uBoot

Command History

Version Description
8.3.16.1 Introduced on the M XL 10/40GbE Switch IO Module.

enable sha256-password

Configure SHA-256 based password for the enable command.

Syntax
enable sha256-password [level level] [encryption-type] password
To delete a password, use the no enable sha256-password [encryption-type] password [level level] command.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sha256-password</td>
<td>Enter the keyword sha256-password then the encryption-type or the password.</td>
</tr>
<tr>
<td>level level</td>
<td>(OPTIONAL) Enter the keyword level then a number as the level of access. The range is from 1 to 15.</td>
</tr>
<tr>
<td>encryption-type</td>
<td>(OPTIONAL) Enter the number 8 or 0 as the encryption type.</td>
</tr>
<tr>
<td>password</td>
<td>Enter a text string, up to 32 characters long, as the clear text password.</td>
</tr>
</tbody>
</table>

Defaults
No password is configured. level = 15.

Command Modes
CONFIGURATION

Command History
This guide is platform-specific. For command information about other platforms, see the relevant Dell Networking OS Command Line Reference Guide.
ignore startup config

Ignore the system startup configuration.

Syntax

ignore startup-config

Command Modes

uBoot

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

interface management ethernet ip address

Set the management port IP address and mask.

Syntax

interface management ethernet ip address <ip/mask>

Command Modes

uBoot

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
no default-gateway

Clear the default gateway IP address.

Syntax
no default-gateway

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

no interface management ethernet ip address

Clear the management port IP address and mask.

Syntax
no interface management ethernet ip address

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

reload

Reload the MXL switch.

Syntax
reload

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show boot blc

Show the boot loop counter value.

Syntax
show boot blc

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
BOOT_USER # show boot blc
Total 1 possible command found.
Possible command list:
 show boot blc
 show the boot loop counter value
BOOT_USER # show boot blc
Boot Loop Counter : 10

BOOT_USER #

show boot selection

Display the ROM bootstrap bootflash partition.

Syntax
show boot selection

Command Modes
uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
BOOT_USER # show boot selection
ROM BOOTSTRAP SELECTOR PARMETERS:=============================
Next ROM bootstrap set to occur from Bootflash partition A.
Last ROM bootstrap occurred from Bootflash partition B.

BOOT_USER #
show bootflash

Show summary of boot flash information.

Syntax

```
show bootflash
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER # show bootflash

GENERAL BOOTFLASH INFO
======================
Bootflash Partition A:
Dell Force10 Networks System Boot
Official IOM_LP_IMG_BOOT_LOADER, BSP Release 4.0.1.0bt1
Created Tue May 1 10:56:16 2012 by build on login-sjc-01

Bootflash Partition B:
Dell Force10 Networks System Boot
Official IOM_LP_IMG_BOOT_LOADER, BSP Release 4.0.1.0bt1
Created Tue May 1 10:56:16 2012 by build on login-sjc-01

Boot Selector Partition:
Dell Force10 Networks System Boot
Official IOM_XLOAD_LP_IMG_BOOT_SELECTOR, BSP Release 4.0.0.0bt1
Created Tue May 1 10:56:34 2012 by build on login-sjc-01

BOOT_USER #
```

show bootvar

Show summary of operating system boot parameters.

Syntax

```
show bootvar
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER # show bootvar

PRIMARY OPERATING SYSTEM BOOT PARAMETERS:
==========================================
```

u-Boot | 1507
boot device : tftp
file name : premnath
Management Etherenet IP address : 10.16.130.134/16
Server IP address : 10.16.127.35
Default Gateway IP address : 15.0.0.1
Management Etherenet MAC address : 00:01:E8:43:DE:DF

SECONDARY OPERATING SYSTEM BOOT PARAMETERS:
==
No Operating System boot parameters specified!

DEFAULT OPERATING SYSTEM BOOT PARAMETERS:
==
boot device : tftp
file name : FTOS-XL-8-3-16-99.bin
Management Etherenet IP address : 10.16.130.134/16
Server IP address : 10.16.127.53
Default Gateway IP address : 15.0.0.1
Management Etherenet MAC address : 00:01:E8:43:DE:DF

BOOT_USER #

show default-gateway

Display the default gateway IP address.

Syntax

```
show default-gateway
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
BOOT_USER # show default-gateway
Gateway IP address: 15.0.0.1
BOOT_USER #
```

show interface management Ethernet

Show the management port IP address and mask.

Syntax

```
show interface management ethernet
```

Command Modes

uBoot

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

BOOT_USER # show interface management ethernet
Management ethernet IP address: 10.16.130.134/16
BOOT_USER #

show interface management port config

Show the management port boot characteristics.

Syntax

show interface management port config

Command Modes uBoot

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

BOOT_USER # show interface management port config
Management ethernet Port Configuration: no Auto Negotiate
Management ethernet Port Configuration: 100M
Management ethernet Port Configuration: full duplex
BOOT_USER #

syntax help

Show the syntax information.

Syntax help

Command Modes uBoot

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example

BOOT_USER # help
***** Dell Force10 Boot Interface Help Information *****
Current access level: USER LEVEL
Use "syntax help" for more information on syntax.
Available command list (22 commands total):
 boot change [primary|secondary|default]
 change operating system boot parameters
 boot selection [a|b]
 change the rom bootstrap bootflash partition
 boot show net config retries
 show number of retries for network boot config failure
 boot write net config retries <int>
 write number of retries for network boot config failure
 boot zero [primary|secondary|default]
 zero operating system boot parameters
 default-gateway <ip-address>
 default-gateway - set the default gateway ip address
 enable [user|admin]
 change access privilege level
 help
 display help menu
-(36%)-Use <CR> to continue, q to stop:
BOOT_USER #
Uplink Failure Detection (UFD)

Uplink failure detection (UFD) provides detection of the loss of upstream connectivity and, if you use this with network interface controller (NIC) teaming, automatic recovery from a failed link.

Topics:
- clear ufd-disable
- debug uplink-state-group
- description
- downstream
- downstream auto-recover
- downstream disable links
- enable
- show running-config uplink-state-group
- show uplink-state-group
- uplink-state-group
- upstream

clear ufd-disable

Re-enable one or more downstream interfaces on the switch/router that are in a UFD-Disabled Error state so that an interface can send and receive traffic.

Syntax

```
clear ufd-disable {interface interface | uplink-state-group group-id}
```

Parameters

- `interface interface` Specify one or more downstream interfaces. For `interface`, enter one of the following interface types:
 - Fast Ethernet: `fastethernet {slot/port | slot/port-range}`
 - 10 Gigabit Ethernet: `tengigabitethernet {slot/port | slot/port-range}`
 - 40 Gigabit Ethernet: `fortygigabitethernet {slot/port | slot/port-range}`
 - Port channel: `port-channel {1-512 | port-channel-range}`

Where `port-range` and `port-channel-range` specify a range of ports separated by a dash (-) and/or individual ports/port...
channels in any order; for example: gigabitethernet 1/1-2,5,9,11-12 port-channel 1-3,5. A comma is required to separate each port and port-range entry.

```
uplink-state-group group-id
```

Re-enables all UFD-disabled downstream interfaces in the group. The valid group-id values are from 1 to 16.

Command Modes

EXEC Mode

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `downstream` — assigns a port or port-channel to the uplink-state group as a downstream interface.
- `upstream` — assigns a port or port-channel to the uplink-state group as an upstream interface.
- `uplink-state-group` — creates an uplink-state group and enables the tracking of upstream links.

debug uplink-state-group

Enable debug messages for events related to a specified uplink-state group or all groups.

Syntax

```
dump uplink-state-group [group-id]
```

To turn off debugging event messages, enter the `no debug uplink-state-group [group-id]` command.

Parameters

- `group-id` Enables debugging on the specified uplink-state group. The valid group-id values are from 1 to 16.

Defaults

none

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Related Commands

- `clear ufd-disable` — re-enables downstream interfaces that are in a UFD-Disabled Error state.
description

Enter a text description of an uplink-state group.

Syntax

description text

Parameters

- **text**

 Text description of the uplink-state group. The maximum length is 80 alphanumeric characters.

Defaults

none

Command Modes

UPLINK-STATE-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell(conf-uplink-state-group-3)#description Testing UFD feature
Dell(conf-uplink-state-group-3)#show config
!
uplink-state-group 3
description Testing UFD feature

Related Commands

- **uplink-state-group** — creates an uplink-state group and enables the tracking of upstream links.

downstream

Assign a port or port-channel to the uplink-state group as a downstream interface.

Syntax

downstream interface

To delete an uplink-state group, enter the no downstream interface command.

Parameters

- **interface**

 Enter one of the following interface types:

 - 10 Gigabit Ethernet: tengigabitethernet {slot/port | slot/port-range}
 - 40 Gigabit Ethernet: fortygigabitethernet {slot/port | slot/port-range}
 - Port channel: port-channel {1-512 | port-channel-range}

 Where port-range and port-channel-range specify a range of ports separated by a dash (-) and/or individual ports/port
channels in any order; for example: gigabitethernet 1/1-2,5,9,11-12 port-channel 1-3,5. A comma is required to separate each port and port-range entry.

Defaults
none

Command Modes
UPLINK-STATE-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can assign physical port or port-channel interfaces to an uplink-state group.

You can assign an interface to only one uplink-state group. Configure each interface assigned to an uplink-state group as either an upstream or downstream interface, but not both.

You can assign individual member ports of a port channel to the group. An uplink-state group can contain either the member ports of a port channel or the port channel itself, but not both.

Related Commands

- downstream — assigns a port or port-channel to the uplink-state group as a downstream interface.
- upstream — assigns a port or port-channel to the uplink-state group as an upstream interface.
- uplink-state-group — creates an uplink-state group and enables the tracking of upstream links.

downstream auto-recover

Enable auto-recovery so that UFD-disabled downstream ports in an uplink-state group automatically come up when a disabled upstream port in the group comes back up.

Syntax
downstream auto-recover

To disable auto-recovery on downstream links, use the no downstream auto-recover command.

Defaults
The auto-recovery of UFD-disabled downstream ports is enabled.

Command Modes
UPLINK-STATE-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
downstream disable links

Configure the number of downstream links in the uplink-state group that are disabled if one upstream link in an uplink-state group goes down.

Syntax
```
downstream disable links {number | all}
```
To revert to the default setting, use the `no downstream disable links` command.

Parameters
- **number**
 Enter the number of downstream links to be brought down by UFD. The range is from 1 to 1024.
- **all**
 Brings down all downstream links in the group.

Defaults
All

Command Modes
UPLINK-STATE-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
A user-configurable number of downstream interfaces in an uplink-state group are put into a link-down state with an UFD-Disabled error message when one upstream interface in an uplink-state group goes down.

If all upstream interfaces in an uplink-state group go down, all downstream interfaces in the same uplink-state group are put into a link-down state.

Related Commands
- `downstream` — assigns a port or port-channel to the uplink-state group as a downstream interface.
- `upstream` — assigns a port or port-channel to the uplink-state group as an upstream interface.
- `uplink-state-group` — creates an uplink-state group and enables the tracking of upstream links.
enable

Re-enable upstream-link tracking for an uplink-state group after it has been disabled.

Syntax
```
enable
```

To disable upstream-link tracking without deleting the uplink-state group, use the `no enable` command.

Parameters
- **group-id**
 Enables debugging on the specified uplink-state group. The valid group-id values are from 1 to 16.

Defaults
Upstream-link tracking is automatically enabled in an uplink-state group.

Command Modes
- UPLINK-STATE-GROUP

Command History
- **Version 8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.

Related Commands
- `uplink-state-group` — creates an uplink-state group and enables the tracking of upstream links.

show running-config uplink-state-group

Display the current configuration of one or more uplink-state groups.

Syntax
```
show running-config uplink-state-group [group-id]
```

Parameters
- **group-id**
 Displays the current configuration of all uplink-state groups or a specified group. The valid group-id values are from 1 to 16.

Defaults
- none

Command Modes
- EXEC
- EXEC Privilege

Command History
- **Version**
 - Description

Uplink Failure Detection (UFD) | 1516
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show running-config uplink-state-group
! uplink-state-group 3
 no enable
description Testing UFD feature
downstream disable links 2
downstream TenGigabitEthernet 0/1-2,5,9,11-12
upstream TenGigabitEther 0/3-4

Related Commands
• show uplink-state-group — displays the status information on a specified uplink-state group or all groups.
• uplink-state-group — creates an uplink-state group and enables the tracking of upstream links.

show uplink-state-group

Display status information on a specified uplink-state group or all groups.

Syntax
show uplink-state-group [group-id] [detail]

Parameters
group-id Displays status information on a specified uplink-state group or all groups. The valid group-id values are from 1 to 16.
detail Displays additional status information on the upstream and downstream interfaces in each group

Defaults
none

Command Modes
• EXEC
• EXEC Privilege

Command History
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell# show uplink-state-group
Uplink State Group: 1 Status: Enabled, Up
Uplink State Group: 3 Status: Enabled, Up
Uplink State Group: 5 Status: Enabled, Down
Uplink State Group: 6 Status: Enabled, Up
Uplink State Group: 7 Status: Enabled, Up
Uplink State Group: 16 Status: Disabled, Up

Dell# show uplink-state-group 16
Uplink State Group: 16 Status: Disabled, Up

Dell# show uplink-state-group detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled

Uplink State Group : 1 Status: Enabled, Up
Upstream Interfaces :

Downstream Interfaces :

Uplink State Group : 3 Status: Enabled, Up
Upstream Interfaces : Gi 0/46(Up) Gi 0/47(Up)
Downstream Interfaces : Te 13/0(Up) Te 13/1(Up) Te 13/3(Up) Te 13/5(Up) Te 13/6(Up)

Uplink State Group : 5 Status: Enabled, Down
Upstream Interfaces : Gi 0/0(Dwn) Gi 0/3(Dwn) Gi 0/5(Dwn)
Downstream Interfaces : Te 13/2(Dis) Te 13/4(Dis) Te 13/11(Dis) Te 13/12(Dis) Te 13/13(Dis) Te 13/14(Dis) Te 13/15(Dis)

Uplink State Group : 6 Status: Enabled, Up
Upstream Interfaces :
Downstream Interfaces :

Uplink State Group : 7 Status: Enabled, Up
Upstream Interfaces :
Downstream Interfaces :

Uplink State Group : 16 Status: Disabled, Up
Upstream Interfaces : Gi 0/41(Dwn) Po 8(Dwn)
Downstream Interfaces : Gi 0/40(Dwn)

Related Commands

• `show running-config uplink-state-group` — displays the current configuration of one or more uplink-state groups.

• `uplink-state-group` — create an uplink-state group and enables the tracking of upstream links.

uplink-state-group

Create an uplink-state group and enable the tracking of upstream links on a switch/ router.

Syntax

```
uplink-state-group group-id
```

Parameters

group-id

Enter the ID number of an uplink-state group. The range is from 1 to 16.

Defaults

none

Command Modes

CONFIGURATION
Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

After you enter the command, to assign upstream and downstream interfaces to the group, enter Uplink-State-Group Configuration mode.

An uplink-state group is considered to be operationally up if at least one upstream interface in the group is in the Link-Up state.

An uplink-state group is considered to be operationally down if no upstream interfaces in the group are in the Link-Up state. No uplink-state tracking is performed when a group is disabled or in an operationally down state.

Example

```
Dell(conf)#uplink-state-group 16
Dell(conf)#
02:23:17: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed uplink state group Admin state to up: Group 16
```

Related Commands

- `show running-config uplink-state-group` — displays the current configuration of one or more uplink-state groups.
- `show uplink-state-group` — displays the status information on a specified uplink-state group or all groups.

upstream

Assign a port or port-channel to the uplink-state group as an upstream interface.

Syntax

```
upstream interface
```

To delete an uplink-state group, use the `no upstream interface` command.

Parameters

- `interface` Enter one of the following interface types:
 - 10 Gigabit Ethernet: `tengigabitethernet {slot/port | slot/port-range}`
 - 40 Gigabit Ethernet: `fortygigabitethernet {slot/port | slot/port-range}`
 - Port channel: `port-channel {1-512 | port-channel-range}`

Where `port-range` and `port-channel-range` specify a range of ports separated by a dash (-) and/or individual ports/port channels in any order; for example: `gigabitethernet`
1/1-2, 5, 9, 11-12 port-channel 1-3, 5. A comma is required to separate each port and port-range entry.

Defaults
none

Command Modes
UPLINK-STATE-GROUP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You can assign physical port or port-channel interfaces to an uplink-state group.

You can assign an interface to only one uplink-state group. Configure each interface assigned to an uplink-state group as either an upstream or downstream interface, but not both.

You can assign individual member ports of a port channel to the group. An uplink-state group can contain either the member ports of a port channel or the port channel itself, but not both.

Example

Dell(conf-uplink-state-group-16)# upstream gigabitethernet 1/10-15
Dell(conf-uplink-state-group-16)#

Related Commands

- **downstream** — assigns a port or port-channel to the uplink-state group as a downstream interface.
- **upstream** — assigns a port or port-channel to the uplink-state group as an upstream interface.
- **uplink-state-group** — creates an uplink-state group and enables the tracking of upstream links.
VLAN Stacking

With the virtual local area network (VLAN)-stacking feature (also called stackable VLANs and QinQ), you can "stack" VLANs into one tunnel and switch them through the network transparently. For more information about basic VLAN commands, refer to the Virtual LAN (VLAN) Commands section in the Layer 2 chapter.

Important Points to Remember

- If you do not enable the spanning tree protocol (STP) across the stackable VLAN network, STP bridge protocol data units (BPDUs) from the customer’s networks are tunneled across the stackable VLAN network.
- If you do enable STP across the stackable VLAN network, STP BPDUs from the customer’s networks are consumed and not tunneled across the stackable VLAN network unless you enable protocol tunneling.
- Layer 3 protocols are not supported on a stackable VLAN network.
- Assigning an IP address to a stackable VLAN is supported when all the members are only stackable VLAN trunk ports. IP addresses on a stackable VLAN-enabled VLAN are not supported if the VLAN contains stackable VLAN access ports. This facility is provided for the simple network management protocol (SNMP) management over a stackable VLAN-enabled VLAN containing only stackable VLAN trunk interfaces. Layer 3 routing protocols on such a VLAN are not supported.
- Dell Networking OS recommends that you do not use the same MAC address, on different customer VLANs, on the same stackable VLAN.
- Interfaces configured using stackable VLAN access or stackable VLAN trunk commands do not switch traffic for the default VLAN. These interfaces are switch traffic only when they are added to a non-default VLAN.

Topics:

- dei enable
- dei honor
- dei mark
- member
- show interface dei-honor
- show interface dei-mark
- vlan-stack access
- vlan-stack compatible
- vlan-stack dot1p-mapping
- vlan-stack protocol-type
- vlan-stack trunk
dei enable

Make packets eligible for dropping based on their drop eligible indicator (DEI) value.

Syntax

```plaintext
dei enable
```

Defaults

Packets are colored green; no packets are dropped.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

dei honor

Honor the incoming DEI value by mapping it to a system drop precedence. Enter the command once for 0 and once for 1.

Syntax

```plaintext
dei honor {0 | 1} {green | red | yellow}
```

Parameters

- **0 | 1**
 - Enter the bit value you want to map to a color.
- **green | red | yellow**
 - Choose a color:
 - Green: High priority packets that are the least preferred to be dropped.
 - Yellow: Lower priority packets that are treated as best-effort.
 - Red: Lowest priority packets that are always dropped (regardless of congestion status).

Defaults

Disabled; Packets with an unmapped DEI value are colored green.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

You must first enable DEI for this configuration to take effect.

Related Commands

- `dei enable` — enables DEI.
dei mark

Set the DEI value on egress according to the color currently assigned to the packet.

Syntax

```
dei mark {green | yellow} {0 | 1}
```

Parameters

- `0 | 1`: Enter the bit value you want to map to a color.
- `green | yellow`: Choose a color:
 - **Green**: High priority packets that are the least preferred to be dropped.
 - **Yellow**: Lower priority packets that are treated as best-effort.

Defaults

All the packets on egress are marked with DEI 0.

Command Modes

```
INTERFACE
```

Command History

- **Version 8.3.16.1**: Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

You must first enable DEI for this configuration to take effect.

Related Commands

- `dei enable` — enables DEI.

member

Assign a stackable VLAN access or trunk port to a VLAN. The VLAN must contain the `vlan-stack compatible` command in its configuration.

Syntax

```
member interface
```

To remove an interface from a Stackable VLAN, use the `no member interface` command.

Parameters

- `interface`: Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
For a 40-Gigabyte Ethernet interface, enter the keyword fortyGigE then the slot/ port information.

Defaults
Not configured.

Command Modes
conf-if-vl-<vlan-id>-stack

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
You must enable the stackable VLAN (using the vlan-stack compatible command) on the VLAN prior to adding a member to the VLAN.

Related Commands
vlan-stack compatible — enables stackable VLAN on a VLAN.

show interface dei-honor

Display the dei honor configuration.

Syntax
show interface dei-honor [interface slot/port]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface slot/port</td>
<td>Enter the interface type then the line card slot and port number.</td>
</tr>
</tbody>
</table>

Command Modes
EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell#show interface dei-honor

Default Drop precedence: Green

Interface CFI/DEI Drop precedence
------------------- ----------------------
Gi 0/1 0 Green
Gi 0/1 1 Yellow
Gi 8/9 1 Red
Gi 8/40 0 Yellow

Dell#show interface dei-honor

Default Drop precedence: Green

Interface CFI/DEI Drop precedence
------------------- ----------------------
Te 0/1 0 Green
Te 0/1 1 Yellow
Te 1/2 1 Red
Te 1/3 0 Yellow
show interface dei-mark

Display the dei mark configuration.

Syntax
show interface dei-mark [interface slot/port]

Parameters
interface slot/port Enter the interface type then the line card slot and port number.

Command Modes
EXEC Privilege

Command History
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Example
Dell#show interface dei-mark
Default CFI/DEI Marking: 0
Interface Drop precedence CFI/DEI
------------------ -------
Gi 0/1 Green 0
Gi 0/1 Yellow 1
Gi 8/9 Yellow 0
Gi 8/40 Yellow 0

Related Commands
dei mark — sets the DEI value on egress.

vlan-stack access

Specify a Layer 2 port or port channel as an access port to the stackable VLAN network.

Syntax
vlan-stack access

To remove access port designation, use the no vlan-stack access command.

Defaults
Not configured.

Command Modes
INTERFACE

Command History
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information
Prior to enabling this command, to place the interface in Layer 2 mode, enter the
switchport command.

To remove the access port designation, remove the port (using the no member
interface command) from all stackable VLAN enabled VLANs.

vlan-stack compatible

Enable the stackable VLAN feature on a VLAN.

Syntax
vlan-stack compatible

To disable the Stackable VLAN feature on a VLAN, use the no vlan-stack
compatible command.

Defaults
Not configured.

Command Modes
CONF-IF-VLAN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
Prior to disabling the stackable VLAN feature, remove the members.

To view the stackable VLANs, use the show vlan command in EXEC Privilege mode.
Stackable VLANs contain members, designated by the M in the Q column of the
command output.

Example

Dell#show vlan

Codes: * - Default VLAN, G - GVRP VLANs

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Active</td>
<td>M Gi 13/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/0-2</td>
</tr>
<tr>
<td>3</td>
<td>Active</td>
<td>M Po1(Gi 13/14-15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/3</td>
</tr>
<tr>
<td>4</td>
<td>Active</td>
<td>M Po1(Gi 13/14-15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/4</td>
</tr>
<tr>
<td>5</td>
<td>Active</td>
<td>M Po1(Gi 13/14-15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M Gi 13/5</td>
</tr>
</tbody>
</table>

Dell#
vlan-stack dot1p-mapping

Map C-Tag dot1p values to an S-Tag dot1p value. You can separate the C-Tag values by commas and dashed ranges are permitted. Dynamic mode CoS overrides any Layer 2 QoS configuration if there is conflicts.

Syntax

```
vlan-stack dot1p-mapping c-tag-dot1p values sp-tag-dot1p value
```

Parameters

- **c-tag-dot1p value**
 Enter the keyword `c-tag-dot1p` then the customer dot1p value that is mapped to a service provider dot1p value. The range is from 0 to 5.

- **sp-tag-dot1p value**
 Enter the keyword `sp-tag-dot1p` then the service provider dot1p value. The range is from 0 to 5.

Defaults

none

Command Modes

INTERFACE

Command History

- **Version**
 - **8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.

vlan-stack protocol-type

Define the stackable VLAN tag protocol identifier (TPID) for the outer VLAN tag (also called the VMAN tag). If you do not configure this command, the system assigns the value 0x9100.

Syntax

```
vlan-stack protocol-type number
```

Parameters

- **number**
 Enter the hexadecimal number as the stackable VLAN tag.

You may specify both bytes of the 2-byte S-Tag TPID. The range is from 0 to FFFF. The default is 9100.

Defaults

0x9100

Command Modes

CONFIGURATION

Command History

- **Version**
 - **8.3.16.1**
 Introduced on the MXL 10/40GbE Switch IO Module.
Usage Information

For specific interoperability limitations regarding the S-Tag TPID, refer to the Dell Networking OS Configuration Guide.

Related Commands

- **portmode hybrid** — sets a port (physical ports only) to accept both tagged and untagged frames. A port configured this way is identified as a hybrid port in report displays.

- **vlan-stack trunk** — specifies a Layer 2 port or port channel as a trunk port to the Stackable VLAN network.

vlan-stack trunk

Specify a Layer 2 port or port channel as a trunk port to the Stackable VLAN network.

Syntax

```
vlan-stack trunk
```

To remove a trunk port designation from the selected interface, use the `no vlan-stack trunk` command.

Defaults

Not configured.

Command Modes

INTERFACE

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

Prior to using this command, to place the interface in Layer 2 mode, execute the `switchport` command.

To remove the trunk port designation, first remove the port (using the `no member interface` command) from all stackable VLAN-enabled VLANs.

Starting with the Dell Networking OS version 7.8.1.0, a VLAN-Stack trunk port is also allowed to be configured as a tagged port and as an untagged port for single-tagged VLANs. When the VLAN-Stack trunk port is also a member of an untagged VLAN, the port must be in Hybrid mode. Refer to `portmode hybrid`.

In the first example, a VLAN-Stack trunk port is configured and then also made part of a single-tagged VLAN.

In the second example, the tag protocol identifier (TPID) is set to 8848. The Te 3/8 port is configured to act as a VLAN-Stack access port, while the “TeGi 8/0” port acts as a VLAN-Stack trunk port, switching stackable VLAN traffic for VLAN 10, while also switching untagged traffic for VLAN 30 and tagged traffic for VLAN 40. (To allow VLAN
30 traffic, the native VLAN feature is required, by executing the `portmode hybrid` command. Refer to `portmode hybrid` in the `Interfaces` chapter.

Example

```
Dell (conf-if-gi-0/42)#switchport
Dell (conf-if-gi-0/42)#vlan-stack trunk
Dell (conf-if-gi-0/42)#show config

! interface GigabitEthernet 0/42
  no ip address
  switchport
  vlan-stack trunk
  no shutdown
Dell (conf-if-gi-0/42)#interface vlan 100
Dell (conf-if-vl-100)#vlan-stack compatible
Dell (conf-if-vl-100-stack)#member gigabitethernet 0/42
Dell (conf-if-vl-100-stack)#show config

! interface Vlan 100
  no ip address
  vlan-stack compatible
  member GigabitEthernet 0/42
  shutdown
Dell (conf-if-vl-100-stack)#interface vlan 20
Dell (conf-if-vl-20)#tagged gigabitethernet 0/42
Dell (conf-if-vl-20)#show config

! interface Vlan 20
  no ip address
  tagged GigabitEthernet 0/42
  shutdown
Dell (conf-if-vl-20)#do show vlan
Codes: * - Default VLAN, G - GVRP VLANs
Q: U - Untagged, T - Tagged
  x - Dot1x untagged, X - Dot1x tagged
  G - GVRP tagged, M - Vlan-stack

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Active</td>
<td>T Gi 0/42</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Active</td>
<td>M Gi 0/42</td>
<td></td>
</tr>
</tbody>
</table>

Dell (conf-if-vl-20)#
```

Example

```
Dell (config)#vlan-stack protocol-type 88A8
Dell (config)#interface gigabitethernet 3/10
Dell (conf-if-gi-3/10)#no shutdown
Dell (conf-if-gi-3/10)#switchport
Dell (conf-if-gi-3/10)#vlan-stack access
Dell (conf-if-gi-3/10)#exit

Dell (config)#interface tenGigabitethernet 8/0
Dell (conf-if-te-10/0)#no shutdown
Dell (conf-if-te-10/0)#portmode hybrid
Dell (conf-if-te-10/0)#switchport
Dell (conf-if-te-10/0)#vlan-stack trunk
Dell (conf-if-te-10/0)#exit

Dell (config)#interface vlan 20
Dell (conf-if-vlan)#vlan-stack compatible
Dell (conf-if-vlan)#member Gi 7/0, Gi 3/10, TenGi 8/0
Dell (conf-if-vlan)#exit
```
Dell(config)#interface vlan 20
Dell(conf-if-vlan)#untagged TenGi 8/0
Dell(conf-if-vlan)#exit
Dell(config)#

Dell(config)#interface vlan 40
Dell(conf-if-vlan)#tagged TenGi 8/0
Dell(conf-if-vlan)#exit
Dell(config)#
Virtual Link Trunking (VLT)

VLT allows physical links between two chassis to appear as a single virtual link to the network core. VLT eliminates the requirement for Spanning Tree protocols by allowing link aggregation group (LAG) terminations on two separate distribution or core switches, and by supporting a loop-free topology. VLT provides Layer 2 multipathing, creating redundancy through increased bandwidth and enabling multiple parallel paths between nodes and load-balancing traffic where alternative paths exist.

Prerequisites: Before you configure VLT, ensure both VLT peer switches are running the same Dell Networking Operating System (OS) version and are configured for rapid spanning tree protocol (RSTP) as described in the *Virtual Link Trunking (VLT)* chapter in the *Dell Networking OS Configuration Guide*.

Topics:
- back-up destination
- clear ip mroute
- clear ip pim tib
- delay-restore abort-threshold
- lacp ungroup member-independent vlt
- multicast peer-routing timeout
- peer-link port-channel
- peer-routing
- peer-routing-timeout
- primary-priority
- show ip mroute
- show vlt backup-link
- show vlt brief
- show vlt detail
- show vlt inconsistency
- show vlt mismatch
- show vlt role
- show vlt statistics
- system-mac
- unit-id
- vlt domain
- vlt-peer-lag port-channel
- show vlt private-vlan
back-up destination

Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages.

Syntax

```
back-up destination ip-address [interval seconds]
```

Parameters

- `ip-address` Enter the IPv4 or IPv6 address of the backup destination.
- `interval seconds` Enter the keyword `interval` to specify the time interval to send hello messages. The range is from 1 to 5 seconds. The default is 1 second.

Defaults

Not configured.

Command Modes

VLT DOMAIN

Usage Information

You can only enable either IPv4 or IPv6.

Command History

- **Version**
 - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

clear ip mroute

Clear learned multicast routes on the multicast forwarding table. To clear the protocol-independent multicast (PIM) tree information base, use the `clear ip pim tib` command.

Syntax

```
clear ip mroute {group-address [source-address] | * | snooping}
```

Parameters

- `group-address [source-address]` Enter the multicast group address and source address (if desired), in dotted decimal format, to clear information on a specific group.
- `*` Enter `*` to clear all multicast routes.
- `snooping` Enter the keyword `snooping` to delete multicast snooping route table entries.

Command Modes

EXEC Privilege

Command History

- **Version**
 - 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
clear ip pim tib

Clear PIM tree information from the PIM database.

Syntax

 clear ip pim tib [group]

Parameters

 group (OPTIONAL) Enter the multicast group address in dotted decimal format (A.B.C.D).

Command Modes

 EXEC Privilege

Command History

 Version Description
 9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

 If you use this command on a local VLT node, all multicast routes from the local PIM TIB, the entire multicast route table, and all the entries in the data plane are deleted. The entries in Peer PIM TIB (Sync) are not deleted but are marked for re-download. Both local and synced routes are removed from the multicast route table. The peer VLT node clears synced routes from the node.

 If you use this command on a peer VLT node, only the synced routes are deleted from the multicast route table.

delay-restore abort-threshold

Increase the Boot Up timer to some value (>60 seconds).

Syntax

 delay-restore abort-threshold <interval>

 To remove use the no delay-restore abort-threshold command.

Defaults

 60 seconds

Command Modes

 VLT DOMAIN

Command History

 This guide is platform-specific. For command information about other platforms, refer to the relevant Dell Networking OS Command Line Reference Guide.

 The following is a list of the Dell Networking OS version history for this command.
Parameter

Enter the value (in seconds) to specify the time interval for delay restore timer to abort. This timer is applicable only during reload/boot-up and not in other scenarios (example, ICL flap).

The range is from 1 to 1800 seconds.

Usage Information

To abort VLT delay restore timer as the maximum threshold, the maximum time interval is applied to hold down ICL peer-up in the start-up configurations during the reload.

lacp ungroup member-independent vlt

Prevent possible loop during the bootup of a VLT peer switch or a device that accesses the VLT domain.

Syntax

```plaintext
lacp ungroup member-independent vlt
```

Defaults

Not configured.

Command Modes

CONFIGURATION

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

LACP on the VLT ports (on a VLT switch or access device), which are members of the virtual link trunk, is not brought up until the VLT domain is recognized on the access device.

multicast peer-routing timeout

Configure the time for a VLT node to retain synced multicast routes or synced multicast outgoing interface (OIF) after a VLT peer node failure.

Syntax

```plaintext
multicast peer-routing timeout value
```

To restore the default value, use the `no multicast peer-routing timeout` command.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>Enter the timeout value in seconds. The range is from 1 to 1200. The default is 150.</td>
</tr>
</tbody>
</table>

Default

Not configured.

Command Modes

VLT DOMAIN (conf-vlt-domain)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

peer-link port-channel

Configure the specified port channel as the chassis interconnect trunk between VLT peers in the domain.

Syntax

```
peer-link port-channel id-number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>id-number</code></td>
<td>Enter the port-channel number that acts as the interconnect trunk. The range is from 1 to 128.</td>
</tr>
</tbody>
</table>

Defaults

Not configured.

Command Modes

VLT DOMAIN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

peer-routing

Enable L3 VLT peer-routing. This command is applicable for both IPV6/ IPV4.

Syntax

```
peer-routing
```

To disable L3 VLT peer-routing, use the `no peer-routing` command.

Defaults

Disabled.

Command Modes

VLT DOMAIN (conf-vlt-domain)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Added the IPV6/IPV4 support on the MXL.</td>
</tr>
</tbody>
</table>
peer-routing-timeout

Configure the timeout for the software to wait before connecting to a VLT peer with a Down status. This command is applicable for both IPV6/ IPV4.

Syntax

```
peer-routing-timeout value
```

To restore the default value, use the `no peer-routing-timeout` command.

Parameters

- `value` Enter the timeout value in seconds. The range is from 1 to 65535. The default value is 0 (no timeout).

Command Modes

- VLT DOMAIN (conf-vlt-domain)

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4(0.0)</td>
<td>Added the IPV6/IPV4 support on the MXL.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When the timer expires, the software checks to see if the VLT peer is now available. If the VLT peer is not available, peer-routing is disabled on that peer.

primary-priority

Reconfigure the primary role of VLT peer switches.

Syntax

```
primary-priority value
```

Parameters

- `value` To configure the primary role on a VLT peer, enter a lower value than the priority value of the remote peer. The range is from 1 to 65535.

Default

32768

Command Modes

- VLT DOMAIN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
Usage Information

After you configure the VLT domain on each peer switch on both sides of the interconnect trunk, by default, the software elects a primary and secondary VLT peer device. To reconfigure the primary role of VLT peer switches, use the `priority` command.

show ip mroute

View the multicast routing table.

Syntax

`show ip mroute [static | group-address [source-address] | count | snooping [vlan vlan-id] [group-address [source-address]]] | summary | vlt [group-address | count]

Parameters

- **Static**
 (OPTIONAL) Enter the keyword `static` to view static multicast routes.

- **group-address [source-address]**
 (OPTIONAL) Enter the multicast group-address to view only routes associated with that group.

 Enter the source-address to view routes with that group-address and source-address.

- **count**
 (OPTIONAL) Enter the keyword `count` to view the number of multicast routes and packets.

- **snooping [vlan vlan-id] [group-address [source-address]]**
 (OPTIONAL)

 Enter the keyword `snooping` to display information on the multicast routes PIM-SM snooping discovers.

 Enter a VLAN ID to limit the information displayed to the multicast routes PIM-SM snooping discovers on a specified VLAN. The VLAN ID range is from 1 to 4094.

 Enter a multicast group address and, optionally, a source multicast address in dotted decimal format (A.B.C.D) to limit the information displayed to the multicast routes PIM-SM snooping discovers for a specified multicast group and source.

- **summary**
 (OPTIONAL) Enter the keyword `summary` to view routes in a tabular format.

- **vlt**
 (OPTIONAL) Enter the keyword `vlt` to view multicast routes with a spanned incoming interface. Enter a multicast group address in dotted decimal format (A.B.C.D) to limit the information displayed to the multicast routes for a specified multicast group.
count

Enter the keyword count to display VLT route and packet data.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the show ip mroute command shown in the examples.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S, G)</td>
<td>Displays the forwarding entry in the multicast route table.</td>
</tr>
<tr>
<td>uptime</td>
<td>Displays the amount of time the entry has been in the multicast forwarding table.</td>
</tr>
<tr>
<td>Incoming</td>
<td>Displays the reverse path forwarding (RPF) information towards the source for (S,G) entries and the RP for (*,G) entries.</td>
</tr>
<tr>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>Outgoing</td>
<td>Lists the interfaces that meet one of the following:</td>
</tr>
<tr>
<td>interface list:</td>
<td>a directly connected member of the Group</td>
</tr>
<tr>
<td></td>
<td>statically configured member of the Group</td>
</tr>
<tr>
<td></td>
<td>received a (*,G) or (S,G) Join message</td>
</tr>
</tbody>
</table>

Example (static)

Dell#show ip mroute static
Mroute: 23.23.23.0/24, interface: Lo 2
Protocol: static, distance: 0, route-map: none, last change: 00:00:23

Example (snooping)

Dell#show ip mroute snooping
IPv4 Multicast Snooping Table (*, 224.0.0.0), uptime 17:46:23
Incoming vlan: Vlan 2
Outgoing interface list:
 GigabitEthernet 4/13
 (*, 225.1.2.1), uptime 00:04:16
 Incoming vlan: Vlan 2
 Outgoing interface list:
 GigabitEthernet 4/11
 GigabitEthernet 4/13
 (165.87.1.7, 225.1.2.1), uptime 00:03:17
 Incoming vlan: Vlan 2
 Outgoing interface list:
 GigabitEthernet 4/11
 GigabitEthernet 4/13
 GigabitEthernet 4/20
 GigabitEthernet 4/13
 GigabitEthernet 4/20

Virtual Link Trunking (VLT) | 1538
Example (detail)
Dell#show ip mroute
IP Multicast Routing Table

(*) , 224.10.10.1), uptime 00:05:12
Incoming interface: GigabitEthernet 3/12
Outgoing interface list:
GigabitEthernet 3/13

(1.13.1.100, 224.10.10.1), uptime 00:04:03
Incoming interface: GigabitEthernet 3/4
Outgoing interface list:
GigabitEthernet 3/12
GigabitEthernet 3/13

(*) , 224.20.20.1), uptime 00:05:12
Incoming interface: GigabitEthernet 3/12
Outgoing interface list:
GigabitEthernet 3/4

show vlt backup-link

Displays information on the backup link operation.

Syntax
show vlt backup-link

Default
Not configured.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

Dell# show vlt backup-link

VLT Backup Link

Destination: 10.11.198.130
Peer HeartBeat status: Up
HeartBeat Timer Interval: 1
HeartBeat Timeout: 3
UDP Port: 34998
HeartBeat Messages Sent: 634
HeartBeat Messages Received: 473
show vlt brief

Displays summarized status information about VLT domains currently configured on the switch.

Syntax
show vlt brief

Default
Not configured.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example (Brief)

Dell#show vlt br
VLT Domain Brief

Domain ID : 1
Role : Secondary
Role Priority : 32768
ICL Link Status : Up
HeartBeat Status : Up
VLT Peer Status : Up
Version : 6(3)
Local System MAC address : 00:01:e8:8a:e9:91
Remote System MAC address : 00:01:e8:8a:e9:76
Remote system version : 6(3)
Delay-Restore timer : 90 seconds
Delay-Restore Abort Threshold : 60 seconds
Peer-Routing : Disabled
Peer-Routing-Timeout timer : 0 seconds
Multicast peer-routing timeout: 150 seconds
Dell#

show vlt detail

Displays detailed status information about VLT domains currently configured on the switch.

Syntax
show vlt detail

Default
Not configured.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>
show vlt inconsistency

Display deviations in VLT multicast traffic.

Syntax

```
show vlt inconsistency ip mroute
```

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show vlt inconsistency ip mroute
Spanned Multicast Routing IIF Inconsistency

Multicast Route                  LocalIIF      PeerIIF
---------------                 ----------    ---------
(22.22.22.200, 225.1.1.2)        VLAN 5       VLAN 6
(*, 225.1.1.2)                   VLAN 15      te 0/5

Dell#
```

show vlt mismatch

Configure the time for a VLT node to retain synced multicast routes or synced multicast OIF after VLT peer node failure.

Syntax

```
show vlt mismatch
```

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7(0.0)</td>
<td>Introduced the support for Q-in-Q implementation over VLT on the MXL switch.</td>
</tr>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40Gbe Switch IO Module.</td>
</tr>
</tbody>
</table>

Example

```
Dell# show vlt mismatch
Domain
----------
Parameters Local Peer
----------      -------
```

Example

```
Dell# show vlt detail
Local LAG Id Peer LAG Id Local Status Peer Status Active VLANs
------------ ----------- ------------ ----------- -------------
128          128         UP           UP          1000

Dell#
```
Example for Q-in-Q Implementation over VLT

Dell#show vlt mismatch
Domain

Parameters Local Peer
------ ----- -----
PB for stp Enabled Disabled

Vlan-type-config

Codes:: P - Primary, C - Community, I - Isolated, N - Normalvlan, M - Vlan-stack
Vlan-ID Local Peer
----- ----- -----
100 N M

Port-type-config

Codes:: p - PVLAN Promiscuous port, h - PVLAN Host port, t - PVLAN Trunk port,
 mt - Vlan-stack trunk port, mu - Vlan-stack access port, n - Normal port
Vlt Lag Local Peer
------- ----- -----
128 mt mu

Vlan-stack protocol-type

Local Peer
----- -----
0x4100 0x8100

VLT-VLAN config

Local Lag Peer Lag Local VLANs Peer VLANs
------- ------- ------- -------
128 128 4094 100

Dell#
show vlt role

Displays the VLT peer status, role of the local VLT switch, VLT system MAC address and system priority, and the MAC address and priority of the local VLT device.

Syntax
show vlt role

Default
Not configured.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show vlt role
VLT Role

VLT Role: Primary
System MAC address: 00:00:00:0a:0a:0a
Primary Role Priority: 700
Local System MAC address: 00:01:e8:d7:3f:bd
Local System Role Priority: 700
Local Unit Id: 0
Dell#

show vlt statistics

Displays statistics on VLT operations.

Syntax
show vlt statistics

Default
Not configured.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Example
Dell#show vlt statistics

VLT Domain Statistics

HeartBeat Messages Sent: 646
HeartBeat Messages Received: 484
ICL Hello's Sent: 162
ICL Hello's Received: 162
Domain Mismatch Errors: 0
Version Mismatch Errors: 0
Config Mismatch Errors: 14

VLT MAC Statistics

L2 Info Pkts sent:65, L2 Mac-sync Pkts Sent:88
L2 Info Pkts Rcvd:82, L2 Mac-sync Pkts Rcvd:61
L2 Reg Request sent:17
L2 Reg Request rcvd:15
L2 Reg Response sent:12
L2 Reg Response rcvd:11

VLT Igmp-Snooping Not Enabled

VLT ARP Statistics

ARP Tunnel Pkts sent:0
ARP Tunnel Pkts Rcvd:0
ARP Tunnel Pkts sent Non Vlt:0
ARP Tunnel Pkts Rcvd Non Vlt:0
ARP-sync Pkts Sent:0
ARP-sync Pkts Rcvd:0
ARP Reg Request sent:18
ARP Reg Request rcvd:16

VLT NDP Statistics

NDP NA VLT Tunnel Pkts sent:0
NDP NA VLT Tunnel Pkts Rcvd:0
NDP NA Non-VLT Tunnel Pkts sent:0
NDP NA Non-VLT Tunnel Pkts Rcvd:0
Ndp-sync Pkts Sent:0
Ndp-sync Pkts Rcvd:0
Ndp Reg Request sent:17
Ndp Reg Request rcvd:15

VLT Multicast Statistics

Info Pkts Sent: 0
Info Pkts Rcvd: 0
Reg Request Sent: 0
Reg Request Rcvd: 0
Reg Response Sent: 0
Reg Response Rcvd: 0
Route updates sent to Peer: 0
Route updates rcvd from Peer: 0
Route update pkts sent to Peer: 0
Route update pkts rcvd from Peer: 0

system-mac

Reconfigure the default MAC address for the domain.

Syntax

```
system-mac mac-address
```

Parameters

- `mac-address` Enter the system MAC address for the VLT domain.
Defaults
Automatically assigned based on the primary priority and MAC address of each VLT peer.

Command Modes
VLT DOMAIN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you create a VLT domain on a switch, the system automatically creates a VLT-system MAC address used for internal system operations.

To explicitly define the MAC address for the domain, use the `system-mac` command.

You must also reconfigure the same MAC address on the VLT peer switch.

Use this command to minimize the time required for the VLT system to synchronize the default MAC address of the VLT domain on both peer switches when one peer switch reboots.

unit-id

Explicitly configure the default unit ID of a VLT peer switch.

Syntax
```
unit-id id
```

Parameters

- `id` Enter the system unit ID for VLT. The range is from 0 to 1.

Defaults
Automatically assigned based on the MAC address of each VLT peer. The peer with the lower MAC address is assigned unit 0; the peer with the higher MAC address is assigned unit 1.

Command Modes
VLT DOMAIN

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

When you create a VLT domain on a switch, the system automatically assigns a unique unit ID (0 or 1) to each peer switch. The unit IDs are used for internal system operations. To explicitly configure the unit ID of a VLT peer, use the `unit-id` command. Configure a different unit ID (0 or 1) on each peer switch.

To minimize the time required for the VLT system to determine the unit ID assigned to each peer switch when one peer reboots, use this command.
vlt domain

Enable VLT on a switch, configure a VLT domain, and enter VLT-domain configuration mode.

Syntax

vlt domain domain-id

Parameters

domain-id

Enter the Domain ID number. Configure the same domain ID on the peer switch. VLT uses the domain ID to automatically create a VLT MAC address for the domain. The range of domain IDs is from 1 to 1000.

Command Modes

CONFIGURATION

Command History

Version Description

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.

vlt-peer-lag port-channel

Associate the port channel to the corresponding port channel in the VLT peer for the VLT connection to an attached device.

Syntax

vlt-peer-lag port-channel id-number

Parameters

id-number

Enter the port-channel number that connects to another port channel in the VLT peer. The range is from 1 to 128.

Defaults

Not configured.

Command Modes

INTERFACE PORT-CHANNEL

Command History

Version Description

9.2(0.0) Introduced on the MXL 10/40GbE Switch IO Module.
show vlt private-vlan

Display the association of private VLAN (PVLAN) with the VLT LAG. You can configure VLT peer nodes in a PVLAN on the switch.

Syntax
show vlt private-vlan

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module platform.</td>
</tr>
</tbody>
</table>

Usage Information
If you add an ICL or VLTi link as a member of a primary VLAN, the ICL becomes a part of the primary VLAN and its associated secondary VLANs, similar to the behavior for normal trunk ports. VLAN symmetricity is not validated if you associate an ICL to a PVLAN. Similarly, if you dissociate an ICL from a PVLAN, although the PVLAN symmetricity exists, ICL is removed from that PVLAN in such a case. The ICL Status field denotes the type of the VLAN port of the VLTi link configured in a PVLAN.

Example
Dell#show vlt private-vlan vlan-id

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>ICL Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>V (*)</td>
<td></td>
</tr>
<tr>
<td>20 (C)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>30 (I)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>50 (C)</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>60 (I)</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Dell#
Virtual Router Redundancy Protocol (VRRP)

Virtual router redundancy protocol (VRRP) is supported by the Dell Networking Operating System (OS) for IPv4 and IPv6.

The following commands apply to both VRRP IPv4 and IPv6:

- advertise-interval
- description
- disable
- hold-time
- preempt
- priority
- show config
- track
- virtual-address

VRRP IPv6 are in the VRRP for IPv6 Commands section.

Topics:

- advertise-interval
- authentication-type
- clear counters vrrp
- debug vrrp
- description
- disable
- hold-time
- preempt
- priority
- show config
- show vrrp
- track
- virtual-address
- vrrp delay minimum
- vrrp delay reload
- vrrp-group
- VRRP for IPv6 Commands
- clear counters vrrp ipv6
advertise-interval

Set the time interval between VRRP advertisements.

```
Syntax
advertise-interval {seconds | centisecs centisecs}
To return to the default settings, use the no advertise-interval command.
```

```
Parameters
seconds
Enter a number of seconds. The range is from 1 to 255. The default is 1 second.

centisecs
Enter the keyword centisecs followed by the number of centisecs in multiple of 25 centisecs. The range is 25 to 4075 centisecs in multiples of 25 centisecs.
```

```
Defaults
1 second or 100 centisecs
```

```
Command Modes
INTERFACE-VRRP
```

```
Command History
Version Description
9.5(0.0) Introduced the support for centisecs on the MXL 10/40GbE Switch.
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```

```
Usage Information
Dell Networking OS recommends keeping the default setting for this command. If you do change the time interval between VRRP advertisements on one router, change it on all routers.
```

authentication-type

Enable authentication of VRRP data exchanges.

```
Syntax
authentication-type simple [encryption-type] password
To delete an authentication type and password, use the no authentication-type command.
```

```
Parameters
simple
Enter the keyword simple to specify simple authentication.
```

encryption-type
(Optional) Enter one of the following numbers:
- 0 (zero) specifies an un-encrypted authentication data follows.
- 7 (seven) specifies a hidden authentication data follows.

password
Enter a character string up to eight characters long as a password. If you do not enter an encryption-type, the password is stored as clear text.

Defaults
Not configured.

Command Modes
VRRP

Command History
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
The given password is encrypted by the system and the `show config` displays an encrypted text string for any of the encrypted typed used.

clear counters vrrp

Clear the counters maintained on VRRP operations.

Syntax
clear counters vrrp [vrrp-id]

Parameters
- **vrrp-id**
 (Optional) Enter the number of the VRRP group ID. The range is from 1 to 255.

Command Modes
EXEC Privilege

Command History
<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information
- **NOTE:** This command also enables you to clear the port configurations corresponding to a range of ports.
 - You can specify multiple ports as slot/port-range. For example, if you want to clear the port configurations corresponding to all ports between 1 and 4, specify the port range as `clear counters interfaces interface-type 1/1 - 4`.

Virtual Router Redundancy Protocol (VRRP) | 1550
debug vrrp

Allows you to enable debugging of VRRP.

Syntax

```
depth  vrrp interface [vrrp-id] {all | packets | state | timer}
```

To disable debugging, use the `no debug vrrp interface [vrrp-id] {all | packets | state | timer}` command.

Parameters

- **interface**
 - Enter the following keywords and slot/port or number information
 - For Port Channel interface types, enter the keywords `port-channel` then the number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN interface, enter the keyword `vlan` then the VLAN ID. The VLAN ID range is from 1 to 4094.

- **vrrp-id**
 - (OPTIONAL) Enter a number from 1 to 255 as the VRRP group ID.

- **all**
 - Enter the keyword `all` to enable debugging of all VRRP groups.

- **packets**
 - Enter the keyword `packets` to enable debugging of VRRP control packets.

- **state**
 - Enter the keyword `state` to enable debugging of VRRP state changes.

- **timer**
 - Enter the keyword `timer` to enable debugging of the VRRP timer.

Command Modes

EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If you do not specify options, debug is active on all interfaces and all VRRP groups.
description

Configure a short text string describing the VRRP group.

Syntax

description text

To delete a VRRP group description, use the no description command.

Parameters

text Enter a text string up to 80 characters long.

Defaults Not enabled.

Command Modes VRRP

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

disable

Disable a VRRP group.

Syntax
disable

To re-enable a disabled VRRP group, use the no disable command.

Defaults Enabled.

Command Modes VRRP

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information To enable VRRP traffic, assign an IP address to the VRRP group using the virtual-address command and enter no disable.

Related Commands virtual-address — specifies the IP address of the virtual router.
hold-time

Specify a delay (in seconds) before a switch becomes the MASTER virtual router. By delaying the initialization of the VRRP MASTER, the new switch can stabilize its routing tables.

Syntax

```
hold-time {seconds | centisecs centisecs}
```

To return to the default value, use the `no hold-time` command.

Parameters

- **seconds**
 - Enter a number of seconds. The range is from 0 to 65535. The default is `zero (0) seconds`.
- **centisecs**
 - Enter the keyword `centisecs` then the number of centisecs in units of 25 centisecs. The range is from 0 to 65525 in units of 25 centisecs.

Defaults

- `zero (0) seconds`

Command Modes

VRRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5(0.0)</td>
<td>Introduced the support for centisecs on the MXL 10/40GbE Switch.</td>
</tr>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If a switch is a MASTER and you change the hold timer, disable and re-enable VRRP for the new hold timer value to take effect.

Related Commands

- `disable` — disables a VRRP group.

preempt

To preempt or become the MASTER router, permit a BACKUP router with a higher priority value.

Syntax

```
preempt
```

To prohibit preemption, use the `no preempt` command.

Defaults

Enabled (that is, a BACKUP router can preempt the MASTER router).

Command Modes

VRRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1553</td>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
</tr>
</tbody>
</table>
priority

Specify a VRRP priority value for the VRRP group. The VRRP protocol uses this value during the MASTER election process.

Syntax

```
priority priority
```

To return to the default value, use the `no priority` command.

Parameters

- `priority` Enter a number as the priority. Enter 255 only if the router’s virtual address is the same as the interface’s primary IP address (that is, the router is the OWNER). The range is from 1 to 255. The default is `100`.

Defaults

- `100`

Command Modes

- VRRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

To guarantee that a VRRP group becomes MASTER, configure the VRRP group’s virtual address with same IP address as the interface’s primary IP address and change the priority of the VRRP group to 255.

If you set the `priority` command to 255 and the `virtual-address` is not equal to the interface’s primary IP address, an error message appears.

NOTE: Configuring VRRP priority 255 on an interface on which DHCP Client is enabled is not supported.

show config

View the non-default VRRP configuration.

Syntax

```
show config [verbose]
```

Parameters

- `verbose` (OPTIONAL) Enter the keyword `verbose` to view all VRRP group configuration information, including defaults.
show vrrp

View the VRRP groups that are active. If no VRRP groups are active, the system returns No Active VRRP group.

Syntax

```
show vrrp [vrrp-id] [interface] [brief]
```

Parameters

- **vrrp-id** (OPTIONAL) Enter the Virtual Router Identifier for the VRRP group to view only that group. The range is from 1 to 255.
- **interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For Port Channel interface types, enter the keywords port-channel then the number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
 - For a VLAN interface, enter the keyword vlan then the VLAN ID. The VLAN ID range is from 1 to 4094.
- **brief** (OPTIONAL) Enter the keyword brief to view a table of information on the VRRP groups.

Command Modes

- EXEC
- EXEC Privilege

Command History

```
Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.
```

Usage Information

The following describes the show vrrp brief command shown in the following example.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Lists the interface type, slot and port on which the VRRP group is configured.</td>
</tr>
<tr>
<td>Grp</td>
<td>Displays the VRRP group ID.</td>
</tr>
<tr>
<td>Pri</td>
<td>Displays the priority value assigned to the interface. If the track command is configured to track that interface and the interface is disabled, the cost is subtracted from the priority value assigned to the interface.</td>
</tr>
<tr>
<td>Pre</td>
<td>States whether preempt is enabled on the interface.</td>
</tr>
<tr>
<td></td>
<td>• Y = Preempt is enabled.</td>
</tr>
<tr>
<td></td>
<td>• N = Preempt is not enabled.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the operational state of the interface by using one of the following:</td>
</tr>
<tr>
<td></td>
<td>• NA/IF (the interface is not available).</td>
</tr>
<tr>
<td></td>
<td>• MASTER (the interface associated with the MASTER router).</td>
</tr>
<tr>
<td></td>
<td>• BACKUP (the interface associated with the BACKUP router).</td>
</tr>
<tr>
<td>Master addr</td>
<td>Displays the IP address of the MASTER router.</td>
</tr>
<tr>
<td>Virtual addr(s)</td>
<td>Displays the virtual IP addresses of the VRRP routers associated with the interface.</td>
</tr>
</tbody>
</table>

Example (Brief)

```
Dell>Interface Grp Pri Pre State Master addr Virtual addr(s)
Description-------------------------------------
TenGig 1/9 1 100 Y Master 200.200.200.200 200.200.200.201
  200.200.200.203
Description
TenGig1/9  3 100 Y Master 1.1.1.1 1.1.1.2
  200.200.200.207 ... short
desc
Dell>
```

Usage Information

The following describes the `show vrrp` command shown in the following example.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet 12/3...</td>
<td>Displays the Interface, the VRRP group ID, and the network address. If the interface is not sending VRRP packets, 0.0.0.0 appears as the network address.</td>
</tr>
<tr>
<td>State: master...</td>
<td>Displays the interface’s state:</td>
</tr>
<tr>
<td></td>
<td>• Na/If (not available)</td>
</tr>
<tr>
<td></td>
<td>• master (MASTER virtual router)</td>
</tr>
<tr>
<td></td>
<td>• backup (BACKUP virtual router)</td>
</tr>
</tbody>
</table>
Item Description

- the interface's priority and the IP address of the MASTER.

Hold Down:

This line displays additional VRRP configuration information:

- Hold Down displays the hold down timer interval in seconds.
- Preempt displays TRUE if preempt is configured and FALSE if preempt is not configured.
- AdvInt displays the Advertise Interval in seconds.

Adv rcvd:

This line displays counters for the following:

- Adv rcvd displays the number of VRRP advertisements received on the interface.
- Adv sent displays the number of VRRP advertisements sent on the interface.
- Gratuitous ARP sent displays the number of gratuitous ARPs sent.

Virtual MAC address

Displays the virtual MAC address of the VRRP group.

Virtual IP address

Displays the virtual IP address of the VRRP router to which the interface is connected.

Authentication:

States whether authentication is configured for the VRRP group. If it is, the authentication type and the password are listed.

Tracking states:

This line is displayed if the track command is configured on an interface. Below this line, the following information on the tracked interface is displayed:

- Dn or Up states whether the interface is down or up.
- the interface type slot/port information.

Example

Dell>show vrrp

GigabitEthernet 12/3, VRID: 1, Net: 10.1.1.253
VRF: 0 default
State: Master, Priority: 105, Master: 10.1.1.253 (local)
Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec
Adv rcvd: 0, Adv sent: 1862, Gratuitous ARP sent: 0
Virtual MAC address: 00:00:5e:00:01:01
Virtual IP address: 10.1.1.252
Authentication: (none)
Tracking states for 1 interfaces:
 Up GigabitEthernet 12/17 priority-cost 10

GigabitEthernet 12/4, VRID: 2, Net: 10.1.2.253
State: Master, Priority: 110, Master: 10.1.2.253 (local)
Hold Down: 10 sec, Preempt: TRUE, AdvInt: 1 sec
track

Monitor an interface and lower the priority value of the VRRP group on that interface if it is disabled.

Syntax

```
track interface [priority-cost cost]
```

To disable monitoring, use the `no track interface` command.

Parameters

- **interface** (OPTIONAL) Enter the following keywords and slot/port or number information:
 - For a Loopback interface, enter the keyword `loopback` then a number from 0 to 16383.
 - For Port Channel interface types, enter the keywords `port-channel` then the number. The range is from 1 to 128.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN interface, enter the keyword `vlan` then the VLAN ID. The VLAN ID range is from 1 to 4094.

- **cost** (OPTIONAL) Enter a number as the amount to be subtracted from the priority value. The range is 1 to 254. The default is 10.

Defaults

- `cost = 10`

Command Modes

- VRRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If the interface is disabled, the cost value is subtracted from the priority value and forces a new MASTER election if the priority value is lower than the priority value in the BACKUP virtual routers.
virtual-address

Configure up to 12 IP addresses of virtual routers in the VRRP group. To start sending VRRP packets, set at least one virtual address for the VRRP group.

Syntax

```
virtual-address ip-address1 [... ip-address12]
```

To delete one or more virtual IP addresses, use the `no virtual-address ip-address1 [... ip-address12]` command.

Parameters

- `ip-address1` Enter an IP address of the virtual router in dotted decimal format. The IP address must be on the same subnet as the interface’s primary IP address.
- `... ip-address12` (OPTIONAL) Enter up to 11 additional IP addresses of virtual routers in dotted decimal format. Separate the IP addresses with a space. The IP addresses must be on the same subnet as the interface’s primary IP address.

Defaults

Not configured.

Command Modes

VRRP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The VRRP group only becomes active and sends VRRP packets when a virtual IP address is configured. When you delete the virtual address, the VRRP group stops sending VRRP packets.

A system message appears after you enter or delete the `virtual-address` command.

To guarantee that a VRRP group becomes MASTER, configure the VRRP group’s virtual address with the same IP address as the interface’s primary IP address and change the priority of the VRRP group to 255.

You can ping the virtual addresses configured in all VRRP groups.

vrrp delay minimum

Set the delay time for VRRP initialization after an interface comes up.

Syntax

```
vrrp delay minimum seconds
```

Parameters

seconds

Enter the number of seconds for the delay for VRRP initialization after an interface becomes operational. The range is from 0 to 900 (0 indicates no delay).

Defaults

0

Command Modes

INTERFACE

Command History

Version	Description
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command applies to a single interface. When used with the vrrp delay reload CLI, the later timer rules the VRRP enabling. For example, if vrrp delay reload is 600 and the vrrp delay minimum is 300:

- When the system reloads, VRRP waits 600 seconds (10 minutes) to bring up VRRP on all interfaces that are up and configured for VRRP.
- When an interface comes up, whether as part of a system reload or an interface reload, the system waits 300 seconds (5 minutes) to bring up VRRP on that interface.

Related Command

vrrp delay reload — sets the delay time for VRRP initialization after a system reboot.

vrrp delay reload

Set the delay time for VRRP initialization after a system reboot.

Syntax

vrrp delay reload seconds

Parameters

seconds

Enter the number of seconds for the delay. The range is from 0 to 900 (0 indicates no delay).

Defaults

0

Command Modes

INTERFACE

Command History

Version	Description
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

This command applies to all the VRRP configured interfaces on a system. When used with the vrrp delay minimum CLI, the later timer rules the VRRP enabling. For example, if vrrp delay reload is 600 and the vrrp delay minimum is 300:

- When the system reloads, VRRP waits 600 seconds (10 minutes) to bring up VRRP on all interfaces that are up and configured for VRRP.
When an interface comes up, whether as part of a system reload or an interface reload, the system waits 300 seconds (5 minutes) to bring up VRRP on that interface.

Save the configuration and reload the system for the delay timers to take effect.

Related Command

- **vrrp delay minimum** — sets the delay time for VRRP initialization after a line card reboot.

vrrp-group

Assign a VRRP ID to an interface. You can configure up to 12 VRRP groups per interface.

Syntax

```
vrrp-group vrrp-id
```

Parameters

- **vrrp-id**

 Enter a number as the group ID. The range is from 1 to 255.

Defaults

Not configured.

Command Modes

- INTERFACE

Command History

- **Version 8.3.16.1**

 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The VRRP group only becomes active and sends VRRP packets when a virtual IP address is configured. When you delete the virtual address, the VRRP group stops sending VRRP packets.

Related Command

- **virtual-address** — assigns up to 12 virtual IP addresses per VRRP group.

VRRP for IPv6 Commands

The following commands apply to IPv6.

clear counters vrrp ipv6

Clear the counters recorded for IPv6 VRRP groups.

Syntax

```
clear counters vrrp ipv6 [vrid | vrf instance]
```
Parameters

vrid (OPTIONAL) Enter the number of an IPv6 VRRP group. The range is from 1 to 255.

vrf instance (OPTIONAL) Enter the name of a VRF instance (32 characters maximum) to clear the counters of all IPv6 VRRP groups in the specified VRF.

Defaults Not configured

Command Modes INTERFACE

Command History

Version	**Description**
8.3.16.1 | Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

NOTE: This command also enables you to clear the port configurations corresponding to a range of ports.

- You can specify multiple ports as slot/port-range. For example, if you want to clear the port configurations corresponding to all ports between 1 and 4, specify the port range as `clear counters interfaces interface-type 1/1 - 4`.

debug vrrp ipv6

Allows you to enable debugging of VRRP.

Syntax

dump vrrp ipv6 interface [vrid] {all | packets | state | timer}

Parameters

interface Enter the following keywords and slot/port or number information:

- For a Port Channel interface, enter the keywords `port-channel` then a number.
- For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
- For a VLAN interface, enter the keyword `vlan` then the VLAN ID. The VLAN ID range is from 1 to 4094.

vrid (OPTIONAL) Enter a number from 1 to 255 as the VRRP group ID.

all Enter the keyword `all` to enable debugging of all VRRP groups.

packets Enter the keyword `packets` to enable debugging of VRRP control packets.

state Enter the keyword `state` to enable debugging of VRRP state changes.
Enter the keyword `timer` to enable debugging of the VRRP timer.

Command Modes
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

If no options are specified, debug is active on all interfaces and all VRRP groups.

show vrrp ipv6

View the IPv6 VRRP groups that are active. If no VRRP groups are active, the system returns `No Active VRRP group`.

Syntax

```
show vrrp ipv6 [vrid] [interface] [brief]
```

Parameters

- **vrid** (OPTIONAL) Enter the virtual router identifier for the VRRP group to view only that group. The range is from 1 to 255.
- **interface** Enter the following keywords and slot/port or number information:
 - For a Port Channel interface, enter the keywords `port-channel` then a number. The range is from 1 to 128.
 - For SONET interfaces, enter the keyword `sonet` then the slot/port information.
 - For a 10-Gigabit Ethernet interface, enter the keyword `TenGigabitEthernet` then the slot/port information.
 - For a VLAN interface, enter the keyword `vlan` then the VLAN ID. The VLAN ID range is from 1 to 4094.
- **brief** (OPTIONAL) Enter the keyword `brief` to view a table of information on the VRRP groups.

Command Modes

- EXEC
- EXEC Privilege

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.16.1</td>
<td>Introduced on the MXL 10/40GbE Switch IO Module.</td>
</tr>
</tbody>
</table>

Usage Information

The following describes the `show vrrp ipv6` command shown in the following example.
<table>
<thead>
<tr>
<th>Line Beginning with</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet...</td>
<td>Displays the Interface, the VRRP group ID, and the network address. If the interface is no sending VRRP packets, 0.0.0.0 appears as the network address.</td>
</tr>
<tr>
<td>VRF</td>
<td>VRF instance to which the interface (on which the VRRP group is configured) belongs.</td>
</tr>
</tbody>
</table>
| State: master... | Displays the interface’s state:
 - Na/If (not available).
 - master (MASTER virtual router).
 - backup (BACKUP virtual router).
 the interface’s priority and the IP address of the MASTER. |
| Hold Down:... | This line displays additional VRRP configuration information:
 - Hold Down displays the hold down timer interval in seconds.
 - Preempt displays TRUE if preempt is configured and FALSE if preempt is not configured.
 - AdvInt displays the Advertise Interval in seconds. |
| Adv rcvd:... | This line displays counters for the following:
 - Adv rcvd displays the number of VRRP advertisements received on the interface.
 - Adv sent displays the number of VRRP advertisements sent on the interface.
 - Bad pkts rcvd displays the number of invalid packets received on the interface. |
| Virtual MAC address | Displays the virtual MAC address of the VRRP group. |
| Virtual IP address | Displays the virtual IP address of the VRRP router to which the interface is connected. |
| Tracking states... | Displays information on the tracked interfaces or objects configured for a VRRP group (track command), including:
 - UP or DOWN state of the tracked interface or object (Up or Dn).
 - Interface type and slot/port or object number, description, and time since the last change in the state of the tracked object.
 - Cost to be subtracted from the VRRP group priority if the state of the tracked interface/object goes DOWN. |
Example

Dell#show vrrp ipv6

VRF: 0 default-vrf
State: Master, Priority: 101, Master: fe80::201:e8ff:fe7a:6bb9 (local)
Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec
Accept Mode: FALSE, Master AdvInt: 100 centisec
Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 64
Virtual MAC address:
00:00:5e:00:02:ff
Virtual IP address:
1::255 fe80::255

vrrp-ipv6-group

Assign an interface to a VRRP group.

Syntax

vrrp-ipv6-group vrid

Parameters

vrid

Enter the virtual-router ID number of the VRRP group. The VRID range is from 1 to 255.

Defaults

Not configured.

Command Modes

INTERFACE

Command History

Version Description
8.3.16.1 Introduced on the MXL 10/40GbE Switch IO Module.

Usage Information

The VRRP group only becomes active and sends VRRP packets when a link-local virtual IP address is configured. When you delete the virtual address, the VRRP group stops sending VRRP packets.

- When VRF microcode is not loaded in CAM, the VRID for a VRRP group is the same as the VRID number configured with the vrrp-group or vrrp-ipv6-group command.
- When VRF microcode is loaded in CAM, the VRID for a VRRP group is equal to 16 times the vrrp-group or vrrp-ipv6-group vrid number plus the ip vrf vrf-id number. For example, if VRF microcode is loaded and VRRP group 10 is configured in VRF 2, the VRID used for the VRRP group is (16 x 10) + 2, or 162. This VRID value is used in the lowest byte of the virtual MAC address of the VRRP group and is also used for VRF routing.

NOTE: Configure the same VRID on neighboring routers (Dell Networking OS or non-Dell Networking OS) in the same VRRP group in order for all routers to interoperate.
version

Set the VRRP protocol version for the IPv4 group.

Syntax

```plaintext
version {2 | 3 | both}
```

To return to the default setting, use the `no version` command.

Parameters

- **2**: Enter the keyword 2 to specify VRRP version 2 as defined by RFC 3768, *Virtual Router Redundancy Protocol*.
- **3**: Enter the keyword 3 to specify VRRP version 3 as defined by RFC 5798, *Virtual Router Redundancy Protocol*.
- **both**: Enter the keyword both for in-service migration from VRRP version 2 to VRRP version 3.

Defaults

- **2**

Command Modes

VRRP

Command History

This guide is platform-specific. For command information about other platforms, see the relevant *Dell Networking OS Command Line Reference Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10(0.0)</td>
<td>Introduced on the S6100–ON.</td>
</tr>
<tr>
<td>9.8(1.0)</td>
<td>Introduced on the Z9100–ON.</td>
</tr>
<tr>
<td>9.8(0.0P5)</td>
<td>Introduced on the S4048-ON.</td>
</tr>
<tr>
<td>9.8(0.0P2)</td>
<td>Introduced on the S3048-ON.</td>
</tr>
<tr>
<td>9.7(0.0)</td>
<td>Introduced on the S6000-ON.</td>
</tr>
<tr>
<td>9.5(0.1)</td>
<td>Introduced on the Z9500.</td>
</tr>
<tr>
<td>9.5(0.0)</td>
<td>Introduced on the Z9000, S6000, S4820T, S4810, and MXL.</td>
</tr>
</tbody>
</table>

Usage Information

You can use the `both` command to migrate from VRRPv2 to VRRPv3. When you set the VRRP protocol version to `both`, the switch sends only VRRPv3 advertisements but can receive either VRRPv2 or VRRPv3 packets. To migrate an IPv4 VRRP group from VRRPv2 to VRRPv3:

1. Set the switches with the lowest priority to `both`.
2. Set the switch with the highest priority to version 3.
3. Set all the switches from `both` to version 3.

NOTE: Do not run VRRP version 2 and version 3 in the same group for an extended period of time.
Example
ICMP Message Types

This chapter lists and describes the possible ICMP message type resulting from a ping. The first three columns list the possible symbol or type/code. For example, you would receive a ! or 03 as an echo reply from your ping.

Table 3. ICMP Messages and Their Definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Code</th>
<th>Description</th>
<th>Query</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>Timeout (no reply)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>0</td>
<td>3</td>
<td>echo reply</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td></td>
<td>destination unreachable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>network unreachable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>host unreachable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>protocol unreachable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>port unreachable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>fragmentation needed but don’t fragment bit set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>source route failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>destination network unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>destination host unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>source host isolated (obsolete)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>destination network administratively prohibited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>destination host administratively prohibited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>network unreachable for TOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>host unreachable for TOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>communication administratively prohibited by filtering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>host precedence violation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>precedence cutoff in effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0</td>
<td>source quench</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>redirect</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>redirect for network</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>redirect for host</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Type</td>
<td>Code</td>
<td>Description</td>
<td>Query</td>
<td>Error</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>redirect for type-of-service and network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>redirect for type-of-service and host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>router advertisement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router solicitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>time exceeded:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>time-to-live equals 0 during transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>time-to-live equals 0 during reassembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>parameter problem:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>IP header bad (catchall error)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>required option missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>timestamp request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>timestamp reply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>information request (obsolete)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>information reply (obsolete)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>address mask request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>address mask reply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This chapter lists the traps sent by the Dell Networking Operating System (OS). Each trap is listed by the fields Message ID, Trap Type, and Trap Option.

Table 4. SNMP Traps and Error Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Trap Type</th>
<th>Trap Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLD_START</td>
<td>SNMP</td>
<td>COLDSTART</td>
</tr>
<tr>
<td>%SNMP-5-SNMP_COLD_START: SNMP COLD_START trap sent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARM_START</td>
<td>SNMP</td>
<td>WARMSTART</td>
</tr>
<tr>
<td>COPY_CONFIG_COMPLETE</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>SNMP Copy Config Command Completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK_DOWN</td>
<td>SNMP</td>
<td>LINKDOWN</td>
</tr>
<tr>
<td>%IFA-1-PORT_LINKDN: changed interface state to down:%d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINK_UP</td>
<td>SNMP</td>
<td>LINKUP</td>
</tr>
<tr>
<td>%IFA-1-PORT_LINKUP: changed interface state to up:%d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHENTICATION_FAIL</td>
<td>SNMP</td>
<td>AUTH</td>
</tr>
<tr>
<td>%SNMP-3-SNMP_AUTH_FAIL: SNMP Authentication failed. Request with invalid community string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGP_NEIGHBOR_LOSS</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>OSTATE_DOWN</td>
<td>SNMP</td>
<td>LINKDOWN</td>
</tr>
<tr>
<td>%IFM-1-OSTATE_DN: changed interface state to down:%s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%IFM-5-CSTATE_DN: Changed interface Physical state to down: %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTATE_UP</td>
<td>SNMP</td>
<td>LINKUP</td>
</tr>
<tr>
<td>%IFM-1-OSTATE_UP: changed interface state to up:%s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%IFM-5-CSTATE_UP: Changed interface Physical state to up: %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMON_RISING_THRESHOLD</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>%RPM0-P:CP %SNMP-4-RMON_RISING_THRESHOLD: RMON rising threshold alarm from SNMP OID <oid></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMON_FALLING_THRESHOLD</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>%RPM0-P:CP %SNMP-4-RMON_FALLING_THRESHOLD: RMON falling threshold alarm from SNMP OID <oid></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message ID</td>
<td>Trap Type</td>
<td>Trap Option</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>RMON_HC_RISING_THRESHOLD</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>%RPM0-P:CP %SNMP-4-RMON_HC_RISING_THRESHOLD: RMON high-capacity rising threshold alarm from SNMP OID <oid></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMON_HC_FALLING_THRESHOLD</td>
<td>SNMP</td>
<td>NONE</td>
</tr>
<tr>
<td>%RPM0-P:CP %SNMP-4-RMON_HC_FALLING_THRESHOLD: RMON high-capacity falling threshold alarm from SNMP OID <oid></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESV</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MIN_ALRM_TEMP</td>
<td>ENVMON</td>
<td>TEMP</td>
</tr>
<tr>
<td>%CHMGR-2-MINOR_TEMP: Minor alarm: chassis temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MIN_ALRM_TEMP_CLR</td>
<td>ENVMON</td>
<td>TEMP</td>
</tr>
<tr>
<td>%CHMGR-5-MINOR_TEMP_CLR: Minor alarm cleared: chassis temperature normal (%s %d temperature is within threshold of %dC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MAJ_ALRM_TEMP</td>
<td>ENVMON</td>
<td>TEMP</td>
</tr>
<tr>
<td>%CHMGR-2-MAJOR_TEMP: Major alarm: chassis temperature high (%s %d temperature reaches or exceeds threshold of %dC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MAJ_ALRM_TEMP_CLR</td>
<td>ENVMON</td>
<td>TEMP</td>
</tr>
<tr>
<td>%CHMGR-2-MAJOR_TEMP_CLR: Major alarm cleared: chassis temperature lower (%s %d temperature is within threshold of %dC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TME_TASK_SUSPEND</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%TME-2-TASK_SUSPENDED: SUSPENDED - svce:%d - inst:%d - task:%s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TME_TASK_TERM</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%TME-2-ABNORMAL_TASK_TERMINATION: CRASH - task:%s %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_CPU_THRESHOLD</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%CHMGR-5-CPU_THRESHOLD: Cpu %s usage above threshold. Cpu$SecUsage (%d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_CPU_THRESHOLD_CLR</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%CHMGR-5-CPU_THRESHOLD_CLR: Cpu %s usage drops below threshold. Cpu$SecUsage (%d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MEM_THRESHOLD</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%CHMGR-5-MEM_THRESHOLD: Memory %s usage above threshold. MemUsage (%d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM_MEM_THRESHOLD_CLR</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
</tbody>
</table>

SNMP Traps | 1571
<table>
<thead>
<tr>
<th>Message ID</th>
<th>Trap Type</th>
<th>Trap Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CHMGR-5-MEM_THRESHOLD_CLR: Memory %s usage drops below threshold. MemUsage (%d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACMGR_STN_MOVE</td>
<td>ENVMON</td>
<td>NONE</td>
</tr>
<tr>
<td>%MACMGR-5-DETECT_STN_MOVE: Station Move threshold exceeded for Mac %s in vlan %d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP_BADAUTH</td>
<td>PROTO</td>
<td>NONE</td>
</tr>
<tr>
<td>%RPM1-P:RP2 %VRRP-3-VRRP_BADAUTH: vrid-1 on Gi 11/12 rcvd pkt with authentication type mismatch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%RPM1-P:RP2 %VRRP-3-VRRP_BADAUTH: vrid-1 on Gi 11/12 rcvd pkt with authentication failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP_GO_MASTER</td>
<td>PROTO</td>
<td>NONE</td>
</tr>
<tr>
<td>%VRRP-6-VRRP_MASTER: vrid-%d on %s entering MASTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP_PROTOCOL_ERROR</td>
<td>PROTO</td>
<td>NONE</td>
</tr>
<tr>
<td>VRRP_PROTOERR: VRRP protocol error on %S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP4_ESTABLISHED</td>
<td>PROTO</td>
<td>NONE</td>
</tr>
<tr>
<td>%TRAP-5-PEER_ESTABLISHED: Neighbor %a, state %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP4_BACKW_XSITION</td>
<td>PROTO</td>
<td>NONE</td>
</tr>
<tr>
<td>%TRAP-5-BACKWARD_STATE_TRANS: Neighbor %a, state %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS_TRAP_TYPE_MODULE_STATUS_CHANGE</td>
<td>ETS</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_MODULE_STATUS_CHANGE: ETS Module status changed to enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_MODULE_STATUS_CHANGE: ETS Module status changed to disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS_TRAP_TYPE_ADMIN_MODE_CHANGE</td>
<td>ETS</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_ADMIN_MODE_CHANGE : ETS Admin mode changed to on for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_ADMIN_MODE_CHANGE : ETS Admin mode changed to off for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS_TRAP_TYPE_OPER_STATE_CHANGE</td>
<td>ETS</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_OPER_STATE_CHANGE: ETS Oper state changed to init for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_OPER_STATE_CHANGE: ETS Oper state changed to off for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_OPER_STATE_CHANGE: ETS Oper state changed to recommended for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_OPER_STATE_CHANGE: ETS Oper state changed to rxConfigSrc for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message ID</td>
<td>Trap Type</td>
<td>Trap Option</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>ETS_TRAP_TYPE_PEER_STATE_CHANGE</td>
<td>ETS</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_PEER_STATE_CHANGE : ETS Peer state changed to enabled for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-ETS_TRAP_TYPE_PEER_STATE_CHANGE : ETS Peer state changed to disabled for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC_TRAP_TYPE_MODULE_STATUS_CHANGE</td>
<td>PFC</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_MODULE_STATUS_CHANGE: PFC Module status changed to enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_MODULE_STATUS_CHANGE: PFC Module status changed to disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC_TRAP_TYPE_ADMIN_MODE_CHANGE</td>
<td>PFC</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_ADMIN_MODE_CHANGE : PFC Admin mode changed to on for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_ADMIN_MODE_CHANGE : PFC Admin mode changed to off for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC_TRAP_TYPE_OPER_STATE_CHANGE</td>
<td>PFC</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_OPER_STATE_CHANGE: PFC Oper state changed to init for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_OPER_STATE_CHANGE: PFC Oper state changed to off for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_OPER_STATE_CHANGE: PFC Oper state changed to recommended for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_OPER_STATE_CHANGE: PFC Oper state changed to rxConfigSrc for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC_TRAP_TYPE_PEER_STATE_CHANGE</td>
<td>PFC</td>
<td>NONE</td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_PEER_STATE_CHANGE: PFC Peer state changed to enabled for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%DIFFSERV-5-PFC_TRAP_TYPE_PEER_STATE_CHANGE: PFC Peer state changed to disabled for port %s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIPS_MAX_FCF_LIMIT_RCH</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-MAX_FCF_LIMIT_RCH: Number of FCFs reached maximum allowed limit in VLAN %d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIPS_MAX_ENODE_LIMIT_RCH</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-MAX_ENODE_LIMIT_RCH: Number of ENodes reached maximum allowed limit in the system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIPS_MAX_SESSION_LIMIT_RCH</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-MAX_SESSION_LIMIT_RCH: Number of sessions reached maximum allowed limit in the system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message ID</td>
<td>Trap Type</td>
<td>Trap Option</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>FIPS_FCF_DROP</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-FCF_DROP: New FCF(%d,%s) discovered in Vlan %d is dropped as max-FCF-limit per VLAN is reached</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>FIPS_ENODE_DROP</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-ENODE_DROP: New ENode(%d,%s) discovered in interface %s dropped as max-ENode-limit in system reached</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>FIPS_SESSION_DROP</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-SESSION_DROP: New session(%d,%s) request in interface %s dropped as max-session-limit in system reached</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>FIPS_ACL_INSTALL_FAIL</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>%FCOE-5-ACL_INSTALL_FAIL: problem in installing ACL entries due to no space or hardware failure</td>
<td>FIPS</td>
<td>NONE</td>
</tr>
<tr>
<td>CHMGR_ENT_LAST_CHANGE_TIME</td>
<td>ENTITY</td>
<td>NONE</td>
</tr>
<tr>
<td>No error messages. Time, at which there is a change in a physical entity, is logged.</td>
<td>ENTITY</td>
<td>NONE</td>
</tr>
</tbody>
</table>
This part provides a generic, broad-level description of the operations, capabilities, and configuration commands of the Fiber Channel (FC) Flex IO module.

Topics:
- FC Flex IO Modules
- Data Center Bridging (DCB) for FC Flex IO Modules
- NPIV Proxy Gateway for FC Flex IO Modules

Data Center Bridging (DCB) for FC Flex IO Modules

Data center bridging (DCB) refers to a set of IEEE Ethernet enhancements that provide data centers with a single, converged network to support multiple traffic types, including local area network (LAN), server, and storage traffic.

The Fibre Channel (FC) Flex IO module is supported on switch. The switch installed with the FC Flex IO module functions as a top-of-rack edge switch that supports converged enhanced ethernet (CEE) traffic — Fibre Channel over Ethernet (FCoE) for storage, inter-process communication (IPC) for servers, and Ethernet local area network (LAN) (IP cloud) for data — and FC links to one or more storage area network (SAN) fabrics.

The `dcb-input` and `dcb-output` configuration commands are deprecated, starting with Dell Networking OS Release 9.3(0.0) on the Dell switches. Use the `dcb-map` command to create a DCB map to configure priority flow control (PFC) and enhanced transmission selection (ETS) on Ethernet ports that support converged Ethernet traffic.

The Dell Networking Operating System (OS) commands for the DCB features include 802.1Qbb priority-based flow control (PFC), 802.1Qaz enhanced transmission selection (ETS), and the data center bridging exchange (DCBX) protocol.
NPIV Proxy Gateway for FC Flex IO Modules

The N-port identifier virtualization (NPIV) Proxy Gateway (NPG) feature provides FCoE-FC bridging capability on the MXL 10/40GbE Switch with the FC Flex IO module switch, allowing server CNAs to communicate with SAN fabrics over the MXL 10/40GbE Switch with the FC Flex IO module.

To configure the MXL 10/40GbE Switch with the FC Flex IO module to operate as an NPIV proxy gateway, use the following commands:

description (for FCoE maps)

In an FCoE map, add a text description of the FCoE and FC parameters used to transmit storage traffic over an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway in a converged fabric.

Syntax

description text

Parameters

text

- Enter a maximum of 32 characters.

Defaults

None

Command Modes

FCOE MAP

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

The text description is displayed in `show fcoe-map` command output.

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.

- `show fcoe-map` — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.
fabric

Apply an FCoE map on a fabric-facing Fibre Channel (FC) port.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

```
fabric map-name
```

Parameters

- **map-name**: Maximum: 32 alphanumeric characters.

Defaults

None

Command Modes

- INTERFACE FIBRE_CHANNEL

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

An FCoE map is a template used to map FCoE and FC parameters in a converged fabric. An FCoE map is used to virtualize upstream FC ports on an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway so that they appear to downstream server CNA ports as FCoE forwarder (FCF) ports on an FCoE network. When applied to FC and Ethernet ports on an NPIV proxy gateway, an FCoE map allows the switch to operate as an FCoE-FC bridge between an FC SAN and an FCoE network by providing FCoE-enabled servers and switches with the necessary parameters to log in to a SAN fabric. Use the `fcoe-map` command to create an FCoE map.

On an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway, you cannot apply an FCoE map on fabric-facing FC ports and server-facing Ethernet ports.

After you apply an FCoE map on an FC interface, when the port is enabled (no `shutdown`), the NPIV proxy gateway starts sending FIP multicast advertisements on behalf of the FC port to downstream servers in order to advertise the availability of a new FCF port on the FCoE VLAN.

To remove an FCoE map from an FC interface, enter the `no fabric map-name` command in Interface configuration mode.

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.

- `show fcoe-map` — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.
fabric-id vlan

In an FCoE map, configure the association between the dedicated VLAN used to carry FCoE traffic between servers and a SAN, and the fabric where the desired storage arrays are installed.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

```
fabric-id fabric-num vlan vlan-id
```

Parameters

- `fabric-id fabric-num`
 Enter a fabric ID number that is the same as the ID number of the dedicated VLAN used to carry FCoE storage traffic to the fabric specified in the FCoE map. You can enter a fabric ID in the range 1–4094.

- `vlan vlan-id`
 Enter the ID number of the dedicated VLAN used to carry FCoE storage traffic between servers and a SAN fabric and specified with the `vlan` command in the FCoE map.

Defaults

None

Command Modes

FCOE MAP

Command History

Version 9.3(0.0)
Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

In the `fabric-id vlan` command, the fabric and VLAN ID numbers must be the same.

In each FCoE map, the fabric ID, FC-MAP value, and FCoE VLAN parameters must be unique.

To remove a fabric-VLAN association from an FCoE map, enter the `no fabric-id vlan` command.

You must first create a VLAN and then specify the configured VLAN ID in the `fabric-id vlan` command. Otherwise, the following error message is displayed.

```
FTOS(conf-fcoe-f)#fabric-id 10 vlan 10 % Error: Vlan 10 does not exist
```

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.

- `show fcoe-map` — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.
fcf-priority

In an FCoE map, configure the priority used by a server CNA to select an upstream FCoE forwarder (FCF).

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

```
fcf-priority priority
```

Parameters

- `priority`

 Enter the priority assigned to the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway, which appears to a downstream server CNA as an FCF. The range of FCF priority values is from 1 to 255.

Defaults

128

Command Modes

FCOE MAP

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

The FCF priority you assign to an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module is used by server CNAs to select an upstream FCF to use for a fabric login (FLOGI).

To remove a configured FCF priority from an FCoE map, enter the `no fcf-priority` command.

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.
- `show fcoe-map` — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.

fc-map

In an FCoE map, configure the FCoE mapped address prefix (FC-MAP) value which is used to identify FCoE traffic transmitted on the FCoE VLAN for the specified fabric.

Syntax

```
fc-map fc-map-value
```

Parameters

- `fc-map-value`

 Enter the unique MAC address prefix used by a SAN fabric.
The range of FC-MAP values is from 0EFC00 to 0EFCFF.

Defaults
None

Command Modes
FCoE MAP

Command History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6(0.0)</td>
<td>Supported on the FN 2210S Aggregator.</td>
</tr>
<tr>
<td>9.3(0.0)</td>
<td>Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.</td>
</tr>
</tbody>
</table>

Usage Information
The FC-MAP value you enter must match the FC-MAP value used by an FC switch or FCoE forwarder (FCF) in the fabric. An FCF switch accepts only FCoE traffic that uses the correct FC-MAP value.

The FC-MAP value is used to generate the fabric-provided MAC address (FP-MAC). The FPMA is used by servers to transmit FCoE traffic to the fabric. An FC-MAP can be associated with only one FCoE VLAN and vice versa.

In an FCoE map, the FC-MAP value, fabric ID, and FCoE VLAN parameters must be unique.

To remove a configured FC-MAP value from an FCoE map, enter the `no fc-map` command.

Related Commands
fcoe-map — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.

show fcoe-map — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.

fcoe-map

Create an FCoE map which contains the parameters used to configure the links between server CNAs and a SAN fabric. Apply the FCoE map on a server-facing Ethernet port.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax
```
fcoe-map map-name
```

Parameters

- `map-name` Maximum: 32 alphanumeric characters.
Defaults

None on the MXL 10/40GbE Switch with FC Flex IO modules. On the I/O Aggregator with FC Flex IO modules, the following parameters are applied on all the FC Flex IO module interfaces:

- Description: SAN_FABRIC
- Fabric-id: 1002
- Fcoe-vlan: 1002
- Fc-map: 0x0efc00
- Fcf-priority: 128
- Fka-adv-period: 8000mSec
- Keepalive: enable
- Vlan priority: 3

Command Modes

CONFIGURATION
INTERFACE

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

An FCoE map is a template used to map FCoE and FC parameters in a converged fabric. An FCoE map is used to virtualize upstream FC ports on an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway so that they appear to downstream server CNA ports as FCoE forwarder (FCF) ports on an FCoE network. When applied to FC and Ethernet ports on an NPIV proxy gateway, an FCoE map allows the switch to operate as an FCoE-FC bridge between an FC SAN and an FCoE network by providing FCoE-enabled servers and switches with the necessary parameters to log in to a SAN fabric.

On an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway, you cannot apply an FCoE map is applied on fabric-facing FC ports and server-facing 10–Gigabit Ethernet ports.

An FCoE map consists of the following parameters: the dedicated FCoE VLAN used for storage traffic, the destination SAN fabric (FC-MAP value), FCF priority used by a server, and the FIP keepalive (FKA) advertisement timeout.

In each FCoE map, the fabric ID, FC-MAP value, and FCoE VLAN parameters must be unique. Use one FCoE map to access one SAN fabric. You cannot use the same FCoE map to access different fabrics.

To remove an FCoE map from an Ethernet interface, enter the no fcoe-map map-name command in Interface configuration mode.

Related Commands

show fcoe-map—displays the Fibre Channel and FCoE configuration parameters in FCoE maps.
fka-adv-period

In an FCoE map, configure the time interval used to transmit FIP keepalive (FKA) advertisements.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

fka-adv-period seconds

Parameters

seconds Enter the time period (in seconds) used to send FIP keepalive messages to peer devices. The range is from 8 to 90 seconds.

Defaults

8 seconds

Command Modes

FCOE MAP

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

To delete the FIP keepalive time period from an FCoE map, enter the no fka-adv-period command.

Related Commands

fcoe-map — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.

show fcoe-map — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.

interface vlan (NPIV proxy gateway)

Create a dedicated VLAN to be used to send and receive Fibre Channel traffic over FCoE links between servers and a fabric over an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

interface vlan vlan-id

Parameters

vlan-id Enter a number as the VLAN Identifier. The range is 1 to 4094.
Defaults: Not configured.

Command Modes: CONFIGURATION

Command History:
Version 9.3.0.0
Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module configured as an NPIV proxy gateway.

Usage Information:
FCoE storage traffic received from servers on an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway is de-capsulated into Fibre Channel packets and forwarded over FC links to SAN switches in a specified fabric. You must configure a separate FCoE VLAN for each fabric to which FCoE traffic is forwarded. Any non-FCoE traffic sent on a dedicated FCoE VLAN will be dropped.

You configure the association between a dedicated VLAN, which carries FCoE traffic from server CNAs over the NPIV proxy gateway to a SAN fabric in which destination storage arrays are installed, in an FCoE map by using the `fabric id vlan` command.

When you apply an FCoE map to a server-facing Ethernet port, the port is automatically configured as a tagged member of the FCoE VLAN.

For more information about VLANs and the commands to configure them, refer to the Virtual LAN (VLAN) Commands section of the Layer 2 chapter.

Example (Single Range):
```
FTOS(conf)#interface vlan 10
FTOS(conf-if-vl-3)#
```

Related Commands:
- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.
- `show fcoe-map` — displays the Fibre Channel and FCoE configuration parameters in FCoE maps.

keepalive

In an FCoE map, enable the monitoring of FIP keepalive messages (if it is disabled).

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax: `keepalive`

Parameters: None

Defaults: FIP keepalive monitoring is enabled on Ethernet and Fibre Channel interfaces.

Command Modes: FCOE MAP
show fcoe-map

Display the Fibre Channel and FCoE configuration parameters in FCoE maps.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

```
show fcoe-map [brief | map-name]
```

Parameters

- `brief`: Displays an overview of currently configured FCoE maps.
- `map-name`: Displays the FC and FCoE configuration parameters in a specified FCoE map. The FCoE map is applied on Ethernet (FCoE) and FC ports to transmit FC storage traffic to a specified fabric.

Command Modes

- EXEC
- EXEC Privilege

Command History

Version 9.3(0.0) Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

Use the show fcoe-map command to display the FC and FCoE parameters used to configure server-facing Ethernet (FCoE) and fabric-facing FC ports in all FCoE maps on an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway.
In each FCoE map, the values for the fabric ID and FC-MAP that identify the SAN fabric to which FC storage traffic is sent, and the FCoE VLAN to be used must be unique.

An FCoE map is used to identify the SAN fabric to which FCoE storage traffic is sent and to virtualize M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module FC ports so that they appear to downstream server CNA ports as FCoE Forwarder (FCF) ports on an FCoE network.

The following table describes the show fcoe-map brief output shown in the example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric-Name</td>
<td>Name of a SAN fabric.</td>
</tr>
<tr>
<td>Fabric ID</td>
<td>The ID number of the SAN fabric to which FC traffic is forwarded.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The dedicated FCoE VLAN used to transport FCoE storage traffic between servers and a fabric over the NPIV proxy gateway. The configured VLAN ID must be the same as the fabric ID.</td>
</tr>
<tr>
<td>FC-MAP</td>
<td>FCoE MAC address-prefix value - The unique 24-bit MAC address prefix that identifies a fabric.</td>
</tr>
<tr>
<td>FCF Priority</td>
<td>The priority used by a server to select an upstream FCoE forwarder.</td>
</tr>
<tr>
<td>Config-State</td>
<td>Indicates whether the configured FCoE and FC parameters in the FCoE map are valid: Active (all mandatory FCoE and FC parameters are correctly configured) or Incomplete (either the FC-MAP value, fabric ID, or VLAN ID are not correctly configured).</td>
</tr>
<tr>
<td>Oper-State</td>
<td>Operational status of link to the fabric: Up (link is up and transmitting FC traffic), Down (link is down and not transmitting FC traffic), Link-wait (link is up and waiting for FLOGI to complete on peer FC port), or Removed (port has been shut down).</td>
</tr>
</tbody>
</table>

The following table describes the show fcoe-map map-name output shown in the example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric-Name</td>
<td>Name of a SAN fabric.</td>
</tr>
<tr>
<td>Fabric ID</td>
<td>The ID number of the SAN fabric to which FC traffic is forwarded.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The dedicated FCoE VLAN used to transport FCoE storage traffic between servers and a fabric over the NPIV proxy gateway. The configured VLAN ID must be the same as the fabric ID.</td>
</tr>
</tbody>
</table>
Field Description

- **VLAN priority**: FCoE traffic uses VLAN priority 3. (This setting is not user-configurable.)

- **FC-MAP**: FCoE MAC address-prefix value - The unique 24-bit MAC address prefix that identifies a fabric.

- **FKA-ADV-period**: Time interval (in seconds) used to transmit FIP keepalive advertisements.

- **FCF Priority**: The priority used by a server to select an upstream FCoE forwarder.

- **Config-State**: Indicates whether the configured FCoE and FC parameters in the FCoE map are valid: Active (all mandatory FCoE and FC parameters are correctly configured) or Incomplete (either the FC-MAP value, fabric ID, or VLAN ID are not correctly configured).

- **Oper-State**: Operational status of link to the fabric: Up (link is up and transmitting FC traffic), Down (link is down and not transmitting FC traffic), Link-wait (link is up and waiting for FLOGI to complete on peer FC port), or Removed (port has been shut down).

- **Members**: M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module Ethernet and FC ports that are members of the dedicated FCoE VLAN that carries storage traffic to the specified fabric.

Example

```
FTOS#show fcoe-map brief
Fabric-Name Fabric-Id Vlan-Id FC-MAP FCF-Priority Config-State Oper-State
test        16          16      0efc02  128 ACTIVE        UP
cnatest     1003           1003    0efc03  128 ACTIVE        UP
sitest      1004        1004    0efc04  128 ACTIVE        DOWN

FTOS#show fcoe-map si
Fabric Name si
Fabric Id 1004
Vlan Id 1004
Vlan priority 3
FC-MAP 0efc04
FKA-ADV-Period 8
FcF Priority 128
Config-State ACTIVE
Oper-State DOWN
Members
```

Related Commands

- `fcoe-map` — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.
show npiv devices

Display the FCoE and FC devices currently logged in to an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway.

M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module

Syntax

```
show npiv devices [brief]
```

Parameters

- **brief**: Displays an overview of current server CNA-fabric connections over an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway.

Command Modes

- EXEC
- EXEC Privilege

Command History

- **Version 9.3(0.0)**: Introduced on the M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module.

Usage Information

Use the `show npiv devices` command to display information on the server CNA, server-facing Ethernet and fabric-facing FC ports, and the SAN fabric in each server-fabric connection over an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module NPIV proxy gateway.

The following table describes the `show npiv devices brief` output shown in the example below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENode-Intf</td>
<td>M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module Ethernet interface (slot/port) to which a server CNA is connected.</td>
</tr>
</tbody>
</table>
Field | **Description**
--- | ---
FLOGI | ENode logged in using a fabric login (FLOGI).
FDISC | ENode logged in using a fabric discovery (FDISC).

Status
Operational status of the link between a server CNA port and a SAN fabric: Logged In - Server has logged in to the fabric and is able to transmit FCoE traffic.

Example
Dell# show npiv devices brief
Total NPiV Devices = 2

<table>
<thead>
<tr>
<th>ENode-Intf</th>
<th>ENode-WWPN</th>
<th>FCoE-Vlan</th>
<th>Fabric-Intf</th>
<th>Fabric-Map</th>
<th>LoginMethod</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te 0/12</td>
<td>20:01:00:10:18:f1:94:20</td>
<td>1003</td>
<td>Fc 0/5</td>
<td>fid_1003</td>
<td>FLOGI</td>
<td>LOGGED_IN</td>
</tr>
<tr>
<td>Te 0/13</td>
<td>10:00:00:00:c9:d9:9c:cb</td>
<td>1003</td>
<td>Fc 0/0</td>
<td>fid_1003</td>
<td>FDISC</td>
<td>LOGGED_IN</td>
</tr>
</tbody>
</table>

Usage Information
The following table describes the show npiv devices output shown in the example below.

Field	**Description**
ENode [number] | A server CNA that has successfully logged in to a fabric over an M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module Ethernet port in ENode mode.
Enode MAC | MAC address of a server CNA port.
Enode Intf | Port number of a server-facing Ethernet port operating in ENode mode.
FCF MAC | Fibre Channel forwarder MAC: MAC address of M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module FCF interface.
Fabric Intf | Fabric-facing Fibre Channel port (slot/port) on which FCoE traffic is transmitted to the specified fabric.
FCoE VLAN | ID of the dedicated VLAN used to transmit FCoE traffic from a server CNA to a fabric and configured on both the server-facing M I/O Aggregator and MXL 10/40GbE Switch with the FC Flex IO module port and server CNA port.
Fabric Map | Name of the FCoE map containing the FCoE/FC configuration parameters for the server CNA-fabric connection.
Enode WWPN | Worldwide port name of the server CNA port.
Enode WWNN | Worldwide node name of the server CNA.
FCoE MAC | Fabric-provided MAC address (FPMA). The FPMA consists of the FC-MAP value in the FCoE map and the FC-ID provided by the fabric after a successful FLOGI. In the FPMA, the most significant bytes are the FC-MAP; the least significant bytes are the FC-ID.
FC-ID | FC port ID provided by the fabric.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginMethod</td>
<td>Method used by the server CNA to log in to the fabric; for example, FLOGI or FDISC.</td>
</tr>
<tr>
<td>Secs</td>
<td>Number of seconds that the fabric connection is up.</td>
</tr>
<tr>
<td>State</td>
<td>Status of the fabric connection: logged in.</td>
</tr>
</tbody>
</table>

Example

```plaintext
ENode[0]:
ENode MAC    : 00:10:18:f1:94:21
ENode Intf   : Te 0/12
FCF MAC      : 5c:f9:dd:ef:10:c8
Fabric Intf  : Fc 0/5
FCoE Vlan    : 1003
Fabric Map   : fid_1003
ENode WWPN    : 20:01:00:10:18:f1:94:20
ENode WWNN    : 20:00:00:10:18:f1:94:21
FCoE MAC      : 0e:fc:03:01:02:01
FC-ID         : 01:02:01
LoginMethod   : FLOGI
Secs          : 5593
Status        : LOGGED_IN

ENode[1]:
ENode MAC    : 00:10:18:f1:94:22
ENode Intf   : Te 0/13
FCF MAC      : 5c:f9:dd:ef:10:c9
Fabric Intf  : Fc 0/0
FCoE Vlan    : 1003
Fabric Map   : fid_1003
ENode WWPN    : 20:00:00:00:c9:d9:9c:cb
ENode WWNN    : 10:00:00:00:c9:d9:9c:cd
FCoE MAC      : 0e:fc:03:01:02:02
FC-ID         : 01:02:01
LoginMethod   : FDISC
Secs          : 5593
Status        : LOGGED_IN
```

Related Commands

fcoe-map — creates an FCoE map which contains the parameters used in the communication between servers and a SAN fabric.