Notes, cautions, and warnings

NOTE: A NOTE indicates important information that helps you make better use of your product.

CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.
1 Getting Started.. 24

Supported Hardware.. 24
Download OS10 image and license.. 25
Installation using ONIE... 26
 Automatic installation... 27
 Manual installation... 28
Log into OS10.. 29
Install OS10 license.. 30
Zero-touch deployment... 31
 ZTD DHCP server configuration... 33
 ZTD provisioning script... 33
 ZTD CLI batch file... 34
 Post-ZTD script... 35
 ZTD commands... 35
Remote access... 36
 Configure Management IP address.. 37
 Management Route Configuration... 37
 Configure user name and password... 38
Upgrade OS10... 38
CLI Basics... 39
 User accounts... 39
 Key CLI features.. 39
 CLI command modes.. 39
 CLI command hierarchy... 40
 CLI command categories... 40
 CONFIGURATION Mode... 40
 Command help.. 41
 Check device status... 42
 Candidate configuration... 45
 Change to transaction-based configuration mode.. 48
 Copy running configuration.. 49
 Restore startup configuration.. 49
 Reload system image.. 50
 Filter show commands.. 50
 Alias command... 51
 Batch mode... 54
 Linux shell commands.. 55
 SSH commands.. 56
 OS9 environment commands... 56
Common commands.. 56
 alias... 57
Contents

Fibre Channel interfaces.. 86
Management interface ... 88
VLAN interfaces... 88
User-configured default VLAN... 89
VLAN scale profile... 89
Loopback interfaces.. 90
Port-channel interfaces.. 90
 Create port-channel.. 91
 Add port member.. 91
 Minimum links.. 92
 Assign Port Channel IP Address.. 92
 Remove or disable port-channel.. 92
 Load balance traffic.. 92
 Change hash algorithm... 93
Configure interface ranges... 93
Switch-port profiles.. 94
 S4148-ON Series port profiles.. 95
 S4148U-ON port profiles.. 96
Configure breakout mode.. 97
Breakout auto-configuration... 98
Forward error correction... 99
Energy-efficient Ethernet... 100
 Enable energy-efficient Ethernet.. 100
 Clear EEE counters.. 100
 View EEE status/statistics... 101
 EEE commands.. 101
View interface configuration.. 104
Interface commands... 107
 channel-group... 107
 default vlan-id... 108
 description (Interface).. 108
 duplex... 109
 feature auto-breakout.. 109
 fec.. 110
 interface breakout... 110
 interface ethernet... 110
 interface loopback.. 111
 interface mgmt... 111
 interface null.. 112
 interface port-channel.. 112
 interface range... 112
 interface vlan.. 113
 link-bundle-utilization.. 113
 mode.. 114
 mode l3... 115
<table>
<thead>
<tr>
<th>3 Fibre Channel</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminology</td>
<td>128</td>
</tr>
<tr>
<td>Virtual fabric</td>
<td>128</td>
</tr>
<tr>
<td>Fibre Channel zoning</td>
<td>131</td>
</tr>
<tr>
<td>F_Port on Ethernet</td>
<td>132</td>
</tr>
<tr>
<td>Pinning FCoE traffic to a specific port of a port-channel</td>
<td>133</td>
</tr>
<tr>
<td>Sample FSB configuration on VLT network</td>
<td>135</td>
</tr>
<tr>
<td>Sample FC Switch configuration on VLT network</td>
<td>137</td>
</tr>
<tr>
<td>Sample FSB configuration on non-VLT network</td>
<td>138</td>
</tr>
<tr>
<td>Sample FC Switch configuration on non-VLT network</td>
<td>140</td>
</tr>
<tr>
<td>Configuration guidelines</td>
<td>141</td>
</tr>
<tr>
<td>F_Port commands</td>
<td>141</td>
</tr>
<tr>
<td>fc alias</td>
<td>141</td>
</tr>
<tr>
<td>fc zone</td>
<td>142</td>
</tr>
<tr>
<td>fc zoneset</td>
<td>142</td>
</tr>
<tr>
<td>feature fc</td>
<td>142</td>
</tr>
<tr>
<td>member (alias)</td>
<td>143</td>
</tr>
<tr>
<td>member (zone)</td>
<td>143</td>
</tr>
<tr>
<td>member (zoneset)</td>
<td>144</td>
</tr>
<tr>
<td>show fc alias</td>
<td>144</td>
</tr>
<tr>
<td>show fc interface-area-id mapping</td>
<td>144</td>
</tr>
<tr>
<td>show fc ns switch</td>
<td>144</td>
</tr>
<tr>
<td>show fc zone</td>
<td>145</td>
</tr>
<tr>
<td>show fc zoneset</td>
<td>146</td>
</tr>
<tr>
<td>zone default-zone permit</td>
<td>147</td>
</tr>
<tr>
<td>zoneset activate</td>
<td>148</td>
</tr>
<tr>
<td>NPG commands</td>
<td>148</td>
</tr>
<tr>
<td>fc port-mode F</td>
<td>148</td>
</tr>
</tbody>
</table>
5 Layer 3...282
Virtual routing and forwarding..282
Configure management VRF..282
Configure non-default VRF instances..284
VRF configuration..287
View VRF instance information..291
Static route leaking..292
VRF commands..294
Bidirectional Forwarding Detection...300
BFD session states..301
BFD three-way handshake...302
BFD configuration..302
Configure BFD globally...303
BFD for BGP...303
BFD for OSPF..307
BFD for Static route...312
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD commands</td>
<td>315</td>
</tr>
<tr>
<td>Border Gateway Protocol</td>
<td>321</td>
</tr>
<tr>
<td>Sessions and peers</td>
<td>322</td>
</tr>
<tr>
<td>Route reflectors</td>
<td>323</td>
</tr>
<tr>
<td>Multiprotocol BGP</td>
<td>324</td>
</tr>
<tr>
<td>Attributes</td>
<td>324</td>
</tr>
<tr>
<td>Selection criteria</td>
<td>324</td>
</tr>
<tr>
<td>Weight and local preference</td>
<td>325</td>
</tr>
<tr>
<td>Multiexit discriminators</td>
<td>326</td>
</tr>
<tr>
<td>Origin</td>
<td>326</td>
</tr>
<tr>
<td>AS path and next-hop</td>
<td>327</td>
</tr>
<tr>
<td>Best path selection</td>
<td>327</td>
</tr>
<tr>
<td>More path support</td>
<td>328</td>
</tr>
<tr>
<td>Advertise cost</td>
<td>328</td>
</tr>
<tr>
<td>4-Byte AS numbers</td>
<td>329</td>
</tr>
<tr>
<td>AS number migration</td>
<td>329</td>
</tr>
<tr>
<td>Configure Border Gateway Protocol</td>
<td>330</td>
</tr>
<tr>
<td>Enable BGP</td>
<td>330</td>
</tr>
<tr>
<td>Configure Dual Stack</td>
<td>333</td>
</tr>
<tr>
<td>Configure administrative distance</td>
<td>333</td>
</tr>
<tr>
<td>Peer templates</td>
<td>334</td>
</tr>
<tr>
<td>Neighbor fall-over</td>
<td>337</td>
</tr>
<tr>
<td>Configure password</td>
<td>339</td>
</tr>
<tr>
<td>Fast external fallover</td>
<td>340</td>
</tr>
<tr>
<td>Passive peering</td>
<td>342</td>
</tr>
<tr>
<td>Local AS</td>
<td>342</td>
</tr>
<tr>
<td>AS number limit</td>
<td>343</td>
</tr>
<tr>
<td>Redistribute routes</td>
<td>344</td>
</tr>
<tr>
<td>Additional paths</td>
<td>344</td>
</tr>
<tr>
<td>MED attributes</td>
<td>345</td>
</tr>
<tr>
<td>Local preference attribute</td>
<td>345</td>
</tr>
<tr>
<td>Weight attribute</td>
<td>346</td>
</tr>
<tr>
<td>Enable multipath</td>
<td>347</td>
</tr>
<tr>
<td>Route-map filters</td>
<td>347</td>
</tr>
<tr>
<td>Route reflector clusters</td>
<td>347</td>
</tr>
<tr>
<td>Aggregate routes</td>
<td>348</td>
</tr>
<tr>
<td>Confederations</td>
<td>349</td>
</tr>
<tr>
<td>Route dampening</td>
<td>350</td>
</tr>
<tr>
<td>Timers</td>
<td>351</td>
</tr>
<tr>
<td>Neighbor soft-reconfiguration</td>
<td>351</td>
</tr>
<tr>
<td>BGP commands</td>
<td>352</td>
</tr>
<tr>
<td>Equal cost multi-path</td>
<td>385</td>
</tr>
<tr>
<td>Load balancing</td>
<td>385</td>
</tr>
<tr>
<td>ECMP commands</td>
<td>386</td>
</tr>
<tr>
<td>IPv4 routing</td>
<td>388</td>
</tr>
</tbody>
</table>
Virtual Router Redundancy Protocol..499
 Configuration..500
 Create virtual router..501
 Group version..501
 Virtual IP addresses..502
 Configure virtual IP address..502
 Configure virtual IP address in a VRF..503
 Set group priority..504
 Authentication...505
 Disable preemption...505
 Advertisement interval..506
 Interface/object tracking...507
 Configure tracking..507
 VRRP commands...508

6 VXLAN ..514
 VXLAN concepts..514
 VXLAN as NVO solution..515
 Configure VXLAN..516
 Monitor VXLAN..520
 VXLAN MAC addresses..522
 VXLAN commands...524
 member-interface..524
 nve...525
 remote-vtep..525
 show nve remote-vtep...526
 show nve remote-vtep counters..526
 show nve vxlan-vni..527
 show virtual-network...527
 show virtual-network counters..528
 show virtual-network interface counters...528
 show virtual-network interface..529
 show virtual-network vlan...529
 show vlan (virtual network)..530
 source-interface loopback...530
 virtual-network...531
 virtual-network untagged-vlan..531
 vxlan-vni..531
 VXLAN MAC commands...532
 clear mac address-table dynamic nve remote-vtep..532
 clear mac address-table dynamic virtual-network..532
 show mac address-table count extended...533
 show mac address-table count nve..534
 show mac address-table count virtual-network...534
 show mac address-table extended..535
 show mac address-table nve..536
show mac address-table virtual-network ... 536
Example: VXLAN with static VTEP .. 537
VTEP 1 Leaf Switch ... 538
VTEP 2 Leaf Switch ... 541
VTEP 3 Leaf Switch ... 543
VTEP 4 Leaf Switch ... 546
Spine Switch 1 .. 548
Spine Switch 2 .. 549
BGP EVPN for VXLAN .. 549
BGP EVPN compared to static VXLAN ... 550
VXLAN BGP EVPN operation .. 550
Configure BGP EVPN for VXLAN ... 553
VXLAN BGP commands .. 556
VXLAN EVPN commands ... 559
Example: VXLAN with BGP EVPN .. 564

7 UFT modes .. 576
Configure UFT modes ... 577
IPv6 extended prefix routes .. 578
UFT commands ... 579
hardware forwarding-table mode .. 579
hardware i3 ipv6-extended-prefix .. 579
show hardware forwarding-table mode ... 580
show hardware forwarding-table mode all ... 580
show hardware i3 .. 580

8 System management .. 582
Dynamic Host Configuration Protocol .. 582
Packet format and options ... 582
DHCP server .. 584
Automatic address allocation ... 584
Hostname resolution .. 585
Manual binding entries ... 586
DHCP relay agent ... 587
View DHCP Information ... 588
System domain name and list ... 588
DHCP commands ... 589
DNS commands ... 595
IPv4 DHCP limitations .. 597
Network Time Protocol .. 598
Enable NTP ... 599
Broadcasts ... 599
Source IP address ... 600
Authentication .. 600
NTP commands ... 601
System clock ... 606
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Clock commands</td>
<td>607</td>
</tr>
<tr>
<td>System banners</td>
<td>608</td>
</tr>
<tr>
<td>Login banner</td>
<td>608</td>
</tr>
<tr>
<td>MOTD banner</td>
<td>608</td>
</tr>
<tr>
<td>System banner commands</td>
<td>609</td>
</tr>
<tr>
<td>User session management</td>
<td>610</td>
</tr>
<tr>
<td>User session management commands</td>
<td>611</td>
</tr>
<tr>
<td>Telnet server</td>
<td>612</td>
</tr>
<tr>
<td>Telnet commands</td>
<td>612</td>
</tr>
<tr>
<td>Security</td>
<td>613</td>
</tr>
<tr>
<td>User re-authentication</td>
<td>614</td>
</tr>
<tr>
<td>Password strength</td>
<td>614</td>
</tr>
<tr>
<td>Role-based access control</td>
<td>615</td>
</tr>
<tr>
<td>Assign user role</td>
<td>615</td>
</tr>
<tr>
<td>RADIUS authentication</td>
<td>616</td>
</tr>
<tr>
<td>TACACS+ authentication</td>
<td>617</td>
</tr>
<tr>
<td>TACACS+ unknown or missing user role</td>
<td>617</td>
</tr>
<tr>
<td>SSH server</td>
<td>618</td>
</tr>
<tr>
<td>Virtual terminal line</td>
<td>619</td>
</tr>
<tr>
<td>Enable AAA accounting</td>
<td>620</td>
</tr>
<tr>
<td>Enable user lockout</td>
<td>620</td>
</tr>
<tr>
<td>Limit concurrent login sessions</td>
<td>620</td>
</tr>
<tr>
<td>Enable login statistics</td>
<td>621</td>
</tr>
<tr>
<td>Security commands</td>
<td>621</td>
</tr>
<tr>
<td>Simple Network Management Protocol</td>
<td>639</td>
</tr>
<tr>
<td>SNMP security models and levels</td>
<td>639</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>640</td>
</tr>
<tr>
<td>SNMP engine ID</td>
<td>640</td>
</tr>
<tr>
<td>SNMP groups and users</td>
<td>640</td>
</tr>
<tr>
<td>SNMP views</td>
<td>640</td>
</tr>
<tr>
<td>Configure SNMP</td>
<td>641</td>
</tr>
<tr>
<td>SNMP commands</td>
<td>643</td>
</tr>
<tr>
<td>OS10 image upgrade</td>
<td>653</td>
</tr>
<tr>
<td>Boot system partition</td>
<td>654</td>
</tr>
<tr>
<td>Upgrade commands</td>
<td>654</td>
</tr>
<tr>
<td>9 OpenFlow</td>
<td>659</td>
</tr>
<tr>
<td>OpenFlow logical switch instance</td>
<td>660</td>
</tr>
<tr>
<td>OpenFlow controller</td>
<td>660</td>
</tr>
<tr>
<td>OpenFlow version 1.3</td>
<td>660</td>
</tr>
<tr>
<td>Ports</td>
<td>660</td>
</tr>
<tr>
<td>Flow table</td>
<td>661</td>
</tr>
<tr>
<td>Group table</td>
<td>661</td>
</tr>
<tr>
<td>Meter table</td>
<td>661</td>
</tr>
<tr>
<td>Instructions</td>
<td>661</td>
</tr>
<tr>
<td>Action set</td>
<td>662</td>
</tr>
</tbody>
</table>
Action types.. 662
Counters.. 663
OpenFlow protocol.. 664
OpenFlow use cases.. 678
Configure OpenFlow... 678
Establish TLS connection... 679
OpenFlow commands.. 680
controller.. 680
dpid-mac-address.. 681
in-band-mgmt.. 681
max-backoff.. 682
mode openflow-only.. 682
openflow... 683
probe-interval... 683
protocol-version.. 683
rate-limit packet_in... 684
show openflow... 685
show openflow flows... 686
show openflow ports... 686
show openflow switch.. 688
show openflow switch controllers... 688
switch.. 689
OpenFlow-only mode commands.. 689

10 Access Control Lists.. 692
IP ACLs.. 692
MAC ACLs.. 693
Control-plane ACLs.. 693
 Control-plane ACL qualifiers.. 694
IP fragment handling... 694
 IP fragments ACL... 695
L3 ACL rules.. 695
 Permit ACL with L3 information only.. 695
 Deny ACL with L3 information only.. 695
 Permit all packets from host... 696
 Permit only first fragments and non-fragmented packets from host... 696
Assign sequence number to filter... 696
 User-provided sequence number... 696
 Auto-generated sequence number... 696
Delete ACL rule.. 697
L2 and L3 ACLs... 697
Assign and apply ACL filters.. 698
Ingress ACL filters... 699
Egress ACL filters... 699
Clear access-list counters... 700
IP prefix-lists.. 700
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 prefix-list description</td>
<td>727</td>
</tr>
<tr>
<td>ipv6 prefix-list permit</td>
<td>728</td>
</tr>
<tr>
<td>ipv6 prefix-list seq deny</td>
<td>728</td>
</tr>
<tr>
<td>ipv6 prefix-list seq permit</td>
<td>729</td>
</tr>
<tr>
<td>mac access-group</td>
<td>729</td>
</tr>
<tr>
<td>mac access-list</td>
<td>730</td>
</tr>
<tr>
<td>permit</td>
<td>730</td>
</tr>
<tr>
<td>permit (IPv6)</td>
<td>731</td>
</tr>
<tr>
<td>permit (MAC)</td>
<td>731</td>
</tr>
<tr>
<td>permit icmp</td>
<td>732</td>
</tr>
<tr>
<td>permit icmp (IPv6)</td>
<td>732</td>
</tr>
<tr>
<td>permit ip</td>
<td>733</td>
</tr>
<tr>
<td>permit ipv6</td>
<td>733</td>
</tr>
<tr>
<td>permit tcp</td>
<td>734</td>
</tr>
<tr>
<td>permit tcp (IPv6)</td>
<td>735</td>
</tr>
<tr>
<td>permit udp</td>
<td>735</td>
</tr>
<tr>
<td>permit udp (IPv6)</td>
<td>736</td>
</tr>
<tr>
<td>remark</td>
<td>737</td>
</tr>
<tr>
<td>seq deny</td>
<td>737</td>
</tr>
<tr>
<td>seq deny (IPv6)</td>
<td>738</td>
</tr>
<tr>
<td>seq deny (MAC)</td>
<td>739</td>
</tr>
<tr>
<td>seq deny icmp</td>
<td>739</td>
</tr>
<tr>
<td>seq deny icmp (IPv6)</td>
<td>740</td>
</tr>
<tr>
<td>seq deny ip</td>
<td>740</td>
</tr>
<tr>
<td>seq deny ipv6</td>
<td>741</td>
</tr>
<tr>
<td>seq deny tcp</td>
<td>742</td>
</tr>
<tr>
<td>seq deny tcp (IPv6)</td>
<td>743</td>
</tr>
<tr>
<td>seq deny udp</td>
<td>744</td>
</tr>
<tr>
<td>seq deny udp (IPv6)</td>
<td>745</td>
</tr>
<tr>
<td>seq permit</td>
<td>746</td>
</tr>
<tr>
<td>seq permit (IPv6)</td>
<td>746</td>
</tr>
<tr>
<td>seq permit (MAC)</td>
<td>747</td>
</tr>
<tr>
<td>seq permit icmp</td>
<td>747</td>
</tr>
<tr>
<td>seq permit icmp (IPv6)</td>
<td>748</td>
</tr>
<tr>
<td>seq permit ip</td>
<td>749</td>
</tr>
<tr>
<td>seq permit ipv6</td>
<td>749</td>
</tr>
<tr>
<td>seq permit tcp</td>
<td>750</td>
</tr>
<tr>
<td>seq permit tcp (IPv6)</td>
<td>751</td>
</tr>
<tr>
<td>seq permit udp</td>
<td>752</td>
</tr>
<tr>
<td>seq permit udp (IPv6)</td>
<td>753</td>
</tr>
<tr>
<td>show access-group</td>
<td>753</td>
</tr>
<tr>
<td>show access-list</td>
<td>754</td>
</tr>
<tr>
<td>show acl-table-profile</td>
<td>756</td>
</tr>
<tr>
<td>show acl-table-usage detail</td>
<td>757</td>
</tr>
<tr>
<td>show ip as-path-access-list</td>
<td>760</td>
</tr>
</tbody>
</table>
show ip community-list ... 760
show ip extcommunity-list .. 761
show ip prefix-list .. 761
Route-map commands .. 761
continue ... 762
match as-path ... 762
match community ... 762
match extcommunity ... 763
match interface .. 763
match ip address ... 763
match ip next-hop ... 764
match ipv6 address .. 764
match ipv6 next-hop .. 765
match metric .. 765
match origin ... 765
match route-type ... 766
match tag ... 766
route-map .. 766
set comm-list add ... 767
set comm-list delete .. 767
set community .. 768
set extcomm-list add ... 768
set extcomm-list delete ... 769
set extcommunity ... 769
set local-preference .. 769
set metric ... 770
set metric-type .. 770
set next-hop .. 771
set origin .. 771
set tag .. 772
set weight .. 772
show route-map ... 772

11 Quality of service ... 774
 Configure quality of service .. 774
 Ingress traffic classification .. 776
 Data traffic classification ... 776
 Control-plane policing ... 781
 Egress traffic classification .. 785
 Policing traffic ... 786
 Mark Traffic ... 786
 Color traffic .. 787
 Modify packet fields ... 787
 Shaping traffic .. 788
 Bandwidth allocation .. 788
 Strict priority queuing ... 789

Contents
service-policy .. 812
set cos.. 813
set dscp.. 813
set qos-group.. 813
shape... 814
show class-map.. 814
show control-plane buffers.. 814
show control-plane buffer-stats.. 815
show control-plane info.. 816
show control-plane statistics.. 817
show interface priority-flow-control.. 817
show qos interface.. 818
show policy-map... 818
show qos control-plane... 819
show qos egress buffers interface... 819
show egress buffer-stats interface.. 820
show qos ingress buffers interface... 820
show ingress buffer-stats interface.. 821
show queuing statistics... 821
show qos system... 822
show qos system buffers... 822
show qos maps.. 824
show qos wred-profile... 826
system qos... 826
trust-map.. 827
trust dot1p-map.. 827
trust dscp-map.. 828
qos-map traffic-class... 828
trust-map.. 828
wred... 829

12 Virtual Link Trunking.. 830
Terminology.. 831
VLT domain.. 831
VLT interconnect... 832
Configure VLT... 832
RSTP configuration.. 833
RPVST+ configuration.. 833
Create VLT domain.. 834
VLTI configuration... 835
Configure VLT MAC address.. 835
Delay restore timer.. 836
VLT backup.. 836
Configure VLT port-channel.. 839
VLT unicast routing... 840
VRRP Optimized Forwarding.. 840
Migrate VMs across data centers... 841
View VLT information.. 845
VLT commands... 847
 backup destination... 847
delay-restore... 848
discovery-interface... 848
peer-routing... 848
peer-routing-timeout... 849
primary-priority... 849
show spanning-tree virtual-interface .. 850
show vlt... 851
show vlt backup-link... 851
show vlt mac-inconsistency... 851
show vlt mismatch.. 852
show vlt role.. 854
show vlt vlt-port-detail.. 855
vlt-domain.. 855
vlt-port-channel.. 856
vlt-mac.. 856
vrrp mode active-active.. 856

13 Uplink Failure Detection.. 858
 Configure uplink failure detection.. 859
 Uplink failure detection on VLT.. 861
 Sample configurations of UFD on VLT... 862
 UFD commands.. 864
 clear ufd-disable... 864
defer-time.. 865
downstream... 865
downstream auto-recover... 866
downstream disable links... 866
enable... 866
name... 867
show running-configuration uplink-state-group .. 867
show uplink-state-group.. 868
uplink-state-group... 869
upstream... 869

14 Converged data center services.. 871
 Priority flow control... 871
 PFC configuration notes... 872
 Configure PFC.. 874
 PFC commands... 877
 Enhanced transmission selection.. 880
 ETS configuration notes... 881
 Configure ETS... 881
Port adapters and modules...938
Test network connectivity...938
View diagnostics...940
Diagnostic commands..941
Password recovery..952
Restore factory defaults..953
SupportAssist..954
 Configure SupportAssist..954
 Set company name..955
 Set contact information..956
 Schedule activity..956
 View status..957
 SupportAssist commands...958
Support bundle..964
 Event notifications...965
 generate support-bundle...965
System monitoring..966
 System alarms..966
 System logging..966
 View system logs...967
 Environmental monitoring...968
 Link-bundle monitoring...968
 Alarm commands..969
 Logging commands...973
Log into OS10 device...978
Frequently asked questions..978
 Installation..978
 Hardware..979
 Configuration..979
 Security..980
 Layer 2..980
 Layer 3..980
 System management...980
 Access control lists...981
 Quality of service..981
 Monitoring...982

18 Support resources...983
Dell EMC Networking OS10 Enterprise Edition is a network operating system (OS) supporting multiple architectures and environments. The networking world is moving from a monolithic stack to a pick-your-own-world. The OS10 solution allows disaggregation of the network functionality.

Solutions
- Integrates enabled devices into an existing infrastructure
- Provides up-to-date security fixes that supports a large community of engineers and security experts
- Utilizes an open distribution to simplify customized applications or open source applications

Requirements
- Open network installation environment (ONIE)-enabled Dell EMC device
- OS10 software image stored on an HTTP server or universal serial bus (USB) media
- Familiarity with any Linux release

Supported Hardware

The Dell EMC switches supported are:
- S3048-ON
- S4048-ON, S4048T-ON
- S4112F-ON, S4112T-ON
- S4128F-ON, S4128T-ON
- S4148F-ON, S4148FE-ON, S4148T-ON, S4148U-ON
- S4248FB-ON, S4248FBL-ON
- S5148F-ON
NOTE: Starting from release 10.4.2.1, OS10 supports the S5148F-ON platform.

- S5232F-ON, S5248F-ON, S5296F-ON
- S6010-ON
- Z9100-ON
- Z9264F-ON

Download OS10 image and license

OS10 Enterprise Edition may come factory-loaded and is available for download from the Dell Digital Locker (DDL). A factory-loaded OS10 image includes a perpetual license. An OS10 image that you download has a 120-day trial license and requires a perpetual license to run beyond the trial period. For more information, see the Setup Guide shipped with your device and the following FAQs:

- Frequently asked Questions
- My Account FAQs

Download an OS10 image and license to:

- Re-install the license on a Dell EMC ONIE switch with a factory-installed OS10 image and license.
- Install OS10 on a Dell EMC ONIE switch without an OS or license installed:
 - A device converted from OS9 or a third-party OS after you uninstall the original OS
 - A replacement device received from Dell EMC return material authorization (RMA)
- Upgrade the OS10 image. For more information, see Upgrade OS10.

Your OS10 purchase allows you to download software images posted within the first 90 days of ownership. To extend the software entitlement, you must have a Dell EMC ProSupport or ProSupport Plus contract on your hardware.

Re-install license on factory-loaded OS10

OS10 Enterprise Edition runs with a perpetual license on an ONIE-enabled device with OS10 factory-loaded. The license file is installed on the switch. If the license becomes corrupted or wiped out, you must download the license from DDL under the purchaser's account and re-install it.

1. Sign in to DDL using your account credentials.
2. Locate the hardware product name with the entitlement ID and order number.
3. Check that the device service tag displays in the Assigned To: field on the Products page.
4. Click Key Available for Download.
5. Select how to receive the license key — by email or downloaded to your local device.
6. Click Submit.
7. Save the License.zip file and follow the instructions in Install license to install the license.

Without OS installed

You can purchase the OS10 Enterprise Edition image with an after point-of-sale (APOS) order for a Dell EMC ONIE-enabled device that does not have a default OS or license installed. After the order is complete, you receive an email notification with a software entitlement ID, order number, and link to the DDL.

To extend the entitled download period, bind the software entitlement to the switch service tag to be the same time as the support contract. By default, OS10 software entitlement allows you to download OS10 software images posted before the purchase date and within 90 days of the date.

1. Sign into DDL using your account credentials.
2. Locate your entitlement ID and order number sent by email, then select the product name.
3. On the Product page, the Assigned To: field on the Product tab is blank. Click Key Available for Download.
Enter the device service tag you purchased the OS10 Enterprise Edition for in the Bind to: and Re-enter ID: fields. This step binds the software entitlement to the service tag of the switch.

Select how to receive the license key — by email or downloaded to your local device.

Click Submit to download the License.zip file.

Select the Available Downloads tab.

Select the OS10 Enterprise Edition release to download, then click Download.

Read the Dell End User License Agreement. Scroll to the end of the agreement, then click Yes, I agree.

Select how to download the software files, then click Download Now.

After you download the OS10 Enterprise Edition image, unzip the .tar file by following these guidelines:

- Extract the OS10 binary file from the .tar file using any file archiver/compressor software. For example, to unzip a .tar file on a Linux server or from the ONIE prompt, enter:
  ```bash
tar -xf tar_filename
```

- On a Windows server, some Windows unzip applications insert extra carriage returns (CR) or line feeds (LF) when they extract the contents of a .tar file. The additional CRs or LFs may corrupt the downloaded OS10 binary image. Turn off this option if you use a Windows-based tool to untar an OS10 binary file.

- Generate a checksum for the downloaded OS10 binary image by running the `md5sum` command on the image file. Ensure that the generated checksum matches the checksum extracted from the .tar file.
  ```bash
  md5sum image_filename
  ```

After you unzip the OS10 Enterprise Edition and download the license, for complete installation and license information, see Installation and Install license.

RMA replacement

A replacement switch comes without an OS or license installed. If you receive a replacement switch, you must assign the STAG of the replacement switch to the SW entitlement in DDL and install the OS10 software and license.

To download OS10 Enterprise Edition and the license, follow the steps for an ONIE switch without an OS installed. For complete installation and license information, see Installation and Install OS10 license.

Installation using ONIE

If you purchase an ONIE-only switch or if you want to replace an existing OS, you can install an OS10 software image using ONIE-based auto-discovery or a manual installation:

- **Automatic installation** — ONIE discovers network information including the Dynamic Host Configuration Protocol (DHCP) server, connects to an image server, and downloads and installs an image automatically.

- **Manual installation** — Manually configure your network information if a DHCP server is not available or if you install the OS10 software image using USB media.

If OS10 is pre-installed on a switch, zero-touch deployment (ZTD) is enabled by default. ZTD automatically downloads and installs an OS10 image in the standby partition. For more information, see Zero-touch deployment.

System setup

Before installation, verify that the system is connected correctly:

- Connect a serial cable and terminal emulator to the console serial port — serial port settings are 115200, 8 data bits, and no parity.

- Connect the Management port to the network to download an image over a network. To locate the Console port and the Management port, see the platform-specific Installation Guide at www.dell.com/support.

Install OS10
For an ONIE-enabled switch, navigate to the ONIE boot menu. An ONIE-enabled switch boots up with pre-loaded diagnostics (DIAGs) and ONIE software.

+--+
| *ONIE: Install OS |
| ONIE: Rescue |
| ONIE: Uninstall OS |
| ONIE: Update ONIE |
| ONIE: Embed ONIE |
| ONIE: Diag ONIE |
+--+

- Install OS — Boots to the ONIE prompt and installs an OS10 image using the Automatic Discovery process. When ONIE installs a new OS image, the previously installed image and OS10 configuration are deleted.
- Rescue — Boots to the ONIE prompt and allows manual installation of an OS10 image or ONIE update.
- Uninstall OS — Deletes the contents of all disk partitions, including the OS10 configuration, except ONIE and diagnostics.
- Update ONIE — Installs a new ONIE version.
- Embed ONIE — Formats an empty disk and installs ONIE.
- EDA DIAG — Runs the system diagnostics.

After the ONIE process installs an OS10 image and you later reboot the switch in **ONIE: Install OS** mode (default), ONIE takes ownership of the system and remains in Install mode (ONIE Install mode is sticky) until an OS10 image successfully installs again. To boot the switch from ONIE for any reason other than installation, select the **ONIE: Rescue** or **ONIE: Update ONIE** option from the ONIE boot menu.

⚠️ **CAUTION:** During an automatic or manual OS10 installation, if an error condition occurs that results in an unsuccessful installation and if there is an existing OS on the device, select Uninstall OS to clear the partitions. If the problem persists, contact Dell EMC Technical Support.

Automatic installation

You can automatically install, also known as zero-touch install, an OS10 image on a Dell EMC ONIE-enabled device. After the device successfully boots to ONIE: Install OS, auto-discovery obtains the hostname, domain name, Management interface IP address, and the IP address of the domain name server (DNS) on your network from the DHCP server and DHCP options. The ONIE automatic-discovery process locates the stored software image, starts installation, then reboots the device with the new software image.

If you insert USB device, auto-discovery searches the USB storage supporting FAT or EXT2 file systems. It also searches SCP, FTP, or TFTP servers with the default DNS of the ONIE server. DHCP options are not used to provide the server IP. Auto discovery repeats until a successful software image installation occurs and reboots the switch.

Example for automatic installation

1. Use the `mv` *image_name* onie-installer command to rename the image as onie-installer.
   ```bash
   mv PKGS_OS10-Base-10.3.1B.144-installer-x86_64.bin onie-installer
   ```

2. After renaming, the system enters the **ONIE: Install** mode. Enter the command `onie-discovery-start`, which automatically discovers the onie-installer image from the DHCP server.

   ```bash
   ONIE:/ # onie-discovery-start
   discover: installer mode detected. Running installer.
   Starting: discover... done.
   ONIE:/ # Info: eth0: Checking link... up.
   Info: Trying DHCPv4 on interface: eth0
   ONIE: Using DHCPv4 addr: eth0: 10.10.10.17 / 255.0.0.0
   Info: eth1: Checking link... down.
   ONIE: eth1: link down. Skipping configuration.
   ONIE: Failed to configure eth1 interface
   ```
ONIE: Starting ONIE Service Discovery
Info: Fetching tftp://10.10.10.2/onie-installer-x86_64-dellemc_s4148fe_c2338 ...
Info: Fetching tftp://10.10.10.2/onie-installer-dellemc_s4148fe_c2338 ...
Info: Fetching tftp://10.10.10.2/onie-installer-x86_64-bcm ...
Info: Fetching tftp://10.10.10.2/onie-installer-x86_64 ...
Info: Fetching tftp://10.10.10.2/onie-installer ...
ONIE: Executing installer: tftp://10.10.10.2/onie-installer ...
...
...
Press or <F2> to enter setup.
Welcome to GRUB!

GNU GRUB version 2.02-beta2+e4a1fe391
OS10-B
EDA-DIAG
ONIE Booting `OS10-A'
Loading OS10 ...

Manual installation

If a DHCP server is not available, you can manually install an OS10 software image. If the IP address for the Management port (eth0) is not automatically discovered, ONIE sets the IP address to 192.168.3.10. You must manually configure the Management port and configure the software image file to start installation.

1. Save the OS10 software image on an SCP/TFTP/FTP server.
2. Power up the switch and select ONIE Rescue for manual installation.
3. (Optional) Stop DHCP discovery if the device boots to ONIE Install.
 $ onie-discovery-stop
4. Configure the IP addresses on the Management port, where x.x.x.x represents your internal IP address. After you configure the Management port, the response is up.
 $ ifconfig eth0 x.x.x.x netmask 255.255.0.0 up
5. Install the software on the device. The installation command accesses the OS10 software from the specified SCP, TFTP, or FTP URL, creates partitions, verifies installation, and reboots itself.
 $ onie-nos-install image_filename location
 For example, enter
 ONIE:/ # onie-nos-install ftp://a.b.c.d/PKGS_OS10–Enterprise-x.x.xx.bin

Where a.b.c.d represents the location to download the image file from, and x.x.xx represents the version number of the software to install.

The OS10 installer image creates several partitions, including OS10-A (active and default) and OS10-B (standby). After installation completes, the switch automatically reboots and loads OS10.
Install manually using USB drive

You can manually install the OS10 software image using a USB device. Verify that the USB device supports a FAT or EXT2 file system. For instructions to format a USB device in FAT or EXT2 format, see the accompanying Windows documentation for FAT formatting or Linux documentation for FAT or EXT2 formatting.

1. Plug the USB storage device into the USB storage port on the switch.
2. Power up the switch to automatically boot using the ONIE: Rescue option.
3. (Optional) Stop ONIE discovery if the device boots to ONIE: Install.

   ```bash
   $ onie-discovery-stop
   ```
4. Create a USB mount location on the system.
   ```bash
   $ mkdir /mnt/media
   ```
5. Identify the path to the USB drive.
   ```bash
   $ fdisk -l
   ```
6. Mount the USB media plugged in the USB port on the device.
   ```bash
   $ mount -t vfat usb-drive-path /mnt/media
   ```
7. Install the software from the USB, where /mnt/media specifies the path where the USB partition is mounted.
   ```bash
   $ onie-nos-install /mnt/media/image_file
   ```

The ONIE auto-discovery process discovers the image file at the specified USB path, loads the software image, and reboots the switch. See the ONIE User Guide for more information.

Log into OS10

To log in to OS10 Enterprise Edition, power up the switch and wait for the system to perform a power-on self test (POST). Enter admin for both the default user name and user password. For better security, change the default admin password during the first OS10 login. The system saves the new password for future logins. After you change the password through the CLI, enter the write memory command to save the configuration.

```
OS10 login: admin
Password: 
Last login: Sat Oct 6 00:25:33 UTC 2018 on ttyS0
Linux OS10 4.9.110 #1 SMP Debian 4.9.110-3+deb9u4 x86_64

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

-**-*-------------------------*-----------*------------------------*-**
   *--  Dell EMC Network Operating System (OS10)  *--
   --*   Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.  *--
   --*   *-
-**-*-------------------------*-----------*------------------------*-**

This product is protected by U.S. and international copyright and intellectual property laws. Dell EMC and the Dell EMC logo are trademarks of Dell Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

OS10# write memory
```
Install OS10 license

If OS10 is factory-loaded on your switch, you do not need to install an OS10 license. If you download OS10 on a trial basis, OS10 comes with a 120-day trial license. To continue with uninterrupted use, purchase and install a perpetual license to avoid the OS10 device rebooting every 72 hours.

After you install OS10 and log in, install the license to run OS10 Enterprise Edition beyond the trial period. For more information, see Download OS10 image and license. The OS10 license is installed in the /mnt/license directory.

1. Download the License.zip file from DDL as described in Download OS10 image and license.
2. Open the zip file and locate the license file in the Dell folder. Copy the license file to a local or remote workstation.
3. Install the license file from the workstation in EXEC mode.

 - ftp://userid:passwd@hostip/filepath — Copy from a remote FTP server.
 - http://hostip — Send request to a remote HTTP server.
 - localfs://filepath — Install from a local file directory.
 - scp://userid:passwd@hostip/filepath — Copy from a remote SCP server.
 - sftp://userid:passwd@hostip/filepath — Copy from a remote SFTP server.
 - tftp://hostip/filepath — Copy from a remote TFTP server.
 - usb://filepath — Install from a file directory on a storage device connected to the USB storage port on the switch.
 - filepath/filename — Enter the directory path where the license file is stored.

Install license

OS10# license install scp://user:userpwd@10.1.1.10/CFNNX42-NOSEnterprise-License.xml
License installation success.

Verify license installation

OS10# show license status

System Information

<table>
<thead>
<tr>
<th>Vendor Name</th>
<th>DELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>S6010-ON</td>
</tr>
<tr>
<td>Hardware Version</td>
<td>X01</td>
</tr>
<tr>
<td>Platform Name</td>
<td>x86_64-dell_s6010_c2538-r0</td>
</tr>
<tr>
<td>PPID</td>
<td>CN01YRKK282987120068</td>
</tr>
<tr>
<td>Service Tag</td>
<td>3601XC2</td>
</tr>
</tbody>
</table>

License Details

<table>
<thead>
<tr>
<th>Software</th>
<th>OS10-Enterprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>10.4.2.0</td>
</tr>
<tr>
<td>License Type</td>
<td>EVALUATION</td>
</tr>
<tr>
<td>License Duration</td>
<td>120 days</td>
</tr>
<tr>
<td>License Status</td>
<td>98 day(s) left</td>
</tr>
<tr>
<td>License location</td>
<td>/mnt/license/3601XC2.lic</td>
</tr>
</tbody>
</table>

Troubleshoot license installation failure

An error message displays if the installation fails.

License installation failed

1. Verify the installation path to the local or remote license location.
2 Check the log on the remote server to find out why the FTP or TFTP file transfer failed.
3 Ping the remote server from the switch — use the ping and traceroute commands to test network connectivity. Check the following if ping fails:
 • If the remote server is reachable through the management route, check if the management route is configured correctly.
 • If the remote server is reachable through a front-panel port, check if the static or dynamic route is present.
4 Install the server with the license file on the same subnet as the switch.
5 Check if the server is up and running.

zero-touch deployment

Zero-touch deployment (ZTD) allows OS10 users to automate switch deployment:

 • Upgrade an existing OS10 image.
 • Execute a CLI batch file to configure the switch.
 • Execute a post-ZTD script to perform additional functions.

ZTD is enabled by default when you boot up a switch with a factory-installed OS10 for the first time or when you perform an ONIE: OS Install from the ONIE boot menu. When a switch boots up in ZTD mode, it starts the DHCP client on all interfaces — management and front-panel ports. ZTD configures all interfaces for untagged VLAN traffic. The switch obtains an IP address and a ZTD provisioning script URL from a DHCP server running on the network, and downloads and executes the ZTD script.

 • ZTD is supported only in an IPv4 network. ZTD is not supported by DHCPv6.
 • At least one of the front-panel ports connected to the network on which the DHCP server is running must be in non-breakout mode.
 • After booting up in ZTD mode, if a switch receives no DHCP server response with option 240 within five minutes, it automatically exits ZTD mode. During this time, you can abort ZTD by entering the ztd cancel command. The command unlocks the switch configuration so that you can enter OS10 CLI commands.
 • When ZTD is enabled, the command-line interface is locked so that you cannot enter OS10 configuration commands. Only show commands are available.

According to the contents of the provisioning script, ZTD performs these tasks in this sequence. Although Steps 2, 3 and 4 are each optional, you must enter a valid URL path for at least one of the IMG_FILE, CLI_CONFIG_FILE, and POST_SCRIPT_FILE variables. For example, if you only want to configure the switch, enter only a CLI_CONFIG_FILE URL value. In this case, ZTD does not upgrade the OS10 image and does not execute a post-ZTD script.

1 Downloads the files specified in the ZTD provisioning script — OS10 image, CLI configuration batch file, and post-ZTD script.
 • In the provisioning script, enter the file names for the IMG_FILE, CLI_CONFIG_FILE, and POST_SCRIPT_FILE variables as shown in ZTD provisioning script.
 • If no file names are specified, OS10 immediately exits ZTD and returns to CLI configuration mode.
 • If the download of any of the specified files fails, ZTD stops. OS10 exits ZTD and unlocks the CLI configuration mode.

2 If an OS10 image is specified for IMG_FILE, ZTD installs the software image in the standby partition. If no configuration file is specified for CLI_CONFIG_FILE, ZTD reloads the switch with the new OS10 image.

3 If an OS10 CLI batch file with configuration commands is specified for CLI_CONFIG_FILE, ZTD executes the commands in the PRE-CONFIG and POST-CONFIG sections. After executing the PRE-CONFIG commands, the switch reloads with the new OS10 image and then executes the POST-CONFIG commands. For more information, see ZTD CLI batch file.

4 If a post-ZTD script file is specified for POST_SCRIPT_FILE, ZTD executes the script. For more information, see Post-ZTD script.

NOTE: The ZTD process performs a single switch reboot. The switch reboot occurs only if either a new OS10 image is installed or if the PRE-CONFIG section of the CLI batch file has configuration commands that are executed.

ZTD prerequisites

 • Store the ZTD provisioning script on a server that supports HTTP connections.
 • Store the OS10 image, CLI batch file, and post-ZTD script on a file server that supports either HTTP, FTP, SFTP, or TFTP connections.
 • Configure the DHCP server to provide option 240 that returns the URL of the ZTD provisioning script.
In the ZTD provisioning script, enter the URL locations of an OS10 image, CLI batch file, and/or post-ZTD script. Enter at least one URL, otherwise the ZTD fails and exits to CLI configuration mode.

ZTD guidelines

- You can store the ZTD provisioning script, OS10 image, CLI batch file, and post-ZTD script on the same server, including the DHCP server.
- Write the ZTD provisioning script in bash.
- Write the post-ZTD script in bash or Python. Enter `#!/bin/bash` or `#!/usr/bin/python` as the first line in the script. The default python interpreter in OS10 is 2.7.
 Use only common Linux commands, such as curl, and common Python language constructs. OS10 only provides a limited set of Linux packages and Python libraries.
- ZTD is disabled by default on automatically provisioned switch fabrics, such as Isilon backend, PowerEdge MX, and VxRail.

Cancel ZTD in progress

To exit ZTD mode and manually configure a switch by entering CLI commands, stop the ZTD process by entering the `ztd cancel` command. You can enter `ztd cancel` only when ZTD is in a waiting state; that is, before it receives an answer from the DHCP server. Otherwise, the command returns an error message; for example:

```
OS10# ztd cancel
% Error: ZTD cancel failed. ZTD process already started and cannot be cancelled at this stage.
```

Disable ZTD

To disable ZTD, enter the `reload` command. The switch reboots in ZTD disabled mode.

Re-enable ZTD

To automatically upgrade OS10 and/or activate new configuration settings, re-enable ZTD by rebooting the switch. Enter the `reload ztd` command. You are prompted to confirm the deletion of the startup configuration.

NOTE: To upgrade OS10 without losing the startup configuration, back up the startup configuration before ZTD runs the provisioning script. Then use the backup startup configuration to restore the previous system configuration.

```
OS10# reload ztd
This action will remove startup-config [confirm yes/no]:
```

View ZTD status

```
OS10# show ztd-status
-----------------------------------
ZTD Status          : disabled
ZTD State           : completed
Protocol State      : idle
Reason              : ZTD process completed successfully at Mon Jul 16 19:31:57 2018
-----------------------------------
```

ZTD logs

ZTD generates log messages about its current status.

```
[os10:notify], %Dell EMC (OS10) %ZTD-IN-PROGRESS: Zero Touch Deployment applying post configurations.
```

ZTD also generates failure messages.

```
[os10:notify], %Dell EMC (OS10) %ZTD-FAILED: Zero Touch Deployment failed to download the image.
```

Troubleshoot configuration locked
When ZTD is enabled, the CLI configuration is locked. If you enter a CLI command, the error message `configuration is locked` displays. To configure the switch, disable ZTD by entering the `ztd cancel` command.

```
OS10# configure terminal
% Error: ZTD is in progress(configuration is locked).
```

ZTD DHCP server configuration

For ZTD operation, configure a DHCP server in the network by adding the required ZTD options; for example:

```bash
option domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;
option ztd-provision-url code 240 = text;
default-lease-time 600;
max-lease-time 7200;

subnet 50.0.0.0 netmask 255.255.0.0 {
    range 50.0.0.10 50.0.0.254;
    option routers rtr-239-0-1.example.org, rtr-239-0-2.example.org;
}

host ztd-leaf1 {
    hardware ethernet 90:b1:1c:f4:a9:b1;
    fixed-address 50.0.0.8;
    option ztd-provision-url "http://50.0.0.1/ztd.sh";
}
```

ZTD provisioning script

Create a ZTD script file that you store on an HTTP server. Configure the URL of the script using DHCP option 240 (`ztd-provision-url`) on the DHCP server.

NOTE: Downloading the ZTD provisioning script is supported only on HTTP connections.

ZTD downloads and executes the script to upgrade the OS10 image, configure the switch, and execute a post-ZTD script to perform additional functions.

- Write the ZTD provisioning script in bash. Enter `#!/bin/bash` as the first line in the script. You can use the sample script in this section as a basis.
- For `IMG_FILE`, enter the URL path of the OS10 image to download and upgrade the switch. The image is written to the standby partition.
- For `CLI_CONFIG_FILE`, enter the URL path of the CLI batch file to download and execute.
- For `POST_SCRIPT_FILE`, enter the URL path of the script to execute.
- ZTD fails and exits to CLI configuration mode if:
 - You do not specify at least one valid URL for the `IMG_FILE`, `CLI_CONFIG_FILE`, and `POST_SCRIPT_FILE` variables.
 - Any of the `IMG_FILE`, `CLI_CONFIG_FILE`, and `POST_SCRIPT_FILE` entries are invalid or if specified, the files cannot be downloaded.

For the `IMG_FILE`, `CLI_CONFIG_FILE`, and `POST_SCRIPT_FILE` files, you can specify HTTP, SCP, SFTP, or TFTP URLs. For example:

```
scp://userid:passwd@hostip/filepath
sftp://userid:passwd@hostip/filepath
```

Example

```
#!/bin/bash
```
ZTD CLI batch file

Create a CLI batch file that ZTD downloads and executes to configure a switch. The ZTD CLI batch file consists of two sections: PRE-CONFIG and POST-CONFIG.

ZTD executes the PRE-CONFIG commands first using the currently running OS10 image, not the OS10 image specified in the provisioning script. ZTD saves the PRE-CONFIG settings to the startup configuration.

If PRE-CONFIG commands are present, ZTD reloads the switch before executing the commands in the POST-CONFIG section. Enter OS10 configuration commands that require a switch reload, such as switch-port-profile, in the PRE-CONFIG section. If ZTD installs a new OS10 image (IMG_FILE), the new image is activated after the reload.

ZTD then executes the POST-CONFIG commands and saves the new settings in the startup configuration. No additional switch reload is performed.

Example

PRE-CONFIG
configure terminal
hostname ZTD-3
exit
configure terminal
interface vlan 210
description ztd-jun29-210
no shutdown
exit

POST-CONFIG
configure terminal
snmp-server contact DellEMC
exit
configure terminal
interface vlan 500
no shutdown
Post-ZTD script

As a general guideline, use a post-ZTD script to perform any additional functions required to configure and operate the switch. In the ZTD provisioning script, specify the post-ZTD script path for the POST_SCRIPT_FILE variable. You can use a script to notify an orchestration server that the ZTD configuration is complete. The server can then configure additional settings on the switch.

For example, during the ZTD phase, you can configure only a management VLAN and IP address, then allow an Ansible orchestration server to perform complete switch configuration. Here is a sample curl script that is included in the post-ZTD script to contact an Ansible server:

```
/usr/bin/curl -H "Content-Type:application/json" -k -X POST
--data '{"host_config_key":"7d07e79ebdc8f7c292e495daac0fe16b"}
```

ZTD commands

reload ztd

Reboots the switch and enables ZTD after the reload.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>reload ztd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Default</td>
<td>ZTD is enabled.</td>
</tr>
<tr>
<td>Command Mode</td>
<td>EXEC</td>
</tr>
<tr>
<td>Usage Information</td>
<td>Use the reload ztd command to automatically upgrade OS10 and/or activate new configuration settings. When you reload ZTD, you are prompted to confirm the deletion of the startup configuration.</td>
</tr>
</tbody>
</table>

Example

```
OS10# reload ztd
```

Supported Releases

10.4.1.0 or later

show ztd-status

Displays the current ZTD status: enabled, disabled, or canceled.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>show ztd-status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Command Mode</td>
<td>EXEC</td>
</tr>
<tr>
<td>Usage Information</td>
<td>None</td>
</tr>
</tbody>
</table>

Examples

```
OS10# show ztd-status
-----------------------------------
ZTD Status     : disabled
ZTD State      : completed
Protocol State : idle
```
Reason : ZTD process completed successfully at Mon Jul 16 19:31:57 2018

OS10# show ztd-status

ZTD Status : disabled
ZTD State : failed
Protocol State : idle
Reason : ZTD process failed to download post script file

- ZTD Status — Current operational status: enabled or disabled.
- ZTD State — Current ZTD state: initialized, in-progress, successfully completed, failed, or canceled while in progress.
- Protocol State — Current state of ZTD protocol: initialized, idle while waiting to enable or complete ZTD process, waiting for DHCP post-hook callback, downloading files, installing image, executing pre-config or post-config CLI commands, or executing post-ZTD script file.
- Reason — Description of a successful or failed ZTD process.

Supported Releases 10.4.1.0 or later

ztd cancel

Stops ZTD while in progress. After you cancel ZTD, you can enter CLI commands to configure the switch.

Syntax ztd cancel
Parameters None
Default ZTD is enabled.
Command Mode EXEC
Usage Information When ZTD is enabled, the command-line interface is locked. You cannot enter OS10 configuration commands. Use the ztd cancel command to cancel the ZTD process and return to CLI configuration mode. You can enter ztd cancel only when ZTD is in a waiting state; that is, before it receives an answer from the DHCP server. Otherwise, the command returns an error message.

Example OS10# ztd cancel

Supported Releases 10.4.1.0 or later

Remote access

You can remotely access the OS10 command-line interface (CLI) and the Linux shell. When you install OS10 the first time, connect to the switch using the serial port.

Configure remote access

- Configure the Management port IP address
- Configure a default route to the Management port
- Configure a user name and password

Remote access OS10 CLI

1. Open an SSH session using the IP address of the device. You can also use PuTTY or a similar tool to access the device remotely.

 ssh admin@ip-address
 password: admin
Enter admin for both the default user name and password to log into OS10. You are automatically placed in EXEC mode.

OS10#

Remote access Linux shell

ssh linuxadmin@ip-address
password: linuxadmin

Configure Management IP address

To remotely access OS10, assign an IP address to the management port. The management interface is used for out-of-band (OOB) management purposes.

1. Configure the management interface from CONFIGURATION mode.
   ```
   interface mgmt 1/1/1
   ```
2. By default, DHCP client is enabled on the Management interface. Disable the DHCP client operations in INTERFACE mode.
   ```
   no ip address dhcp
   ```
3. Configure an IPv4 or IPv6 address on the Management interface in INTERFACE mode.
   ```
   ip address A.B.C.D/mask
   ipv6 address A:B/prefix-length
   ```
4. Enable the Management interface in INTERFACE mode.
   ```
   no shutdown
   ```

Configure Management interface

OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# no ip address dhcp
OS10(conf-if-ma-1/1/1)# ip address 10.1.1.10/24
OS10(conf-if-ma-1/1/1)# no shutdown

Management Route Configuration

To set up remote access to OS10, configure a management route after you assign an IPv4 or IPv6 address to the Management port. The Management port uses the default management route to communicate with a different network. Management routes are separate from IPv4 and IPv6 routes and are only used to manage the system through the Management port.

```plaintext
management route 192.168.100.0/24 1.1.1.1
ip route 192.168.200.0/24 2.2.2.2
management route 192.168.300.0/24 managementethernet
ip route 192.168.400.0/24 interface ethernet 1/1/1
```

Before configuring the static IPv4 address for Management port, remove the DHCP setting using the `no ip address dhcp` command.

Configure a management route to the network in CONFIGURATION mode. Repeat the command to configure multiple routes for the Management port.

```plaintext
management route {ipv4-address/mask | ipv6-address/prefix-length}
{forwarding-router-address | managementethernet}
```

- `ipv4-address/mask` — Enter an IPv4 network address in dotted-decimal format (A.B.C.D), then a subnet mask in /prefix-length format (/x).
- `ipv6-address/prefix-length` — Enter an IPv6 address in x:x::x format with the prefix length in /x format. The prefix range is /0 to /128.
- `forwarding-router-address` — Enter the next-hop IPv4/IPv6 address of a forwarding router for network traffic from the Management port.
• managementethernet — Configures the Management port as the interface for the route, and associates the route with the Management interface.

Configure management route

OS10(config)# management route 10.10.20.0/24 10.1.1.1
OS10(config)# management route 172.16.0.0/16 managementethernet

Configure user name and password

To set up remote access to OS10, create a new user name and password after you configure the management port and default route. The user role is a mandatory entry.

Enter the password in clear text. It is converted to SHA-512 format in the running configuration. A password must have at least nine alphanumeric and special characters, and at least five different characters from the password previously used for the same username.

For backward compatibility with OS10 releases 10.3.1E and earlier, passwords entered in MD-5, SHA-256, and SHA-512 format are supported.

To increase the required password strength, use the password-attributes command.

- Create a user name and password in CONFIGURATION mode.

 username username password password role role

 - username username — Enter a text string. A maximum of 32 alphanumeric characters; 1 character minimum.
 - password password — Enter a text string. A maximum of 32 alphanumeric characters; 9 characters minimum.
 - role role — Enter a user role:
 • sysadmin — Full access to all commands in the system, exclusive access to commands that manipulate the file system, and access to the system shell. A system administrator can create user IDs and user roles.
 • secadmin — Full access to configuration commands that set security policy and system access, such as password strength, AAA authorization, and cryptographic keys. A security administrator can display security information, such as cryptographic keys, login statistics, and log information.
 • netadmin — Full access to configuration commands that manage traffic flowing through the switch, such as routes, interfaces, and access control lists (ACLs). A network administrator cannot access configuration commands for security features or view security information.
 • netoperator — Access to EXEC mode to view the current configuration. A network operator cannot modify any configuration setting on a switch.

Create user name and enter password in clear text

OS10(config)# username user05 password alpha404! role sysadmin

Upgrade OS10

To upgrade OS10, download a new OS10 Enterprise Edition image from the DDL.

1 Sign into DDL using your account credentials.
2 Locate the entry for your entitlement ID and order number, then select the product name.
3 Select the Available Downloads tab on the Product page.
4 Select the OS10 Enterprise Edition image to download, then click Download.
5 Read the Dell End User License Agreement, then scroll to the end of the agreement and click Yes, I agree.
6 Select how to download the software files, then click Download Now.

Install the OS10 image on an ONIE-enabled switch with an installed OS10 license. For more information, see Install OS10 license.
CLI Basics

The OS10 CLI is the software interface you use to access a device running the software — from the console or through a network connection. The CLI is an OS10-specific command shell that runs on top of a Linux-based OS kernel. By leveraging industry-standard tools and utilities, the CLI provides a powerful set of commands that you can use to monitor and configure devices running OS10.

User accounts

OS10 defines two categories of user accounts — use admin for both the username and password to log into the CLI, or use linuxadmin to log into the Linux shell.

NOTE: You cannot delete the default admin and linuxadmin usernames.

Key CLI features

Consistent command names

Commands that provide the same type of function have the same name, regardless of the portion of the system on which they are operating. For example, all show commands display software information and statistics, and all clear commands erase various types of system information.

Available commands

Information about available commands is provided at each level of the CLI command hierarchy. You can enter a question mark (?) at any level and view a list of the available commands, along with a short description of each command.

Command completion

Command completion for command names (keywords) and for command options is available at each level of the hierarchy. To complete a command or option that you have partially entered, click the Tab key or the Spacebar. If the partially entered letters are a string that uniquely identifies a command, the complete command name appears. A beep indicates that you have entered an ambiguous command, and the possible completions display. Completion also applies to other strings, such as interface names and configuration statements.

CLI command modes

The OS10 CLI has two top-level modes:

- EXEC mode — Monitor, troubleshoot, check status, and network connectivity.
- CONFIGURATION mode — Configure network devices.

When you enter CONFIGURATION mode, you are changing the current operating configuration, called the running configuration. By default, all configuration changes are automatically saved to the running configuration.

You can change this default behavior by switching to the Transaction-Based Configuration mode. To switch to Transaction-Based Configuration mode, enter the start transaction command. When you switch to the Transaction-Based Configuration mode, you update the candidate configuration. Changes to the candidate configuration are not added to the running configuration until you commit them, which activates the configuration. The start transaction command applies only to the current session. Changing the configuration mode of the current session to the Transaction-Based Configuration mode does not affect the configuration mode of other CLI sessions.

- After you explicitly enter the commit command to save changes to the candidate configuration, the session switches back to the default behavior of automatically saving the configuration changes to the running configuration.
- When a session terminates while in the Transaction-Based Configuration mode, and you have not entered the commit command, the changes are maintained in the candidate configuration. You can start a new Transaction-Based Configuration mode session and continue with the remaining configuration changes.
• All sessions in Transaction-Based Configuration mode update the same candidate configuration. When you enter the `commit` command on any session in Transaction-Based Configuration mode or you make configuration changes on any session in Non-Transaction-Based mode, you also commit the changes made to the candidate configuration in all other sessions running in the transaction-based configuration mode. This implies that inconsistent configuration changes may be applied to the running configuration. Dell EMC recommends only making configuration changes on a single CLI session at a time.

• When you enter the `lock` command in a CLI session, configuration changes are disabled on all other sessions, whether they are in Transaction-Based Configuration mode or Non-Transaction-Based Configuration mode. For more information, see Candidate configuration.

CLI command hierarchy

CLI commands are organized in a hierarchy. Commands that perform a similar function are grouped together under the same level of hierarchy. For example, all commands that display information about the system and the system software are grouped under the `show system` command, and all commands that display information about the routing table are grouped under the `show ip route` command.

CLI command categories

There are several broad groups of CLI commands available:

- `copy`
 Copies files from one location on a device to another, from a device to a remote system, or from a remote system to a device.

- `configure`
 Enters CONFIGURATION mode to configure routing protocols, interfaces, network management, and user access.

- `exit`
 Moves up one command mode. To go directly to EXEC mode, use the `end` command.

CONFIGURATION Mode

When you initially log in to OS10, you are placed in EXEC mode. To access CONFIGURATION mode, enter the `configure terminal` command. Use CONFIGURATION mode to manage interfaces, protocols, and features.

Interface mode is a sub-mode of CONFIGURATION mode. Interface mode is where you configure Layer 2 (L2) and Layer 3 (L3) protocols, and IPv4 and IPv6 services specific to an interface:

- Physical interfaces include the Management interface and Ethernet ports
- Logical interfaces include Loopback, port-channel, and virtual local area networks (VLANs)
From CONFIGURATION mode, you can also configure L2 and L3 protocols with a specific protocol-configuration mode, such as Spanning-Tree Protocol (STP) or Border Gateway Protocol (BGP).

Command help

To view a list of valid commands for any CLI mode, enter ?.

1 Enter ? to view the commands available in EXEC mode.

 OS10# ?
 alarm Alarm commands
 alias Set alias for a command
 batch Batch Mode
 boot Tell the system where to access the software image at bootup
 clear Clear command
 clock Configure the system clock
 commit Commit candidate configuration
 configure Enter configuration mode
 copy Perform a file copy operation
 crypto Cryptography commands
 debug Debug command
 delete Perform a file delete operation on local file system
 dir Show the list of files for the specified system folder
 discard Discard candidate configuration
 exit Exit from the CLI
 generate Command to generate executed functionality
 help Display available commands
 image Image commands
 kill-session Kill a CLISH session
 license License and digital fulfillment commands
 location-led Set location LED
 lock Lock candidate configuration
 move Perform a file move/rename operation on local filesystem
 no No commands under exec mode
 ping ping -h shows help
 ping6 ping6 -h shows help
 reload Reboot Networking Operating System
 show Show running system information
 start Activate transaction based configuration
 support-assist-activity Support Assist related activity
 system System command
 terminal Set terminal settings
 traceroute traceroute --help shows help
 unlock Unlock candidate configuration
 validate Validate candidate configuration
 write Copy from current system configuration
 ztd Cancel the current ZTD process.

2 Enter CONFIGURATION mode.

 OS10# configure terminal
 OS10(config)#

3 Enter ? to show the commands available in CONFIGURATION mode.

 OS10(config)# ?
 aaa Configure AAA
 alias Set alias for a command
 banner Configure banners
 bfd Enable bfd globally
 class-map Configure class map
 clock Configure clock parameters
 control-plane Control-plane configuration
 crypto Crypto commands
 dcbx DCBX commands
 default Configure default attributes
 dot1x Configure dot1x global information
end Exit to the exec Mode
errdisable Configure errdisable parameters
eula-consent eula-consent configuration
evpn Ethernet Virtual Private Network (EVPN)
exec-timeout Set timeout (in seconds) for all CLI sessions
exit Exit from current mode
fcoe Configure FCoE
feature Enable feature
hardware Hardware specific configurations
hash-algorithm Hash algorithm configurations
help Display available commands
host-description Set the system host description
hostname Set the system hostname
interface Select an interface
ip Global IP configuration subcommands
ipv6 Global ipv6 configuration
iscsi Enable iscsi globally
lacp LACP commands
line Configure a terminal line
link-bundle-utilization Configure link bundle utilization trigger threshold
lldp Configure LLDP parameters
load-balancing Load balancing configurations
logging Logging commands
login Configure login parameters
mac MAC config commands
management management interface commands
monitor Create a session for monitoring traffic
no To delete / disable commands in config mode
ntp Configure NTP
nve Create a Network Virtualization Edge (NVE) instance
openflow Configure OpenFlow
password-attributes Configure the password attributes
policy-map Configure policy map
qos-map Configure QoS map
radius-server Specify radius server host and configure its communication parameters
rest Configure rest interface
route-map Creates route-map
router Enable a routing process
scale-profile Configure scale profile
sflow Configure sflow parameters
snmp-server Configure SNMP server
spanning-tree Spanning Tree Subsystem
support-assist Support Assist feature configuration
system System configuration
tacacs-server Specify TACACS+ server host and configure its communication parameters
track Configure object tracking
trust Configure trust
uplink-state-group Create uplink state group
username Create or modify users
userrole Create custom user role
virtual-network Create a Virtual Network
vlt-domain VLT domain configurations
vrrp Configure VRRP global attributes
wred Configure WRED profile

Check device status

Use show commands to check the status of a device and monitor activities.

• Enter show ? from EXEC mode to view a list of commands to monitor a device.

```bash
OS10# show ?
  acl-table-usage    Show ACL table utilization
  alarms             Display all current alarm situation in the system
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>Show list of aliases</td>
</tr>
<tr>
<td>bfd</td>
<td>Show bfd session commands</td>
</tr>
<tr>
<td>boot</td>
<td>Show boot information</td>
</tr>
<tr>
<td>candidate-configuration</td>
<td>Current candidate configuration</td>
</tr>
<tr>
<td>class-map</td>
<td>Show QoS class-map configuration</td>
</tr>
<tr>
<td>clock</td>
<td>Show the system date and time</td>
</tr>
<tr>
<td>command-history</td>
<td>Show command history of the current user</td>
</tr>
<tr>
<td>control-plane</td>
<td>Display control-plane related informations</td>
</tr>
<tr>
<td>copy-file</td>
<td>Show file copy operation information</td>
</tr>
<tr>
<td>crypto</td>
<td>Display cryptographic information</td>
</tr>
<tr>
<td>diag</td>
<td>Show diagnostic information for port adapters/modules</td>
</tr>
<tr>
<td>diff</td>
<td>Display differences between two configuration set</td>
</tr>
<tr>
<td>discovered-expanders</td>
<td>discovered expanders info</td>
</tr>
<tr>
<td>dot1x</td>
<td>Show dot1x information</td>
</tr>
<tr>
<td>environment</td>
<td>Show the environmental information of the system</td>
</tr>
<tr>
<td>errdisable</td>
<td>Show errdisable information</td>
</tr>
<tr>
<td>eula-consent</td>
<td>Shows eula-consent for various modules</td>
</tr>
<tr>
<td>evpn</td>
<td>Show Ethernet Virtual Private Network</td>
</tr>
<tr>
<td>exec-timeout</td>
<td>Show the timeout value of CLI session (in seconds)</td>
</tr>
<tr>
<td>fcoe</td>
<td>show fcoe</td>
</tr>
<tr>
<td>file</td>
<td>Display file content in specified location</td>
</tr>
<tr>
<td>fips</td>
<td>Show fips mode status</td>
</tr>
<tr>
<td>hardware</td>
<td>Show hardware information</td>
</tr>
<tr>
<td>hash-algorithm</td>
<td>Show hash algorithm information</td>
</tr>
<tr>
<td>hosts</td>
<td>show information about DNS</td>
</tr>
<tr>
<td>image</td>
<td>Show image information</td>
</tr>
<tr>
<td>interface</td>
<td>Interface status and configuration</td>
</tr>
<tr>
<td>inventory</td>
<td>Show the system inventory information</td>
</tr>
<tr>
<td>ip</td>
<td>show IP commands</td>
</tr>
<tr>
<td>ipv6</td>
<td>Display IPv6 neighbor information</td>
</tr>
<tr>
<td>iscsi</td>
<td>Show iscsi</td>
</tr>
<tr>
<td>lacp</td>
<td>Show LACP information</td>
</tr>
<tr>
<td>license</td>
<td>Show license and digital fulfillment related information</td>
</tr>
<tr>
<td>link-bundle-utilization</td>
<td>Display the link-bundle utilization for the interfaces in the bundle</td>
</tr>
<tr>
<td>lldp</td>
<td>Show lldp</td>
</tr>
<tr>
<td>load-balance</td>
<td>Show global traffic load-balance configuration</td>
</tr>
<tr>
<td>logging</td>
<td>Show logging messages</td>
</tr>
<tr>
<td>login</td>
<td>Show login parameters</td>
</tr>
<tr>
<td>mac</td>
<td>MAC forwarding table</td>
</tr>
<tr>
<td>monitor</td>
<td>Show port monitoring sessions</td>
</tr>
<tr>
<td>network-policy</td>
<td>Show network policy</td>
</tr>
<tr>
<td>ntp</td>
<td>NTP associations</td>
</tr>
<tr>
<td>nve</td>
<td>Display NVE related info</td>
</tr>
<tr>
<td>parser-tree</td>
<td>Show parser tree</td>
</tr>
<tr>
<td>policy-map</td>
<td>Show policy-map information</td>
</tr>
<tr>
<td>port-channel</td>
<td>LAG status and configuration</td>
</tr>
<tr>
<td>processes</td>
<td>Show processes statistics</td>
</tr>
<tr>
<td>qos</td>
<td>Show ingress or egress QoS configuration</td>
</tr>
<tr>
<td>queuing</td>
<td>Show egress QoS counters</td>
</tr>
<tr>
<td>route-map</td>
<td>Show route map information</td>
</tr>
<tr>
<td>running-configuration</td>
<td>Current operating configuration</td>
</tr>
<tr>
<td>sessions</td>
<td>Show active management sessions</td>
</tr>
<tr>
<td>sflow</td>
<td>Show sflow</td>
</tr>
<tr>
<td>snmp</td>
<td>Display all current snmp configuration</td>
</tr>
<tr>
<td>spanning-tree</td>
<td>Show spanning tree information</td>
</tr>
<tr>
<td>startup-configuration</td>
<td>Contents of startup configuration</td>
</tr>
<tr>
<td>storm-control</td>
<td>Show storm control configuration</td>
</tr>
<tr>
<td>support-assist</td>
<td>Show information about the support assist module</td>
</tr>
<tr>
<td>switch-operating-mode</td>
<td>Switch operating mode</td>
</tr>
<tr>
<td>system</td>
<td>Show system status information</td>
</tr>
<tr>
<td>tech-support</td>
<td>Collection of show commands</td>
</tr>
<tr>
<td>terminal</td>
<td>Show terminal configurations for this session</td>
</tr>
<tr>
<td>trace</td>
<td>Show trace messages</td>
</tr>
<tr>
<td>track</td>
<td>Show object tracking information</td>
</tr>
<tr>
<td>uplink-state-group</td>
<td>Display the uplink state group configurations</td>
</tr>
<tr>
<td>uptime</td>
<td>Show the system uptime</td>
</tr>
<tr>
<td>users</td>
<td>Show the current list of users logged into the system, and show the session id</td>
</tr>
</tbody>
</table>
version Show the software version on the system
virtual-network Virtual-network info
vlan Vlan status and configuration
vlt Show VLT domain info
vrrp VRRP group status
ztd-status Show ztd status

• Enter show command-history from EXEC mode to view trace messages for each executed command.

OS10# show command-history
1 Thu Apr 20 19:44:38 UTC 2017 show vlan
2 Thu Apr 20 19:47:01 UTC 2017 admin
3 Thu Apr 20 19:47:01 UTC 2017 monitor hardware-components controllers view 0
4 Thu Apr 20 19:47:03 UTC 2017 system general info system-version view
5 Thu Apr 20 19:47:16 UTC 2017 admin
6 Thu Apr 20 19:47:16 UTC 2017 terminal length 0
7 Thu Apr 20 19:47:18 UTC 2017 terminal datadump
8 Thu Apr 20 19:47:20 UTC 2017 %abc
9 Thu Apr 20 19:47:22 UTC 2017 switchshow
10 Thu Apr 20 19:47:24 UTC 2017 cmsh
11 Thu Apr 20 19:47:26 UTC 2017 show version
12 Thu Apr 20 19:47:28 UTC 2017 cmsh
13 Thu Apr 20 19:47:30 UTC 2017 show version
14 Thu Apr 20 19:47:32 UTC 2017 show system
15 Fri Apr 21 12:35:31 UTC 2017 BIOS 3.20.0.3

• Enter clear command-history to clear the trace messages in show command-history.

OS10# clear command-history

• Check the show command-history to verify that the trace messages are cleared.

• Enter show system from EXEC mode to view the system status information.

OS10# show system

Node Id : 1
Number of MACs : 384
Up Time : 3 days 00:31:50

-- Unit 1 --
Status : up
System Identifier : 1
Down Reason : unknown
System Location LED : off
Required Type : S6010
Current Type : S6010
Hardware Revision : X01
Software Version : 10.4.2.0
Physical Ports : 32x40GbE
BIOS : 3.26.0.2
System CPLD : 12
Master CPLD : 12
Slave CPLD : 5

-- Power Supplies --
PSU-ID Status Type AirFlow Fan Speed(rpm) Status
--
1 fail
2 up AC NORMAL 1 8720 up

-- Fan Status --
FanTray Status AirFlow Fan Speed(rpm) Status
--
1 up NORMAL 1 10892 up
2 up NORMAL 1 10892 up
3 up NORMAL 1 10714 up
4 up NORMAL 1 10953 up

44 Getting Started
Candidate configuration

When you enter OS10 configuration commands in Transaction-Based Configuration mode, changes do not take effect immediately and are stored in the candidate configuration. The configuration changes become active only after you commit the changes using the commit command. Changes in the candidate configuration are validated and applied to the running configuration.

The candidate configuration allows you to avoid introducing errors during an OS10 configuration session. You can make changes and then check them before committing them to the active, running configuration on the network device.

To check differences between the running configuration and the candidate configuration, use the show diff command. After comparing the two, decide if you will commit the changes to the running configuration. To delete uncommitted changes, use the discard command.

- Enter show ? from EXEC mode to view a list of commands to monitor a device.

```
OS10# show ?
acl-table-usage      Show ACL table utilization
alarms               Display all current alarm situation in the system
alias                Show list of aliases
bfd                  Show bfd session commands
boot                 Show boot information
candidate-configuration  Current candidate configuration
class-map           Show QoS class-map configuration
clock                Show the system date and time
command-history      Show command history of the current user
control-plane        Display control-plane related informations
copy-file            Show file copy operation information
crypto               Display cryptographic information
diag                 Show diagnostic information for port adapters/modules
diff                 Display differences between two configuration set
discovered-expanders discovered expanders info
dot1x                Show dot1x information
dernvironment         Show the environmental information of the system
errdisable           Show errdisable information
eula-consent         Shows eula-consent for various modules
evpn                 Show Ethernet Virtual Private Network
exec-timeout         Show the timeout value of CLI session (in seconds)
fcoe                 Show fcoe
file                 Display file content in specified location
fips                 Show fips mode status
hardware             Show hardware information
hash-algorithm       Show hash algorithm information
hosts                show information about DNS
image                Show image information
interface            Interface status and configuration
inventory            Show the system inventory information
ip                   Show IP commands
ipv6                 Display IPv6 neighbor information
iscsi                Show iscsi
lacp                 Show LACP information
license              Show license and digital fulfillment related information
link-bundle-utilization Display the link-bundle utilization for the interfaces in the bundle
lldp                 Show lldp
load-balance         Show global traffic load-balance configuration
logging              Show logging messages
login                Show login parameters
mac                  MAC forwarding table
monitor              Show port monitoring sessions
network-policy       Show network policy
ntp                  NTP associations
nve                  Display NVE related info
```
Compressed configuration

OS10 offers the `show candidate-configuration compressed` and `show running-configuration compressed` commands that display interface-related configuration in a compressed manner. These commands group similar looking configuration. The compression is done only for interface-related configuration (VLAN and physical interfaces).

View compressed candidate configuration

OS10# show candidate-configuration compressed
interface breakout 1/1/1 map 40g-1x
interface breakout 1/1/2 map 40g-1x
interface breakout 1/1/3 map 40g-1x
interface breakout 1/1/4 map 40g-1x
interface breakout 1/1/5 map 40g-1x
interface breakout 1/1/6 map 40g-1x
interface breakout 1/1/7 map 40g-1x
interface breakout 1/1/8 map 40g-1x
interface breakout 1/1/9 map 40g-1x
interface breakout 1/1/10 map 40g-1x
interface breakout 1/1/11 map 40g-1x
interface breakout 1/1/12 map 40g-1x
interface breakout 1/1/13 map 40g-1x
interface breakout 1/1/14 map 40g-1x
interface breakout 1/1/15 map 40g-1x
interface breakout 1/1/16 map 40g-1x
interface breakout 1/1/17 map 40g-1x
interface breakout 1/1/18 map 40g-1x
interface breakout 1/1/19 map 40g-1x
interface breakout 1/1/20 map 40g-1x
interface breakout 1/1/21 map 40g-1x
interface breakout 1/1/22 map 40g-1x
interface breakout 1/1/23 map 40g-1x
interface breakout 1/1/24 map 40g-1x
interface breakout 1/1/25 map 40g-1x
interface breakout 1/1/26 map 40g-1x
interface breakout 1/1/27 map 40g-1x
interface breakout 1/1/28 map 40g-1x
interface breakout 1/1/29 map 40g-1x
interface breakout 1/1/30 map 40g-1x
interface breakout 1/1/31 map 40g-1x
interface breakout 1/1/32 map 40g-1x
ipv6 forwarding enable
username admin password 6q9QBeYjZ$;jfxzVqGhkxX3smxJSH9DDz7/30Jc6m5wjF8nnLD7/VKx8SloIhp4NoG2sO1/UNwh8WVuxwfd9q4pWiqNs5BKH. role sysadmin
aaa authentication local
snmp-server contact http://www.dell.com/support

interface range ethernet 1/1/1-1/1/32
 switchport access vlan 1
 no shutdown

interface vlan 1
 no shutdown

interface mgmt1/1/1
 ip address dhcp
 no shutdown
 ipv6 enable
 ipv6 address autoconfig

! support-assist
!
! policy-map type application policy-iscsi
!
! class-map type application class-iscsi

View compressed running configuration

OS10# show running-configuration compressed
interface breakout 1/1/1 map 40g-1x
interface breakout 1/1/2 map 40g-1x
interface breakout 1/1/3 map 40g-1x
interface breakout 1/1/4 map 40g-1x
interface breakout 1/1/5 map 40g-1x
interface breakout 1/1/6 map 40g-1x
interface breakout 1/1/7 map 40g-1x
interface breakout 1/1/8 map 40g-1x
interface breakout 1/1/9 map 40g-1x
interface breakout 1/1/10 map 40g-1x
interface breakout 1/1/11 map 40g-1x
interface breakout 1/1/12 map 40g-1x
interface breakout 1/1/13 map 40g-1x
interface breakout 1/1/14 map 40g-1x
interface breakout 1/1/15 map 40g-1x
interface breakout 1/1/16 map 40g-1x
interface breakout 1/1/17 map 40g-1x
interface breakout 1/1/18 map 40g-1x
interface breakout 1/1/19 map 40g-1x
interface breakout 1/1/20 map 40g-1x
interface breakout 1/1/21 map 40g-1x
interface breakout 1/1/22 map 40g-1x
interface breakout 1/1/23 map 40g-1x
interface breakout 1/1/24 map 40g-1x
interface breakout 1/1/25 map 40g-1x
interface breakout 1/1/26 map 40g-1x
interface breakout 1/1/27 map 40g-1x
interface breakout 1/1/28 map 40g-1x
interface breakout 1/1/29 map 40g-1x
interface breakout 1/1/30 map 40g-1x
interface breakout 1/1/31 map 40g-1x
interface breakout 1/1/32 map 40g-1x
ipv6 forwarding enable
username admin password 6q9QBeYjZ$;jfxzVqGhkxX3smxJSH9DDz7/30Jc6m5wjF8nnLD7/VKx8SloIhp4NoG2sO1/UNwh8WVuxwfd9q4pWiqNs5BKH. role sysadmin
aaa authentication local
snmp-server contact http://www.dell.com/support

interface range ethernet 1/1/1-1/1/32
 switchport access vlan 1
 no shutdown

interface vlan 1
 no shutdown

interface mgmt1/1/1
 ip address dhcp
 no shutdown
 ipv6 enable
 ipv6 address autoconfig

! support-assist
!
! policy-map type application policy-iscsi
!
! class-map type application class-iscsi
aaa authentication local
snmp-server contact http://www.dell.com/support

interface range ethernet 1/1/1-1/1/32
 switchport access vlan 1
 no shutdown

interface vlan 1
 no shutdown

interface mgmt1/1/1
 ip address dhcp
 no shutdown
 ipv6 enable
 ipv6 address autoconfig

support-assist

policy-map type application policy-iscsi

class-map type application class-iscsi

Show difference between candidate and running configurations

OS10# show diff candidate-configuration running-configuration

1 NOTE: If the show command does not return output, the candidate-configuration and running-configuration files match.

Prevent configuration changes

You can prevent configuration changes on sessions other than the current CLI session using the lock command. To respectively prevent and allow configuration changes on other sessions, use the lock and unlock commands in EXEC mode. When you enter the lock command on a CLI session, users cannot make configuration changes across any other active CLI sessions. When you close the CLI session where you entered the lock command, configuration changes are automatically allowed on all other sessions.

Lock configuration changes

OS10# lock

Unlock configuration changes

OS10# unlock

Change to transaction-based configuration mode

To change to Transaction-Based Configuration mode for a session, enter the start transaction command.

1 Change to Transaction-Based Configuration mode in EXEC mode.
 start transaction

2 Enable, for example, an interface from INTERFACE mode.
 interface ethernet 1/1/1
 no shutdown

3 Save the configuration.
 do commit

 NOTE: After you enter the do commit command, the current session switches back to the default behavior of committing all configuration changes automatically.
Copy running configuration

The running configuration contains the current OS10 system configuration and consists of a series of OS10 commands. Copy the running configuration to a remote server or local directory as a backup or for viewing and editing. The running configuration is copied as a text file, which you can view and edit with a text editor. To copy the running configuration to the startup configuration file, enter the `copy running-configuration startup-configuration` command.

Copy running configuration to local directory or remote server

```
OS10# copy running-configuration scp://root:calvin@10.11.63.120/tmp/qaz.txt
```

Copy file to running configuration

To apply a set of commands to the current running configuration and execute them immediately, copy a text file from a remote server or local directory. The copied commands do not replace the existing commands. If the copied command fails, the successful copied commands before the failure is maintained.

```
OS10# copy scp://root:calvin@10.11.63.120/tmp/qaz.txt running-configuration
```

Restore startup configuration

The startup configuration file, `startup.xml`, is stored in the `config` system folder. To create a backup version, copy the startup configuration to a remote server or the local `config:` or `home:` directories.

To restore a backup configuration, copy a local or remote file to the startup configuration and reload the switch. After downloading a backup configuration, enter the `reload` command, otherwise the configuration does not take effect until you reboot.

Copy file to startup configuration

```
OS10# copy scp://root:calvin@10.11.63.120/tmp/qaz.txt running-configuration
```

Back up startup file

```
OS10# copy config://startup.xml config://backup-9-28.xml
```

Restore startup file from backup

```
OS10# copy config://backup-9-28.xml config://startup.xml
OS10# reload
```
Back up startup file to server

```
OS10# copy config://startup.xml scp://userid:password@hostip/backup-9-28.xml
```

Restore startup file from server

```
OS10# copy scp://admin:admin@hostip/backup-9-28.xml config://startup.xml
OS10# reload
```

Reload system image

Reboot the system manually using the `reload` command in EXEC mode. You are prompted to confirm the operation.

```
OS10# reload
System configuration has been modified. Save? [yes/no]:yes
```

Saving system configuration

```
Proceed to reboot the system? [confirm yes/no]:yes
```

To configure the OS10 image loaded at the next system boot, enter the `boot system` command in EXEC mode.

```
boot system {active | standby}
```

- Enter `active` to load the primary OS10 image stored in the A partition.
- Enter `standby` to load the secondary OS10 image stored in the B partition.

Set next boot image

```
OS10# boot system standby
OS10# show boot
```

Current system image information:

```
<table>
<thead>
<tr>
<th>Type</th>
<th>Boot Type</th>
<th>Active</th>
<th>Standby</th>
<th>Next-Boot</th>
</tr>
</thead>
</table>
```

Filter show commands

You can filter `show` command output to view specific information, or start the command output at the first instance of a regular expression or phrase.

- `display-xml` Displays in XML format.
- `except` Shows only text that does not match a pattern
- `find` Searches for the first occurrence of a pattern and displays all the subsequent configurations
- `grep` Shows only text that matches a pattern
- `no-more` Does not paginate output
- `save` Saves the output to a file

Display all output

```
OS10# show running-configuration | no-more
```
Alias command

The alias command allows you to create shortcuts for commonly used or long commands. You can also execute long commands along with their parameters.

The alias supports the following modes:

- **Persistent mode** — The alias is persistent and is used in other sessions. The aliases created in Configuration mode are persistent.
- **Non-persistent mode** — The alias is used only within the current session. After you close the session, the alias is removed from the switch. The aliases created in Exec mode are non-persistent.

NOTE: You cannot use existing keywords, parameters, and short form of keywords as alias names, nor can you create a shortcut for the alias command. The alias name is case-sensitive and can have a maximum of 20 characters.

- Create an alias in EXEC or CONFIGURATION mode — EXEC mode for non-persistent and CONFIGURATION mode for persistent aliases. The alias value is the actual command where you use $n to enter the input parameters. You can substitute $n with either numbers ranging from 1 to 9 or with an asterisk (*) and enter the parameters while executing the commands using the alias. Use asterisk (*) to represent any number of parameters. The maximum number of input parameters is 9.

  ```
  alias alias-name alias-value
  ```

- Execute the commands using the alias in the respective modes.
- View the current aliases.

  ```
  show alias [brief | detail]
  ```

- Use the no form of the command to delete an alias.

  ```
  no alias alias-name
  ```

Create alias

OS10# alias showint "show interface $*"
OS10(config)# alias goint "interface ethernet $1"

View alias output for showint

OS10# showint status

```
<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
<th>Mode</th>
<th>Vlan</th>
<th>Tagged-Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/2</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/3</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/4</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/5</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/6</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/8</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/9</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/10</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/11</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/12</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/13</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/14</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/15</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/16</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/17</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/18</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/19</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/20</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/21</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/22</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/23</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/24</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/25</td>
<td></td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
```
View alias output for `goint`

```
OS10(config)# goint 1/1/1
OS10(conf-if-eth1/1/1)#
```

View alias information

```
OS10# show alias
Name            Type
----            ----
govlt           Config
goint          Config
shconfig        Local
showint         Local
shver           Local

Number of config aliases : 2
Number of local aliases : 3
```

View alias information brief. Displays the first 10 characters of the alias value.

```
OS10# show alias brief
Name            Type        Value
----            ----        -----  
govlt           Config      "vlt-domain..."
goint           Config      "interface ...
shconfig        Local       "show runni...
showint         Local       "show inter...
shver           Local       "show versi...

Number of config aliases : 2
Number of local aliases : 3
```

View alias information in detail. Displays the entire alias value.

```
OS10# show alias detail
Name            Type        Value
----            ----        -----  
govlt           Config      "vlt-domain $1"
goint           Config      "interface ethernet $1"
shconfig        Local       "show running-configuration"
showint         Local       "show interface $*
shver           Local       "show version"

Number of config aliases : 2
Number of local aliases : 3
```

Delete alias

```
OS10# no alias showint
OS10(config)# no alias goint
```

Multi-line alias

You can create a multi-line alias where you save a series of multiple commands in an alias. Multi-line alias is supported only in the Configuration mode.
You cannot use the exiting CLI keywords as alias names. The alias name is case-sensitive and can have a maximum of 20 characters.

- Create a multi-line alias in the CONFIGURATION mode. The switch enters the ALIAS mode.
  ```
  alias alias-name
  ```
- Enter the commands to be executed prefixed by the `line n` command in ALIAS mode. Enter the commands in double quotes and use `$n` to enter input parameters. You can substitute `$n` with either numbers ranging from 1 to 9 or with an asterisk (*) and enter the parameters while executing the commands using the alias. When you are using asterisk (*), you can use all the input parameters. The maximum number of input parameters is 9.
  ```
  line nn command
  ```
- (Optional) You can enter the default values to use for the parameters defined as `$n` in ALIAS mode.
  ```
  default n input-value
  ```
- (Optional) Enter a description for the multi-line alias in ALIAS mode.
  ```
  description string
  ```
- Use the no form of the command to delete an alias in CONFIGURATION mode.
  ```
  no alias alias-name
  ```

You can modify an existing multi-line alias by entering the corresponding ALIAS mode.

Create multi-line alias

```bash
OS10(config)# alias mTest
OS10(config-alias-mTest)# line 1 "interface $1 $2"
OS10(config-alias-mTest)# line 2 "no shutdown"
OS10(config-alias-mTest)# line 3 "show configuration"
OS10(config-alias-mTest)# default 1 "ethernet"
OS10(config-alias-mTest)# default 2 "1/1/1"
OS10(config-alias-mTest)# description InterfaceDetails
```

View alias output for mTest with default values

```bash
OS10(config)# mTest
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# show configuration

interface ethernet1/1/1
  no shutdown
  switchport access vlan 1
```

View alias output for mTest with different values

```bash
OS10(config)# mTest ethernet 1/1/10
OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# no shutdown
OS10(conf-if-eth1/1/10)# show configuration

interface ethernet1/1/10
  no shutdown
  switchport access vlan 1
```

Modify existing multi-line alias

```bash
OS10(config)# alias mTest
OS10(config-alias-mTest)# line 4 "exit"
```

View the commands saved in the multi-line alias

```bash
OS10(config-alias-mTest)# show configuration

! alias mTest
description InterfaceDetails
default 1 ethernet
default 2 1/1/1
line 1 "interface $1 $2"
```
View alias information

OS10# show alias
Name Type
---- ----
mTest Config

Number of config aliases : 1
Number of local aliases : 0

View alias information brief. Displays the first 10 characters of each line of each alias.

OS10# show alias brief
Name Type Value
---- ---- -----
mTest Config line 1 "interface ..."
 line 2 "no shutdown"
 line 3 "show configuration"
 default 1 "ethernet"
 default 2 "1/1/1"

Number of config aliases : 1
Number of local aliases : 0

View alias detail. Displays the entire alias value.

OS10# show alias detail
Name Type Value
---- ---- -----
mTest Config line 1 "interface $1 $2"
 line 2 "no shutdown"
 line 3 "show configuration"
 default 1 "ethernet"
 default 2 "1/1/1"

Number of config aliases : 1
Number of local aliases : 0

Delete alias

OS10(config)# no alias mTest

Batch mode

Create and run a batch file to execute a sequence of multiple commands. A batch file is an unformatted text file that contains two or more commands. Store the batch file in the home directory.

Use vi or any other editor to create the batch file, then use the batch command to execute the file. To execute a series of commands in batch mode (non-interactive processing), use the batch command. OS10 automatically commits all commands in a batch file — you do not have to enter the commit command.

If a command in the batch file fails, batch operation stops at that command. The remaining commands are not executed.

- Create a batch file (for example, b.cmd) on a remote device by entering a series of commands.
  ```
  interface ethernet 1/1/1
  no shutdown
  no switchport
  ip address 172.17.4.1/24
  ```
- Copy the command file to the home directory on the switch.
  ```
  OS10# copy scp://os10user:os10passwd@10.11.222.1/home/os10/b.cmd home://b.cmd
  ```
OS10# dir home

Directory contents for folder: home
Date (modified) Size (bytes) Name
--------------------- ------------ ------
2017-02-15T19:25:35Z 77 b.cmd
...

• Execute the batch file using the `batch /home/username/filename` command in EXEC mode.

OS10# batch /home/admin/b.cmd
Jun 26 18:29:12 OS10 dn_l3_core_services[723]: Node.1-Unit.1:FRI:notice [os10:trap], %Dell EMC (OS10) %log-notice:IP_ADDRESS_ADD: IP Address add is successful. IP 172.17.4.1/24 in VRF:default added successfully

• (Optional) Verify the new commands in the running configuration.

OS10# show running-configuration interface ethernet 1/1/1
!
interface ethernet1/1/1
no shutdown
no switchport
ip address 172.17.4.1/24

Linux shell commands

You can execute a single command, or a series of commands, using a batch file from the Linux shell.

• Use the `-c` option to run a single command.

 admin@OS10:/opt/dell/os10/bin$ clish -c "show version"

 New user admin logged in at session 10
 Dell EMC Networking OS10-Enterprise
 Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.
 OS Version: 10.4.2.0
 Build Version: 10.4.2.0.226
 Build Time: 2018-11-08T21:43:05-0800
 System Type: S6010-ON
 Architecture: x86_64
 Up Time: 3 days 00:28:58

 User admin logged out at session 10

• Use the `-B` option along with a batch file to execute a series of commands.

 configure terminal
 router bgp 100
 neighbor 100.1.1.1
 remote-as 104
 no shutdown

 Execute the batch file.

 admin@OS10:/opt/dell/os10/bin$ clish -B ~/batch_cfg.txt

 New user admin logged in at session 15

 Verify the BGP configuration executed by the batch file.

 admin@OS10:/opt/dell/os10/bin$ clish -c "show running-configuration bgp"

 New user admin logged in at session 16
 !
 router bgp 100
 !
 neighbor 100.1.1.1
SSH commands

You can execute commands remotely using a secure shell (SSH) session. This is supported only for `show` commands.

- Enter the `show` command along with `SSH`.

  ```
  $ ssh admin@ip-address show-command
  ```

  ```
  $ ssh admin@10.11.98.39 "show version"
  ```

 admin@10.11.98.39's password:
 Dell EMC Networking OS10-Enterprise
 Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.
 OS Version: 10.4.2.0
 Build Version: 10.4.2.0.226
 Build Time: 2018-11-08T21:43:05-0800
 System Type: S6010-ON
 Architecture: x86_64
 Up Time: 3 days 00:28:58

OS9 environment commands

You can configure commands in an OS9 environment using the `feature config-os9-style` command.

- **VLAN Interface mode**
 - tagged
 - no tagged
 - untagged
 - no untagged

- **Port-channel Interface mode**:
 - channel-member
 - no channel-member

- Enable the feature to configure commands in an OS9 environment in **CONFIGURATION** mode.
  ```
  OS10(config)# feature config-os9-style
  OS10(config)# exit
  OS10# show running-configuration compressed
  interface breakout 1/1/28 map 10g-4x
  feature config-os9-style
  ```

- After you enable this feature, you can use the OS9 format of commands only in the new session. This configuration does not take effect in the current session.
  ```
  OS10(config)# interface vlan 11
  OS10(conf-if-vl-11)# tagged ethernet 1/1/15
  ```

Common commands
alias

Creates a command alias.

Syntax

```
alias alias-name alias-value
```

Parameters

- `alias-name` — Enter the name of the alias. A maximum of 20 characters.
- `alias-value` — Enter the command to be executed within double quotes. Enter the `$` followed by either numbers ranging from 1 to 9 or with an asterisk (*) and enter the parameters while executing the commands using the alias. Use asterisk (*) to represent any number of parameters.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to create a shortcut to long commands along with arguments. Use the numbers 1 to 9 along with the `$` to provide input parameters. The `no` version of this command deletes an alias.

Example

In this example, when you enter `showint status`, note that the text on the CLI changes to `show interface status`. The alias changes to the actual command that you have specified in the alias definition.

```
OS10# alias showint "show interface $*"
OS10# showint status
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
<th>Mode</th>
<th>Vlan</th>
<th>Tagged-Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/2</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/3</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/4</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/5</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/6</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/8</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/9</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/10</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/11</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/12</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/13</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/14</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/15</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/16</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/17</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/18</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/19</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/20</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/21</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/22</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/23</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/24</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/25</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/26</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/27</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/28</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/29</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/30</td>
<td>up</td>
<td>40G</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this example, when you enter `goint 1/1/1`, note that the text on the CLI changes to `interface ethernet 1/1/1`.

```
OS10(config)# alias goint "interface ethernet $1"
OS10(config)# goint 1/1/1
OS10(conf-if-eth1/1/1)#
```

Supported Releases 10.3.0E or later

alias (multi-line)

Creates a multi-line command alias.

Syntax

```
alias alias-name
```

Parameters

- `alias-name` — Enter the name of the multi-line alias. A maximum of up to 20 characters.

Default

Not configured

Command Mode CONFIGURATION

Usage Information

Use this command to save a series of multiple commands in an alias. The switch enters ALIAS mode when you create an alias. You can enter the series of commands to be executed using the `line` command. The `no` version of this command deletes an alias.

```
OS10(config)# alias mTest
OS10(config-alias-mTest)# line 1 "interface $1 $2"
OS10(config-alias-mTest)# line 2 "no shutdown"
OS10(config-alias-mTest)# line 3 "show configuration"
```

Supported Releases 10.4.0E(R1) or later

batch

Executes a series of commands in a file in batch, non-interactive, processing.

Syntax

```
batch /home/username/filename
```

Parameters

- `username` — Enter the user name that was used to copy the command file.
- `filename` — Enter the name of a batch command file.

Default

Not configured

Command Mode EXEC

Usage Information

Use this command to create a batch command file on a remote machine. Copy the command file to the home directory on your switch. This command executes commands in batch mode. OS10 automatically commits all commands in a batch file; you do not have to enter the `commit` command. To display the files stored in the home directory, enter `dir home`. Use the `dir home` command to view the files stored in the home directory.
boot

Configures which OS10 image to use the next time the system boots up.

Syntax

```
boot system [active | standby]
```

Parameters

- **active** — Reset the running partition as the next boot partition.
- **standby** — Set the standby partition as the next boot partition.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to configure the location of the OS10 image used to reload the software at boot time. Use the `show boot` command to view the configured next boot image. This command is applied immediately.

Example

```
OS10# boot system standby
```

Supported Releases

10.2.0E or later

commit

Commits changes in the candidate configuration to the running configuration.

Syntax

```
commit
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to save changes to the running configuration. Use the `do commit` command to save changes in CONFIGURATION mode.

Example

```
OS10# commit
```

Example

```
OS10(config)# do commit
```

Supported Releases

10.2.0E or later
configure

Enters CONFIGURATION mode from EXEC mode.

Syntax

```
configure {terminal}
```

Parameters

- **terminal** — Enters CONFIGURATION mode from EXEC mode.

Default

Not configured

Command Mode

EXEC

Usage Information

Enter `conf t` for auto-completion.

Example

```
OS10# configure terminal
OS10(config)#
```

Supported Releases

10.2.0E or later

copy

Copies the current running configuration to the startup configuration and transfers files between an OS10 switch and a remote device.

Syntax

```
```

Parameters

- **running-configuration** — (Optional) Copy the current running configuration file to the startup configuration file.
- **startup-configuration** — (Optional) Copy the startup configuration file.
- **config://filepath** — (Optional) Copy from the configuration directory.
- **coredump://filepath** — (Optional) Copy from the coredump directory.
- **ftp://userid:passwd@hostip/filepath** — (Optional) Copy from a remote FTP server.
- **home://username/filepath** — (Optional) Copy from the home directory.
- **scp://userid:passwd@hostip/filepath** — (Optional) Copy from a remote SCP server.
- **sftp://userid:passwd@hostip/filepath** — (Optional) Copy from a remote SFTP server.
- **supportbundle://filepath** — (Optional) Copy from the support-bundle directory.
- **tftp://hostip/filepath** — (Optional) Copy from a remote TFTP server.
- **usb://filepath** — (Optional) Copy from a USB file system.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to save the running configuration to the startup configuration, transfer coredump files to a remote location, backup the startup configuration, retrieve a previously backed-up configuration, replace the startup configuration file, or transfer support bundles.

Example

```
OS10# dir coredump
Directory contents for folder: coredump
Date (modified)        Size (bytes)  Name
---------------------  ------------  ------------------------------------------
```

Example (copy startup configuration)

```bash
OS10# copy coredump://core.netconfd-pro.2017-02-15_19-05-09.gz scp://os10user:os10passwd@10.11.222.1:/home/os10/core.netconfd-pro.2017-02-15_19-05-09.gz
```

```bash
OS10# dir config
Directory contents for folder: config
Date (modified)        Size (bytes)  Name
---------------------  ------------  ------------
2017-02-15T20:38:12Z   54525         startup.xml
```

OS10# copy config://startup.xml scp://os10user:os10passwd@10.11.222.1:/home/os10/backup.xml

Example (retrieve backed-up configuration)

```bash
OS10# copy scp://os10user:os10passwd@10.11.222.1:/home/os10/backup.xml home://config.xml
```

OS10(conf-if-eth1/1/5)# dir home
Directory contents for folder: home
Date (modified) Size (bytes) Name
--------------------- ------------ -----------
2017-02-15T21:19:54Z 54525 config.xml
...

Example (replace startup configuration)

```bash
OS10# home://config.xml config://startup.xml
```

Supported Releases

10.2.0E or later

default (alias)

Configures default values for input parameters in a multi-line alias.

Syntax

```
default n value
```

Parameters

- **n** — Enter the number of the argument, from 1 to 9.
- **value** — Enter the value for the input parameter.

Default

Not configured

Command Mode

ALIAS

Usage Information

To use special characters in the input parameter value, enclose the string in double quotes. The `no` version of this command removes the default value.

Example

```bash
OS10(config)# alias mTest
OS10(config-alias-mTest)# default 1 "ethernet 1/1/1"
```

Supported Releases

10.4.0E(R1) or later
delete

Removes or deletes the startup configuration file.

Syntax

```
```

Parameters

- `config://filepath` — (Optional) Delete from the configuration directory.
- `coredump://filepath` — (Optional) Delete from the coredump directory.
- `home://filepath` — (Optional) Delete from the home directory.
- `image://filepath` — (Optional) Delete from the image directory.
- `startup-configuration` — (Optional) Delete the startup configuration.
- `supportbundle://filepath` — (Optional) Delete from the support-bundle directory.
- `usb://filepath` — (Optional) Delete from the USB file system.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to remove a regular file, software image, or startup configuration. Removing the startup configuration restores the system to the factory default. You need to reboot the switch using the `reload` command for the operation to take effect.

NOTE: Use caution when removing the startup configuration.

Example

```bash
OS10# delete startup-configuration
```

Supported Releases

10.2.0E or later

description (alias)

Configures a textual description for a multi-line alias.

Syntax

```
description string
```

Parameters

- `string` — Enter a text string for a multi-line alias description.

Default

Not configured

Command Mode

ALIAS

Usage Information

- To use special characters as a part of the description string, enclose the string in double quotes.
- Spaces between characters are not preserved after entering this command unless you enclose the entire description in quotation marks, for example, “text description.”
- Enter a text string after the `description` command to overwrite any previous text strings that you configured as the description.
- The `no` version of this command removes the description.

Example

```bash
OS10(config)# alias mTest
OS10(config-alias-mTest)# description "This alias configures interfaces"
```
Supported Releases 10.4.0E(R1) or later

dir

Displays files stored in available directories.

Syntax

dir {config | coredump | home | image | supportbundle | usb}

Parameters

- config — (Optional) Folder containing configuration files.
- coredump — (Optional) Folder containing coredump files.
- home — (Optional) Folder containing files in user's home directory.
- image — (Optional) Folder containing image files.
- supportbundle — (Optional) Folder containing support bundle files.
- usb — (Optional) Folder containing files on a USB drive.

Default

Not configured

Command Mode

EXEC

Usage Information

Use the dir config command to display configuration files. This command requires at least one parameter.

Example

OS10# dir

<table>
<thead>
<tr>
<th>config</th>
<th>Folder containing configuration files</th>
</tr>
</thead>
<tbody>
<tr>
<td>coredump</td>
<td>Folder containing coredump files</td>
</tr>
<tr>
<td>home</td>
<td>Folder containing files in user's home directory</td>
</tr>
<tr>
<td>image</td>
<td>Folder containing image files</td>
</tr>
<tr>
<td>supportbundle</td>
<td>Folder containing support bundle files</td>
</tr>
<tr>
<td>usb</td>
<td>Folder containing files on a USB drive</td>
</tr>
</tbody>
</table>

Example (config)

OS10# dir config

Directory contents for folder: config

<table>
<thead>
<tr>
<th>Date (modified)</th>
<th>Size (bytes)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-04-26T15:23:46Z</td>
<td>26704</td>
<td>startup.xml</td>
</tr>
</tbody>
</table>

Supported Releases 10.2.0E or later

discard

Discards changes made to the candidate configuration file.

Syntax

discard

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# discard

Supported Releases 10.2.0E or later
do

Executes most commands from all CONFIGURATION modes without returning to EXEC mode.

Syntax

do command

Parameters

command — Enter an EXEC-level command.

Default

Not configured

Command Mode

INTERFACE

Usage Information

None

Example

OS10(config)# interface ethernet 1/1/7
OS10(conf-if-eth1/1/7)# no shutdown
OS10(conf-if-eth1/1/7)# do show running-configuration

...!
interface ethernet1/1/7
no shutdown
...

Supported Releases

10.2.0E or later

feature config-os9-style

Configure commands in an OS9 environment.

Syntax

feature config-os9-style

Parameters

None

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

After you enable the feature to configure commands in OS9 format, log out of the session. In the next session, you can configure the commands in OS9 format. This feature does not have an impact on the show commands. Use the no form of the command to disable the feature.

Example

OS10(config)# feature config-os9-style
OS10# show running-configuration compressed
interface breakout 1/1/28 map 10g-4x
feature config-os9-style

Supported Releases

10.3.0E or later

exit

Returns to the next higher command mode.

Syntax

exit

Parameters

None
license

Installs a license file from a local or remote location.

Syntax
```
```

Parameters
- `ftp:` — (Optional) Install from the remote file system (`ftp://userid:passwd@hostip/filepath`).
- `http[s]:` — (Optional) Install from the remote file system (`http://hostip/filepath`).
- `http[s]:` — (Optional) Request from remote server (`http://hostip`).
- `localfs:` — (Optional) Install from the local file system (`localfs://filepath`).
- `scp:` — (Optional) Request from the remote file system (`scp://userid:passwd@hostip/filepath`).
- `sftp:` — (Optional) Request from the remote file system (`sftp://userid:passwd@hostip/filepath`).
- `tftp:` — (Optional) Request from the remote file system (`tftp://hostip/filepath`).
- `usb:` — (Optional) Request from the USB file system (`usb://filepath`).

Default
Not configured

Command Mode
EXEC

Usage Information
Use this command to install the Enterprise Edition license file. For more information, see Download OS10 image and license. OS10 requires a perpetual license to run beyond the 120-day trial period. The license file is installed in the `/mnt/license` directory.

Example
```
OS10# license install scp://user:userpwd/10.1.1.10/CFNNX42-NOSEnterprise-License.lic
License installation success.
```

Supported Releases
10.3.0E or later

line (alias)

Configures the commands to be executed in a multi-line alias.

Syntax
```
line nn command
```

Parameters
- `nn` — Enter the line number, from 1 to 99. The commands are executed in the order of the line numbers.
- `command` — Enter the command to be executed enclosed in double quotes.

Default
Not configured
ALIAS

Usage Information
The `no` version of this command removes the line number and the corresponding command from the multi-line alias.

Example
```
OS10(config)# alias mTest
OS10(config-alias-mTest)# line 1 "interface $1 $2"
OS10(config-alias-mTest)# line 2 "no shutdown"
OS10(config-alias-mTest)# line 3 "show configuration"
```

Supported Releases
10.4.0E(R1) or later

lock

Locks the candidate configuration and prevents any configuration changes on any other CLI sessions, either in Transaction or Non-Transaction-Based Configuration mode.

Syntax
```
lock
```

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
The `lock` command fails if there are uncommitted changes in the candidate configuration.

Example
```
OS10# lock
```

Supported Releases
10.2.0E or later

management route

Configures an IPv4/IPv6 static route the Management port uses. Repeat the command to configure multiple management routes.

Syntax
```
management route {ipv4-address/mask | ipv6-address/prefix-length} {forwarding-router-address | managementethernet}
```

Parameters
- `ipv4-address/mask` — Enter an IPv4 network address in dotted-decimal format (A.B.C.D), then a subnet mask in prefix-length format (/xx).
- `ipv6-address/prefix-length` — Enter an IPv6 address in x:x:x::x format with the prefix length in /xxx format. The prefix range is /0 to /128.
- `forwarding-router-address` — Enter the next-hop IPv4/IPv6 address of a forwarding router (gateway) for network traffic from the Management port.
- `managementethernet` — Configure the Management port as the interface for the route; forces the route to be associated with the Management interface.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
Management routes are separate from IP routes and are only used to manage the system through the Management port. To display the currently configured IPv4 and IPv6 management routes, enter the `show ip management-route` and `show ipv6 management-route` commands.
Example (IPv4)

```
OS10(config)# management route 10.10.20.0/24 10.1.1.1
OS10(config)# management route 172.16.0.0/16 managementethernet
```

Example (IPv6)

```
OS10(config)# management route 10::/64 10::1
```

Supported Releases

10.2.2E or later

move

Moves or renames a file on the configuration or home system directories.

Syntax

```
move [config: | home: | usb:]
```

Parameters

- **config:** — Move from the configuration directory (`config://filepath`).
- **home:** — Move from the home directory (`home://filepath`).
- **usb:** — Move from the USB file system (`usb://filepath`).

Default

Not configured

Command Mode

EXEC

Usage Information

Use the `dir config` command to view the directory contents.

Example

```
OS10# move config://startup.xml config://startup-backup.xml
```

Example (dir)

```
OS10# dir config
```

Example (dir)

```
Directory contents for folder: config
Date (modified) Size (bytes) Name
--------------------- ------------ -----------
2017-04-26T15:23:46Z 26704         startup.xml
```

Supported Releases

10.2.0E or later

no

Disables or deletes commands in EXEC mode.

Syntax

```
no [alias | debug | support-assist-activity | terminal]
```

Parameters

- **alias** — Remove an alias definition.
- **debug** — Disable debugging.
- **support-assist-activity** — SupportAssist-related activity.
- **terminal** — Reset terminal settings.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command in EXEC mode to disable or remove a configuration. Use the `no ?` in CONFIGURATION mode to view available commands.
Example

OS10# no alias goint

Supported Releases

10.2.0E or later

reload

Reloads the software and reboots the ONIE-enabled device.

Syntax

reload

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

NOTE: Use caution while using this command as it reloads the OS10 image and reboots the device.

Example

OS10# reload

Proceed to reboot the system? [confirm yes/no]: y

Supported Releases

10.2.0E or later

show alias

Displays configured alias commands available in both Persistent and Non-Persistent modes.

Syntax

show alias [brief | detail]

Parameters

- brief — Displays brief information of the aliases.
- detail — Displays detailed information of the aliases.

Default

None

Command Mode

EXEC

Usage Information

None

Example

OS10# show alias

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>govl t</td>
<td>Config</td>
</tr>
<tr>
<td>goint</td>
<td>Config</td>
</tr>
<tr>
<td>mTest</td>
<td>Config</td>
</tr>
<tr>
<td>shconfig</td>
<td>Local</td>
</tr>
<tr>
<td>showint</td>
<td>Local</td>
</tr>
<tr>
<td>shver</td>
<td>Local</td>
</tr>
</tbody>
</table>

Number of config aliases: 3
Number of local aliases: 3

Example (brief — displays the first 10 characters of the alias value))

OS10# show alias brief

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>govl t</td>
<td>Config</td>
<td>"vlt-domain..."</td>
</tr>
<tr>
<td>goint</td>
<td>Config</td>
<td>"interface ..."</td>
</tr>
<tr>
<td>mTest</td>
<td>Config</td>
<td>line 1 "interface ..."</td>
</tr>
</tbody>
</table>
Example (detail — displays the entire alias value)

```text
OS10# show alias detail

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>govt</td>
<td>Config</td>
<td>&quot;vlt-domain $1&quot;</td>
</tr>
<tr>
<td>goint</td>
<td>Config</td>
<td>&quot;interface ethernet $1&quot;</td>
</tr>
</tbody>
</table>
| mTest     | Config| line 1 "interface $1 $2"
|           |       | line 2 "no shutdown"
|           |       | line 3 "show configuration"
|           |       | default 1 "ethernet"
|           |       | default 2 "1/1/1"
|           |       | "show running-configuration"
| shconfig  | Local | "show running-configuration"                     |
| showint   | Local | "show interface $*"                              |
| shver     | Local | "show version"                                   |
```

Number of config aliases : 3
Number of local aliases : 3

Supported Releases 10.3.0E or later

show boot

Displays detailed information about the boot image.

Syntax

```
show boot [detail]
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

The Next-Boot field displays the partition that the next reload uses.

Example

```text
OS10# show boot
Current system image information:
===================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Boot Type</th>
<th>Active</th>
<th>Standby</th>
<th>Next-Boot</th>
</tr>
</thead>
</table>

OS10# show boot detail
Current system image information detail:
=======================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Node-id 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Type:</td>
<td>Flash Boot</td>
</tr>
<tr>
<td>Active Partition:</td>
<td>A</td>
</tr>
<tr>
<td>Active SW Version:</td>
<td>10.2.9999E</td>
</tr>
<tr>
<td>Active SW Build Version:</td>
<td>10.2.9999E(3633)</td>
</tr>
<tr>
<td>Active Kernel Version:</td>
<td>Linux 3.16.36</td>
</tr>
<tr>
<td>Active Build Date/Time:</td>
<td>2017-01-25T06:36:22Z</td>
</tr>
<tr>
<td>Standby Partition:</td>
<td>B</td>
</tr>
<tr>
<td>Standby SW Version:</td>
<td>10.2.9999E</td>
</tr>
<tr>
<td>Standby SW Build Version:</td>
<td>10.2.9999E(3633)</td>
</tr>
</tbody>
</table>
```
show candidate-configuration

Displays the current candidate configuration file.

Syntax

```
show candidate-configuration [aaa | access-list | as-path | bgp | class-map | community-list | compressed | control-plane | dot1x | extcommunity-list | interface | lacp | line | lldp | logging | monitor | ospf | ospfv3 | policy-map | prefix-list | qos-map | radius-server | route-map | sflow | snmp | spanning-tree | support-assist | system-qos | trust-map | users | vlt]
```

Parameters

- `aaa` — (Optional) Current candidate AAA configuration.
- `access-list` — (Optional) Current candidate access-list configuration.
- `as-path` — (Optional) Current candidate as-path configuration.
- `bgp` — (Optional) Current candidate BGP configuration.
- `class-map` — (Optional) Current candidate class-map configuration.
- `community-list` — (Optional) Current candidate community-list configuration.
- `compressed` — (Optional) Current candidate configuration in compressed format.
- `control-plane` — (Optional) Current candidate control-plane configuration.
- `dot1x` — (Optional) Current candidate dot1x configuration.
- `extcommunity-list` — (Optional) Current candidate extcommunity-list configuration.
- `interface` — (Optional) Current candidate interface configuration.
- `lacp` — (Optional) Current candidate LACP configuration.
- `lldp` — (Optional) Current candidate LLDP configuration.
- `logging` — (Optional) Current candidate logging configuration.
- `monitor` — (Optional) Current candidate monitor session configuration.
- `ospf` — (Optional) Current candidate OSPF configuration.
- `ospfv3` — (Optional) Current candidate OSPFv3 configuration.
- `policy-map` — (Optional) Current candidate policy-map configuration.
- `prefix-list` — (Optional) Current candidate prefix-list configuration.
- `qos-map` — (Optional) Current candidate qos-map configuration.
- `radius-server` — (Optional) Current candidate RADIUS server configuration.
- `route-map` — (Optional) Current candidate route-map configuration.
- `sflow` — (Optional) Current candidate sFlow configuration.
- `snmp` — (Optional) Current candidate SNMP configuration.
- `spanning-tree` — (Optional) Current candidate spanning-tree configuration.
- `support-assist` — (Optional) Current candidate support-assist configuration.
- `system-qos` — (Optional) Current candidate system-qos configuration.
- `trust-map` — (Optional) Current candidate trust-map configuration.
- `users` — (Optional) Current candidate users configuration.
- `vlt` — (Optional) Current candidate VLT domain configuration.

Default

Not configured
Command Mode	EXEC
Usage Information | None

Example

```
OS10# show candidate-configuration
! Version 10.2.9999E
! Last configuration change at Apr 11 10:36:43 2017
!
username admin password $6$9QBeYjZ$jfxzVgkhxX3smxJSH9DDz7/3OJc6m5wjF8nnLD7/VKx8SloIp4NoGZs0I/UNwh8WVuxwf9q4pW1gNs5BKH.
aaa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
logging monitor disable
ip route 0.0.0.0/0 10.11.58.1
!
interface ethernet1/1/1
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/2
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/3
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/4
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/5
  switchport access vlan 1
  no shutdown
!
--more--
```

Example (compressed)

```
OS10# show candidate-configuration compressed
username admin password $6$9QBeYjZ$jfxzVgkhxX3smxJSH9DDz7/3OJc6m5wjF8nnLD7/VKx8SloIp4NoGZs0I/UNwh8WVuxwf9q4pW1gNs5BKH.
aaa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
logging monitor disable
ip route 0.0.0.0/0 10.11.58.1
!
interface range ethernet 1/1/1-1/1/32
  switchport access vlan 1
  no shutdown
!
interface vlan 1
  no shutdown
!
interface mgmt1/1/1
  ip address 10.11.58.145/8
  no shutdown
  ipv6 enable
  ipv6 address autoconfig
!
support-assist
!
policy-map type application policy-iscsi
!
```

Getting Started | 71
show environment

Displays information about environmental system components, such as temperature, fan, and voltage.

Syntax
show environment

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example

```
OS10# show environment

Unit    State             Temperature
-------------------------------------
1       up                43

Thermal sensors
Unit   Sensor-Id        Sensor-name                               Temperature
------------------------------------------------------------------------------
1       1           CPU On-Board temp sensor                          32
1       2           Switch board temp sensor                         28
1       3           System Inlet Ambient-1 temp sensor                27
1       4           System Inlet Ambient-2 temp sensor                25
1       5           System Inlet Ambient-3 temp sensor                26
1       6           Switch board 2 temp sensor                       31
1       7           Switch board 3 temp sensor                       41
1       8           NPU temp sensor                                   43
```

Supported Releases
10.2.0E or later

show inventory

Displays system inventory information.

Syntax
show inventory

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example

```
OS10# show inventory

Product          : S6010-ON
Description      : S6010-ON 32x40GbE QSFP+ Interface Module
Software version : 10.4.2.0

Unit Type                     Part Number  Rev  Piece Part ID             Svc Tag  Exprs Svc Code
-------------------------------------------------------------------------------------------------  
* 1  S6010-ON                 01YRKK       X01  CN-01YRKK-28298-712-0068  3601XC2  689 323 392 2
  1  S6010-ON-PWR-2-AC        0AIBCD       A00  TW-012345-DELTA-XXX-ABCD
  1  S6010-ON-FANTRAY-1       0N7MH8       X01  04-01---
  1  S6010-ON-FANTRAY-2       0N7MH8       X01  04-02---
  1  S6010-ON-FANTRAY-3       0N7MH8       X01  04-03---
```

Supported Releases
10.2.0E or later
show ip management-route

Displays the IPv4 routes used to access the Management port.

Syntax

show ip management-route [all | connected | summary]

Parameters

- all — (Optional) Display the IPv4 routes that the Management port uses.
- connected — (Optional) Display only routes directly connected to the Management port.
- summary — (Optional) Display the number of active and non-active management routes and their remote destinations.
- static — (Optional) Display non-active management routes.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to view the IPv4 static and connected routes configured for the Management port. Use the management route command to configure an IPv4 or IPv6 management route.

Example

OS10# show ip management-route

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>State</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.10.0/24</td>
<td>managementethernet</td>
<td>Connected</td>
<td>Connected</td>
</tr>
</tbody>
</table>

Supported Releases

10.2.0E or later

show ipv6 management-route

Displays the IPv6 routes used to access the Management port.

Syntax

show ipv6 management-route [all | connected | summary]

Parameters

- all — (Optional) Display the IPv6 routes that the Management port uses.
- connected — (Optional) Display only routes directly connected to the Management port.
- summary — (Optional) Display the number of active and non-active management routes and their remote destinations.
- static — (Optional) Display non-active Management routes.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to view the IPv6 static and connected routes configured for the Management port. Use the management route command to configure an IPv4 or IPv6 management route.

Example

OS10# show ipv6 management-route

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.10.0/24</td>
<td>managementethernet</td>
<td></td>
</tr>
</tbody>
</table>
show license status

 Displays license status information.

 Syntax
 show license status

 Parameters
 None

 Default
 Not configured

 Command Mode
 EXEC

 Usage Information
 Use this command to view the show license status command to verify the current license for running OS10, its duration, and the service tag of the switch to which it is assigned.

 Example
 OS10# show license status

 System Information

 Vendor Name : DELL
 Product Name : S6010-ON
 Hardware Version: X01
 Platform Name : x86_64-dell_s6010_c2538-r0
 PPID : CN01YRKK282987120068
 Service Tag : 3601XC2
 License Details

 Software : OS10-Enterprise
 Version : 10.4.2.0
 License Type : EVALUATION
 License Duration: 120 days
 License Status : 98 day(s) left
 License location: /mnt/license/3601XC2.lic

 show running-configuration

 Displays the configuration currently running on the device.

 Syntax
 show running-configuration [aaa | access-list | as-path | bgp | class-map | community-list | compressed | control-plane | dot1x | extcommunity-list | interface | lacp | line | lldp | logging | monitor | ospf | ospfv3 | policy-map | prefix-list | qos-map | radius-server | route-map | sflow | snmp | spanning-tree | support-assist | system-qos | trust-map | users | vlt]

 Parameters

 - aaa — (Optional) Current operating AAA configuration.
 - access-list — (Optional) Current operating access-list configuration.
 - as-path — (Optional) Current operating as-path configuration.
 - bgp — (Optional) Current operating BGP configuration.
 - class-map — (Optional) Current operating class-map configuration.
• community-list — (Optional) Current operating community-list configuration.
• compressed — (Optional) Current operating configuration in compressed format.
• control-plane — (Optional) Current operating control-plane configuration.
• dot1x — (Optional) Current operating dot1x configuration.
• extcommunity-list — (Optional) Current operating extcommunity-list configuration.
• interface — (Optional) Current operating interface configuration.
• lacp — (Optional) Current operating LACP configuration.
• lldp — (Optional) Current operating LLDP configuration.
• logging — (Optional) Current operating logging configuration.
• monitor — (Optional) Current operating monitor session configuration.
• ospf — (Optional) Current operating OSPF configuration.
• ospfv3 — (Optional) Current operating OSPFv3 configuration.
• policy-map — (Optional) Current operating policy-map configuration.
• prefix-list — (Optional) Current operating prefix-list configuration.
• qos-map — (Optional) Current operating qos-map configuration.
• radius-server — (Optional) Current operating radius-server configuration.
• route-map — (Optional) Current operating route-map configuration.
• sflow — (Optional) Current operating sFlow configuration.
• snmp — (Optional) Current operating SNMP configuration.
• spanning-tree — (Optional) Current operating spanning-tree configuration.
• support-assist — (Optional) Current operating support-assist configuration.
• system-qos — (Optional) Current operating system-qos configuration.
• trust-map — (Optional) Current operating trust-map configuration.
• users — (Optional) Current operating users configuration.
• vlt — (Optional) Current operating VLT domain configuration.

Default: Not configured
Command Mode: EXEC
Usage Information: None
Example:
```bash
OS10# show running-configuration
! Version 10.2.1.9999E
! Last configuration change at Apr 11 01:25:02 2017
!
username admin password $6$q9QBeYjZ$JfxzVqGhkxX3smxJSH9DDz7/30Jc6m5wJF8nnLD7/VKx8SloIhp4NoGZs0IF/UNwh8WVuxw1d9q4pW1gNs5BKH.
aaa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
logging monitor disable
ip route 0.0.0.0/0 10.11.58.1
! interface ethernet1/1/1
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/2
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/3
  switchport access vlan 1
  no shutdown
!
```
interface ethernet1/1/4
 switchport access vlan 1
 no shutdown
!
interface ethernet1/1/5
 switchport access vlan 1
 no shutdown
!
interface ethernet1/1/6
 switchport access vlan 1
 no shutdown

Example (compressed)
OS10# show running-configuration compressed
username admin password 6q9QBeYjZ$jfxzVqGhkxX3smxJSH9DDz7/3OJc6m5wjF8nnLD7/VKx8SloIp4NoG2s0I/UNwh8WVuSj/w9d9q4pWtgN5BKH.
aaa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
logging monitor disable
ip route 0.0.0.0/0 10.11.58.1
!
interface range ethernet 1/1-1/1/32
 switchport access vlan 1
 no shutdown
!
interface vlan 1
 no shutdown
!
interface mgmt1/1/1
 ip address 10.11.58.145/8
 no shutdown
 ipv6 enable
 ipv6 address autoconfig
!
support-assist
!
policy-map type application policy-iscsi
!
class-map type application class-iscsi

Supported Releases 10.2.0E or later

show startup-configuration

Displays the contents of the startup configuration file.

Syntax show startup-configuration [compressed]

Parameters compressed — (Optional) View a compressed version of the startup configuration file.

Default Not configured

Command Mode EXEC

Usage Information None

Example OS10# show startup-configuration
username admin password 6q9QBeYjZ$jfxzVqGhkxX3smxJSH9DDz7/3OJc6m5wjF8nnLD7/VKx8SloIp4NoG2s0I/UNwh8WVuSj/w9d9q4pWtgN5BKH.
aaa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
ip route 0.0.0.0/0 10.11.58.1
interface ethernet1/1/1
 switchport access vlan 1
 no shutdown

interface ethernet1/1/2
 switchport access vlan 1
 no shutdown

interface ethernet1/1/3
 switchport access vlan 1
 no shutdown

interface ethernet1/1/4
 switchport access vlan 1
 no shutdown

interface ethernet1/1/5
 switchport access vlan 1
 no shutdown

--more--

Example (compressed)

OS10# show startup-configuration compressed
username admin password 6q9QBeYjZ$jfxzVg hx X3smxJSH9DDz7/30Jc6m5wjF8nnLD7/ VKx85loIhp4NoGZs0I/UNWh8WVuxwfd9q4pWlgNs5BKH.
aa authentication local
snmp-server contact http://www.dell.com/support
snmp-server location "United States"
ip route 0.0.0.0/0 10.11.58.1

interface range ethernet 1/1/1-1/1/32
 switchport access vlan 1
 no shutdown

interface vlan 1
 no shutdown

interface mgmt1/1/1
 ip address 10.11.58.145/8
 no shutdown
 ipv6 enable
 ipv6 address autoconfig

 support-assist

 policy-map type application policy-iscsi
 class-map type application class-iscsi

Supported Releases

10.2.0E or later

show system

Displays system information.

Syntax

show system [brief | node-id]

Parameters

- brief — View an abbreviated list of the system information.
- node-id — View the node ID number.
Default
Not configured

Command Mode
EXEC

Usage Information
None

Example

OS10# show system

<table>
<thead>
<tr>
<th>Node Id</th>
<th></th>
<th>MAC</th>
<th>Number of MACs</th>
<th>Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Node Id</td>
<td>MAC</td>
<td>Number of MACs</td>
<td>Up Time</td>
</tr>
<tr>
<td>1</td>
<td>00:0c:29:00:a5:d2</td>
<td>256</td>
<td>07:44:26</td>
<td></td>
</tr>
</tbody>
</table>

-- Unit 1 --

<table>
<thead>
<tr>
<th>Status</th>
<th>Down Reason</th>
<th>System Location LED</th>
<th>Required Type</th>
<th>Current Type</th>
<th>Hardware Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>unknown</td>
<td>off</td>
<td>S4048-ON</td>
<td>S4048-ON</td>
<td></td>
</tr>
</tbody>
</table>

| Physical Ports | | | | | |
| | 32x40GbE | | | | |

-- Power Supplies --

<table>
<thead>
<tr>
<th>PSU-ID</th>
<th>Status</th>
<th>Type</th>
<th>AirFlow</th>
<th>Fan Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>DC</td>
<td>REVERSE</td>
<td>7200</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>DC</td>
<td>REVERSE</td>
<td>7200</td>
<td>up</td>
</tr>
</tbody>
</table>

-- Fan Status --

<table>
<thead>
<tr>
<th>FanTray</th>
<th>Status</th>
<th>AirFlow</th>
<th>Fan Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>REVERSE</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>REVERSE</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td>3</td>
<td>up</td>
<td>REVERSE</td>
<td>7000</td>
<td>up</td>
</tr>
</tbody>
</table>

Example (node-id)

OS10# show system node-id 1 fanout-configured

<table>
<thead>
<tr>
<th>Interface</th>
<th>Breakout capable</th>
<th>Breakout state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/2</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/3</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/4</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/5</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/6</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/7</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/8</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/9</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/10</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/11</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/12</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/13</td>
<td>No</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/14</td>
<td>No</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/15</td>
<td>No</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/16</td>
<td>No</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/17</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/18</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/19</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
<tr>
<td>Eth 1/1/20</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
</tbody>
</table>
Example (brief)

OS10# show system brief

| Node Id | : 1 |
| MAC | : 34:17:18:19:20:21 |

-- Unit --
<table>
<thead>
<tr>
<th>Unit</th>
<th>Status</th>
<th>ReqType</th>
<th>CurType</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>S4048</td>
<td>S4048</td>
<td>10.4.9999E(X)</td>
</tr>
</tbody>
</table>

-- Power Supplies --
<table>
<thead>
<tr>
<th>PSU-ID</th>
<th>Status</th>
<th>Type</th>
<th>AirFlow</th>
<th>Fan Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>AC</td>
<td>REVERSE</td>
<td>1</td>
<td>14688</td>
</tr>
</tbody>
</table>

-- Fan Status --
<table>
<thead>
<tr>
<th>FanTray</th>
<th>Status</th>
<th>AirFlow</th>
<th>Fan Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>13063</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>12956</td>
</tr>
<tr>
<td>3</td>
<td>up</td>
<td>NORMAL</td>
<td>1</td>
<td>12956</td>
</tr>
</tbody>
</table>

Supported Releases

10.2.0E or later

show version

Displays software version information.

Syntax

```
show version
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show version

Dell EMC Networking OS10-Enterprise
Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.
OS Version: 10.4.2.0
Build Version: 10.4.2.0.226
Build Time: 2018-11-08T21:43:05-0800
System Type: S6010-ON
Supported Releases 10.2.0E or later

start

Activates Transaction-Based Configuration mode for the active session.

Syntax
```
start transaction
```

Parameters
- `transaction` - Enables the transaction-based configuration.

Default
Not configured

Command Mode
EXEC

Usage Information
Use this command to save changes to the candidate configuration before applying configuration changes to the running configuration.

NOTE: Before you start a transaction, you must lock the session using the `lock` command in EXEC mode. Otherwise, the configuration changes from other sessions get committed.

Example
```
OS10# start transaction
```

Supported Releases 10.3.1E or later

system

Executes a Linux command from within OS10.

Syntax
```
system command
```

Parameters
- `command` - Enter the Linux command to execute.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
```
OS10# system bash
admin@OS10:~$ pwd
/config/home/admin
admin@OS10:~$ exit
OS10#
```

Supported Releases 10.2.0E or later

system identifier

Sets a non-default unit ID in a non-stacking configuration.

Syntax
```
system identifier system-identifier-ID
```

Parameters
- `system-identifier-ID` - Enter the system identifier ID, from 1 to 9.
Default

Not configured

Command Mode

CONFIGURATION

Usage Information

The system ID displays in the stack LED on the switch front panel.

Example

OS10(config)# system identifier 1

Supported Releases

10.3.0E or later

terminal

Sets the number of lines to display on the terminal and enables logging.

Syntax

terminal {length lines | monitor}

Parameters

- `length lines` — Enter the number of lines to display on the terminal, from 0 to 512, default 24.
- `monitor` — Enables logging on the terminal.

Default

24 terminal lines

Command Mode

EXEC

Usage Information

Enter zero (0) for the terminal to display without pausing.

Example

OS10# terminal monitor

Supported Releases

10.2.0E or later

traceroute

Displays the routes that packets take to travel to an IP address.

Syntax

Parameters

- `vrf management` — (Optional) Traces the route to an IP address in the management VRF instance.
- `vrf vrf-name` — (Optional) Traces the route to an IP address in the specified VRF instance.
- `host` — Enter the host to trace packets from.
- `-i interface` — (Optional) Enter the IP address of the interface through which traceroute sends packets. By default, the interface is selected according to the routing table.
- `-m max_ttl` — (Optional) Enter the maximum number of hops, the maximum time-to-live value, that traceroute probes. The default is 30.
- `-p port` — (Optional) Enter a destination port:
 - For UDP tracing, enter the destination port base that traceroute uses. The destination port number is incremented by each probe.
 - For Internet Control Message Protocol (ICMP) tracing, enter the initial ICMP sequence value, incremented by each probe.
 - For TCP tracing, enter the constant destination port to connect.
- `-P protocol` — (Optional) Use a raw packet of the specified protocol for traceroute. The default protocol is 253 (RFC 3692).
- `-s source_address` — (Optional) Enter an alternative source address of one of the interfaces. By default, the address of the outgoing interface is used.
- `-q nqueries` — (Optional) Enter the number of probe packets per hop. The default is 3.
- `-N nqueries` — (Optional) Enter the number of probe packets sent out simultaneously to accelerate traceroute. The default is 16.
- `-t tos` — (Optional) For IPv4, enter the type of service (ToS) and precedence values to use. 16 sets a low delay; 8 sets a high throughput.
- `-UL` — (Optional) Use UDPLITE for tracerouting. The default port is 53.
- `-w waittime` — (Optional) Enter the time in seconds to wait for a response to a probe. The default is 5 seconds.
- `-z sendwait` — (Optional) Enter the minimal time interval to wait between probes. The default is 0. A value greater than 10 specifies a number in milliseconds, otherwise it specifies a number of seconds. This option is useful when routers rate-limit ICMP messages.
- `--mtu` — (Optional) Discovers the maximum transmission unit (MTU) from the path being traced.
- `--back` — (Optional) Prints the number of backward hops when different from the forward direction.
- `host` — (Required) Enter the name or IP address of the destination device.
- `packet_len` — (Optional) Enter the total size of the probing packet. The default is 60 bytes for IPv4 and 80 for IPv6.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# traceroute www.dell.com
traceroute to www.dell.com (23.73.112.54), 30 hops max, 60 byte packets
 1 10.11.97.254 (10.11.97.254) 4.298 ms 4.417 ms 4.398 ms
 2 10.11.3.254 (10.11.3.254) 2.121 ms 2.326 ms 2.550 ms
 3 10.11.27.254 (10.11.27.254) 2.233 ms 2.207 ms 2.391 ms
 4 Host65.hbms.com (63.80.56.65) 3.583 ms 3.776 ms 3.757 ms
 5 host33.30.198.65 (65.198.30.33) 3.758 ms 4.286 ms 4.221 ms
 6 3.GigabitEthernet3-3.GW3.SCL2.ALTER.NET (152.179.99.173) 4.428 ms 2.593 ms 3.243 ms
 7 0.xe-7-0-1.XL3.SJC7.ALTER.NET (152.63.48.254) 3.915 ms 3.603 ms 3.790 ms
 8 TenGigE0-4-0-5.GW6.SJC7.ALTER.NET (152.63.49.254) 11.781 ms 10.600 ms 9.402 ms
 9 23.73.112.54 (23.73.112.54) 3.606 ms 3.542 ms 3.773 ms

Example (IPv6)
OS10# traceroute 20::1
traceroute to 20::1 (20::1), 30 hops max, 80 byte packets
 1 20::1 (20::1) 2.622 ms 2.649 ms

Supported Releases
10.2.0E or later

unlock

Unlocks a previously locked candidate configuration file.

Syntax
`unlock`

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None
write

Copies the current running configuration to the startup configuration file.

Syntax

```
write {memory}
```

Parameters

- `memory` — Copy the current running configuration to the startup configuration.

Default

Not configured

Command Mode

EXEC

Usage Information

This command has the same effect as the `copy running-configuration startup-configuration` command. The running configuration is not saved to a local configuration file other than the startup configuration. Use the `copy` command to save running configuration changes to a local file.

Example

```
OS10# write memory
```

Supported Releases

10.2.0E or later
You can configure and monitor physical interfaces (Ethernet), port-channels, and virtual local area networks (VLANs) in Layer 2 (L2) or Layer 3 (L3) modes.

Table 1. Interface types

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Supported</th>
<th>Default mode</th>
<th>Requires creation</th>
<th>Default status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet (PHY)</td>
<td>L2, L3</td>
<td>unset</td>
<td>No</td>
<td>no shutdown enabled</td>
</tr>
<tr>
<td>Management</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>no shutdown enabled</td>
</tr>
<tr>
<td>Loopback</td>
<td>L3</td>
<td>L3</td>
<td>Yes</td>
<td>no shutdown enabled</td>
</tr>
<tr>
<td>Port-channel</td>
<td>L2, L3</td>
<td>unset</td>
<td>Yes</td>
<td>no shutdown enabled</td>
</tr>
<tr>
<td>VLAN</td>
<td>L2, L3</td>
<td>L3</td>
<td>Yes, except default</td>
<td>no shutdown enabled</td>
</tr>
</tbody>
</table>

Ethernet interfaces

Ethernet port interfaces are enabled by default. To disable an Ethernet interface, use the `shutdown` command.

To re-enable a disabled interface, use the `no shutdown` command.

1. Configure an Ethernet port interface from Global CONFIGURATION mode.
   ```
   interface ethernet node/slot/port[:subport]
   ```

2. Disable and re-enable the Ethernet port interface in INTERFACE mode.
   ```
   shutdown
   no shutdown
   ```

Disable Ethernet port interface

```
OS10(config)# interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# shutdown
```  

Enable Ethernet port interface

```
OS10(config)# interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# no shutdown
```  

Unified port groups

In an OS10 unified port group, all ports operate in either Ethernet or Fibre Channel (FC) mode. You cannot mix modes for ports in the same unified port group. To activate Ethernet interfaces, configure a port group to operate in Ethernet mode and specify the port speed. To activate Fibre Channel interfaces, see [Fibre Channel interfaces](#).

S4148U-ON

On the S4148U-ON switch, the available Ethernet and Fibre Channel interfaces in a port group depend on the currently configured port profile. For more information, see [S4148U-ON port profiles](#).
Figure 1. S4148U-ON unified port groups

To enable Ethernet interfaces in a unified port group:

1. Configure a unified port group in CONFIGURATION mode. Enter 1/1 for node/slot. The port-group range depends on the switch.
   ```
   port-group node/slot/port-group
   ```

2. Activate the unified port group for Ethernet operation in PORT-GROUP mode. To activate a unified port group in Fibre Channel mode, see Fibre Channel interfaces. The available options depend on the switch.
   ```
   mode Eth {100g-1x | 50g-2x | 40g-1x | 25g-4x | 10g-4x}
   ```
 - 100g-1x — Reset a port group to 100GE mode.
 - 50g-2x — Split a port group into two 50GE interfaces.
 - 40g-1x — Set a port group to 40GE mode for use with a QSFP+ 40GE transceiver.
 - 25g-4x — Split a port group into four 25GE interfaces.
 - 10g-4x — Split a port group into four 10GE interfaces.

3. Return to CONFIGURATION mode.
   ```
   exit
   ```

4. Enter Ethernet Interface mode to configure other settings. Enter a single interface, a hyphen-separated range, or multiple interfaces separated by commas.
   ```
   interface ethernet node/slot/port[:subport]
   ```

Configure Ethernet unified port interface

```
OS10(config)# port-group 1/1/13
OS10(conf-pg-1/1/13)# mode Eth 25g-4x
OS10(conf-pg-1/1/13)# exit
OS10(config)# interface ethernet 1/1/41:1
OS10(conf-if-eth1/1/41:1)#
```

View Ethernet unified port interface

```
OS10(config)# interface ethernet 1/1/41
OS10(config)# interface ethernet 1/1/41
OS10(config)# show configuration

interface ethernet1/1/41:1
no shutdown
```

L2 mode configuration

Each physical Ethernet interface uses a unique MAC address. Port-channels and VLANs use a single MAC address. By default, all the interfaces operate in L2 mode. From L2 mode you can configure switching and L2 protocols, such as VLANs and Spanning-Tree Protocol (STP) on an interface.

Enable L2 switching on a port interface in Access or Trunk mode. By default, an interface is configured in Access mode. Access mode allows L2 switching of untagged traffic on a single VLAN (VLAN 1 is the default). Trunk mode enables L2 switching of untagged traffic on the Access VLAN, and tagged traffic on one or more VLANs.
By default, native VLAN of a port is the default VLAN ID of the switch. You can change the native VLAN using the `switchport access vlan vlan-id` command.

A Trunk interface carries VLAN traffic that is tagged using 802.1q encapsulation. If an Access interface receives a packet with an 802.1q tag in the header that is different from the Access VLAN ID, it drops the packet.

By default, a trunk interface carries only untagged traffic on the Access VLAN. You must manually configure other VLANs for tagged traffic.

Select one of the two available options:

1. **Configure L2 trunking in INTERFACE mode and the tagged VLAN traffic that the port can transmit.** By default, a trunk port is not added to any tagged VLAN. You must create a VLAN before you can assign the interface to it.

   ```
   switchport mode trunk
   switchport trunk allowed vlan vlan-id-list
   ```

2. **Reconfigure the access VLAN assigned to a L2 access or trunk port in INTERFACE mode.**

   ```
   switchport access vlan vlan-id
   ```

Enable the interface for L2 traffic transmission in INTERFACE mode.

```no shutdown```

### L2 Interface configuration

```
OS10(config)# interface ethernet 1/1/7
OS10(conf-if-eth1/1/7)# switchport mode trunk
OS10(conf-if-eth1/1/7)# switchport trunk allowed vlan 5,10
OS10(conf-if-eth1/1/7)# no shutdown
```

### L3 mode configuration

Ethernet and port-channel interfaces are in L2 access mode by default. When you disable the L2 mode and then assign an IP address to an Ethernet port interface, you place the port in L3 mode.

Configure one primary IP address in L3 mode. You can configure up to 255 secondary IP addresses on an interface. At least one interface in the system must be in L3 mode before you configure or enter a L3-protocol mode, such as OSPF.

1. **Remove a port from L2 switching in INTERFACE mode.**

   ```
 no switchport
   ```

2. **Configure L3 routing in INTERFACE mode. Add secondary to configure backup IP addresses.**

   ```
 ip address address [secondary]
   ```

3. **Enable the interface for L3 traffic transmission in INTERFACE mode.**

   ```
 no shutdown
   ```

### L3 Interface configuration

```
OS10(config)# interface ethernet 1/1/9
OS10(config-if-eth1/1/9)# no switchport
OS10(config-if-eth1/1/9)# ip address 10.10.1.92/24
OS10(config-if-eth1/1/9)# no shutdown
```

### View L3 configuration error

```
OS10(config)# interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# ip address 1.1.1.1/24
% Error: remove Layer 2 configuration before assigning an IP
```

### Fibre Channel interfaces

OS10 unified port groups support FC interfaces. A unified port group operates in Fibre Channel or Ethernet mode. To activate FC interfaces, configure a port group to operate in Fibre Channel mode and specify the port speed. By default, FC interfaces are disabled.
On a S4148U-ON switch, FC interfaces are available in all port groups. The activated FC interfaces depend on the currently configured port profile. For more information, see S4148U-ON port profiles.

Figure 2. S4148U-ON unified port groups

1. Configure a unified port group in CONFIGURATION mode. Enter 1/1 for node/slot. The port-group range depends on the switch.
   ```
 port-group node/slot/port-group
   ```

2. Activate the unified port group for FC operation in PORT-GROUP mode. The available FC modes depend on the switch.
   ```
 mode fc {32g-4x | 32g-2x | 32g-1x | 16g-4x | 16g-2x | 8g-4x}
   ```
   - 8g-4x — Split a unified port group into four 8 GFC interfaces.
   - 16g-2x — Split a unified port group into two 16 GFC interfaces.
   - 16g-4x — Split a unified port group into four 16 GFC interfaces.
   - 32g-1x — Split a unified port group into one 32 GFC interface. A 1x-32G interface has a rate limit of 28G.
   - 32g-2x — Split a unified port group into two 32 GFC interfaces.
   - 32g-4x — Split a unified port group into four 32 GFC interfaces. Each 4x-32GE breakout interface has a rate limit of 25G.

3. Return to CONFIGURATION mode.
   ```
 exit
   ```

4. Enter FC Interface mode to enable data transmission. Enter a single interface, a hyphen-separated range, or multiple interfaces separated by commas.
   ```
 interface fibrechannel node/slot/port[:subport]
   ```

5. (Optional) Reconfigure the interface speed in INTERFACE mode.
   ```
 speed {8 | 16 | 32 | auto}
   ```

6. Enable the FC interface in INTERFACE mode.
   ```
 no shutdown
   ```

**Configure FC interface**

OS10(config)# port-group 1/1/15
OS10(conf-pg-1/1/15)# mode FC 16g-4x
OS10(conf-pg-1/1/15)# exit
OS10(config)# interface fibrechannel 1/1/43:1
OS10(conf-if-fc-1/1/43:1)# speed 32
OS10(conf-if-fc-1/1/43:1)# no shutdown

**View FC interface**

OS10(config)# interface fibrechannel 1/1/43:1
OS10(conf-if-fc-1/1/43:1)# show configuration

interface fibrechannel1/1/43:1
no shutdown
speed 32
vfabric 100

OS10# show interface fibrechannel 1/1/43:1
Fibrechannel 1/1/43:1 is up, FC link is up
Address is 14:18:77:20:8d:fc, Current address is 14:18:77:20:8d:fc
Pluggable media present, QSFP+ type is QSFP+ 4x(16GBASE FC SW)
  Wavelength is 850
  Receive power reading is 0.0
FC MTU 2188 bytes
LineSpeed 8G
Port type is F, Max BB credit is 1
WWN is 20:78:14:18:77:20:8d:cf
Last clearing of "show interface" counters: 00:02:32
Input statistics:
  33 frames, 3508 bytes
  0 class 2 good frames, 33 class 3 good frames
  0 frame too long, 0 frame truncated, 0 CRC
  1 link fail, 0 sync loss
  0 primitive seq err, 0 LIP count
  0 BB credit 0, 0 BB credit 0 packet drops
Output statistics:
  33 frames, 2344 bytes
  0 class 2 frames, 33 class 3 frames
  0 BB credit 0, 0 oversize frames
6356027325 total errors
Rate Info:
  Input 116 bytes/sec, 1 frames/sec, 0% of line rate
  Output 78 bytes/sec, 1 frames/sec, 0% of line rate
Time since last interface status change: 00:00:24

Management interface

The Management interface provides OOB management access to the network device. You can configure the Management interface, but the configuration options on this interface are limited. You cannot configure gateway addresses and IP addresses if it appears in the main routing table. Proxy ARP is not supported on this interface.

1. Configure the Management interface in CONFIGURATION mode.
   ```
 interface mgmt 1/1/1
   ```
2. By default, DHCP client is enabled on the Management interface. Disable the DHCP client operations in INTERFACE mode.
   ```
 no ip address dhcp
   ```
3. Configure an IP address and mask on the Management interface in INTERFACE mode.
   ```
 ip address A.B.C.D/prefix-length
   ```
4. Enable the Management interface in INTERFACE mode.
   ```
 no shutdown
   ```

Configure management interface

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# no ip address dhcp
OS10(conf-if-ma-1/1/1)# ip address 10.1.1.10/24
OS10(conf-if-ma-1/1/1)# no shutdown
```

VLAN interfaces

VLANs are logical interfaces and are, by default, in L2 mode. Physical interfaces and port-channels can be members of VLANs.

OS10 supports inter-VLAN routing. You can add IP addresses to VLANs and use them in routing protocols in the same manner that physical interfaces are used.

When using VLANs in a routing protocol, you must configure the `no shutdown` command to enable the VLAN for routing traffic. In VLANs, the `shutdown` command prevents L3 traffic from passing through the interface. L2 traffic is unaffected by this command.

- Configure an IP address in A.B.C.D/x format on the interface in INTERFACE mode. The secondary IP address is the interface’s backup IP address.
  ```
 ip address ip-address/mask [secondary]
  ```
Configure VLAN

OS10(config)# interface vlan 10
OS10(conf-if-vl-10)# ip address 1.1.1.2/24

You cannot simultaneously use egress rate shaping and ingress rate policing on the same VLAN.

User-configured default VLAN

By default, VLAN1 serves as the default VLAN for switching untagged L2 traffic on OS10 ports in Trunk or Access mode. The default VLAN is used for untagged protocol traffic sent and received between switches, such as STPs. If you use VLAN1 for data traffic for network-specific needs, reconfigure the VLAN ID of the default VLAN.

- Assign a new VLAN ID to the default VLAN in CONFIGURATION mode, from 1 to 4093.
  ```
 default vlan-id vlan-id
  ```

In the `show vlan` output, an asterisk (*) indicates the default VLAN.

Reconfigure default VLAN

OS10# show vlan
Q: A - Access (Untagged), T - Tagged
NUM Status Description Q Ports
* 1 up A Eth1/1/1-1/1/25,1/1/29,1/1/31-1/1/54

OS10(config)# interface vlan 10
Sep 19 17:28:10 OS10 dn_ifm[932]: Node.1-Unit.1:PRI:notice [os10:notify], %Dell EMC (OS10) %IFM_ASTATE_UP: Interface admin state up :vlan10
OS10(config)# default vlan-id 10
Sep 19 17:28:15 OS10 dn_ifm[932]: Node.1-Unit.1:PRI:notice [os10:trap], %Dell EMC (OS10) %IFM_OSTATE_DN: Interface operational state is down :vlan1
Sep 19 17:28:16 OS10 dn_ifm[932]: Node.1-Unit.1:PRI:notice [os10:trap], %Dell EMC (OS10) %IFM_OSTATE_UP: Interface operational state is up :vlan10

OS10(config)# do show vlan
Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs
Q: A - Access (Untagged), T - Tagged
NUM Status Description Q Ports
1 down A Eth1/1/1-1/1/25,1/1/29,1/1/31-1/1/54
* 10 up

VLAN scale profile

When you scale the number of VLANs on a switch, use the VLAN scale profile. This consumes less memory. Enable the scale profile before you configure VLANs on the switch. The scale profile globally applies L2 mode on all VLANs you create and disables L3 transmission. To enable L3 routing traffic on a VLAN, use the `mode L3` command.

1. Configure the L2 VLAN scale profile in CONFIGURATION mode.
   ```
 scale-profile vlan
   ```

2. (Optional) Enable L3 routing on a VLAN in INTERFACE VLAN mode.
   ```
 mode L3
   ```

After you upgrade OS10 from an earlier version with configured VLANs, if you configure the VLAN scale profile and enable L3 routing on VLANs, save the configuration and use the `reload` command to apply the scale profile settings.

Apply VLAN scale profile

OS10(config)# scale-profile vlan
OS10(config)# interface vlan 10
OS10(config-if-vl-10)# mode L3
Loopback interfaces

A Loopback interface is a virtual interface where the software emulates an interface. Because a Loopback interface is not associated to physical hardware entities, the Loopback interface status is not affected by hardware status changes.

Packets routed to a Loopback interface process locally to the OS10 device. Because this interface is not a physical interface, to provide protocol stability you can configure routing protocols on this interface. You can place Loopback interfaces in default L3 mode.

- Enter the Loopback interface number in CONFIGURATION mode, from 0 to 16383.
  ```
 interface loopback number
  ```
- Enter the Loopback interface number to view the configuration in EXEC mode.
  ```
 show interface loopback number
  ```
- Enter the Loopback interface number to delete a Loopback interface in CONFIGURATION mode.
  ```
 no interface loopback number
  ```

View Loopback interface

```
OS10# show interface loopback 4
Loopback 4 is up, line protocol is up
Hardware is unknown.
Interface index is 102863300
Internet address is 120.120.120.120/24
Mode of IPv4 Address Assignment : MANUAL
MTU 1532 bytes
Flowcontrol rx false tx false
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters : 00:00:11
Queuing strategy : fifo
 Input 0 packets, 0 bytes, 0 multicast
 Received 0 errors, 0 discarded
 Output 0 packets, 0 bytes, 0 multicast
 Output 0 errors, Output 0 invalid protocol
Time since last interface status change : 00:00:11
```

Port-channel interfaces

Port-channels are not configured by default. Link aggregation (LA) is a method of grouping multiple physical interfaces into a single logical interface — a link aggregation group (LAG) or port-channel. A port-channel aggregates the bandwidth of member links, provides redundancy, and load balances traffic. If a member port fails, the OS10 device redirects traffic to the remaining ports.

A physical interface can belong to only one port-channel at a time. A port-channel must contain interfaces of the same interface type and speed. OS10 supports a maximum of 128 port-channels, with up to thirty-two ports per channel.

To configure a port-channel, use the same configuration commands as the Ethernet port interfaces. Port-channels are transparent to network configurations and manage as a single interface. For example, configure one IP address for the group, and use the IP address for all routed traffic on the port-channel.

By configuring port channels, you can create larger capacity interfaces by aggregating a group of lower-speed links. For example, you can build a 40G interface by aggregating four 10G Ethernet interfaces together. If one of the four interfaces fails, traffic redistributes across the three remaining interfaces.

**Static** Port-channels are statically configured.

**Dynamic** Port-channels are dynamically configured using Link Aggregation Control Protocol (LACP).

Member ports of a LAG are added and programmed into the hardware based on the port ID, instead of the order the ports come up. Load balancing yields predictable results across resets and reloads.
Create port-channel

You can create a maximum of 128 port-channels, with up to 32 port members per group. Configure a port-channel similarly to a physical interface, enable or configure protocols, or ACLs to a port channel. After you enable the port-channel, place it in L2 or L3 mode.

To place the port-channel in L2 mode or configure an IP address to place the port-channel in L3 mode, use the `switchport` command.

- Create a port-channel in CONFIGURATION mode.
  
  ```
 interface port-channel id-number
  ```

Create port-channel

```bash
OS10(config)# interface port-channel 10
```

Add port member

When you add an interface to a port-channel:

- The administrative status applies to the port-channel.
- The port-channel configuration is applied to the member interfaces.
- A port-channel operates in either L2 (default) or L3 mode. To place a port-channel in L2 mode, use the `switchport mode` command. To place a port-channel in L3 mode and remove L2 configuration before you configure an IP address, use the no `switchport` command.
- All interfaces must have the same speed.
- An interface must not contain non-default L2/L3 configuration settings. Only the `description` and `shutdown` or no `shutdown` commands are supported. You cannot add an IP address or static MAC address to a member interface.
- You cannot enable flow control on a port-channel interface. Flow control is supported on physical interfaces that are port-channel members.
- Port-channels support 802.3ad LACP. LACP identifies similarly configured links and dynamically groups ports into a logical channel. LACP activates the maximum number of compatible ports that the switch supports in a port-channel.
- If you globally disable a spanning-tree operation, L2 interfaces that are LACP-enabled port-channel members may flap due to packet loops.

Add port member — static LAG

A static port-channel LAG contains member interfaces that you manually assign using the `channel-group mode` command.

```bash
OS10(config)# interface port-channel 10
Aug 24 4:5:38: %Node.1-Unit.1:PRI:OS10 %dn_ifm
%log-notice:IFM_ASTATE_UP: Interface admin state up.:port-channel10
Aug 24 4:5:38: %Node.1-Unit.1:PRI:OS10 %dn_ifm
%log-notice:IFM_OSTATE_DN: Interface operational state is down.:port-channel10
OS10(config-if-po-10)# exit
OS10(config)# interface ethernet 1/1/2
OS10(config-if-eth1/1/2)# channel-group 10 mode on
Aug 24 4:5:56: %Node.1-Unit.1:PRI:OS10 %dn_ifm
%log-notice:IFM_OSTATE_UP: Interface operational state is up.:port-channel10
```

Add port member — dynamic LACP

LACP enables ports to dynamically bundle as members of a port-channel. To configure a port for LACP operation, use the `channel-group mode {active|passive}` command. Active and Passive modes allow LACP to negotiate between ports to determine if they can form a port channel based on their configuration settings.

```bash
OS10(config)# interface port-channel 100
OS10(config-if-po-10)# exit
```
Minimum links

Configure minimum links in a port-channel LAG that must be in oper up status to consider the port-channel to be in oper up status.

- Enter the number of links in a LAG that must be in oper up status in PORT-CHANNEL mode, from 1 to 32, default 1.
  
  `minimum-links number`

Assign Port Channel IP Address

You can assign an IP address to a port channel and use port channels in L3 routing protocols.

- Configure an IP address and mask on the interface in INTERFACE PORT-CHANNEL mode.
  
  `ip address ip-address/mask [secondary-ip-address]`
  
  - `ip-address/mask` — Specify an IP address in dotted-decimal A.B.C.D format and the mask.
  
  - `secondary-ip-address` — Specify a secondary IP address in dotted-decimal A.B.C.D format, which acts as the interface’s backup IP address.

Remove or disable port-channel

You can delete or disable a port-channel.

1. Delete a port-channel in CONFIGURATION mode.
   
   `no interface port-channel channel-number`

2. Disable a port-channel to place all interfaces within the port-channel operationally down in CONFIGURATION mode.
   
   `shutdown`

Load balance traffic

Use hashing to load balance traffic across member interfaces of a port-channel. Load balancing uses source and destination packet information to distribute traffic over multiple interfaces when transferring data to a destination.
For packets without an L3 header, OS10 automatically uses the `load-balancing mac-selection destination-mac` command for hash algorithms by default.

When you configure an IP and MAC hashing scheme at the same time, the MAC hashing scheme takes precedence over the IP hashing scheme.

- Select one or more methods of load balancing and replace the default IP 4-tuple method of balancing traffic over a port-channel in `CONFIGURATION` mode.

  ```
 OS10(config)# load-balancing
 ingress-port Ingress port configurations
 tcp-udp-selection TCP-UDP port for load-balancing configurations
 ip-selection IPV4 load-balancing configurations
 ipv6-selection IPV6 load-balancing configurations
 mac-selection MAC load-balancing configurations
  ```

- **Ingress Port** — Enables the ingress port configuration. This option is not supported on S5148F-ON.
- **TCP-UDP** — Uses the Layer 4 destination IP address or Layer 4 source IP address in the hash calculation. This option is not supported on the S5148F-ON switch.
- **IP** — Uses the destination IP address, source IP address, protocol, VLAN ID, Layer 4 destination IP address or Layer 4 source IP address in the hash calculation.
- **IPv6** — Uses the destination IPv6 address, source IPv6 address, protocol, VLAN ID, Layer 4 destination IPv6 address or Layer 4 source IPv6 address in the hash calculation.
- **MAC** — Uses the destination MAC address or source MAC address, and ethertype, or VLAN ID in the hash calculation.

### Configure load balancing

```
OS10(config)# load-balancing ip-selection destination-ip source-ip
```

### Change hash algorithm

The `load-balancing` command selects the hash criteria applied to traffic load balancing on port-channels. If you do not obtain even traffic distribution, use the `hash-algorithm` command to select the hash scheme for LAG. Rotate or shift the L2-bit LAG hash until you achieve the desired traffic distribution.

- Change the default (0) to another algorithm and apply it to LAG hashing in `CONFIGURATION` mode.

  ```
 hash-algorithm lag crc
  ```

### Configure interface ranges

Bulk interface configuration allows you to apply the same configuration to multiple physical or logical interfaces, or to display their current configuration. An interface range is a set of interfaces that you apply the same command to.

You can use interface ranges for:

- Ethernet physical interfaces
- Port channels
- VLAN interfaces

A bulk configuration includes any non-existing interfaces in an interface range from the configuration.
You can configure a default VLAN only if the interface range being configured consists of only VLAN ports. When a configuration in one of the VLAN ports fails, all the VLAN ports in the interface range are affected.

Create an interface range allowing other commands to be applied to that interface range using the `interface range` command.

**Configure range of Ethernet addresses and enable them**

```
OS10(config)# interface range ethernet 1/1/1-1/1/5
OS10(config-range-eth1/1/1-1/1/5)# no shutdown
```

**View the configuration**

```
OS10(config-range-eth1/1/1-1/1/5)# show configuration
!
interface ethernet1/1/1
 no shutdown
 switchport access vlan 1
!
interface ethernet1/1/2
 no shutdown
 switchport access vlan 1
!
interface ethernet1/1/3
 no shutdown
 switchport access vlan 1
!
interface ethernet1/1/4
 no shutdown
 switchport access vlan 1
!
interface ethernet1/1/5
 no shutdown
 switchport access vlan 1
```

**Configure range of VLANs**

```
OS10(config)# interface range vlan 1-100
OS10(config-range-vl-1-100)#
```

**Configure range of port channels**

```
OS10(config)# interface range port-channel 1-25
OS10(config-range-po-1-25)#
```

## Switch-port profiles

A port profile determines the enabled front-panel ports and supported breakout modes on Ethernet and unified ports. Change the port profile on a switch to customize uplink and unified port operation, and the availability of front-panel data ports.

To change the port profile at the next reboot, use the `switch-port-profile` command with the desired profile, save it to the startup configuration, and use the `reload` command to apply the changes.

1. Configure a platform-specific port profile in CONFIGURATION mode. For a standalone switch, enter 1/1 for node/unit.
   ```
 switch-port-profile node/unit profile
   ```
2. Save the port profile change to the startup configuration in EXEC mode.
   ```
 write memory
   ```
3. Reload the switch in EXEC mode.
   ```
 reload
   ```

The switch reboots with the new port configuration and resets the system defaults, except for the switch-port profile and these configured settings:

- Management interface 1/1/1 configuration
• Management IPv4/IPv6 static routes
• System hostname
• Unified Forwarding Table (UFT) mode
• ECMP maximum paths

You must manually reconfigure other settings on a switch after you apply a new port profile and reload the switch.

**NOTE:** After you change the switch-port profile, do not immediately back up and restore the startup file without using the `write memory` command and reloading the switch using the `reload` command. Otherwise, the new profile does not take effect.

**Configure port profile**

```bash
OS10(config)# switch-port-profile 1/1 profile-6
OS10(config)# exit
OS10# write memory
OS10# reload
```

**Verify port profile**

```bash
OS10(config)# show switch-port-profile 1/1
```

Supported Profiles:
- profile-1
- profile-2
- profile-3
- profile-4
- profile-5
- profile-6

**S4148-ON Series port profiles**

On the S4148-ON Series of switches, port profiles determine the available front-panel Ethernet ports and supported breakout interfaces on uplink ports. In the port profile illustration, blue boxes indicate the supported ports and breakout interfaces. Blank spaces indicate ports and speeds that are not available.

- 10GE mode is an SFP+ 10GE port or a 4x10G breakout of a QSFP+ or QSFP28 port.
- 25GE is a 4x25G breakout of a QSFP28 port.
- 40GE mode is a QSFP+ port or a QSFP28 port that supports QSFP+ 40GE transceivers.
- 50GE is a 2x50G breakout of a QSFP28 port.
- 100GE mode is a QSFP28 port.

**NOTE:** For S4148U-ON port profiles with both unified and Ethernet ports, see S4148U-ON port profiles. An S4148U-ON unified port supports Fibre Channel and Ethernet modes.

For example, profile-1 enables 10G speed on forty-eight ports (1-24 and 31-54), and 4x10G breakouts on QSFP28 ports 25-26 and 29-30; QSFP+ ports 27 and 28 are deactivated. profile-3 enables 10G speed on forty ports, and 4x10G breakouts on all QSFP28 and QSFP+ ports. Similarly, profile-1 disables 40G speed on ports 25-30; profile-3 enables 40G on these ports. For more information, see switch-port-profile.
1GE mode: 1GE is supported only on SFP+ ports; 1GE is not supported on QSFP+ and QSFP28 ports 25-26.

Breakout interfaces: Use the `interface breakout` command in Configuration mode to configure 4x10G, 4x25G, and 2x50G breakout interfaces.

To view the ports that belong to each port group, use the `show port-group` command.

### S4148U-ON port profiles

S4148U-ON port profiles determine the available front-panel unified and Ethernet ports and supported breakout interfaces. In the port profile illustration, blue boxes indicate the supported Ethernet port modes and breakout interfaces. Brown boxes indicate the supported Fibre Channel port modes and breakout interfaces. Blank spaces indicate ports and speeds that are not available. Unified port groups are numbered 1 to 10.

**S4148U-ON unified port modes**—SFP+ ports 1-24 and QSFP28 ports 25-26 and 29-30:

- 10GE is an SFP+ port in Ethernet mode or a 4x10G breakout of a QSFP+ or QSFP28 port in Ethernet mode.
- 25GE is a 4x25G breakout of a QSFP28 Ethernet port.
- 40GE is a QSFP+ or QSFP28 Ethernet port that uses QSFP+ 40GE transceivers.
- 50GE is a 2x50G breakout of a QSFP28 Ethernet port.
- 100GE is a QSFP28 Ethernet port.
- 4x8GFC are breakout interfaces in an SFP+ or QSFP28 FC port group.
- 2x16GFC are breakout interfaces (subports 1 and 3) in an SFP+ or QSFP28 FC port group.
- 4x16GFC are breakout interfaces in a QSFP28 FC port group.
- 1x32GFC (subport 1) are breakout interfaces in a QSFP28 FC port group.

**S4148U-ON Ethernet modes**—QSFP+ ports 27-28 and SFP+ ports 31-54:

- 10GE mode is an SFP+ 10GE port or a 4x10G breakout of a QSFP+ port.
- 40GE mode is a QSFP+ port.

For example, all S4148U-ON activate support 10G speed on unified ports 1-24 and Ethernet ports 31-54, but only profile-1 and profile-2 activate QSFP+ ports 27-28 in 40GE mode with 4x10G breakouts. Similarly, all S4148U-ON profiles activate 8GFC speed on unified ports 1-24, but only profile-1, profile-2, and profile-3 activate 2x16GFC in port groups 1-6. In QSFP28 port groups, profile-1 and profile-2 support 1x32GFC; profile-3 and profile-4 support 4x16GFC.
profile-1 and profile-2 activate the same port mode capability on unified and Ethernet ports. The difference is that in profile-1, by default SFP+ unified ports 1-24 come up in Fibre Channel mode with 2x16GFC breakouts per port group. In profile-2, by default SFP+ unified ports 1-24 come up in Ethernet 10GE mode. profile-1 allows you to connect FC devices for plug-and-play; profile-2 is designed for a standard Ethernet-based data network.

**Oversubscription:** Configure oversubscription to support bursty storage traffic on a Fibre Channel interface. Oversubscription allows a port to operate faster, but may result in traffic loss. To support oversubscription, use the `speed` command in Interface Configuration mode. This command is not supported on an Ethernet interface. In S4148U-ON port profiles:

- SFP+ and QSFP28 port groups in 4x8GFC mode support 16GFC oversubscription on member interfaces.
- QSFP28 ports in 2x16GFC mode support 32GFC oversubscription. SFP+ port groups in 2x16GFC mode do not support 32GFC oversubscription. 2x16GFC mode activates subports 1 and 3.
- QSFP28 ports in 4x16GFC mode support 32GFC oversubscription.

**Breakout interfaces:**

- To configure breakout interfaces on a unified port, use the `mode {FC | Eth}` command in Port-Group Configuration mode. The `mode {FC | Eth}` command configures a unified port to operate at line rate and guarantees no traffic loss.
- To configure breakout interfaces on a QSFP+ Ethernet port, use the `interface breakout` command in global Configuration mode.

**1GE mode:** Only SFP+ ports support 1GE; QSFP+ and QSFP28 ports 25 to 30 do not support 1GE.

To view the ports that belong to each port group, use the `show port-group` command.

## Configure breakout mode

Using a supported breakout cable, you can split a 40GE QSFP+ or 100GE QSFP28 Ethernet port into separate breakout interfaces. All breakout interfaces have the same speed. You can set a QSFP28 port to operate in 40GE mode with a QSFP+ transceiver.

```
interface breakout node/slot/port map (10g-4x | 25g-4x | 40g-1x | 50g-2x | 100g-1x)
```

- `node/slot/port` — Enter the physical port information.
- 10g-4x — Split a QSFP28 or QSFP+ port into four 10G interfaces.
- 25g-4x — Split a QSFP28 port into four 25G interfaces.
- 40g-1x — Set a QSFP28 port to use with a QSFP+ 40G transceiver.
- 50g-2x — Split a QSFP28 port into two 50G interfaces.
• 100g-1x — Reset a QSFP28 port to 100G speed.

To configure an Ethernet breakout interface, use the `interface ethernet node/slot/port:subport` command in CONFIGURATION mode.

Each breakout interface operates at the configured speed. Use the `no` version of the `interface breakout` command to reset a port to its default speed: 40G or 100G.

To configure breakout interfaces on a unified port, use the `mode {Eth | FC}` command in Port-Group Configuration mode.

**Configure interface breakout**

OS10(config)# interface breakout 1/1/7 map 10g-4x

**Display interface breakout**

OS10# show interface status

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
<th>Mode</th>
<th>Vlan</th>
<th>Tagged-Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/2</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7:1</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7:2</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7:3</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/7:4</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/25</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Breakout auto-configuration**

You can globally enable front-panel Ethernet ports to automatically detect SFP pluggable media in a QSFP+ or QSFP28 port. The port autoconfigures breakout interfaces for media type and speed. For example, if you plug a 40G direct attach cable (DAC) with 4x10G far-side transceivers into a QSFP28 port, the port autoconfigures in 10g-4x interface-breakout mode.

RJ-45 ports and ports that are members of a port group do not support breakout auto-configuration. Breakout auto-configuration is disabled by default.

**Enable breakout auto-configuration**

OS10(config)# feature auto-breakout

**Display breakout auto-configuration**

Before you plug a cable in Ethernet port 1/1/25:

OS10# show interface status

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
<th>Mode</th>
<th>Vlan</th>
<th>Tagged-Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/2</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/25</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/29</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

After you enter `feature auto-breakout` and plug a breakout cable in Ethernet port 1/1/25:

OS10# show interface status

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
<th>Mode</th>
<th>Vlan</th>
<th>Tagged-Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td></td>
<td>down</td>
<td>0</td>
<td>auto</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forward error correction

Forward error correction (FEC) enhances data reliability.

**FEC modes supported in OS10:**

- CL74-FC — Supports 25G
- CL91-RS — Supports 100G
- CL108-RS — Supports 25G
- off — Disables FEC

⚠️ **NOTE:** OS10 does not support FEC on 10G and 40G.

**Configure FEC**

```
OS10(config)# interface ethernet 1/1/41
OS10(conf-if-eth1/1/41)# fec CL91-RS
```

**View FEC configuration**

```
OS10# show interface ethernet 1/1/41
Ethernet 1/1/41 is up, line protocol is up
Hardware is Dell EMC Eth, address is e4:f0:04:3e:1a:06
 Current address is e4:f0:04:3e:1a:06
Pluggable media present, QSFP28 type is QSFP28_100GBASE_CR4_2M
 Wavelength is 64
 Receive power reading is
Interface index is 17306108
Internet address is not set
Mode of IPv4 Address Assignment: not set
Interface IPv6 oper status: Disabled
MTU 1532 bytes, IP MTU 1500 bytes
LineSpeed 100G, Auto-Negotiation on
FEC is cl91-rs, Current FEC is cl91-rs
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 60
Last clearing of "show interface" counters: 00:00:17
Queuing strategy: fifo
Input statistics:
 7 packets, 818 octets
 2 64-byte pkts, 0 over 64-byte pkts, 5 over 127-byte pkts
 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
 7 Multicasts, 0 Broadcasts, 0 Unicasts
 0 runts, 0 giants, 0 throttles
 0 CRC, 0 overrun, 0 discarded
Output statistics:
 10 packets, 1330 octets
 5 64-byte pkts, 0 over 64-byte pkts, 5 over 127-byte pkts
 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
 15 Multicasts, 0 Broadcasts, 0 Unicasts
 0 throttles, 0 discarded, 0 Collisions, 0 wred drops
Rate Info(interval 30 seconds):
 Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
 Output 0 Mbits/sec, 0 packets/sec, 0% of line rate
```

Time since last interface status change: 00:00:13

--more--
Energy-efficient Ethernet

Energy-efficient Ethernet (EEE) reduces power consumption of physical layer devices (PHYs) during idle periods. EEE allows Dell EMC Networking devices to conform to green computing standards.

An Ethernet link consumes power when a link is idle. EEE allows Ethernet links to use Regular Power mode only during data transmission. EEE is enabled on devices that support LOW POWER IDLE (LPI) mode. Such devices save power by entering LPI mode during periods when no data is transmitting.

In LPI mode, systems on both ends of the link save power by shutting down certain services. EEE transitions into and out of LPI mode transparently to upper-layer protocols and applications.

EEE advertises during the auto-negotiation stage. Auto-negotiation detects abilities supported by the device at the other end of the link, determines common abilities, and configures joint operation.

Auto-negotiation performs at power-up, on command from the LAN controller, on detection of a PHY error, or following Ethernet cable re-connection. During the link establishment process, both link partners indicate their EEE capabilities. If EEE is supported by both link partners for the negotiated PHY type, EEE functions independently in either direction.

Changing the EEE configuration resets the interface because the device restarts Layer 1 auto-negotiation. You may want to enable Link Layer Discovery Protocol (LLDP) for devices that require longer wake-up times before they are able to accept data on their receive paths. Doing so enables the device to negotiate extended system wake-up times from the transmitting link partner.

Enable energy-efficient Ethernet

EEE is disabled by default. To reduce power consumption, enable EEE.

1. Enter the physical Ethernet interface information in CONFIGURATION mode.
   ```
 interface ethernet node/slot/port[:subport]

   ```

2. Enable EEE in INTERFACE mode.
   ```
 eee

   ```

   **Enable EEE**

   OS10(config)# interface ethernet 1/1/1
   OS10(conf-if-eth1/1/1)# eee

   **Disable EEE**

   OS10(config)# interface ethernet 1/1/1
   OS10(conf-if-eth1/1/1)# no eee

Clear EEE counters

You can clear EEE counters on physical Ethernet interfaces globally or per interface.

**Clear all EEE counters**

OS10# clear counters interface eee
Clear all eee counters [confirm yes/no]:yes

**Clear counters for specific interface**

OS10# clear counters interface 1/1/48 eee
Clear eee counters on ethernet1/1/48 [confirm yes/no]:yes
View EEE status/statistics

You can view the EEE status or statistics for a specified interface, or all interfaces, using the `show` commands.

**View EEE status for a specified interface**

```
OS10# show interface ethernet 1/1/48 eee
Port EEE Status Speed Duplex

Eth 1/1/48 on up 1000M
```

**View EEE status on all interfaces**

```
OS10# show interface eee
Port EEE Status Speed Duplex

Eth 1/1/1 off up 1000M
... Eth 1/1/47 on up 1000M
Eth 1/1/48 on up 1000M
Eth 1/1/49 n/a
Eth 1/1/50 n/a
Eth 1/1/51 n/a
Eth 1/1/52 n/a
```

**View EEE statistics for a specified interface**

```
OS10# show interface ethernet 1/1/48 eee statistics
Eth 1/1/48
EEE : on
TxIdleTime(us) : 2560
TxWakeTime(us) : 5
Last Clearing : 18:45:53
TxEventCount : 0
TxDuration(us) : 0
RxEventCount : 0
RxDuration(us) : 0
```

**View EEE statistics on all interfaces**

```
OS10# show interface eee statistics
Port EEE TxEventCount TxDuration(us) RxEventCount RxDuration(us)

Eth 1/1/1 off 0 0 0 0
... Eth 1/1/47 on 0 0 0 0
Eth 1/1/48 on 0 0 0 0
Eth 1/1/49 n/a ...
Eth 1/1/52 n/a
```

EEE commands
clear counters interface eee

Clears all EEE counters.

Syntax: `clear counters interface eee`

Parameters: None

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:
```
OS10# clear counters interface eee
Clear all eee counters [confirm yes/no]:yes
```

Supported Releases: 10.3.0E or later

clear counters interface ethernet eee

Clears EEE counters on a specified Ethernet interface.

Syntax: `clear counters interface ethernet node/slot/port[:subport] eee`

Parameters: `node/slot/port[:subport]`—Enter the interface information.

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:
```
OS10# clear counters interface 1/1/48 eee
Clear eee counters on ethernet1/1/48 [confirm yes/no]:yes
```

Supported Releases: 10.3.0E or later

eee

Enables or disables energy-efficient Ethernet (EEE) on physical ports.

Syntax: `eee`

Parameters: None

Default: Enabled on Base-T devices and disabled on S3048-ON and S4048T-ON switches.

Command Mode: Interface

Usage Information: To disable EEE, use the `no` version of this command.

Example (Enable EEE):
```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# eee
```

Example (Disable EEE):
```
OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# no eee
```

Supported Releases: 10.3.0E or later
**show interface eee**

Displays the EEE status for all interfaces.

**Syntax**

```
show interface eee
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Example**

```
OS10# show interface eee
```

<table>
<thead>
<tr>
<th>Port</th>
<th>EEE</th>
<th>Status</th>
<th>Speed</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td>off</td>
<td>up</td>
<td>1000M</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eth 1/1/47</td>
<td>on</td>
<td>up</td>
<td>1000M</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/48</td>
<td>on</td>
<td>up</td>
<td>1000M</td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/49</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/50</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/51</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1/52</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Supported Releases**

10.3.0E or later

---

**show interface eee statistics**

Displays EEE statistics for all interfaces.

**Syntax**

```
show interface eee statistics
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Example**

```
OS10# show interface eee statistics
```

<table>
<thead>
<tr>
<th>Port</th>
<th>EEE</th>
<th>TxEventCount</th>
<th>TxDuration(us)</th>
<th>RxEventCount</th>
<th>RxDuration(us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td>off</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eth 1/1/47</td>
<td>on</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1/48</td>
<td>on</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1/49</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Eth 1/1/52</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

**Supported Releases**

10.3.0E or later

---

**show interface ethernet eee**

Displays the EEE status for a specified interface.

**Syntax**

```
show interface ethernet node/slot/port[:subport] eee
```

**Parameters**

```
node/slot/port[:subport]—Enter the interface information.
```
show interface ethernet eee statistics

Displays EEE statistics for a specified interface.

Syntax

```
show interface ethernet node/slot/port[:subport] eee statistics
```

Parameters

- `node/slot/port[:subport]`—Enter the interface information.

Default

Not configured

Command Mode

EXEC

Example

```
OS10# show interface ethernet 1/1/48 eee statistics

Eth 1/1/48
 EEE : on
 TxIdleTime(us) : 2560
 TxWakeTime(us) : 5
 Last Clearing : 18:45:53
 TxEventCount : 0
 TxDuration(us) : 0
 RxEventCount : 0
 RxDuration(us) : 0
```

Supported Releases

10.3.0E or later

View interface configuration

To view basic interface information, use the `show interface`, `show running-configuration`, and `show interface status` commands. Stop scrolling output from a `show` command by entering CTRL+C. Display information about a physical or virtual interface in EXEC mode, including up/down status, MAC and IP addresses, and input/output traffic counters.

```
show interface [type]

- phy-eth node/slot/port[:subport] — Display information about physical media connected to the interface.
- status — Display interface status.
- ethernet node/slot/port[:subport] — Display Ethernet interface information.
- loopback id — Display Loopback interface information, from 0 to 16383.
- mgmt node/slot/port — Display Management interface information.
- port-channel id-number — Display port-channel interface information, from 1 to 128.
- vlan vlan-id — Display the VLAN interface information, from 1 to 4093.
```

Example

```
OS10# show interface
Ethernet 1/1/1 is up, line protocol is down
Hardware is Eth, address is 00:0c:29:66:6b:90
 Current address is 00:0c:29:66:6b:90
```
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR4
  Wavelength is 64
  Receive power reading is 0.000000 dBm
Interface index is 15
Internet address is not set
Mode of IPv4 Address Assignment: not set
Interface IPv6 oper status: Enabled
MTU 1532 bytes, IP MTU 1500 bytes
LineSpeed 0, Auto-Negotiation on
Configured FEC is off, Negotiated FEC is off
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 60
Last clearing of "show interface" counters: 02:46:35
Queuing strategy: fifo
Input statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
Output statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 throttles, 0 discarded, 0 Collisions, 0 wred drops
Rate Info(interval 30 seconds):
  Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
  Output 0 Mbits/sec, 0 packets/sec, 0% of line rate
Time since last interface status change: 02:46:36

Ethernet 1/1/2 is up, line protocol is up
Hardware is Eth, address is 00:0c:29:66:6b:94
  Current address is 00:0c:29:66:6b:94
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR4
  Wavelength is 64
  Receive power reading is 0.000000 dBm
Interface index is 17
Internet address is not set
Mode of IPv4 Address Assignment: not set
Interface IPv6 oper status: Enabled
Link local IPv6 address: fe80::20c:29ff:fe66:6b94/64
MTU 1532 bytes, IP MTU 1500 bytes
LineSpeed 40G, Auto-Negotiation on
Configured FEC is off, Negotiated FEC is off
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 60
Last clearing of "show interface" counters: 02:46:35
Queuing strategy: fifo
Input statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
Output statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 throttles, 0 discarded, 0 Collisions, 0 wred drops
Rate Info(interval 30 seconds):
  Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
  Output 0 Mbits/sec, 0 packets/sec, 0% of line rate
**View specific interface information**

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# show configuration

```plaintext
interface ethernet1/1/1
 ip address 1.1.1.1/24
 no switchport
 no shutdown
```

**View candidate configuration**

OS10(conf-if-eth1/1/1)# show configuration candidate

```plaintext
interface ethernet1/1/1
 ip address 1.1.1.1/24
 no switchport
 no shutdown
```

**View running configuration**

OS10# show running-configuration

```plaintext
Current Configuration ...

interface ethernet1/1/1
 no ip address
 shutdown

interface ethernet1/1/2
 no ip address
 shutdown

interface ethernet1/1/3
 no ip address
 shutdown

interface ethernet1/1/4
 no ip address
 shutdown

...```

View L3 interfaces

OS10# show ip interface brief

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>IP-Address</th>
<th>OK</th>
<th>Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet 1/1/1</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/2</td>
<td>unassigned</td>
<td>YES</td>
<td>unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Ethernet 1/1/3</td>
<td>3.1.1.1/24</td>
<td>YES</td>
<td>manual</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Ethernet 1/1/4</td>
<td>4.1.1.1/24</td>
<td>YES</td>
<td>manual</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Ethernet 1/1/5</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/6</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/7</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/8</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/9</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/10</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/11</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/12</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/13</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/14</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/15</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/16</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/17</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/18</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/19</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>Ethernet 1/1/20</td>
<td>unassigned</td>
<td>NO</td>
<td>unset</td>
<td>up</td>
<td>down</td>
</tr>
</tbody>
</table>
OS10# show vlan
Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs,
 @ - Attached to Virtual Network
Q: A - Access (Untagged), T - Tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inactive</td>
<td></td>
<td>A Eth1/1/1,1/1/6-1/1/32</td>
</tr>
<tr>
<td>10</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Active</td>
<td></td>
<td>A Eth1/1/2</td>
</tr>
<tr>
<td>24</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interface commands

channel-group

Assigns an interface to a port-channel group.

Syntax

```
channel-group channel-number mode {active | on | passive}
```

Parameters

- `channel-number` — Enter a port-channel number, from 1 to 128.
- `mode` — Sets LACP Actor mode.
- `active` — Sets Channeling mode to Active.
- `on` — Sets Channeling mode to static.
- `passive` — Sets Channeling mode to passive.

Default

Not configured

Command Mode

INTERFACE

Usage Information

The `no` version of this command resets the value to the default, and unassigns the interface from the port-channel group.
Example

OS10(config)# interface ethernet 1/1/2:1
OS10(conf-if-eth1/1/2:1)# channel-group 20 mode active

Supported Releases

10.3.0E or later

default vlan-id

Reconfigures the VLAN ID of the default VLAN.

Syntax

```
default vlan-id vlan-id
```

Parameters

`vlan-id` — Enter the default VLAN ID number, from 1 to 4093.

Default

VLAN1

Command Mode

CONFIGURATION

Usage Information

By default, VLAN1 serves as the default VLAN for switching untagged L2 traffic on OS10 ports in Trunk or Access mode. If you use VLAN1 for network-specific data traffic, reconfigure the VLAN ID of the default VLAN. The command reconfigures the access VLAN ID, the default VLAN, of all ports in Switchport Acess mode. Ensure that the VLAN ID exists before configuring it as the default VLAN.

Example

OS10(config)# default vlan-id 10

OS10(config)# do show running-configuration

```
... 
interface vlan1
  no shutdown
interface vlan10
  no shutdown
interface ethernet1/1/1
  no shutdown
  switchport access vlan 10
interface ethernet1/1/2
  no shutdown
  switchport access vlan 10
interface ethernet1/1/3
  no shutdown
  switchport access vlan 10
interface ethernet1/1/4
  no shutdown
  switchport access vlan 10
```

Supported Releases

10.4.0E(R1) or later

description (Interface)

Configures a textual description of an interface.

Syntax

```
description string
```

Parameters

`string` — Enter a text string for the interface description. A maximum of 240 characters.

Default

Not configured
Command Mode

INTERFACE

Usage Information

• To use special characters as a part of the description string, enclose the string in double quotes.
• Spaces between characters are not preserved after entering this command unless you enclose the entire description in quotation marks; for example, “text description”.
• Enter a text string after the description command to overwrite any previously configured text string.
• Use the show running-configuration interface command to view descriptions configured for each interface.
• The no version of this command deletes the description.

Example

OS10(conf-if-eth1/1/7)# description eth1/1/7

Supported Releases

10.2.0E or later

duplex

Configures Duplex mode on the Management port.

Syntax

duplex {full | half | auto}

Parameters

• full — Set the physical interface to transmit in both directions.
• half — Set the physical interface to transmit in only one direction.
• auto — Set the port to auto-negotiate speed with a connected device.

Defaults

Not configured

Command Mode

CONFIGURATION

Usage Information

You can only use this command on the Management port. The no version of this command removes the duplex mode configuration from the management port.

Example

OS10(conf-if-ma-1/1/1)# duplex auto

Supported Releases

10.3.0E or later

feature auto-breakout

Enables front-panel Ethernet ports to automatically detect SFP media and autoconfigure breakout interfaces.

Syntax

feature auto-breakout

Parameters

None

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

After you enter the feature auto-breakout command and plug a supported breakout cable in a QSFP+ or QSFP28 port, the port autoconfigures breakout interfaces for media type and speed. Use the interface breakout command to manually configure breakout interfaces. The media type plugged into a port is no longer automatically learned. The no version of this command disables the auto-breakout feature.
Example

```
OS10(config)# feature auto-breakout
```

Supported releases

10.4.0E(R1) or later

fec

Configures Forward Error Correction on 25G and 100G interfaces.

Syntax

```
fec {CL74-FC | CL91-RS | CL108-RS | off}
```

Parameters

- **CL74-FC** — Supports 25G
- **CL91-RS** — Supports 100G
- **CL108-RS** — Supports 25G
- **off** — Disables FEC

Defaults

- For 25G interfaces: **off**
- For 100G interfaces: **CL91-RS**

Command Mode

CONFIGURATION

Usage Information

The `no` version of this command resets the value to the default.

Example

```
OS10(config)# interface ethernet 1/1/41
OS10(conf-if-eth1/1/41)# fec CL91-RS
```

Supported Releases

10.3.0E or later

interface breakout

Splits a front-panel Ethernet port into multiple breakout interfaces.

Syntax

```
interface breakout node/slot/port map {100g-1x | 40g-1x | 25g-4x | 10g-4x | 25g-4x}
```

Parameters

- **node/slot/port** — Enter the physical port information.
- **100g-1x** — Reset a QSFP28 port to 100G speed.
- **40g-1x** — Set a QSFP28 port to use with a QSFP+ 40GE transceiver.
- **25g-4x** — Split a QSFP28 port into four 25GE interfaces.
- **10g-4x** — Split a QSFP28 or QSFP+ port into four 10GE interfaces

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

- Each breakout interface operates at the configured speed; for example, 10G or 25G.
- The `no interface breakout node/slot/port` command resets a port to its default speed: 40G or 100G.
To configure breakout interfaces on a unified port, use the `mode {Eth | FC}` command in Port-Group Configuration mode.

Example

```
OS10(config)# interface breakout 1/1/41 map 10g-4x
```

Supported Releases 10.2.2E or later

interface ethernet

Configures a physical Ethernet interface.

Syntax

```
interface ethernet node/slot/port:subport
```

Parameters

```
node/slot/port:subport — Enter the Ethernet interface information.
```

Default Not configured

Command Mode CONFIGURATION

Usage Information

The `no` version of this command deletes the interface.

Example

```
OS10(config)# interface ethernet 1/1/10:1
OS10(conf-if-eth1/1/10:1)#
```

Supported Releases 10.2.0E or later

interface loopback

Configures a Loopback interface.

Syntax

```
interface loopback id
```

Parameters

```
id — Enter the Loopback interface ID number, from 0 to 16383.
```

Default Not configured

Command Mode CONFIGURATION

Usage Information

The `no` version of this command deletes the Loopback interface.

Example

```
OS10(config)# interface loopback 100
OS10(conf-if-lo-100)#
```

Supported Releases 10.2.0E or later

interface mgmt

Configures the Management port.

Syntax

```
interface mgmt node/slot/port
```

Parameters

```
node/slot/port — Enter the physical port interface information for the Management interface.
```

Default Enabled

Command Mode CONFIGURATION
Usage Information
You cannot delete a Management port. To assign an IP address to the Management port, use the `ip address` command.

Example
```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)#
```

Supported Releases
10.2.0E or later

interface null

Configures a null interface on the switch.

Syntax
```
interface null number
```

Parameters
- `number` — Enter the interface number to set as null (0).

Default
0

Command Mode
CONFIGURATION

Usage Information
You cannot delete the Null interface. The only configuration command possible in a Null interface is `ip unreachables`.

Example
```
OS10(config)# interface null 0
OS10(conf-if-nu-0)#
```

Supported Releases
10.3.0E or later

interface port-channel

Creates a port-channel interface.

Syntax
```
interface port-channel channel-id
```

Parameters
- `channel-id` — Enter the port-channel ID number, from 1 to 128.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
The `no` version of this command deletes the interface.

Example
```
OS10(config)# interface port-channel 10
OS10(conf-if-po-10)#
```

Supported Releases
10.2.0E or later

interface range

Configures a range of Ethernet, port-channel, or VLAN interfaces for bulk configuration.

Syntax
```
interface range {ethernet node/slot/port[:subport]-node/slot/port[:subport], [...] | port-channel IDnumber-IDnumber,[ ...] | vlan vlanID-vlanID,[ ...]}
```

112 Interfaces
Parameters

- `node/slot/port[:subport]-node/slot/port[:subport]` — Enter a range of Ethernet interfaces.
- `IDnumber-IDnumber` — Enter a range of port-channel numbers, from 1 to 128.
- `vlanID-vlanID` — Enter a range VLAN ID numbers, from 1 to 4093.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

Enter up to six comma-separated interface ranges without spaces between commas. When creating an interface range, interfaces are not sorted and appear in the order entered. You cannot mix interface configuration such as Ethernet ports with VLANs.

- A bulk configuration is created if at least one interface is valid.
- Non-existing interfaces are excluded from the bulk configuration with a warning message.
- This command has multiple port ranges, the prompt excludes the smaller port range.
- If you enter overlapping port ranges, the port range extends to the smallest port and the largest end port.
- You can only use VLAN and port-channel interfaces created using the `interface vlan` and `interface port-channel` commands.
- You cannot create virtual VLAN or port-channel interfaces using the `interface range` command.
- The `no` version of this command deletes the interface range.

Example

```
OS10(config)# interface range ethernet 1/1/7-1/1/24
OS10(conf-range-eth1/1/7-1/1/24)#
```

Supported Releases

10.2.0E or later

interface vlan

Creates a VLAN interface.

Syntax

```
interface vlan vlan-id
```

Parameters

- `vlan-id` — Enter the VLAN ID number, from 1 to 4093.

Default

VLAN 1

Command Mode

CONFIGURATION

Usage Information

FTP, TFTP, MAC ACLs, and SNMP operations are not supported. IP ACLs are supported on VLANs only. The `no` version of this command deletes the interface.

Example

```
OS10(config)# interface vlan 10
OS10(conf-if-vl-10)#
```

Supported Releases

10.2.0E or later

link-bundle-utilization

Configures link-bundle utilization.

Syntax

```
link-bundle-utilization trigger-threshold value
```
Parameters value — Enter the percentage of port-channel bandwidth that triggers traffic monitoring on port-channel members, from 0 to 100.

Default Disabled

Command Mode CONFIGURATION

Usage Information None

Example OS10(config)# link-bundle-utilization trigger-threshold 10

Supported Releases 10.2.0E or later

mode

Configures a front-panel unified port group to operate in Fibre Channel or Ethernet mode, or a QSFP28-DD or QSFP28 port group to operate in Ethernet mode, with the specified speed on activated interfaces.

Syntax mode {Eth {100g-2x | 100g-1x | 50g-2x | 40g-2x | 40g-1x | 25g-8x [fabric-expander-mode] | 25g-4x | 10g-8x | 10g-4x} | FC {32g-4x | 32g-2x | 32g-1x | 16g-4x | 16g-2x | 8g-4x}}

Parameters

- mode Eth — Configure a port group in Ethernet mode and set the speed to:
 - 100g-2x — Split a QSFP28-DD port into two 100GE interfaces.
 - 100g-1x — Reset a QSFP28 port group to 100GE mode.
 - 50g-2x — Split a QSFP28 port into two 50GE interfaces.
 - 40g-2x — Split a port group into two 40GE interfaces.
 - 40g-1x — Set a port group to 40G mode for use with a QSFP+ 40GE transceiver.
 - 25g-8x fabric-expander-mode — Split a QSFP28-DD port into eight 25GE interfaces for connection to a Fabric Expander.
 - 25g-8x — Split a port group into eight 25GE interfaces.
 - 25g-4x — Split a port group into four 25GE interfaces.
 - 10g-8x — Split a port group into eight 10GE interfaces.
 - 10g-4x — Split a port group into four 10GE interfaces.
- mode FC — Configure a port group in Fibre Channel mode and set the speed to:
 - 32g-4x — Split a port group into four 32GFC interfaces.
 - 32g-2x — Split a port group into two 32GFC interfaces, subports 1 and 3.
 - 32g-1x — Split a port group into one 32GFC interface, subport 1.
 - 16g-4x — Split a port group into four 16GFC interfaces; supports 4x32GFC oversubscription.
 - 16g-2x — Split a port group into two 16GFC interfaces using ports 1 and 3.
 - 8g-4x — Split a port group into four 8GFC interfaces.

Default S4148U-ON: Depends on the port profile activated.

MX9116n Fabric Switching Engine:
- QSFP28-DD port groups 1 to 9 operate in 8x25GE fabric-expander mode (FEM).
- QSFP28-DD port groups 10 to 12 operate in 2x100GE mode.
- QSFP28 port groups 13 and 14 operate in 1x100GE mode.
- Unified port groups 15 and 16 operate in ethernet 1x100GE mode.
Command Mode

PORT-GROUP

Usage Information

- The mode {FC | Eth} command configures a port group to operate at line rate and guarantees no traffic loss.
- To configure oversubscription on a FC interface, use the speed command.
- To configure breakout interfaces on an Ethernet port, use the interface breakout command.
- To view the currently active ports and subports, use the show interfaces status command.
- The no version of the command resets port-group interfaces to the default Ethernet port mode/speed. Use the no mode command before you reset the mode on an interface.

Example

OS10(conf-pg-1/1/2)# mode FC 16g-4x
OS10(conf-pg-1/1/8)# mode Eth 10g-4x

Example: Reset mode

OS10(conf-pg-1/1/2)# mode FC 16g-4x
OS10(conf-pg-1/1/2)# no mode
OS10(conf-pg-1/1/2)# mode Eth 10g-4x

Supported Releases 10.3.1E or later

mode l3

Enables L3 routing on a VLAN after you configure the VLAN scale profile.

Syntax

mode l3

Parameters

None

Defaults

Not configured

Command Mode

INTERFACE VLAN

Usage Information

To configure the VLAN scale profile, use the scale-profile vlan command. The scale profile globally applies L2 mode on all VLANs you create and disables L3 transmission. To enable L3 routing traffic on a VLAN, use the mode L3 command.

Example

OS10(config)# interface vlan 10
OS10(conf-if-vl-10)# mode L3

Supported Releases 10.4.0E(X2) or later

mtu

Sets the link maximum transmission unit (MTU) frame size for an Ethernet L2 or L3 interface.

Syntax

mtu value

Parameters

value — Enter the maximum frame size in bytes, from 1280 to 65535.

Default

1532 bytes

Command Mode

INTERFACE
Usage Information

To return to the default MTU value, use the `no mtu` command. If an IP packet includes a L2 header, the IP MTU must be at least 32 bytes smaller than the L2 MTU.

- Port-channels
 - All members must have the same link MTU value and the same IP MTU value.
 - The port channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values you configure on the channel members. For example, if the members have a link MTU of 2100 and an IP MTU of 2000, the port channel’s MTU values cannot be higher than 2100 for link MTU or 2000 bytes for IP MTU.

- VLANS
 - All members of a VLAN must have same IP MTU value.
 - Members can have different link MTU values. Tagged members must have a link MTU four bytes higher than untagged members to account for the packet tag.
 - The VLAN link MTU and IP MTU must be less than or equal to the link MTU and IP MTU value you configure on the VLAN members. For example, the VLAN contains tagged members with a link MTU of 1522 and IP MTU of 1500 and untagged members with link MTU of 1518 and IP MTU of 1500. The VLAN’s link MTU cannot be higher than 1518 bytes and its IP MTU cannot be higher than 1500 bytes.

Example

```
OS10(conf-if-eth1/1/7)# mtu 3000
```

Supported Releases

10.2.0E or later

port-group

Configures a group of front-panel unified ports, or a double-density QSFP28 (QSFP28-DD) or single-density QSFP28 port group.

Syntax

```
port-group node/slot/port-group
```

Parameters

- `node/slot` — Enter 1/1 for `node/slot` when you configure a port group.
- `port-group` — Enter the port-group number, from 1 to 16. The available port-group range depends on the switch.

Default

Not configured

Command mode

CONFIGURATION

Usage information

Enter PORT-GROUP mode to:

- Configure unified ports in Fibre Channel or Ethernet mode and break out interfaces with a specified speed.
- Break out an MX9116n QSFP28-DD or QSFP28 port group into multiple interfaces with a specified speed.

To view the ports that belong to a port group, use the `show port-group` command.

```
Example

OS10(config)# port-group 1/1/8
OS10(conf-pg-1/1/8)#
```

Supported releases

10.3.1E or later

scale-profile vlan

Configures the L2 VLAN scale profile on a switch.

Syntax

```
scale-profile vlan
```

116 Interfaces
Parameters
None

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
Use the VLAN scale profile when you scale the number of VLANs so that the switch consumes less memory. Enable the scale profile before you configure VLANs on the switch. The scale profile globally applies L2 mode on all VLANs you create and disables L3 transmission. The no version of the command disables L2 VLAN scaling. To enable L3 routing traffic on a VLAN, use the mode L3 command.

Example
OS10(config)# scale-profile vlan

Supported Releases
10.4.0E(X2) or later

show interface

Displays interface information.

Syntax
show interface [type]

Parameters
interface type — Enter the interface type:

• phy-eth node/slot/port[:subport] — Display information about physical ports connected to the interface.
• status — Display interface status.
• ethernet node/slot/port[:subport] — Display Ethernet interface information.
• loopback id — Display Loopback IDs, from 0 to 16383.
• mgmt node/slot/port — Display Management interface information.
• null — Display null interface information.
• port-channel id-number — Display port channel interface IDs, from 1 to 128.
• vlan vlan-id — Display the VLAN interface number, from 1 to 4093.

Default
Not configured

Command Mode
EXEC

Usage Information
Use the do show interface command to view interface information from other command modes.

Example
OS10# show interface
Ethernet 1/1/2 is up, line protocol is up
Hardware is Dell EMC Eth, address is 00:0c:29:54:c8:57
 Current address is 00:0c:29:54:c8:57
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR 1.0M
 Wavelength is 64
 Receive power reading is 0.0
Interface index is 17305094
Internet address is not set
Mode of IPv4 Address Assignment: not set
 Interface IPv6 oper status: Enabled
 Link local IPv6 address: fe80::20c:29ff:fe54:c857/64
 Global IPv6 address: 2::1/64
MTU 1532 bytes, IP MTU 1500 bytes
LineSpeed 40G, Auto-Negotiation on
FEC is auto, Current FEC is off
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 60
Last clearing of "show interface" counters: 00:40:14
Queuing strategy: fifo
Input statistics:
0 packets, 0 octets
0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
0 Multicasts, 0 Broadcasts, 0 Unicasts
0 runts, 0 giants, 0 throttles
0 CRC, 0 overrun, 0 discarded

Output statistics:
0 packets, 0 octets
0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
0 Multicasts, 0 Broadcasts, 0 Unicasts
0 throttles, 0 discarded, 0 Collisions, 0 wredrops

Rate Info(interval 299 seconds):
Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
Output 0 Mbits/sec, 0 packets/sec, 0% of line rate

Time since last interface status change: 3 weeks 1 day 20:30:38

--more--

Example (port channel)

OS10# show interface port-channel 1
Port-channel 1 is up, line protocol is down
Address is 90:b1:1c:f4:a5:8c, Current address is 90:b1:1c:f4:a5:8c
Interface index is 85886081
Internet address is not set
Mode of IPv4 Address Assignment: not set
MTU 1532 bytes
LineSpeed 0
Minimum number of links to bring Port-channel up is 1
Maximum active members that are allowed in the portchannel is 5
Members in this channel:
ARP type: ARPA, ARP Timeout: 60

OS10# show interface port-channel summary
LAG Mode Status Uptime Ports
22 L2 up 20:38:08 Eth 1/1/10 (Up)
Eth 1/1/11 (Down)
Eth 1/1/12 (Inact)
23 L2 up 20:34:32 Eth 1/1/20 (Up)
Eth 1/1/21 (Up)
Eth 1/1/22 (Up)

Supported Releases 10.2.0E or later

show inventory media

Displays installed media in switch ports.

Syntax show inventory media

Parameters None

Command Mode EXEC

Usage Information Use the show inventory media command to verify the media type inserted in a port.

Example

OS10# show inventory media
--
System Inventory Media
--
Node/Slot/Port | Category | Media | Serial | Dell EMC | Qualified
--
1/1/1 | Not Present
1/1/2 | SFP+ | SFP+ 10GBASE SR | AM70843 | true
1/1/3 | Not Present

118 Interfaces
Supported Releases 10.2.0E or later

show link-bundle-utilization

Displays information about the link-bundle utilization.

Syntax

```
show link-bundle-utilization
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show link-bundle-utilization
Link-bundle trigger threshold - 60
```

Supported Releases 10.2.0E or later

show port-channel summary

Displays port-channel summary information.

Syntax

```
show port-channel summary
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10(conf-if-eth1/1/4)# do show port-channel summary
Flags: D - Down I - member up but inactive P - member up and active
U - Up (port-channel)
Group Port-Channel Type Protocol Member Ports
22 port-channel22 (U) Eth STATIC 1/1/2(D) 1/1/3(P)
23 port-channel23 (D) Eth DYNAMIC 1/1/4(I)
```
show port-group

Displays the current port-group configuration on a switch.

Syntax

```
show port-group
```

Parameters

None

Default

None

Command Mode

EXEC

Usage Information

To view the ports that belong to each port group, use the `show port-group` command. To configure a port group, use the `port-group` command.

Example: S4148U-ON

```
OS10(config)# show port-group
port-group mode ports
1/1/1   Eth 10g-4x    1 2 3 4
1/1/2   FC 16g-2x    5  6  7  8
1/1/3   FC 16g-2x    9 10 11 12
1/1/4   FC 16g-2x    13 14 15 16
1/1/5   FC 16g-2x    17 18 19 20
1/1/6   FC 16g-2x    21 22 23 24
1/1/7   Eth 100g-1x   25
1/1/8   Eth 40g-1x    26
1/1/9   Eth 100g-1x   29
1/1/10  Eth 40g-1x    30
```

Example: MX9116n Fabric Engine

```
OS10(config)# show port-group
Port-group Mode  Ports    FEM
port-group1/1/1 Eth 25g-8x  17 18    FEM
port-group1/1/2 Eth 25g-8x  19 20    FEM
port-group1/1/3 Eth 25g-8x  21 22    FEM
port-group1/1/4 Eth 25g-8x  23 24    FEM
port-group1/1/5 Eth 25g-8x  25 26    FEM
port-group1/1/6 Eth 25g-8x  27 28    FEM
port-group1/1/7 Eth 25g-8x  29 30    FEM
port-group1/1/8 Eth 25g-8x  31 32    FEM
port-group1/1/9 Eth 25g-8x  33 34    FEM
port-group1/1/10 Eth 100g-2x 35 36   -
```
show switch-port-profile

Displays the current and default port profile on a switch.

Syntax

show switch-port-profile node/slot

Parameters

- node/slot — Enter the switch information. For a standalone switch, enter 1/1.

Default

profile-1

Command Mode

EXEC

Usage Information

A switch-port profile determines the available front-panel ports and breakout modes on Ethernet and unified ports. To display the current port profile, use the show switch-port-profile command. To reset the switch to the default port profile, use the no switch-port-profile node/slot command.

Example

OS10(config)# show switch-port-profile 1/1

<table>
<thead>
<tr>
<th>Node/Unit</th>
<th>Current</th>
<th>Next-boot</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>profile-2</td>
<td>profile-2</td>
<td>profile-1</td>
</tr>
</tbody>
</table>

Supported Profiles:

- profile-1
- profile-2
- profile-3
- profile-4
- profile-5
- profile-6

show vlan

Displays the current VLAN configuration.

Syntax

show vlan [vlan-id]

Parameters

- vlan-id — (Optional) Enter a VLAN ID, from 1 to 4093.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show vlan

Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs
Q: A - Access (Untagged), T - Tagged
shutdown

Disables an interface.

Syntax

shutdown

Parameters

None

Default

Disabled

Command Mode

INTERFACE

Usage Information

This command marks a physical interface as unavailable for traffic. Disabling a VLAN or a port-channel causes different behavior. When you disable a VLAN, the L3 functions within that VLAN are disabled, and L2 traffic continues to flow. Use the `shutdown` command on a port-channel to disable all traffic on the port-channel, and the individual interfaces. Use the `no shutdown` command to enable a port-channel on the interface. The `shutdown` and `description` commands are the only commands that you can configure on an interface that is a port-channel member.

Example

```
OS10(config)# interface ethernet 1/1/7
OS10(conf-if-eth1/1/7)# no shutdown
```

Supported Releases

10.2.0E or later

speed (Fibre Channel)

Configures the transmission speed of a Fibre Channel interface.

Syntax

```
speed {8 | 16 | 32 | auto}
```

Parameters

Set the speed of a Fibre Channel interface to:

- 8 — 8GFC
- 16 — 16GFC
- 32 — 32GFC
- auto — Set the port speed to the speed of the installed media.

Defaults

Auto

Command Mode

INTERFACE

Usage Information

The `speed` command is supported only on Management and Fibre Channel interfaces. This command is not supported on Ethernet interfaces.

- To configure oversubscription for bursty storage traffic on a FC interface, use the `speed` command. Oversubscription allows a port to operate faster, but may result in traffic loss. For example, QSFP28 port groups in 4x8GFC mode support 16GFC oversubscription on member interfaces. QSFP28 breakout interfaces in 4x16GFC mode support 32GFC oversubscription.
- The `no` version of this command resets the port speed to the default value auto.
speed (Management)

Configures the transmission speed of the Management interface.

Syntax
```
speed {10 | 100 | 1000 | auto}
```

Parameters
- Set the Management port speed to:
 - 10 — 10M
 - 100 — 100M
 - 1000 — 1000M
 - auto — Set the port to auto-negotiate speed with a connected device.

Defaults
Auto

Command Mode
INTERFACE

Usage Information
- The `speed` command is supported only on Management and Fibre Channel interfaces. This command is not supported on Ethernet interfaces.
- When you manually configure the Management port speed, match the speed of the remote device. Dell EMC highly recommends using auto-negotiation for the Management port.
- The `no` version of this command resets the port speed to the default value `auto`.

Example
```
OS10(conf-if-ma-1/1/1)# speed auto
```

Supported Releases
10.3.0E or later

switch-port-profile

Configures a port profile on the switch. The port profile determines the available front-panel ports and breakout modes.

Syntax
```
switch-port-profile node/unit profile
```

Parameters
- `node/unit` — Enter switch information. For a standalone switch, enter 1/1.
- `profile` — Enter the name of a platform-specific profile.

Default
`profile-1`

Command Mode
CONFIGURATION

Usage Information
- S4148-ON Series port profiles:
 - profile-1 — SFP+ 10G ports (1-24 and 31-54) and QSFP28 100G ports (25-26 and 29-30) are enabled. QSFP28 ports support 100GE and 4x10G, 4x25G, and 2x50G breakouts.
 - profile-2 — SFP+ 10G ports (1-24 and 31-50), QSFP+ 40G ports (27-28), and QSFP28 ports in 40G mode (25-26 and 29-30) are enabled. QSFP+ and QSFP28 ports support 40GE and 4x10G breakouts.
- **profile-3** — SFP+ 10G ports (5-24 and 31-50), QSFP+ 40G ports (27-28), and QSFP28 ports with 40G and 100G capability (25-26 and 29-30) are enabled. QSFP+ ports support 40GE and 4x10G breakouts. QSFP28 ports support 100GE and 4x25G breakouts with QSFP28 transceivers, and 40GE and 4x10G breakouts with QSFP+ transceivers.

- **profile-4** — SFP+ 10G ports (5-24 and 31-50), QSFP+ 40G ports (27-28), and QSFP28 ports with 40G and 100G capability (25-26 and 29-30) are enabled. QSFP+ ports support 40GE and 4x10G breakouts. QSFP28 ports support 100GE and 2x50G breakouts with QSFP28 transceivers, and 40GE and 4x10G breakouts with QSFP+ transceivers.

- **profile-5** — SFP+ 10G ports (1-24 and 31-54), QSFP+ 40G ports (27-28), QSFP28 ports with 40G capability (26 and 30), and QSFP28 ports with 40G and 100G capability (25 and 29) are enabled. QSFP+ ports support 40GE and 4x10G breakouts. QSFP28 ports 26 and 30 support 40GE and 4x10G breakouts with QSFP+ transceivers. QSFP28 ports 25 and 29 support 100GE and 4x25G breakouts with QSFP28 transceivers, and 40GE and 4x10G breakouts with QSFP+ transceivers.

- **profile-6** — SFP+ 10G ports (1-24 and 31-54), QSFP+ 40G ports (27-28), QSFP28 ports with 40G capability (26 and 30), and QSFP28 ports with 40G and 100G capability (25 and 29) are enabled. QSFP+ ports support 40GE and 4x10G breakouts. QSFP28 ports 26 and 30 support 40GE and 4x10G breakouts with QSFP+ transceivers. QSFP28 ports 25 and 29 support 100GE and 2x50G breakouts with QSFP28 transceivers, and 40GE and 4x10G breakouts with QSFP+ transceivers.

- **S4148U-ON Port profiles:**
 - **profile-1** — SFP+ unified ports (1-24), QSFP28 unified ports (25-26 and 29-30), QSFP+ Ethernet ports (27-28), and SFP+ Ethernet ports (31-54) are enabled.
 - SFP+ unified port groups operate in FC mode with 2x16GFC breakouts (ports 1 and 3) by default and support 4x8GFC. SFP+ unified ports support Ethernet 10GE mode.
 - QSFP28 unified ports 25 and 29 operate in Ethernet 100GE mode by default, and support 40GE with QSFP+ transceivers and 4x10G breakouts. QSFP28 ports 25 and 29 support 1x32GFC, 2x16GFC, and 4x8GFC in FC mode.
 - QSFP28 unified ports 26 and 30 operate in Ethernet 40GE mode by default and support 4x10G breakouts. QSFP28 ports 26 and 30 support 1x32GFC, 2x16GFC, and 4x8GFC in FC mode.
 - QSFP+ Ethernet ports operate at 40GE by default and support 4x10G breakouts.
 - SFP+ Ethernet ports operate at 10GE.

 - **profile-2** — SFP+ unified ports (1-24), QSFP28 unified ports (25-26 and 29-30), QSFP+ Ethernet ports (27-28), and SFP+ Ethernet ports (31-54) are enabled.
 - SFP+ unified ports operate in Ethernet 10GE mode by default. SFP+ unified port groups support 4x8GFC and 2x16GFC breakouts (ports 1 and 3) in FC mode.
 - QSFP28 unified ports 25 and 29 operate in Ethernet 100GE mode by default, and support 40GE with QSFP+ transceivers and 4x10G breakouts. QSFP28 ports 25 and 29 support 1x32GFC, 2x16GFC, and 4x8GFC in FC mode.
 - QSFP28 unified ports 26 and 30 operate in Ethernet 40GE mode by default and support 4x10G breakouts. QSFP28 ports 26 and 30 support 1x32GFC, 2x16GFC, and 4x8GFC in FC mode.
 - QSFP+ Ethernet ports operate at 40GE by default and support 4x10G breakouts.
 - SFP+ Ethernet ports operate at 10GE.

 - **profile-3** — SFP+ unified ports (1-24), QSFP28 unified ports (25-26 and 29-30), and SFP+ Ethernet ports (31-54) are enabled. QSFP+ Ethernet ports (27-28) are not available.
 - SFP+ unified ports operate in Ethernet 10GE mode by default. SFP+ unified port groups support 4x8GFC and 2x16GFC breakouts (ports 1 and 3) in FC mode.
 - QSFP28 unified ports operate in Ethernet 100GE mode by default and support 4x25G and 4x10G breakouts. QSFP28 ports support 2x16GFC and 4x16GFC breakouts in FC mode.
 - SFP+ Ethernet ports operate at 10GE.

 - **profile-4** — SFP+ unified ports (1-24), QSFP28 unified ports (25-26 and 29-30), and SFP+ Ethernet ports (31-54) are enabled. QSFP+ Ethernet ports (27-28) are not available.
 - SFP+ unified ports operate in Ethernet 10GE mode by default. SFP+ unified port groups support 4x8GFC and 2x16GFC breakouts (ports 1 and 3) in FC mode.
 - QSFP28 unified ports operate in Ethernet 100GE mode by default and support 4x25G and 4x10G breakouts. QSFP28 ports support 2x16GFC and 4x16GFC breakouts in FC mode.
 - SFP+ Ethernet ports operate at 10GE.
QSFP28 unified ports operate in Ethernet 100GE mode by default, and support 2x50G, 4x25G, and 4x10G breakouts. QSFP28 ports support 4x16GFC breakouts in FC mode.

SFP+ Ethernet ports operate at 10GE.

Usage Information

- Setting a port group in 2x16GFC mode activates odd-numbered interfaces 1 and 3. A port group in 1x32GFC mode activates only interface 1.
- To display the current port profile on a switch, use the show switch-port-profile command.
- To change the port profile on a switch, use the switch-port-profile command with the desired profile, save it to the startup configuration and use the reload command to apply the change. The switch reboots with new port configuration. The no version of the command resets to the default profile. When a switch reloads with a new port profile, the startup configuration resets to system defaults, except for the switch-port profile and these configured settings:
 - Management interface 1/1/1 configuration
 - Management IPv4/IPv6 static routes
 - System hostname
 - Unified Forwarding Table (UFT) mode
 - ECMP maximum paths

You must manually reconfigure other settings on a switch after you apply a new port profile and use the reload command to apply the change.

Example

```
OS10(config)# switch-port-profile 1/1 profile-1
Warning: Switch port profile will be applied only after a save and reload. All management port configurations will be retained but all other configurations will be wiped out after the reload.
OS10(config)# do write memory
OS10(config)# do reload
```

Supported Releases 10.3.0E or later

switchport access vlan

Assigns access VLAN membership to a port in L2 Access or Trunk mode.

Syntax

`switchport access vlan vlan-id`

Parameters

- `vlan vlan-id` — Enter the VLAN ID number, from 1 to 4093.

Default

VLAN 1

Command Mode

INTERFACE

Usage Information

This command enables L2 switching for untagged traffic and assigns a port interface to default VLAN1. Use this command to change the assignment of the access VLAN that carries untagged traffic. You must create the VLAN before you can assign an access interface to it. The no version of this command resets access VLAN membership on a L2 access or trunk port to VLAN 1.

Example

```
OS10(conf-if-eth1/1/3)# switchport mode access
OS10(conf-if-eth1/1/3)# switchport access vlan 100
```

Supported Releases 10.2.0E or later
switchport mode

Places an interface in L2 Access or Trunk mode.

Syntax

```
switchport mode {access | trunk}
```

Parameters

- **access** — Enables L2 switching of untagged frames on a single VLAN.
- **trunk** — Enables L2 switching of untagged frames on the access VLAN, and of tagged frames on the VLANs specified with the `switchport trunk allowed vlan` command.

Default

`access`

Command Mode

`INTERFACE`

Usage Information

- If you assign an IP address to an interface, you cannot use this command to enable L2 switching — you must first remove the IP address.
- The `access` parameter automatically adds an interface to default VLAN1 to transmit untagged traffic. Use the `switchport access vlan` command to change the access VLAN assignment.
- The `trunk` parameter configures an interface to transmit tagged VLAN traffic. You must manually configure VLAN membership for a trunk port with the `switchport trunk allowed vlan` command.
- Use the `no` switchport command to remove all L2 configurations when you configure an L3 mode interface.
- Use the `no switchport mode` command to restore a trunk port on an interface to L2 Access mode on VLAN1.

Example

```
OS10(conf-if-eth1/1/7)# switchport mode access
```

Supported Releases

10.2.0E or later

switchport trunk allowed vlan

Configures the tagged VLAN traffic that a L2 trunk interface can carry. An L2 trunk port has no tagged VLAN membership and does not transmit tagged traffic.

Syntax

```
switchport trunk allowed vlan vlan-id-list
```

Parameters

`vlan-id-list` — Enter the VLAN numbers of the tagged traffic that the L2 trunk port can carry. Comma-separated and hyphenated VLAN number ranges are supported.

Default

None

Command Mode

`INTERFACE`

Usage Information

Use the `no` version of this command to remove the configuration.

Example

```
OS10(conf-if-eth1/1/2)# switchport trunk allowed vlan 1000
OS10(conf-if-eth1/1/2)# no switchport trunk allowed vlan 1000
```

Supported Releases

10.2.0E or later
OS10 switches with Fibre Channel (FC) ports operate in one of the following modes: Direct attach (F_Port), NPIV Proxy Gateway (NPG), or FIP Snooping Bridge (FSB). In the FSB mode, you cannot use the FC ports.

F_Port

Fibre Channel fabric port (F_Port) is the switch port that connects the FC fabric to a node. S4148U-ON switches support F_Port.

Enable Fibre Channel F_Port mode globally using the `feature fc domain-ID domain-ID` command in CONFIGURATION mode.

```
OS10(config)# feature fc domain-id 100
```

NPIV Proxy Gateway

A node port (N_Port) is a port on a network node that acts as a host or storage device, and is used in FC point-to-point or FC switched fabric topologies.

N_Port ID Virtualization (NPIV) allows multiple N_Port IDs to share a single physical N_Port.

The NPIV Proxy Gateway (NPG) provides Fibre Channel over Ethernet (FCoE) to Fibre Channel (FC) bridging and vice versa. Starting from OS 10.4.1, NPG supports FC to FC switching as well.

S4148U-ON switches support NPG mode.

Enable NPG mode globally using the `feature fc npg` command in CONFIGURATION mode.

To change the port mode from default N_Port, use the `fc port-mode F` command on FC interfaces.

NOTE: In a switch configured in NPG or F-Port mode, OS10 does not support scale profile VLAN configuration. To use scale profile configuration in NPG or F-Port mode, enable CPU-based VLAN flooding on the vfabric VLAN using the `mode L3` command.

FIP snooping bridge

FCoE encapsulates FC frames over Ethernet networks. FCoE Initialization protocol (FIP) establishes FC connectivity with Ethernet ports. FSB implements security characteristics to admit valid FCoE traffic in the Ethernet networks. FIP and FCoE provide FC emulation-over-Ethernet links. OS10 switches with Ethernet ports operate in FSB.

NOTE: OS10 switches do not support multi-hop FIP snooping bridge (multi-hop FSB) capability; links to other FIP snooping bridges on a FIP snooping-enabled device (bridge-to-bridge links) are not supported.

```
OS10(config)# feature fip-snooping
```

An Ethernet switch operating in FSB mode snoops FIP packets on FCoE-enabled VLANs and discovers the following information:

- End nodes (ENodes)
- Fibre Channel Forwarder (FCF)
- Connections between ENodes and FCFs
- Sessions between ENodes and FCFs

NOTE: OS10 supports multiple ENodes in F_Port mode.

Using the discovered information, the switch installs ACL entries that provide security and point-to-point link emulation.
Terminology

ENode End Node or FCoE node
FC Fibre Channel
FC ID A 3-byte address used by FC to identify the end points
FC Map A 3-byte prefix configured per VLAN, used to frame FCoE MAC address
FCF Fibre Channel Forwarder
FCoE Fibre Channel over Ethernet
FCoE MAC Unique MAC address used to identify an FCoE session. This is a combination of FC ID and FC Map.
FIP FCoE Initialization Protocol
NPG NPIV Proxy Gateway
NPIV N_Port ID Virtualization

Virtual fabric

Virtual fabrics (vfabric) divide a physical fabric into logical fabrics. Manage each vFabric independently. The fabric ID identifies each vFabric. You can configure only one vFabric in F_Port mode and multiple vFabs in NPG mode. F_Port and NPG modes are mutually exclusive.

If you have already configured a vFabric in F_Port mode, while configuring vFabs in NPG mode, disable F_Port mode. When you disable F_Port mode, the existing vFabric is removed and you must configure new vFabs in NPG mode. If you are moving from NPG mode to F_Port mode, disable NPG mode and create the new vFabric in F_Port mode.

Zoning allows you to increase network security by partitioning the devices connected to the vFabric into subsets. Partitioning restricts unnecessary interactions between the members of vFabric. For more information, see Fibre Channel zoning.

After configuring a vFabric, you can create a name, associate a VLAN to carry traffic to the vFabric, configure FCoE parameters, configure the default zone, and activate the zoneset.

NOTE: Do not associate a VLAN that is already in use as a vFabric VLAN.

To configure a vFabric in F_Port mode:

2. Associate a VLAN ID to the vFabric with the vlan vlan-ID command.
3. Add an FC map with the fcoe fcmap fc-map command.
4. Activate a zoneset using the zoneset activate zoneset-name command.
5. Allow access to all logged-in members in the absence of an active zoneset configuration using the zone default-zone permit command. The logged-in members are the FC nodes that are successfully logged into the FC fabric, identified by the vFabric.
(Optional) Add a name to the vfabric using the `name` command.

Apply the vfabric to FC interfaces using the `fabric-ID` command in FC INTERFACE mode.

Example configuration of vfabric in F_Port mode

```
OS10(config)# vfabric 100
OS10(config-vfabric-100)# name 100
OS10(config-vfabric-100)# vlan 1023
OS10(config-vfabric-100)# fcoe fcmap 0xEFC64
OS10(config-vfabric-100)# zoneset activate set
OS10(config-vfabric-100)# zone default-zone permit
OS10(config-vfabric-100)# exit
OS10(config)# interface fibrechannel 1/1/1
OS10(config-if-fc1/1/1)# vfabric 100
```

View vfabric configuration

```
OS10(config-vfabric-100)# show configuration
!
vfabric 100
   name 100
   vlan 1023
   fcoe fcmap 0xEFC64
   zoneset activate set
   zone default-zone permit

OS10# show vfabric
Fabric Name    100
Fabric Type    F_PORT
Fabric Id      100
Vlan Id        1023
FC-MAP          0xEFC64
Config-State    ACTIVE
Oper-State      UP

Switch Config Parameters

Domain Id      100

Switch Zoning Parameters

Default Zone Mode: Allow
Active ZoneSet: set

Members
fibrechannel1/1/1
fibrechannel1/1/2
fibrechannel1/1/3
fibrechannel1/1/4
fibrechannel1/1/5
fibrechannel1/1/6
fibrechannel1/1/7
fibrechannel1/1/8
fibrechannel1/1/9
fibrechannel1/1/10
fibrechannel1/1/11
fibrechannel1/1/12
fibrechannel1/1/15
fibrechannel1/1/17
fibrechannel1/1/18
fibrechannel1/1/19
fibrechannel1/1/20
fibrechannel1/1/21
fibrechannel1/1/22
fibrechannel1/1/23
fibrechannel1/1/24
fibrechannel1/1/25:1
fibrechannel1/1/29:1
fibrechannel1/1/30:1
```
To configure a vfabric in NPG mode:

1. Configure a vfabric using the `vfabric fabric-ID` command in CONFIGURATION mode. The switch enters vfabric CONFIGURATION mode.
2. Associate a VLAN ID to the vfabric with the `vlan vlan-ID` command.
3. Add FCoE parameters with the `fcoe {fcmap fc-map | fcf-priority fcf-priority-value | fka-adv-period adv-period | vlan-priority vlan-priority-value | keep-alive} command`.
4. (Optional) Add a name to the vfabric using the `name vfabric-name` command.
5. Apply the vfabric to interfaces using the `vfabric fabric-ID` command in INTERFACE mode.

Configure vfabric in NPG mode

```
OS10(config)# vfabric 10
OS10(conf-vfabric-10)# name 10
OS10(conf-vfabric-10)# vlan 100
OS10(conf-vfabric-10)# fcoe fcmap 0x0efc01
OS10(conf-vfabric-10)# fcoe fcf-priority 128
OS10(conf-vfabric-10)# fcoe fka-adv-period 8
OS10(conf-vfabric-10)# fcoe vlan-priority 3
OS10(conf-vfabric-10)# exit
OS10(config)# interface ethernet 1/1/31
OS10(conf-if-eth1/1/31)# vfabric 10
```

View vfabric configuration

```
OS10(conf-vfabric-10)# show configuration
!
vfabric 10
 name 10
vlan 100
 fcoe fcmap 0xEFC01
 fcoe fcf-priority 128
 fcoe fka-adv-period 8
 fcoe vlan-priority 3
```

```
OS10# show vfabric
Fabric Name 10
Fabric Type NPG
Fabric Id 10
Vlan Id 100
FC-MAP 0xEFC01
Vlan priority 3
FCF Priority 128
FKA-Adv-Period Enabled,8
Config-State ACTIVE
Oper-State DOWN
```

```
Members
```

```
OS10# show running-configuration vfabric
!
vfabric 10
 name 10
vlan 100
 fcoe fcmap 0xEFC01
 fcoe fcf-priority 128
 fcoe fka-adv-period 8
 fcoe vlan-priority 3
```
Fibre Channel zoning

Fibre Channel (FC) zoning partitions a FC fabric into subsets to restrict unnecessary interactions, improve security, and manage the fabric more effectively. Create zones and add members to the zone. Identify a member by an FC alias, world wide name (WWN), or FC ID. A zone can have a maximum of 255 unique members. Create zonesets and add the zones to a zoneset. A switch can have multiple zonesets, but you can activate only one zoneset at a time in a fabric.

1. (Optional) Create an FC alias using the `fc alias alias-name` command in CONFIGURATION mode. The switch enters Alias CONFIGURATION mode.
2. Add members to the alias using the `member {wwn wwn-ID | fc-id fc-id} command in Alias CONFIGURATION mode. You can add a maximum of 255 unique members.
3. Create a zone using the `fc zone zone-name` command in CONFIGURATION mode. The switch enters Zone CONFIGURATION mode.
4. Add members to the zone with the `member {alias-name alias-name | wwn wwn-ID | fc-id fc-id} command in Zone CONFIGURATION mode.
5. Create a zoneset using the `fc zoneset zoneset-name` command in CONFIGURATION mode. The switch enters Zoneset CONFIGURATION mode.
6. Add the existing zones to the zoneset with the `member zone-name` command in Zoneset CONFIGURATION mode.
7. Activate the zoneset using the `zoneset activate zoneset-name` command in vfabric CONFIGURATION mode. The members in the zoneset become active.
8. Allow access between all the logged-in FC nodes in the absence of an active zoneset configuration using the `zone default-zone permit` command in vfabric CONFIGURATION mode. A default zone advertises a maximum of 255 members in the registered state change notification (RSCN) message.

NOTE: The default-zone allows or denies access to the FC nodes when an active zoneset is not available. When the default-zone action is set to `permit`, the switch allows communication between all the possible pairs of FC nodes. When you do not configure the default-zone action, the switch denies any communication between FC nodes.

To configure the vfabric on FC interfaces, associate a VLAN ID to the vfabric and add an FC map. For more information, see Virtual fabric.

Configure FC zoning

```
OS10(config)# fc zone hba1
OS10(config-fc-zone-hba1)# member wwn 10:00:00:90:fa:b8:22:19
OS10(config-fc-zone-hba1)# member wwn 21:00:00:24:ff:7b:f5:c8
OS10(config-fc-zone-hba1)# exit

OS10(config)# fc zoneset set
OS10(config-fc-zoneset-set)# member hba1
OS10(config-fc-zoneset-set)# exit

OS10(config)# vfabric 100
OS10(config-vfabric-100)# zoneset activate set
OS10(config-vfabric-100)# zone default-zone permit
```

View FC zone configuration

```
OS10(config-fc-zone-hba1)# show configuration
!
fc zone hba1
  member wwn 21:00:00:24:ff:7b:f5:c8
  member wwn 10:00:00:90:fa:b8:22:19

OS10(config-fc-zone-hba1)# show fc zone

<table>
<thead>
<tr>
<th>Zone Name</th>
<th>Zone Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>hba1</td>
<td>21:00:00:24:ff:7b:f5:c8</td>
</tr>
<tr>
<td></td>
<td>10:00:00:90:fa:b8:22:19</td>
</tr>
<tr>
<td>hba2</td>
<td>20:01:00:0e:1e:e8:e4:99</td>
</tr>
</tbody>
</table>
```
View FC zoneset configuration

OS10(config-fc-zoneset-set)# show configuration

```
! fc zoneset set
  member hba1
  member hba2
```

OS10# show fc zoneset active

```
vFabric id: 100  
Active Zoneset: set
```

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>hba2</td>
<td>*20:01:00:0e:1e:e8:e4:99</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:05</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:1b</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:1f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>hba1</td>
<td>*10:00:00:90:fa:b8:22:19</td>
</tr>
<tr>
<td></td>
<td>*21:00:00:24:ff:7b:f5:ce:ee</td>
</tr>
</tbody>
</table>

OS10# show fc zoneset set

```
ZoneSetName | ZoneName | ZoneMember                  |
------------|----------|----------------------------|
set         | hba1     | 21:00:00:24:ff:7b:f5:ce:ee |
            | hba2     | 20:01:00:0e:1e:e8:e4:99   |
            |          | 50:00:d3:10:00:ec:f9:1b    |
            |          | 50:00:d3:10:00:ec:f9:05    |
            |          | 50:00:d3:10:00:ec:f9:1f    |
```

F_Port on Ethernet

OS10 supports configuring F_Port mode on an Ethernet port that connects to converged network adapters (CNA). After enabling F_Port mode, configure a vfabric and apply the vfabric to Ethernet ports connected to CNA. You can configure only one vfabric in F_Port mode.

You can apply the configured vfabric to multiple Ethernet interfaces. You can also add Ethernet interfaces to a port-channel and apply the vfabric to the port-channel.

Example configuration

```
OS10(config)# feature fc domain-id 100
OS10(config)# vfabric 100
OS10(config-vfabric-100)# name 100
OS10(config-vfabric-100)# vlan 1023
OS10(config-vfabric-100)# fcoe fcmap 0xEFC64
OS10(config-vfabric-100)# zoneset activate set
OS10(config-vfabric-100)# zone default-zone permit
OS10(config-vfabric-100)# exit
OS10(config)# interface ethernet 1/1/30
OS10(config-if-eth1/1/30)# vfabric 100
```
Pinning FCoE traffic to a specific port of a port-channel

You can isolate FIP and FCoE traffic by configuring a pinned port at the FCoE LAG.

FCoE LAG is the port-channel used for FIP and FCoE traffic in the intermediate switches between server and storage devices.

VLT provides Active/Active LAN connectivity on converged links by forwarding traffic in multiple paths to multiple upstream devices without STP blocking any of the uplinks. This works for Ethernet traffic, but FCoE requires dedicated links for each SAN Fabric. FCoE traffic sent on VLT breaks SAN fabric isolation.

The FC sessions form between FC nodes and FCoE sessions happen between Ethernet nodes.

To form FC or FCoE sessions, the fabric login request and reply must traverse the switch through the same port. The fabric login request initiated from the server through the switch reaches the SAN Fabric. The login accept response is hashed out to any of the ports in the port-channel. If the server receives the response on a different port than where the request was sent, the server keeps retrying the request. Because of this action, the FC or FCoE sessions learnt based on the login accept response change to the unstable state. The sessions keep flapping until the request and response converge in the same port. To avoid this, pin one of the ports in the port-channel.

To support FCoE on multi-level VLT networks, use port pinning in FCoE LAGs. Port pinning is a static configuration that restricts the FIP and FCoE traffic to one port of the port-channel overriding hardware LAG hashing. The system classifies and redirects the packets exchanged during FCoE sessions to the port based on the ACL configuration. The remaining Ethernet traffic flows through both the pinned port and other ports in the port-channel, based on LAG hashing. Dell EMC recommends to use pinned port if there are more than one port in FCoE LAG. In a VLT network, the server has two unique FCoE sessions to SAN fabric and the traffic flows based on pinned port configuration. If there is only one port in the port-channel, there is no need for a pinned port.

NOTE: The pinned port configuration is supported on FSB, Ethernet downlink port-channel of NPG, and F_Port mode.

Limitations:

- The system uses an ACL table for ENode MAC with a redirect port option similar to FCF. This limits the number of FC or FCoE sessions.
- When the pinned port goes down, you must manually re-configure another active port in the port-channel as pinned port. You can perform this re-configuration only in the intermediate switches, but not in the server.
- If there is a mismatch in the configuration or if the pinned port goes down, the system does not use other ports in port-channel even if there is a valid path to server and storage device.
- When you add or remove a pinned port when FCoE sessions are active, the system clears and re-initiates the FCoE sessions based on the configuration. The system displays warning messages during the configuration.

The following illustrations show VLT and non-VLT networks with FCoE traffic flowing through pinned port.
Sample FSB configuration on VLT network

1. Enable the FIP snooping feature globally.
 OS10(config)# feature fip-snooping

2. Create the FCoE VLAN.
 OS10(config)# interface vlan 1001
 OS10(conf-if-vl-1001)# fip-snooping enable

3. Configure the VLTi interface.
 OS10(config)# interface ethernet 1/1/27
 OS10(conf-if-eth1/1/27)# no shutdown
 OS10(conf-if-eth1/1/27)# no switchport

4. Configure the VLT.
 OS10(config)# vlt-domain 1
 OS10(conf-vlt-1)# backup destination 10.16.151.110
 OS10(conf-vlt-1)# discovery-interface ethernet1/1/27

5. Enable DCBX.
 OS10(config)# dcbx enable

6. Enable the PFC parameters on the interfaces.
 OS10(config)# class-map type network-qos fcoematch
 OS10(config-cmap-nqos)# match qos-group 3
 OS10(config-cmap-nqos)# exit
 OS10(config)# policy-map type network-qos PFC
 OS10(config-pmap-network-qos)# class fcoematch
 OS10(config-pmap-c-nqos)# pause
 OS10(config-pmap-c-nqos)# pfc-cos 3

7. Create uplink and downlink port-channels, and configure the FCF facing port.
 OS10(config)# interface port-channel 10
 OS10(conf-if-po-10)# description uplink_VLT_LAG
 OS10(conf-if-po-10)# no shutdown
 OS10(conf-if-po-10)# switchport mode trunk
 OS10(conf-if-po-10)# switchport access vlan 1
 OS10(conf-if-po-10)# switchport trunk allowed vlan 1001,10
 OS10(conf-if-po-10)# vlt-port-channel 1
 OS10(conf-if-po-10)# fip-snooping port-mode fcf

 OS10(config)# interface port-channel 20
 OS10(conf-if-po-20)# description downlink_VLT_LAG
 OS10(conf-if-po-20)# no shutdown
 OS10(conf-if-po-20)# switchport mode trunk
 OS10(conf-if-po-20)# switchport access vlan 1
 OS10(conf-if-po-20)# switchport trunk allowed vlan 1001,10
 OS10(conf-if-po-20)# vlt-port-channel 2

8. Apply the PFC configuration on downlink and uplink interfaces. In addition, include the interfaces to the port-channel and configure one of the interfaces as pinned-port.
 OS10(config)# interface ethernet 1/1/1
 OS10(conf-if-eth1/1/1)# description uplink_port_channel_member1
 OS10(conf-if-eth1/1/1)# no shutdown
 OS10(conf-if-eth1/1/1)# channel-group 10 mode active
 OS10(conf-if-eth1/1/1)# fcoe-pinned-port
 OS10(conf-if-eth1/1/1)# no switchport
 OS10(conf-if-eth1/1/1)# service-policy input type network-qos PFC
 OS10(conf-if-eth1/1/1)# priority-flow-control mode on

 OS10(config)# interface ethernet 1/1/2
 OS10(conf-if-eth1/1/2)# description uplink_port_channel_member2
 OS10(conf-if-eth1/1/2)# no shutdown
 OS10(conf-if-eth1/1/2)# channel-group 10 mode active
 OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/2)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/3
OS10(conf-if-eth1/1/3)# description downlink_port_channel_member1
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# channel-group 20 mode active
OS10(conf-if-eth1/1/3)# fcoe-pinned-port
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/3)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# description downlink_port_channel_member2
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# channel-group 20 mode active
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/4)# priority-flow-control mode on

View the configuration

VLT details:

OS10# show vlt 1
Domain ID : 1
Unit ID : 2
Role : primary
Version : 2.0
Local System MAC address : 50:9a:4c:d3:cf:70
Primary priority : 32768
VLT MAC address : 50:9a:4c:d3:cf:70
IP address : fda5:74c8:b79e:1::2
Delay-Restore timer : 90 seconds
Peer-Routing : Disabled
Peer-Routing-Timeout timer : 0 seconds
VLTi Link Status
 port-channel1000 : up

VLT Peer Unit ID System MAC Address Status IP Address Version
1 50:9a:4c:d3:e2:f0 up fda5:74c8:b79e:1::1 2.0

OS10# show vlt 1 vlt-port-detail
vlt-port-channel ID : 1
VLT Unit ID Port-Channel Status Configured ports Active ports
------------------ ------------------ --------- --------------- ---------------
1 port-channel10 up 2 2
* 2 port-channel10 up 2 2

vlt-port-channel ID : 2
VLT Unit ID Port-Channel Status Configured ports Active ports
------------------ ------------------ --------- --------------- ---------------
1 port-channel20 up 2 2
* 2 port-channel20 up 2 2

Discovered ENodes:

OS10# show fcoe enode
Enode MAC Enode Interface VLAN FCFs Sessions
-------------------- ------------------ ----- ----- -----
f4:e9:d4:a4:7d:c3 Po 20 (Eth 1/1/3) 1001 1 1

Discovered FCFs:

OS10# show fcoe fcf
FCF MAC FCF Interface VLAN FC-MAP FKA ADV PERIOD No. of Enodes
------------------ ------------------ ----- ----- ------------ ---------------
14:18:77:20:78:e0 Po 10 (Eth 1/1/1) 1001 0e:fc:00 8000 1
FCoE sessions:

<table>
<thead>
<tr>
<th>Enode MAC</th>
<th>Enode Interface</th>
<th>FCF MAC</th>
<th>FCF interface</th>
<th>VLAN</th>
<th>FCoE MAC</th>
<th>PORT WWPN</th>
<th>PORT WWNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>f4:e9:d4:a4:7d:c3</td>
<td>Po20 (Eth 1/1/3)</td>
<td>14:18:77:20:78:e0</td>
<td>Po 10 (Eth 1/1/1)</td>
<td>1001</td>
<td>0e:fc:00:01:00:00</td>
<td>01:34:02</td>
<td>20:01:f4:e9:d4:a4:7d:c3</td>
</tr>
</tbody>
</table>

Pinned port status:

<table>
<thead>
<tr>
<th>Interface</th>
<th>pinned-port</th>
<th>FCoE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po 10</td>
<td>Eth 1/1/1</td>
<td>Up</td>
</tr>
<tr>
<td>Po 20</td>
<td>Eth 1/1/3</td>
<td>Up</td>
</tr>
</tbody>
</table>

Sample FC Switch configuration on VLT network

1. Enable the F_PORT mode.
   ```
   OS10(config)# feature fc domain-id 1
   ```

2. Create the FC zones.
   ```
   OS10(config)# fc zone zoneA
   OS10(config-fc-zone-zoneA)# member wwn 10:00:00:90:fa:b8:22:19 <<Enter the WWN of Initiator CNA>>
   OS10(config-fc-zone-zoneA)# member wwn 21:00:00:24:ff:7b:f5:c8 <<Enter the WWN of Target>>
   ```

3. Create the FC zoneset.
   ```
   OS10(config)# fc zoneset zonesetA
   OS10(conf-fc-zoneset-zonesetA)# member zoneA
   ```

4. Create the vfabric VLAN.
   ```
   OS10(config)# interface vlan 1001
   ```

5. Create vFabric and activate the FC zoneset.
   ```
   OS10(config)# vfabric 1
   OS10(conf-vfabric-1)# vlan 1001
   OS10(conf-vfabric-1)# fcoe fcmap 0xEFC00
   OS10(conf-vfabric-1)# zoneset activate zonesetA
   ```

6. Configure the VLT interface.
   ```
   OS10(config)# interface ethernet 1/1/27
   OS10(conf-if-eth1/1/27)# no shutdown
   ```

7. Configure the VLT.
   ```
   OS10(config)# vlt-domain 10
   OS10(conf-vlt-10)# backup destination 10.16.151.110
   OS10(conf-vlt-10)# discovery-interface ethernet1/1/27
   ```

8. Enable DCBX.
   ```
   OS10(config)# dcbx enable
   ```

9. Apply the vfabric on the interfaces.
   ```
   OS10(config)# interface port-channel 10
   OS10(conf-if-po-10)# description downlink_VLT_LAG_to FSB
   OS10(conf-if-po-10)# no shutdown
   OS10(conf-if-po-10)# switchport mode trunk
   OS10(conf-if-po-10)# switchport access vlan 1
   OS10(conf-if-po-10)# switchport trunk allowed vlan 10
   OS10(conf-if-po-10)# vlt-port-channel 1
   OS10(conf-if-po-10)# vfabric 1
   ```

Fibre Channel 137
Apply the PFC configuration on the downlink interfaces. Include the interfaces to the port-channel and configure one of the interfaces as pinned-port.

```
OS10(config)# interface ethernet 1/1/9
OS10(conf-if-eth1/1/9)# description downlink_port_channel_member1
OS10(conf-if-eth1/1/9)# no shutdown
OS10(conf-if-eth1/1/9)# channel-group 10 mode active
OS10(conf-if-eth1/1/9)# fcoe-pinned-port
OS10(conf-if-eth1/1/9)# no switchport
OS10(conf-if-eth1/1/9)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/9)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# description downlink_port_channel_member2
OS10(conf-if-eth1/1/10)# no shutdown
OS10(conf-if-eth1/1/10)# channel-group 10 mode active
OS10(conf-if-eth1/1/10)# no switchport
OS10(conf-if-eth1/1/10)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/10)# priority-flow-control mode on
```

View configuration

Name server entries:

```
OS10# show fc ns switch brief
Total number of devices = 2

<table>
<thead>
<tr>
<th>Intf#</th>
<th>Domain</th>
<th>FC-ID</th>
<th>Enode-WWPN</th>
<th>Enode-WWNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-channel10 (Eth 1/1/9)</td>
<td>1</td>
<td>01:00:00</td>
<td>20:01:f4:e9:d4:a4:7d:c3</td>
<td>20:00:f4:e9:d4:a4:7d:c3</td>
</tr>
<tr>
<td>fibrecannel1/1/26</td>
<td>1</td>
<td>01:68:00</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
</tr>
</tbody>
</table>
```

Zoneset details:

```
vFabric id: 1
Active Zoneset: zonesetA
```

```
ZoneName                  ZoneMember
-----------------------------------------------
                             *21:00:00:24:ff:7c:ae:0e
```

Pinned port status:

```
OS10# show fcoe pinned-port
<table>
<thead>
<tr>
<th>Interface</th>
<th>pinned-port</th>
<th>FCoE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po 10</td>
<td>Eth 1/1/9</td>
<td>Up</td>
</tr>
</tbody>
</table>
```

Sample FSB configuration on non-VLT network

The following examples illustrate configurations in intermediate switches in non-vlt network, to communicate with server.

1. Enable the FIP snooping feature globally.
   ```
   OS10(config)# feature fip-snooping
   ```

2. Create the FCoE VLAN.
   ```
   OS10(config)#interface vlan 1001
   OS10(config-if-vl-1001)# fip-snooping enable
   ```

3. Enable DCBX.
   ```
   OS10(config)# dcbx enable
   ```

4. Enable the PFC parameters on the interfaces.
   ```
   OS10(config)# class-map type network-qos fcoematch
   OS10(config-cmap-ngos)# match qos-group 3
   OS10(config-cmap-ngos)# exit
   OS10(config)# policy-map type network-qos PFC
   OS10(config-pmap-network-qos)# class fcoematch
   ```

138 Fibre Channel
Create uplink and downlink port-channels, and configure the FCF facing port.

OS10(config)# interface port-channel 10
OS10(conf-if-po-10)# no shutdown
OS10(conf-if-po-10)# switchport mode trunk
OS10(conf-if-po-10)# switchport access vlan 1
OS10(conf-if-po-10)# switchport trunk allowed vlan 1001,10
OS10(conf-if-po-10)# fip-snooping port-mode fcf

OS10(config)# interface port-channel 20
OS10(conf-if-po-20)# no shutdown
OS10(conf-if-po-20)# switchport mode trunk
OS10(conf-if-po-20)# switchport access vlan 1
OS10(conf-if-po-20)# switchport trunk allowed vlan 1001,10

Apply the PFC configuration on downlink and uplink interfaces. In addition, include the interfaces to the port-channel and configure one of the interfaces as pinned-port.

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# channel-group 10 mode active
OS10(conf-if-eth1/1/1)# fcoe-pinned-port
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/1)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# channel-group 10 mode active
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/2)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# channel-group 20 mode active
OS10(conf-if-eth1/1/3)# fcoe-pinned-port
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/3)# priority-flow-control mode on

OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# channel-group 20 mode active
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# service-policy input type network-qos PFC
OS10(conf-if-eth1/1/4)# priority-flow-control mode on

View the configuration

Discovered ENodes:

```
OS10# show fcoe enode
Enode MAC      Enode Interface    VLAN   FCFs    Sessions
---------------------------------------------------------
f4:e9:d4:a4:7d:c3 Po 20(Eth 1/1/3) 1001      1         1
```

Discovered FCFs:

```
OS10# show fcoe fcf
FCF MAC      FCF Interface    VLAN   FC-MAP    FKA_ADV_PERIOD   No. of Enodes
-----------------------------------------------
14:18:77:20:78:e0 Po 10(Eth 1/1/1) 1001   0e:fc:00       8000                1
```

FCoE sessions:

```
Enode MAC      Enode Interface    FCF MAC    FCF interface    VLAN   FCoE
MAC            FC-ID    PORT WWPN     PORT WWNN
```

Fibre Channel 139
Sample FC Switch configuration on non-VLT network

1. Enable the F_PORT mode.

   ```
   OS10(config)# feature fc domain-id 1
   ```

2. Create the FC zones.

   ```
   OS10(config)# fc zone zoneA
   OS10(config-fc-zone-zoneA)# member wwn 10:00:00:90:fa:b8:22:19 <<Enter the WWN of Initiator CNA>>
   OS10(config-fc-zone-zoneA)# member wwn 21:00:00:24:ff:7b:f5:c8 <<Enter the WWN of Target>>
   ```

3. Create the FC zoneset.

   ```
   OS10(config)# fc zoneset zonesetA
   OS10(config-fc-zoneset-zonesetA)# member zoneA
   ```

4. Create the vfabric VLAN.

   ```
   OS10(config)# interface vlan 1001
   ```

5. Create vfabric and activate the FC zoneset.

   ```
   OS10(config)# vfabric 1
   OS10(config-vfabric-1)# vlan 1001
   OS10(config-vfabric-1)# fcoe fcmap 0xEF00
   OS10(config-vfabric-1)# zoneset activate zonesetA
   ```

6. Enable DCBX.

   ```
   OS10(config)# dcbx enable
   ```

7. Apply the vfabric on the interfaces.

   ```
   OS10(config)# interface port-channel 10
   OS10(conf-if-po-10)# no shutdown
   OS10(conf-if-po-10)# switchport mode trunk
   OS10(conf-if-po-10)# switchport access vlan 1
   OS10(conf-if-po-10)# switchport trunk allowed vlan 10
   OS10(conf-if-po-10)# vfabric 1
   OS10(config)# interface fibrechannel 1/1/26
   OS10(config-if-fc1/1/26)# description target_connected_port
   OS10(config-if-fc1/1/26)# no shutdown
   OS10(config-if-fc1/1/26)# vfabric 1
   ```

8. Apply the PFC configuration on the downlink interfaces. Include the interfaces to the port-channel and configure one of the interfaces as pinned-port.

   ```
   OS10(config)# interface ethernet 1/1/9
   OS10(config-if-eth1/1/9)# no shutdown
   OS10(config-if-eth1/1/9)# channel-group 10 mode active
   OS10(config-if-eth1/1/9)# fcoe-pinned-port
   OS10(config-if-eth1/1/9)# no switchport
   OS10(config-if-eth1/1/9)# service-policy input type network-qos PFC
   OS10(config-if-eth1/1/9)# priority-flow-control mode on
   OS10(config)# interface ethernet 1/1/10
   OS10(config-if-eth1/1/10)# no shutdown
   OS10(config-if-eth1/1/10)# channel-group 10 mode active
   OS10(config-if-eth1/1/10)# no switchport
   OS10(config-if-eth1/1/10)# service-policy input type network-qos PFC
   OS10(config-if-eth1/1/10)# priority-flow-control mode on
   ```
View configuration

Name server entries:

```
OS10# show fc ns switch brief
Total number of devices = 2

<table>
<thead>
<tr>
<th>Intf#</th>
<th>Domain</th>
<th>FC-ID</th>
<th>Enode-WWPN</th>
<th>Enode-WWNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-channel10</td>
<td>1</td>
<td>01:00:00</td>
<td>20:01:f4:e9:d4:a4:7d:c3</td>
<td>20:00:f4:e9:d4:a4:7d:c3</td>
</tr>
<tr>
<td>20:00:f4:e9:d4:a4:7d:c3</td>
<td>1</td>
<td>01:68:00</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
</tr>
<tr>
<td>fibrechannel1/1/26</td>
<td>1</td>
<td>01:68:00</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
<td>21:00:00:24:ff:7c:ae:0e</td>
</tr>
</tbody>
</table>
```

Zoneset details:

```
vFabric id: 1
Active Zoneset: zonesetA

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*21:00:00:24:ff:7c:ae:0e</td>
</tr>
</tbody>
</table>
```

Pinned port status:

```
OS10# show fcoe pinned-port
```

```
<table>
<thead>
<tr>
<th>Interface</th>
<th>pinned-port</th>
<th>FCoE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po 10</td>
<td>Eth 1/1/9</td>
<td>Up</td>
</tr>
</tbody>
</table>
```

Configuration guidelines

When you are configuring different modes like F_Port, NPG, or FSB, consider the following:

- The F_Port, NPG, and FSB modes are mutually exclusive. You can enable only one at a time.
- You can enable the mode-specific commands only after enabling the specific feature.
- Before you disable F_Port and NPG features, delete the mode-specific configurations. When you disable FSB, the system automatically removes the configurations.

F_Port commands

The following commands are supported on F_Port mode:

fc alias

Creates an FC alias. After creating the alias, add members to the FC alias. An FC alias can have a maximum of 255 unique members.

<table>
<thead>
<tr>
<th>Syntax</th>
<th><code>fc alias alias-name</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>alias-name — Enter a name for the FC alias.</td>
</tr>
<tr>
<td>Defaults</td>
<td>Not configured</td>
</tr>
<tr>
<td>Command Mode</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>Usage Information</td>
<td>The no version of this command deletes the FC alias. To delete an FC alias, first remove it from the FC zone.</td>
</tr>
</tbody>
</table>

```
Example
```

```
OS10(config)# fc alias test
OS10(config-fc-alias-test)# member wwn 21:00:00:24:ff:7b:f5:c9
```

<table>
<thead>
<tr>
<th>Supported Releases</th>
<th>10.3.1E or later</th>
</tr>
</thead>
</table>
fc zone

Creates an FC zone and adds members to the zone. An FC zone can have a maximum of 255 unique members.

Syntax

```
fc zone zone-name
```

Parameters

`zone-name` — Enter a name for the zone.

Defaults

Not configured

Command Mode

CONFIGURATION

Usage Information

The `no` version of this command deletes the FC zone. To delete an FC zone, first remove it from the FC zoneset.

Example

```
OS10(config)# fc zone hba1
OS10(config-fc-zone-hba1)# member wwn 10:00:00:90:fa:b8:22:19
OS10(config-fc-zone-hba1)# member wwn 21:00:00:24:ff:7b:f5:c8
```

Supported Releases

10.3.1E or later

fc zoneset

Creates an FC zoneset and adds the existing FC zones to the zoneset.

Syntax

```
fc zoneset zoneset-name
```

Parameters

`zoneset-name` — Enter a name for the FC zoneset. The name must start with a letter and may contain these characters: A-Z, a-z, 0-9, $, _, -, ^

Defaults

Not configured

Command Mode

CONFIGURATION

Usage Information

The `no` version of this command removes the FC zoneset.

Example

```
OS10(config)# fc zoneset set
OS10(config-fc-zoneset-set)# member hba1
```

Supported Releases

10.3.1E or later

feature fc

Enables the F_Port globally.

Syntax

```
feature fc domain-id domain-id
```

Parameters

`domain-id` — Enter the domain ID of the F_Port, from 1 to 239.

Defaults

Disabled

Command Mode

CONFIGURATION
Usage Information
The no version of this command disables the F_Port. You can disable the F_Port only when vfabric and zoning configurations are not available. Before disabling the FPorn, remove the vfabric and zoning configurations. You can enable only one of the following at a time: F_Port, NPG, or FSB.

Example
OS10(config)# feature fc domain-id 100

Supported Releases 10.3.1E or later

member (alias)

Add members to existing FC aliases. Identify a member by an FC alias, a world wide name (WWN), or an FC ID.

Syntax
member {wwn wwn-ID | fc-id fc-id}

Parameters
- **wwn-ID** — Enter the WWN name.
- **fc-id** — Enter the FC ID name.

Defaults Not configured

Command Mode Alias CONFIGURATION

Usage Information
The no version of this command removes the member from the FC alias.

Example
OS10(config)# fc alias test
OS10(config-fc-alias-test)# member wwn 21:00:00:24:ff:7b:f5:c9

Supported Releases 10.3.1E or later

member (zone)

Add members to existing zones. Identify a member by an FC alias, a world wide name (WWN), or an FC ID.

Syntax
member {alias-name alias-name | wwn wwn-ID | fc-id fc-id}

Parameters
- **alias-name** — Enter the FC alias name.
- **wwn-ID** — Enter the WWN name.
- **fc-id** — Enter the FC ID name.

Defaults Not configured

Command Mode Zone CONFIGURATION

Usage Information
The no version of this command removes the member from the zone.

Example
OS10(config)# fc zone hba1
OS10(config-fc-zone-hba1)# member wwn 10:00:00:90:fa:b8:22:19
OS10(config-fc-zone-hba1)# member wwn 21:00:00:24:ff:7b:f5:c8

Supported Releases 10.3.1E or later
member (zoneset)

Adds zones to an existing zoneset.

Syntax

```
member zone-name
```

Parameters

- `zone-name` — Enter an existing zone name.

Defaults

Not configured

Command Mode

Zoneset CONFIGURATION

Usage Information

The `no` version of this command removes the zone from the zoneset.

Example

```
OS10(config)# fc zoneset set
OS10(config-fc-zoneset-set)# member hba1
```

Supported Releases

10.3.1E or later

show fc alias

Displays the details of a FC alias and its members.

Syntax

```
show fc alias [alias-name]
```

Parameters

- `alias-name` — (Optional) Enter the FC alias name.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show fc alias
Alias Name          Alias Member
-------------------------------------
test                21:00:00:24:ff:7b:f5:c9
OS10#
```

Supported Releases

10.3.1E or later

show fc interface-area-id mapping

Displays the FC ID to interface mapping details.

Syntax

```
show fc interface-area-id mapping
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None
Example
OS10# show fc interface-area-id mapping
<table>
<thead>
<tr>
<th>Intf Name</th>
<th>FC-ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/40</td>
<td>0a:02:00</td>
<td>Active</td>
</tr>
</tbody>
</table>

Supported Releases 10.4.1.0 or later

show fc ns switch
Displays the details of the FC NS switch parameters.

Syntax
show fc ns switch [brief]

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show fc ns switch
Total number of devices = 1
Switch Name: 10:00:14:18:77:13:38:28
Domain Id: 4
Switch Port: port-channel10(Eth 1/1/9)
FC-Id: 04:00:00
Port Name: 50:00:d3:10:00:ec:f9:05
Node Name: 50:00:d3:10:00:ec:f9:00
Class of Service: 8
Symbolic Port Name: Compellent Port QLGC FC 8Gbps; Slot=06 Port=01 in Controller: SN 60665 of Storage Center: DEVTEST 60665
Symbolic Node Name: Compellent Storage Center: DEVTEST 60665
Port Type: N_PORT
Registered with NameServer: Yes
Registered for SCN: No

Example (brief)
OS10# show fc ns switch brief
Total number of devices = 1
<table>
<thead>
<tr>
<th>Intf# WWNN</th>
<th>Domain</th>
<th>FC-ID</th>
<th>Enode-WWPN</th>
<th>Enode-WWNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-channel10(Eth 1/1/9) 20:00:00:90:fa:b8:22:18</td>
<td>4</td>
<td>04:00:00</td>
<td>10:00:00:90:fa:b8:22:18</td>
<td></td>
</tr>
</tbody>
</table>

Supported Releases 10.3.1E or later

show fc zone
Displays the FC zones and the zone members.

Syntax
show fc zone [zone-name]

Parameters
zone-name — Enter the FC zone name.

Default
Not configured

Command Mode
EXEC

Usage Information
None
show fc zone

Displays the Fibre Channel zones.

Syntax

```
show fc zone
```

Parameters

- None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show fc zone
Zone Name | Zone Member
----------|------------------------
  hba1     | 21:00:00:24:ff:7b:f5:c8
          | 10:00:00:90:fa:b8:22:19
          | 21:00:00:24:ff:7f:ce:ee
          | 21:00:00:24:ff:7f:ce:ef
  hba2     | 20:01:00:0e:1e:e8:e4:99
          | 50:00:d3:10:00:ec:f9:1b
          | 50:00:d3:10:00:ec:f9:05
          | 50:00:d3:10:00:ec:f9:1f
```

Example (with zone name)

```
OS10# show fc zone hba1
Zone Name | Zone Member
----------|------------------------
  hba1     | 21:00:00:24:ff:7b:f5:c8
          | 10:00:00:90:fa:b8:22:19
          | 21:00:00:24:ff:7f:ce:ee
          | 21:00:00:24:ff:7f:ce:ef
```

Supported Releases

- 10.3.1E or later

show fc zoneset

Displays the Fibre Channel zonesets, the zones in the zoneset, and the zone members.

Syntax

```
show fc zoneset [active | zoneset-name]
```

Parameters

- **zoneset-name** — Enter the Fibre Channel zoneset name.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show fc zoneset
ZoneSetName | ZoneName     | ZoneMember
------------|-------------|------------------------
 set         | hba1        | 21:00:00:24:ff:7b:f5:c8
          |             | 10:00:00:90:fa:b8:22:19
          |             | 21:00:00:24:ff:7f:ce:ee
          |             | 21:00:00:24:ff:7f:ce:ef
 set         | hba2        | 20:01:00:0e:1e:e8:e4:99
          |             | 50:00:d3:10:00:ec:f9:1b
          |             | 50:00:d3:10:00:ec:f9:05
          |             | 50:00:d3:10:00:ec:f9:1f
 vFabric id: 100
 Active Zoneset: set
 ZoneName     | ZoneMember
--------------|------------------------
 hba2          | 20:01:00:0e:1e:e8:e4:99
          | 50:00:d3:10:00:ec:f9:05
          | 50:00:d3:10:00:ec:f9:1b
          | 50:00:d3:10:00:ec:f9:1f
 hba1          | *10:00:00:90:fa:b8:22:19
```

** Supported Releases **

- 10.3.1E or later
Example (active zoneset)

OS10# show fc zoneset active

vFabric id: 100
Active Zoneset: set

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>hba2</td>
<td>20:01:00:0e:1e:e8:e4:99</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:05</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:1b</td>
</tr>
<tr>
<td></td>
<td>50:00:d3:10:00:ec:f9:1f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>hba1</td>
<td>*10:00:00:90:fa:b8:22:19</td>
</tr>
<tr>
<td></td>
<td>*21:00:00:24:ff:7b:f5:c8</td>
</tr>
<tr>
<td></td>
<td>21:00:00:24:ff:7f:ce:ee</td>
</tr>
<tr>
<td></td>
<td>21:00:00:24:ff:7f:ce:ef</td>
</tr>
</tbody>
</table>

Example (with zoneset name)

OS10# show fc zoneset set

<table>
<thead>
<tr>
<th>ZoneSetName</th>
<th>ZoneName</th>
<th>ZoneMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>hba1</td>
<td>20:01:00:0e:1e:e8:e4:99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50:00:d3:10:00:ec:f9:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50:00:d3:10:00:ec:f9:1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50:00:d3:10:00:ec:f9:1f</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*10:00:00:90:fa:b8:22:19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*21:00:00:24:ff:7b:f5:c8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21:00:00:24:ff:7f:ce:ee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21:00:00:24:ff:7f:ce:ef</td>
</tr>
</tbody>
</table>

Supported Releases 10.3.1E or later

zone default-zone permit

Enables access between all logged-in FC nodes of the vfabric in the absence of an active zoneset configuration.

Syntax zone default-zone permit

Parameters None

Defaults Not configured

Command Mode Vfabric CONFIGURATION

Usage Information A default zone advertises a maximum of 255 members in the registered state change notification (RSCN) message. The no version of this command disables access between the FC nodes in the absence of an active zoneset.

Example

OS10(config)# vFabric 100
OS10(conf-vFabric-100)# zone default-zone permit

Supported Releases 10.3.1E or later
zoneset activate

Activates an existing zoneset. You can activate only one zoneset in a vfabric.

Syntax
```
zoneset activate zoneset-name
```

Parameters
- **zoneset-name** — Enter an existing zoneset name.

Defaults
Not configured

Command Mode
Vfabric CONFIGURATION

Usage Information
After you disable an active zoneset, the `zone default-zone permit` command configuration takes effect. Based on this configuration, the default zone allows or denies access between all the logged-in FC nodes of the vfabric. The `no` version of this command deactivates the zoneset.

Example
```
OS10(config)# vfabric 100
OS10(conf-vfabric-100)# zoneset activate set
```

Supported Releases
10.3.1E or later

NPG commands

The following commands are supported on NPG mode:

fc port-mode F

Configures port mode on Fibre Channel interfaces.

Syntax
```
f port-mode F
```

Parameters
None

Defaults
N_Port

Command Mode
Fibre Channel INTERFACE

Usage Information
Configure the port mode when the port is in Shut mode and when NPG mode is enabled. The `no` version of this command returns the port mode to default.

Example
```
OS10(config)# interface fibrechannel 1/1/1
OS10(conf-if-fc1/1/1)# fc port-mode F
```

Supported Releases
10.4.1.0 or later

feature fc npg

Enables the NPG mode globally.

Syntax
```
f feature fc npg
```

Parameters
None

Defaults
Disabled
show npg devices

Displays the NPG devices connected to the switch.

Syntax

show npg devices [brief]

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Use the brief option to display minimum details.

Example

OS10# show npg devices
Enode[0]:
Enode MAC :d4:ae:52:1a:ee:54
Enode Interface: port-channel10(Eth 1/1/9)
FCF MAC :14:18:77:20:7c:e3
Fabric Interface :Fc 1/1/25
FCoE Vlan :1001
Vfabric Id :10
ENode WWPN :20:01:d4:ae:52:1a:ee:54
ENode WWNN :20:00:d4:ae:52:1a:ee:54
FCoE MAC :0e:fc:00:01:04:02
FC-ID :01:04:02
Login Method :FLOGI
Time since discovered(in Secs) :6253
Status :LOGGED_IN

Example (brief)

Total NPG Devices = 1
ENode-Interface ENode-WWPN FCoE-Vlan Fabric-Intf Vfabric-Id LoginMethod Status

Po 10(Eth 1/1/9) 20:01:d4:ae:52:1a:ee:54 1001 Fc 1/1/25 10 FLOGI LOGGED_IN

Supported Releases
10.4.0E(R1) or later

F_port and NPG commands

The following commands are supported on both F_port and NPG modes:

clear fc statistics

Clears FC statistics for specified vfabric or fibre channel interface.

Syntax

clear fc statistics [vfabric vfabric-ID | interface fibrechannel]
Parameters

- **vfabric-ID** — Enter the vfabric ID.
- **fibrechannel** — Enter the fibre channel interface name.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# clear fc statistics vfabric 100
OS10# clear fc statistics interface fibrechannel1/1/25

Supported Releases
10.4.1.0 or later

fcoe

Adds FCoE parameters to the vfabric.

Syntax
```plaintext
fcoe {fcmap fc-map | fcf-priority fcf-priority-value | fka-adv-period adv-period | vlan-priority vlan-priority-value | keep-alive}
```

Parameters

- **fc-map** — Enter the FC map ID, from 0xefc00 to 0xefcff.
- **fcf-priority-value** — Enter the FCF priority value, from 1 to 255.
- **adv-period** — Enter the FCF keepalive advertisement period, from 8 to 90 seconds.
- **vlan-priority-value** — Enter the VLAN priority value, from 0 to 7.

Defaults

- **fcmap**—0x0EFC00
- **fcf-priority**—128
- **fka-adv-period**—8
- **vlan-priority**—3
- **keep-alive**—True

Command Mode
Vfabric CONFIGURATION

Usage Information
The no version of this command disables the FCoE parameters.

Example
OS10(config)# vFabric 10
OS10(conf-vfabric-10)# name 10
OS10(conf-vfabric-10)# fcoe fcmap 0x0efc01
OS10(conf-vfabric-10)# fcoe fcf-priority 128
OS10(conf-vfabric-10)# fcoe fka-adv-period 8
OS10(conf-vfabric-10)# fcoe vlan-priority 3

Supported Releases
10.3.1E or later

name

Configures a vfabric name.

Syntax
```plaintext
name vfabric-name
```
Parameters

vfabric-name — Enter a name for the vfabric.

Defaults

Not configured

Command Mode

Vfabric CONFIGURATION

Usage Information

The no version of this command removes the vfabric name.

Example

OS10(config)#vfabric 100
OS10(conf-vfabric-100)#name test_vfab

Supported Releases

10.3.1E or later

show fc statistics

Displays the FC statistics.

Syntax

show fc statistics {vfabric vfabric-ID | interface fibrechannel}

Parameters

- vfabric-ID — Enter the vfabric ID.
- fibrechannel — Enter the Fibre Channel interface name.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example (vfabric)

OS10#show fc statistics vfabric 100

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FLOGI</td>
<td>43</td>
</tr>
<tr>
<td>Number of FDISC</td>
<td>6</td>
</tr>
<tr>
<td>Number of FLOGO</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGI Accepts</td>
<td>43</td>
</tr>
<tr>
<td>Number of FLOGI Rejects</td>
<td>0</td>
</tr>
<tr>
<td>Number of FDISC Accepts</td>
<td>6</td>
</tr>
<tr>
<td>Number of FDISC Rejects</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGO Accepts</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGO Rejects</td>
<td>0</td>
</tr>
</tbody>
</table>

Example (interface)

OS10#show fc statistics interface fibrechannel1/1/25:1

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FLOGI</td>
<td>1</td>
</tr>
<tr>
<td>Number of FDISC</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGO</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGI Accepts</td>
<td>1</td>
</tr>
<tr>
<td>Number of FLOGI Rejects</td>
<td>0</td>
</tr>
<tr>
<td>Number of FDISC Accepts</td>
<td>0</td>
</tr>
<tr>
<td>Number of FDISC Rejects</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGO Accepts</td>
<td>0</td>
</tr>
<tr>
<td>Number of FLOGO Rejects</td>
<td>0</td>
</tr>
</tbody>
</table>

Supported Releases

10.3.1E or later

show fc switch

Displays FC switch parameters.

Syntax

show fc switch
show running-config vfabric

Displays the running configuration for the vfabric.

Syntax: show running-config vfabric

Parameters: None

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:

```
OS10# show running-configuration vfabric

vfabric 10
vlan 100
fcoe fcmap 0xEFC00
fcoe fcf-priority 140
fcoe fka-adv-period 13
```

Supported Releases: 10.4.0E(R1) or later

show vfabric

Displays vfabric details.

Syntax: show vfabric

Parameters: None

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:

```
OS10# show vfabric

Fabric Name: SAN_FABRIC
Fabric Type: FPORT
Fabric Id: 10
VlanId: 1001
FC-MAP: 0xEFC00
Config-State: ACTIVE
Oper-State: UP

Switch Config Parameters
```

Supported Releases: 10.3.1E or later
vfabric

Configures a vfabric.

Syntax

vfabric fabric-ID

Parameters

fabric-ID — Enter the fabric ID, from 1 to 255.

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
Enable the F_Port or NPG feature before configuring a vfabric. You can configure only one vfabric in F_Port mode. The vfabric becomes active only when you configure the vfabric with a valid VLAN and FC map. Do not use spanned VLAN as vfabric VLAN.

The no version of this command removes the vfabric. You can remove a vfabric only when it is not applied on any interface.

Example

OS10(config)# vfabric 100

Supported Releases
10.3.1E or later

vfabric (interface)

Applies an existing vfabric to an Ethernet or FC interface.

Syntax

vfabric fabric-ID

Parameters

fabric-ID — Enter the fabric ID, from 1 to 255.

Defaults
Not configured

Command Mode
INTERFACE

Usage Information
The no version of this command removes the vfabric from the interface.

Example

OS10(config)# interface fibrechannel 1/1/1
OS10(config-if-fc1/1/1)# vfabric 100

OS10(config)# interface ethernet 1/1/10
OS10(config-if-eth1/1/10)# vfabric 200
vlan

Associates an existing VLAN ID to the vfabric to carry traffic.

Syntax

```
vlan vlan-ID
```

Parameters

- `vlan-ID` — Enter an existing VLAN ID.

Defaults

- Not configured

Command Mode

- Vfabric CONFIGURATION

Usage Information

Create the VLAN ID before associating it to the vfabric. Do not use spanned VLAN as vfabric VLAN. The `no` version of this command removes the VLAN ID from the vfabric.

Example

```
OS10(config)# interface vlan 1023
OS10(conf-if-vl-1023)# exit
OS10(config)# vfabric 100
OS10(conf-vfabric-100)# vlan 1023
```

Supported Releases

- 10.3.1E or later

FIP-snooping commands

The following commands are supported on FIP-snooping mode:

feature fip-snooping

Enables the FIP snooping feature globally.

Syntax

```
feature fip-snooping
```

Parameters

- None

Defaults

- Disabled

Command Mode

- CONFIGURATION

Usage Information

You can enable only one of the following at a time: F_Port, NPG, or FSB.

The `no` version of this command disables FIP snooping. When you disable FIP snooping, the system automatically deletes all the FIP snooping VLAN and port mode configurations.

Example

```
OS10(config)# feature fip-snooping
```

Supported Releases

- 10.4.0E(R1) or later
fip-snooping enable

Enables FIP snooping on a specified VLAN.

Syntax

```
fip-snooping enable
```

Parameters

None

Defaults

Disabled

Command Mode

VLAN INTERFACE

Usage Information

Enable FIP snooping on a VLAN only after enabling the FIP snooping feature globally using the `feature fip-snooping` command. OS10 supports FIP snooping on a maximum of 12 VLANs. The no version of this command disables FIP snooping on the VLAN.

Example

```
OS10(config)# interface vlan 3
OS10(conf-if-vl-3)# fip-snooping enable
```

Supported Releases

10.4.0E(R1) or later

fip-snooping fc-map

Configures the FC map value for a specific VLAN.

Syntax

```
fip-snooping fc-map fc-map
```

Parameters

`fc-map` — Enter the FC map ID, from 0xefc00 to 0xefcff.

Defaults

Not configured

Command Mode

VLAN INTERFACE

Usage Information

The no version of this command disables the FC map configuration.

Example

```
OS10(config)# interface vlan 3
OS10(conf-if-vl-3)# fip-snooping fc-map 0xEFC64
```

Supported Releases

10.4.0E(R1) or later

fip-snooping port-mode fcf

Sets the FIP Snooping port mode to FCF for interfaces.

Syntax

```
fip-snooping port-mode fcf
```

Parameters

None

Defaults

ENode port mode

Command Mode

INTERFACE
Usage Information
By default, the port mode of an interface is set to ENode. Use this command to change the port mode to FCF. Set the port mode to FCF only after enabling the FIP snooping feature. The no version of this command resets the port mode to ENode.

Example
OS10(config)# interface ethernet 1/1/32
OS10(conf-if-eth1/1/32)# fip-snooping port-mode fcf

Supported Releases
10.4.0E(R1) or later

FCoE commands
The following commands are supported on all the three modes: F_Port, NPG, and FSB.

clear fcoe database
Clears the FCoE database for the specified VLAN.

Syntax: clear fcoe database vlan vlan-id {enode enode-mac-address | fcf fcf-mac-address | session fcoe-mac-address}

Parameters:
- **vlan-id** — Enter the VLAN ID.
- **enode-mac-address** — Enter the MAC address of the ENode.
- **fcf-mac-address** — Enter the MAC address of the FCF.
- **fcoe-mac-address** — Enter the MAC address of the FCoE session.

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:
OS10# clear fcoe database vlan 100 enode aa:bb:cc:00:00:00

Supported Releases: 10.4.0E(R1) or later

clear fcoe statistics
Clears FCoE statistics for specified interface.

Syntax: clear fcoe statistics [interface interface-type]

Parameters:
- **interface-type** — (Optional) Enter the interface type. The interface may be ethernet, VLAN, or port-channel.

Default: Not configured

Command Mode: EXEC

Usage Information: If you do not specify the **interface interface-type** information, the command clears the statistics for all the interfaces and VLANs.

Example:
OS10# clear fcoe statistics interface ethernet 1/1/1
OS10# clear fcoe statistics interface port-channel 5
Supported Releases 10.4.0E(R1) or later

fcoe-pinned-port

Marks a port as a pinned port in the port-channel. This configuration is supported on FSB, Ethernet LAG in NPG, and F_Port mode. It is not supported on a VLTi LAG.

Syntax

```
fcoe-pinned-port
```

Parameters

`node/slot/port[:subport]`—Enter the interface type details.

Defaults

Disabled

Command Mode

Port-channel INTERFACE

Usage Information

You can configure only single port per port-channel. If the port is not configured properly, or if the pinned port goes down, the other ports in the port-channel are not used even if the ports have valid path to server. The `no` version of this command removes the pinned port configuration.

Example

```
OS10(conf-if-eth-1/1/9)# channel-member 10
OS10(conf-if-eth-1/1/9)# fcoe-pinned-port
Warning: Any existing FCoE session in port-channel will get cleared. Do you want to continue(yes/no)? yes
```

Supported Releases 10.4.2.0 or later

fcoe max-sessions-per-enodemac

Configures the maximum number of sessions allowed for an ENode.

Syntax

```
fcoe max-sessions-per-enodemac max-session-number
```

Parameters

`max-session-number`—Enter the maximum number of sessions to be allowed, from 1 to 64.

Defaults

32

Command Mode

CONFIGURATION

Usage Information

The `no` version of this command resets the number of sessions to the default value.

Example

```
OS10(config)# fcoe max-sessions-per-enodemac 64
```

Supported Releases 10.4.0E(R1) or later

fcoe priority-bits

Configures the priority bits for FCoE application TLVs.

Syntax

```
fcoe priority-bits priority-value
```

Parameter

`priority-value`—Enter PFC priority value advertised in FCoE application TLV. You can enter one of the following values: 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, or 0x80.

Default

0x08

Command Mode

CONFIGURATION
Usage Information

You can configure only one PFC priority at a time. The no version of this command returns the configuration to default value.

Example

```
OS10(config)# fcoe priority-bits 0x08
```

Supported Releases

10.4.0E(R3) or later

lldp tlv-select dcbxp-appln fcoe

Enables FCoE application TLV for an interface.

Syntax

`lldp tlv-select dcbxp-appln fcoe`

Parameter

None

Default

Enabled

Command Mode

INTERFACE

Usage Information

The default priority value advertised in FCoE application TLV is 3. If the PFC configuration in an interface matches 3, then the FCoE application TLV is advertised as 3. Otherwise, FCoE application TLV is not advertised.

When you configure the application priority using `fcoe priority-bits` command, the configured value is advertised in the TLV, which is not dependent on PFC configuration.

The no version of this command disables the FCoE application TLV.

Example

```
OS10(conf-if-eth1/1/1)# lldp tlv-select dcbx-appln fcoe
```

Supported Releases

10.4.0E(R3) or later

show fcoe enode

Displays the details of ENodes connected to the switch.

Syntax

`show fcoe enode [enode-mac-address]`

Parameters

`enode-mac-address` — (Optional) Enter the MAC address of ENode. This option displays details pertaining to the specified ENode.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show fcoe enode
Enode MAC          Enode Interface  VLAN FCFs Sessions
-----------------  ---------------- ---- ---- --------
d4:ae:52:1b:e3:cd  Po 20(Eth 1/1/3)  1001  1    1
```

Supported Releases

10.4.0E(R1) or later
show fcoe fcf

Displays details of the FCFs connected to the switch.

Syntax
show fcoe [fcf-mac-address]

Parameters
fcf-mac-address — (Optional) Enter the MAC address of the FCF. This option displays details of the specified FCF.

Default
Not configured

Command Mode
EXEC

Usage Information

Example
OS10# show fcoe fcf

<table>
<thead>
<tr>
<th>FCF MAC</th>
<th>FCF Interface</th>
<th>VLAN</th>
<th>FC-MAP</th>
<th>FKA_ADV_PERIOD</th>
<th>No. of Enodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>54:7f:ee:37:34:40</td>
<td>Po 10(Eth 1/1/1)</td>
<td>1001</td>
<td>0e:fc:00</td>
<td>4000</td>
<td>1</td>
</tr>
</tbody>
</table>

Supported Releases
10.4.0E(R1) or later

show fcoe pinned-port

Displays the port-channel, the corresponding pinned-port configuration, and the port status if the FCoE sessions are formed.

Syntax
show fcoe pinned-port [port-channel port-channel-id]

Parameters
port-channel-id—Enter the port-channel ID to display the corresponding configuration.

Default
Not configured

Command Mode
EXEC

Usage Information

Example
OS10# show fcoe pinned-port

<table>
<thead>
<tr>
<th>Interface pinned-port</th>
<th>FCoE Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po 10 Eth 1/1/1</td>
<td>Up</td>
</tr>
<tr>
<td>Po 20 Eth 1/1/3</td>
<td>Up</td>
</tr>
<tr>
<td>Po 30 Eth 1/1/7</td>
<td>Down</td>
</tr>
</tbody>
</table>

Supported Releases
10.4.2.0 or later

show fcoe sessions

Displays the details of the established FCoE sessions.

Syntax
show fcoe sessions [interface vlan vlan-id]
Parameters

vlan-id — (Optional) Enter the VLAN ID. This option displays the sessions established on the specified VLAN.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

<table>
<thead>
<tr>
<th>Enode MAC</th>
<th>Enode Interface</th>
<th>FCF MAC</th>
<th>FCF Interface</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa:bb:cc:00:00:00</td>
<td>Po 20 (Eth 1/1/3)</td>
<td>aa:bb:cd:00:00:00</td>
<td>Po 10 (Eth 1/1/1)</td>
<td>100</td>
</tr>
<tr>
<td>0e:fc:00:01:00:01</td>
<td>01:00:01</td>
<td>31:00:0e:fc:00:00:00:00</td>
<td>21:00:0e:fc:00:00:00:00</td>
<td></td>
</tr>
<tr>
<td>aa:bb:cc:00:00:00</td>
<td>Po 20 (Eth 1/1/3)</td>
<td>aa:bb:cd:00:00:00:00</td>
<td>Po 10 (Eth 1/1/1)</td>
<td>100</td>
</tr>
<tr>
<td>0e:fc:00:01:00:02</td>
<td>01:00:02</td>
<td>31:00:0e:fc:00:00:00:00</td>
<td>21:00:0e:fc:00:00:00:00</td>
<td></td>
</tr>
</tbody>
</table>

Supported Releases

10.4.0E(R1) or later

show fcoe statistics

Displays the statistical details of the FCoE control plane.

Syntax

```
show fcoe statistics [interface interface-type]
```

Parameters

interface-type — (Optional) Enter the type of interface. This option displays statistics of the specified interface.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show fcoe statistics interface port-channel110
Number of Vlan Requests :0
Number of Vlan Notifications :0
Number of Multicast Discovery Solicits :2
Number of Unicast Discovery Solicits :0
Number of FLOGI :2
Number of FDISC :16
Number of FLOGO :0
Number of Enode Keep Alive :9021
Number of VN Port Keep Alive :3349
Number of Multicast Discovery Advertisement :4437
Number of Unicast Discovery Advertisement :2
Number of FLOGI Accepts :2
Number of FLOGI Rejects :0
Number of FDISC Accepts :16
Number of FDISC Rejects :0
Number of FLOGO Accepts :0
Number of FLOGO Rejects :0
Number of CVL :0
Number of FCF Discovery Timeouts :0
Number of VN Port Session Timeouts :0
Number of Session failures due to Hardware Config :0
```

Supported Releases

10.4.0E(R1) or later
show fcoe system

Displays system information related to the FCoE.

Syntax
show fcoe system

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show fcoe system
Mode: FIP Snooping Bridge
FCOE VLAN List (Operational) : 1, 100
FCFs : 1
Enodes : 2
Sessions : 17

Supported Releases
10.4.0E(R1) or later

show fcoe vlan

Displays details of FIP-snooping VLANs.

Syntax
show fcoe vlan

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show fcoe vlan
* = Default VLAN
VLAN FC-MAP FCFs Enodes Sessions
---- ------ ----- ------ --------
*1 - - - -
100 0X0EFC00 1 2 17

Supported Releases
10.4.0E(R1) or later
Layer 2

802.1X
Verifies device credentials before sending or receiving packets using the Extensible Authentication Protocol (EAP), see 802.1X Commands.

Link Aggregation Control Protocol (LACP)
Exchanges information between two systems and automatically establishes a link aggregation group (LAG) between the systems, see LACP Commands.

Link Layer Discovery Protocol (LLDP)
Enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled infrastructure devices, see LLDP Commands.

Media Access Control (MAC)
Configures limits, redundancy, balancing, and failure detection settings for devices on your network using tables, see MAC Commands.

Multiple Spanning-Tree (MST)
Maps MST instances and maps many virtual local area networks (VLANs) to a single spanning-tree instance, reducing the number of required instances, see MST Commands.

Rapid Per-VLAN Spanning-Tree Plus (RPVST+)
Combination of rapid spanning-tree and per-VLAN spanning-tree plus for faster convergence and interoperability, see RPVST+ Commands.

Rapid Spanning-Tree Protocol (RSTP)
Faster convergence and interoperability with devices configured with the Spanning-Tree and Multiple Spanning-Tree Protocols (STPs and MSTPs), see RSTP Commands.

Virtual LANs (VLANs)
Improved security to isolate groups of users into different VLANs and the ability to create a single VLAN across multiple devices, see VLAN Commands.

Port Monitoring (Local/Remote)
Port monitoring of ingress or egress traffic, or both ingress and egress traffic, on specified port(s). Monitoring methods include port-mirroring, remote port monitoring, and encapsulated remote-port monitoring (see Local/Remote Commands).

802.1X

The IEEE 802.1X standard defines a client and server-based access control that prevents unauthorized clients from connecting to a LAN through publicly accessible ports. Authentication is only required in OS10 for inbound traffic. Outbound traffic transmits regardless of the authentication state.

802.1X employs the extensible authentication protocol (EAP) to provide device credentials to an authentication server, typically remote authentication dial-in service (RADIUS), using an intermediary network access device. The network access device mediates all communication between the end-user device and the authentication server so the network remains secure.

The network access device uses EAP-over-Ethernet, also known as EAPOL — EAP over LAN, to communicate with the end user device and EAP-over-RADIUS to communicate with the server.
NOTE: OS10 supports only RADIUS as the back-end authentication server.

The authentication process involves three devices:

- **Supplicant** — The device attempting to access the network performs the role of supplicant. Regular traffic from this device does not reach the network until the port associated to the device is authorized. Before that, the supplicant can only exchange 802.1x messages (EAPOL frames) with the authenticator.

- **Authenticator** — The authenticator is the gate keeper of the network, translating and forwarding requests and responses between the authentication server and the supplicant. The authenticator also changes the status of the port based on the results of the authentication process. The authenticator executes on the Dell EMC device.

- **Authentication-server** — The authentication-server selects the authentication method, verifies the information the supplicant provides, and grants network access privileges.

Port authentication

The process begins when the authenticator senses a link status change from down to up:

1. The authenticator requests that the supplicant identify itself using an **EAP Request Identity** frame.
2. The supplicant responds with its identity in an **EAP Response Identity** frame.
3. The authenticator decapsulates the EAP response from the EAPOL frame, encapsulates it in a RADIUS Access Request frame, and forwards the frame to the authentication server.
4. The authentication server replies with an Access Challenge frame who requests that the supplicant verifies its identity using an **EAP-Method**. The authenticator translates and forwards the challenge to the supplicant.
5. The supplicant negotiates the authentication method and provides the **EAP Request** information in an **EAP Response**. Another Access Request frame translates and forwards the response to the authentication server.
If the identity information the supplicant provides is valid, the authentication server sends an *Access Accept* frame that specify the network privileges. The authenticator changes the port state to authorize and forwards an *EAP Success* frame. If the identity information is invalid, the server sends an *Access Reject* frame. If the port state remains unauthorized, the authenticator forwards an *EAP Failure* frame.

EAP over RADIUS

802.1X uses RADIUS to transfer EAP packets between the authenticator and the authentication server. EAP messages are encapsulated in RADIUS packets as an attribute of type, length, value (TLV) format — the type value for EAP messages is 79.

Configure 802.1X

You can configure and enable 802.1X on a port in a single process. OS10 supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. All platforms support RADIUS as the authentication server.

If the primary RADIUS server becomes unresponsive, the authenticator begins using a secondary RADIUS server if configured.

NOTE: 802.1X is not supported on port-channels or port-channel members.
Enable 802.1X

1. Enable 802.1X globally in CONFIGURATION mode.
   ```
   dot1x system-auth-control
   ```
2. Enter an interface or a range of interfaces in INTERFACE mode.
   ```
   interface range
   ```
3. Enable 802.1X on the supplicant interface only in INTERFACE mode.
   ```
   dot1x port-control auto
   ```

Configure and verify 802.1X configuration

```bash
OS10(config)# dot1x system-auth-control
OS10(config)# interface range 1/1/7-1/1/8
OS10(config-range-eth1/1/7-1/1/8)# dot1x port-control auto
OS10(config-range-eth1/1/7-1/1/8)# dot1x re-authentication
OS10(config-range-eth1/1/7-1/1/8)# do show dot1x interface ethernet 1/1/7
```

802.1x information on ethernet1/1/7

Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: UNAUTHORIZED
Re-Authentication: Enable
Tx Period: 60 seconds
Quiet Period: 60 seconds
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 2
Host Mode: MULTI_HOST
Auth PAE State: Initialize
Backend State: Idle
Identity retransmissions

If the authenticator sends a Request Identity frame but the supplicant does not respond, the authenticator waits 30 seconds and then retransmits the frame. There are several reasons why the supplicant might fail to respond — the supplicant maybe booting when the request arrived, there may be a physical layer problem, and so on.

1. Configure the amount of time that the authenticator waits before retransmitting an EAP Request Identity frame in INTERFACE mode, from 1 to 65535 – 1 year, default 60.
   ```
   dot1x timeout tx-period seconds
   ```

2. Configure a maximum number of times the authenticator retransmits a Request Identity frame in INTERFACE mode from 1 to 10, default 2.
   ```
   dot1x max-req retry-count
   ```

Configure and verify retransmission time

OS10(config)# dot1x system-auth-control
OS10(config)# interface range 1/1/7-1/1/8
OS10(config-range-eth1/1-7-1/1/8)# dot1x timeout tx-period 120
OS10(config-range-eth1/1-7-1/1/8)# dot1x max-req 5
OS10(config-range-eth1/1-7-1/1/8)# do show dot1x interface ethernet 1/1/7

802.1x information on ethernet1/1/7

Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: UNAUTHORIZED
Re-Authentication: Enable
Tx Period: 120 seconds
Quiet Period: 60 seconds
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 5
Host Mode: MULTI_HOST
Auth PAE State: Initialize
Backend State: Idle

View interface running configuration

OS10(config-range-eth1/1-7-1/1/8)# do show running-configuration interface
```... ```
```
interface ethernet1/1/7
 no shutdown
dot1x max-req 5
dot1x port-control auto
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout tx-period 120
```... ```
```
interface ethernet1/1/8
 no shutdown
dot1x max-req 5
dot1x port-control auto
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout tx-period 120
```... ```
**Failure quiet period**

If the supplicant fails the authentication process, the authenticator sends another Request Identity frame after 30 seconds by default. The quiet period is a transmit interval time after a failed authentication.

The Request Identity Retransmit interval is for an unresponsive supplicant. You can configure the interval for a maximum of 10 times for an unresponsive supplicant.

```
1. Configure the amount of time that the authenticator waits to retransmit a Request Identity frame after a failed authentication in INTERFACE mode from 1 to 65535, default 60 seconds.
 dot1x timeout quiet-period seconds
```

**Configure and verify port authentication**

```
OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout quiet-period 120
OS10(conf-range-eth1/1/7-1/1/8)# do show dot1x interface ethernet 1/1/7
802.1x information on ethernet1/1/7

Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: UNAUTHORIZED
Re-Authentication: Enable
Tx Period: 120 seconds
Quiet Period: 120 seconds
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 5
Host Mode: MULTI_HOST
Auth PAE State: Initialize
Backend State: Idle
```

**View interface running configuration**

```
OS10(conf-range-eth1/1/7-1/1/8)# do show running-configuration interface
...
interface ethernet1/1/7
 no shutdown
dot1x max-req 5
dot1x port-control auto
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout tx-period 120

interface ethernet1/1/8
 no shutdown
dot1x max-req 5
dot1x port-control auto
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout tx-period 120
...
```

**Port control mode**

802.1X requires a port to be in one of three states — force-authorized, force-unauthorized, or auto.
<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>force-authorized</strong></td>
<td>This is an <em>authorized state</em>. A device connected to this port does not use the authentication process but can communicate on the network. Placing the port in this state is the same as disabling 802.1X on the port. <em>force-authorized</em> is the default mode.</td>
</tr>
<tr>
<td><strong>force-unauthorized</strong></td>
<td>This is an <em>unauthorized state</em>. A device connected to a port does not use the authentication process but is <em>not</em> allowed to communicate on the network. Placing the port in this state is the same as shutting down the port. Any attempt by the supplicant to initiate authentication is ignored.</td>
</tr>
<tr>
<td><strong>auto</strong></td>
<td>This is an <em>unauthorized state</em> by default. A device connected to this port is subject to the authentication process. If the process is successful, the port is authorized and the connected device communicates on the network.</td>
</tr>
</tbody>
</table>

- Place a port in the auto, force-authorized (default), or force-unauthorized state in INTERFACE mode.

```
 dot1x port-control {auto | force-authorized | force-unauthorized}
```

## Configure and verify force-authorized state

```
OS10(conf-range-eth1/1/7-1/1/8)# dot1x port-control force-authorized
OS10(conf-range-eth1/1/7-1/1/8)# do show dot1x interface ethernet 1/1/7
```

802.1x information on ethernet1/1/7

```

Dot1x Status: Enable
Port Control: AUTHORIZED
Port Auth Status: UNAUTHORIZED
Re-Authentication: Enable
Tx Period: 120 seconds
Quiet Period: 120 seconds
Supplicant Timeout: 30 seconds
Server Timeout: 30 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 5
Host Mode: MULTI_HOST
Auth PAE State: Initialize
Backend State: Initialize
```

## View interface running configuration

```
OS10(conf-range-eth1/1/7-1/1/8)# do show running-configuration interface
...
interface ethernet1/1/7
 no shutdown
 dot1x max-req 5
 dot1x re-authentication
 dot1x timeout quiet-period 120
 dot1x timeout tx-period 120
...
```

## Reauthenticate port

Reauthenticates the supplicant. After the supplicant is authenticated and the port is authorized, configure the authenticator to reauthenticate the supplicant. If you enable reauthentication, the supplicant reauthenticate every 3600 seconds.

- Re-authenticate the supplicant in INTERFACE mode, from 1 to 65535, default 3600.

```
 dot1x timeout re-authperiod seconds
```

168   Layer 2
Configure and verify reauthentication time period

OS10(config)# interface range ethernet 1/1/7-1/1/8
OS10(conf-range-eth1/1/7-1/1/8)# dot1x re-authentication
OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout re-authperiod 3600
OS10(conf-range-eth1/1/7-1/1/8)# show dot1x interface ethernet 1/1/7

802.1x information on ethernet1/1/7
-------------------------------
Dot1x Status:              Enable
Port Control:              AUTHORIZED
Port Auth Status:          UNAUTHORIZED
Re-Authentication:        Enable
Tx Period:                120 seconds
Quiet Period:             120 seconds
Supplicant Timeout:       30 seconds
Server Timeout:           30 seconds
Re-Auth Interval:         3600 seconds
Max-EAP-Req:              5
Host Mode:                MULTI_HOST
Auth PAE State:           Initialize
Backend State:            Initialize

View interface running configuration

OS10(conf-range-eth1/1/7-1/1/8)# do show running-configuration interface
...
interface ethernet1/1/7
  no shutdown
  dot1x max-req 5
  dot1x re-authentication
  dot1x timeout quiet-period 120
  dot1x timeout re-authperiod 3600
  dot1x timeout tx-period 120

interface ethernet1/1/8
  no shutdown
  dot1x max-req 5
  dot1x re-authentication
  dot1x timeout quiet-period 120
  dot1x timeout re-authperiod 3600
  dot1x timeout tx-period 120
...

Configure timeouts

If the supplicant or authentication server is unresponsive, the authenticator terminates the authentication process after 30 seconds by default. Configure the amount of time the authenticator waits for a response before termination.

- Terminate the authentication process due to an unresponsive supplicant in INTERFACE mode, from 1 to 65535, default 30.
  
  dot1x timeout supp-timeout seconds

- Terminate the authentication process due to an unresponsive authentication server in INTERFACE mode, from 1 to 65535, default 30.

  dot1x timeout server-timeout seconds

Configure and verify server timeouts

OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout supp-timeout 45
OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout server-timeout 60
OS10(conf-range-eth1/1/7-1/1/8)# show dot1x interface ethernet 1/1/7

802.1x information on ethernet1/1/7
-------------------------------
Dot1x Status:              Enable
Port Control:              AUTHORIZED

Layer 2
Port Auth Status: UNAUTHORIZED
Re-Authentication: Enable
Tx Period: 120 seconds
Quiet Period: 120 seconds
Supplicant Timeout: 45 seconds
Server Timeout: 60 seconds
Re-Auth Interval: 3600 seconds
Max-EAP-Req: 5
Host Mode: MULTI_HOST
Auth PAE State: Initialize
Backend State: Initialize

View interface running configuration

OS10(conf-range-eth1/1/7-1/1/8)# do show running-configuration interface
...
interface ethernet1/1/7
   no shutdown
dot1x max-req 5
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout re-authperiod 3600
dot1x timeout server-timeout 60
dot1x timeout supp-timeout 45
dot1x timeout tx-period 120
!
interface ethernet1/1/8
   no shutdown
dot1x max-req 5
dot1x re-authentication
dot1x timeout quiet-period 120
dot1x timeout re-authperiod 3600
dot1x timeout server-timeout 60
dot1x timeout supp-timeout 45
dot1x timeout tx-period 120
...

802.1X commands

dot1x host-mode

Allows 802.1X authentication for either a single supplicant or multiple supplicants on an interface.

Syntax     dot1x host-mode {multi-host}

Parameters
   • multi-host — Allows attachment of multiple hosts to a single 802.1X-enabled port. You can only authorize one of the attached clients for all clients to grant network access. If the port becomes unauthorized (re-authentication fails or receives an EAPOL-logoff message), the device denies network access to all of the attached clients.

Default     Multi-host

Command Mode INTERFACE

Usage Information The no version of this command resets the value to the default.

Example     OS10(conf-range-eth1/1/7-1/1/8)# dot1x host-mode multi-host

Supported Releases 10.2.0E or later
**dot1x max-req**

Changes the maximum number of requests that the device sends to a supplicant before restarting 802.1X authentication.

**Syntax**

```
dot1x max-req retry-count
```

**Parameters**

- `max-req retry-count` — Enter the retry count for the request sent to the supplicant before restarting 802.1X reauthentication, from 1 to 10.

**Default**

2

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(conf-range-eth1/1/7-1/1/8)# dot1x max-req 4
```

**Supported Releases**

10.2.0E or later

---

**dot1x port-control**

Controls the 802.1X authentication performed on the interface.

**Syntax**

```
dot1x port-control {force-authorized | force-unauthorized | auto}
```

**Parameters**

- `force-authorized` — Disables 802.1X authentication on the interface and allows all traffic on the interface without authentication.
- `force-unauthorized` — Keeps the port in the unauthorized state, ignoring all attempts by the client to authenticate.
- `auto` — Enables 802.1X authentication on the interface.

**Default**

Force-authorized

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# interface range ethernet 1/1/7-1/1/8
OS10(conf-range-eth1/1/7-1/1/8)# dot1x port-control auto
```

**Supported Releases**

10.2.0E or later

---

**dot1x re-authentication**

Enables periodic re-authentication of 802.1X supplicants.

**Syntax**

```
dot1x re-authentication
```

**Parameters**

None

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command disables the periodic re-authentication of 802.1X supplicants.
OS10(conf-range-eth1/1/7-1/1/8)# dot1x re-authentication

Supported Releases 10.2.0E or later

**dot1x timeout quiet-period**

Sets the number of seconds that the device remains in the quiet state following a failed authentication exchange with a supplicant.

**Syntax**

```
dot1x timeout quiet-period seconds
```

**Parameters**

- `quiet period seconds` — Enter the number of seconds for the 802.1X quiet period timeout, from 1 to 65535.

**Default**

60 seconds

**Command Mode** INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout quiet-period 120

**Supported Releases** 10.2.0E or later

**dot1x timeout re-authperiod**

Sets the number of seconds between re-authentication attempts.

**Syntax**

```
dot1x timeout re-authperiod seconds
```

**Parameters**

- `re-authperiod seconds` — Enter the number of seconds for the 802.1X re-authentication timeout, from 1 to 65535.

**Default**

3600 seconds

**Command Mode** INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout re-authperiod 7200

**Supported Releases** 10.2.0E or later

**dot1x timeout server-timeout**

Sets the number of seconds that the device waits before retransmitting a packet to the authentication server.

**Syntax**

```
dot1x timeout server-timeout seconds
```

**Parameters**

- `server-timeout seconds` — Enter the number of seconds for the 802.1X server timeout, from 1 to 65535.

**Default**

30 seconds

**Command Mode** INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

OS10(conf-range-eth1/1/7-1/1/8)# dot1x server-timeout 60

**Supported Releases** 10.2.0E or later
Supported Releases 10.2.0E or later

**dot1x timeout supp-timeout**

Sets the number of seconds that the device waits for the supplicant to respond to an EAP request frame before the device retransmits the frame.

**Syntax**

```
dot1x timeout supp-timeout seconds
```

**Parameters**

- `supp-timeout seconds` — Enter the number of seconds for the 802.1X supplicant timeout, from 1 to 65535.

**Default**

30 seconds

**Command Mode**

INTERFACE

**Usage Information**

The no version of this command resets the value to the default.

**Example**

```
OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout supp-timeout 45
```

Supported Releases 10.2.0E or later

**dot1x timeout tx-period**

Sets the number of seconds that the device waits for a response to an EAP-request/identity frame from the supplicant before retransmitting the request.

**Syntax**

```
dot1x timeout tx-period seconds
```

**Parameters**

- `tx-period seconds` — Enter the number of seconds for the 802.1X transmission timeout, from 1 to 65535.

**Default**

60 seconds

**Command Mode**

INTERFACE

**Usage Information**

The no version of this command resets the value to the default.

**Example**

```
OS10(conf-range-eth1/1/7-1/1/8)# dot1x timeout tx-period 120
```

Supported Releases 10.2.0E or later

**show dot1x**

Displays global 802.1X configuration information.

**Syntax**

```
show dot1x
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show dot1x
PAE Capability: Authenticator only
Protocol Version: 2
System Auth Control: Enable
Auth Server: Radius
```
show dot1x interface

Displays 802.1X configuration information.

**Syntax**

```
show dot1x interface ethernet node/slot/port[:subport]
```

**Parameters**

- `ethernet node/slot/port[:subport]` — Enter the Ethernet interface information.

**Command Mode**

EXEC

**Usage Information**

Use this command to view the dot1x interface configuration for a specific interface.

**Example**

```
OS10# show dot1x interface
802.1x information on ethernet1/1/1

Dot1x Status: Enable
802.1x information on ethernet1/1/2

Dot1x Status: Enable
802.1x information on ethernet1/1/3

Dot1x Status: Enable
802.1x information on ethernet1/1/4

Dot1x Status: Enable
802.1x information on ethernet1/1/5

Dot1x Status: Enable
802.1x information on ethernet1/1/6

Dot1x Status: Enable
802.1x information on ethernet1/1/7

Dot1x Status: Enable
Port Control: AUTO
Port Auth Status: UNAUTHORIZED
```

**Example (when dot1x is not enabled globally)**

```
OS10# show dot1x interface
802.1x not enabled in the system
OS10#
```

**Supported Releases**

10.2.0E or later

---

**Link Aggregation Control Protocol**

Group Ethernet interfaces to form a single link layer interface called a LAG or port-channel. Aggregating multiple links between physical interfaces creates a single logical LAG, which balances traffic across the member links within an aggregated Ethernet bundle and increases the uplink bandwidth. If one member link fails, the LAG continues to carry traffic over the remaining links.

You can use LACP to create dynamic LAGs exchanging information between two systems (also called Partner Systems) and automatically establishing the LAG between the systems. LACP permits the exchange of messages on a link to:

- Reach an agreement on the identity of the LAG to which the link belongs.
- Move the link to that LAG.
- Enable the transmission and reception functions.
LACP functions by constantly exchanging custom MAC PDUs across LAN Ethernet links. The protocol only exchanges packets between ports you configure as LACP-capable.

**Modes**

A LAG includes three configuration modes — on, active, and passive.

- **On**
  Sets the Channeling mode to Static. The interface acts as a member of the static LAG.

- **Active**
  Sets the interface in the Active Negotiating state. LACP runs on any link configured in this mode. A port in Active mode automatically initiates negotiations with other ports by using LACP packets. A port in Active mode can set up a port-channel (LAG) with another port in Active mode or Passive mode.

- **Passive**
  Sets the interface in an Inactive Negotiating state, but LACP runs on the link. A port in Passive mode also responds to negotiation requests (from ports in Active mode). Ports in Passive mode respond to LACP packets. A port in Passive mode cannot set up a LAG with another port in Passive mode.

- There is no dual-membership in static and dynamic LAGs:
  - If a physical interface is a part of a static LAG, the `channel-group id mode active` command is rejected on that interface.
  - If a physical interface is a part of a dynamic LAG, the `channel-group id` command is rejected on that interface.

- You cannot add static and dynamic members to the same LAG.

- There is a difference between the `shutdown` and `no interface port-channel` commands:
  - The `shutdown` command on LAG `xyz` disables the LAG and retains the user commands.
  - The `no interface port-channel channel-number` command deletes the specified LAG, including a dynamically created LAG. The interfaces restore and are ready for configuration.

- A maximum of 128 port-channels with up to 16 members per channel are allowed.

**Configuration**

LACP is enabled globally by default. You can configure aggregated ports with compatible active and passive LACP modes to automatically link them.

1. Configure the system priority in CONFIGURATION mode (1 to 65535; the higher the number, the lower the priority; default 32768).
   ```
lacp system-priority priority-value
   ```

2. Configure the LACP port priority in INTERFACE mode (1 to 65535; the higher the number, the lower the priority; default 32768).
   ```
lacp port-priority priority-value
   ```

3. Configure the LACP rate in INTERFACE mode (default normal).
   ```
lacp rate [fast | normal]
   ```

**Configure LACP**

````
OS10(config)# lacp system-priority 65535
OS10(config)# interface range ethernet 1/1/7-1/1/8
OS10(config-range-eth1/1/7-1/1/8)# lacp port-priority 4096
OS10(config-range-eth1/1/7-1/1/8)# lacp rate fast
```

**Verify LACP configuration**

````
OS10(config-range-eth1/1/7-1/1/8)# do show running-configuration
...
interface ethernet1/1/7
 lacp port-priority 4096
 lacp rate fast
 no shutdown
```
interface ethernet1/1/8
lacp port-priority 4096
lacp rate fast
no shutdown
!

Interfaces

Create a LAG and then add LAG member interfaces. By default, all interfaces are in `no shutdown` and `switchport` modes.

1. Create a LAG in CONFIGURATION mode.
   ```
 interface port-channel port-channel number
   ```
2. Enter INTERFACE mode.
   ```
 interface ethernet node/slot/port[:subport]
   ```
3. Set the channel group mode to Active in INTERFACE mode.
   ```
 channel-group number mode active
   ```

Configure dynamic LAG interfaces

OS10(config)# interface port-channel 10
OS10(conf-if-po-10)# exit
OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# no switchport
OS10(conf-if-eth1/1/10)# channel-group 10 mode active
OS10(conf-if-eth1/1/10)# exit
OS10(config)# interface ethernet 1/1/11
OS10(conf-if-eth1/1/11)# no switchport
OS10(conf-if-eth1/1/11)# channel-group 10 mode active

Rates

Protocol data units (PDUs) are exchanged between port-channel (LAG) interfaces to maintain LACP sessions. PDUs are transmitted at either a slow or fast transmission rate, depending on the LACP timeout value. The timeout value is the amount of time that a LAG interface waits for a PDU from the remote system before bringing the LACP session down.

By default, the LACP rate is `normal` (long timeout). If you configure a `fast` LACP rate, a short timeout sets.

- Set the LACP rate in CONFIGURATION mode.
  ```
 lACP rate [fast | normal]
  ```

Configure LACP timeout

OS10(conf-if-eth1/1/29)# lACP rate fast

View port status

OS10# show lACP port-channel

Port-channel 20 admin up, oper up, mode lacp
Actor System ID: Priority 32768, Address f8:b1:56:00:02:33
Actor Admin Key 20, Oper Key 20, Partner Oper Key 10
LACP LAG ID 20 is an aggregatable link
A - Active LACP, B - Passive LACP, C - Short Timeout, D - Long Timeout
E - Aggregatable Link, F - Individual Link, G - IN_SYNC, H - OUT_OF_SYNC,
I - Collection enabled, J - Collection disabled, K - Distribution enabled,
L - Distribution disabled, M - Partner Defaulted, N - Partner Non-defaulted,
O - Receiver is not in expired state, P - Receiver is in expired state
Port ethernet1/1/14 is Enabled, LACP is enabled and mode is lacp
Sample configuration

This sample topology is based on two routers — Alpha and Bravo.

**Alpha LAG configuration summary**

OS10(config)# interface port-channel 1
OS10(config)# interface ethernet 1/1/49
OS10(config)# interface ethernet 1/1/50
OS10(config)# interface ethernet 1/1/51

**Bravo LAG configuration summary**

OS10(config)# interface port-channel 1
OS10(config)# interface ethernet 1/1/49
OS10(config)# interface ethernet 1/1/50
OS10(config)# interface ethernet 1/1/51

**Alpha verify LAG port configuration**

OS10# show lacp port-channel

Port-channel 1 admin up, oper up, mode lacp
Actor System ID: Priority 32768, Address 34:17:eb:f2:c7:c4
Partner System ID: Priority 32768, Address 34:17:eb:f2:9b:c4
Actor Admin Key 1, Oper Key 1, Partner Oper Key 1
LACP LAG ID 1 is an aggregatable link
A - Active LACP, B - Passive LACP, C - Short Timeout, D - Long Timeout
E - Aggregatable Link, F - Individual Link, G - IN_SYNC, H - OUT_OF_SYNC,
I - Collection enabled, J - Collection disabled, K - Distribution enabled,
L - Distribution disabled, M - Partner Defaulted, N - Partner Non-defaulted,
O - Receiver is in expired state, P - Receiver is not in expired state
Port ethernet1/1/49 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State BCFHJKNO Key 1 Priority 32768
  Oper: State BDEGIKNO Key 1 Priority 32768
Partner Admin: State BCEGIKNP Key 0 Priority 0
  Oper: State BCEGIKNP Key 0 Priority 0
Port ethernet1/1/50 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State BCFHJKNO Key 1 Priority 32768
  Oper: State BDEGIKNO Key 1 Priority 32768
Partner Admin: State BCEGIKNP Key 0 Priority 0
  Oper: State BCEGIKNP Key 0 Priority 0
Port ethernet1/1/51 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State BCFHJKNO Key 1 Priority 32768
  Oper: State BDEGIKNO Key 1 Priority 32768
Partner Admin: State BCEGIKNP Key 0 Priority 0
  Oper: State BCEGIKNP Key 0 Priority 0

Bravo verify LAG port configuration

bravo# show interface ethernet 1/1/29
Ethernet 1/1/29 is up, line protocol is up
Port is part of Port-channel
Hardware is Dell EMC Eth, address is 90:b1:1c:f4:9b:a2
  Current address is 90:b1:1c:f4:9b:a2
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR 1.0M
  Wavelength is 25
  SFP receive power reading is 0.0
Interface index is 16866812
Internet address is not set
Mode of IPv4 Address Assignment : not set
MTU 1532 bytes, IP MTU bytes
LineSpeed auto
Flowcontrol rx tx
ARP type: ARPA, ARP Timeout: 240
Last clearing of show "interface" counters :
Queuing strategy : fifo
Input statistics:
  466 packets, 45298 octets
    224 64-byte pkts,1 over 64-byte pkts, 241 over 127-byte pkts
    0 over 255-byte pkts, 0 over 911-byte pkts, 0 over 1023-byte pkts
  466 Multicasts, 0 Broadcasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 465 discarded
Output statistics:
  7804 packets, 938965 octets
    0 64-byte pkts,1396 over 64-byte pkts, 6444 over 127-byte pkts
    0 over 255-byte pkts, 0 over 911-byte pkts, 0 over 1023-byte pkts
    7840 Multicasts, 0 Broadcasts,0 Unicasts
    0 throttles, 0 discarded, 0 Collisions, 0 wreddrops
Rate Info(interval 299 seconds):
  Input 0 Mb/s, 0 packets/sec, 0% of line rate
  Output 0 Mb/s, 1 packets/sec, 0% of line rate
Time since last interface status change : 01:25:29

Verify LAG 1

OS10# show interface port-channel 1
Port-channel 1 is up, line protocol is up
Hardware address is Current address is
Interface index is 85886081
Minimum number of links to bring Port-channel up is 1
Internet address is not set
Mode of IPv4 Address Assignment : not set
Lag MTU is 1500, IP MTU bytes
Linespeed AUTO
Members in this channel ethernet1/1/29 ethernet1/1/30 ethernet1/1/31
ARP type: ARPA, Arp timeout: 240
Last clearing of "show interface" counters:
Queueing strategy: fifo
Input statistics:
1388 packets, 135026 octets
666 64-byte pkts, 1 over 64-byte pkts, 721 over 127-byte pkts
0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
1388 Multicasts, 0 Broadcasts
0 runts, 0 giants, 0 throttles
0 CRC, 0 overrun, 1387 discarded
Output statistics:
212144503 packets, 13577349275 octets
2121421152 64-byte pkts, 4182 over 64-byte pkts, 19169 over 127-byte pkts
0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
23351 Multicasts, 0 Broadcasts, 2121421152 Unicasts
0 throttles, 143426 discarded, 0 Collisions, 0 wreddrops
Rate Info(interval 299 seconds):
Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
Output 0 Mbits/sec, 3 packets/sec, 0% of line rate
Time since last interface status change: 01:24:43

Verify LAG status

OS10# show lacp port-channel

Port-channel 1 admin up, oper up, mode lacp
Actor System ID: Priority 32768, Address 90:b1:1c:f4:9b:8a
Partner System ID: Priority 32768, Address 00:01:e8:8a:fd:9e
Actor Admin Key 1, Oper Key 1, Partner Oper Key 1
LACP LAG ID 1 is an aggregatable link
A - Active LACP, B - Passive LACP, C - Short Timeout, D - Long Timeout
E - Aggregatable Link, F - Individual Link, G - IN_SYNC, H - OUT_OF_SYNC,
I - Collection enabled, J - Collection disabled, K - Distribution enabled,
L - Distribution disabled, M - Partner Defaulted, N - Partner Non-defaulted,
O - Receiver is in expired state, P - Receiver is not in expired state

Port ethernet1/1/29 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State Key 1 Priority 32768
  Oper: State Key 1 Priority 32768
Partner Admin: State Key 0 Priority 0
  Oper: State Key 1 Priority 32768

Port ethernet1/1/30 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State Key 1 Priority 32768
  Oper: State Key 1 Priority 32768
Partner Admin: State Key 0 Priority 0
  Oper: State Key 1 Priority 32768

Port ethernet1/1/31 is Enabled, LACP is enabled and mode is lacp
Actor Admin: State Key 1 Priority 32768
  Oper: State Key 1 Priority 32768
Partner Admin: State Key 0 Priority 0
  Oper: State Key 1 Priority 32768

Verify LAG membership

OS10# show lacp interface ethernet 1/1/29

Interface ethernet1/1/29 is up
  Channel group is 1 port channel is po1
  PDUS sent: 17
  PDUS rcvd: 11
  Marker sent: 0
  Marker rcvd: 0
  Marker response sent: 0
  Marker response rcvd: 0
  Unknown packet sent rcvd: 0
LACP fallback

LACP fallback allows downstream devices, like Servers, connected to ports of a switch configured as LACP to establish a link when the system is not able to finalize the LACP handshake.

For example, when servers boot in PXE mode, the server cannot exchange LACP PDUs and the switch does not enable the ports.

Whenever a PXE server reboots, both the port-channel and ports go down. While rebooting, the ports come up, but not the port-channel. LACP fallback enables the port-channel to be up and keeps sending packets to the PXE server.

When you enable LACP fallback, the switch starts a timer. If the timer expires before LACP completes, then the switch selects one port of the port group and makes it operational.

You can set the timer using the `lacp fallback timeout timer-value` command.

The LACP fallback feature adds a member port to LACP port-channel if it does not receive LACP PDUs from the peer for a particular period of time.

The server uses the fallback port to finalize the PXE-boot process. When the server starts with the OS, the process completes the LACP handshake and the fallback port re-unites the other members. The member port becomes active and sends packets to the PXE server.

When the switch starts receiving LACP PDU, OS10 ungroups the statically added member port from LACP port-channel and resumes with normal LACP functionality.

When you enable LACP fallback, the port that comes up is selected based on the following:

- **LACP port priority configuration** allows deterministic port allocation. The port with the least priority is placed in the active state when a port-channel is in LACP fallback mode.
- If all the ports in a port-channel have same port priority, the switch internally compares the interface names by base name, module number, port number, and then selects the lowest one to be active. For example, Ethernet 1 is less than Ethernet 2 and hence Ethernet 1 becomes active.
- In a VLT network, if the interface name is the same on both the VLT peers, then the port in switch with lower system MAC address becomes active.

**Limitations**
• OS10 switches cannot be a PXE client irrespective of whether it acts as a VLT peer or ToR switch.

• If you are configuring LACP fallback in a VLT domain, configure `lacp fallback` commands in both the VLT peers.

• If you do not enable LACP fallback in one of the VLT peers, or configure different time-out values in the peers, then the switch might behave differently.

• The LACP fallback feature adds or groups a member port to the port channel only when the switch does not receive LACP PDUs from the peer, to make the link connected to the PXE client device as operational. As PXE clients handle untagged DHCP request, you need to configure the LACP fallback only on an untagged VLAN to reach the DHCP/PXE server.

• After the LACP fallback election, if a port with lower priority port is configured to be part of the same port-channel, it would trigger re-election.

## Configure LACP fallback

1. Enable LACP fallback with the `lacp fallback enable` command in port-channel INTERFACE mode.

2. Set a timer for receiving LACP PDUs using `lacp fallback timeout timer-value` in port-channel INTERFACE mode.

3. (Optional) Enable or disable LACP fallback port preemption using `lacp fallback preemption {enable | disable}` in port-channel INTERFACE mode.

### Example configuration

```bash
OS10# configure terminal
OS10(config)# interface port-channel 1
OS10(conf-if-po-1)# lacp fallback enable
OS10(conf-if-po-1)# lacp fallback timeout 20
OS10(conf-if-po-1)# lacp fallback preemption enable
```

### View LACP fallback configuration

```bash
OS10# show port-channel summary

Flags: D - Down I - member up but inactive P - member up and active
 U - Up (port-channel) F - Fallback enabled

Group Port-Channel Type Protocol Member Ports
--
1 port-channel1 (UF) Eth DYNAMIC 1/1/10(P) 1/1/11(I)
```

## LACP fallback in non-VLT network

In a non-VLT network, LACP fallback enables rebooting of ToR or server connected to the switch through normal LACP. The other end of the switch is connected to a DHCP/PXE server, as shown in the following illustration:
In the above scenario, LACP fallback works as follows:

1. The ToR/server boots up.
2. The switch detects the link that is up and checks fallback enabled status. If fallback is enabled, the device waits for the time-out period for any LACP BPDUs. If there are no LACP BPDUs received within the time period, then the LAG enters into fallback mode and adds the first operationally UP port to the port-channel instead of placing it in an inactive state.
3. Now the ToR/server has one port up and active. The active port sends packets to the DHCP/PXE server.
4. After receiving response from the DHCP server, the ToR/server proceeds to boot from the TFTP/NFS server.
5. When the ToR/server is fully loaded with the boot image and configurations, the server starts sending LACP PDUs.
6. When the switch receives LACP PDUs from ToR/server, the device comes out of the fallback mode and activates the LAG through normal LACP process.

**LACP fallback in VLT domain**

In a VLT domain, LACP fallback enables rebooting of ToR or server connected to VLT nodes through VLT port-channel. The other end of the VLT nodes are connected to a DHCP/PXE server, as shown in the following illustration:
In the above scenario, LACP fallback works as follows:

1. The ToR/server boots up.
2. One of the VLT peers takes care of controlling the LACP fallback mode. All events are sent to the controlling VLT peer for deciding the port that should be brought up and then the decision is passed on to peer devices.
3. The controlling VLT peer can decide to bring up one of the ports in either the local port-channel or in the peer VLT port-channel.
4. One of the ports, local or peer, becomes active based on the decision of the controlling VLT peer.
5. Now the ToR/server has one port up and active. The active port sends packets to the DHCP/PXE server.
6. After receiving response from the DHCP server, the ToR/server proceeds to boot from the TFTP/NFS server.
7. When the ToR/server is fully loaded with the boot image and configurations, the server starts sending LACP PDUs.
8. When the switch receives LACP PDUs from ToR/server, the controlling VLT peer makes the LACP port to come out of the fallback mode and to resume the normal functionality.

LACP commands

channel-group

Assigns and configures a physical interface to a port-channel group.

Syntax

channel-group number mode {active | on | passive}

Parameters

- number — Enter the port-channel group number (1 to 128). The maximum number of port-channels is 128. The maximum physical port/maximum NPU is supported.
- mode — Enter the interface port-channel mode.
- active — Enter to enable the LACP interface. The interface is in the Active Negotiating state when the port starts negotiations with other ports by sending LACP packets.
• on — Enter so that the interface is not part of a dynamic LAG but acts as a static LAG member.

• passive — Enter to only enable LACP if it detects a device. The interface is in the Passive Negotiation state when the port responds to the LACP packets that it receives but does not initiate negotiation until it detects a device.

Default: Not configured

Command Mode: INTERFACE

Usage Information: When you delete the last physical interface from a port-channel, the port-channel remains. Configure these attributes on an individual member port. If you configure a member port with an incompatible attribute, OS10 suspends that port in the port-channel. The member ports in a port-channel must have the same setting for link speed capability and duplex capability. The no version of this command removes the interface from the port-channel.

Example:

```
OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# channel-group 10 mode active
OS10(conf-if-eth1/1/10)# exit
OS10(config)# interface ethernet 1/1/11
OS10(conf-if-eth1/1/11)# channel-group 10 mode active
```

Supported Releases: 10.2.0E or later

**clear lacp counters**

Clears the statistics for all interfaces for LACP groups.

Syntax:

```
clear lacp counters [interface port-channel channel-number]
```

Parameters:

- interface port-channel — (Optional) Enter the interface port-channel number.
- channel-number — (Optional) Enter the LACP port-channel number (1 to 128).

Default: Not configured

Command Mode: EXEC

Usage Information: If you use this command for a static port-channel group without enabling the aggregation protocol, the device ignores the command. If you do not enter a port-channel number, the LACP counters for all LACP port groups clear.

Example:

```
OS10# clear lacp counters
```

Example (Port-Channel):

```
OS10# clear lacp counters interface port-channel 20
```

Supported Releases: 10.2.0E or later

**lacp fallback enable**

Enables LACP fallback mode.

Syntax:

```
lacp fallback enable
```

Parameters: None

Default: Disabled

Command Mode: Port-channel INTERFACE
Usage Information

The no version of this command disables LACP fallback mode.

Example

OS10# configure terminal
OS10(config)# interface port-channel 1
OS10(conf-if-po-1)# lacp fallback enable

Supported Releases

10.3.2E(R3) or later

lACP fallback preemption

Enables or disables LACP fallback port preemption.

Syntax

lacp fallback preemption {enable | disable}

Parameters

- enable—Enables preemption on the port-channel.
- disable—Disables preemption on the port-channel.

Default

Enabled

Command Mode

Port-channel INTERFACE

Usage Information

When you enable preemption, the fallback port election preempts the already elected fallback port and elects a new fallback port.

The new port is elected based on the following events:

- When a non-fallback port configured with low priority.
- When a low-priority port becomes operationally UP.
- When a port with the least numbering is operationally UP.
- A port with the lowest priority is elected as fallback port, if non-default LACP port priority is configured on a port even though preemption is disabled.

The lacp fallback preemption disable command is not applicable on port priority events that you have configured or triggered.

Example

OS10# configure terminal
OS10(config)# interface port-channel 1
OS10(conf-if-po-1)# lacp fallback preemption enable

OS10# configure terminal
OS10(config)# interface port-channel 1
OS10(conf-if-po-1)# lacp fallback preemption disable

Supported Releases

10.4.1.0 or later

lACP fallback timeout

Configures LACP fallback time out period.

Syntax

lacp fallback timeout timer-value

Parameters

timer-value—Enter the timer values in seconds, ranging from 0 to 100 seconds.

Default

15 seconds

Command Mode

Port-channel INTERFACE

Usage Information

The no version of this command returns the timer to default value.
Example

OS10# configure terminal
OS10(config)# interface port-channel 1
OS10(conf-if-po-1)# lacp fallback timeout 20

Supported Releases 10.3.2E(R3) or later

**lacp max-bundle**

Configures the maximum number of active members allowed in a port-channel.

**Syntax**

```plaintext
lacp max-bundle max-bundle-number
```

**Parameters**

- `max-bundle-number` — Enter the maximum bundle size (1 to 32).

**Default**

32

**Command Mode** INTERFACE

**Usage Information**

The no version of this command resets the maximum bundle size to the default value.

**Example**

OS10(conf-if-po-10)# lacp max-bundle 10

Supported Releases 10.2.0E or later

**lacp port-priority**

Sets the priority for the physical interfaces for LACP.

**Syntax**

```plaintext
lacp port-priority priority
```

**Parameters**

- `priority` — Enter the priority for the physical interfaces (0 to 65535).

**Default**

32768

**Command Mode** INTERFACE

**Usage Information**

LACP uses the port priority with the port number to create the port identifier. The port priority decides which ports are put into Standby mode when there is a hardware limitation that prevents all compatible ports from aggregating, or when you have more than eight ports configured for the channel group. When setting the priority, a higher number means a lower priority. The no version of this command returns the port priority to the default value.

**Example**

OS10(conf-range-eth1/1/7-1/1/8)# lacp port-priority 32768

Supported Releases 10.2.0E or later

**lacp rate**

Sets the rate at which LACP sends control packets.

**Syntax**

```plaintext
lacp rate {fast | normal}
```

**Parameters**

- `fast` — Enter the fast rate of 1 second.
- `normal` — Enter the default rate of 30 seconds.

**Default**

30 seconds
**Command Mode**: INTERFACE

**Usage Information**: Change the LACP timer rate to modify the duration of the LACP timeout. The `no` version of this command resets the rate to the default value.

**Example**: OS10(conf-range-eth1/1/7-1/1/8)# lacp rate fast

**Supported Releases**: 10.2.0E or later

---

**lacp system-priority**

Sets the system priority of the device for LACP.

**Parameters**
- `priority` — Enter the priority value for physical interfaces (0 to 65535).

**Default**: 32768

**Command Mode**: CONFIGURATION

**Usage Information**: Each device that runs LACP has an LACP system priority value. LACP uses the system priority with the MAC address to form the system ID and also during negotiation with other systems. The system ID is unique for each device. The `no` version of this command resets the system priority to the default value.

**Example**: OS10(config)# lacp system-priority 32768

**Supported Releases**: 10.2.0E or later

---

**show lacp counter**

Displays information about LACP statistics.

**Syntax**: `show lacp counter [interface port-channel channel-number]`

**Parameters**
- `interface port-channel` — (Optional) Enter the interface port-channel.
- `channel-number` — (Optional) Enter the LACP channel group number (1 to 128).

**Default**: Not configured

**Command Mode**: EXEC

**Usage Information**: All channel groups display if you do not enter the `channel-number` parameter.

**Example**: OS10# show lacp counter interface port-channel 1

<table>
<thead>
<tr>
<th>LACPDU</th>
<th>Marker</th>
<th>Marker</th>
<th>LACPDU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sent</td>
<td>Recv</td>
<td>Sent</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>port-channel1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet1/1</td>
<td>554</td>
<td>536</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/2</td>
<td>527</td>
<td>514</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/3</td>
<td>535</td>
<td>520</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/4</td>
<td>515</td>
<td>502</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/5</td>
<td>518</td>
<td>505</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/6</td>
<td>540</td>
<td>529</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/7</td>
<td>541</td>
<td>530</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/8</td>
<td>547</td>
<td>532</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/9</td>
<td>544</td>
<td>532</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/10</td>
<td>513</td>
<td>501</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/11</td>
<td>497</td>
<td>485</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet1/12</td>
<td>493</td>
<td>486</td>
<td>0</td>
</tr>
</tbody>
</table>
**show lacp interface**

Displays information about specific LACP interfaces.

**Syntax**

```
show lacp interface ethernet node/slot/port
```

**Parameters**

- `node/slot/port` — Enter the interface information.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

The `LACP_activity` field displays if you configure the link in Active or Passive port-channel mode. The `Port Identifier` field displays the port priority as part of the information including the port number. For example, `Port Identifier=0x8000,0x101`, where the port priority value is `0x8000` and the port number value is `0x101`.

**Example**

```
OS10# show lacp interface ethernet 1/1/129
Invalid Port id, Max. Port Id is: 32
OS10# show lacp interface ethernet 1/1/29
Interface ethernet1/1/29 is up
 Channel group is 1 port-channel is po1
 PDUS sent: 365
 PDUS rcvd: 17
 Marker sent: 0
 Marker rcvd: 0
 Marker response sent: 0
 Marker response rcvd: 0
 Unknown packets rcvd: 0
 Illegal packets rcvd: 0
 Local Port: ethernet1/1/29 MAC Address=90:b1:1c:f4:9b:8a
 System Identifier=32768,32768
 Port Identifier=32768,32768
 Operational key=1
 LACP_Activity=passive
 LACP_Timeout=Long Timeout(30s)
 Synchronization=IN_SYNC
 Collecting=true
 Distributing=true
 Partner information refresh timeout=Long Timeout(90s)
 Partner Admin State=BCEGIKNP
 Partner Oper State=BDEGIKNO
 Neighbor: 178
 MAC Address=00:00:00:00:00:00
 System Identifier=00:00:00:00:00:00
 Port Identifier=00:01:e8:8a:fd:9e
 Operational key=1
 LACP_Activity=passive
 LACP_Timeout=Long Timeout(30s)
 Synchronization=IN_SYNC
 Collecting=true
 Distributing=true
 Partner Admin State=BCEGIKNP
 Partner Oper State=BDEGIKNO
```

**Supported Releases**

10.2.0E or later
show lacp neighbor

Displays information about LACP neighbors.

Syntax

show lacp neighbor [interface port-channel channel-number]

Parameters

- interface port-channel — (Optional) Enter the interface port-channel.
- channel-number — (Optional) Enter the port-channel number for the LACP neighbor (1 to 128).

Default

Not configured

Command Mode

EXEC

Usage Information

All channel groups display if you do not enter the channel-number parameter.

Example

OS10# show lacp neighbor interface port-channel 1

Flags:S-Device is sending Slow LACPDUs F-Device is sending Fast LACPDUs
A-Device is in Active mode P-Device is in Passive mode
Port-channel port-channel1 neighbors
Port: ethernet1/1/29
Partner System Priority: 32768
Partner System ID: 00:01:e8:8a:fd:9e
Partner Port: 178
Partner Port Priority: 32768
Partner Oper Key: 1
Partner Oper State: aggregation synchronization collecting distributing
defaulted expired

Supported Releases

10.2.0E or later

show lacp port-channel

Displays information about LACP port-channels.

Syntax

show lacp port-channel [interface port-channel channel-number]

Parameters

- interface port-channel — (Optional) Enter the interface port-channel.
- channel-number — (Optional) Enter the port-channel number for the LACP neighbor (1 to 128).

Default

Not configured

Command Mode

EXEC

Usage Information

All channel groups display if you do not enter the channel-number parameter.

Example

OS10# show lacp port-channel 1

Port-channel 1 admin up, oper up, mode lacp
Actor System ID: Priority 32768, Address 90:b1:1c:f4:9b:8a
Partner System ID: Priority 32768, Address 00:01:e8:8a:fd:9e
Actor Admin Key 1, Oper Key 1, Partner Oper Key 1
LACP LAG ID 1 is an aggregatable link
A-Active LACP, B-Passive LACP, C-Short Timeout, D-Long Timeout
E-Aggregatable Link, F-Individual Link, G-IN_SYNC, H-OUT_OF_SYNC,
I-Collection enabled, J-Collection disabled, K-Distribution enabled,
L-Distribution disabled, M-Partner Defaulted, N-Partner Non-defaulted,
O-Receiver is in expired state, P-Receiver is not in expired state
Port ethernet1/1/29 is Enabled, LACP is enabled and mode is lacp
show lACP system-identifier

Displays the LACP system identifier for a device.

Syntax
show lACP system-identifier

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
The LACP system ID is a combination of the configurable LACP system priority value and the MAC address. Each system that runs LACP has an LACP system priority value. The default value is 32768 or configure a value between 1 and 65535. LACP uses the system priority with the MAC address to form the system ID and uses the system priority during negotiation with other devices. A higher system priority value means a lower priority. The system ID is different for each device.

Example
OS10# show lACP system-identifier
Actor System ID: Priority 32768, Address 90:b1:1c:f4:9b:8a

Supported Releases
10.2.0E or later

Link Layer Discovery Protocol

Link layer discovery protocol (LLDP) enables a local area network (LAN) device to advertise its system and receive system information from adjacent LAN devices.

- LLDP is enabled by default on OS10 interfaces.
- An LLDP-enabled interface supports up to eight neighbors. An OS10 switch supports a maximum of 250 neighbors per system.
- OS10 devices receive and periodically transmit Link Layer Discovery Protocol Data Units (LLDPDUs), which are data packets. The default transmission interval is 30 seconds.
- LLDPDU information received from a neighbor expires after the default time to live (TTL) value of 120 seconds.
- Spanning-tree blocked ports allow LLDPDUs.
- 802.1X-controlled ports do not allow LLDPDUs until the connected device is authenticated.
- Link layer discovery protocol-media endpoint discovery (LLDP-MED) is enabled on all interfaces by default.

Protocol data units

LLDP devices exchange system information represented as type, length, and value (TLV) segments:

- **Type**: Information included in the TLV.
- **Length**: Value in bytes of the TLV after the Length field.
- **Value**: System information the agent advertises.
LAN devices transmit LLDPDUs, which encapsulate TLVs, to neighboring LAN devices. LLDP is a one-way protocol and LAN devices (LLDP agents) transmit and/or receive advertisements but they cannot solicit and do not respond to advertisements.

There are three mandatory TLVs followed by zero or more optional TLVs and the end of the LLDPDU TLV. The three mandatory TLVs must be located at the beginning of the LLDPDU in the following order:

- Chassis ID TLV
- Port ID TLV
- Time-to-live TLV

0 — End of LLDPDU

1 — Chassis ID

Identifies the LAN agent.

2 — Port ID

Identifies a port through which the LAN device transmits LLDPDUs.

3 — Time-to-live

Number of seconds that the recipient LLDP agent considers the information associated with this MAP identifier to be valid.

Optional TLVs

OS10 supports basic TLVs, IEEE 802.1, and 802.3 organizationally-specific TLVs, and TIA-1057 organizationally-specific TLVs. A basic TLV is an optional TLV sub-type. This kind of TLV contains essential management information about the sender.

A professional organization or vendor defines organizationally-specific TLVs. They have two mandatory fields, in addition to the basic TLV fields.
Organizationally-specific TLVs

There are eight TLV types defined by the 802.1 and 802.3 working groups as a basic part of LLDP. Configure OS10 to advertise any or all of these TLVs.

Optional TLVs

4 — Port description
User-defined alphanumeric string that describes the port.

5 — System name
User-defined alphanumeric string that identifies the system.

6 — System description
Detailed description of all components of the system.

7 — System capabilities
Determines the capabilities of the system.

8 — Management address
Network address of the management interface.

802.1X Organizationally-specific TLVs

127 — Link aggregation
Indicates whether the link associated with the port on which the LLDPDU is transmitted is aggregated. Also indicates whether the link is currently aggregated and provides the aggregated port identifier if the link is aggregated.

127 — Port-VLAN ID
Untagged VLAN to which a port belongs.

127 — Protocol identity
Not supported.

802.3 Organizationally-specific TLVs

127 — MAC/PHY configuration/status
Indicates duplex and bit rate capability and the current duplex and bit rate settings of the sending device. Also indicates whether the current settings are due to auto-negotiation or manual configuration.

127 — Power via MDI
Not supported.

127 — Maximum frame size
Maximum frame size capability of the MAC and PHY.
iDRAC Organizationally-specific TLVs

These are the sub-types used in iDRAC custom TLVs.

1 — Originator  Indicates the iDRAC string that is used as originator. This string enables external switches to easily identify iDRAC LLDP PDUs.

2 — Port type  Following are the applicable port types:

   • 1 — iDRAC Port (dedicated).
   • 2 — NIC Port.
   • 3 — iDRAC and NIC Port (shared).

3 — Port FQDD  Port number that uniquely identifies a NIC port within a server.

4 — Server service tag  Service tag ID of the server.

5 — Server model name  Model name of the server. For example, PowerEdge FC640.

6 — Server slot number  Slot number of the server. For example, 1, 2, 3, 1a, 1b, and so on. The slot number is applicable to blade servers only.

7 — Chassis service tag  Service tag ID of the chassis. (Applicable only to blade servers.)

8 — Chassis model  Model name of the chassis. (Applicable only to blade servers.)

9 — IOM service tag  Service tag ID of the IOM device. (Applicable only to blade servers.)

10 — IOM model name  Model name of the IOM device. (Applicable only to blade servers.)

11 — IOM slot label  Slot label of the IOM device. For example, A!, B!, A2, B2, and so on. (Applicable only to blade servers.)

12 — IOM port number  Port number of the NIC. For example, 1, 2, 3, and so on.

Isilon related TLVs

These are the sub-types used in LLDP custom TLVs that are transacted by the TLV nodes.

1 — Originator  Indicates the Isilon string that is used as originator. This string enables the OS10 switches to easily identify the Isilon originated LLDP PDUs.

2 — RA Prefix  Indicates the IPv6 address prefix for SLAAC. This prefix is also used by Isilon nodes to communicate with the master and the OS10 switch to compute the Virtual IP address for the specific fabric instance. The RA prefix is different for each fabric.

3 — Fabric ID  Indicates the ID of the fabric the LLDP PDU is originating from.

These are the sub-types used in LLDP custom TLVs that are transacted by the OS10 switches.

1 — Originator  Indicates the OS10 string that is used as originator. The string enables the OS10 switches to easily identify LLDP PDUs.
Following are the applicable roles:

- LEAF
- SPINE
- UNKNOWN

Indicates the IPv6 address of the originator.

Virtual IP address of the master node. The Isilon nodes can also use this IPv6 address when needed.

MAC address used by the OS10 switches for ND.

**Media endpoint discovery**

LLDP-MED provides additional organizationally-specific TLVs to allow endpoint devices and network-connectivity devices to advertise their characteristics and configuration information.

LLDP-MED devices are located at the IEEE 802 LAN network edge and participate in IP communication service using the LLDP-MED framework, such as IP phones and conference bridges. LLDP-MED network connectivity devices provide access to the IEEE 802-based LAN infrastructure for LLDP-MED endpoint devices, such as IP phones. An OS10 device acts as an LLDP-MED network connectivity device.

LLDP-MED provides network connectivity devices to:

- Manage inventory
- Manage power over ethernet (PoE)
- Identify physical location
- Identify network policy

**NOTE:** Only the Rx function is supported for managing PoE and identifying the physical location. LLDP-MED is designed for but not limited to VoIP endpoints.

**Network connectivity device**

OS10 acts as an LLDP-MED network-connectivity device (Type 4). Network connectivity devices transmit an LLDP-MED capability TLV to endpoint devices and stores information that endpoint devices advertise.

127/1 — LLDP-MED capabilities

- If the transmitting device supports LLDP-MED
- What LLDP-MED TLVs are supported
- LLDP device class

127/2 — Network policy

Application type, VLAN ID, L2 priority, and DSCP value.

127/3 — Local identification

Physical location of the device expressed in one of three formats:

- Coordinate-based LCI
- Civic address LCI
Emergency call services ELIN

127/4 — Extended power-via-MDI

Power requirements, priority, and power status.

**LLDP-MED capabilities TLV**

The LLDP-MED capabilities TLV communicates the types of TLVs that the endpoint device and network-connectivity device support. The value of the LLDP-MED capabilities field in the TLV is a 2-octet bitmap. Each bit represents an LLDP-MED capability.

LLDP-MED is enabled by default on an interface. If you disable LLDP-MED, use the `lldp med enable` command to re-enable it on an interface. The device transmits MED PDUs only when it receives a TLV from a peer. The device does not otherwise send PDUs — even if you enable MED on an interface.

**LLDP-MED capabilities**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LLDP-MED capabilities</td>
</tr>
<tr>
<td>1</td>
<td>Network policy</td>
</tr>
<tr>
<td>2</td>
<td>Location ID</td>
</tr>
<tr>
<td>3</td>
<td>Extended power via MDI-PSE</td>
</tr>
<tr>
<td>4</td>
<td>Extended power via MDI-PD</td>
</tr>
<tr>
<td>5</td>
<td>Inventory</td>
</tr>
<tr>
<td>6-15</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

**LLDP-MED device types**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Type not defined</td>
</tr>
<tr>
<td>1</td>
<td>Endpoint class 1</td>
</tr>
<tr>
<td>2</td>
<td>Endpoint class 2</td>
</tr>
<tr>
<td>3</td>
<td>Endpoint class 3</td>
</tr>
<tr>
<td>4</td>
<td>Network connectivity</td>
</tr>
<tr>
<td>5-255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

**Network policies TLVs**

A network policy in the context of LLDP-MED is a device’s VLAN configuration and associated L2 and L3 configurations.
LLDP-MED network policies TLV include:

- VLAN ID
- VLAN tagged or untagged status
- L2 priority
- DSCP value

An integer represents the application type the Type integer shown in the following table, which indicates a device function where a unique network policy is defined. An individual LLDP-MED network policy TLV generates for each application type that you use with OS10 commands, see Advertise LLDP-MED TLVs.

**NOTE:** Signaling is a series of control packets that exchange between an endpoint device and a network-connectivity device to establish and maintain a connection. These signal packets might require a different network policy than the media packets where a connection is made. In this case, configure the signaling application.

0 — Reserved
1 — Voice
   Used for dedicated IP telephony handsets and other appliances supporting interactive voice services.
2 — Voice signaling
   Used only if voice control packets use a separate network policy than voice data.
3 — Guest voice
   Used only for a separate limited voice service for guest users with their own IP telephony handsets and other appliances supporting interactive voice services.
4 — Guest voice signaling
   Used only if guest voice control packets use a separate network policy than voice data.
5 — SoftPhone voice
   Used for softphone application on a device such as a PC or laptop. This class does not support multiple VLANs and if required, uses an untagged VLAN or a single tagged data-specific VLAN.
6 — Video conferencing
   Used only for dedicated video conferencing and similar appliances supporting real-time interactive video.
7 — Streaming video
   Used for broadcast- or multicast-based video content distribution and similar applications supporting streaming video services that require specific network policy treatment.
8 — Video signaling
   Used only if video control packets use a separate network policy than the video data.
9-255 — Reserved

Define network policies

You can manually define LLDP-MED network policies. LLDP commands that you configure in CONFIGURATION mode are global and affect all interfaces. LLDP commands you configure in INTERFACE mode affect only the specific interface.

Create a maximum of 32 network policies and attach the LLDP-MED network policies to a port in CONFIGURATION mode.

- Define the LLDP-MED network policy in CONFIGURATION mode.
  
  ```
 lldp-med network-policy number app {voice | voice-signaling | guest-voice | guest-voice-signaling | softphone-voice | streaming-video | video-conferencing | video-signaling}{vlan vlan-id vlan-type {tag | untag} priority priority dscp dscp value}
  ```
Configure LLDP-MED network policy for voice applications

OS10(config)# lldp med network-policy 10
OS10(config)# lldp med network-policy 10 app
OS10(config)# lldp med network-policy 10 app voice
OS10(config)# lldp med network-policy 1 app voice vlan 10 vlan-type tag
OS10(config)# lldp med network-policy 1 app voice-signaling vlan 10 vlan-type tag priority 2 dscp 1

Packet timer values

LLDPDUs transmit periodically. You can configure LLDP packet timer values for LLPDU transmission.

1. Configure the LLDP packet timer value in CONFIGURATION mode.
   lldp timer

2. Enter the multiplier value for the hold time in CONFIGURATION mode.
   lldp holdtime-multiplier

3. Enter the delay in seconds for LLDP initialization on any interface in CONFIGURATION mode.
   lldp reinit

Configure LLDPDU timer

OS10(config)# lldp timer 60
OS10(config)# do show lldp timers
LLDP Timers:
Holdtime in seconds: 120
Reinit-time in seconds: 2
Transmit interval in seconds: 60

Configure LLDPDU intervals

OS10(config)# lldp holdtime-multiplier 2
OS10(config)# do show lldp timers
LLDP Timers:
Holdtime in seconds: 60
Reinit-time in seconds: 2
Transmit interval in seconds: 30

Disable and re-enable LLDP

By default, LLDP is enabled for each interface and globally. You can disable LLDP on an interface or globally. If you disable LLDP globally, LLDP is disabled on all interfaces irrespective of whether LLDP is previously enabled or disabled on an interface. When you enable LLDP globally, the LLDP configuration in interface mode takes precedence over the global LLDP configuration.

1. Disable LLDPDU transmit or receive in INTERFACE mode.
   no lldp transmit
   no lldp receive

2. Disable LLDP holdtime multiplier value in CONFIGURATION mode.
   no lldp holdtime-multiplier

3. Disable LLDP initialization in CONFIGURATION mode.
   no lldp reinit

4. Disable LLDP MED in CONFIGURATION or INTERFACE mode.
   no lldp med

5. Disable LLDP TLV in INTERFACE mode.
   no lldp tlv-select
Disable LLDP globally in CONFIGURATION mode.

```
no lldp enable
```

### Disable LLDP

```
OS10(config)# no lldp timer 100
OS10(config)# no lldp holdtime-multiplier 10
OS10(config)# no lldp reinit 8
```

### Disable LLDP interface

```
OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# no lldp med
OS10(conf-if-eth1/1/4)# no lldp tlv-select
OS10(conf-if-eth1/1/4)# no lldp transmit
OS10(conf-if-eth1/1/4)# no lldp receive
```

### Enable LLDP

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# lldp transmit
OS10(conf-if-eth1/1/1)# lldp receive
```

### Disable LLDP globally

```
OS10(config)# no lldp enable
```

---

**Disable and re-enable LLDP on management ports**

By default, LLDP is enabled on management ports. You can disable or enable the following LLDP configurations on management ports.

1. Disable the LLDPDU transmit or receive.
   ```
 no lldp transmit
 no lldp receive
   ```

2. Disable LLDP TLVs.
   ```
 no lldp tlv-select basic-tlv {port-description | system-name | system-description | system-capabilities | management-address}
 no lldp tlv-select dot1tlv port-vlan-id
   ```

### Disable LLDP transmit or receive

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# no lldp transmit
OS10(conf-if-ma-1/1/1)# no lldp receive
```

### Enable LLDP transmit or receive

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# lldp transmit
OS10(conf-if-ma-1/1/1)# lldp receive
```

### Disable LLDP TLVs

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# no lldp tlv-select basic-tlv system-name system-description
OS10(conf-if-ma-1/1/1)# no lldp tlv-select dot1tlv port-vlan-id
```

### Enable LLDP TLVs

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# lldp tlv-select basic-tlv system-name system-description
OS10(conf-if-ma-1/1/1)# lldp tlv-select dot1tlv port-vlan-id
```
# Advertise TLVs

Configure the system to advertise TLVs from all interfaces or specific interfaces. If you configure an interface, only the interface sends LLDPDUs with the specified TLVs.

1. Enable basic TLVs attributes to transmit and receive LLDP packets in INTERFACE mode.
   ```shell
 lldp tlv-select basic-tlv {port-description | system-name | system-description | system-capabilities | management-address}
   ```

2. Enable dot3 TLVs to transmit and receive LLDP packets in INTERFACE mode.
   ```shell
 lldp tlv-select dot3tlv {macphy-config | max-framesize}
   ```

3. Enable dot1 TLVs to transmit and receive LLDP packets in INTERFACE mode.
   ```shell
 lldp tlv-select dot1tlv {port-vlan-id | link-aggregation}
   ```

**Configure advertise TLVs**

```shell
OS10(conf-if-eth1/1/3)# lldp tlv-select basic-tlv system-name
OS10(conf-if-eth1/1/1)# lldp tlv-select dot3tlv macphy-config max-framesize
OS10(conf-if-eth1/1/3)# lldp tlv-select dot1tlv link-aggregation
```

## Network policy advertisement

LLDP-MED is enabled on all interfaces by default. Configure OS10 to advertise LLDP-MED TLVs from configured interfaces. Define LLDP-MED network policies before applying the policies to an interface. Attach only one network policy per interface.

- Define an LLDP-MED network-policy on an interface in **CONFIGURATION** mode.
  ```shell
 lldp-med network-policy {add | remove} number
  ```

  - add — Attach the network policy to an interface.
  - remove — Remove the network policy from an interface.
  - number — Enter a network policy index number, from 1 to 32.
Configure advertise LLDP-MED network policies
OS10(conf-if-eth1/1/5)# lldp-med network-policy add 1

Fast start repeat count

Fast start repeat count enables a network-connectivity device to advertise itself at a faster rate for a limited amount of time. The fast start timer starts when a network-connectivity device receives the first LLDP frame from a newly detected endpoint.

When an LLDP-MED endpoint is newly detected or connected to the network, the `lldp-med fast-start-repeat-count` command enables the network to quickly detect the endpoint. The LLDP-MED fast start repeat count specifies the number of LLDP packets that send during the LLDP-MED fast start period. By default, the device sends three packets per interval. Change the number of packets a device sends per second a maximum of 10.

Rapid availability is crucial for applications such as emergency call service location (E911).

- Enable fast start repeat count which is the number of packets sent during activation in CONFIGURATION mode, from 1 to 10, default 3.
  `lldp-med fast-start-repeat-count number`

Configure fast start repeat count
OS10(config)# lldp med fast-start-repeat-count 5

View LLDP configuration

- View the LLDP configuration in EXEC mode.
  `show running-configuration`
- View LLDP error messages in EXEC mode.
  `show lldp errors`
- View LLDP timers in EXEC mode.
  `show lldp timers`
- View the LLDP traffic in EXEC mode.
  `show lldp traffic`

View running configuration
OS10# show running-configuration

View LLDP errors
OS10# show lldp errors
Total Memory Allocation Failures : 0
Total Input Queue Overflows : 0
Total Table Overflows : 0

View LLDP timers
OS10# show lldp timers
LLDP Timers:
  Holdtime in seconds: 120
  Reinit-time in seconds: 2
  Transmit interval in seconds: 30

View LLDP global traffic
OS10# show lldp traffic
LLDP traffic statistics:
  Total Frames Out : 0
  Total Entries Aged : 0
View LLDP interface traffic

OS10# show lldp traffic interface ethernet 1/1/1
LLDP Traffic Statistics:
Total Frames Out : 0
Total Entries Aged : 0
Total Frames In : 0
Total Frames Received In Error : 0
Total Frames Discarded : 0
Total TLVS Unrecognized : 0
Total TLVs Discarded : 0
LLDP MED Traffic Statistics:
Total Med Frames Out : 0
Total Med Frames In : 0
Total Med Frames Discarded : 0
Total Med TLVS Discarded : 0
Total Med Capability TLVS Discarded : 0
Total Med Policy TLVS Discarded : 0
Total Med Inventory TLVS Discarded : 0

Adjacent agent advertisements

- View brief information about adjacent devices in EXEC mode.
  show lldp neighbors
- View all information that neighbors are advertising in EXEC mode.
  show lldp neighbors detail
- View all interface-specific information that neighbors are advertising in EXEC mode.
  show lldp neighbors interface ethernet node/slot/port[:subport]

View LLDP neighbors

OS10# show lldp neighbors
Loc PortID Rem Host Name Rem Port Id Rem Chassis Id
-------------------------------------------------------------
ethernet1/1/2 Not Advertised fortyGigE 0/56 00:01:e8:8a:fd:35
ethernet1/1/20:1 Not Advertised GigabitEthernet 1/0 00:01:e8:05:db:05

View LLDP neighbors detail

OS10# show lldp neighbors interface ethernet 1/1/1 detail
Remote Chassis ID Subtype: Mac address (4)
Remote Chassis ID: 00:13:21:57:ca:40
Remote Port Subtype: Interface name (5)
Remote Port ID: ethernet1/1/1
Remote Port Description: Ethernet port 1
Local Port ID: ethernet1/1/1
Locally assigned remote Neighbor Index: 3
Remote TTL: 120
Information valid for next 105 seconds
Time since last information change of this neighbor: 00:00:15
Remote System Name: LLDP-pkt-gen
Remote Management Address (IPv4): 10.1.1.1
Remote System Desc: LLDP packet generator using scapy
Existing System Capabilities: Repeater, Bridge, Router
Enabled System Capabilities: Repeater, Bridge, Router
Remote Max Frame Size: 0
Remote Aggregation Status: false
MAC PHY Configuration:
- Auto-neg supported: 1
- Auto-neg enabled: 1
- Auto-neg advertised capabilities:
  - 10BASE-T half duplex mode,
  - 10BASE-T full duplex mode,
  - 100BASE-TX half duplex mode,
  - 100BASE-TX full duplex mode

MED Capabilities:
- Supported:
  - LLDP-MED Capabilities,
  - Network Policy,
  - Location Identification,
  - Extended Power via MDI - PSE,
  - Extended Power via MDI - PD,
  - Inventory Management
- Current:
  - LLDP-MED Capabilities,
  - Network Policy,
  - Location Identification,
  - Extended Power via MDI - PD,
  - Inventory Management

Device Class: Endpoint Class 3

Network Policy:
- Application: voice, Tag: Tagged, Vlan: 50, L2 Priority: 6, DSCP Value: 46

Inventory Management:
- H/W Revision : 12.1.1
- F/W Revision : 10.1.9750B
- S/W Revision : 10.1.9750B
- Serial Number : B11G152
- Manufacturer : Dell
- Model : S6010-ON
- Asset ID : E1001

Power-via-MDI:
- Power Type: PD Device
- Power Source: Local and PSE
- Power Priority: Low
- Power required: 6.5

Location Identification:
- Civic-based:
- ECS-ELIN:

View LLDP neighbors interface

OS10# show lldp neighbors interface ethernet 1/1/1
Loc PortID          Rem Host Name       Rem Port Id      Rem Chassis Id
-----------------------------------------------------------------------
ethernet1/1/1       OS10                ethernet1/1/2  4:17:eb:f7:06:6c

Time to live

The information received from a neighbor expires after a specific amount of time (in seconds) called TTL. The TTL is the LLDPDU transmit interval (hello) and an integer is called a multiplier. For example, LLDPDU transmit interval (30) times the multiplier (4), (30 x 4 = 120). The default multiplier is 4, with a default TTL of 120 seconds.

1. Adjust the TTL value in CONFIGURATION mode.
   lldp holdtime-multiplier
2. Return to the default multiplier value in CONFIGURATION mode.
   no lldp holdtime-multiplier
Configure TTL

OS10(config)# lldp holdtime-multiplier 2

Return multiplier value

OS10(config)# no lldp holdtime-multiplier

LLDP commands

clear lldp counters

Clears LLDP and LLDP-MED transmit, receive, and discard statistics from all physical interfaces.

Syntax: clear lldp counters

Parameters: None

Default: Not configured

Command Mode: EXEC

Usage Information: The counter default value resets to zero for all physical interfaces.

Example: OS10# clear lldp counters

Supported Releases: 10.2.0E or later

clear lldp table

Clears LLDP neighbor information for all interfaces.

Syntax: clear lldp table

Parameters: None

Default: Not configured

Command Mode: EXEC

Usage Information: Neighbor information clears on all interfaces.

Example: OS10# clear lldp table

Supported Releases: 10.2.0E or later

lldp enable

Enables or disables LLDP globally.

Syntax: lldp enable

Parameters: None

Default: Enabled

Command Mode: CONFIGURATION
This command enables LLDP globally for all Ethernet PHY interfaces, except on those interfaces where you manually disable LLDP. The no version of this command disables LLDP globally irrespective of whether you manually disable LLDP on an interface.

Example

```
OS10(config)# lldp enable
```

Supported Releases 10.3.1E or later

**lldp holdtime-multiplier**

Configures the multiplier value for the hold time in seconds.

**Syntax**

```
lldp holdtime-multiplier integer
```

**Parameters**

- `integer`: Enter the holdtime-multiplier value in seconds, from 2 to 10.

**Default**

4 seconds

**Command Mode** CONFIGURATION

**Usage Information**

Hold time is the amount of time in seconds that a receiving system waits to hold the information before discarding it. Formula: Hold Time = (Updated Frequency Interval) X (Hold Time Multiplier). The no version of this command resets the value to the default.

Example

```
OS10(config)# lldp holdtime-multiplier 2
```

Supported Releases 10.2.0E or later

**lldp med fast-start-repeat-count**

Configures the number of packets sent during the activation of the fast start mechanism.

**Syntax**

```
lldp-med fast-start-repeat-count number
```

**Parameters**

- `number`: Enter the number of packets sent during the activation of the fast start mechanism, from 1 to 10.

**Default**

3

**Command Mode** CONFIGURATION

**Usage Information** None

Example

```
OS10(config)# lldp med fast-start-repeat-count 5
```

Supported Releases 10.2.0E or later

**lldp med**

Enables or disables LLDP-MED on an interface.

**Syntax**

```
lldp med {enable | disable}
```

**Parameters**

- `enable`: Enable LLDP-MED on the interface.
- `disable`: Disable LLDP-MED on the interface.

**Default**

Enabled with network-policy TLV
Command Mode

INTERFACE

Usage Information
LLDP-MED communicates the types of TLVs that the endpoint device and network-connectivity device support. Use the no lldp med or lldp med disable command to disable LLDP-MED on a specific interface.

Example
OS10(conf-if-eth1/1/1)# lldp med disable

Supported Releases
10.2.0E or later

lldp med network-policy

Manually defines an LLDP-MED network policy.

Syntax
lldp-med network-policy number app {voice | voice-signaling | guest-voice | guestvoice-signaling | softphone-voice | streaming-video | video-conferencing | video-signaling} {vlan vlan-id vlan-type {tag | untag} priority priority dscp dscp value}

Parameters
- number — Enter a network policy index number, from 1 to 32.
- app — Enter the type of applications available for the network policy:
  - voice — Voice network-policy application.
  - guest-voice — Guest voice network-policy application.
  - guestvoice-signaling — Guest voice signaling network policy application.
  - softphone-voice — SoftPhone voice network-policy application.
  - streaming-video — Streaming video network-policy application.
  - video-conferencing — Voice conference network-policy application.
  - video-signaling — Video signaling network-policy application.
- vlan vlan-id — Enter the VLAN number for the selected application, from 1 to 4093.
- vlan-type — Enter the type of VLAN the application uses.
- tag — Enter a tagged VLAN number.
- untag — Enter an untagged VLAN number.
- priority priority — Enter the user priority set for the application.
- dscp dscp value — Enter the DSCP value set for the application.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
You can create a maximum of 32 network policies and attach the LLDP-MED network policies to a port.

Example
OS10(config)# lldp med network-policy 10 app voice vlan 10 vlan-type tag priority 2 dscp 1

Supported Releases
10.2.0E or later

lldp med network-policy (Interface)

Attaches or removes an LLDP-MED network policy to or from an interface.

Syntax
lldp-med network-policy {add | remove} number
**Parameters**

- **add** — Attach the network policy to an interface.
- **remove** — Remove the network policy from an interface.
- **number** — Enter a network policy index number, from 1 to 32.

**Default**
Not configured

**Command Mode**
INTERFACE

**Usage Information**
Attach only one network policy for per interface.

**Example**
```bash
OS10(conf-if-eth1/1/5)# lldp med network-policy add 1
```

**Supported Release**
10.2.0E or later

---

**lldp med tlv-select**

Configures the LLDP-MED TLV type to transmit or receive.

**Syntax**
```bash
lldp med tlv-select {network-policy | inventory}
```

**Parameters**

- **network-policy** — Enable or disable the port description TLV.
- **inventory** — Enable or disable the system TLV.

**Default**
Enabled

**Command Mode**
INTERFACE

**Usage Information**
None

**Example**
```bash
OS10(conf-if-eth1/1/3)# lldp med tlv-select network-policy
```

**Supported Releases**
10.2.0E or later

---

**lldp receive**

Enables or disables the LLDP packet reception on a specific interface.

**Syntax**
```bash
lldp receive
```

**Parameters**
None

**Default**
Not configured

**Command Mode**
INTERFACE

**Usage Information**
Enable LLDP globally on the system before using the `lldp receive` command. The `no` version of this command disables the reception of LLDP packets.

**Example**
```bash
OS10(conf-if-eth1/1/3)# lldp receive
```

**Supported Releases**
10.2.0E or later
**lldp reinit**

Configures the delay time in seconds for LLDP to initialize on any interface.

**Syntax**

```
lldp reinit seconds
```

**Parameters**

`seconds` — Enter the delay timer value in seconds, from 1 to 10.

**Default**

2 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# lldp reinit 5
```

**Supported Releases**

10.2.0E or later

---

**lldp timer**

Configures the rate in seconds at which LLDP packets send to the peers.

**Syntax**

```
lldp timer seconds
```

**Parameters**

`seconds` — Enter the LLDP timer rate in seconds, from 5 to 254.

**Default**

30 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command sets the LLDP timer back to its default value.

**Example**

```
OS10(config)# lldp timer 25
```

**Supported Releases**

10.2.0E or later

---

**lldp tlv-select basic-tlv**

Enables or disables TLV attributes to transmit and receive LLDP packets.

**Syntax**

```
lldp tlv-select basic-tlv {port-description | system-name | system-description | system-capabilities | management-address}
```

**Parameters**

- `port-description` — Enable or disable the port description TLV.
- `system-name` — Enable or disable the system TLV.
- `system-description` — Enable or disable the system description TLV.
- `system-capabilities` — Enable or disable the system capabilities TLV.
- `management-address` — Enable or disable the management address TLV.

**Default**

Enabled

**Command Mode**

INTERFACE

**Usage Information**

None
**lldp tlv-select dot1tlv**

Enables or disables the dot1 TLVs to transmit in LLDP packets.

**Syntax**

```
lldp tlv-select dot1tlv { port-vlan-id | link-aggregation}
```

**Parameters**

- **port-vlan-id** — Enter the port VLAN ID.
- **link-aggregation** — Enable the link aggregation TLV.

**Default**

Enabled

**Command Mode**

INTERFACE

**Usage Information**

The `lldp tlv-select dot1tlv link-aggregation` command advertises link aggregation as a dot1 TLV in the LLDPDUs. The `no` version of this command disables TLV transmissions.

**Example (Port)**

```
OS10(conf-if-eth1/1/3)# lldp tlv-select dot1tlv port-vlan-id
```

**Example (Link Aggregation)**

```
OS10(conf-if-eth1/1/3)# lldp tlv-select dot1tlv link-aggregation
```

**Supported Releases**

10.2.0E or later

---

**lldp tlv-select dot3tlv**

Enables or disables the dot3 TLVs to transmit in LLDP packets.

**Syntax**

```
lldp tlv-select dot3tlv {macphy-config | max-framesize}
```

**Parameters**

- **macphy-config** — Enable the port VLAN ID TLV.
- **max-framesize** — Enable maximum frame size TLV.

**Default**

Enabled

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command disables TLV transmission.

**Example**

```
OS10(conf-if-eth1/1/3)# lldp tlv-select dot3tlv macphy-config
```

**Supported Releases**

10.2.0E or later

---

**lldp transmit**

Enables the transmission of LLDP packets on a specific interface.

**Syntax**

```
lldp transmit
```

**Parameters**

None
**Default** Not configured

**Command Mode** INTERFACE

**Usage Information** The no version of this command disables the transmission of LLDP packets on a specific interface.

**Example**

```
OS10(conf-if-eth1/1/9)# lldp transmit
```

**Supported Releases** 10.2.0E or later

---

**show lldp interface**

Displays the LLDP information advertised from a specific interface.

**Syntax**

```
show lldp interface ethernet node/slot/port[:subport] [med | local-device]
```

**Parameters**

- ethernet node/slot/port[:subport] — Enter the Ethernet interface information.
- med — Enter the interface to view the MED information.
- local-device — Enter the interface to view the local-device information.

**Default** None

**Command Mode** EXEC

**Usage Information** Use the med parameter to view MED information for a specific interface. Use the local-device parameter to view inventory details.

**Example**

```
OS10# show lldp interface ethernet 1/1/5
ethernet1/1/5
Tx State : Enabled
Rx State : Enabled
Tx SEM State : initialize
Rx SEM State : wait-port-operational
Notification Status : Disabled
Notification Type : mis-configuration
DestinationMacAddr : 01:80:c2:00:00:0e
```

**Example (Local Device)**

```
OS10# show lldp interface ethernet 1/1/1 local-device
Device ID: 00:0c:29:e5:aa:f4
Port ID: ethernet1/1/1
System Name: OS10
Capabilities: Bridge Router
System description: Dell networking Operating system
Port description: Connected to end point device
Time To Live: 120
LLDP MED Capabilities: Capabilities, Network Policy
LLDP MED Device Type: Network connectivity
```

**Example (MED)**

```
OS10# show lldp interface ethernet 1/1/20:1 med
Port |Capabilities|Network Policy|Location|Inventory|POE
-----|------------|--------------|--------|---------|---
ethernet1/1/20:1| Yes| Yes| No| No| No
Network Polices:
```

**Supported Releases** 10.2.0E or later
show lldp errors

Displays the LLDP errors related to memory allocation failures, queue overflows, and table overflows.

Syntax
show lldp errors

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show lldp errors
Total Memory Allocation Failures: 0
Total Input Queue Overflows: 0
Total Table Overflows: 0

Supported Release
10.2.0E or later

show lldp med

Displays the LLDP MED information for all the interfaces.

Syntax
show lldp med

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Use the show lldp interface command to view MED information for a specific interface.

Example
OS10# show lldp med
Fast Start Repeat Count: 3
LLDP MED Device Type: Network Connectivity
Port	Capabilities	Network Policy	Location	Inventory	POE
ethernet1/1/1 | Yes| Yes| No| No| No
ethernet1/1/2 | Yes| Yes| No| No| No
ethernet1/1/3 | Yes| Yes| No| No| No
ethernet1/1/4 | Yes| Yes| No| No| No
ethernet1/1/5 | Yes| Yes| No| No| No
ethernet1/1/6 | Yes| Yes| No| No| No
ethernet1/1/7 | Yes| Yes| No| Yes| No
ethernet1/1/8 | Yes| Yes| No| No| No
ethernet1/1/9 | Yes| Yes| No| No| No
ethernet1/1/10 | Yes| Yes| No| No| No
ethernet1/1/11 | Yes| Yes| No| No| No
ethernet1/1/12 | Yes| Yes| No| No| No
ethernet1/1/13 | Yes| Yes| No| No| No
ethernet1/1/14 | Yes| Yes| No| No| No
ethernet1/1/15 | Yes| Yes| No| No| No
ethernet1/1/16 | Yes| Yes| No| No| No
ethernet1/1/17 | Yes| Yes| No| No| No
ethernet1/1/18 | Yes| Yes| No| No| No
ethernet1/1/19 | Yes| Yes| No| No| No
ethernet1/1/20 | Yes| Yes| No| No| No
ethernet1/1/21 | Yes| Yes| No| No| No
ethernet1/1/22 | Yes| Yes| No| No| No
ethernet1/1/23 | Yes| Yes| No| No| No
**Supported Releases**  
10.2.0E or later

**show lldp neighbors**

Displays the status of the LLDP neighbor system information.

**Syntax**

```
show lldp neighbors [detail | interface ethernet node/slot/port[:subport]]
```

**Parameters**

- **detail** — View LLDP neighbor detailed information.
- **interface ethernet node/slot/port[:subport]** — Enter the Ethernet interface information.

**Command Mode**  
EXEC

**Usage Information**  
This command status information includes local port ID, remote host name, remote port ID, and remote node ID.

**Example**

```
OS10# show lldp neighbors
Loc PortID Rem Host Name Rem Port Id Rem Chassis Id

ethternet1/1/2 Not Advertised fortyGigE 0/56 00:01:e8:8a:fd:35
ethernet1/1/20:1 Not Advertised GigabitEthernet 1/0 00:01:e8:05:db:05
```

**Example (Detail)**

```
OS10# show lldp neighbors interface ethernet 1/1/1 detail
Remote Chassis ID Subtype: Mac address (4)
Remote Chassis ID: 00:13:21:57:ca:40
Remote Port Subtype: Interface name (5)
Remote Port ID: ethernet1/1/10
Remote Port Description: Ethernet port 1
Local Port ID: ethernet1/1/1
Locally assigned remote Neighbor Index: 3
Remote TTL: 120
Information valid for next 105 seconds
Time since last information change of this neighbor: 00:00:15
Remote System Name: LLDP-pkt-gen
Remote Management Address (IPv4): 10.1.1.1
Remote System Desc: LLDP packet generator using scapy
Existing System Capabilities: Repeater, Bridge, Router
Enabled System Capabilities: Repeater, Bridge, Router
Remote Max Frame Size: 0
Remote Aggregation Status: false
MAC PHY Configuration:
 Auto-neg supported: 1
 Auto-neg enabled: 1
 Auto-neg advertised capabilities:
 10BASE-T half duplex mode,
 10BASE-T full duplex mode,
 100BASE-TX half duplex mode,
 100BASE-TX full duplex mode
MED Capabilities:
 Supported:
 LLDP-MED Capabilities,
 Network Policy,
 Location Identification,
```
Extended Power via MDI - PSE,
Extended Power via MDI - PD,
Inventory Management
Current:
  LLDP-MED Capabilities,
  Network Policy,
  Location Identification,
  Extended Power via MDI - PD,
  Inventory Management
Device Class: Endpoint Class 3
Network Policy:
  Application: voice, Tag: Tagged, Vlan: 50, L2 Priority: 6, DSCP Value: 46
Inventory Management:
  H/W Revision : 12.1.1
  F/W Revision : 10.1.9750B
  S/W Revision : 10.1.9750B
  Serial Number : B11G152
  Manufacturer : Dell
  Model : S6010-ON
  Asset ID : E1001
Power-via-MDI:
  Power Type: PD Device
  Power Source: Local and PSE
  Power Priority: Low
  Power required: 6.5
Location Identification:
  Civic-based:
  ECS-ELIN:

Example (Interface)

<table>
<thead>
<tr>
<th>Loc PortID</th>
<th>Rem Host Name</th>
<th>Rem Port Id</th>
<th>Rem Chassis Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>OS10</td>
<td>ethernet1/1/2</td>
<td>4:17:eb:f7:06:c4</td>
</tr>
</tbody>
</table>

Supported Releases 10.2.0E or later

**show lldp timers**

Displays the LLDP hold time, delay time, and update frequency interval configuration information.

**Syntax**

```
show lldp timers
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show lldp timers
LLDP Timers:
 Holdtime in seconds: 120
 Reinit-time in seconds: 6
 Transmit interval in seconds: 30
```

**Supported Releases** 10.2.0E or later
**show lldp tlv-select interface**

Displays the TLVs enabled for an interface.

**Syntax**
```
show lldp tlv-select interface ethernet node/slot/port[:subport]
```

**Parameters**
- `ethernet node/slot/port[:subport]` — Enter the Ethernet interface information, from 1 to 253.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
None

**Example**
```
OS10# show lldp tlv-select interface ethernet 1/1/4
port-description
system-name
system-description
system-cababilities
management-address
port-vlan
mac-phy-config
link-aggregation
max-frame-size
```

**Supported Releases**
10.2.0E or later

**show lldp traffic**

Displays LLDP traffic information including counters, packets transmitted and received, discarded packets, and unrecognized TLVs.

**Syntax**
```
show lldp traffic [interface ethernet node/slot/port[:subport]]
```

**Parameters**
- `interface ethernet node/slot/port[:subport]` — (Optional) Enter the Ethernet interface information to view the LLDP traffic.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
None

**Example**
```
OS10# show lldp traffic
LLDP Traffic Statistics:
Total Frames Out : 1504
Total Entries Aged : 2
Total Frames In : 67
Total Frames Received In Error : 0
Total Frames Discarded : 0
Total TLVs Unrecognized : 0
Total TLVs Discarded : 0
```

**Example (Interface)**
```
OS10# show lldp traffic interface ethernet 1/1/2
LLDP Traffic Statistics:
Total Frames Out : 45
Total Entries Aged : 1
Total Frames In : 33
Total Frames Received In Error : 0
Total Frames Discarded : 0
Total TLVs Unrecognized : 0
Total TLVs Discarded : 0
```
LLDP MED Traffic Statistics:
Total Med Frames Out : 2
Total Med Frames In  : 1
Total Med Frames Discarded : 0
Total Med TLVS Discarded : 0
Total Med Capability TLVS Discarded: 0
Total Med Policy TLVS Discarded : 0
Total Med Inventory TLVS Discarded : 0

Supported Releases 10.2.0E or later

show network-policy profile
Displays the network policy profiles.

Syntax show network-policy profile [profile number]

Parameters profile number — (Optional) Enter the network policy profile number, from 1 to 32.

Default Not configured

Command Mode EXEC

Usage Information If you do not enter the network profile ID, all configured network policy profiles display.

Example
OS10# show network-policy profile 10
Network Policy Profile 10
  voice vlan 17 cos 4
  Interface:
    none
Network Policy Profile 30
  voice vlan 30 cos 5
  Interface:
    none
Network Policy Profile 36
  voice vlan 4 cos 3
  Interface:
    ethernet 1/1/1,ethernet 1/1/3-5

Supported Releases 10.2.0E or later

Media Access Control

All Ethernet switching ports maintain media access control (MAC) address tables. Each physical device in your network contains a MAC address. OS10 devices automatically enter learned MAC addresses as dynamic entries in the MAC address table.

Learned MAC address entries are subject to aging. Set the aging timer to zero (0) to disable MAC aging. For any dynamic entry, if no packet arrives on the device with the MAC address as the source or destination address within the timer period, the address is removed from the table.

- Enter an aging time (in seconds) in CONFIGURATION mode, from 0 to 1000000, default 1800.
  ```
 mac address-table aging-time seconds
  ```

Configure Aging Time

OS10(config)# mac address-table aging-time 900

Disable Aging Time

OS10(config)# mac address-table aging-time 0
### Static MAC Address

You manually configure a static MAC address entry. A static entry is not subject to aging.

- Create a static MAC address entry in the MAC address table in CONFIGURATION mode.

  ```
 mac-address-table static nn:nn:nn:nn:nn vlan vlan-id interface [ethernet node/slot/port[:subport] | port-channel channel-number]
  ```

**Set Static MAC Address**

OS10(config)# mac address-table static 34:17:eb:f2:ab:c6 vlan 10 interface ethernet 1/1/5

### MAC Address Table

OS10 maintains a list of MAC address table entries.

- View the contents of the MAC address table in EXEC mode.

  ```
 show mac address-table {dynamic | static} [address mac-address | vlan vlan-id | interface {ethernet node/slot/port[:subport] | port-channel number}]
  ```

  - **dynamic** — (Optional) Displays dynamic MAC address table entry information.
  - **static** — (Optional) Displays static MAC address table entry information.
  - **address mac-address** — (Optional) Displays MAC address information.
  - **interface ethernet node/slot/port[:subport]** — (Optional) Displays a list of dynamic and static MAC address entries.
  - **port-channel number** — (Optional) Displays port channel information, from 1 to 128.
  - **count** — (Optional) Displays the number of dynamic and static MAC address entries.
  - **vlan vlan-id** — (Optional) Displays information for a specified VLAN only, from 1 to 4093.

**View MAC Address Table Entries**

OS10# show mac address-table

<table>
<thead>
<tr>
<th>VlanId</th>
<th>Mac Address</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:15:c6:ca:49</td>
<td>dynamic</td>
<td>ethernet1/1/21</td>
</tr>
<tr>
<td>1</td>
<td>00:00:20:2a:25:55</td>
<td>dynamic</td>
<td>ethernet1/1/21</td>
</tr>
<tr>
<td>1</td>
<td>90:b1:1c:f4:aa:ce</td>
<td>dynamic</td>
<td>ethernet1/1/21</td>
</tr>
<tr>
<td>1</td>
<td>90:b1:1c:f4:aa:c6</td>
<td>dynamic</td>
<td>ethernet1/1/21</td>
</tr>
<tr>
<td>10</td>
<td>34:17:eb:02:8c:33</td>
<td>static</td>
<td>ethernet1/1/1</td>
</tr>
</tbody>
</table>

**View MAC Address Table Count**

OS10# show mac address-table count

- **MAC Entries for all vlans**:
  - Dynamic Address Count : 4
  - Static Address (User-defined) Count : 1
  - Total MAC Addresses in Use: 5

### Clear MAC Address Table

You can clear dynamic address entries that in the MAC address table maintains.

- Clear the MAC address table of dynamic entries in EXEC mode.

  ```
 clear mac address-table dynamic [[all] [address mac_addr] [vlan vlan-id] [interface {ethernet type node/slot/port[:subport] | port-channel number}]]
  ```
Clear MAC Address Table

```
OS10# clear mac address-table dynamic vlan 20 interface ethernet 1/2/20
```

**MAC Commands**

### clear mac address-table dynamic

Clears L2 dynamic address entries from the MAC address table.

**Syntax**
```
clear mac address-table dynamic {all | address mac_addr | vlan vlan-id | interface {ethernet node/slot/port[:subport] | port-channel number}}
```

**Parameters**
- `all` — (Optional) Delete all MAC address table entries.
- `address mac_addr` — (Optional) Delete a configured MAC address from the address table in nn:nn:nn:nn:nn:nn format.
- `vlan vlan-id` — (Optional) Delete all entries based on the VLAN number from the address table, from 1 to 4093.
- `interface` — (Optional) Clear the interface type:
  - `ethernet node/slot/port[:subport]` — Delete the Ethernet interface configuration from the address table.
  - `port-channel channel-number` — Delete the port-channel interface configuration from the address table, from 1 to 128.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
Use the `all` parameter to remove all dynamic entries from the address table.

**Example**
```
OS10# clear mac address-table dynamic all
```

**Example (VLAN)**
```
OS10# clear mac address-table dynamic vlan 20
```

**Supported Releases**
10.2.0E or later

### mac address-table aging-time

Configures the aging time for entries in the L2 address table.

**Syntax**
```
mac address-table aging-time seconds
```

**Parameters**
- `seconds` — Enter the aging time for MAC table entries in seconds, from 0 to 1000000.

**Default**
1800 seconds
mac address-table aging-time

**Command Mode**
CONFIGURATION

**Usage Information**
Set the aging timer to zero (0) to disable MAC address aging for all dynamic entries. The aging time counts from the last time that the device detected the MAC address.

**Example**
OS10(config)# mac address-table aging-time 3600

**Supported Releases**
10.2.0E or later

---

mac address-table static

**Configures a static entry for the L2 MAC address table.**

**Syntax**
mac address-table static mac-address vlan vlan-id interface {ethernet node/slot/port[:subport] | port-channel number}

**Parameters**
- mac-address — Enter the MAC address to add to the table in nn:nn:nn:nn:nn:nn format.
- vlan vlan-id — Enter the VLAN to apply the static MAC address to, from 1 to 4093.
- interface — Enter the interface type:
  - ethernet node/slot/port[:subport] — Enter the Ethernet information.
  - port-channel channel-number — Enter a port-channel interface number, from 1 to 128.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The no version of this command resets the value to the default.

**Example (VLAN)**
OS10(config)# mac address-table static 34:17:eb:f2:ab:c6 vlan 1 interface ethernet 1/1/30

**Example (Port-Channel)**
OS10(config)# mac address-table static 34:17:eb:02:8c:33 vlan 10 interface port-channel 1

**Supported Releases**
10.2.0E or later

---

show mac address-table

**Displays information about the MAC address table.**

**Syntax**
show mac address-table [address mac-address | aging-time | [count [vlan vlan-id]] | dynamic | interface {ethernet node/slot/port[:subport] | port-channel number}] | static [address mac-address] | vlan vlan-id

**Parameters**
- address mac-address — (Optional) Displays MAC address table information.
- aging-time — (Optional) Displays MAC address table aging-time information.
- count — (Optional) Displays the number of dynamic and static MAC address entries.
- dynamic — (Optional) Displays dynamic MAC address table entries only.
- interface — Set the interface type:
  - ethernet node/slot/port[:subport] — Displays MAC address table information for a physical interface.
port-channel channel-number — Displays MAC address table information for a port-channel interface, from 1 to 128.

- static — (Optional) Displays static MAC address table entries only.
- vlan vlan-id — (Optional) Displays VLAN information only, from 1 to 4093.

Default Not configured

Command Mode EXEC

Usage Information The network device maintains static MAC address entries saved in the startup configuration file, and reboots and deletes dynamic entries.

Example (Address)

OS10# show mac address-table address 90:b1:1c:f4:a6:8f
VlanId   Mac Address       Type           Interface
1        90:b1:1c:f4:a6:8f   dynamic         ethernet1/1/3

Example (Aging Time)

OS10# show mac address-table aging-time
Global Mac-address-table aging time : 1800

Example (Count)

OS10# show mac address-table count
MAC Entries for all vlans :
Dynamic Address Count : 5
Static Address (User-defined) Count : 0
Total MAC Addresses in Use: 5

Example (Dynamic)

OS10# show mac address-table dynamic
VlanId   Mac Address       Type           Interface
1        90:b1:1c:f4:a6:8f   dynamic         ethernet1/1/3

Example (Ethernet)

OS10# show mac address-table interface ethernet 1/1/3
VlanId   Mac Address       Type           Interface
1        66:38:3a:62:31:3a   dynamic         ethernet1/1/3

Supported Releases 10.2.0E or later

Multiple Spanning-Tree

MST is a rapid spanning-tree protocol based on a spanning-tree variation that improves on per-VLAN RPVST+. You can configure Multiple Spanning-Tree Instances (MSTIs) and map multiple VLANs to one spanning-tree instance to reduce the total number of instances. RPVST+ allows a spanning-tree instance for each VLAN. This 1:1 approach is not suitable if you have multiple VLANs — each spanning-tree instance costs bandwidth and processing resources.

When you enable MST, all ports in Layer 2 (L2) mode participate in MST. OS10 only supports one MST region.

Achieve load balancing using the MST protocol (MSTP). When you map three VLANs to two multiple spanning tree instances (MSTIs), VLAN 100 traffic takes a different path than VLAN 200 and 300 traffic.
Configuring MST is a four-step process:

1. Enable MST, if the current running spanning tree protocol (STP) version is not MST.
2. (Optional) Map the VLANs to different instances to achieve load balancing.
3. Ensure the same region name is configured in all the bridges running MST.
4. (Optional) Configure the revision number.

### Configure MSTP

When you enable MST globally, all L2 physical, port-channel, and VLAN interfaces automatically assign to MSTI zero (0). Within an MSTI, only one path from one bridge to another is enabled for forwarding.

- Enable MST in CONFIGURATION mode.
  ```
 spanning-tree mode mst
  ```

### Configure and verify MSTP

```bash
OS10(config)# spanning-tree mode mst
OS10(config)# do show spanning-tree
show spanning-tree mst configuration
Region Name: ravi
Revision: 0
MSTI VID
 0 1,7-4093
 1 2
 2 3
 3 4
 4 5
 5 6
```

### Add or remove interfaces

By default, all interfaces are enabled in L2 switchport mode, and all L2 interfaces are part of spanning-tree.

- Disable spanning-tree on an interface in INTERFACE mode.
  ```
 spanning-tree disable
  ```

- Enable MST on an interface in INTERFACE mode.
  ```
 no spanning-tree disable
  ```
Create instances

You can create multiple MSTP instances and map VLANs. A single MSTI provides no more benefit than RSTP. To take full advantage of the MSTP, create multiple MSTIs and map VLANs to them.

1. Enter an instance number in CONFIGURATION mode.
   ```
 spanning tree mst configuration
   ```

2. Enter the MST instance number in MULTIPLE-SPANNING-TREE mode, from 0 to 63.
   ```
 instance instance-number
   ```

3. Enter the VLAN and IDs to participate in the MST instance in MULTIPLE-SPANNING-TREE mode, from 1 to 4096.
   ```
 instance vlan-id
   ```

Create MST instances

OS10(config)# spanning-tree mst configuration
OS10(conf-mst)# name force10
OS10(conf-mst)# revision 100
OS10(conf-mst)# instance 1 vlan 2-10
OS10(conf-mst)# instance 2 vlan 11-20
OS10(conf-mst)# instance 3 vlan 21-30

View VLAN instance mapping

OS10# show spanning-tree mst configuration
Region Name: force10
Revision: 100
MSTI   VID
0       1,31-4093
1       2-10
2       11-20
3       21-30

View port forwarding/discarding state

OS10# show spanning-tree msti 0 brief
Spanning tree enabled protocol msti with force-version mst
MSTI 0 VLANs mapped 1,31-4093
Executing IEEE compatible Spanning Tree Protocol
Root ID  Priority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID  Priority 32768, Address 90b1.1cf4.a523
Configured hello time 2, max age 20, forward delay 15, max hops 20
CIST regional root ID Priority 32768, Address 90b1.1cf4.a523
CIST external path cost 500
Interface
Name                  PortID  Prio  Cost     Sts   Cost  Bridge ID    PortID
ethernet1/1/1         128.260 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.260
ethernet1/1/2         128.264 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.264
ethernet1/1/3         128.268 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.268
ethernet1/1/4         128.272 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.272
ethernet1/1/5         128.276 128   500       FWD   0    32768   3417.4455.667f 128.146
ethernet1/1/6         128.280 128   500       BLK   0    32768   3417.4455.667f 128.150
ethernet1/1/7         128.284 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.284
ethernet1/1/8         128.288 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.288
ethernet1/1/9         128.292 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.292
ethernet1/1/10        128.296 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.296
ethernet1/1/11        128.300 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.300
ethernet1/1/12        128.304 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.304
ethernet1/1/13        128.308 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.308
ethernet1/1/14        128.312 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.312
ethernet1/1/15        128.316 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.316
ethernet1/1/16        128.320 128   200000000 BLK  0    32768   90b1.1cf4.a523 128.320
### Root selection

MSTP determines the root bridge according to the lowest bridge ID. Assign a lower bridge priority to increase its likelihood of becoming the root bridge.

- Assign a bridge priority number to a specific instance in CONFIGURATION mode, from 0 to 61440 in increments of 4096, default 32768.
  
  Use a lower priority number to increase the likelihood of the bridge to become a root bridge.

```bash
spanning-tree mst instance-number priority priority
```

#### Assign root bridge priority

OS10(config)# spanning-tree mst 0

#### Verify root bridge priority

OS10# show spanning-tree active

```text
Spanning tree enabled protocol msti with force-version mst
MSTI 0 VLANs mapped 1,31-4093
Executing IEEE compatible Spanning Tree Protocol
Root IDPriority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID Priority 32768, Address 90b1.1cf4.a523
Configured hello time 2, max age 20, forward delay 15, max hops 20
CIST regional root ID Priority 32768, Address 90b1.1cf4.a523
CIST external path cost 500
```

### Interface

```text
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Link-type</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>Disb</td>
<td>128.260</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>Disb</td>
<td>128.264</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/3</td>
<td>Disb</td>
<td>128.268</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>Disb</td>
<td>128.272</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/5</td>
<td>Root</td>
<td>128.276</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>Altr</td>
<td>128.280</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/7</td>
<td>Disb</td>
<td>128.284</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/8</td>
<td>Disb</td>
<td>128.288</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/9</td>
<td>Disb</td>
<td>128.292</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/10</td>
<td>Disb</td>
<td>128.296</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
</tbody>
</table>
```

### Interface

```text
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Link-type</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/5</td>
<td>Root</td>
<td>128.276</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>Altr</td>
<td>128.280</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
</tbody>
</table>
```
Non-Dell EMC hardware

OS10 supports only one MST region. For a bridge to be in the same MST region as another, the three unique name, revision, and VLAN-to-instance-mapping attributes must match. The default values for the name and revision number match on all Dell EMC hardware. If you have non-Dell EMC hardware that participates in MST, ensure these values match on all devices.

A region is a combination of three unique attributes:

- Name — A mnemonic string you assign to the region. The default is the system MAC address.
- Revision — A 2-byte number. The default is 0.
- VLAN-to-instance mapping — Placement of a VLAN in an MSTI.

Region name or revision

You can change the MSTP region name or revision.

- Change the region name in MULTIPLE-SPANNING-TREE mode. A maximum of 32 characters.
  
  ```
 name name
  ```

- Change the region revision number in MULTIPLE-SPANNING-TREE mode, from 0 to 65535, default 0.
  
  ```
 revision number
  ```

Configure and verify region name

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS10(conf-mstp)# name my-mstp-region</td>
<td>Configure region name</td>
</tr>
<tr>
<td>OS10(conf-mstp)# do show spanning-tree mst config</td>
<td>Verify region name and revision</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MST region name: my-mstp-region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSTI</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200-300</td>
</tr>
</tbody>
</table>

Modify parameters

The root bridge sets the values for forward-delay, hello-time, max-age, and max-hops and overwrites the values set on other MST bridges.

**Forward-time**

Time an interface waits in the Discarding state and Learning state before it transitions to the Forwarding state.

**Hello-time**

Interval in which the bridge sends MST BPDUs.

**Max-age**

Length of time the bridge maintains configuration information before it refreshes that information by recomputing the MST topology.

**Max-hops**

Maximum number of hops a BPDU travels before a receiving device discards it.

**NOTE:** Dell EMC recommends that only experienced network administrators change MST parameters. Poorly planned modification of MST parameters can negatively affect network performance.

1. Change the forward-time parameter in CONFIGURATION mode, from 4 to 30, default 15.
   
   ```
 spanning-tree mst forward-time seconds
   ```

2. Change the hello-time parameter in CONFIGURATION mode, from 1 to 10, default 2. Dell EMC recommends increasing the hello-time for large configurations, especially configurations with more ports.
   
   ```
 spanning-tree mst hello-time seconds
   ```

3. Change the max-age parameter in CONFIGURATION mode, from 6 to 40, default 20.
   
   ```
 spanning-tree mst max-age seconds
   ```
4. Change the max-hops parameter in CONFIGURATION mode, from 1 to 40, default 20.

   spanning-tree mst max-hops number

**MST configuration**

OS10(config)# spanning-tree mst
OS10(config)# spanning-tree mst forward-time 16
OS10(config)# spanning-tree mst hello-time 5
OS10(config)# spanning-tree mst max-age 10
OS10(config)# spanning-tree mst max-hops 30

**View MSTP parameter values**

OS10# show spanning-tree active
Spanning tree enabled protocol msti with force-version mst
MSTI 0 VLANs mapped 1,31-4093
Executing IEEE compatible Spanning Tree Protocol
Root ID  Priority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID  Priority 32768, Address 90b1.1cf4.a523
Configured hello time 10, max age 40, forward delay 30, max hops 40
CIST regional root ID Priority 32768, Address 90b1.1cf4.a523
CIST external path cost 500
Interface
   Name     PortID Prio Cost Sts  Cost Bridge ID          PortID
   -------------  ------------- ------------- ------------- -------------- -------------
ethernet1/1/5  128.276  128   500  FWD   0    32768    3417.4455.667f  128.146
ethernet1/1/6  128.280  128   500  BLK   0    32768    3417.4455.667f  128.150
Interface
   Name     Role  PortID Prio Cost Sts  Cost  Link-type Edge
   -------------  ---------  ------------- ------------- ------------- --------------
ethernet1/1/5   Root  128.276  128   500   FWD  0     AUTO      No
ethernet1/1/6   Altr  128.280  128   500   BLK  0     AUTO      No

**Interface parameters**

Adjust two interface parameters to increase or decrease the likelihood that a port becomes a forwarding port.

- **Port cost**: Interface type value. The greater the port cost, the less likely the port is a forwarding port.
- **Port priority**: Influences the likelihood that a port is selected as a forwarding port if several ports have the same port cost.

Default values for the port cost by interface:

- 100-Mb/s Ethernet interfaces — 200000
- 1-Gigabit Ethernet interfaces — 20000
- 10-Gigabit Ethernet interfaces — 2000
- Port-channel with 100 Mb/s Ethernet interfaces — 180000
- Port-channel with 1-Gigabit Ethernet interfaces — 18000
- Port-channel with 10-Gigabit Ethernet interfaces — 1800

1. Change the port cost of an interface in INTERFACE mode, from 0 to 200000000.
   
   spanning-tree msti number cost cost

2. Change the port priority of an interface in INTERFACE mode, from 0 to 240 in increments of 16, default 128.

   spanning-tree msti number priority priority

**View MSTI interface configuration**

OS10(conf-if-eth1/1/7)# do show spanning-tree msti 0 interface ethernet 1/1/7
ethernet1/1/7 of MSTI 0 is Designated Forwarding
Edge port: No (default)
Link type: point-to-point (auto)
Boundary: Yes, Bpdu-filter: Disable, Bpdu-Guard: Disable, Shutdown-on-Bpdu-Guard-violation: No
Root-Guard: Disable, Loop-Guard: Disable
Bpdus (MRecords) Sent: 69, Received: 0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated</th>
<th>Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/7</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td></td>
</tr>
</tbody>
</table>

**EdgePort Forward traffic**

EdgePort allows the interface to forward traffic approximately 30 seconds sooner as it skips the Blocking and Learning states. The spanning-tree bpdu-guard enable command causes the interface hardware to shut down when it receives a BPDU.

⚠️ **CAUTION:** Configure EdgePort only on links connecting to an end station. EdgePort can cause loops if you enable it on an interface connected to a network.

When you implement BPDU guard, although the interface is placed in the Error Disabled state when receiving the BPDU, the physical interface remains in the Up state. The hardware discards regular network traffic after a BPDU violation. BPDU traffic to the CPU, where they are discarded as well.

- Enable EdgePort on an interface in INTERFACE mode.
  ```
 spanning-tree port type edge
  ```

**Configure EdgePort**

```bash
OS10(conf-if-eth1/1/4)# spanning-tree port type edge
```

**View interface status**

```bash
OS10# show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of MSTI 0 is designated Forwarding
Edge port:yes port guard :none (default)
Link type is point-to-point (auto)
Boundary: YES bpdu filter :disable bpdu guard :disable bpduguard shutdown-on-violation :disable RootGuard: disable LoopGuard disable
Bpdus (MRecords) sent 610, received 5
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/4</td>
<td>128.272</td>
</tr>
</tbody>
</table>

**Spanning-tree extensions**

STP extensions provide a means to ensure efficient network convergence by securely enforcing the active network topology. OS10 supports BPDU filtering, BPDU guard, root guard, and loop guard STP extensions.

**BPDU filtering**

Protects the network from unexpected flooding of BPDU frames from an erroneous device. Enabling BPDU Filtering instructs the hardware to drop BPDU frames and prevents flooding from reaching the CPU. BPDU filtering is enabled by default on Edge ports. All BPDU frames received on the Edge port drops. If you explicitly configure BPDU filtering on a port, that port drops all BPDU frames it receives.

**BPDU guard**

Blocks the L2 bridged ports and LAG ports connected to end hosts and servers from receiving any BPDU frames. When you enable BPDU guard, it places a bridge or LAG port in the Error, Disable or Blocking state if the port receives any BPDU frames. In a LAG, all member ports, including new members are placed in the Blocking state. The network traffic drops but the port continues to forward BPDU frames to the CPU that are later dropped. To prevent further reception of BPDU frames, configure a port to shut down using the shutdown command. The port can only resume operation from the Shutdown state after manual intervention.
Root guard
Avoids bridging loops and preserves the root bridge position during network transitions. STP selects the root bridge with the lowest priority value. During network transitions, another bridge with a lower priority may attempt to become the root bridge and cause unpredictable network behavior. To avoid such an attempt and preserve the position of the root bridge, configure the `spanning-tree guard root` command. Root guard is enabled on ports that are designated ports. The root guard configuration applies to all VLANs configured on the port.

Loop guard
Prevents L2 forwarding loops caused by a cable or interface hardware failure. When a hardware failure occurs, a participating spanning tree link becomes unidirectional and a port stops receiving BPDUs. When a blocked port stops receiving BPDUs, it transitions to a Forwarding state causing spanning tree loops in the network. Enable loop guard on a port that transitions to the Loop-Inconsistent state until it receives BPDUs using the `spanning-tree guard loop` command. After BPDUs are received, the port moves out of the Loop-Inconsistent or blocking state and transitions to an appropriate state determined by STP. Enabling loop guard on a per-port basis enables it on all VLANs configured on the port. If you disable loop guard on a port, it moves to the Listening state.

If you enable BPDU filter and BPDU guard on the same port, the BPDU filter configuration takes precedence. Root guard and Loop guard are mutually exclusive. Configuring one overwrites the other from the active configuration.

1. Enable spanning-tree BPDU filter in INTERFACE mode.
   ```
 spanning-tree bpdufilter enable
   ```
   • To shut down the port channel interface, all member ports are disabled in the hardware.
   • To add a physical port to a port-channel already in the Error Disable state, the new member port is also disabled in the hardware.
   • To remove a physical port from a port-channel in Error Disable state, the Error Disabled state clears on this physical port. The physical port is enabled in the hardware.
   
   To clear the Error Disabled state:
   • Use the `shutdown` command on the interface.
   • Use the `spanning-tree bpdufilter disable` command to disable the BPDU guard on the interface.
   • Use the `spanning-tree disable` command to disable STP on the interface.

2. Enable STP BPDU guard in INTERFACE mode.
   ```
 spanning-tree bpduguard enable
   ```
   • To shut down the port channel interface, all member ports are disabled in the hardware.
   • To add a physical port to a port-channel already in the Error Disable state, the new member port is also disabled in the hardware.
   • To remove a physical port from a port-channel in Error Disable state, the Error Disabled state clears on this physical port. The physical port is enabled in the hardware.
   
   To clear the Error Disabled state:
   • Use the `shutdown` command on the interface.
   • Use the `spanning-tree bpduguard disable` command to disable the BPDU guard on the interface.
   • Use the `spanning-tree disable` command to disable STP on the interface.

3. Set the guard types to avoid loops in INTERFACE mode.
   ```
 spanning-tree guard {loop | root | none}
   ```
   • `loop` — Set the guard type to loop.
   • `none` — Set the guard type to none.
   • `root` — Set the guard type to root.

BPDU filter

```bash
OS10(conf-if-eth1/1/4)# spanning-tree bpdufilter enable
OS10(conf-if-eth1/1/4)# do show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of vlan1 is designated Blocking
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
Boundary: NO bpdu filter : Enable bpdu guard : bpduguard shutdown-on-violation :disable RootGuard: enable LoopGuard disable
Bpdus (MRecords) sent 134, received 138
Interface Designated
```
**BPDU guard**

When OS10 detects a BPDU guard violation for an STP enabled port, the system shuts the port down. Use the BPDU Guard error disable recovery option to recover the shut-down ports automatically.

1. When there is BPDU guard violation on a port, OS10 either shuts down the port or moves it to BLOCKED state. Use the following command in CONFIGURATION mode, that shuts down the port. The no version of the command moves the port to BLOCKED state.
   
   ```
 errdisable detect cause bpduguard
   ```

2. To delay the recovery of ports when there is a BPDU Guard violation, configure the recovery interval timer in CONFIGURATION mode.

   ```
 errdisable recovery interval interval-value
   ```

3. In CONFIGURATION mode, use the following command to enable recovering of ports shut down due to detection of a BPDU Guard violation. When the recovery option is enabled, the port is brought up after the recovery timer expires. When the recovery option is
disabled, the port remains shut down indefinitely. You must manually bring up the port using the shutdown and no shutdown commands. The no version of the command disables the recovery option.

```
errdisable recovery cause bpduguard
```

### Example configuration

```
OS10(config)# errdisable detect cause bpduguard
OS10(config)# errdisable recovery interval 45
OS10(config)# errdisable recovery cause bpduguard
```

### View detect and recovery details

```
OS10# show errdisable detect

Error-Disable Cause Detect Status
--------------------- ------------
bpduguard Enabled

OS10# show errdisable recovery

Error-Disable Recovery Timer Interval: 300 seconds

Error-Disable Reason Recovery Status
------------------ ------------
bpduguard Enabled

Interface Errdisable Cause Recovery Time left (seconds)
---------- --------------- -------------------------------
ethernet 1/1/1:1 bpduguard 273
ethernet 1/1/2 bpduguard 4
port-channel 12 bpduguard 45
```

## MST commands

### errdisable detect cause bpduguard

Configures the port to be shut down or moves the port to blocked state on detecting a BPDU guard violation.

**Syntax**
```
errdisable detect cause bpduguard
```

**Parameters**
- None

**Default**
Enabled

**Command Mode**
CONFIGURATION

**Usage Information**
This command applies only to STP-enabled ports. The command takes effect only when BPDU guard is configured on a port.

When the detect cause option is enabled, the port is shut down whenever there is a BPDU guard violation.

When the option is disabled, the port is not shut down but moved to BLOCKING state whenever there is a BPDU guard violation. In this case, the port is operationally DOWN in spanning-tree mode and when the recovery timer expires, the port is UP irrespective of the recovery cause configuration.

The no version of the command disables the detect cause option.

**Example**
```
OS10(config)# errdisable detect cause bpduguard
```
Supported Releases 10.4.2.0 or later

**errdisable recovery cause bpduguard**

Enables to recover the ports shut down due to BPDU Guard violation.

Syntax `errdisable recovery cause bpduguard`

Parameters None

Default Disabled

Command Mode CONFIGURATION

Usage Information This command applies only to STP-enabled ports. The command takes effect only when BPDU guard is configured on a port and `errdisable detect cause bpduguard` is enabled on the port.

When the recovery option is enabled, the port is brought up after the recovery timer expires.

When the recovery option is disabled, the port is shut down indefinitely. You must manually bring up the port using the `shutdown` and `no shutdown` commands.

The `no` version of the command disables the recovery option.

Example

```
OS10(config)# errdisable recovery cause bpduguard
```

Supported Releases 10.4.2.0 or later

**errdisable recovery interval**

Configures recovery interval timer to delay the recovery of ports when there is a BPDU Guard violation.

Syntax `errdisable recovery interval interval-value`

Parameters `interval-value`—Enter the time interval in seconds. The range is from 30 to 65535.

Default 300 seconds

Command Mode CONFIGURATION

Usage Information This command applies only to STP-enabled ports. The command takes effect only when BPDU guard is configured on a port.

The recovery timer starts whenever there is a BPDU guard violation.

The `no` version of the command resets the timer to default value.

Example

```
OS10(config)# errdisable recovery interval 45
```

Supported Releases 10.4.2.0 or later
**instance**

Configures MST instances and one or multiple VLANs mapped to the MST instance.

**Syntax**

```
instance instance-number {vlan vlan-range}
```

**Parameters**

- `instance` — Enter an MST instance value, from 0 to 63.
- `vlan range` — Enter a VLAN range value, from 1 to 4093.

**Default**

Not configured

**Command Mode**

MULTIPLE-SPANNING-TREE

**Usage Information**

By default, all VLANs map to MST instance zero (0) unless you are using the `vlan range` command to map the VLANs to a non-zero instance. The `no` version of this command removes the instance-related configuration.

**Example**

```
OS10(conf-mst)# instance 1 vlan 2-10
OS10(conf-mst)# instance 2 vlan 11-20
OS10(conf-mst)# instance 3 vlan 21-30
```

**Supported Releases**

10.2.0E or later

---

**name**

Assigns a name to the MST region.

**Syntax**

```
name region-name
```

**Parameters**

- `region-name` — Enter a name for an MST region. A maximum of 32 characters.

**Default**

System MAC address

**Command Mode**

MULTIPLE-SPANNING-TREE

**Usage Information**

By default, the MST protocol assigns the system MAC address as the region name. Two MST devices within the same region must share the same region name, including matching case.

**Example**

```
OS10(conf-mst)# name my-mst-region
```

**Supported Releases**

10.2.0E or later

---

**revision**

Configures a revision number for the MSTP configuration.

**Syntax**

```
revision number
```

**Parameters**

- `number` — Enter a revision number for the MSTP configuration, from 0 to 65535.

**Default**

0

**Command Mode**

MULTIPLE-SPANNING-TREE

**Usage Information**

To have a bridge in the same MST region as another, the default values for the revision number must match on all Dell EMC hardware devices. If there are non-Dell EMC devices, ensure the revision number value matches on all the devices. For more information, see Non-Dell Hardware.
Example

OS10(conf-mst)# revision 10

Supported Releases
10.2.0E or later

**spanning-tree bpdufilter**

Enables or disables BPDU filtering on an interface.

**Syntax**

spanning-tree bpdufilter {enable | disable}

**Parameters**

- enable — Enables the BPDU filter on an interface.
- disable — Disables the BPDU filter on an interface.

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

Use the enable parameter to enable BPDU filtering.

**Example**

OS10(conf-if-eth1/1/4)# spanning-tree bpdufilter enable

**Supported Releases**

10.2.0E or later

**spanning-tree bpduguard**

Enables or disables the BPDU guard on an interface.

**Syntax**

spanning-tree bpduguard {enable | disable}

**Parameters**

- enable — Enables the BPDU guard filter on an interface.
- disable — Disables the BPDU guard filter on an interface.

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

BPDU guard prevents a port from receiving BPDUs. If the port receives a BPDU, it is placed in the Error-Disabled state.

**Example**

OS10(conf-if-eth1/1/4)# spanning-tree bpduguard enable

**Supported Releases**

10.2.0E or later

**spanning-tree disable**

Disables Spanning-Tree mode configured with the spanning-tree mode command globally on the switch or on specified interfaces.

**Syntax**

spanning-tree disable

**Parameters**

None

**Default**

Not configured.

**Usage Information**

The no version of this command re-enables STP and applies the currently configured spanning-tree settings.
spanning-tree guard

Enables or disables loop guard or root guard on an interface.

Syntax
```
spanning-tree guard {loop | root | none}
```

Parameters
- **loop** — Enables loop guard on an interface.
- **root** — Enables root guard on an interface.
- **none** — Sets the guard mode to none.

Default
Not configured

Usage Information
Root guard and loop guard configurations are mutually exclusive. Configuring one overwrites the other from the active configuration.

Command Mode
INTERFACE

Example
```
OS10(config-if-eth1/1/4)# spanning-tree guard root
```

Supported Releases
10.2.0E or later

spanning-tree mode

Enables an STP type: RSTP, Rapid-PVST+, or MST.

Syntax
```
spanning-tree mode {rstp | mst | rapid-pvst}
```

Parameters
- **rstp** — Sets STP mode to RSTP.
- **mst** — Sets STP mode to MST.
- **rapid-pvst** — Sets STP mode to RPVST+.

Default
RPVST+

Command Mode
CONFIGURATION

Usage Information
All STP instances stop in the previous STP mode, and restart in the new mode. You can also change to RSTP/MST mode.

Example (RSTP)
```
OS10(config)# spanning-tree mode rstp
```

Example (MST)
```
OS10(config)# spanning-tree mode mst
```

Supported Releases
10.2.0E or later
### spanning-tree mst

Configures an MST instance and determines root and bridge priorities.

**Syntax**

```
spanning-tree mst instance number priority | root {primary | secondary}
```

**Parameters**

- `instance number` — Enter an MST instance number, from 0 to 63.
- `priority priority value` — Set a bridge priority value in increments of 4096, from 0 to 61440. Valid priority values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.
- `root` — Enter a primary or secondary root.
  - `primary` — Enter a device as a primary root.
  - `secondary` — Enter a device as a secondary root.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The MSTP determines the root bridge but you can assign one bridge a lower priority to increase the probability it being the root bridge. A lower `priority-value` increases the probability of the bridge becoming a root bridge. The no version of this command resets the value to the default.

**Example**

```
OS10(config)# spanning-tree mst 0 priority 0
OS10(config)# spanning-tree mst 2 root primary
```

**Supported Releases**

10.2.0E or later

### spanning-tree msti

Configures the MSTI, cost, and priority values for an interface.

**Syntax**

```
spanning-tree msti instance {cost cost | priority value}
```

**Parameters**

- `msti instance` — Enter the MST instance number, from 0 to 63.
- `cost cost` — (Optional) Enter a port cost value, from 1 to 200000000. Default values:
  - 100 Mb/s Ethernet interface = 200000
  - 1-Gigabit Ethernet interface = 20000
  - 10-Gigabit Ethernet interface = 2000
  - Port-channel interface with one 100 Mb/s Ethernet = 200000
  - Port-channel interface with one 1 Gigabit Ethernet = 20000
  - Port-channel interface with one 10 Gigabit Ethernet = 2000
  - Port-channel with two 1 Gigabit Ethernet = 18000
  - Port-channel with two 10 Gigabit Ethernet = 18000
  - Port-channel with two 100 Mbps Ethernet = 180000
- `priority value` — Enter a value in increments of 16 as the priority, from 0 to 240, default 128.

**Default**

Priority value is 128

**Command Mode**

INTERFACE
Usage Information

The cost value is based on the interface type. The greater the cost value, the less likely the port is selected to be a forwarding port. The priority influences the likelihood that a port is selected to be a forwarding port if several ports have the same cost value.

Example

```
OS10(conf-if-eth1/1/1)# spanning-tree msti 1 priority 0
OS10(conf-if-eth1/1/1)# spanning-tree msti 1 cost 3
```

Supported Releases

10.2.0E or later

---

**spanning-tree mst configuration**

Enters MST mode to configure MSTP from Configuration mode.

Syntax

```
spanning-tree mst configuration
```

Parameters

None

Default

Disabled

Command Mode

CONFIGURATION

Usage Information

Use this command to enter STP MST configuration mode.

Example

```
OS10(config)# spanning-tree mst configuration
OS10(conf-mst)#
```

Supported Releases

10.2.0E or later

---

**spanning-tree mst disable**

Disables spanning tree on the specified MST instance.

Syntax

```
spanning-tree mst instance-number disable
```

Parameters

`instance-number`—Enter the instance number, from 0 to 63.

Default

Enabled

Command Mode

CONFIGURATION

Usage Information

The no version of this command enables spanning tree on the specified MST instance.

Example

```
OS10(config)# spanning-tree mst 10 disable
```

Supported Releases

10.4.0E(R1) or later

---

**spanning-tree mst force-version**

Configures a forced version of STP to transmit BPDUs.

Syntax

```
spanning-tree mst force-version {stp | rstp}
```

Parameters

- `stp` — Forces the version for the BPDUs transmitted by MST to STP.
- `rstp` — Forces the version for the BPDUs transmitted by MST to RSTP.

Default

Not configured
**spanning-tree mst force-version**

Forces a bridge that supports MST to operate in a STP-compatible mode.

**Syntax**

```
spanning-tree mst force-version
```

**Parameters**

- `force-version` -- Enter the number of seconds an interface waits in the Blocking or Learning States before moving to the Forwarding state.

**Default**

The no version of this command resets the value to the default.

**Example**

```
OS10(config)# spanning-tree mst force-version
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree mst forward-time**

Configures a time interval for the interface to wait in the Blocking state or the Learning state before moving to the Forwarding state.

**Syntax**

```
spanning-tree mst forward-time
```

**Parameters**

- `seconds` -- Enter the number of seconds an interface waits in the Blocking or Learning States before moving to the Forwarding state, from 4 to 30.

**Default**

15 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

The no version of this command resets the value to the default.

**Example**

```
OS10(config)# spanning-tree mst forward-time 16
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree mst hello-time**

Sets the time interval between generation and transmission of MSTP BPDUs.

**Syntax**

```
spanning-tree mst hello-time
```

**Parameters**

- `seconds` -- Enter a hello-time interval value in seconds, from 1 to 10.

**Default**

2 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

Dell EMC recommends increasing the hello-time for large configurations, especially configurations with multiple ports. The no version of this command resets the value to the default.

**Example**

```
OS10(config)# spanning-tree mst hello-time 5
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree mst mac-flush-threshold**

Sets the threshold value for flushing the MAC addresses.

**Syntax**

```
spanning-tree mst instance-number mac-flush-threshold threshold-value
```

**Parameters**

- `instance-number` -- Enter the instance number, from 0 to 63.
- `threshold-value` -- Enter the threshold value for the number of flushes, from 0 to 65535. The default value is 5.

**Default**

Not configured
spanning-tree mst max-age

Configures the time period the bridge maintains configuration information before refreshing the information by recomputing the MST topology.

Syntax  
```
max-age seconds
```

Parameters
- `seconds` — Enter a maximum age value in seconds, from 6 to 40.

Default
20 seconds

Command Mode
CONFIGURATION

Usage Information
The no version of this command resets the value to the default.

Example
```
OS10(config)# spanning-tree mst max-age 10
```

Supported Releases
10.2.0E or later

spanning-tree mst max-hops

Configures the maximum hop count for a BPDU to travel before it is discarded.

Syntax  
```
spanning-tree mst max-hops number
```

Parameters
- `number` — Enter a maximum hop value, from 6 to 40.

Default
20

Command Mode
CONFIGURATION

Usage Information
A device receiving BPDUs waits until the `max-hops` value expires before discarding it. When a device receives the BPDUs, it decrements the received value of the remaining hops and uses the resulting value as remaining-hops in the BPDUs. If the remaining MSTP 1333 hops reach zero, the device discards the BPDU and ages out any information that it holds for the port. The command configuration applies to all common IST (CIST) in the MST region.

Example
```
OS10(config)# spanning-tree mst max-hops 30
```

Supported Releases
10.2.0E or later

spanning-tree port

Sets the port type as the EdgePort.

Syntax  
```
spanning-tree port type edge
```

Parameters
None

Default
Not configured
**Command Mode**

INTERFACE

**Usage Information**

When you configure an EdgePort on a device running STP, the port immediately transitions to the Forwarding state. Only configured ports connected to end hosts act as EdgePorts.

**Example**

```
OS10(config)# spanning-tree port type edge
```

**Supported Releases**

10.2.0E or later

---

**show errdisable**

Displays information on errdisable configurations and port recovery status.

**Syntax**

```
show errdisable [detect | recovery]
```

**Parameters**

- `detect`—Displays details of detect cause configuration.
- `recovery`—Displays details of recovery cause, recovery interval, and recovery status of the error disabled port.

**Default**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show errdisable detect
Error-Disable Cause Detect Status

bpduguard Enabled

OS10# show errdisable recovery
Error-Disable Recovery Timer Interval: 300 seconds
Error-Disable Reason Recovery Status

bpduguard Enabled

Interface Errdisable Cause Recovery Time left (seconds)

ethernet 1/1/1:1 bpduguard 273
ethernet 1/1/2 bpduguard 4
port-channel 12 bpduguard 45
```

**Supported Releases**

10.4.2.0 or later

---

**show spanning-tree mst**

Displays MST configuration information.

**Syntax**

```
show spanning-tree mst configuration
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC
show spanning-tree msti

Displays MST instance information.

Syntax

```
show spanning-tree msti [instance-number [brief | guard | interface interface]]
```

Parameters

- `instance-number` — (Optional) Displays MST instance information (0 to 63).
- `brief` — (Optional) Displays MST instance summary information.
- `guard` — (Optional) Displays which guard is enabled and current port state.
- `interface` — (Optional) Displays interface type information:
  - `ethernet node/slot/port[:subport]` — Enter the Ethernet port information (1 to 48).
  - `port-channel` — Enter the port-channel interface information (1 to 128).

Default

Not configured

Command Mode

EXEC

Usage Information

View the MST instance information for a specific MST instance number in detail or brief, or view physical Ethernet ports or port-channel information.

Example (Brief)

```
OS10# show spanning-tree msti 0 brief
Spanning tree enabled protocol msti with force-version mst
MSTI 0 VLANs mapped 1-99,101-199,301-4093
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 90b1.1cf4.9b8a
Root Bridge hello time 2, max age 20, forward delay 15, max hops 20
Bridge ID Priority 32768, Address 90b1.1cf4.9b8a
We are the root of MSTI 0
Configured hello time 2, max age 20, forward delay 15, max hops 20
Name PortID Prio Cost Sts Cost Bridge ID PortID
--------- -------- ------- ------ ---- --------- --------
ethernet1/1/1 132.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.132
ethernet1/1/2 136.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.136
ethernet1/1/3 140.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.140
ethernet1/1/4 144.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.144
ethernet1/1/5 148.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.148
ethernet1/1/6 152.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.152
ethernet1/1/7 156.128 128 200000000 BLK 0 32768 90b1.1cf4.9b8a 128.156
... Interface
Name Role PortID Prio Cost Sts Cost Link-type Edge
--------- ------- ------ ------ ---- ---- ------------------
ethernet1/1/1 Disb 128.132 128 200000000 BLK 0 SHARED No
ethernet1/1/2 Disb 128.136 128 200000000 BLK 0 SHARED No
ethernet1/1/3 Disb 128.140 128 200000000 BLK 0 SHARED No
```
Example (Interface)

OS10# show spanning-tree msti 1 interface ethernet 1/1/1
ethernet1/1/1 of vlan1 is root Forwarding
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
Boundary :internal bpdu filter : bpdu guard : bpduguard shutdown-on-vi-olation :disable RootGuard: disable LoopGuard disable
Bpdus (MRecords) sent 3779, received 7
Interface             Designated
Name       PortID  Prio  Cost  Sts Cost Bridge ID     PortID
------------------------------------------------------------
ethernet1/1/1 128.132 128 20000 FWD 0 32768 74e6.e2f5.dd80 128.132

Example (Guard)

OS10# show spanning-tree msti 1 guard
Interface
Name             Instance  Sts   Guard Type
------------------------------------------
ethernet1/1/1    MSTI 1      FWD   root
ethernet1/1/2    MSTI 1      FWD   loop
ethernet1/1/3    MSTI 1      BLK   none
ethernet1/1/4    MSTI 1      FWD   none
ethernet1/1/5    MSTI 1      BLK   none
ethernet1/1/6    MSTI 1      BLK   none
ethernet1/1/7    MSTI 1      BLK   none
ethernet1/1/8    MSTI 1      BLK   none
...

Command History 10.2.0E or later

Rapid per-VLAN spanning-tree plus

RPVST+ is an RSTP to create a single topology per VLAN. RPVST+ is enabled by default, provides faster convergence, and runs on the default VLAN (VLAN 1).

Configuring Rapid-PVST+ is a four-step process:

1. Ensure the interfaces are in L2 mode.
2. Place the interfaces in VLANs. By default, switchport interfaces are members of the default (VLAN 1).
3. Enable Rapid-PVST+. This step is only required if another variation of STP is present.
4. (Optional) Select a non-default bridge-priority for the VLAN for load balancing.
By default, each VLAN instance is assigned default bridge priority 32768. For example, all three instances have the same forwarding topology. Traffic load balancing is not achievable with this kind of priority assignment. To achieve load balancing, you must assign each instance a different priority, as shown in *Load Balancing with RPVST*+.

**Load balance and root selection**

All VLANs use the same forwarding topology — R2 is elected as the root and all 10G Ethernet ports have the same cost. RPVST+ changes the bridge priority of each bridge so that a different forwarding topology generates for each VLAN.

To achieve RPVST+ load balancing, assign a different priority on each bridge.
Enable RPVST+

By default, RPVST+ is enabled and creates an instance only after you add the first member port to a VLAN. To participate in RPVST+, port-channel or physical interfaces must be a member of a VLAN. Add all physical and port-channel interfaces to the default VLAN (VLAN1).

- Enable Rapid-PVST+ mode in CONFIGURATION mode.
  
  ```
 spanning-tree mode rapid-pvst
  ```

Configure RPVST+

- Configure RPVST+ mode:
  ```
 spannig-tree mode rapid-pvst
  ```

View RPVST+ configuration

- View RPVST+ configuration:
  ```
 OS10(config)# spanning-tree mode rapid-pvst
  ```

Select root bridge

RPVST+ determines the root bridge. Assign one bridge a lower priority to increase the likelihood that it becomes the root bridge. The `show spanning-tree brief` command displays information about all ports regardless of the operational status.

- Assign a number as the bridge priority or designate it as the root in CONFIGURATION mode, from 0 to 61440.
  ```
 spanning-tree {vlan vlan-id priority priority-value}
  ```

- `vlan-id` — Enter a value between 1 to 4093.
- `priority priority-value` — Enter the priority value in increments of 4096, default is 32768. The lower the number assigned, the more likely this bridge becomes the root bridge. The bridge priority the valid values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, or 61440. All other values are rejected.

Configure root bridge

- Configure root bridge:
  ```
 OS10(config)# spanning-tree vlan 1 priority 4096
  ```

View active configuration

- View active configuration:
  ```
 OS10(config)# do show spanning-tree active
  ```

240 Layer 2
### Interface Designated Name
<table>
<thead>
<tr>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/5</td>
<td>128.276</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>4097</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>128.280</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>4097</td>
</tr>
</tbody>
</table>

### View brief configuration

```
OS10# show spanning-tree brief
Spanning tree enabled protocol rapid-pvst with force-version rstp
VLAN 1
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 4097, Address 90b1.1cf4.a523
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 4097, Address 90b1.1cf4.a523
We are the root of VLAN 1
Configured hello time 2, max age 20, forward delay 15
```

### Interface Role PortID Prio Cost Sts Link-type Edge
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Link-type</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>Desg</td>
<td>128.276</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>Desg</td>
<td>128.280</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>AUTO</td>
<td>No</td>
</tr>
</tbody>
</table>

### Interface Layer 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Link-type</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>128.260</td>
<td>128</td>
<td>200000000</td>
<td>FWD</td>
<td>0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>128.264</td>
<td>128</td>
<td>200000000</td>
<td>FWD</td>
<td>0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/3</td>
<td>128.268</td>
<td>128</td>
<td>200000000</td>
<td>FWD</td>
<td>0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>128.272</td>
<td>128</td>
<td>200000000</td>
<td>FWD</td>
<td>0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5</td>
<td>128.276</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>4097</td>
<td>90b1.1cf4.a523</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>128.280</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>4097</td>
<td>90b1.1cf4.a523</td>
</tr>
</tbody>
</table>

Layer 2
Root assignment

RPVST+ assigns the root bridge according to the lowest bridge ID. Assign one bridge as the root bridge and the other as a secondary root bridge.

- Configure the device as the root or secondary root in CONFIGURATION mode.
  ```
 spanning-tree vlan vlan-id root {primary | secondary}
  ```
  - `vlan-id` — Enter the VLAN ID number, from 1 to 4093.
  - `primary` — Enter the bridge as primary or root bridge. The primary bridge value is 24576.
  - `secondary` — Enter the bridge as secondary or secondary root bridge. The secondary bridge value is 28672.

Configure root bridge as primary

```
OS10(config)# spanning-tree vlan 1 root primary
```

Verify root bridge information

```
OS10# show spanning-tree active
```

Loop guard

To configure loop guard on an interface:

- Enable loop guard on a per-port or port-channel interface in INTERFACE mode.
  ```
 spanning-tree guard {loop | root | none}
  ```
  - `loop` — Enables loop guard on an interface.
  - `root` — Enables root on an interface.
  - `none` — Enables the guard mode to none.
- Disable loop guard on a port or port-channel interface in INTERFACE mode.
  ```
 no spanning-tree guard loop
  ```

Port enabled with loop guard conditions

- Loop guard is supported on any STP-enabled port or port-channel interface in RPVST+ mode.
- You cannot enable root guard and loop guard at the same time on an STP port. The loop guard configuration overwrites an existing root guard configuration and vice versa.

- Enabling BPDU guard and loop guard at the same time on a port results in a port that remains in the Blocking state and prevents traffic from flowing through it. For example, when you configure both Portfast BPDU guard and loop guard:
  - If a BPDU is received from a remote device, BPDU guard places the port in the Err-Disabled Blocking state and no traffic forwards on the port.
  - If no BPDU is received from a remote device which was sending BPDUs, loop guard places the port in the Loop-Inconsistent Blocking state and no traffic forwards on the port.

- When used in a PVST+ network, STP loop guard performs per-port or per port-channel at a VLAN level. If no BPDUs are received on a port-channel interface, the port or port-channel transitions to a Loop-Inconsistent or Blocking state only for this VLAN.

### Global parameters

All non-root bridges accept the timer values on the root bridge.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward-time</td>
<td>Amount of time required for an interface to transition from the Discarding state to the Learning state or from the Learning state to the Forwarding state.</td>
</tr>
<tr>
<td>Hello-time</td>
<td>Time interval within which the bridge sends BPDUs.</td>
</tr>
<tr>
<td>Max-age</td>
<td>Length of time the bridge maintains configuration information before it refreshes information by recomputing the RPVST+ topology.</td>
</tr>
</tbody>
</table>

- Modify the forward-time in seconds in CONFIGURATION mode, from 4 to 30, default 15.
  ```text
 spanning-tree vlan vlan-id forward-time seconds
  ```

- Modify the hello-time in seconds in CONFIGURATION mode, from 1 to 10, default 2. With large configurations involving more numbers of ports, Dell EMC recommends increasing the hello-time.
  ```text
 spanning-tree vlan vlan-id hello-time seconds
  ```

- Modify the max-age (in seconds) in CONFIGURATION mode, from 6 to 40, default 20.
  ```text
 spanning-tree vlan vlan-id max-age seconds
  ```

### View RPVST+ global parameters

```text
OS10# show spanning-tree active
Spanning tree enabled protocol rapid-pvst with force-version rstp
VLAN 1
 Executing IEEE compatible Spanning Tree Protocol
 Root ID Priority 32769, Address 90b1.1cf4.a523
 Root Bridge hello time 2, max age 20, forward delay 15
 Bridge ID Priority 32769, Address 90b1.1cf4.a523
We are the root of VLAN 1
 Configured hello time 2, max age 20, forward delay 15
```

### RPVST+ commands

#### clear spanning-tree counters

Clears the counters for STP.

**Syntax**

```text
clear spanning-tree counters [interface [ethernet node/slot/port[:subport] | port-channel number]]
```

**Parameters**

- interface — Enter the interface type:
- `ethernet node/slot/port[:subport]` — Deletes the spanning-tree counters from a physical port.
- `port-channel number` — Deletes the spanning-tree counters for a port-channel interface, from 1 to 128.

Default: Not configured

Command Mode: EXEC

Usage Information: Deletes the spanning-tree counters from a physical port or a port-channel interface.

Example:
```
OS10# clear spanning-tree counters interface port-channel 10
```

Supported Releases: 10.2.0E or later

### clear spanning-tree detected-protocol

Forces the MST ports to renegotiate with neighbors.

**Syntax**

```
clear spanning-tree detected-protocol [interface {ethernet node/slot/port[:subport] | port-channel number}]
```

**Parameters**

- `interface` — Enter the interface type:
  - `ethernet node/slot/port[:subport]` — Enter the Ethernet interface information, from 1 to 48.
  - `port-channel number` — Enter the port-channel number, from 1 to 128.

Default: Not configured

Command Mode: EXEC

Usage Information: Forces the RPVST+ port to re-negotiate with neighbors. If this command is used without parameters, the command applies to each device port.

Example:
```
OS10# clear spanning-tree detected-protocol interface ethernet 1/1/1
```

Supported Release: 10.2.0E or later

### show spanning-tree vlan

Displays RPVST+ status and configuration information by VLAN ID.

**Syntax**

```
show spanning-tree vlan vlan-id
```

**Parameters**

- `vlan vlan-id` — Enter the VLAN ID number, from 1 to 4093.

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example:
```
OS10# show spanning-tree
Spanning tree enabled protocol rapid-pvst
VLAN 1
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32769, Address 74e6.e2f5.bb80
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32769, Address 74e6.e2f5.bb80
We are the root of VLAN 1
```
Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>128.260</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>128.264</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/3</td>
<td>128.268</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>128.272</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5</td>
<td>128.276</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>128.280</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/7</td>
<td>128.284</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/8</td>
<td>128.288</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/9</td>
<td>128.292</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/10</td>
<td>128.296</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/11</td>
<td>128.300</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/12</td>
<td>128.304</td>
<td>128</td>
<td>200000000</td>
<td>FWD 0</td>
<td>32769</td>
<td>0000.0000.0000</td>
</tr>
</tbody>
</table>

Supported Releases  10.2.0E or later

**spanning-tree bpdufilter**

Enables or disables BPDU filtering on an interface.

**Syntax**

```
spanning-tree bpdufilter {enable | disable}
```

**Parameters**

- `enable` — Enables the BPDU filter on an interface.
- `disable` — Disables the BPDU filter on an interface.

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

Use the `enable` parameter to enable BPDU filtering.

**Example**

```
OS10(conf-if-eth1/1/4)# spanning-tree bpdufilter enable
```

**Supported Releases**  10.2.0E or later

**spanning-tree bpduguard**

Enables or disables the BPDU guard on an interface.

**Syntax**

```
spanning-tree bpduguard {enable | disable}
```

**Parameters**

- `enable` — Enables the BPDU guard filter on an interface.
- `disable` — Disables the BPDU guard filter on an interface.

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

BPDU guard prevents a port from receiving BPDUs. If the port receives a BPDU, it is placed in the Error-Disabled state.

**Example**

```
OS10(conf-if-eth1/1/4)# spanning-tree bpduguard enable
```

**Supported Releases**  10.2.0E or later
**spanning-tree disable**

Disables Spanning-Tree mode configured with the `spanning-tree mode` command globally on the switch or on specified interfaces.

**Syntax**

```
spanning-tree disable
```

**Parameters**

None

**Default**

Not configured.

**Usage Information**

The `no` version of this command re-enables STP and applies the currently configured spanning-tree settings.

**Command Mode**

- **CONFIGURATION**
- **INTERFACE**

**Example**

```
OS10(config)# interface ethernet 1/1/4
OS10(config-if-eth1/1/4)# spanning-tree disable
```

**Supported Releases**

10.3.0E or later

---

**spanning-tree guard**

Enables or disables loop guard or root guard on an interface.

**Syntax**

```
spanning-tree guard {loop | root | none}
```

**Parameters**

- `loop` — Enables loop guard on an interface.
- `root` — Enables root guard on an interface.
- `none` — Sets the guard mode to none.

**Default**

Not configured

**Usage Information**

Root guard and loop guard configurations are mutually exclusive. Configuring one overwrites the other from the active configuration.

**Command Mode**

**INTERFACE**

**Example**

```
OS10(conf-if-eth1/1/4)# spanning-tree guard root
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree mode**

Enables an STP type: RSTP, Rapid-PVST+, or MST.

**Syntax**

```
spanning-tree mode {rstp | mst | rapid-pvst}
```

**Parameters**

- `rstp` — Sets STP mode to RSTP.
- `mst` — Sets STP mode to MST.
- `rapid-pvst` — Sets STP mode to RPVST+.

**Default**

RPVST+
Command Mode CONFIGURATION

Usage Information All STP instances stop in the previous STP mode, and restart in the new mode. You can also change to RSTP/MST mode.

Example (RSTP) OS10(config)# spanning-tree mode rstp

Example (MST) OS10(config)# spanning-tree mode mst

Supported Releases 10.2.0E or later

**spanning-tree port**

Sets the port type as the EdgePort.

Syntax `spanning-tree port type edge`

Parameters None

Default Not configured

Command Mode INTERFACE

Usage Information When you configure an EdgePort on a device running STP, the port immediately transitions to the Forwarding state. Only configured ports connected to end hosts act as EdgePorts.

Example OS10(config)# spanning-tree port type edge

Supported Releases 10.2.0E or later

**spanning-tree vlan cost**

Sets the path cost of the interface per VLAN for PVST calculations.

Syntax `spanning-tree vlan vlan-id cost {value}`

Parameters `value` — Enter a port cost value to set the path cost of the interface for PVST calculations, from 1 to 200000000.

Defaults
- 100- Mb/s Ethernet interface = 200000
- 1 Gigabit Ethernet interface = 20000
- 10-Gigabit Ethernet interface = 2000
- Port-channel interface with one 100 Mb/s Ethernet = 200000
- Port-channel interface with one 1 Gigabit Ethernet = 20000
- Port-channel interface with one 10 Gigabit Ethernet = 2000
- Port-channel with two 1 Gigabit Ethernet = 18000
- Port-channel with two 10 Gigabit Ethernet = 1800
- Port-channel with two 100 Mbps Ethernet = 180000

Command Mode INTERFACE

Usage Information The media speed of a LAN interface determines the STP port path cost default value.

Example OS10(conf-if-eth1/1/4)# spanning-tree vlan 10 cost 1000
spanning-tree vlan disable

Disables spanning tree on a specified VLAN.

Syntax: `spanning-tree vlan vlan-id disable`

Parameters:
- `vlan-id`: Enter the VLAN ID number, from 1 to 4093.

Default: Enabled

Command Mode: CONFIGURATION

Usage Information: The `no` version of this command enables spanning tree on the specified VLAN.

Example:
```
OS10(config)# spanning-tree vlan 100 disable
```

Supported Releases: 10.4.0E(R1) or later

spanning-tree vlan forward-time

Configures a time interval for the interface to wait in the Blocking state or Learning state before moving to the Forwarding state.

Syntax: `spanning-tree vlan vlan-id forward-time seconds`

Parameters:
- `vlan-id`: Enter a VLAN ID number, from 1 to 4093.
- `seconds`: Enter the forward-delay time in seconds, from 4 to 30.

Default: 15 seconds

Command Mode: CONFIGURATION

Usage Information: None

Example:
```
OS10(config)# spanning-tree vlan 10 forward-time 16
```

Supported Releases: 10.2.0E or later

spanning-tree vlan force-version

Configures a forced version of spanning-tree to transmit BPDUs.

Syntax: `spanning-tree vlan vlan-id force-version {stp | rstp}

Parameters:
- `stp`: Forces the version for the BPDUs transmitted by RPVST+ to STP.
- `rstp`: Forces the version for the BPDUs transmitted by RPVST+ to RSTP

Default: Not configured

Command Mode: CONFIGURATION

Usage Information: Forces a bridge that supports RPVST+ to operate in a STP-compatible mode.

Example:
```
OS10(config)# spanning-tree mst force-version
```
spanning-tree vlan hello-time

Sets the time interval between generation and transmission of RPVST BPDUs.

**Syntax**

```
spanning-tree vlan vlan-id hello-time seconds
```

**Parameters**

- `vlan-id` — Enter the VLAN ID number, from 1 to 4093.
- `seconds` — Enter a hello-time interval value in seconds, from 1 to 10.

**Default**

2 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

Dell EMC recommends increasing the hello-time for large configurations, especially configurations with multiple ports.

**Example**

```
OS10(config)# spanning-tree vlan 10 hello-time 5
```

**Supported Releases** 10.2.0E or later

---

spanning-tree vlan mac-flush-threshold

Sets the threshold value to flush MAC addresses on a specified VLAN.

**Syntax**

```
spanning-tree vlan vlan-id mac-flush-threshold threshold-value
```

**Parameters**

- `vlan-id` — Enter the VLAN ID number, from 1 to 4093.
- `threshold-value` — Enter the threshold value for the number of flushes, from 0 to 65535. The default value is 0.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the threshold value.

**Example**

```
OS10(config)# spanning-tree vlan 100 mac-flush-threshold 255
```

**Supported Releases** 10.4.0E(R1) or later

---

spanning-tree vlan max-age

Configures the time period the bridge maintains configuration information before refreshing the information by recomputing RPVST.

**Syntax**

```
spanning-tree vlan vlan-id max-age seconds
```

**Parameters**

- `max-age seconds` — Enter a maximum age value in seconds, from 6 to 40.

**Default**

20 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

None
spanning-tree vlan priority

Sets the priority value for RPVST+.

**Syntax**

```
spanning-tree vlan vlan-id priority priority value
```

**Parameters**

- `priority priority value` — Enter a bridge-priority value in increments of 4096, from 0 to 61440. Valid priority values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The RPVST+ protocol determines the root bridge. Assign one bridge a lower priority to increase the probability of it being the root bridge. A lower `priority value` increases the probability of the bridge becoming a root bridge.

**Example**

```
OS10(config)# spanning-tree vlan 10 priority 0
```

**Supported Releases**

10.2.0E or later

spanning-tree vlan priority (Interface)

Sets an interface priority when two bridges compete for position as the root bridge.

**Syntax**

```
spanning-tree vlan vlan-id priority value
```

**Parameters**

- `value` — Enter a priority value in the increments of 16, from 0 to 240.

**Default**

128

**Command Mode**

INTERFACE

**Usage Information**

Breaks the tie between the two bridges which compete for root bridge.

**Example**

```
OS10(conf-if-eth1/1/4)# spanning-tree vlan 10 priority 16
```

**Supported Releases**

10.2.0E or later

spanning-tree vlan root

Designates a device as the primary or secondary root bridge.

**Syntax**

```
spanning-tree vlan vlan-id root {primary | secondary}
```

**Parameters**

- `vlan-id` — Enter a VLAN ID number, from 1 to 4093.
- `root` — Designate the bridge as the primary or secondary root.
- `primary` — Designate the bridge as the primary or root bridge.
- `secondary` — Designate the bridge as the secondary or secondary root bridge.

**Default**

Not configured
Rapid Spanning-Tree Protocol

Rapid Spanning-Tree Protocol (RSTP) is similar to STP, but provides faster convergence and interoperability with devices configured with STP and MSTP. RSTP is disabled by default. All enabled interfaces in L2 mode automatically add to the RSTP topology.

Configuring RSTP is a two-step process:
1. Ensure that the interfaces are in L2 mode.
2. Globally enable RSTP.

Enable globally

RSTP enables STP on all physical and port-channel interfaces which are in L2 mode to automatically include the interfaces as part of the RSTP topology. Only one path from a bridge to any other bridge is enabled. Bridges block a redundant path by disabling one of the link ports.

- Configure Spanning-Tree mode to RSTP in CONFIGURATION mode.
  ```
 spanning-tree mode rstp
  ```
- Disable RSTP globally for all L2 interfaces in CONFIGURATION mode.
  ```
 spanning-tree disable
  ```
- Remove an interface from the RSTP topology in INTERFACE mode.
  ```
 spanning-tree disable
  ```
- Re-enable an interface in INTERFACE mode.
  ```
 no spanning-tree disable
  ```
- Re-enable RSTP globally for all L2 interfaces in CONFIGURATION mode.
  ```
 no spanning-tree disable
  ```

![Layer 2 Diagram](image-url)
**View all port participating in RSTP**

```
OS10# show spanning-tree
Spanning tree enabled protocol rstp with force-version rstp
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32768, Address 90b1.1cf4.a523
Configured hello time 2, max age 20, forward delay 15
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>Disb</td>
<td>128.260</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>Disb</td>
<td>128.264</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/3</td>
<td>Disb</td>
<td>128.268</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>Disb</td>
<td>128.272</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5:1</td>
<td>Disb</td>
<td>128.276</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5:2</td>
<td>Disb</td>
<td>128.277</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5:3</td>
<td>Disb</td>
<td>128.278</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/5:4</td>
<td>Disb</td>
<td>128.279</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/6:1</td>
<td>FWD</td>
<td>128.280</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>ethernet1/1/6:2</td>
<td>FWD</td>
<td>128.281</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>ethernet1/1/6:3</td>
<td>FWD</td>
<td>128.282</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>ethernet1/1/6:4</td>
<td>BLK</td>
<td>128.283</td>
<td>128</td>
<td>2000</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>ethernet1/1/7</td>
<td>Disb</td>
<td>128.284</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/8</td>
<td>Disb</td>
<td>128.288</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/9</td>
<td>Disb</td>
<td>128.292</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/10</td>
<td>Disb</td>
<td>128.296</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/11</td>
<td>Disb</td>
<td>128.300</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/12</td>
<td>Disb</td>
<td>128.304</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/13</td>
<td>Disb</td>
<td>128.308</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/14</td>
<td>Disb</td>
<td>128.312</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/15</td>
<td>Disb</td>
<td>128.316</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/16</td>
<td>Disb</td>
<td>128.320</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/17</td>
<td>Disb</td>
<td>128.324</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/18</td>
<td>Disb</td>
<td>128.328</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/19</td>
<td>Disb</td>
<td>128.332</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/20</td>
<td>Disb</td>
<td>128.336</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/21</td>
<td>Disb</td>
<td>128.340</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/22</td>
<td>Disb</td>
<td>128.344</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/23</td>
<td>Disb</td>
<td>128.348</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/24</td>
<td>Disb</td>
<td>128.352</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/25</td>
<td>Disb</td>
<td>128.356</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/26</td>
<td>Disb</td>
<td>128.360</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/27</td>
<td>Disb</td>
<td>128.364</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/28</td>
<td>Disb</td>
<td>128.368</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/29</td>
<td>Disb</td>
<td>128.372</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/30</td>
<td>Disb</td>
<td>128.376</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/31</td>
<td>Disb</td>
<td>128.380</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
<tr>
<td>ethernet1/1/32</td>
<td>Disb</td>
<td>128.384</td>
<td>128</td>
<td>200000000</td>
<td>BLK</td>
<td>0</td>
<td>0000.0000.0000</td>
</tr>
</tbody>
</table>

**Global parameters**

The root bridge sets the values for forward-time, hello-time, and max-age, and overwrites the values set on other bridges participating in the RSTP group.
NOTE: Dell EMC recommends that only experienced network administrators change the RSTP group parameters. Poorly planned modification of the RSTP parameters can negatively affect network performance.

**Forward-time**
15 seconds — Amount of time an interface waits in the Listening state and Learning state before it transitions to the Forwarding state.

**Hello-time**
2 seconds — Time interval in which the bridge sends RSTP BPDUs.

**Max-age**
20 seconds — Length of time the bridge maintains configuration information before it refreshes that information by recomputing the RSTP topology.

**Port cost**
Port cost values to set the path cost of the interface:

- 100-Mb/s Ethernet interfaces — 200000
- 1-Gigabit Ethernet interfaces — 20000
- 10-Gigabit Ethernet interfaces — 2000
- 40-Gigabit Ethernet interfaces — 500
- Port-channel with 100 Mb/s Ethernet interfaces — 200000
- Port-channel with 1-Gigabit Ethernet interfaces — 20000
- Port-channel with 10-Gigabit Ethernet interfaces — 2000
- Port-channel with 1x40Gigabit Ethernet interface — 500
- Port-channel with 2x40Gigabit Ethernet interfaces — 250

- Change the forward-time in CONFIGURATION mode, from 4 to 30, default 15.
  `spanning-tree rstp forward-time seconds`
- Change the hello-time in CONFIGURATION mode, from 1 to 10, default 2. With large configurations, especially those configurations with more ports, Dell EMC recommends increasing the hello-time.
  `spanning-tree rstp hello-time seconds`
- Change the max-age in CONFIGURATION mode, from 6 to 40, default 20.
  `spanning-tree rstp max-age seconds`

**View current interface parameters**

OS10# show spanning-tree active

Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 90b1.1cf4.9b8a
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32768, Address 90b1.1cf4.9b8a
We are the root
Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
</table>
| ethernet1/1 | 244.128 128| 500 BLK 0| 32768| 90b1.1cf4.9b8a | 128.244
| ethernet1/2 | 248.128 128| 500 BLK 0| 32768| 90b1.1cf4.9b8a | 128.248
| ethernet1/3 | 252.128 128| 500 FWD 0| 32768| 90b1.1cf4.9b8a | 128.252
| ethernet1/4 | 256.128 128| 500 BLK 0| 32768| 90b1.1cf4.9b8a | 128.256

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Link-type</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1</td>
<td>Altr</td>
<td>128.244</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/2</td>
<td>Altr</td>
<td>128.248</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/3</td>
<td>Root</td>
<td>128.252</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
<tr>
<td>ethernet1/4</td>
<td>Altr</td>
<td>128.256</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>AUTO</td>
<td>No</td>
</tr>
</tbody>
</table>

**Interface parameters**

Set the port cost and port priority values on interfaces in L2 mode.
Port cost
Value based on the interface type. The previous table lists the default values. The greater the port cost, the less likely the port is selected as a forwarding port.

Port priority
Influences the likelihood a port is selected to be a forwarding port in case several ports have the same port cost.

- Change the port cost of an interface in INTERFACE mode, from 1 to 200000000.
  
  ```
 spanning-tree rstp cost cost
  ```

- Change the port priority of an interface in INTERFACE mode, from 0 to 240, default 128.
  
  ```
 spanning-tree rstp priority priority-value
  ```

View current global parameter values

OS10# show spanning-tree active

Spanning tree enabled protocol rstp with force-version rstp
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 90b1.1cf4.9b8a
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 32768, Address 90b1.1cf4.9b8a
We are the root
Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>244.128</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
<td>90b1.1cf4.9b8a 128.244</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>248.128</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
<td>90b1.1cf4.9b8a 128.248</td>
</tr>
<tr>
<td>ethernet1/1/3</td>
<td>252.128</td>
<td>128</td>
<td>500</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
<td>90b1.1cf4.9b8a 128.252</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>256.128</td>
<td>128</td>
<td>500</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
<td>90b1.1cf4.9b8a 128.256</td>
</tr>
</tbody>
</table>

View bridge priority and root bridge assignment

OS10# show spanning-tree active

Spanning tree enabled protocol rstp with force-version rstp
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 36864, Address 90b1.1cf4.a523
Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/6:3</td>
<td>128.282</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
<td>3417.4455.667f 128.152</td>
</tr>
<tr>
<td>ethernet1/1/6:4</td>
<td>128.283</td>
<td>128</td>
<td>2000</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
<td>3417.4455.667f 128.153</td>
</tr>
</tbody>
</table>

Root bridge selection

RSTP determines the root bridge. Assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge.

- Assign a number as the bridge priority or designate it as the primary or secondary root bridge in CONFIGURATION mode. Configure the priority value range, from 0 to 65535 in multiples of 4096, default 32768. The lower the number assigned, the more likely the bridge becomes the root bridge.
  
  ```
 spanning-tree rstp priority priority-value
  ```

View bridge priority and root bridge assignment

OS10# show spanning-tree active

Spanning tree enabled protocol rstp with force-version rstp
Executing IEEE compatible Spanning Tree Protocol
Root ID Priority 32768, Address 3417.4455.667f
Root Bridge hello time 2, max age 20, forward delay 15
Bridge ID Priority 36864, Address 90b1.1cf4.a523
Configured hello time 2, max age 20, forward delay 15

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/6:3</td>
<td>128.282</td>
<td>128</td>
<td>2000</td>
<td>FWD</td>
<td>0</td>
<td>32768</td>
<td>3417.4455.667f 128.152</td>
</tr>
<tr>
<td>ethernet1/1/6:4</td>
<td>128.283</td>
<td>128</td>
<td>2000</td>
<td>BLK</td>
<td>0</td>
<td>32768</td>
<td>3417.4455.667f 128.153</td>
</tr>
</tbody>
</table>
EdgePort forward traffic

EdgePort allows the interface to forward traffic approximately 30 seconds sooner as it skips the Blocking and Learning states. The spanning-tree bpduguard enable command causes the interface hardware to shut down when it receives a BPDU.

⚠ **CAUTION:** Configure EdgePort only on links connecting to an end station. EdgePort can cause loops if you enable it on an interface connected to a network.

- Enable EdgePort on an interface in INTERFACE mode.
  ```
 spanning-tree port type edge
  ```

Configure EdgePort and view interface status

```bash
OS10(conf-if-eth1/1/5)# spanning-tree port type edge
```

View interface status

```bash
OS10# show spanning-tree interface ethernet 1/1/5
```

Spanning-tree extensions

STP extensions ensure efficient network convergence by securely enforcing the active network topology. OS10 supports BPDU filtering, BPDU guard, loop guard, and root guard STP extensions.

- **BPDU filtering**
  Protects the network from unexpected flooding of BPDU from an erroneous device. Enabling BPDU Filtering instructs the hardware to drop BPDU and prevents flooding from reaching the CPU. BPDU filtering is enabled by default on Edge ports. All BPDU received on the Edge port drop. If you explicitly configure BPDU filtering on a port, that port drops all BPDU it receives.

- **BPDU guard**
  Blocks the L2 bridged ports and LAG ports connected to end hosts and servers from receiving any BPDU. When you enable BPDU guard, it places a bridge or LAG port in an Error_Enable or Blocking state if the port receives any BPDU frames. In a LAG, all member ports, including new members are placed in an Blocking state. The network traffic drops but the port continues to forward BPDU to the CPU that are later dropped. To prevent further reception of BPDU, configure a port to shut down using the `shutdown` command. The port can only resume operation from the Shutdown state after manual intervention.

- **Root guard**
  Avoids bridging loops and preserves the root bridge position during network transitions. STP selects the root bridge with the lowest priority value. During network transitions, another bridge with a lower priority may attempt to become the root bridge and cause unpredictable network behavior. To avoid such an attempt and preserve the position of the root bridge, configure the `spanning-tree guard root` command. Root guard is enabled on ports that are designated ports. The root guard configuration applies to all VLANs configured on the port.

- **Loop guard**
  Prevents L2 forwarding loops caused by a cable or interface hardware failure. When a hardware failure occurs, a participating spanning tree link becomes unidirectional and a port stops receiving BPDU. When a blocked port stops receiving BPDU, it transitions to a Forwarding state causing spanning tree loops in the network. You can enable loop guard on a port that transitions to the Loop-Consistent state until it receives BPDU using the
spanning-tree guard loop command. After BPDUs are received, the port moves out of the Loop-Inconsistent or blocking state and transitions to an appropriate state determined by STP. Enabling loop guard on a per port basis enables it on all VLANs configured on the port. If you disable loop guard on a port, it is moved to the Listening state.

If you enable BPDU Filter and BPDU Guard on the same port, the BPDU Filter configuration takes precedence. Root Guard and Loop Guard are mutually exclusive. Configuring one overwrites the other from the active configuration.

- Enable spanning-tree BPDU filter in INTERFACE mode. Use the `spanning-tree bpdufilter disable` command to disable the BPDU filter on the interface.

  `spanning-tree bpdufilter enable`

- Enable spanning-tree BPDU guard in INTERFACE mode.

  `spanning-tree bpduguard enable`
  
  - Use the `shutdown` command to shut down the port channel interface, all member ports that are disabled in the hardware.
  - Use the `spanning-tree bpduguard disable` command to add a physical port to a port-channel already in the Error Disable state, the new member port is also disabled in the hardware.

- Set the guard types to avoid loops in INTERFACE mode.

  `spanning-tree guard {loop | root | none}`
  
  - loop — Set the guard type to loop.
  - none — Set the guard type to none.
  - root — Set the guard type to root.

**BPDU filter**

```
OS10(conf-if-eth1/1/4)# spanning-tree bpdufilter enable
OS10(conf-if-eth1/1/4)# do show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of vlan1 is designated Blocking
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
Boundary: NO bpdu filter : Enable bpdu guard : bpduguard shutdown-on-violation :disable RootGuard: enable LoopGuard disable
Bpdus (MRecords) sent 134, received 138
Interface Designated
Name PortID Prio Cost Sts Cost Bridge ID PortID
--
ethernet1/1/4 128.272 128 500 BLK 500 32769 90b1.1cf4.a911 128.272
BPDU guard
```

**BPDU guard**

```
OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# spanning-tree bpduguard enable
OS10(conf-if-eth1/1/4)# exit
OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# do show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of vlan1 is designated Blocking
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
Boundary: NO bpdu filter : Enable bpdu guard : bpduguard shutdown-on-violation :enable RootGuard: enable LoopGuard disable
Bpdus (MRecords) sent 134, received 138
Interface Designated
Name PortID Prio Cost Sts Cost Bridge ID PortID
--
ethernet1/1/4 128.272 128 500 BLK 500 32769 90b1.1cf4.a911 128.272
Loop guard
```

```
OS10(config)# interface ethernet 1/1/4
OS10(conf-if-eth1/1/4)# spanning-tree guard loop
OS10(conf-if-eth1/1/4)# do show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of vlan1 is root Forwarding
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
```
Boundary: NO  bpdu filter : bpdu guard : bpduguard shutdown-on-violation :disable  RootGuard: disable LoopGuard enable
Bpdus (MRecords) sent 7, received 20

<table>
<thead>
<tr>
<th>Interface</th>
<th>Designated Name</th>
<th>PortID</th>
<th>Prio</th>
<th>Cost</th>
<th>Sts</th>
<th>Cost</th>
<th>Bridge ID</th>
<th>PortID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/4</td>
<td>128.272 128 500  FWD 0 32769 90b1.1cf4.9d3b</td>
<td>128.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Root guard**

```bash
OS10(conf-if-eth1/1/4)# spanning-tree guard root
OS10(conf-if-eth1/1/4)# do show spanning-tree interface ethernet 1/1/4
ethernet1/1/4 of vlan1 is root Forwarding
Edge port:no (default) port guard :none (default)
Link type is point-to-point (auto)
```

**RSTP commands**

### clear spanning-tree counters

Clears the counters for STP.

**Syntax**

```
clear spanning-tree counters [interface {ethernet node/slot/port[:subport] | port-channel number}]
```

**Parameters**

- **interface** — Enter the interface type:
  - ethernet node/slot/port[:subport] — Deletes the spanning-tree counters from a physical port.
  - port-channel number — Deletes the spanning-tree counters for a port-channel interface, from 1 to 128.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Clear all STP counters on the device per the Ethernet interface or port-channel.

**Example**

```
OS10# clear spanning-tree counters interface port-channel 10
```

**Supported Releases**

10.2.0E or later

### show spanning-tree active

Displays the RSTP configuration and information for RSTP-active interfaces.

**Syntax**

```
show spanning-tree active
```

**Parameters**

None

**Default**

Not configured
**show spanning-tree interface**

Displays spanning-tree interface information for Ethernet and port-channels.

**Syntax**

```
show spanning-tree interface {ethernet node/slot/port [:subport] | port-channel port-id} [detail]
```

**Parameters**

- `ethernet node/slot/port [:subport]` — Displays spanning-tree information for a physical interface.
- `port-channel port-id` — Displays spanning-tree information for a port-channel number, from 1 to 128.
- `detail` — (Optional) Displays detailed information on the interface.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show spanning-tree interface ethernet 1/1/6:2 detail
Port 281 (ethernet/1/1/6:2) of RSTP 1 is root Forwarding
Port path cost 2000, Port priority 128, Port Identifier 281.128
Designated root has priority 32768, address 34:17:44:55:66:7f
Designated bridge has priority 32768, address 34:17:44:55:66:7f
Designated port id is 151.128, designated path cost
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state 1
Link type is point-to-point by default, auto
PVST Simulation is enabled by default
BPDU sent 3, received 7
```

**Supported Releases**

10.2.0E or later
**spanning-tree bpdufilter**

Enables or disables BPDU filtering on an interface.

**Syntax**
```
spanning-tree bpdufilter {enable | disable}
```

**Parameters**
- `enable` — Enables the BPDU filter on an interface.
- `disable` — Disables the BPDU filter on an interface.

**Default**
Disabled

**Command Mode**
INTERFACE

**Usage Information**
Use the `enable` parameter to enable BPDU filtering.

**Example**
```
OS10(conf-if-eth1/1/4)# spanning-tree bpdufilter enable
```

**Supported Releases**
10.2.0E or later

**spanning-tree bpduguard**

Enables or disables the BPDU guard on an interface.

**Syntax**
```
spanning-tree bpduguard {enable | disable}
```

**Parameters**
- `enable` — Enables the BPDU guard filter on an interface.
- `disable` — Disables the BPDU guard filter on an interface.

**Default**
Disabled

**Command Mode**
INTERFACE

**Usage Information**
BPDU guard prevents a port from receiving BPDUs. If the port receives a BPDU, it is placed in the Error-Disabled state.

**Example**
```
OS10(conf-if-eth1/1/4)# spanning-tree bpduguard enable
```

**Supported Releases**
10.2.0E or later

**spanning-tree disable**

Disables Spanning-Tree mode configured with the `spanning-tree mode` command globally on the switch or on specified interfaces.

**Syntax**
```
spanning-tree disable
```

**Parameters**
None

**Default**
Not configured.

**Usage Information**
The `no` version of this command re-enables STP and applies the currently configured spanning-tree settings.

**Command Mode**
CONFIGURATION, INTERFACE
spanning-tree guard

Enables or disables loop guard or root guard on an interface.

**Syntax**

```plaintext
spanning-tree guard {loop | root | none}
```

**Parameters**

- **loop** — Enables loop guard on an interface.
- **root** — Enables root guard on an interface.
- **none** — Sets the guard mode to none.

**Default**

Not configured

**Usage Information**

Root guard and loop guard configurations are mutually exclusive. Configuring one overwrites the other from the active configuration.

**Command Mode**

INTERFACE

**Example**

```plaintext
OS10(conf-if-eth1/1/4)# spanning-tree guard root
```

**Supported Releases**

10.2.0E or later

spanning-tree mode

Enables an STP type: RSTP, Rapid-PVST+, or MST.

**Syntax**

```plaintext
spanning-tree mode {rstp | mst | rapid-pvst}
```

**Parameters**

- **rstp** — Sets STP mode to RSTP.
- **mst** — Sets STP mode to MST.
- **rapid-pvst** — Sets STP mode to RPVST+.

**Default**

RPVST+

**Command Mode**

CONFIGURATION

**Usage Information**

All STP instances stop in the previous STP mode, and restart in the new mode. You can also change to RSTP/MST mode.

**Example (RSTP)**

```plaintext
OS10(config)# spanning-tree mode rstp
```

**Example (MST)**

```plaintext
OS10(config)# spanning-tree mode mst
```

**Supported Releases**

10.2.0E or later
**spanning-tree port**

Sets the port type as the EdgePort.

**Syntax**

```
spanning-tree port type edge
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

When you configure an EdgePort on a device running STP, the port immediately transitions to the Forwarding state. Only configured ports connected to end hosts act as EdgePorts.

**Example**

```
OS10(config)# spanning-tree port type edge
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree rstp force-version**

Configures a forced version of spanning tree to transmit BPDUs.

**Syntax**

```
spanning-tree rstp force-version stp
```

**Parameters**

- `stp` — Force the version for the BPDUs transmitted by RSTP.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

Forces a bridge that supports RSTP or MST to operate in a STP-compatible manner to avoid frame misordering and duplication in known LAN protocols that are sensitive.

**Example**

```
OS10(config)# spanning-tree rstp force-version stp
```

**Supported Releases**

10.2.0E or later

---

**spanning-tree rstp forward-time**

Configures a time interval for the interface to wait in the Blocking state or Learning state before moving to the Forwarding state.

**Syntax**

```
spanning-tree rstp forward-time seconds
```

**Parameters**

- `seconds` — Enter the number of seconds an interface waits in the Blocking or Learning States before moving to the Forwarding state, from 4 to 30.

**Default**

15 seconds

**Command Mode**

CONFIGURATION

**Usage Information**

None

**Example**

```
OS10(config)# spanning-tree rstp forward-time 16
```

**Supported Releases**

10.2.0E or later
spanning-tree rstp hello-time

Sets the time interval between generation and transmission of RSTP BPDUs.

Syntax
spanning-tree rstp hello-time seconds

Parameters
seconds — Enter a hello-time interval value in seconds, from 1 to 10.

Default
2 seconds

Command Mode
CONFIGURATION

Usage Information
Dell EMC recommends increasing the hello-time for large configurations, especially configurations with multiple ports.

Example
OS10(config)# spanning-tree rstp hello-time 5

Supported Releases
10.2.0E or later

spanning-tree rstp mac-flush-threshold

Sets the threshold value to flush MAC addresses on the RSTP instance.

Syntax
spanning-tree rstp mac-flush-threshold threshold-value

Parameters
threshold-value—Enter the threshold value for the number of flushes, from 0 to 65535. The default value is 0.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command removes the threshold value.

Example
OS10(config)# spanning-tree rstp mac-flush-threshold 255

Supported Releases
10.4.0E(R1) or later

spanning-tree rstp max-age

Configures the time period the bridge maintains configuration information before refreshing the information by recomputing the RSTP topology.

Syntax
max-age seconds

Parameters
seconds — Enter a maximum age value in seconds, from 6 to 40.

Default
20 seconds

Command Mode
CONFIGURATION

Usage Information
None

Example
OS10(config)# spanning-tree rstp max-age 10

Supported Releases
10.2.0E or later
spanning-tree rstp

Sets the priority value for RSTP.

Syntax

spanning-tree rspan priority priority value

Parameters

priority priority value — Enter a bridge-priority value in increments of 4096, from 0 to 61440. Valid priority values are: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

RSTP determines the root bridge but you can assign one bridge a lower priority to increase the probability of it being the root bridge. A lower priority value increases the probability of the bridge becoming a root bridge.

Example

OS10(config)# spanning-tree rspan priority 200

Supported Releases

10.2.0E or later

Virtual LANs

Virtual LANs (VLANs) segment a single flat L2 broadcast domain into multiple logical L2 networks. Each VLAN is uniquely identified by a VLAN ID or tag consisting of 12 bits in the Ethernet frame. VLAN IDs range from 1 to 4093 and provide a total of 4093 logical networks.

You can assign ports on a single physical device to one or more VLANs creating multiple logical instances on a single physical device. The virtual logical switches spanning across different physical devices emulate multiple logically segmented L2 networks on a single physical network.

Each VLAN has its own broadcast domain. The unicast, multicast, and broadcast network traffic from ports that belong to a VLAN forwards or floods to ports in the same VLAN only. Traffic between VLANs routes from one VLAN to another. You can also assign each VLAN an IP address to group all the ports within a single IP subnet.

Segment a L2 network using VLANs to:

- Minimize broadcast and multicast traffic in the L2 network
- Increase security by isolating ports into different VLANs
- Ease network management

Default VLAN

All interface ports are administratively up in L2 mode and are automatically placed in the default VLAN as untagged interfaces.

When you assign a port to a non-default VLAN in Trunk mode, the interface remains an untagged member of the default VLAN and a tagged member of the new VLAN. When you assign a port to a non-default VLAN in Access mode, it removes from the default VLAN and is assigned to the new VLAN as an untagged member of the new VLAN.

- VLAN 1 is the default VLAN.
- You cannot delete the default VLAN. However, you can change the default VLAN ID number using the default vlan-id command.

Use the show vlan command to verify that the interface is part of the default VLAN (VLAN 1).

Default VLAN configuration

OS10# show vlan
Create or remove VLANs

You can create VLANs and add physical interfaces or port-channel LAG interfaces to the VLAN as tagged or untagged members. You can add an Ethernet interface as a trunk port or as an access port, but it cannot be added as both at the same time.

Multiple non-default vlans with physical and port channel ports in Access and Trunk modes

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>A Eth1/1/2</td>
<td>T Eth1/1/3:2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/6</td>
<td>T Po40</td>
</tr>
<tr>
<td>320</td>
<td>up</td>
<td>A Eth1/1/31</td>
<td>T Eth1/1/25:4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/50</td>
<td>A Eth1/1/3:1</td>
</tr>
</tbody>
</table>

The shutdown command stops L3–routed traffic only. L2 traffic continues to pass through the VLAN. If the VLAN is not a routed VLAN configured with an IP address, the shutdown command has no effect on VLAN traffic.

When you delete a VLAN using the no interface vlan vlan-id command, any interfaces assigned to that VLAN are assigned to the default VLAN as untagged interfaces.

To configure a port-based VLAN, enter INTERFACE-VLAN mode for VLAN-related configuration tasks and create a VLAN. To enable the VLAN, assign member interfaces in L2 mode.

1. Create a VLAN and enter the VLAN number in INTERFACE mode, from 1 to 4093.
   ```
 interface vlan vlan-id
   ```
2. Delete a VLAN in CONFIGURATION mode.
   ```
 no interface vlan vlan-id
   ```

Create VLAN

OS10(config)# interface vlan 108

Delete VLAN

OS10(config)# no interface vlan 108
View configured VL ANs

OS10(config)# do show interface vlan

Vlan 1 is up, line protocol is up
Address is , Current address is
Interface index is 69208865
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:

Vlan 200 is up, line protocol is up
Address is , Current address is
Interface index is 69209064
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:

Vlan 320 is up, line protocol is up
Address is , Current address is
Interface index is 69209184
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:

Access mode

An access port is an untagged member of only one VLAN. Configure a port in Access mode and configure which VLAN carries the traffic for that interface. If you do not configure the VLAN for a port in Access mode, or an access port, the interface carries traffic for VLAN 1, the default VLAN.

Change the access port membership in a VLAN by specifying the new VLAN. You must create the VLAN before you can assign the port in Access mode to that VLAN. Use the no switchport access vlan command to reset to default VLAN.

1 Configure a port in INTERFACE mode.
   interface ethernet node/slot/port[:subport]

2 Set the interface to Switchport mode as access in INTERFACE mode.
   switchport mode access

3 Enter the VLAN number for the untagged port in INTERFACE mode.
   switchport access vlan vlan-id

Configure port in Access mode

OS10(config)# interface ethernet 1/1/9
OS10(config-if-eth1/1/9)# switchport mode access
OS10(config-if-eth1/1/9)# switchport access vlan 604
Show running configuration

OS10# show running-configuration
...!
interface ethernet1/1/5
...!
switchport access vlan 604
no shutdown!
interface vlan1
no shutdown
...

Trunk mode

A trunk port can be a member of multiple VLANs set up on an interface. A trunk port transmits traffic for all VLANs. To transmit traffic on a trunk port with multiple VLANs, OS10 uses tagging or the 802.1q encapsulation method.

1 Configure a port in INTERFACE mode.
   interface ethernet node/slot/port[:subport]

2 Change Switchport mode to Trunk mode in INTERFACE mode.
   switchport mode trunk

3 Enter the allowed VLANs on the trunk port in INTERFACE mode.
   switchport trunk allowed vlan vlan-id

Configure port in Trunk mode

OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# switchport mode trunk
OS10(conf-if-eth1/1/6)# switchport trunk allowed vlan 108

View running configuration

OS10# show running-configuration
...!
interface ethernet1/1/8
  switchport mode trunk
  switchport trunk allowed vlan 108
  no shutdown!
interface vlan1
  no shutdown!
...

Assign IP address

You can assign an IP address to each VLAN to make it a L3 VLAN. All the ports in that VLAN belong to that particular IP subnet.

The traffic between the ports in different VLANs route using the IP address. Configure the L3 VLAN interface to remain administratively UP or DOWN using the shutdown and no shutdown commands. This provisioning only affects the L3 traffic across the members of a VLAN and does not affect the L2 traffic.

You cannot assign an IP address to the default VLAN (VLAN 1). You can place VLANs and other logical interfaces in L3 mode to receive and send routed traffic.
1. Create a VLAN in CONFIGURATION mode, from 1 to 4093.

   ```
 interface vlan vlan-id
   ```

2. Assign an IP address and mask to the VLAN in INTERFACE-VLAN mode.

   ```
 ip address ip-address/prefix-length [secondary]
   ```
   - `ip-address/prefix-length` — Enter the IP address in dotted-decimal A.B.C.D/x format.
   - `secondary` — Enter the interface backup IP address.

**Assign IP address to VLAN**

OS10(config)# interface vlan 200
OS10(conf-if-vl-200)# ip address 10.1.15.1/8

**View VLAN configuration**

OS10(config)# interface vlan 200
OS10(conf-if-vl-200)# ip address 10.1.15.1/8

You can view configuration information related to VLANs using `show` commands.

- View the VLAN status and configuration information in EXEC mode.
  ```
 show vlan
  ```

- View the VLAN interface configuration in EXEC mode.
  ```
 show interfaces vlan
  ```

- View the VLAN interface configuration for a specific VLAN ID in EXEC mode.
  ```
 show interfaces vlan vlan-id
  ```
### View VLAN configuration

```
OS10# show vlan

Codes: * - Default VLAN, G-GVRP VLANs, R-Remote Port Mirroring VLANs, P-Primary, C-Community, I-Isolated
Q: A-Access (Untagged), T-Tagged
 x-Dot1x untagged, X-Dot1x tagged
 G-GVRP tagged, M-Vlan-stack, H-VSN tagged
 i-Internal untagged, I-Internal tagged, v-VLT untagged, V-VLT tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>up</td>
<td></td>
<td>A Eth1/1/1-1/1/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Po40</td>
</tr>
<tr>
<td>200</td>
<td>up</td>
<td></td>
<td>T Eth1/1/3:2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T Po40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Eth1/1/31</td>
</tr>
<tr>
<td>320</td>
<td>up</td>
<td></td>
<td>T Eth1/1/25:4 1/1/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T Po40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Eth1/1/3:1</td>
</tr>
</tbody>
</table>
```

### View interface VLAN configuration

```
OS10# show interface vlan
Vlan 1 is up, line protocol is up
Address is , Current address is
Interface index is 69208865
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:

Vlan 200 is up, line protocol is up
Address is , Current address is
Interface index is 69209064
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:

Vlan 320 is up, line protocol is up
Address is , Current address is
Interface index is 69209184
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:
```

### View interface configuration for specific VLAN

```
OS10# show interface vlan 320
Vlan 320 is up, line protocol is up
Address is , Current address is
Interface index is 69209184
Internet address is not set
MTU 1532 bytes
LineSpeed auto
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 240
Last clearing of "show interface" counters Queueing strategy: fifo Time since last interface status change:
```
VLAN commands

**description (VLAN)**

Adds a description to the selected VLAN.

**Syntax**

```
description description
```

**Parameters**

- `description` — Enter a text string to identify the VLAN. A maximum of 80 characters.

**Default**

Not configured

**Command Mode**

INTERFACE-VLAN

**Usage Information**

None

**Example**

```
OS10(conf-if-vlan)# description vlan3
```

**Supported Releases**

10.2.0E or later

**interface vlan**

Creates a VLAN interface.

**Syntax**

```
interface vlan vlan-id
```

**Parameters**

- `vlan-id` — Enter the VLAN ID number, from 1 to 4093.

**Default**

VLAN 1

**Command Mode**

CONFIGURATION

**Usage Information**

FTP, TFTP, MAC ACLs, and SNMP operations are not supported. IP ACLs are supported on VLANs only. The `no` version of this command deletes the interface.

**Example**

```
OS10(config)# interface vlan 10
OS10(conf-if-vl-10)#
```

**Supported Releases**

10.2.0E or later

**show vlan**

Displays VLAN configurations.

**Syntax**

```
show vlan vlan-id
```

**Parameters**

- `vlan-id` — (Optional) Enter a VLAN ID number, from 1 to 4093.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Use this command to view VLAN configuration information for a specific VLAN ID.

**Example**

```
OS10(config)# do show vlan
Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs
Q: A - Access (Untagged), T - Tagged
```

Layer 2  269
Supported Releases  10.2.0E or later

**Port monitoring**

Port monitoring monitors ingress or egress traffic of one port to another for analysis. A monitoring port (MG) or destination port, is the port where the monitored traffic is sent for analysis. A monitored port (MD) or source port is the source interface that is monitored for traffic analysis.

The different types of port monitoring are:

- **Local port monitoring** — Port monitoring is done in the same switch. The switch forwards a copy of incoming and outgoing traffic from one port to another port for further analysis.
- **Remote port monitoring (RPM)** — Port monitoring is done on traffic running across a remote device in the same network. The L2 network carries the monitored traffic.
- **Encapsulated remote port monitoring (ERPM)** — Port monitoring is done on the L3 network. The traffic from the source port is encapsulated and forwards to the destination port in another switch.

**Local port monitoring**

For local port monitoring, the monitored source ports and monitoring destination ports are on the same device.

**Configure local monitoring session**

1. Verify that the intended monitoring port has no configuration other than no shutdown and no switchport.
   ```
 show running-configuration
   ```
2. Create a monitoring session in CONFIGURATION mode.
   ```
 monitor session session-id [local]
   ```
3. Enter the source and direction of the monitored traffic in MONITOR-SESSION mode.
   ```
 source interface interface-type {both | rx | tx}
   ```
4. Enter the destination of traffic in MONITOR-SESSION mode.
   ```
 destination interface interface-type
   ```

**Create monitoring session**

```
OS10(config)# monitor session 1
OS10(conf-mon-local-1)#
```

**Configure source and destination port, and traffic direction**

```
OS10(conf-mon-local-1)# source interface ethernet 1/1/7-1/1/8 rx
OS10(conf-mon-local-1)# destination interface ethernet1/1/1
OS10(conf-mon-local-1)# no shut
```

**View configured monitoring sessions**

In the State field, true indicates that the port is enabled. In the Reason field, Is UP indicates that hardware resources are allocated.

```
OS10# show monitor session all
S.Id Source Destination Dir SrcIP DstIP DSCP TTL State Reason
```
Remote port monitoring

Remote port monitoring monitors ingress and/or egress traffic on multiple source ports of multiple devices and forwards the monitored traffic to multiple destination ports on different remote devices. Remote port monitoring helps network administrators monitor and analyze traffic to troubleshoot network problems.

In a remote port monitoring session, monitored traffic is tagged with a VLAN ID and switched on a user-defined, non-routable L2 VLAN. The VLAN is reserved to carry only monitored traffic, which is forwarded on all egress ports of the VLAN. You must configure each intermediate switch that participates in transporting monitored traffic with the reserved L2 VLAN. Remote port monitoring supports monitoring sessions where multiple source and destination ports distribute across multiple network devices.

Session and VLAN requirements

RPM requires the following:

- Source session, such as monitored ports on different source devices.
- Reserved tagged VLAN for transporting monitored traffic configured on source, intermediate, and destination devices.
- Destination session, where destination ports connect to analyzers on destination devices.

Configure any network device with source and destination ports. Enable the network device to function in an intermediate transport session for a reserved VLAN for multiple remote port monitoring sessions. You can enable and disable individual monitoring sessions.

Consider the following when configuring a RPM session:

- A remote port monitoring session mirrors monitored traffic by prefixing the reserved VLAN tag to monitored packets to transmit using the reserved VLAN.
- The source address, destination address, and original VLAN ID of the mirrored packet are prefixed with the tagged VLAN header. Untagged source packets are tagged with the reserved VLAN ID.
- The member port of the reserved VLAN must have the MTU and IPMTU value as MAX+4 to hold the VLAN tag parameter.
- To associate with the source session, the reserved VLAN can have up to four member ports.
- To associate with the destination session, the reserved VLAN can have multiple member ports.
- The reserved VLAN cannot have untagged ports.
Reserved L2 VLAN

- MAC address learning in the reserved VLAN is automatically disabled.
- There is no restriction on the VLAN IDs used for the reserved remote monitoring VLAN. Valid VLAN IDs are from 2 to 4093. The default VLAN ID is not supported.
- In monitored traffic, if the device has a L3 VLAN configured, packets that have the same destination MAC address as an intermediate or destination device in the path the reserved VLAN uses to transport the mirrored traffic are dropped by the device that receives the traffic.

Source session

- Configure physical ports and port-channels as sources in remote port monitoring and use them in the same source session. You can use both L2, configured with the `switchport` command, and L3 ports as source ports. Optionally, configure one or more source VLANs to configure the VLAN traffic to be monitored on source ports.
- Use the default VLAN and native VLANs as a source VLAN.
- You cannot configure the dedicated VLAN used to transport mirrored traffic as a source VLAN.

Restrictions

- When you use a source VLAN, enable flow-based monitoring using the `flow-based enable` command.
- In a source VLAN, only received (rx) traffic is monitored.
- In S5148F-ON, only received (rx) traffic is monitored.
- You cannot configure a source port-channel or source VLAN in a source session if the port-channel or VLAN has a member port configured as a destination port in a remote port monitoring session.
- You cannot use a destination port for remote port monitoring as a source port, including the session the port functions as the destination port.
- The reserved VLAN used to transport mirrored traffic must be a L2 VLAN; L3 VLANs are not supported.

Configure remote port monitoring

Remote port monitoring requires a source interface, monitored ports on different source network devices, and a reserved tagged VLAN for transporting mirrored traffic configured on the source, intermediate, and destination devices.

1. Create a remote monitoring session in CONFIGURATION mode.
   ```
 monitor session session-id type rpm-source
   ```

2. Enter the source to monitor traffic in MONITOR-SESSION mode.
   ```
 source interface interface-range direction
   ```

3. Enter the destination to send the traffic to in MONITOR-SESSION mode.
   ```
 destination remote-vlan vlan-id
   ```

4. Enable the monitoring interface in MONITOR-SESSION mode.
   ```
 no shut
   ```

Create remote monitoring session

```bash
OS10(config)# monitor session 10 type rpm-source
OS10(conf-mon-rpm-source-10)#
```

Configure source and destination port, and traffic direction

```bash
OS10(conf-mon-rpm-source-10)# source interface vlan 10 rx
OS10(conf-mon-rpm-source-10)# destination remote-vlan 100
OS10(conf-mon-rpm-source-10)# no shut
```

View monitoring session

```bash
OS10(conf-mon-rpm-source-10)# do show monitor session all
```

<table>
<thead>
<tr>
<th>S.Id</th>
<th>Source</th>
<th>Destination</th>
<th>Dir</th>
<th>SrcIP</th>
<th>DstIP</th>
<th>DSCP</th>
<th>TTL</th>
<th>State</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Encapsulated remote port monitoring

You can also have the monitored traffic transmitted over an L3 network to a remote analyzer. The encapsulated remote port monitoring (ERPM) session mirrors traffic from the source ports, LAGs or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the destination IP address specified in the session.

Consider the following when configuring an ERPM session:

- OS10 supports only the ERPM source session. The encapsulated packets terminate at the destination IP address, the remote analyzer.
- The source IP address must be a valid local IP address for the session.
- The destination IP address must be on a remote L3 node that supports standard GRE decapsulation.
- If the destination IP address is not reachable, the session goes down.
- OS10 does not support an ERPM destination session and decapsulation of ERPM packets at the destination switch.
- You can configure a maximum of four ERPM sessions with a maximum of 128 source ports in each session. You can configure these four ERPM sessions in one of the following methods:
  - Single directional with either four ingress or four egress sessions.
  - Bidirectional with two ingress and two egress sessions.
- You can monitor a source VLAN only through flow-based monitoring. Only ingress is supported in flow-based source VLAN monitoring.
- You cannot configure an interface with ERPM traffic as a source for an ERPM session.
- You cannot monitor an RPM VLAN as a source.
- You cannot configure the same destination IP address for two sessions.
- You cannot configure an interface that serves as egress for a GRE tunnel as a source interface.
- ERPM supports only GRE-over-IPv4 tunneling.
- ERPM does not support Equal cost multi-path (ECMP).
- You can use third party devices as only tunnel-transit devices.
- OS10 does not support monitoring VLAN sub-interfaces and CPU-generated packets.

Configure encapsulated remote port monitoring

Encapsulated remote port monitoring requires valid source and destination IP addresses. Ensure that the source IP address is local and destination IP address is remote. You can also configure the time-to-live (TTL) and differentiated services code point (DSCP) values.

1. Create monitoring session in CONFIGURATION mode.
   ```
 monitor session session-id type erpm-source
   ```

2. Configure source port in MONITOR-SESSION mode.
   ```
 source interface interface-type {both | rx | tx}
   ```

3. Configure source and destination IP addresses, and protocol type in MONITOR-SESSION mode.
   ```
 source-ip source ip-address destination-ip destination ip-address [gre-protocol protocol-value]
   ```

4. Configure TTL and DSCP values in MONITOR-SESSION mode.
   ```
 ip {ttl ttl-number | dscp dscp-number}
   ```

5. Enable the monitoring interface in MONITOR-SESSION mode.
   ```
 no shut
   ```

Create monitoring session

```
OS10(config)# monitor session 10 type erpm-source
OS10(conf-mon-erpm-source-10)#
```
Configure source port, source and destination IP addresses, and protocol type

OS10(conf-mon-erpm-source-10)# source interface ethernet 1/1/2
OS10(conf-mon-erpm-source-10)# source-ip 1.1.1.1 destination-ip 3.3.3.3 gre-protocol 35006
OS10(conf-mon-erpm-source-10)# ip ttl 16
OS10(conf-mon-erpm-source-10)# ip dscp 63
OS10(conf-mon-erpm-source-10)# no shut

View configured ERPM session

OS10(conf-mon-erpm-source-10)# do show monitor session all

<table>
<thead>
<tr>
<th>S.Id</th>
<th>Source</th>
<th>Destination</th>
<th>Dir</th>
<th>Mode</th>
<th>Source IP</th>
<th>Dest IP</th>
<th>DSCP</th>
<th>TTL</th>
<th>Gre-Protocol</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ethernet1/1/2</td>
<td>remote-ip</td>
<td>both</td>
<td>port</td>
<td>1.1.1.1</td>
<td>3.3.3.3</td>
<td>63</td>
<td>16</td>
<td>35006</td>
<td>true</td>
</tr>
</tbody>
</table>

View running configuration of monitor session

OS10# show running-configuration monitor

```
monitor session 10 type erpm-source
source-ip 1.1.1.1 destination-ip 3.3.3.3
source interface ethernet1/1/2
no shut
```

Flow-based monitoring

Flow-based monitoring conserves bandwidth by inspecting only specified traffic instead of all interface traffic. Using flow-based monitoring, you can monitor only traffic received by the source port that matches criteria in ingress access-lists (ACLs). IPv4 ACLs, IPv6 ACLs, and MAC ACLs support flow-based monitoring.

1. Enable flow-based monitoring for a monitoring session in MONITOR-SESSION mode.

   ```
 flow-based enable
   ```

2. Return to CONFIGURATION mode.

   ```
 exit
   ```

3. Create an access list in CONFIGURATION mode.

   ```
 ip access-list access-list-name
   ```

4. Define access-list rules using `seq`, `permit`, and `deny` statements in CONFIG-ACL mode. ACL rules describe the traffic to monitor.

   ```
 seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte]] [fragments] [threshold-inmsgs count] [capture session session-id]
   ```

5. Return to CONFIGURATION mode.

   ```
 exit
   ```

6. Apply the flow-based monitoring ACL to the monitored source port in CONFIGURATION mode. The access list name can have a maximum of 140 characters.

   ```
 ip access-group access-list-name {in | out}
   ```

Enable flow-based monitoring

```
OS10(config)# monitor session 1
OS10(config-mon-local-1)# flow-based enable
OS10(config-mon-local-1)# exit
OS10(config)# ip access-list ipacl1
OS10(config-ipv4-acl)# deny ip host 1.1.1.23 any capture session 1 count
OS10(config-ipv4-acl)# exit
OS10(config)# mac access-list mac1
OS10(config-mac-acl)# deny any any capture session 1
OS10(config-mac-acl)# exit
OS10(config)# interface ethernet 1/1/9
OS10(config)# mac access-group mac1 in
OS10(config-if-eth1/1/9)# mac access-group mac1 in
```

274  Layer 2
Remote port monitoring on VLT

In a network, devices you configure with peer VLT nodes are considered as a single device. You can apply remote port monitoring (RPM) on the VLT devices in a network.

In a failover case, the monitored traffic reaches the packet analyzer connected to the top-of-rack (ToR) through the VLT interconnect link.

**NOTE:**
- In VLT devices configured with RPM, when the VLT link is down, the monitored packets might drop for some time. The time is equivalent to the VLT failover recovery time, the delay restore.
- ERPM does not work on VLT devices.

**RPM on VLT scenarios**

Consider a simple VLT setup where two VLT devices are connected using VLTI and a top-of-rack switch is connected to both the VLT peers using VLT LAGs in a ring topology. In this setup, the following table describes the possible scenarios when you use RPM to mirror traffic.

**NOTE:** Ports that connect to the VLT domain, but not part of the VLT-LAG, are called orphan ports.

**Table 2. RPM on VLT scenarios**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror an orphan port or VLT LAG or VLTI member port to a VLT LAG. The packet analyzer connects to the ToR switch.</td>
<td>The recommended configuration on the peer VLT device:</td>
</tr>
<tr>
<td></td>
<td>1 Create a RPM VLAN</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>interface vlan 100</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>remote-span</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>2 Create an L2 ACL for the RPM VLAN - RPM session and attach it to VLTI LAG interface.</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>mac access-list rpm</td>
</tr>
<tr>
<td></td>
<td>seq 10 permit any any capture session 10</td>
</tr>
<tr>
<td></td>
<td>vlan 100</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>interface ethernet 1/1/1</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>switchport access vlan 1</td>
</tr>
<tr>
<td></td>
<td>mac access-group rpm</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>3 Create a flow-based RPM session on the peer VLT device to monitor the VLTI LAG interface as the source.</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>monitor session 10 type rpm-source</td>
</tr>
<tr>
<td></td>
<td>destination remote-vlan 1</td>
</tr>
<tr>
<td></td>
<td>flow-based enable</td>
</tr>
<tr>
<td></td>
<td>source interface ethernet1/1/1 {ICL lag</td>
</tr>
<tr>
<td>Scenario</td>
<td>Recommendation</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mirror a VLAN with VLTi LAG as a member to any orphan port on the same VLT device. The packet analyzer connects to the local VLT device through the orphan port.</td>
<td>The recommended configuration on the VLT device:</td>
</tr>
<tr>
<td></td>
<td>1 Create an L2 ACL for the local session and attach it to the VLTi LAG interface.</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>interface ethernet 1/1/1</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>switchport access vlan 1</td>
</tr>
<tr>
<td></td>
<td>mac access-group local in</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>2 Create a flow-based local session on the VLT device to monitor the VLTi LAG interface member (ethernet 1/1/1) as source.</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>monitor session 10 type destination interface ethernet 1/1/10 flow-based enable source interface ethernet1/1/1 no shut !</td>
</tr>
<tr>
<td>Mirror a VLAN with a VLTi LAG as the member to the VLT LAG on the same VLT device. The packet analyzer connects to the ToR switch.</td>
<td>—</td>
</tr>
<tr>
<td>Mirror a VLT LAG of the ToR, or any port in the ToR to any orphan port in the VLT device. Configure VLT nodes as intermediate devices. The packet analyzer connects to the ToR switch.</td>
<td>—</td>
</tr>
<tr>
<td>Mirror a VLT LAG to any orphan port on the same VLT device. The packet analyzer connects to the local VLT device through the orphan port.</td>
<td>If the packet analyzer directly connects to the VLT peer where the source session is configured, use local port monitoring instead of RPM.</td>
</tr>
<tr>
<td>Mirror an orphan port in the primary VLT device to any orphan port on a secondary VLT device through the VLTi. The packet analyzer connects to the secondary VLT device through the orphan port. In this case, the mirroring packets duplicate.</td>
<td>—</td>
</tr>
<tr>
<td>Mirror a VLT LAG of the primary VLT device to any orphan port on a secondary VLT device through the VLTi. The packet analyzer connects to the secondary VLT device through the orphan port.</td>
<td>—</td>
</tr>
<tr>
<td>Mirror a member port of the VLTi LAG or VLT LAG to any orphan port in the same device. The packet analyzer connects to the local VLT device through the orphan port.</td>
<td>If the packet analyzer is directly connected to the VLT peer in which the source session is configured, use local port monitoring instead of RPM.</td>
</tr>
<tr>
<td>Mirror a member port of VLTi LAG to the VLT LAG on the same VLT device. The packet analyzer connects to the ToR switch.</td>
<td>—</td>
</tr>
<tr>
<td>Mirror a VLT LAG or VLT member port as part of the source VLAN and destination VLAN. The packet analyzer connects to the ToR switch.</td>
<td>—</td>
</tr>
</tbody>
</table>
Port monitoring commands

**description**

Configures a description for the port monitoring session. The monitoring session can be: local, RPM, or ERPM.

**Syntax**

description string

**Parameters**

string — Enter a description of the monitoring session. A maximum of 255 characters.

**Default**

Not configured

**Command Mode**

MONITOR-SESSION

**Usage Information**

The no version of this command removes the description text.

**Example**

OS10(conf-mon-local-1)# description remote
OS10(conf-mon-rpm-source-5)# description "RPM Session"
OS10(conf-mon-erpm-source-10)# description "ERPM Session"

**Supported Releases**

10.2.0E or later

**destination**

Sets the destination where monitored traffic is sent to. The monitoring session can be local or RPM.

**Syntax**

destination {interface interface-type | remote-vlan vlan-id}

**Parameters**

interface-type — Enter the interface type for a local monitoring session.

- ethernet node/slot/port[:subport] — Enter the Ethernet interface information as the destination.
- port-channel id-number — Enter a port-channel number as the destination, from 1 to 128.
- vlan vlan-id — Enter a VLAN ID as the destination, from 1 to 4093.

remote-vlan vlan-id—Enter a remote VLAN ID as the destination for the RPM monitoring session, from 1 to 4093.

**Default**

Not configured

**Command Mode**

MONITOR-SESSION

**Usage Information**

The no version of this command resets the value to the default.

**Example**

OS10(conf-mon-local-10)# destination interface port-channel 10
OS10(conf-mon-rpm-source-3)# destination remote-vlan 20

**Supported Releases**

10.2.0E or later
**flow-based**

Enables flow-based monitoring. The monitoring session can be: local, RPM, or ERPM.

- **Syntax**: `flow-based enable`
- **Parameters**: None
- **Default**: Disabled
- **Command Mode**: MONITOR-SESSION
- **Usage Information**: The `no` version of this command disables the flow-based monitoring.
- **Example**:
  - `OS10(conf-mon-local-1)# flow-based enable`
  - `OS10(conf-mon-rpm-source-2)# flow-based enable`
  - `OS10(conf-mon-erpm-source-3)# flow-based enable`

**Supported Releases**: 10.2.0E or later

**ip**

Configures the IP time-to-live (TTL) value and the differentiated services code point (DSCP) value for the ERPM traffic.

- **Syntax**: `ip {ttl ttl-number | dscp dscp-number}`
- **Parameters**:
  - `ttl-number`: Enter the TTL value, from 1 to 255.
  - `dscp-number`: Enter the DSCP value, from 0 to 63.
- **Default**:
  - TTL: 255
  - DSCP: 0
- **Command Mode**: MONITOR-SESSION (ERPM)
- **Usage Information**: The `no` version of this command removes the configured TTL and DSCP values.
- **Example**:
  - `OS10(conf-mon-erpm-source-10)# ip ttl 16`
  - `OS10(conf-mon-erpm-source-10)# ip dscp 63`

**Supported Releases**: 10.4.0E(R1) or later

**monitor session**

Creates a session for monitoring traffic with port monitoring.

- **Syntax**: `monitor session session-id type [local | rpm-source | erpm-source]`
- **Parameters**:
  - `session-id`: Enter a monitor session ID, from 1 to 18.
  - `local`: (Optional) Enter a local monitoring session.
  - `rpm-source`: (Optional) Enter a remote monitoring session.
  - `erpm-source`: (Optional) Enter an encapsulated remote monitoring session.
Default: local
Command Mode: CONFIGURATION

Usage Information: The no version of this command removes the monitor session.

Example:
```
OS10(config)# monitor session 1
OS10(conf-mon-local-1)#
```

Example (RPM):
```
OS10(config)# monitor session 5 type rpm-source
OS10(conf-mon-rpm-source-5)#
```

Example (ERPM):
```
OS10(config)# monitor session 10 type erpm-source
OS10(conf-mon-erpm-source-10)#
```

Supported Releases: 10.2.0E or later

**show monitor session**

Displays information about a monitoring session.

**Syntax**
```
show monitor session {session-id | all}
```

**Parameters**
- `session-id`: Enter the session ID number, from 1 to 18.
- `all`: View all monitoring sessions.

**Default**: All

**Command Mode**: EXEC

**Usage Information**: In the State field, `true` indicates that the port is enabled. In the Reason field, `Is UP` indicates that hardware resources are allocated.

**Example (specific session)**
```
OS10# show monitor session 1
S.Id Source Destination Dir Mode Source IP Dest IP DSCP TTL Gre-Protocol State Reason
--
1 ethernet1/1/1 remote-ip both port 11.11.11.1 11.11.11.11 0 255 35006 true Is UP
```

**Example (all sessions)**
```
OS10# show monitor session all
S.Id Source Destination Dir Mode Source IP Dest IP DSCP TTL Gre-Protocol State Reason
--
1 ethernet1/1/1 remote-ip both port 11.11.11.1 11.11.11.11 0 255 35006 true Is UP
9 ethernet1/1/9 both port N/A N/A N/A N/A N/A
7 ethernet1/1/9 vlan40 both port N/A N/A N/A N/A N/A
4 ethernet1/1/1 both port N/A N/A 0 255 35006 false
6 ethernet1/1/2 remote-ip both port 11.11.11.1 2.2.2.1 0 255 35006 false
 Destination is not resolved
```

**Supported Releases**: 10.2.0E or later

**shut**

Disables the monitoring session. The monitoring session can be: local, RPM, or ERPM.

**Syntax**: shut

**Parameters**: None
source

Configures a source for port monitoring. The monitoring session can be: local, RPM, or ERPM.

Syntax

source interface interface-type {both | rx | tx}

Parameters

- interface-type — Enter the interface type:
  - ethernet node/slot/port[:subport] — Enter the Ethernet interface information as the monitored source.
  - port-channel id-number — Enter the port-channel interface number as the monitored source, from 1 to 128. This option is not supported in S5148F–ON.
  - vlan vlan-id — Enter the VLAN identifier as the monitored source, from 1 to 4093.
- both — Monitor both receiving and transmitting packets. This option is not supported in the S5148F–ON platform, and on VLAN interfaces for other platforms.
- rx — Monitor only received packets.
- tx — Monitor only transmitted packets. This option is not supported in the S5148F–ON platform, and on VLAN interfaces for other platforms.

Example

OS10(config)# monitor session 1
OS10(conf-mon-local-1)# source interface ethernet 1/1/7 rx
OS10(config)# monitor session 5 type rpm-source
OS10(conf-mon-rpm-source-5)# source interface ethernet 1/1/10 rx
OS10(config)# monitor session 10 type erpm-source
OS10(conf-mon-erpm-source-10)# source interface ethernet 1/1/5 rx

source-ip

Configures the source, destination, and protocol type of the monitored port for an ERPM monitoring session.

Syntax

source-ip source ip-address destination-ip destination ip-address [gre-protocol protocol-value]
Parameters

• source ip-address — Enter the source IP address.
• destination ip-address — Enter the destination IP address.
• protocol-value — Enter the GRE protocol value, from 1 to 65535, default: 35006.

Default
Not configured

Command Mode
MONITOR-SESSION

Usage Information
None

Example
OS10(config)# monitor session 10
OS10(conf-mon-erpm-source-10)# source-ip 10.16.132.181 destination-ip 172.16.10.11 gre-protocol 35006

Supported Releases
10.4.0E(R1) or later
Virtual routing and forwarding

VRF partitions a physical router into multiple virtual routers (VRs). The control and data plane are isolated in each VR; traffic does not flow across VRs. VRF allows multiple instances of routing tables to co-exist within the same router at the same time.

OS10 supports a management VRF instance, a default VRF instance, and a maximum of 128 non-default VRF instances. Use the default and non-default VRF instances to configure routing.

You can move the management interface from the default to management VRF instance. You need not create the management VRF instance as it already exists in the system by default.

By default, OS10 initially assigns all physical interfaces and all logical interfaces to the default VRF instance.

Configure management VRF

You can assign only management interfaces to the management VRF instance.

Before you assign the management interface to the management VRF instance, remove all the configured settings, including the IP address, on the management interface.

1. Enter the `ip vrf management` command in CONFIGURATION mode. Use Non-Transaction-Based Configuration mode only. Do not use Transaction-Based mode.

2. Add the management interface using the `interface management` command in VRF CONFIGURATION mode.
Configure management VRF

OS10(config)# ip vrf management
OS10(conf-vrf)# interface management

You can enable various services in both management or default VRF instances. The services supported in the management and default VRF instances are:

Table 3. Services supported

<table>
<thead>
<tr>
<th>Application</th>
<th>Management VRF</th>
<th>Default VRF</th>
<th>Non default VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPP ACL</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DHCP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DHCP relay</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DHCP server</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DNS client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FTP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ICMP/Ping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NTP client</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NTP server</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BGP</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPFV2/OSPFV3</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RADIUS server</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SCP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>sFlow</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SFTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SSH server</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Syslog</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Telnet server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TFTP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Traceroute</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VLT backup link</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
### Configure a static route for a management VRF instance

- Configure a static route that directs traffic to the management interface.

  ```text
 management route ip-address mask managementethernet
 or
 management route ipv6-address prefix-length managementethernet
  ```

  You can also configure the management route to direct traffic to a physical interface. For example:

  ```text
 management route 10.1.1.5/24 ethernet 1/1/4
 or
 management route 2::/64 ethernet 1/1/2.
  ```

- Configure a static entry in the IPv6 neighbor discovery.

  ```text
 ipv6 neighbor vrf management 1::1 ethernet 1/1/2 xx:xx:xx:xx:xx:xx
  ```

### Configure non-default VRF instances

In addition to a management VRF instance and default VRF, OS10 also supports non-default VRF instances. You can create a maximum of 128 non-default VRF instances.

While you can assign management interfaces only to the management VRF instance, you can assign any physical or logical interface – VLAN, port channel or loopback, to a non-default VRF instance.

When you create a new non-default VRF instance, OS10 does not assign any interface to it. You can assign the new VRF instance to any of the existing physical or logical interfaces, provided they are not already assigned to another non-default VRF.

**NOTE:** When you create a new logical interface, OS10 assigns it automatically to the default VRF instance. In addition, OS10 initially assigns all physical Layer 3 interfaces to the default VRF instance.

You can reassign any interface assigned to a non-default VRF instance back to the default VRF instance.

- Create a non-default VRF instance by specifying a name and enter VRF configuration mode.

  ```text
 ip vrf vrf-name
  ```

### Assign an interface to a non-default VRF instance

After creating a non-default VRF instance you can associate an interface to the VRF instance that you created.

To assign an interface to a non-default VRF, perform the following steps:

1. Enter the interface that you want to assign to a non-default VRF instance.

   ```text
 interface ethernet 1/1/1
   ```

2. Remove the interface from L2 switching.

   ```text
 no switchport
   ```
3 Assign the interface to a non-default VRF.
   INTERFACE CONFIGURATION

   ip vrf forwarding vrf-test

   Before assigning an interface to a VRF instance, ensure that no IP address is configured on the interface.

4 Assign an IPv4 address to the interface.
   INTERFACE CONFIGURATION

   ip address 10.1.1.1/24

5 Assign an IPv6 address to the interface.
   INTERFACE CONFIGURATION

   ipv6 address 1::1/64

   You can also auto configure an IPv6 address using the ipv6 address autoconfig command.

**NOTE:** Before configuring any routing protocol in a VRF instance, you need to first assign an IP address to at least one of the interfaces assigned to the VRF instance on which you want to configure routing protocols.

### Assigning a loopback interface to a non-default VRF instance

After creating a non-default VRF instance you can associate a loopback interface to the VRF instance that you created.

To assign a loopback interface to a non-default VRF, perform the following steps:

1 Enter the loopback interface that you want to assign to a non-default VRF instance.
   CONFIGURATION

   interface loopback 5

2 Assign the interface to a non-default VRF.
   INTERFACE CONFIGURATION

   ip vrf forwarding vrf-test

   Before assigning an interface to a VRF instance, ensure that no IP address is configured on the interface.

3 Assign an IPv4 address to the interface.
   INTERFACE CONFIGURATION

   ip address 10.1.1.1/24

4 Assign an IPv6 address to the interface.
   INTERFACE CONFIGURATION

   ipv6 address 1::1/64

   You can also auto configure an IPv6 address using the ipv6 address autoconfig command.
Assign an interface back to the default VRF instance

Table 4. Configurations to be removed

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>MODE</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address — In interface configuration mode, undo the IP address configuration.</td>
<td>INTERFACE CONFIGURATION</td>
<td>OS10(conf-if-eth1/1/10:1)#no ip address ipv4-address or no ipv6 address ipv6-address</td>
</tr>
<tr>
<td>Port — In interface configuration mode, remove the interface association corresponding to the VRF instance that you want to delete.</td>
<td>INTERFACE CONFIGURATION</td>
<td>OS10(conf-if-eth1/1/10:1)#no ip vrf forwarding</td>
</tr>
</tbody>
</table>

To assign an interface back to the default VRF, perform the following steps:

1. Enter the interface that you want to assign back to the default VRF instance.
   CONFIGURATION
   ```
 interface ethernet 1/1/1
   ```

2. Remove the IPv4 address associated with the interface.
   INTERFACE CONFIGURATION
   ```
 no ip address
   ```

3. Remove the IPv6 address associated with the interface.
   INTERFACE CONFIGURATION
   ```
 no ipv6 address
   ```

4. Assign the interface back to the default VRF instance.
   INTERFACE CONFIGURATION
   ```
 no ip vrf forwarding
   ```

Assigning the management interface back to the default VRF instance

To assign the management interface back to the default VRF, perform the following steps:

1. Enter the management VRF instance.
   CONFIGURATION
   ```
 ip vrf management
   ```

2. Assign the management interface back to the default VRF instance.
   CONFIGURATION VRF
   ```
 no interface management
   ```

Deleting a non-default VRF instance

Before deleting a non-default VRF instance, ensure all the dependencies and associations corresponding to that VRF instance are first removed or disabled. Following table shows the dependencies that you have to remove before deleting a non-default VRF instance:

After removing all dependencies, you can delete the non-default VRF instances that you create.
• Delete a non-default VRF instance using the following command:

```plaintext
CONFIGURATION

no ip vrf vrf-name
```

**NOTE:** You cannot delete the default VRF instance.

### Configure a static route for a non-default VRF instance

• Configure a static route in a non-default VRF instance. Static routes contain IP addresses of the next-hop neighbors that are reachable through the non-default VRF. These IP addresses could also belong to the interfaces that are part of the non-default VRF instance.

```plaintext
CONFIGURATION

ip route vrf vrf-name ip-address mask next-hop-ip-address or ipv6 route vrf vrf-name ipv6-address prefix-length next-hopipv6-address
```

For example: `ip route vrf red 10.1.1.0/24 20.1.1.6` or `ipv6 route vrf red 2::/64 3::1`

• Configure the route to direct traffic to a front-panel port in case of a non-default VRF instance.

```plaintext
CONFIGURATION

ip route ip-address-mask ethernet interface-type or ipv6 route ipv6-address-mask ethernet interface-type
```

For example: `ip route 10.1.1.0/24 ethernet 1/1/1` or `ipv6 route 2::/64 ethernet 1/1/1`. Where ethernet 1/1/1 is part of the non-default VRF.

### Configuring static entry in IPv6 neighbor

• Configure a static entry in the IPv6 neighbor discovery.

```plaintext
CONFIGURATION

ipv6 neighbor vrf vrf-test 1::1 ethernet 1/1/1 xx:xx:xx:xx:xx:xx
```

### VRF configuration

The following configuration illustrates a typical VRF setup:
**Figure 3. Setup VRF Interfaces**

**Router 1**

```plaintext
ip vrf blue
!
ip vrf orange
!
ip vrf green
!
interface ethernet 1/1/1
 no ip address
 no switchport
 no shutdown
!
interface ethernet 1/1/2
 no shutdown
 no switchport
 ip vrf forwarding blue
 ip address 20.0.0.1/24
!
interface ethernet 1/1/3
 no shutdown
 no switchport
 ip vrf forwarding orange
 ip address 30.0.0.1/24
!
interface ethernet 1/1/4
 no shutdown
 no switchport
 ip vrf forwarding green
 ip address 40.0.0.1/24
```

```plaintext
interface ethernet1/5
 no shutdown
 no switchport
 ip vrf forwarding blue
 ip address 20.0.0.1/24
!
interface ethernet1/6
 no shutdown
 no switchport
 ip vrf forwarding orange
 ip address 30.0.0.1/24
!
interface ethernet1/7
 no shutdown
 no switchport
 ip vrf forwarding green
 ip address 40.0.0.1/24
```
no shutdown
no switchport
ip vrf forwarding green
ip address 40.0.0.1/24
!
interface vlan128
mode L3
no shutdown
ip vrf forwarding blue
ip address 1.0.0.1/24
!
interface vlan192
mode L3
no shutdown
ip vrf forwarding orange
ip address 2.0.0.1/24
!
interface vlan256
mode L3
no shutdown
ip vrf forwarding green
ip address 3.0.0.1/24
!
ip route vrf green 30.0.0.0/24 3.0.0.1

Router 2

ip vrf blue
!
ip vrf orange
!
ip vrf green
!
interface ethernet 1/1/1
    no ip address
    no switchport
    no shutdown
!
interface ethernet1/1/5
no shutdown
no switchport
ip vrf forwarding blue
ip address 21.0.0.1/24
!
interface ethernet1/1/6
no shutdown
no switchport
ip vrf forwarding orange
ip address 31.0.0.1/24
!
interface ethernet1/1/7
no shutdown
no switchport
ip vrf forwarding green
ip address 41.0.0.1/24
!
interface vlan128
mode L3
no shutdown
ip vrf forwarding blue
ip address 1.0.0.1/24
!
interface vlan192
mode L3
no shutdown
ip vrf forwarding orange
ip address 2.0.0.1/24
!
interface vlan256
  mode L3
  no shutdown
  ip vrf forwarding green
  ip address 3.0.0.1/24
!
ip route vrf green 31.0.0.0/24 3.0.0.1

Router 1 show command output

OS10# show ip vrf
VRF-Name                   Interfaces
blue                        Eth1/1/2
                            Vlan128
default                    Mgmt1/1/1
                            Vlan,24-25,200
green                      Eth1/1/4
                            Vlan256
orange                      Eth1/1/3
                            Vlan192

OS10# show ip route vrf blue
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route
Gateway of last resort is not set
Destination         Gateway                          Dist/Metric  Last Change
------------------------------------------------------------------------------
C     20.0.0.0/24   via 20.0.0.1    ethernet1/1/2   0/0         01:46:41

OS10# show ip route vrf orange
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route
Gateway of last resort is not set
Destination         Gateway                          Dist/Metric  Last Change
-------------------------------------------------------------------------------
C     30.0.0.0/24   via 30.0.0.1    ethernet1/1/3    0/0          01:55:00

OS10# show ip route vrf green
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route
Gateway of last resort is not set
Destination         Gateway                          Dist/Metric  Last Change
------------------------------------------------------------------------------
C     40.0.0.0/24   via 40.0.0.1    ethernet1/1/4     0/0           02:01:15

Router 2 show command output

OS10# show ip vrf
VRF-Name                   Interfaces
blue                        Eth1/1/5
Vlan128

default                           Mgmt1/1/1
Vlan1,24-25,200

green                           Eth1/1/7
Vlan256

orange                          Eth1/1/6
Vlan192

OS10# show ip route vrf blue
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route

Gateway of last resort is not set

Destination         Gateway                          Dist/Metric  Last Change
-------------------------------------------------------------------------------
C     21.0.0.0/24   via 21.0.0.1    ethernet1/1/5    0/0          02:05:00

OS10# show ip route vrf orange
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route

Gateway of last resort is not set

Destination         Gateway                           Dist/Metric  Last Change
--------------------------------------------------------------------------------
C     31.0.0.0/24   via 31.0.0.1    ethernet1/1/6     0/0          02:09:19

OS10# show ip route vrf green
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, * - candidate default,
       + - summary route, > - non-active route

Gateway of last resort is not set

Destination         Gateway                           Dist/Metric  Last Change
--------------------------------------------------------------------------------
C     41.0.0.0/24    via 41.0.0.1   ethernet1/1/7      0/0          02:45:16

=================================================================================

View VRF instance information

To display information about a VRF configuration, use the show ip vrf command. To display information on all VRF instances including
the default VRF 0, do not enter a value for vrf-name.

- Display the VRF instance interfaces.
  EXEC
  show ip vrf [vrf-name]
Static route leaking

Route leaking enables routes that are configured in a default or non-default VRF instance to be made available to another VRF instance. You can leak routes from a source VRF instance to a destination VRF instance. The routes need to be leaked in both source as well as destination VRFs in order to achieve end-to-end traffic flow.

If there are any connected routes in the same subnet as statically leaked routes, then the connected routes take precedence.

In static route leaking, DHCP functionality does not work for overlapping subnets. For example, if two interfaces on different VRFs are on the same subnet and are configured with the same DHCP server, then only one of those interfaces get an IP address. This is because the client requests from these interfaces have the same MAC and subnet addresses. The server does not have any unique parameter to differentiate that the request is from two different clients.

Limitations

- In VLT scenarios, the resolved ARP entry for the leaked route is not synced between the VLT peers. The ARP entry resolved in the source VRF is programmed into the leaked VRF when the leaked route configuration is active.
- During downgrade from 10.4.2, the leaked route configuration is restored. However, the routes remain inactive in the destination VRF instance.
- During downgrade from 10.4.2, the update-source-if command is not restored.

Configuring static route leaking

To configure static route leaking:

1. Enter the interface in the source VRF instance that contains the static routes that you want to leak.
   
   ```
 interface interface-name
   ```
   
   **CONFIGURATION Mode**

2. In INTERFACE CONFIGURATION Mode, assign the interface to the source VRF instance.
   
   ```
 ip vrf forwarding vrf1
   ```
   
   **INTERFACE CONFIGURATION Mode**

3. Assign an IP address to the interface.
   
   ```
 ip address ip-address
   ```
   
   **VRF CONFIGURATION Mode**

4. Enter the interface of the VRF instance to which you want to leak the static routes.
   
   ```
 interface interface-name
   ```
   
   **CONFIGURATION Mode**

5. In INTERFACE CONFIGURATION Mode, assign the interface to the destination VRF instance.
   
   ```
 ip vrf forwarding vrf2
   ```
   
   **INTERFACE CONFIGURATION Mode**

6. Configure the static route that you want to leak on the destination VRF instance.
   
   ```
 ip route vrf dest-vrf-name route nexthop-interface
   ```

7. Configure the static route that you have configured earlier in the source VRF instance to be available in the destination VRF instance also.
ip route vrf src-vrf-name route next-hop-interface

OS10(config)#interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# ip vrf forwarding VRF1
OS10(config-if-eth1/1/1)# ip address 120.0.0.1/24
OS10(config)#interface ethernet 1/1/2
OS10(config-if-eth1/1/1)# ip vrf forwarding VRF2
OS10(config-if-eth1/1/1)# ip address 140.0.0.1/24
OS10(config)#ip route vrf VRF1 140.0.0.0/24 interface ethernet 1/1/2
OS10(config)#ip route vrf VRF2 120.0.0.0/24 interface ethernet 1/1/1

The following example shows the show output:
OS10(config)# do show ip route vrf VRF1
Codes: C - connected
S - static
B - BGP, I - internal BGP, E - external BGP
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
E2 - OSPF external type 2, * - candidate default,
+ - summary route, > - non-active route
Gateway of last resort is not set
Destination Gateway Dist/Metric Last Change
------------------------------------------------------------------------------------------------
----
C 120.0.0.0/24 via 120.0.0.1 ethernet1/1/1 0/0 00:00:57
S 140.0.0.0/24 Direct,VRF2 ethernet1/1/2 1/0 00:00:04

OS10(config)# do show ip route vrf VRF2
Codes: C - connected
S - static
B - BGP, I - internal BGP, E - external BGP
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
E2 - OSPF external type 2, * - candidate default,
+ - summary route, > - non-active route
Gateway of last resort is not set
Destination Gateway Dist/Metric Last Change
------------------------------------------------------------------------------------------------
----
S 120.0.0.0/24 Direct,VRF1 ethernet1/1/1 1/0 00:00:05
C 140.0.0.0/24 via 140.0.0.1 ethernet1/1/2 0/0 00:01:54

Configuring source IP address for a leaked route

If the source IP is not mentioned explicitly for any self originating packet (for example, ping or traceroute) to the leaked route destined through the parent VRF, the system chooses a source based on its source selection algorithm.

NOTE: For end-to-end traffic to flow, you must specify the source for self originating packets and leak the same into the destination VRF.

To mitigate this issue and have control over the source IP address for leaked routes, you can create a loopback interface and associate it with the leaked VRF.

To explicitly mention the source interface for the leaked VRF:

Enter the following command:

update-source-if

VRF CONFIGURATION Mode
After you configure the source IP address in a leaked VRF, if ping is initiated without -I option, then the source IP address will be that of loopback interface.

**VRF commands**

### interface management

Adds a management interface to the management VRF instance.

- **Syntax**
  ```
 interface management
  ```

- **Parameters**
  - None

- **Default**
  - Not configured

- **Command Mode**
  - VRF CONFIGURATION

- **Usage Information**
  - The `no` version of this command removes the management interface from the management VRF instance.

- **Example**
  ```
 OS10(config)# ip vrf management
 OS10(conf-vrf)# interface management
  ```

- **Supported Releases**
  - 10.4.0E(R1) or later

### ip domain-list vrf

Configures a domain list for the management VRF instance or any non-default VRF instance that you create.

- **Syntax**
  ```
 ip domain-list vrf {management | vrf-name} domain-names
  ```

- **Parameters**
  - `management`—Enter the keyword `management` to configure a domain list for the management VRF instance.
  - `vrf-name`—Enter the name of the non-default VRF instance to configure a domain list for that non-default VRF instance.
  - `domain-names`—Enter the list of domain names.

- **Default**
  - Not configured

- **Command Mode**
  - CONFIGURATION

- **Usage Information**
  - The `no` version of this command removes the domain list configuration from the management or the non-default VRF instance.

- **Example**
  ```
 OS10(config)# ip domain-list vrf management dns1 dell.com
 or
 OS10(config)# ip domain-list vrf blue dns1 dell.com
  ```

- **Supported Releases**
  - 10.4.0E(R1) or later
**ip domain-name vrf**

Configures a domain name for the management VRF instance or any non-default VRF instance that you create.

**Syntax**

```
ip domain-name vrf {management | vrf-name} domain-name
```

**Parameters**

- `management`—Enter the keyword `management` to configure a domain name for the management VRF instance.
- `vrf-name`—Enter the name of the non-default VRF instance to configure a domain name for that VRF instance.
- `domain-name`—Enter the domain name.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the domain name from the management or non-default VRF instance.

**Example**

```
OS10(config)# ip domain-name vrf management dell.com
or
OS10(config)# ip domain-name vrf blue dell.com
```

**Supported Releases**

10.4.0E(R1) or later

---

**ip vrf**

Create a non-default VRF instance.

**Syntax**

```
ip vrf vrf-name
```

**Parameters**

- `vrf-name`—Enter the name of the non-default VRF that you want to create. Enter a VRF name that is not greater than 32 characters in length.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

Enter the `ip vrf vrf-name` command only in non-transaction-based configuration mode. Do not use transaction-based mode. You can create up to a maximum of 128 non-default VRF instances. The `no` `ip vrf vrf-name` command removes the non-default VRF instance that you specify.

**Example**

```
OS10(config)# ip vrf vrf-test
OS10(conf-vrf-test)#
```

**Supported Releases**

10.4.1.0 or later

---

**ip ftp vrf**

Configures an FTP client for the management or non-default VRF instance.

**Syntax**

```
ip ftp vrf {management | vrf vrf-name}
```

**Parameters**

- `management`—Enter the keyword `management` to configure an FTP client on the management VRF instance.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an FTP client on that non-default VRF instance.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The no version of this command removes the management VRF instance configuration from the FTP client.

**Example**
```
OS10(config)# ip ftp vrf management
OS10(config)# ip ftp vrf vrf-blue
```

**Supported Releases**
10.4.0E(R1) or later

### ip host vrf

Configures a host name for the management VRF instance or a non-default VRF instance and maps the host name to an IPv4 or IPv6 address.

**Syntax**
```
ip host vrf {management | vrf-name} hostname {IP-address | Ipv6-address}
```

**Parameters**
- `management` — Enter the keyword `management` to configure a host name for the management VRF instance.
- `vrf-name` — Enter the name of the non-default VRF instance to configure a host name for that VRF instance.
- `hostname` — Enter the host name.
- `IP-address` | `Ipv6-address` — Enter the host IPv4 or IPv6 address.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The no version of this command removes the host name from the management or non-default VRF instance.

**Example**
```
OS10(config)# ip host vrf management dell 10.1.1.1
OS10(config)# ip host vrf blue dell 10.1.1.1
```

**Supported Releases**
10.4.0E(R1) or later

### ip http vrf

Configures an HTTP client for the management or non-default VRF instance.

**Syntax**
```
ip http vrf {management | vrf vrf-name}
```

**Parameters**
- `management` — Enter the keyword `management` to configure an HTTP client for the management VRF instance.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an HTTP client for that non-default VRF instance.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The no version of this command removes the management VRF instance configuration from the HTTP client.
### ip name-server vrf

Configures a DNS name server for the management VRF instance or a non-default VRF instance.

**Syntax**

```
ip name-server vrf {management | vrf-name}
```

**Parameters**

- `management`—Enter the keyword `management` to configure a DNS name server for the management VRF instance.
- `vrf-name`—Enter the name of the non-default VRF instance to configure a DNS name server for that VRF instance.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the name server from the management or non-default VRF instance.

**Example**

```
OS10(config)# ip name-server vrf management
OS10(config)# ip name-server vrf blue
```

**Supported Releases**

10.4.0E(R1) or later

---

### ip scp vrf

Configures an SCP connection for the management or non-default VRF instance.

**Syntax**

```
ip scp vrf {management | vrf vrf-name}
```

**Parameters**

- `management` — Enter the keyword `management` to configure an SCP connection for the management VRF instance.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an SCP connection for that VRF instance.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the management VRF instance configuration from the SCP client.

**Example**

```
OS10(config)# ip scp vrf management
OS10(config)# ip scp vrf vrf-blue
```

**Supported Releases**

10.4.0E(R1) or later
**ip sftp vrf**

Configures an SFTP client for the management or non-default VRF instance.

**Syntax**

`ip sftp vrf {management | vrf vrf-name}`

**Parameters**

- `management` — Enter the keyword `management` to configure an SFTP client for a management VRF instance.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an SFTP client for that non-default VRF instance.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the management VRF instance configuration from the SFTP client.

**Example**

```
OS10(config)# ip sftp vrf management
OS10(config)# ip sftp vrf vrf-blue
```

**Supported Releases**

10.4.0E(R1) or later

**ip tftp vrf**

Configures a TFTP client for the management or non-default VRF instance.

**Syntax**

`ip tftp vrf {management | vrf vrf-name}`

**Parameters**

- `management` — Enter the keyword `management` to configure a TFTP client for the management VRF instance.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure a TFTP client for that non-default VRF instance.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the management VRF instance configuration from the TFTP client.

**Example**

```
OS10(config)# ip tftp vrf management
OS10(config)# ip tftp vrf vrf-blue
```

**Supported Releases**

10.4.0E(R1) or later

**ip vrf management**

Configures the management VRF instance.

**Syntax**

`ip vrf management`

**Parameters**

None

**Default**

Not configured

**Command Mode**

CONFIGURATION
Usage Information
Enter the ip vrf management command only in non-transaction-based configuration mode. Do not use transaction-based mode. The no version of this command removes the management VRF instance configuration.

Example
OS10(config)# ip vrf management
OS10(conf-vrf)#

Supported Releases
10.4.0E(R1) or later

show hosts vrf
Displays the host table in the management or non-default VRF instance.

Syntax
show hosts vrf {management | vrf-name}

Parameters
- management—Enter the keyword management to display the host table in the management VRF instance.
- vrf-name—Enter the name of the non-default VRF instance to display the host table in that VRF instance.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show hosts vrf management
Default Domain Name : dell.com
Domain List : abc.com xyz.net
Name Servers : 10.16.126.1

Static Host to IP mapping Table

<table>
<thead>
<tr>
<th>Host</th>
<th>IP-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>google.com</td>
<td>172.217.160.142</td>
</tr>
<tr>
<td>yahoo.com</td>
<td>98.139.180.180</td>
</tr>
</tbody>
</table>

Supported Releases
10.4.0E(R1) or later

show ip vrf
Displays the VRF instance information.

Syntax
show ip vrf [management | vrf-name]

Parameters
- management—Enter the keyword management to display information corresponding to the management VRF instance.
- vrf-name—Enter the name of the non-default VRF instance to display information corresponding to that VRF instance.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show ip vrf
VRF-Name     Interfaces
default      Mgmt1/1/1
             Eth1/1/1-1/1/2
**update-source-ip**

ConFigures a source IP interface for any leaked route in a VRF instance.

**Syntax**

```
update-source-ip interface interface-id
```

To undo this configuration, use the
```no update-source-ip```

Parameters

- `interface interface-id` — Enter the loopback interface identifier. The range is from 0 to 16383.

Default

Not configured

Command Mode

VRF CONFIGURATION

Example

```
OS10(conf-vrf)# update-source-ip loopback 1
```

Supported Releases

10.4.2E or later.

Bidirectional Forwarding Detection

The Bidirectional Forwarding Detection (BFD) protocol rapidly detects communication failures between two adjacent routers. BFD replaces link-state detection mechanisms in existing routing protocols. It also provides a failure detection solution for links with no routing protocols. BFD provides forwarding-path failure detection in milliseconds instead of seconds. Because BFD is independent of routing protocols, it provides consistent network failure detection. BFD eliminates multiple protocol-dependent timers and methods. Networks converge faster because BFD triggers link-state changes in the routing protocol sooner and more consistently.

BFD is a simple hello mechanism. Two neighboring routers running BFD establish a session using a three-way handshake. After the session is established, the routers exchange periodic control packets at sub-second intervals. If a router does not receive a hello packet within the specified time, routing protocols are notified that the forwarding path is down.

In addition, BFD sends a control packet when there is a state change or change in a session parameter. These control packets are sent without regard to transmit and receive intervals in a routing protocol.

BFD is an independent and generic protocol, which all media, topologies, and routing protocols can support using any encapsulation. OS10 implements BFD at Layer 3 (L3) and with User Datagram Protocol (UDP) encapsulation. BFD is supported on static and dynamic routing protocols, such as VRRP, OSPF, OSPFv3, IS-IS, and BGP.

The system displays BFD state change notifications.

NOTE: In this release, BFD is only supported for the border gateway protocol (BGP).
BFD session states

To establish a BFD session between two routers, enable BFD on both sides of the link. BFD routers can operate in both active and passive roles.

- The active router starts the BFD session. Both routers can be active in the same session.
- The passive router does not start a session. It only responds to a request for session initialization from the active router.

A BFD session can occur in Asynchronous and Demand modes. However, OS10 BFD supports only Asynchronous mode.

- In Asynchronous mode, both systems send periodic control messages at a specified interval to indicate that their session status is Up.
- In Demand mode, if one router requests Demand mode, the other router stops sending periodic control packets; it only sends a response to status inquiries from the Demand mode initiator. Either peer router, but not both, can request Demand mode at any time.

A BFD session can have four states: Administratively Down, Down, Init, and Up. The default BFD session state is Down.

- Administratively Down — The local BFD router does not participate in the session.
- Down — The remote BFD router is not sending control packets or does not send them within the detection time for the session.
- Init — The local BFD outer is communicating to the remote router in the session.
- Up — Both BFD routers are sending control packets.

A BFD session's state changes to Down if:

- A control packet is not received within the detection time.
- Demand mode is active and a control packet is not received in response to a poll packet.

BFD session state changes example

The session state on a router changes according to the status notification it receives from the peer router. For example, if the current session state is Down and the router receives a Down status notification from the remote router, the session state on the local router changes to Init.
BFD three-way handshake

A BFD session requires a three-way handshake between neighboring routers. In the following example, the handshake assumes:

- One router is active, and the other router is passive.
- This is the first session established on this link.
- The default session state on both ports is Down.

1. The active system sends a steady stream of control packets to indicate that its session state is Down until the passive system responds. These packets are sent at the desired transmit interval of the Active system. The Your Discriminator field is set to zero.

2. When the passive system receives a control packet, it changes its session state to Init and sends a response to indicate its state change. The response includes its session ID in the My Discriminator field and the session ID of the remote system in the Your Discriminator field.

3. The active system receives the response from the passive system and changes its session state to Up. It then sends a control packet to indicate this state change. Discriminator values exchange, and transmit intervals negotiate.

4. The passive system receives the control packet and changes its state to Up. Both systems agree that a session is established. However, because both members must send a control packet, which requires a response, whenever there is a state change or change in a session parameter, the passive system sends a final response indicating the state change. After this, periodic control packets exchange.

BFD configuration

Before you configure BFD for a routing protocol, first enable BFD globally on both routers in the link. BFD is disabled by default.
• OS10 supports:
 – 64 BFD sessions at 100 minimum transmit and receive intervals with a multiplier of 4
 – 100 BFD sessions at 200 minimum transmit and receive intervals with a multiplier of 3
• OS10 does not support Demand mode, authentication, and Echo function.
• OS10 does not support BFD on multi-hop and virtual links.
• OS10 supports protocol liveness only for routing protocols.
• OS10 BFD supports only the BGP routing protocol. For IPv4 and IPv6 BGP, OS10 supports only the default virtual routing and forwarding (VRF).

Configure BFD globally

Before you configure BFD for static routing or a routing protocol, configure BFD globally on each router, including the global BFD session settings. BFD is disabled by default.

1. Configure the global BFD session parameters in CONFIGURATION mode.

   ```
   bfd interval milliseconds min_rx milliseconds multiplier number role {active | passive}
   ```

 • *interval milliseconds* — Enter the time interval for sending control packets to BFD peers, from 100 to 1000; default 200. Dell EMC recommends using more than 100 milliseconds.
 • *min_rx milliseconds* — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000; default 200. Dell EMC recommends using more than 100 milliseconds.
 • *multiplier number* — Enter the number of consecutive packets that must not be received from a BFD peer before the session state changes to Down, from 3 to 50; default 3.
 • *role {active | passive}* — Enter *active* if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter *passive* if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session. The default is *active*.

2. Enable BFD globally in CONFIGURATION mode.

   ```
   bfd enable
   ```

 To verify that BFD is globally enabled, enter the `show running-config bfd` command.

BFD global configuration

```
OS10(config)# bfd interval 250 min_rx 300 multiplier 4 role passive
OS10(config)# bfd enable
OS10(config)# do show running-config bfd
!
   bfd enable
   bfd interval 250 min_rx 300 multiplier 4 role passive
```

BFD for BGP

In a BGP core network, BFD enables faster network reconvergence. BFD rapidly detects communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers. BFD for BGP is supported on physical, port-channel, and VLAN interfaces. BFD for BGP does not support the BGP multihop feature.

Before configuring BFD for BGP, first configure BGP on the interconnecting routers. For more information, see Border Gateway Protocol.
BFD for BGP example

In this BFD for BGP configuration example, Router 1 and Router 2 use eBGP in a transit network to interconnect AS1 and AS2. The eBGP routers exchange information with each other and with iBGP routers to maintain connectivity and accessibility within each autonomous system.

When you configure a BFD session with a BGP neighbor, you can:

- Establish a BFD session with a specified BGP neighbor using the `neighbor ip-address` and `bfd` commands.
- Establish BFD sessions with all neighbors discovered by BGP using the `bfd all-neighbors` command.

For example:

Router 1

```
OS10(conf)# bfd enable
OS10(conf)# router bgp 1
OS10(config-router-bgp-1)# neighbor 2.2.4.3
OS10(config-router-neighbor)# bfd
OS10(config-router-neighbor)# no shutdown
```

OR

```
OS10(conf)# bfd enable
OS10(conf)# router bgp 1
OS10(config-router-bgp-1)# bfd all-neighbors interval 200 min_rx 200 multiplier 6 role active
```

Router 2

```
OS10(conf)# bfd enable
OS10(conf)# router bgp 2
OS10(config-router-bgp-2)# neighbor 2.2.4.2
OS10(config-router-neighbor)# bfd
OS10(config-router-neighbor)# no shutdown
```

OR

```
OS10(conf)# bfd enable
OS10(conf)# router bgp 2
OS10(config-router-bgp-2)# bfd all-neighbors interval 200 min_rx 200 multiplier 6 role active
```

BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays. Incoming BFD control packets received from the BGP neighbor are assigned to the highest priority queue within the control plane policing (CoPP) framework to avoid BFD packets drops due to queue congestion.

BFD notifies BGP of any failure conditions that it detects on the link. BGP initiates recovery actions.
BFD for BGP is supported only on directly connected BGP neighbors and in both BGP IPv4 and IPv6 networks. A maximum of 100 simultaneous BFD sessions are supported.

If each BFD for BGP neighbor receives a BFD control packet within the configured BFD interval for failure detection, the BFD session remains up and BGP maintains its adjacencies. If a BFD for BGP neighbor does not receive a control packet within the detection interval, the router informs any clients of the BFD session, and other routing protocols, about the failure. It then depends on the routing protocol that uses the BGP link to determine the appropriate response to the failure condition. The normal response is to terminate the peering session for the routing protocol and reconverge by bypassing the failed neighboring router. A log message generates whenever BFD detects a failure condition.

Configure BFD for BGP

OS10 supports BFD sessions with IPv4 or IPv6 BGP neighbors using the default VRF. When you configure BFD for BGP, you can enable BFD sessions with all BGP neighbors discovered by BGP or with a specified neighbor.

1. Configure BFD session parameters and enable BFD globally on all interfaces in CONFIGURATION mode as described in Configure BFD globally.

   ```
   bfd interval milliseconds min_rx milliseconds multiplier number role {active | passive}
   bfd enable
   ```

2. Enter the AS number of a remote BFD peer in CONFIGURATION mode, from 1 to 65535 for a 2-byte AS number and from 1 to 4294967295 for a 4-byte AS number. Only one AS number is supported per system. If you enter a 4-byte AS number, 4-byte AS support enables automatically.

   ```
   router bgp as-number
   ```

3. Enter the IP address of a BFD peer in ROUTER-BGP mode. Enable a BFD session and the BGP link in ROUTER-NEIGHBOR mode. The global BFD session parameters configured in Step 1 are used.

   ```
   neighbor ip-address
   bfd
   no shutdown
   ```

 OR

 Configure BFD sessions with all neighbors discovered by the BGP in ROUTER-BGP mode. The BFD session parameters you configure override the global session parameters configured in Step 1.

   ```
   bfd all-neighbors [interval milliseconds min_rx milliseconds multiplier number role {active | passive}]
   ```

 - interval milliseconds — Enter the time interval for sending control packets to BFD peers, from 100 to 1000; default 200. Dell EMC recommends using more than 100 milliseconds.
 - min_rx milliseconds — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000; default 200. Dell EMC recommends using more than 100 milliseconds.
 - multiplier number — Enter the maximum number of consecutive packets that are not received from a BFD peer before the session state changes to Down, from 3 to 50; default 3.
 - role {active | passive} — Enter active if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter passive if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session. The default is active.

 To ignore the configured bfd all-neighbors settings for a specified neighbor, enter the bfd disable command in ROUTER-NEIGHBOR mode.

 OR
Enter a BGP template with neighborhood name in ROUTER-BGP mode. Configure BFD sessions with all neighbors which inherit the template in ROUTER-TEMPLATE mode. For more information on how to use BGP templates, see Peer templates. The global BFD session parameters configured in Step 1 are used.

```
template template-name
   bfd
   no shutdown
```

4 Verify the BFD for BGP configuration in EXEC mode.

```
show bfd neighbors [detail]
```

BFD for BGP all-neighbors configuration

```
OS10(conf)# bfd interval 200 min_rx 200 multiplier 6 role active
OS10(conf)# bfd enable
OS10(conf)# router bgp 4
OS10(config-router-bgp-4)# bfd all-neighbors interval 200 min_rx 200 multiplier 6 role active
```

BFD for BGP single-neighbor configuration

```
OS10(conf)# bfd interval 200 min_rx 200 multiplier 6 role active
OS10(conf)# bfd enable
OS10(conf)# router bgp 1
OS10(config-router-bgp-1)# neighbor 150.150.1.1
OS10(config-router-neighbor)# bfd
OS10(config-router-neighbor)# no shutdown
```

BFD for BGP template configuration

```
OS10(config)# router bgp 300
OS10(config-router-bgp-300)# template ebgppg
OS10(config-router-template)# bfd
OS10(config-router-template)# exit
OS10(config-router-bgp-300)# neighbor 3.1.1.1
OS10(config-router-neighbor)# inherit template ebgppg
OS10(config-router-neighbor)# no shutdown
```

Display BFD operation

```
OS10# show bfd neighbors
* - Active session role
--------------------------------------------------------
LocalAddr      RemoteAddr   Interface  State Rx-int Tx-int Mult VRF  Clients
--------------------------------------------------------
* 150.150.1.2  150.150.1.1  vlan10     up    1000   1000   5   default  bgp
```

```
OS10# show bfd neighbors detail
Session Discriminator: 1
Neighbor Discriminator: 2
Local Addr: 150.150.1.2
Local MAC Addr: 90:b1:1c:f4:ab:fd
Remote Addr: 150.150.1.1
Remote MAC Addr: 90:b1:1c:f4:a4:d4
Interface: vlan10
State: up
Configured parameters:
   TX: 1000ms, RX: 1000ms, Multiplier: 5
Actual parameters:
   TX: 1000ms, RX: 1000ms, Multiplier: 5
Neighbor parameters:
   TX: 200ms, RX: 200ms, Multiplier: 49
Role: active
VRF: default
Client Registered: bgp
Uptime: 01:58:09
Statistics:
   Number of packets received from neighbor: 7138
   Number of packets sent to neighbor: 7138
```
Verify BFD for BGP

OS10(config-router-bgp-101)# show ip bgp summary
BGP router identifier 30.1.1.2 local AS number 101
Global BFD is enabled

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>Up/Down</th>
<th>State/Pfx</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.1.1</td>
<td>101</td>
<td>781</td>
<td>777</td>
<td>11:16:13</td>
<td>0</td>
</tr>
<tr>
<td>30.1.1.1</td>
<td>101</td>
<td>787</td>
<td>779</td>
<td>11:15:35</td>
<td>0</td>
</tr>
</tbody>
</table>

OS10(config-router-bgp-101)# show ip bgp neighbors
BGP neighbor is 20.1.1.1, remote AS 101, local AS 101 internal link

BGP version 4, remote router ID 30.1.1.1
BGP state ESTABLISHED, in this state for 11:19:01
Last read 00:24:31 seconds
Hold time is 180, keepalive interval is 60 seconds
Configured hold time is 180, keepalive interval is 60 seconds
Fall-over disabled
Neighbor is using Global level BFD Configuration

Received 784 messages
 1 opens, 0 notifications, 0 updates
 783 keepalives, 0 route refresh requests
Sent 780 messages
 2 opens, 0 notifications, 0 updates
 778 keepalives, 0 route refresh requests
Minimum time between advertisement runs is 30 seconds
Minimum time before advertisements start is 0 seconds
Capabilities received from neighbor for IPv4 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)
 4_OCTET_AS(65)
Capabilities advertised to neighbor for IPv4 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)
 4_OCTET_AS(65)
Prefixes accepted 0, Prefixes advertised 0
Connections established 1; dropped 0
Last reset never
For address family: IPv4 Unicast
 Allow local AS number 0 times in AS-PATH attribute
Prefixes ignored due to:
 Martian address 0, Our own AS in AS-PATH 0
 Invalid Nexthop 0, Invalid AS-PATH length 0
 Wellknown community 0, Locally originated 0

Local host: 20.1.1.2, Local port: 179
Foreign host: 20.1.1.1, Foreign port: 58248

BFD for OSPF

You can configure BFD to monitor and notify reachability status between OSPF neighbors. When you use BFD with OSPF, BFD sessions are established between all neighboring interfaces participating with OSPF full state. If a neighboring interface fails, BFD notifies OSPF protocol that a link state change has occurred.

To configure BFD for OSPF:

1. Enable BFD Globally.
2. Configure OSPF on the interconnecting routers. For more information, see Open Shortest Path First (OSPFv2 and OSPFv3).
Enable BFD Globally

To enable BFD globally:

Enable BFD globally.

`bfd enable`

CONFIGURATION Mode

Establishing BFD sessions with OSPFv2 neighbors

You can establish BFD sessions with all OSPF neighbors at one go. Alternatively, you can also establish BFD sessions with OSPF neighbors corresponding to a single OSPF interface.

To establish BFD sessions with OSPFv2 neighbors:

1. Enable BFD globally

 `bfd enable`

 CONFIGURATION Mode

2. Enter ROUTER-OSPF mode

 `router ospf ospf-instance`

 CONFIGURATION Mode

3. Establish sessions with all OSPFv2 neighbors.

 `bfd all-neighbors`

 ROUTER-OSPF Mode

4. Enter INTERFACE CONFIGURATION mode.

 `interface interface-name`

 CONFIGURATION Mode

5. Establish BFD sessions with OSPFv2 neighbors corresponding to a single OSPF interface.

 `ip ospf bfd all-neighbors`

 INTERFACE CONFIGURATION Mode

Establishing BFD sessions with OSPFv2 neighbors in a non-default VRF instance

To establish BFD sessions with OSPFv2 neighbors in a non-default VRF instance:

1. Enable BFD globally

 `bfd enable`

 CONFIGURATION Mode

2. Enter INTERFACE CONFIGURATION mode

 `interface interface-name`

 CONFIGURATION Mode

3. Associate a non-default VRF with the interface you have entered.
ip vrf forwarding vrf1

INTERFACE CONFIGURATION Mode

4 Assign an IP address to the VRF.
 ip address ip-address

VRF CONFIGURATION Mode

5 Attach the interface to an OSPF area.
 ip ospf ospf-instance area area-address

VRF CONFIGURATION Mode

6 Establish BFD session with OSPFv2 neighbors in a single OSPF interface in a non-default VRF instance.
 ip ospf bfd all-neighbors

VRF CONFIGURATION Mode

7 Enter ROUTER-OSPF mode in a non-default VRF instance.
 router ospf ospf-instance vrf vrf-name

8 Establish BFD sessions with all OSPFv2 instances in a non-default VRF.
 bfd all-neighbors

OS10# show running-configuration ospf
!
interface vlan200
 no shutdown
 ip vrf forwarding red
 ip address 20.1.1.1/24
 ip ospf 200 area 0.0.0.0
 ip ospf bfd all-neighbors disable
!
interface vlan300
 no shutdown
 ip vrf forwarding red
 ip address 30.1.1.1/24
 ip ospf 200 area 0.0.0.0
!
router ospf 200 vrf red
 bfd all-neighbors
 log-adjacency-changes
 router-id 2.3.3.1
!

In this example OSPF is enabled in non-default VRF red. BFD is enabled globally at the router OSPF level and all the interfaces associated with this VRF OSPF instance inherit the global BFD configuration. However, this global BFD configuration does not apply to interfaces in which the interface level BFD configuration is already present. Also, VLAN 200 takes the interface level BFD configuration as interface-level BFD configuration takes precedence over the global OSPF-level BFD configuration.

Changing OSPFv2 BFD session parameters

Configure BFD sessions with default intervals and a default role.
The parameters that you can configure are: desired tx interval, required min rx interval, detection multiplier, and system role. Configure these parameters for all OSPF sessions or all OSPF sessions on a particular interface. If you change a parameter globally, the change affects all OSPF neighbors sessions. If you change a parameter at the interface level, the change affects all OSPF sessions on that interface.

NOTE: By default, OSPF uses the following BFD parameters for it's neighbors: min_{tx} = 200 msec, min_{rx} = 200 msec, multiplier = 3, role = active. If BFD is configured under interface context, that will be given high priority.
To change parameters for all OSPFv2 sessions or for OSPF sessions on a single interface, use the following commands:

1. Change parameters for OSPF sessions.

 bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive]

 ROUTER-OSPF Mode

2. Change parameters for all OSPF sessions on an interface.

 ip ospf bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive]

 INTERFACE CONFIGURATION Mode

Disabling BFD for OSPFv2

If you disable BFD globally, all sessions are torn down and sessions on the remote system are placed in a Down state. If you disable BFD on an interface, sessions on the interface are torn down and sessions on the remote system are placed in a Down state. Disabling BFD does not trigger a change in BFD clients; a final Admin Down packet is sent before the session is terminated.

To disable BFD sessions, use the following commands:

1. Disable BFD sessions with all OSPF neighbors.

 no bfd all-neighbors

 ROUTER-OSPF Mode

2. Disable OSPFv2 at interface level using the following command:

 ip ospf bfd all-neighbors disable

 INTERFACE CONFIGURATION Mode

To re-enable BFD, disabled the interface alone using the following commands:

- no ip ospf bfd all-neighbors command
- ip ospf bfd all-neighbors

Configure BFD for OSPFv3

BFD for OSPFv3 provides support for IPv6:

1. Enable BFD Globally.
2. Establish sessions with OSPFv3 neighbors.

Establishing BFD sessions with OSPFv3 neighbors

To establish BFD sessions with OSPFv3 neighbors:

1. Enable BFD globally

 bfd enable

 CONFIGURATION Mode

2. Enter ROUTER-OSPF mode

 router ospfv3 ospfv3-instance

 CONFIGURATION

3. Establish sessions with all OSPFv3 neighbors.
Establishing BFD sessions with OSPFv3 neighbors in a non-default VRF instance

To establish BFD sessions with OSPFv3 neighbors in a non-default VRF instance:

1. Enable BFD globally
   ```
   bfd enable
   ```

2. Enter INTERFACE CONFIGURATION mode
   ```
   interface interface-name
   ```

3. Associate a non-default VRF with the interface you have entered.
   ```
   ip vrf forwarding vrf1
   ```

4. Assign an IP address to the VRF.
   ```
   ip address ip-address
   ```

5. Attach the interface to an OSPF area.
   ```
   ipv6 ospf ospf-instance area area-address
   ```

6. Establish BFD session with OSPFv3 neighbors in a single OSPF interface in a non-default VRF instance.
   ```
   ipv6 ospf bfd all-neighbors
   ```

7. Enter ROUTER-OSPF mode in a non-default VRF instance.
   ```
   router ospf ospf-instance vrf vrf-name
   ```

8. Establish BFD sessions with all OSPFv2 instances in a non-default VRF.
   ```
   bfd all-neighbors
   ```

Changing OSPFv3 session parameters

Configure BFD sessions with default intervals and a default role.

The parameters that you can configure are: desired tx interval, required min rx interval, detection multiplier, and system role. Configure these parameters for all OSPFv3 sessions or all OSPFv3 sessions on a particular interface. If you change a parameter globally, the change affects all OSPFv3 neighbors sessions. If you change a parameter at the interface level, the change affects all OSPF sessions on that interface.
NOTE: By default, OSPF uses the following BFD parameters for its neighbors: min_tx = 200 msec, min_rx = 200 msec, multiplier = 3, role = active. If BFD is configured under interface context, that will be given high priority.

To change parameters for all OSPFv3 sessions or for OSPF sessions on a single interface, use the following commands:

1. Change parameters for OSPF sessions.
   ```
   bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive]
   ```
 ROUTER-OSPFv3 Mode

2. Change parameters for all OSPF sessions on an interface.
   ```
   ipv6 ospf bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive]
   ```
 INTERFACE CONFIGURATION Mode

Disabling BFD for OSPFv3

If you disable BFD globally, all sessions are torn down and sessions on the remote system are placed in a Down state. If you disable BFD on an interface, sessions on the interface are torn down and sessions on the remote system are placed in a Down state. Disabling BFD does not trigger a change in BFD clients; a final Admin Down packet is sent before the session is terminated.

To disable BFD sessions, use the following commands:

1. Disable BFD sessions with all OSPF neighbors.
   ```
   no bfd all-neighbors
   ```
 ROUTER-OSPFv3 Mode

2. Disable BFD sessions with all OSPF neighbors on an interface.
   ```
   ipv6 ospf bfd all-neighbors disable
   ```
 INTERFACE CONFIGURATION Mode

To re-enable BFD, disabled the interface alone using the following commands:

- no ipv6 ospf bfd all-neighbors command
- ipv6 ospf bfd all-neighbors

BFD for Static route

The static Route BFD feature enables association of static routes with a BFD session in order to monitor the static route reachability. Depending on the status of the BFD session the static routes are added to or removed from the Routing Information Base (RIB). When BFD is configured, the nexthop reachability is dependent on the BFD state of the BFD session corresponding to the specified next hop. If the BFD session of the configured nexthop is down the static route will not be installed in the RIB.

The BFD session needs to be established successfully for the static route. BFD must be configured on both the peers pointing to its neighbor as next hop. There is no dependency on the order of configuration of static route and BFD configuration. The user has provision to configure BFD for all the static routes configured or for none of the static routes. Both IPv4 and IPv6 static route BFD is supported.

NOTE: You can configure BFD for all the static routes. Meaning, there is no provision for configuring BFD only for some of the existing static routes.

Configuring BFD for static routes is a three-step process:

1. Enable BFD Globally.
2. Configure static routes on both routers on the system (either local or remote). Configure static route in such a way that the next-hop interfaces point to each other.
Configure BFD for static route using the `ip route bfd` command

Establishing BFD Sessions for IPv4 Static Routes

Sessions are established for all neighbors that are the next hop of a static route. To establish a BFD session, use the following command:

```
Establish BFD sessions for all neighbors that are the next hop of a static route.
ip route bfd [interval interval min_rx min_rx multiplier value role {active | passive}]
```

Establishing BFD Sessions for IPv4 Static Routes in a non-default VRF instance

To establish a BFD session for IPv4 static routes in a non-default VRF instance, use the following command:

```
Establish BFD sessions for all neighbors that are the next hop of a static route.
ip route bfd [vrf vrf-name] [interval interval min_rx min_rx multiplier value role {active | passive}]
```

Changing IPv4 Static Route Session Parameters

BFD sessions are configured with default intervals and a default role. The parameters you can configure are: Desired TX Interval, Required Min RX Interval, Detection Multiplier, and system role. These parameters are configured for all static routes. If you change a parameter, the change affects all sessions for static routes. To change parameters for static route sessions, use the following command:

```
Change parameters for all static route sessions.
ip route bfd interval milliseconds min_rx milliseconds multiplier value role [active | passive]
```

NOTE: By default, OSPF uses the following BFD parameters for its neighbors: `min_tx = 200 msec, min_rx = 200 msec, multiplier = 3, role = active`. The values are configured in milliseconds

Disabling BFD for IPv4 Static Routes

If you disable BFD, all static route BFD sessions are torn down. A final Admin Down packet is sent to all neighbors on the remote systems, and those neighbors change to the Down state. To disable BFD for IPv4 static routes, use the following command:

```
Disable BFD for static routes.
no ip route bfd
```
Establishing BFD Sessions for IPv6 Static Routes

To establish a BFD session for IPv6 static routes, use the following command.

```
ipv6 route bfd [interval interval min_rx min_rx multiplier value role {active | passive}]
```

NOTE: By default, OSPF uses the following BFD parameters for it’s neighbors: min_tx = 200 msec, min_rx = 200 msec, multiplier = 3, role = active. The values are configured in milliseconds.

Establishing BFD Sessions for IPv6 Static Routes in a non-default VRF instance

To establish a BFD session for IPv6 static routes in a non-default VRF instance, use the following command.

```
ipv6 route bfd [vrf vrf-name] [interval interval min_rx min_rx multiplier value role {active | passive}]
```

NOTE: By default, OSPF uses the following BFD parameters for it’s neighbors: min_tx = 200 msec, min_rx = 200 msec, multiplier = 3, role = active. The values are configured in milliseconds.

Changing IPv6 Static Route Session Parameters

To change parameters for IPv6 static route sessions, use the following command.

```
ipv6 route bfd interval milliseconds min_rx milliseconds multiplier value role {active | passive}
```

NOTE: By default, OSPF uses the following BFD parameters for it’s neighbors: min_tx = 200 msec, min_rx = 200 msec, multiplier = 3, role = active. The values are configured in milliseconds.

Disabling BFD for IPv6 Static Routes

To disable BFD for IPv6 static routes, use the following command.

```
no ipv6 route bfd
```
CONFIGURATION Mode

BFD commands

bfd

Enables BFD sessions with specified neighbors.

Syntax
```
bfd
```

Parameters
None

Default
Not configured

Command Mode
- ROUTER-NEIGHBOR
- ROUTER-TEMPLATE

Usage Information
- Use the `bfd` command to configure BFD sessions with a specified neighbor or neighbors which inherit a BGP template. Use the `neighbor {ip-address | ipv6-address}` command in ROUTER-BGP mode to specify the neighbor. Use the `template template-name` command in ROUTER-BGP mode to specify a BGP template. Use the `no bfd` command in ROUTER-NEIGHBOR mode to disable BFD sessions with a neighbor.
- Use the `bfd all-neighbors` command to configure L3 protocol-specific BFD parameters for all BFD sessions between discovered neighbors. The BFD parameters you configure override the global session parameters configured with the `bfd interval` command.

Example
```
OS10(conf)# router bgp 1
OS10(config-router-bgp-1)# neighbor 10.1.1.1
OS10(config-router-neighbor)# bfd
OS10(config-router-neighbor)# no shutdown
OS10(config)# router bgp 300
OS10(config-router-bgp-300)# template ebgppg
OS10(config-router-template)# bfd
OS10(config-router-template)# exit
OS10(config-router-bgp-300)# neighbor 3.1.1.1
OS10(config-router-neighbor)# inherit template ebgppg
OS10(config-router-neighbor)# no shutdown
```

Supported releases
10.4.1.0 or later

bfd all-neighbors

Configures all BFD session parameters established between neighbors discovered by an L3 protocol.

Syntax
```
bfd all-neighbors [milliseconds min_rx milliseconds multiplier number role {active | passive}]
```

Parameters
- `milliseconds` — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- `min_rx milliseconds` — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
• **multiplier number** — Enter the maximum number of consecutive packets that must not be received from a BFD peer before the session state changes to **Down**, from 3 to 50.

• **role {active | passive}** — Enter **active** if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter **passive** if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default

The time interval for sending control packets to BFD peers is 200 milliseconds.

The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.

The number of consecutive packets that must be received from a BFD peer is 3.

The BFD role is **active**

Command Mode

`ROUTER-OSPF`

Usage Information

- Use the `bfd all-neighbors` command to configure BFD sessions between discovered neighbors. The BFD session parameters you configure override the global session parameters configured with the `bfd interval` command. To disable BFD and ignore the configured `bfd all-neighbors` settings for a specified neighbor, enter the `bfd disable` command in **ROUTER-NEIGHBOR** mode.

- To remove the configured all-neighbors settings for all BGP neighbors, enter the `no` version of the command. To return to the default values, enter the `bfd all-neighbors` command.

Example

```
OS10(conf-ospf-bgp)# bfd all-neighbors interval 250 min_rx 300 multiplier 4 role passive
```

Supported releases 10.4.1.0 or later

bfd disable

Ignores the configured `bfd all-neighbors` settings and disables BFD for a specified neighbor.

Syntax

```
bfd disable
```

Parameters

None

Default

Not configured

Command Mode

`ROUTER-NEIGHBOR`

Usage Information

Use the `neighbor ip-address` command in **ROUTER-BGP** mode to specify a neighbor. Use the `bfd disable` command to disable BFD sessions with the neighbor.

Example

```
OS10(conf)# router bgp 1
OS10(config-router-bgp-1)# neighbor 10.1.1.1
OS10(config-router-neighbor)# bfd disable
```

Supported releases 10.4.1.0 or later

bfd enable

Enables BFD on all interfaces on the switch.

Syntax

```
bfd enable
```

Parameters

None
BFD is disabled.

Command Mode
CONFIGURATION

Usage Information
Before you configure BFD for static routing or a routing protocol, enable BFD globally on each router in a BFD session. To globally disable BFD on all interfaces, enter the `no bfd enable` command.

Example
OS10(config)# bfd enable

Supported releases
10.4.1.0 or later

bfd interval

Configures parameters for all BFD sessions on the switch.

Syntax
`bfd interval milliseconds min_rx milliseconds multiplier number role {active | passive}`

Parameters
- `interval milliseconds` — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- `min_rx milliseconds` — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- `multiplier number` — Enter the number of consecutive packets that must not be received from a BFD peer before the session state changes to Down, from 3 to 50.
- `role {active | passive}` — Enter active if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter passive if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default
The time interval for sending control packets to BFD peers is 200 milliseconds.
The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.
The number of consecutive packets that must be received from a BFD peer is 3.
The BFD role is active.

Command Mode
CONFIGURATION

Usage Information
Use the `bfd interval` command to configure global BFD session settings. To configure the BFD parameters used in sessions established with neighbors discovered by an L3 protocol, use the `bfd all-neighbors` command. To remove the configured global settings and return to the default values, enter the `no` version of the command.

Example
OS10(config)# bfd interval 250 min_rx 300 multiplier 4 role passive

Supported releases
10.4.1.0 or later

ip ospf bfd all-neighbors

Enables and configures the default BFD parameters for all OSPFv2 neighbors in this interface.

Syntax
`ip ospf bfd all-neighbors [disable|[interval milliseconds min_rx milliseconds multiplier number role {active | passive}]]`

Layer 3
317
Parameters

- **disable** — Disables the BFD session on an interface alone.
- **interval milliseconds** — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- **min_rx milliseconds** — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- **multiplier number** — Enter the maximum number of consecutive packets that must not be received from a BFD peer before the session state changes to **Down**, from 3 to 50.
- **role {active | passive}** — Enter **active** if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter **passive** if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default

The time interval for sending control packets to BFD peers is 200 milliseconds.
The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.
The number of consecutive packets that must be received from a BFD peer is 3.
The BFD role is **active**.

Command Mode

CONFIG-INTERFACE

Usage Information

- This command can be used to enable or disable BFD for an interface associated with OSPFv2. Interface level BFD configuration takes precedent over the OSPF global level BFD configuration. If there is no BFD configuration present at the interface level global OSPF BFD configuration will be inherited.

Example

```
(conf-if-eth1/1/1)#ip ospf bfd all-neighbors
```

Supported releases

10.4.2E or later

ipv6 ospf bfd all-neighbors

Enables and configures the default BFD parameters for all OSPFv3 neighbors in this interface.

Syntax

```
ipv6 ospf bfd all-neighbors [disable][interval milliseconds min_rx min_rx multiplier number role {active | passive}]
```

To disable default BFD parameters for all OSPFv3 neighbors using the **no ipv6 ospf bfd all-neighbors**.

Parameters

- **disable** — Disables the BFD session on an interface alone.
- **interval milliseconds** — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. You cannot configure a value that is less than 100 milliseconds.
- **min_rx milliseconds** — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- **multiplier number** — Enter the maximum number of consecutive packets that must not be received from a BFD peer before the session state changes to **Down**, from 3 to 50.
- **role {active | passive}** — Enter **active** if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter **passive** if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default

The time interval for sending control packets to BFD peers is 200 milliseconds.
The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.

The number of consecutive packets that must be received from a BFD peer is 3.

The BFD role is active

Command Mode

CONFIG-INTERFACE

Usage Information

- This command can be used to enable or disable BFD for an interface associated with OSPFv3. Interface level BFD configuration takes precedent over the OSPF global level BFD configuration. If there is no BFD configuration present at the interface level global OSPF BFD configuration will be inherited. All types of interfaces are supported.

Example

(conf-if-eth1/1/1)#ipv6 ospf bfd all-neighbors

Supported releases

10.4.2E or later

ip route bfd

Enables or disables BFD on static routes.

Syntax

```
ip route bfd [vrf vrf-name] [interval min_rx multiplier role {active | passive}]
```

To disable BFD on a static route, use the `no ip route bfd` command.

Parameters

- `vrf vrf-name` — Enter the keyword VRF followed by the name of the VRF to configure static route in that VRF.
- `interval milliseconds` — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- `min_rx milliseconds` — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- `multiplier number` — Enter the maximum number of consecutive packets that must not be received from a BFD peer before the session state changes to Down, from 3 to 50.
- `role {active | passive}` — Enter `active` if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter `passive` if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default

The time interval for sending control packets to BFD peers is 200 milliseconds.

The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.

The number of consecutive packets that must be received from a BFD peer is 3.

The BFD role is active

Command Mode

CONFIG

Usage Information

- This command can be used to enable or disable BFD for all the configured IPv4 static route for specified VRF. If VRF name is not specified the command will be applicable for default VRF.

Example

OS10(config)# ip route bfd interval 250 min_rx 250 multiplier 4 role active
Supported releases 10.4.2E or later

ipv6 route bfd

Enables or disables BFD on IPv6 static routes.

Syntax
```
ipv6 route bfd [vrf vrf-name] [interval millisecond min_rx min_rx multiplier role {active | passive}]
```

To disable BFD on a IPv6 static route, use the `no ipv6 route bfd` command.

Parameters
- **vrf vrf-name** — Enter the keyword VRF followed by the name of the VRF to configure static route in that VRF.
- **interval milliseconds** — Enter the time interval for sending control packets to BFD peers, from 100 to 1000. You cannot configure a value that is less than 100 milliseconds.
- **min_rx milliseconds** — Enter the maximum waiting time for receiving control packets from BFD peers, from 100 to 1000. Dell EMC recommends using more than 100 milliseconds.
- **multiplier number** — Enter the maximum number of consecutive packets that must not be received from a BFD peer before the session state changes to Down, from 3 to 50.
- **role {active | passive}** — Enter active if the router initiates BFD sessions. Both BFD peers can be active at the same time. Enter passive if the router does not initiate BFD sessions, and only responds to a request from an active BFD to initialize a session.

Default
- The time interval for sending control packets to BFD peers is 200 milliseconds.
- The maximum waiting time for receiving control packets from BFD peers is 200 milliseconds.
- The number of consecutive packets that must be received from a BFD peer is 3.
- The BFD role is active

Command Mode **CONFIG**

Usage Information
- This command can be used to enable or disable BFD for all the configured IPv6 static route for specified VRF. If VRF name is not specified the command will be applicable for default VRF.

Example
```
OS10(config)# ipv6 route bfd interval 250 min_rx 250 multiplier 4 role active
```

Supported releases 10.4.2E or later

show bfd neighbors

Displays information about BFD neighbors from all interfaces using the default VRF.

Syntax
```
show bfd neighbors [detail]
```

Parameters
- **detail** — (Optional) View detailed information about BFD neighbors.

Default Not configured

Command Mode **EXEC**

Usage Information Use the `show bfd neighbors` command to verify that a BFD session between neighbors is up using the default VRF instance.
Border Gateway Protocol

Border Gateway Protocol (BGP) is an interautonomous system routing protocol that transmits interdomain routing information within and between autonomous systems (AS). BGP exchanges network reachability information with other BGP systems. BGP adds reliability to network connections by using multiple paths from one router to another. Unlike most routing protocols, BGP uses TCP as its transport protocol.

Autonomous systems

BGP autonomous systems are a collection of nodes under a single administration with shared network routing policies. Each AS has a number, which an Internet authority assigns—you do not assign the BGP number.

The Internet Assigned Numbers Authority (IANA) identifies each network with a unique AS number (ASN). AS numbers 64512 through 65534 are reserved for private purposes. AS numbers 0 and 65535 cannot be used in a live environment. IANA assigns valid AS numbers in the range of 1 to 64511.
Multihomed AS

Maintains connections to more than one other AS. This group allows the AS to remain connected to the Internet if a complete failure occurs to one of their connections. This type of AS does not allow traffic from one AS to pass through on its way to another AS.

Stub AS

Connected to only one AS.

Transit AS

Provides connections through itself to separate networks. For example, Router 1 uses Router 2—the transit AS, to connect to Router 4. Internet service providers (ISPs) are always a transit AS because they provide connections from one network to another. An ISP uses a transit AS to sell transit service to a customer network.

When BGP operates inside an AS—AS1 or AS2, it functions as an Internal Border Gateway Protocol (IBGP). When BGP operates between AS endpoints—AS1 and AS2, it functions as an External Border Gateway Protocol (EBGP). IBGP provides routers inside the AS with the path to reach a router external to the AS. EBGP routers exchange information with other EBGP routers and IBGP routers to maintain connectivity and accessibility.

Classless interdomain routing

BGPv4 supports classless interdomain routing (CIDR) with aggregate routes and AS paths. CIDR defines a network using a prefix consisting of an IP address and mask, resulting in efficient use of the IPv4 address space. Using aggregate routes reduces the size of routing tables.

Path-vector routing

BGP uses a path-vector protocol that maintains dynamically updated path information. Path information updates which returns to the originating node are detected and discarded. BGP does not use a traditional Internal Gateway Protocol (IGP) matrix but makes routing decisions based on path, network policies, and/or rule sets.

Full-mesh topology

In an AS, a BGP network must be in full mesh for routes received from an internal BGP peer to send to another IBGP peer. Each BGP router talks to all other BGP routers in a session. For example, in an AS with four BGP routers, each router has three peers; in an AS with six routers, each router has five peers.

Sessions and peers

A BGP session starts with two routers communicating using the BGP. The two end-points of the session are called peers. A peer is also called a neighbor. Events and timers determine the information exchange between peers. BGP focuses on traffic routing policies.

Sessions

In operations with other BGP peers, a BGP process uses a simple finite state machine consisting of six states—Idle, Connect, Active, OpenSent, OpenConfirm, and Established. For each peer-to-peer session, a BGP implementation tracks the state of the session. The BGP defines the messages that each peer exchanges to change the session from one state to another.
BGP initializes all resources, refuses all inbound BGP connection attempts, and starts a TCP connection to the peer.

Connect
- Router waits for the TCP connection to complete and transitions to the OpenSent state if successful. If that transition is not successful, BGP resets the ConnectRetry timer and transitions to the Active state when the timer expires.

Active
- Router resets the ConnectRetry timer to zero and returns to the Connect state.

OpenSent
- Router sends an Open message and waits for one in return after a successful OpenSent transition.

OpenConfirm
- Neighbor relation establishes and is in the OpenConfirm state after the Open message parameters are agreed on between peers. The router then receives and checks for agreement on the parameters of the open messages to establish a session.

Established
- Keepalive messages exchange, and after a successful receipt, the router is in the Established state. Keepalive messages continue to send at regular periods. The keepalive timer establishes the state to verify connections.

After the connection is established, the router sends and receives keepalive, update, and notification messages to and from its peer.

Peer templates

Peer templates allow BGP neighbors to inherit the same outbound policies. Instead of manually configuring each neighbor with the same policy, you can create a peer group with a shared policy that applies to individual peers. A peer template provides efficient update calculation with a simplified configuration.

Peer templates also aid in convergence speed. When a BGP process sends the same information to many peers, a long output queue may be set up to distribute the information. For peers that are members of a peer template, the information is sent to one place then passed on to the peers within the template.

Route reflectors

Route reflectors (RRs) reorganize the IBGP core into a hierarchy and allow route advertisement rules. Route reflection divides IBGP peers into two groups — client peers and nonclient peers.

- If a route is received from a nonclient peer, it reflects the route to all client peers
- If a route is received from a client peer, it reflects the route to all nonclient and client peers

An RR and its client peers form a route reflection cluster. BGP speakers announce only the best route for a given prefix. RR rules apply after the router makes its best path decision.

NOTE: Do not use RRs in forwarding paths — hierarchical RRs that maintain forwarding plane RRs could create route loops.

Routers B, C, D, E, and G are members of the same AS—AS100. These routers are also in the same route reflection cluster, where Router D is the route reflector. Routers E and G are client peers of Router D, and Routers B and C and nonclient peers of Router D.

1. Router B receives an advertisement from Router A through EBGP. Because the route is learned through EBGP, Router B advertises it to all its IBGP peers — Routers C and D.
Router C receives the advertisement but does not advertise it to any peer because its only other peer is Router D (an IBGP peer) and Router D has already learned it through IBGP from Router B.

Router D does not advertise the route to Router C because Router C is a nonclient peer. The route advertisement came from Router B which is also a nonclient peer.

Router D does reflect the advertisement to Routers E and G because they are client peers of Router D.

Routers E and G advertise this IBGP learned route to their EBGP peers — Routers F and H.

Multiprotocol BGP

Multiprotocol BGP (MBGP) is an extension to BGP that supports multiple address families—IPv4 and IPv6. MBGP carries multiple sets of unicast and multicast routes depending on the address family.

You can enable the MBGP feature on a per router, per template, and/or a per peer basis. The default is the IPv4 unicast routes.

BGP session supports multiple address family interface (AFI) and sub address family interface (SAFI) combinations, BGP uses OPEN message to convey this information to the peers. As a result, the IPv6 routing information is exchanged over the IPv4 peers and vice versa.

BGP routers that support IPv6 can set up BGP sessions using IPv6 peers. If the existing BGP-v4 session is capable of exchanging ipv6 prefixes, the same is used to carry ipv4 as well as ipv6 prefixes. If the BGP-v4 neighbor goes down, it also impacts the IPv6 route exchange. If BGP-v6 session exists, it continues to operate independently from BGP-v4.

Multiprotocol BGPv6 supports many of the same features and functionality as BGPv4. IPv6 enhancements to MBGP include support for an IPv6 address family and Network Layer Reachability Information (NLRI) and next hop attributes that use the IPv6 addresses.

Attributes

Routes learned using BGP have associated properties that are used to determine the best route to a destination when multiple paths exist to a particular destination. These properties are called BGP attributes which influence route selection for designing robust networks. There are no hard-coded limits on the number of supported BGP attributes.

BGP attributes for route selection:

- Weight
- Local preference
- Multiexit discriminators
- Origin
- AS path
- Next-hop

Communities

BGP communities are sets of routes with one or more common attributes. Communities assign common attributes to multiple routes at the same time. Duplicate communities are not rejected.

Selection criteria

Best path selection criteria for BGP attributes:

1. Prefer the path with the largest WEIGHT attribute, and prefer the path with the largest LOCAL_PREF attribute.
2 Prefer the path that is locally originated using the network command, redistribute command, or aggregate-address command. Routes originated using a network or redistribute command are preferred over routes that originate with the aggregate-address command.

3 (Optional) If you configure the bgp bestpath as-path ignore command, skip this step because AS_PATH is not considered. Prefer the path with the shortest AS_PATH:
 - An AS_SET has a path length of 1 no matter how many are in the set
 - A path with no AS_PATH configured has a path length of 0
 - AS_CONFED_SET is not included in the AS_PATH length
 - AS_CONFED_SEQUENCE has a path length of 1 no matter how many ASs are in the AS_CONFED_SEQUENCE

4 Prefer the path with the lowest ORIGIN type—IGP is lower than EGP and EGP is lower than INCOMPLETE.

5 Prefer the path with the lowest multipath discriminator (MED) attribute:
 - This comparison is only done if the first neighboring AS is the same in the two paths. The MEDs compare only if the first AS in the AS_SEQUENCE is the same for both paths.
 - Configure the bgp always-compare-med command to compare MEDs for all paths.
 - Paths with no MED are treated as “worst” and assigned a MED of 4294967295.

6 Prefer external (EBGP) to internal (IBGP) paths or confederation EBGP paths, and prefer the path with the lowest IGP metric to the BGP next-hop.

7 The system deems the paths as equal and only performs the following steps if the criteria are not met:
 - Configure the IBGP multipath or EBGP multipath using the maximum-path command.
 - The paths being compared were received from the same AS with the same number of AS in the AS Path but with different next-hops.
 - The paths were received from IBGP or EBGP neighbor, respectively.

8 If you enable the bgp bestpath router-id ignore command and:
 - If the Router-ID is the same for multiple paths because the routes were received from the same route—skip this step.
 - If the Router-ID is not the same for multiple paths, prefer the path that was first received as the Best Path. The path selection algorithm returns without performing any of the checks detailed.

9 Prefer the external path originated from the BGP router with the lowest router ID. If both paths are external, prefer the oldest path—first received path. For paths containing an RR attribute, the originator ID is substituted for the router ID. If two paths have the same router ID, prefer the path with the lowest cluster ID length. Paths without a cluster ID length are set to a 0 cluster ID length.

10 Prefer the path originated from the neighbor with the lowest address. The neighbor address is used in the BGP neighbor configuration and corresponds to the remote peer used in the TCP connection with the local router.

In Non-Deterministic mode, the bgp non-deterministic-med command applies. Paths compare in the order they arrive. This method leads to system selection of different best paths from a set of paths. Depending on the order they were received from the neighbors, MED may or may not get compared between the adjacent paths. In Deterministic mode, the system compares MED. MED is compared between the adjacent paths within an AS group because all paths in the AS group are from the same AS.

Weight and local preference

The weight attribute is local to the router and does not advertise to neighboring routers. If the router learns about more than one route to the same destination, the route with the highest weight is preferred. The route with the highest weight is installed in the IP routing table.

The local preference — LOCAL_PREF represents the degree of preference within the entire AS. The higher the number, the greater the preference for the route.

LOCAL_PREF is one of the criteria that determines the best path — other criteria may impact selection, see Best path selection. Assume that LOCAL_PREF is the only attribute applied and AS 100 has two possible paths to AS 200. Although the path through Router A is shorter, the LOCAL_PREF settings have the preferred path going through Router B and AS 300. This advertises to all routers within AS 100, causing all BGP speakers to prefer the path through Router B.
Multiexit discriminators

If two autonomous systems connect in more than one place, use a multiexit discriminator (MED) to assign a preference to a preferred path. MED is one of the criteria used to determine best path—other criteria may also impact selection.

One AS assigns the MED a value. Other AS uses that value to decide the preferred path. Assume that the MED is the only attribute applied and there are two connections between AS 100 and AS 200. Each connection is a BGP session. AS 200 sets the MED for its Link 1 exit point to 100 and the MED for its Link 2 exit point to 50. This sets up a path preference through Link 2. The MEDs advertise to AS 100 routers so they know which is the preferred path.

MEDs are nontransitive attributes. If AS 100 sends the MED to AS 200, AS 200 does not pass it on to AS 300 or AS 400. The MED is a locally relevant attribute to the two participating AS — AS 100 and AS 200. The MEDs advertise across both links—if a link goes down, AS 100 has connectivity to AS 300 and AS 400.

Origin

The origin indicates how the prefix came into BGP. There are three origin codes—IGP, EGP, and INCOMPLETE.

- **IGP**
 Prefix originated from information learned through an IGP.

- **EGP**
 Prefix originated from information learned from an EGP, which Next Generation Protocol (NGP) replaced.

- **INCOMPLETE**
 Prefix originated from an unknown source.

An IGP indicator means that the route was derived inside the originating AS. EGP means that a route was learned from an external gateway protocol. An INCOMPLETE origin code results from aggregation, redistribution, or other indirect ways of installing routes into BGP.
The question mark (?) indicates an origin code of INCOMPLETE, and the lower case letter (i) indicates an origin code of IGP.

Origin configuration

```
OS10# show ip bgp
BGP local RIB : Routes to be Added , Replaced , Withdrawn
BGP local router ID is 30.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external, r - redistributed
n - network S - stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network       Next Hop  Metric LocPrf Weight Path
*>I      1.1.1.0/24    17.1.1.2  0      0      0      i
*>I      2.2.2.0/24    17.1.1.2  0      0      0      ?
*>I      3.3.3.0/24    17.1.1.2  0      0      0      e
```

AS path and next-hop

The AS path is the AS list that all the prefixes listed in the update have passed through. The BGP speaker adds the local AS number when advertising to an EBGP neighbor. Any update that contains the AS path number 0 is valid.

The next-hop is the IP address used to reach the advertising router:

- For EBGP neighbors, the next-hop address is the IP address of the connection between neighbors.
- For IBGP neighbors, the EBGP next-hop address is carried into the local AS. A next hop attribute sets when a BGP speaker advertises itself to another BGP speaker outside the local AS and when advertising routes within an AS.

For EBGP neighbors, the next-hop address corresponding to a BGP route does not resolve if the next-hop address is not the same as the neighbor IP address. The next-hop attribute also serves as a way to direct traffic to another BGP speaker, instead of waiting for a speaker to advertise. When a next-hop BGP neighbor is unreachable, the connection to that BGP neighbor goes down after the hold-down timer expires.

When you enable `fast-external-fallover` and if the router has learned the routes from the BGP neighbor, the BGP session terminates immediately if the next-hop becomes unreachable, without waiting for the hold-down time.

Best path selection

Best path selection selects the best route out of all paths available for each destination, and records each selected route in the IP routing table for traffic forwarding. Only valid routes are considered for best path selection. BGP compares all paths, in the order in which they arrive, and selects the best paths. Paths for active routes are grouped in ascending order according to their neighboring external AS number.

OS10 follows deterministic MED to select different best paths from a set of paths. This may depend on the order the different best paths are received from the neighbors — MED may or may not get compared between adjacent paths. BGP best path selection is deterministic by default.

The best path in each group is selected based on specific criteria—only one best path is selected at a time. If BGP receives more than one best path, it moves on to the next list of valid paths, and continues until it reaches the end of the list.

When you configure the `non-deterministic-med` command, paths are compared in the order they arrive. OS10 follows this method to select different best paths from a set of paths, depending on the order they were received from the neighbors—MED may or may not get compared between the adjacent paths.

By default, the `bestpath as-path multipath-relax` command is disabled. This prevents BGP from load-balancing a learned route across two or more EBGP peers. To enable load-balancing across different EBGP peers, enter the `bestpath as-path multipath-relax` command.
If you configure the `bgp bestpath as-path ignore` command and the `bestpath as-path multipath-relax` command at the same time, an error message displays—only enable one command at a time.

More path support

More path (Add-Path) reduces convergence times by advertising multiple paths to its peers for the same address prefix without replacing existing paths with new ones. By default, a BGP speaker advertises only the best path to its peers for a given address prefix.

If the best path becomes unavailable, the BGP speaker withdraws its path from its local router information base (RIB) and recalculates a new best path. This situation requires both IGP and BGP convergence and is a lengthy process. BGP add-path also helps switch over to the next new best path when the current best path is unavailable.

The Add-Path capability to advertise more paths is supported only on IBGP peers—it is not supported on EBGP peers or BGP peer groups.

Ignore router ID calculations

Avoid unnecessary BGP best path transitions between external paths under certain conditions. The `bestpath router-id ignore` command reduces network disruption caused by routing and forwarding plane changes and allows for faster convergence.

Advertise cost

As the default process for redistributed routes, OS10 supports IGP cost as MED. Both auto-summarization and synchronization are disabled by default.

BGPv4 and BGPv6 support

- Deterministic MED, default
- A path with a missing MED is treated as worst path and assigned an `0xffffffff` MED value
- Delayed configuration at system boot — OS10 reads the entire configuration file BEFORE sending messages to start BGP peer sessions
4-Byte AS numbers

OS10 supports 4-byte AS number configurations by default. The 4-byte support is advertised as a new BGP capability - 4-BYTE-AS, in the OPEN message. A BGP speaker that advertises 4-Byte-AS capability to a peer, and receives the same from that peer must encode AS numbers as 4-octet entities in all messages.

If the AS number of the peer is different, the 4-byte speaker brings up the neighbor session using a reserved 2-byte ASN, 23456 called AS_TRANS. The AS_TRANS is used to interop between a 2-byte and 4-byte AS number.

Where the 2-byte format is 1 to 65535, the 4-byte format is 1 to 4294967295. You can enter AS numbers using the traditional format.

AS number migration

You can transparently change the AS number of an entire BGP network. Changing the AS number ensures that the routes propagate throughout the network while migration is in progress. When migrating one AS to another and combining multiple AS, an EBGP network may lose its routing to an IBGP if the AS number changes.

Migration is difficult as all IBGP and EBGP peers of the migrating network must be updated to maintain network reachability. Local-AS allows the BGP speaker to operate as if it belongs to a virtual AS network besides its physical AS network.

Disable the local-as command after migration. Failure to disable the local-as command after migration causes the local-as command to replace the original AS number of the system. You must reconfigure the system with a new AS number.

Router A, Router B, and Router C belong to AS 100, 200, and 300, respectively. Router A acquired Router B — Router B has Router C as its client. When Router B is migrating to Router A, it must maintain the connection with Router C without immediately updating Router C’s configuration. Local-AS allows Router B to appear as if it still belongs to Router B’s old network, AS 200, to communicate with Router C.
The Local-AS does not prepend the updates with the AS number received from the EBGP peer if you use the `no prepend` command. If you do not select `no prepend`, the default, the Local-AS adds to the first AS segment in the AS-PATH. If you use an inbound route-map to prepend the AS-PATH to the update from the peer, the Local-AS adds first.

If Router B has an inbound route-map applied on Router C to prepend 65001 65002 to the AS-PATH, these events take place on Router B:

- Receive and validate the update.
- Prepend local-as 200 to AS-PATH.
- Prepend 65001 65002 to AS-PATH.

Local-AS prepends before the route map to give the appearance that the update passed through a router in AS 200 before it reaches Router B.

Configure Border Gateway Protocol

BGP is disabled by default. To enable the BGP process and start to exchange information, assign an AS number and use commands in ROUTER-BGP mode to configure a BGP neighbor.

BGP neighbor adjacency changes

- All BGP neighbor changes are logged

Fast external fallover

- Enabled

Graceful restart

- Disabled

Local preference

- 100

4-byte AS

- Enabled

MED

- 0

Route flap dampening parameters

- half-life = 15 minutes
- max-suppress-time = 60 minutes
- reuse = 750
- suppress = 2000

Timers

- keepalive = 60 seconds
- holdtime = 180 seconds

Add-path

- Disabled

Enable BGP

Before enabling BGP, assign a BGP router ID to the switch using the following command:

- In the ROUTER BGP mode, enter the `router-id ip-address` command. Where in, `ip-address` is the IP address corresponding to a configured L3 interface (physical, loopback, or LAG).

BGP is disabled by default. The system supports one AS number — you must assign an AS number to your device. To establish BGP sessions and route traffic, configure at least one BGP neighbor or peer. In BGP, routers with an established TCP connection are called
neighbors or peers. After a connection establishes, the neighbors exchange full BGP routing tables with incremental updates afterward. Neighbors also exchange the KEEPALIVE messages to maintain the connection.

You can classify BGP neighbor routers or peers as internal or external. Connect EBGP peers directly, unless you enable EBGP multihop — IBGP peers do not need direct connection. The IP address of an EBGP neighbor is usually the IP address of the interface directly connected to the router. The BGP process first determines if all internal BGP peers are reachable, then it determines which peers outside the AS are reachable.

1. Assign an AS number, and enter ROUTER-BGP mode from CONFIGURATION mode, from 1 to 65535 for 2-byte, 1 to 4294967295 for 4-byte. Only one AS number is supported per system. If you enter a 4-byte AS number, 4-byte AS support is enabled automatically.

   ```
   router bgp as-number
   ```

2. Enter a neighbor in ROUTER-BGP mode.

   ```
   neighbor ip-address
   ```

3. Add a remote AS in ROUTER-NEIGHBOR mode, from 1 to 65535 for 2-byte or 1 to 4294967295 for 4-byte.

   ```
   remote-as as-number
   ```

4. Enable the BGP neighbor in ROUTER-NEIGHBOR mode.

   ```
   no shutdown
   ```

5. (Optional) Add a description text for the neighbor in ROUTER-NEIGHBOR mode.

   ```
   description text
   ```

To reset the configuration when you change the configuration of a BGP neighbor, use the `clear ip bgp *` command. To view the BGP status, use the `show ip bgp summary` command.

Configure BGP

```bash
OS10# configure terminal
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# neighbor 5.1.1.1
OS10(config-router-neighbor)# remote-as 1
OS10(config-router-neighbor)# description nl_abcd
OS10(config-router-bgp-100)# template t1
OS10(config-router-template)# description peer_template_1_abcd
```

View BGP summary with 2-byte AS number

```bash
OS10# show ip bgp summary
BGP router identifier 202.236.164.86 local AS number 64901
Neighbor AS MsgRcvd MsgSent Up/Down State/Pfx
120.10.1.1 64701 664 662 04:47:52 established 12000
```

View BGP summary with 4-byte AS number

```bash
OS10# show ip bgp summary
BGP router identifier 11.1.1.1, local AS number 4294967295
BGP local RIB : Routes to be Added 0, Replaced 0, Withdrawn 0
1 neighbor(s) using 8192 bytes of memory
Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx
5.1.1.2 4294967295 0 0 0 0 0 0 00:00:00 Active
```

For the router ID, the system selects the first configured IP address or a random number. To view the status of BGP neighbors, use the `show ip bgp neighbors` command. For BGP neighbor configuration information, use the `show running-config bgp` command.

The example shows two neighbors — one is an external BGP neighbor; and the other is an internal BGP neighbor. The first line of the output for each neighbor displays the AS number and states if the link is external or internal.

The third line of the `show ip bgp neighbors` output contains the BGP state. If anything other than `established` displays, the neighbor is not exchanging information and routes. For more information, see [IPv6 commands](#).
View BGP neighbors

OS10# show ip bgp neighbors
BGP neighbor is 5.1.1.1, remote AS 1, internal link
BGP version 4, remote router ID 6.1.1.1
BGP state established, in this state for 00:03:11
Last read 01:08:40 seconds, hold time is 180, keepalive interval is 60 seconds
Received 11 messages
3 opens, 1 notifications, 3 updates
4 keepalives, 0 route refresh requests
Sent 14 messages
3 opens, 1 notifications, 0 updates
10 keepalives, 0 route refresh requests

Minimum time between advertisement runs is 0 seconds
Description: n1_abcd
Capabilities received from neighbor for IPv4 Unicast:
MULTIPROTO_EXT(1)ROUTE_REFRESH(2)CISCO_ROUTE_REFRESH(128)
Capabilities advertised to neighbor for IPv4 Unicast:
MULTIPROTO_EXT(1)ROUTE_REFRESH(2)CISCO_ROUTE_REFRESH(128)
Prefixes accepted 3, Prefixes advertised 0
Connections established 3; dropped 2
Closed by neighbor sent 00:03:26 ago

Local host: 5.1.1.2, Local port: 43115
Foreign host: 5.1.1.1, Foreign port: 179

View BGP running configuration

OS10# show running-configuration bgp
!
router bgp 100
!
neighbor 5.1.1.1
description n1_abcd

Configuring BGP in a non-default VRF instance

To configure BGP in a non-default VRF instance,

1. Assign an AS number, and enter ROUTER-BGP mode from CONFIGURATION mode (1 to 65535 for 2-byte, 1 to 4294967295 for 4-byte). Only one AS number is supported per system. If you enter a 4-byte AS number, 4-byte AS support is enabled automatically.

 router bgp as-number

2. Enter ROUTER-BGP-VRF mode to configure BGP in a non-default VRF instance.

 vrf vrf-name

3. Enter a neighbor in CONFIG-ROUTER-VRF mode.

 neighbor ip-address

4. Add a remote AS in ROUTER-NEIGHBOR mode, from 1 to 65535 for 2-byte or 1 to 4294967295 for 4-byte.

 remote-as as-number

5. Enable the BGP neighbor in ROUTER-NEIGHBOR mode.

 no shutdown

6. (Optional) Add a description text for the neighbor in ROUTER-NEIGHBOR mode.

 description text

To reset the configuration when you change the configuration of a BGP neighbor, use the clear ip bgp * command. To view the BGP status, use the show ip bgp summary command.
Configure BGP

OS10# configure terminal
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# vrf blue
OS10(config-router-vrf)# neighbor 5.1.1.1
OS10(config-router-neighbor)# remote-as 1
OS10(config-router-neighbor)# description n1_abcd
OS10(config-router-neighbor)# exit
OS10(config-router-vrf)# template t1
OS10(config-router-template)# description peer_template_1_abcd

Configure Dual Stack

OS10 supports dual stack for BGPv4 and BGPv6. Dual stack BGP allows simultaneous exchange of same IPv4 or IPv6 prefixes through different IPv4 and IPv6 peers. You can enable dual stack using the activate command in the corresponding address-family mode. By default, activate command is enabled for the IPv4 address family for all the neighbors.

If a BGP-v4 neighbor wants to carry ipv6 prefix information, it activates the IPv6 address-family. For a BGP-v6 neighbor to carry ipv4 prefix, it activates the IPv4 address-family.

1. Enable support for the IPv6 unicast family in CONFIG-ROUTER-BGP mode.
 - address family ipv6 unicast
2. Enable IPv6 unicast support on a BGP neighbor/template in CONFIG-ROUTER-BGP-AF mode.
 - activate

Configure administrative distance

Routers use administrative distance to determine the best path between two or more routes to reach the same destination. Administrative distance indicates the reliability of the route; the lower the administrative distance, the more reliable the route. If the routing table manager (RTM) receives route updates from one or more routing protocols for a single destination, it chooses the best route based on the administrative distance.

You can assign an administrative distance for the following BGP routes using the distance bgp command:

- External BGP (eBGP) routes
- Internal BGP (iBGP) routes
- Local routes

If you do not configure the administrative distance for BGP routes, the following default values are used:

- eBGP—20
- iBGP—200
- local routes—200

To change the administrative distance for BGP, use the following command:

distance bgp external-distance internal-distance local-distance

Configure administrative distance

1. Enable BGP and assign the AS number in CONFIGURATION mode, from 0.1 to 65535.65535 or 1 to 4294967295.
 OS10# configure terminal
 OS10(config)# router bgp 100
2. Enter ADDRESS-FAMILY mode.
IPv4:
OS10(config-router-bgp-100)# address-family ipv4 unicast
OS10(configure-router-bgpv4-af)#

IPv6:
OS10(config-router-bgp-100)# address-family ipv6 unicast
OS10(configure-router-bgpv6-af)#

3 Change the administrative distance for BGP.
IPv4:
OS10(configure-router-bgpv4-af)# distance bgp 21 200 200
IPv6:
OS10(configure-router-bgpv6-af)# distance bgp 21 201 250

The example below provides the configuration for non-default VRF.
OS10(config-router-bgp-100)# vrf blue
OS10(config-router-bgp-100-vrf)# address-family ipv4 unicast
OS10(config-router-bgp-100-vrf)# address-family ipv6 unicast
OS10(config-router-bgp-100-vrf)# address-family ipv4 unicast
OS10(config-router-bgpv6-af)# address-family ipv6 unicast
OS10(config-router-bgpv6-vrf-af)# distance bgp 21 200 200
OS10(config-router-bgpv6-vrf-af)# distance bgp 21 201 250

Peer templates

To configure multiple BGP neighbors at one time, create and populate a BGP peer template. An advantage of configuring peer templates is that members of a peer template inherit the configuration properties of the template and share update policy. Always create a peer template and assign a name to it before adding members to the peer template. Create a peer template before configuring any route policies for the template.

1 Enable BGP and assign the AS number to the local BGP speaker in CONFIGURATION mode, from 1 to 65535 for 2 byte, 1 to 4294967295 | 0.1 to 65535.65535 for 4 byte, or 0.1 to 65535.65535 in dotted format.
 router bgp as-number

2 Create a peer template by assigning a neighborhood name to it in ROUTER-BGP mode.
 template template-name

3 (Optional) Add a text description for the template in ROUTER-TEMPLATE mode.
 description text

4 Enter Address Family mode in ROUTER-NEIGHBOR mode.
 address-family [ipv4 | ipv6] [unicast]

5 Filter networks in routing updates, create a route-map and assign a filtering criteria in ROUTER-BGP-NEIGHBOR-AF mode.
 distribute-list prefix-list-name [in | out]
 route-map map-name [in | out]

6 Add a neighbor as a remote AS in ROUTER-TEMPLATE mode, from 1 to 65535 for 2 byte, 1 to 4294967295 | 0.1 to 65535.65535 for 4 byte, or 0.1 to 65535.65535 in dotted format.
 neighbor ip-address

7 Add a remote neighbor, and enter the AS number in ROUTER-TEMPLATE mode.
 remote-as as-number
 • To add an EGBP neighbor, configure the as-number parameter with a number different from the BGP as-number configured in the router bgp as-number command.
 • To add an IBGP neighbor, configure the as-number parameter with the same BGP as-number configured in the router bgp as-number command.
Assign a peer-template with a peer-group name from which to inherit to the neighbor in ROUTER-NEIGHBOR mode.

```
inherit template template-name
```

Enable the neighbor in ROUTER-BGP mode.

```
no shutdown
```

When you add a peer to a peer group, it inherits all the peer group configured parameters. When you disable a peer group, all the peers within the peer template that are in the Established state move to the Idle state. A neighbor cannot become a part of a peer group if it has any of these commands configured:

- advertisement-interval
- next-hop-self
- route-map out
- route-reflector-client
- send-community

A neighbor may keep its configuration after it is added to a peer group if the neighbor configuration is more specific than the peer group and if the neighbor configuration does not affect outgoing updates.

To display the peer-group configuration assigned to a BGP neighbor, enter the `show ip bgp peer-group peer-group-name` command. The `show ip bgp neighbor` command output does not display peer-group configurations.

The following example shows a sample configuration:

Configure peer templates

```
OS10(config)# configure terminal
OS10(config)# router bgp 64601
OS10(config-router-bgp-64601)# template leaf_v4_ebgp
OS10(config-router-template)# description peer_template_1_abcd
OS10(config-router-template)# address-family ipv4 unicast
OS10(config-router-bgp-template-af)# distribute-list leaf_v4_in in
OS10(config-router-bgp-template-af)# distribute-list leaf_v4_out out
OS10(config-router-bgp-template-af)# route-map set_aspath_prepend in
OS10(config-router-bgp-template-af)# exit
OS10(config-router-template)# exit
OS10(config-router-bgp-64601)# neighbor 100.5.1.1
OS10(config-router-neighbor)# inherit template leaf_v4
OS10(config-router-neighbor)# remote-as 64802
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-64601)# neighbor 100.6.1.1
OS10(config-router-neighbor)# inherit template leaf_v4
OS10(config-router-neighbor)# remote-as 64802
OS10(config-router-neighbor)# no shutdown
```

View peer group status

```
OS10(config-router-template)# show ip bgp peer-group leaf_v4
Peer-group leaf_v4, remote AS 0
  BGP version 4
  Minimum time between advertisement runs is 30 seconds
  Description: peer_template_1_abcd
  For address family: Unicast
  BGP neighbor is leaf_v4, peer-group external
  Update packing has 4_OCTET_AS support enabled
  Number of peers in this group 2
  Peer-group members:
    100.5.1.1
    100.6.1.1

OS10(config-router-bgp-64601)# show ip bgp peer-group leaf_v4 summary
BGP router identifier 100.0.0.8 local AS number 64601
Neighbor    AS    MsgRcvd    MsgSent  Up/Down        State/Pfx
```

Layer 3 335
Peer templates for a non-default VRF instance

You can create peer templates to add multiple neighbors at a time to the non-default VRF instance that you create.

1. Enable BGP, and assign the AS number to the local BGP speaker in CONFIGURATION mode, from 1 to 65535 for 2 byte, 1 to 4294967295 | 0.1 to 65535.65535 for 4 byte, or 0.1 to 65535.65535 in dotted format.

   ```
   router bgp as-number
   ```

2. Enter the CONFIG-ROUTER-VRF mode to create a peer template for the non-default VRF instance that you create.

   ```
   vrf vrf-name
   ```

3. Create a peer template by assigning a neighborhood name to it in CONFIG-ROUTER-VRF mode.

   ```
   template template-name
   ```

4. Add a neighbor as a remote AS in ROUTER-TEMPLATE mode, from 1 to 65535 for 2 byte, 1 to 4294967295 | 0.1 to 65535.65535 for 4 byte, or 0.1 to 65535.65535 in dotted format.

   ```
   neighbor ip-address
   ```

5. Add a remote neighbor, and enter the AS number in ROUTER-TEMPLATE mode.

   ```
   remote-as as-number
   ```

 - To add an EBGP neighbor, configure the `as-number` parameter with a number different from the BGP as-number configured in the `router bgp as-number` command.
 - To add an IBGP neighbor, configure the `as-number` parameter with the same BGP as-number configured in the `router bgp as-number` command.

6. (Optional) Add a text description for the template in ROUTER-TEMPLATE mode.

   ```
   description text
   ```

7. Assign a peer-template with a peer-group name from which to inherit to the neighbor in ROUTER-NEIGHBOR mode.

   ```
   inherit template template-name
   ```
Enable the neighbor in ROUTER-BGP mode.
neighbor ip-address

Enable the peer-group in ROUTER-NEIGHBOR mode.
nod shutdown

When you add a peer to a peer group, it inherits all the peer group configured parameters. When you disable a peer group, all the peers within the peer template that are in the Established state move to the Idle state. A neighbor cannot become a part of a peer group if it has any of these commands configured:
- advertisement-interval
- next-hop-self
- route-map out
- route-reflector-client
- send-community

A neighbor may keep its configuration after it is added to a peer group if the neighbor configuration is more specific than the peer group and if the neighbor configuration does not affect outgoing updates.

To display the peer-group configuration assigned to a BGP neighbor, enter the `show ip bgp peer-group peer-group-name` command. The `show ip bgp neighbor` command output does not display peer-group configurations.

Configure peer templates

```
OS10(config)# router bgp 300
OS10(config-router-bgp-300)# vrf blue
OS10(config-router-vrf)# template ebgppg
OS10(config-router-template)# remote-as 100
OS10(config-router-template)# description peer_template_1_abcd
OS10(config-router-template)# exit
OS10(config-router-vrf)# neighbor 3.1.1.1
OS10(config-router-neighbor)# inherit template ebgppg
OS10(config-router-neighbor)# no shutdown
```

Neighbor fall-over

The BGP neighbor fall-over feature reduces the convergence time while maintaining stability. When you enable fall-over, BGP tracks IP reachability to the peer remote address and the peer local address.

When remote or peer local addresses become unreachable, BGP brings the session down with the peer. For example, if no active route exists in the routing table for peer IPv6 destinations/local address, BGP brings the session down.

By default, the hold time governs a BGP session. Configure BGP fast fall-over on a per-neighbor or peer-group basis. BGP routers typically carry large routing tables as frequent session resets are not desirable. If you enable fall-over, the connection to an internal BGP peer is immediately reset if the host route added to reach the internal peer fails.

1. Enter the neighbor IP address in ROUTER-BGP mode.
 `neighbor ip-address`

2. Disable fast fall-over in ROUTER-NEIGHBOR mode.
 `no fall-over`

3. Enter the neighbor IP address in ROUTER-BGP mode.
 `neighbor ip-address`

4. Enable BGP fast fall-Over in ROUTER-NEIGHBOR mode.
 `fall-over`

Configure neighbor fall-over

```
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# neighbor 3.1.1.1
```
Verify neighbor fall-over on neighbor

```
OS10(config-router-neighbor)# do show ip bgp neighbors 3.1.1.1
BGP neighbor is 3.1.1.1, remote AS 100, local AS 100 internal link

BGP version 4, remote router ID 3.3.3.33
BGP state ESTABLISHED, in this state for 00:17:17
Last read 00:27:54 seconds
Hold time is 180, keepalive interval is 60 seconds
Configured hold time is 180, keepalive interval is 60 seconds
Fall-over enabled

Received 23 messages
  1 opens, 0 notifications, 1 updates
  21 keepalives, 0 route refresh requests
Sent 21 messages
  1 opens, 0 notifications, 0 updates
  20 keepalives, 0 route refresh requests
Minimum time between advertisement runs is 30 seconds
Minimum time before advertisements start is 0 seconds
Capabilities received from neighbor for IPv4 Unicast:
  MULTIPROTO_EXT(1)
  ROUTE_REFRESH(2)
  CISCO_ROUTE_REFRESH(128)
  4_OCTET_AS(65)
Capabilities advertised to neighbor for IPv4 Unicast:
  MULTIPROTO_EXT(1)
  ROUTE_REFRESH(2)
  CISCO_ROUTE_REFRESH(128)
  4_OCTET_AS(65)
Prefixes accepted 3, Prefixes advertised 0
Connections established 1; dropped 0
Last reset never
For address family: IPv4 Unicast
  Allow local AS number 0 times in AS-PATH attribute
Prefixes ignored due to:
  Martian address 0, Our own AS in AS-PATH 0
  Invalid Nexthop 0, Invalid AS-PATH length 0
  Wellknown community 0, Locally originated 0

For address family: IPv6 Unicast
  Allow local AS number 0 times in AS-PATH attribute
Local host: 3.1.1.3, Local port: 58633
Foreign host: 3.1.1.1, Foreign port: 179
```

Verify neighbor fall-over on peer-group

```
OS10# show running-configuration

! router bgp 102
!
  address-family ipv4 unicast
    aggregate-address 6.1.0.0/16
  ! neighbor 40.1.1.2
    inherit template bgppg
    no shutdown
  ! neighbor 60.1.1.2
    inherit template bgppg
    no shutdown
  ! neighbor 32.1.1.2
    remote-as 100
```
Configure password

You can enable message digest 5 (MD5) authentication with a password on the TCP connection between two BGP neighbors. Configure the same password on both BGP peers. When you configure MD5 authentication between two BGP peers, each segment of the TCP connection is verified and the MD5 digest is checked on every segment sent on the TCP connection. Configuring a password for a neighbor establishes a new connection.

NOTE: You can secure the VTEP neighbor communications as well using the MD5 authentication.

Configure password

- Configure the password in both the BGP peers in ROUTER-NEIGHBOR CONFIGURATION or ROUTER-TEMPLATE CONFIGURATION mode. The password provided in ROUTER-NEIGHBOR mode takes preference over the password in ROUTER-TEMPLATE mode. Enter the password either as plain text or in encrypted format.
 - password {9 encrypted password-string|password-string}

View password configuration

- show configuration

Peer 1 in ROUTER-NEIGHBOR mode

```
OS10# configure terminal
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# no switchport
OS10(conf-if-eth1/1/5)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/5)# router bgp 10
OS10(config-router-bgp-10)# neighbor 11.1.1.2
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# remote-as 10
OS10(config-router-neighbor)# password abcdell
```

Peer 1 in ROUTER-TEMPLATE mode

```
OS10# configure terminal
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# no switchport
OS10(conf-if-eth1/1/5)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/5)# router bgp 10
OS10(config-router-bgp-10)# template pass
OS10(config-router-template)# password 9
f785498c22882f58898c0efdc2f476b4b27c47d972c3cd8cd9b91f518c14ee42d
OS10(config-router-template)# exit
OS10(config-router-bgp-10)# neighbor 11.1.1.2
OS10(config-router-neighbor)# inherit template pass
```

View password configuration in peer 1

```
OS10(config-router-neighbor)# show configuration
!
neighbor 11.1.1.2
  password 9 0fbe1ad397712f74f4df903b4ff4b7b6e22cc377180432d7523a70d403d41565
  remote-as 10
  no shutdown

OS10(config-router-neighbor)# do show running-configuration bgp
```

router bgp 10
 template pass
 password 9 f785498c228f365898c0efdc2f476b4b27c47d972c3cd8cd9b91f518c14ee42d
 neighbor 11.1.1.2
 inherit template pass
 password 9 01320af39f49134882b0a9814fe8e228f616f60a35958844775314c00f0e5
 remote-as 10
 no shutdown

Peer 2 in ROUTER-NEIGHBOR mode
OS10# configure terminal
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# no switchport
ip OS10(conf-if-eth1/1/5)# ip address 11.1.1.2/24
OS10(config-router-bgp-20)# neighbor 11.1.1.1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# remote-as 20
OS10(config-router-neighbor)# password abcdell

Peer 2 in ROUTER-TEMPLATE mode
OS10# configure terminal
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# no switchport
ip OS10(conf-if-eth1/1/5)# ip address 11.1.1.2/24
OS10(config-router-bgp-20)# template pass
OS10(config-router-template)# password 9
f785498c228f365898c0efdc2f476b4b27c47d972c3cd8cd9b91f518c14ee42d
OS10(config-router-template)# exit
OS10(config-router-neighbor)# inherit template pass

View password configuration in peer 2
OS10(config-router-neighbor)# show configuration
 neighbor 11.1.1.1
 password 9 0fbe1ad397712f74f4df903b4ff4b7b6e22cc377180432d7523a70d403d41565
 remote-as 20
 no shutdown

OS10(config-router-neighbor)# do show running-configuration bgp
 router bgp 20
 neighbor 11.1.1.2
 password 9 f785498c228f365898c0efdc2f476b4b27c47d972c3cd8cd9b91f518c14ee42d
 remote-as 20
 no shutdown

Fast external fallover

Fast external fallover terminates EBGP sessions of any directly adjacent peer if the link used to reach the peer goes down. BGP does not wait for the hold-down timer to expire.

Fast external fallover is enabled by default. To disable or re-enable it, use the [no] fast-external-fallover command. For the fast-external-fallover command to take effect on an established BGP session, you must reset the session using the clear ip bgp {* | peer-ipv4-address | peer-ipv6-address} command.
View fast external fallover configuration

```
OS10(config)# do show running-configuration bgp
router bgp 300
!
neighbor 3.1.1.1
  remote-as 100
  no shutdown
!
neighbor 3::1
  remote-as 100
  no shutdown
  address-family ipv6 unicast
  activate
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# show configuration
!
interface ethernet1/1/1
  ip address 3.1.1.3/24
  no switchport
  no shutdown
  ipv6 address 3::3/64
OS10(conf-if-eth1/1/1)# shutdown
OS10(conf-if-eth1/1/1)# do show ip bgp summary
BGP router identifier 11.11.11.11 local AS number 300
Neighbor  AS  MsgRcvd  MsgSent  Up/Down  State/Pfx
Down   State/Pfx
3.1.1.1   100      6       6
00:00:15  Active
3::1      100      8       11
00:00:15  Active
```

View fast external fallover unconfiguration

```
OS10(config-router-bgp-300)# do show running-configuration bgp
!
router bgp 300
no fast-external-fallover
!
neighbor 3.1.1.1
  remote-as 100
  no shutdown
!
neighbor 3::1
  remote-as 100
  no shutdown
  address-family ipv6 unicast
  activate
OS10(config-router-bgp-300)#
OS10(conf-if-eth1/1/1)# do clear ip bgp *
OS10# show ip bgp summary
BGP router identifier 11.11.11.11 local AS number 300
Neighbor  AS  MsgRcvd  MsgSent  Up/Down  State/Pfx
3.1.1.1   100      7       4 00:00:08  3
3::1      100      9       5 00:00:08  4
OS10#
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# shutdown
OS10(conf-if-eth1/1/1)# do show ip bgp summary
BGP router identifier 11.11.11.11 local AS number 300
Neighbor  AS  MsgRcvd  MsgSent  Up/Down  State/Pfx
3.1.1.1   100      7       4 00:00:29  3
3::1      100      9       5 00:00:29  4
```

Layer 3 341
Passive peering

When you enable a peer-template, the system sends an OPEN message to initiate a TCP connection. If you enable passive peering for the peer template, the system does not send an OPEN message but responds to an OPEN message.

When a BGP neighbor connection with authentication rejects a passive peer-template, the system prevents another passive peer-template on the same subnet from connecting with the BGP neighbor. To work around this constraint, change the BGP configuration or change the order of the peer template configuration.

You can restrict the number of passive sessions the neighbor accepts using the limit command.

1. Enable BGP and assign the AS number to the local BGP speaker in CONFIGURATION mode (1 to 65535 for 2-byte, 1 to 4294967295 for 4-byte).
   ```
   router bgp as-number
   ```

2. Configure a template that does not initiate TCP connections with other peers in ROUTER-BGP mode. A maximum of 16 characters.
   ```
   template template-name
   ```

3. Create and enter the AS number for the remote neighbor in ROUTER-BGP-TEMPLATE mode (1 to 4294967295).
   ```
   remote-as as-number
   ```

4. Enable peer listening and enter the maximum dynamic peers count in ROUTER-BGP-TEMPLATE mode (1 to 4294967295).
   ```
   listen neighbor ip-address limit
   ```

Only after the peer template responds to an OPEN message sent on the subnet does the state of its BGP change to ESTABLISHED. After the peer template is ESTABLISHED, the peer template is the same as any other peer template, see Peer templates.

If you do not configure a BGP device in Peer-Listening mode, a session with a dynamic peer comes up. Passwords are not supported on BGPv4/v6 dynamic peers.

Configure passive peering

```
OS10(config)# router bgp 10
OS10(conf-router-bgp-10)# template bgppg
OS10(conf-router-template)# remote-as 100
OS10(conf-router-template)# listen 32.1.0.0/8 limit 10
```

Local AS

During BGP network migration, you can maintain existing AS numbers. Reconfigure your routers with the new information to disable after the migration. Network migration is not supported on passive peer templates. You must configure Peer templates before assigning it to an AS.

1. Enter a neighbor IP address, A.B.C.D, in ROUTER-BGP mode.
   ```
   neighbor ip-address
   ```

2. Enter a local-as number for the peer, and the AS values not prepended to announcements from the neighbors in ROUTER-NEIGHBOR mode (1 to 4294967295).
   ```
   local-as as number [no prepend]
   ```

3. Return to ROUTER-BGP mode.
   ```
   exit
   ```
4. Enter a template name to assign to the peer-groups in ROUTER-BGP mode. A maximum of 16 characters.

```
template template-name
```

5. Enter a local-as number for the peer in ROUTER-TEMPLATE mode.

```
local-as as_number [no prepend]
```

6. Add a remote AS in ROUTER-TEMPLATE mode (1 to 65535 for 2 bytes, 1 to 4294967295 for 4 bytes).

```
remote-as as-number
```

Allow external routes from neighbor

```
OS10(config)# router bgp 10
OS10(conf-router-bgp-10)# neighbor 32.1.1.2
OS10(conf-router-neighbor)# local-as 50
OS10(conf-router-neighbor)# exit
OS10(conf-router-bgp-10)# template bgpg1
OS10(conf-router-template)# fall-over
OS10(conf-router-template)# local-as 400
OS10(conf-router-template)# remote-as 102
```

Local AS number disabled

```
OS10(config)# router bgp 102
OS10(conf-router-bgp-102)# neighbor 32.1.1.2
OS10(conf-router-neighbor)# no local-as 100
```

AS number limit

Sets the number of times an AS number occurs in an AS path. The `allow-as` parameter permits a BGP speaker to allow the AS number for a configured number of times in the updates received from the peer.

The AS-PATH loop is detected if the local AS number is present more than the number of times in the command.

```
1. Enter the neighbor IP address to use the AS path in ROUTER-BGP mode.
   neighbor ip address

2. Enter Address Family mode in ROUTER-NEIGHBOR mode.
   address-family {[ipv4 | ipv6] [unicast]}

3. Allow the neighbor IP address to use the AS path the specified number of times in ROUTER-BGP-NEIGHBOR-AF mode (1 to 10).
   allowas-in number
```

Configure AS number appearance

```
OS10(config)# router bgp 10
OS10(conf-router-bgp-10)# neighbor 1.1.1.2
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# allowas-in 5
```

View AS numbers in AS paths

```
OS10# show running-configuration bgp
!
router bgp 101
  no fast-external-fallover
  !
  address-family ipv4 unicast
    dampening
  !
  neighbor 17.1.1.2
    remote-as 102
    no shutdown
  !
  address-family ipv4 unicast
    allowas-in 4
```

Layer 3 343
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# neighbor 172:16:1::2
OS10(config-router-neighbor)# remote-as 100
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv6 unicast
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-bgp-neighbor-af)# end
OS10# show running-configuration bgp

OS10# show ip bgp

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>55::/64</td>
<td>172:16:1::2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100 200 300 400 i</td>
</tr>
<tr>
<td>55:0:0:1::/64</td>
<td>172:16:1::2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100 200 300 400 i</td>
</tr>
<tr>
<td>55:0:0:2::/64</td>
<td>172:16:1::2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100 200 300 400 i</td>
</tr>
</tbody>
</table>

Redistribute routes

Add routes from other routing instances or protocols to the BGP process. You can include OSPF, static, or directly connected routes in the BGP process with the redistribute command.

- Include directly connected or user-configured (static) routes in ROUTER-BGP-AF mode.
  ```
  redistribute {connected | static}
  ```
- Include specific OSPF routes in IS-IS in ROUTER-BGP-AF mode (1 to 65535).
  ```
  redistribute ospf process-id
  ```

Disable redistributed routes

```
OS10(conf-router-bgp-af)# no redistribute ospf route-map ospf-to-bgp
```

Enable redistributed routes

```
OS10(conf-router-bgp-af)# redistribute ospf
```

Additional paths

The add-path command is disabled by default.

1. Assign an AS number in CONFIGURATION mode.
   ```
   router bgp as-number
   ```
2. Enter a neighbor and IP address (A.B.C.D) in ROUTER-BGP mode.
   ```
   neighbor ip-address
   ```
Enter Address Family mode in ROUTER-NEIGHBOR mode.

```
adress-family ([ipv4 | ipv6] [unicast])
```

Allow the specified neighbor to send or receive multiple path advertisements in ROUTER-BGP mode. The `count` parameter controls the number of paths that are advertised — not the number of paths received.

```
add-path [both | received | send] count
```

Enable additional paths

```
OS10(config)# router bgp 102
OS10(conf-router-bgp-102)# neighbor 32.1.1.2
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# add-path both 3
```

MED attributes

OS10 uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. MED comparison is not performed in paths from neighbors with different AS numbers.

1. Enable MED comparison in the paths from neighbors with different AS in ROUTER-BGP mode.

```
always-compare-med
```

2. Change the best path MED selection in ROUTER-BGP mode.

```
bestpath med {confed | missing-as-best}
```

- `confed`—Selects the best path MED comparison of paths learned from BGP confederations.
- `missing-as-best`—Treats a path missing an MED as the most preferred one.
- `missing-as-worst`—Treats a path missing an MED as the least preferred one.

Modify MED attributes

```
OS10(config)# router bgp 100
OS10(conf-router-bgp-100)# always-compare-med
OS10(conf-router-bgp-100)# bestpath med confed
```

Local preference attribute

You can change the value of the LOCAL_PREF attribute for all routes the router receives. To change the LOCAL_PREF value in ROUTER-BGP mode from 0 to 4294967295 with default 100, use the `default local preference value` command.

To view the BGP configuration, use the `show running-configuration` command. A more flexible method for manipulating the LOCAL_PREF attribute value is to use a route-map.

1. Assign a name to a route map in CONFIGURATION mode.

```
route-map map-name {permit | deny | sequence-number}
```

2. Change the LOCAL_PREF value for routes meeting the criteria of this route map in ROUTE-MAP mode, then return to CONFIGURATION mode.

```
set local-preference value
exit
```

3. Enter ROUTER-BGP mode.

```
router bgp as-number
```

4. Enter the neighbor to apply the route map configuration in ROUTER-BGP mode.

```
neighbor {ip-address}
```

5. Apply the route map to the neighbor’s incoming or outgoing routes in ROUTER-BGP-NEIGHBOR-AF mode.

```
route-map map-name {in | out}
```
Enter the peer group to apply the route map configuration in ROUTER-BGP mode.

```
template template-name
```

Apply the route map to the peer group’s incoming or outgoing routes in CONFIG-ROUTER-TEMPLATE-AF mode.

```
route-map map-name [in | out]
```

Configure and view local preference attribute

```
OS10(config)# route-map bgproutemap 1
OS10(conf-route-map)# set local-preference 500
OS10(conf-route-map)# exit
OS10(config)# router bgp 10
OS10(conf-router-bgp-10)# neighbor 10.1.1.4
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# route-map bgproutemap in
```

```
OS10 configure terminal
OS10(config)# route-map bgproutemap 1
OS10(conf-route-map)# set local-preference 500
OS10(conf-route-map)# exit
OS10(config)# router bgp 64601
OS10(config-router-bgp-64601)# template bgpg
OS10(conf-router-template)# address-family ipv4 unicast
OS10(conf-router-bgp-template-af)# route-map bgproutemap in
```

View route-map

```
OS10(conf-route-map)# do show route-map
route-map bgproutemap, permit, sequence 1
Match clauses:
Set clauses:
  local-preference 500
  metric 400
  origin incomplete
```

Weight attribute

You can influence the BGP routing based on the weight value. Routes with a higher weight value have preference when multiple routes to the same destination exist.

1. Assign a weight to the neighbor connection in ROUTER-BGP mode.

 `neighbor (ip-address)`

2. Set a weight value for the route in ROUTER-NEIGHBOR mode (1 to 4294967295, default 0).

 `weight weight`

3. Return to ROUTER-BGP mode.

 `exit`

4. Assign a weight value to the peer-group in ROUTER-BGP mode.

 `template template-name`

5. Set a weight value for the route in ROUTER-TEMPLATE mode.

 `weight weight`

Modify weight attribute

```
OS10(config)# router bgp 10
OS10(config-router-bgp-10)# neighbor 10.1.1.4
OS10(config-router-neighbor)# weight 400
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-10)# template zanzibar
OS10(config-router-template)# weight 200
```
Enable multipath

You can have one path to a destination by default, and enable multipath to allow up to 64 parallel paths to a destination. The `show ip bgp network` command includes multipath information for that network.

- Enable multiple parallel paths in ROUTER-BGP mode.

  ```
  maximum-paths {ebgp | ibgp} number
  ```

Enable multipath

```bash
OS10(config)# router bgp 10
OS10(conf-router-bgp-10)# maximum-paths ebgp 10
```

Route-map filters

Filtering routes allows you to implement BGP policies. Use route-maps to control which routes the BGP neighbor or peer group accepts and advertises.

1. Enter the neighbor IP address to filter routes in ROUTER-BGP mode.
   ```
   neighbor ipv4-address
   ```

2. Enter Address Family mode in ROUTER-NEIGHBOR mode.
   ```
   address-family {[ipv4 | ipv6] [unicast]}
   ```

3. Create a route-map and assign a filtering criteria in ROUTER-BGP-NEIGHBOR-AF mode, then return to CONFIG-ROUTER-BGP mode.
   ```
   route-map map-name {in | out}
   exit
   ```
 - in—Enter a filter for incoming routing updates.
 - out—Enter a filter for outgoing routing updates.

4. Enter a peer template name in ROUTER-BGP mode.
   ```
   template template-name
   ```

5. Enter Address Family mode.
   ```
   address-family {[ipv4 | ipv6] [unicast]}
   ```

6. Create a route-map, and assign a filtering criteria in ROUTER-BGP-TEMPLATE-AF mode.
   ```
   route-map map-name {in | out}
   ```

Filter BGP route

```bash
OS10(config)# router bgp 102
OS10(conf-router-bgp-102)# neighbor 40.1.1.2
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# route-map metro in
OS10(conf-router-bgp-neighbor-af)# exit
OS10(conf-router-template)# template ebgp
OS10(conf-router-template-af)# address-family ipv4 unicast
OS10(conf-router-bgp-template#af)# route-map metro in
```

Route reflector clusters

BGP route reflectors are intended for ASs with a large mesh. They reduce the amount of BGP control traffic. With route reflection configured properly, IBGP routers are not fully meshed within a cluster but all receive routing information.
Configure clusters of routers where one router is a concentration router and the others are clients who receive their updates from the concentration router.

1. Assign an ID to a router reflector cluster in ROUTER-BGP mode. You can have multiple clusters in an AS.
   ```
   cluster-id cluster-id
   ```

2. Assign a neighbor to the router reflector cluster in ROUTER-BGP mode.
   ```
   neighbor {ip-address}
   ```

3. Configure the neighbor as a route-reflector client in ROUTER-NEIGHBOR mode, then return to ROUTER-BGP mode.
   ```
   route-reflector-client
   exit
   ```

4. Assign a peer group template as part of the route-reflector cluster in ROUTER-BGP mode.
   ```
   template template-name
   ```

5. Configure the template as the route-reflector client in ROUTER-TEMPLATE mode.
   ```
   route-reflector-client
   ```

When you enable a route reflector, the system automatically enables route reflection to all clients. To disable route reflection between all clients in this reflector, use the `no bgp client-to-client reflection` command in ROUTER-BGP mode. You must fully mesh all the clients before you disable route reflection.

Configure BGP route reflector

```bash
OS10(config)# router bgp 102
OS10(conf-router-bgp-102)# cluster-id 4294967295
OS10(conf-router-bgp-102)# neighbor 32.1.1.2
OS10(conf-router-neighbor)# route-reflector-client
OS10(conf-router-neighbor)# exit
OS10(conf-router-bgp-102)# template zanzibar
OS10(conf-router-template)# route-reflector-client
```

Aggregate routes

OS10 provides multiple ways to aggregate routes in the BGP routing table. At least one route of the aggregate must be in the routing table for the configured aggregate route to become active. AS_SET includes AS_PATH and community information from the routes included in the aggregated route.

1. Assign an AS number in CONFIGURATION mode.
   ```
   router bgp as-number
   ```

2. Enter Address Family mode in ROUTER-BGP mode.
   ```
   address-family {[ipv4 | ipv6] [unicast]}
   ```

3. Aggregate address in ROUTER-BGPv4-AF mode.
   ```
   aggregate-address ip-address/mask
   ```

Configure aggregate routes

```bash
OS10(config)# router bgp 105
OS10(conf-router-bgp-105)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)# aggregate-address 3.3.0.0/16
```

View running configuration

```bash
OS10(conf-router-bgpv4-af)# do show running-configuration bgp
! Version
! Last configuration change at Jul  27 06:51:17 2016
!
! router bgp 105
!
! address-family ipv4 unicast
aggregate-address 3.3.0.0/16
```
Confederations

Another way to organize routers within an AS and reduce the mesh for IBGP peers is to configure BGP confederations. As with route reflectors, Dell EMC recommends BGP confederations only for IBGP peering involving many IBGP peering sessions per router.

When you configure BGP confederations, you break the AS into smaller sub-ASs. To devices outside your network, the confederations appear as one AS. Within the confederation sub-AS, the IBGP neighbors are fully meshed and the MED, NEXT_HOP, and LOCAL_PREF attributes maintain between confederations.

1. Enter the confederation ID AS number in ROUTER-BGP mode (1 to 65535 for 2-byte, 1 to 4294967295 for 4-byte).

 confederation identifier as-number

2. Enter which confederation sub-AS are peers in ROUTER-BGP mode, from 1 to 65535 for 2-byte, 1 to 4294967295 for 4-byte. All Confederation routers must be either 4 bytes or 2 bytes. You cannot have a mix of router ASN support.

 confederation peers as-number [... as-number]

Configure BGP confederations

```bash
OS10(config)# router bgp 65501
OS10(conf-router-bgp-65501)# confederation identifier 100
OS10(conf-router-bgp-65501)# confederation peers 65502 65503 65504
OS10(conf-router-bgp-65501)# neighbor 1.1.1.2
OS10(conf-router-neighbor)# remote-as 65502
OS10(conf-router-neighbor)# no shutdown
OS10(conf-router-neighbor)# exit
OS10(conf-router-bgp-65501)# neighbor 2.1.1.2
OS10(conf-router-neighbor)# remote-as 65503
OS10(conf-router-neighbor)# no shutdown
OS10(conf-router-neighbor)# exit
OS10(conf-router-bgp-65501)# neighbor 3.1.1.2
OS10(conf-router-neighbor)# remote-as 65504
OS10(conf-router-neighbor)# no shutdown
OS10(conf-router-neighbor)# exit
OS10(conf-router-bgp-65501)# end
OS10# show running-configuration bgp
```

! router bgp 65501
 confederation identifier 100
 confederation peers 65502 65503 65504

! neighbor 1.1.1.2
 remote-as 65502
 no shutdown

! neighbor 2.1.1.2
 remote-as 65503
 no shutdown

! neighbor 3.1.1.2
 remote-as 65504
 no shutdown
Route dampening

When EBGP routes become unavailable, they “flap” and the router issues both WITHDRAWN and UPDATE notices. A flap occurs when a route is withdrawn, readvertised after being withdrawn, or has an attribute change.

The constant router reaction to the WITHDRAWN and UPDATE notices causes instability in the BGP process. To minimize this instability, configure penalties (a numeric value) for routes that flap. When that penalty value reaches a configured limit, the route is not advertised, even if the route is up, the penalty value is 1024.

As time passes and the route does not flap, the penalty value decrements or decays. If the route flaps again, it is assigned another penalty. The penalty value is cumulative and adds under withdraw, readvertise, or attribute change.

When dampening applies to a route, its path is described by:

- **History entry**: Entry that stores information on a downed route.
- **Dampened path**: Path that is no longer advertised.
- **Penalized path**: Path that is assigned a penalty.

1. Enable route dampening in ROUTER-BGP mode.

   ```
   router bgp 102
   address-family ipv4 unicast
   dampening 2 2000 3000 10
   ```

2. View all flap statistics or for specific routes meeting the criteria in EXEC mode.

   ```
   show ip bgp flap-statistics [ip-address [mask]]
   ```

When you change the best path selection method, path selections for the existing paths remain unchanged until you reset it by using the `clear ip bgp` command in EXEC mode.

Configure values to reuse or restart route

```
OS10(config)# router bgp 102
OS10(conf-router-bgp-102)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)# dampening 2 2000 3000 10
```
View dampened paths

OS10# show ip bgp dampened-paths

BGP local router ID is 80.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>d* 3.1.2.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8 i</td>
</tr>
<tr>
<td>d* 3.1.3.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8 i</td>
</tr>
<tr>
<td>d* 3.1.4.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8 i</td>
</tr>
<tr>
<td>d* 3.1.5.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8 i</td>
</tr>
<tr>
<td>d* 3.1.6.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8 i</td>
</tr>
</tbody>
</table>

Total number of prefixes: 5

Timers

To adjust the routing timers for all neighbors, configure the timer values using the `timers` command. If both the peers negotiate with different keepalive and hold time values, the final hold time value is the lowest values received. The new keepalive value is one-third of the accepted hold time value.

- Configure timer values for all neighbors in ROUTER-NEIGHBOR mode.

```
timers keepalive holdtime
```

- `keepalive` — Time interval in seconds, between keepalive messages sent to the neighbor routers (1 to 65535, default 60).
- `holdtime` — Time interval in seconds, between the last keepalive message and declaring the router dead (3 to 65535, default 180).

View nondefault values

OS10# show running-configuration
...
neighbor 32.1.1.2
remote-as 103
timers 61 181
no shutdown

Neighbor soft-reconfiguration

BGP soft-reconfiguration allows for fast and easy route changes. Changing routing policies requires a reset of BGP sessions or the TCP connection, for the policies to take effect.

Resets cause undue interruption to traffic due to the hard reset of the BGP cache, and the time it takes to re-establish the session. BGP soft-reconfiguration allows for policies to apply to a session without clearing the BGP session. You can perform a soft-reconfiguration on a per-neighbor basis, either inbound or outbound. BGP soft-reconfiguration clears the policies without resetting the TCP connection. After configuring soft-reconfiguration, use the `clear ip bgp` command to make the neighbor use soft reconfiguration.

When you enable soft-reconfiguration for a neighbor and you execute the `clear ip bgp soft in` command, the update database stored in the router replays and updates are re-evaluated. With this command, the replay and update process triggers only if a route-refresh request is not negotiated with the peer. If the request is negotiated after using the `clear ip bgp soft in` command, BGP sends a route-refresh request to the neighbor and receives all the peer’s updates.

To use soft reconfiguration, or soft reset without preconfiguration, both BGP peers must support soft route refresh. The soft route refresh advertises in the OPEN message sent when the peers establish a TCP session. To determine whether a BGP router supports this capability, use the `show ip bgp neighbors` command. If a router supports the route refresh capability, the `Received route refresh capability from peer` message displays.
Enable soft-reconfiguration for the BGP neighbor and BGP template in ROUTER-BGP mode. BGP stores all the updates that the neighbor receives but does not reset the peer-session. Entering this command starts the storage of updates, which is required to do inbound soft reconfiguration.

```
neighbor (ip-address) soft-reconfiguration inbound
```

2. Enter Address Family mode in ROUTER-NEIGHBOR mode.

```
address-family (ipv4 | ipv6 | [unicast])
```

3. Configure soft-configuration for the neighbors belonging to the template.

```
soft-reconfiguration inbound
```

4. Clear all information or only specific details in EXEC mode.

```
clear ip bgp {neighbor-address | * } [soft in]
```

- `*` - Clears all peers.
- `neighbor-address` - Clears the neighbor with this IP address.

Soft-reconfiguration of IPv4 neighbor

```
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# soft-reconfiguration inbound
```

Soft-reconfiguration of IPv6 neighbor

```
OS10(conf-router-neighbor)# address-family ipv6 unicast
OS10(conf-router-bgp-neighbor-af)# soft-reconfiguration inbound
```

BGP commands

activate

Enables the neighbor or peer group to be the current address-family identifier (AFI).

Syntax

```
activate
```

Parameters

None

Default

Not configured

Command Mode

ROUTER-BGP-NEIGHBOR-AF

Usage Information

This command exchanges IPv4 or IPv6 address family information with an IPv4 or IPv6 neighbor. IPv4 unicast address family is enabled by default. To activate IPv6 address family for IPv6 neighbor, use the activate command. To de-activate IPv4 address family for IPv6 neighbor, use the no activate command.

Example

```
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# activate
```

Supported Releases

10.2.0E or later

add-path

Allows the system to advertise multiple paths for the same destination without replacing previous paths with new ones.

Syntax

```
add-path {both path count | receive | send path count}
```

Parameters

- `both path count` — Enter the number of paths to advertise to the peer, from 2 to 64.
- receive — Receive multiple paths from the peer.
- send path count — Enter the number of multiple paths to send multiple to the peer, from 2 to 64.

Default
Not configured

Command Mode
ROUTER-BGP-NEIGHBOR-AF

Usage Information
Advertising multiple paths to peers for the same address prefix without replacing the existing path with a new one reduces convergence times. The no version of this command disables the multiple path advertisements for the same destination.

Example (IPv4)
OS10(conf-router-bgp-af)# add-path both 64

Example (IPv6)
OS10(conf-router-bgpv6-af)# add-path both 64

Example (Receive)
OS10(conf-router-bgpv6-af)# add-path receive

Supported Releases
10.2.0E or later

address-family

Enters Global Address Family Configuration mode for the IP address family.

Syntax
address-family {ipv4 | ipv6} unicast

Parameters
- ipv4 unicast — Enter an IPv4 unicast address family.
- ipv6 unicast — Enter an IPv6 unicast address family.

Default
None

Command Mode
ROUTER-BGP

Usage Information
This command applies to all IPv4 or IPv6 peers belonging to the template or neighbors only. The no version of this command removes the subsequent address-family configuration.

Example (IPv4 Unicast)
OS10(config)# router bgp 3
OS10(conf-router-bgp-3)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)#

Example (IPv6 Unicast)
OS10(config)# router bgp 4
OS10(conf-router-bgp-4)# address-family ipv6 unicast
OS10(conf-router-bgpv6-af)#

Supported Releases
10.3.0E or later

advertisement-interval

Sets the minimum time interval for advertisement between the BGP neighbors or within a BGP peer group.

Syntax
advertisement-interval seconds

Parameters
- seconds — Enter the time interval value in seconds between BGP advertisements, from 1 to 600.

Default
EBGP 30 seconds, IBGP 5 seconds

Command Mode
ROUTER-NEIGHBOR
Usage Information
The time interval applies to all peer group members of the template in ROUTER-TEMPLATE mode. The no version of this command resets the advertisement-interval value to the default.

Example
OS10(conf-router-neighbor)# advertisement-interval 50

Supported Releases
10.3.0E or later

advertisement-start

Delays initiating the OPEN message for the specified time.

Syntax
advertisement-start seconds

Parameters
seconds—Enter the time interval value, in seconds, before starting to send the BGP OPEN message, from 0 to 240.

Default
Not configured

Command Mode
ROUTER-NEIGHBOR

Usage Information
The time interval applies to all the peer group members of the template in ROUTER-TEMPLATE mode. The no version of this command disables the advertisement-start time interval.

Example
OS10(conf-router-neighbor)# advertisement-start 30

Supported Releases
10.3.0E or later

aggregate-address

Summarizes a range of prefixes to minimize the number of entries in the routing table.

Syntax
aggregate-address address/mask [as-set] [summary-only] [advertise-map map-name] {attribute-map route-map-name} [suppress-map route-map-name]

Parameters
- address/mask — Enter the IP address and mask.
- as-set — (Optional) Generates AS set-path information.
- summary-only — (Optional) Filters more specific routes from updates.
- advertise-map map-name — (Optional) Enter the map name to advertise.
- attribute-map route-map-name — (Optional) Enter the route-map name to set aggregate attributes.
- suppress-map route-map-name — (Optional) Enter the route-map name to conditionally filters specific routes from updates.

Default
None

Command Mode
ROUTER-BGPv4-AF

Usage Information
At least one of the routes included in the aggregate address must be in the BGP routing table for the configured aggregate to become active. If routes within the aggregate are constantly changing, do not add the as-set parameter to the aggregate because the aggregate flaps to track changes in the AS_PATH. The no version of this command disables the aggregate-address configuration.

Example
OS10(conf-router-bgpv4-af)# aggregate-address 6.1.0.0/16 summary-only

Supported Releases
10.3.0E or later
allowas-in

Configures the number of times the local AS number can appear in the BGP AS_PATH path attribute before the switch rejects the route.

Syntax
allowas-in as-number

Parameters
as-number—Enter the number of occurrences for a local AS number, from 1 to 10.

Default
Disabled

Command Mode
ROUTER-BGP-TEMPLATE-AF

Usage Information
Use this command to enable the BGP speaker to accept a route with the local AS number in updates received from a peer for the specified number of times. This configuration does not apply to updates received from a BGP peer in a peer group. A BGP peer cannot be assigned to a peer group that is configured with an AS number. The no version of this command resets the value to the default.

Example ((IPv4)
OS10(conf-router-template)# address-family ipv4 unicast
OS10(conf-router-bgp-template-af)# allowas-in 5

Example (IPv6)
OS10(conf-router-template)# address-family ipv6 unicast
OS10(conf-router-bgp-template-af)# allowas-in 5

Supported Releases
10.3.0E or later

always-compare-med

Compares MULTI_EXIT_DISC (MED) attributes in the paths received from different neighbors.

Syntax
always-compare-med

Parameters
None

Default
Disabled

Command Mode
ROUTER-BGP

Usage Information
After you use this command, use the clear ip bgp * command to recompute the best path. The no version of this command resets the value to the default.

NOTE: To configure these settings for a non-default VRF instance, first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the router bgp as-number command.
2. From the ROUTER BGP mode, enter ROUTER BGP VRF mode using the vrf vrf-name command.

Example
OS10(conf-router-bgp-10)# always-compare-med

Supported Releases
10.2.0E or later

as-notation

Changes the AS number notation format and requires four-octet-support.

Syntax
as-format {asdot | asdot+ | asplain}
Parameters

- asdot — Specify the AS number notation in asdot format.
- asdot+ — Specify the AS number notation in asdot+ format.
- asplain — Specify the AS number notation in asplain format.

Defaults

asplain

Command Modes

ROUTER-BGP

Usage Information

NOTE: To configure these settings for a non-default VRF instance, first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the router bgp as-number command.
2. From the ROUTER BGP mode, enter ROUTER BGP VRF mode using the vrf vrf-name command.

Example

OS10(conf-router-bgp-2)# as-notation asdot
OS10(conf-router-bgp-2)# as-notation asdot+
OS10(conf-router-bgp-2)# as-notation asplain

Supported Releases

10.1.0E or later

bestpath as-path

Configures the AS path selection criteria for best path computation.

Syntax

```
bestpath as-path {ignore | mutlipath-relax}
```

Parameters

- ignore — Enter to ignore the AS PATH in BGP best path calculations.
- mutlipath-relax — Enter to include prefixes received from different AS paths during multipath calculation.

Default

Enabled

Command Mode

ROUTER-BGP

Usage Information

To enable load-balancing across different EBGP peers, configure the mutlipath-relax option. If you configure both ignore or multipath-relax options at the same time, a system-generated error message appears. The no version of this command disables configuration.

NOTE: To configure these settings for a non-default VRF instance, first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the router bgp as-number command.
2. From the ROUTER BGP mode, enter ROUTER BGP VRF mode using the vrf vrf-name command.

Example

```
OS10(conf-router-bgp-10)# bestpath as-path multipath-relax
```

Supported Releases

10.3.0E or later

bestpath med

Changes the best path MED attributes during MED comparison for path selection.

Syntax

```
bestpath med {confed | missing-as-worst}
```

Usage Information

To enable load-balancing across different EBGP peers, configure the confed option. If you configure both confed or med options at the same time, a system-generated error message appears. The no version of this command disables configuration.

Example

```
OS10(conf-router-bgp-20)# bestpath med confed
```

Supported Releases

10.2.0E or later
Parameters

- **confed** — Compare MED among BGP confederation paths.
- **missing-as-worst** — Treat missing MED as the least preferred path.

Default
Disabled

Command Mode
ROUTER-BGP

Usage Information
Before you apply this command, use the `always-compare-med` command. The `no` version of this command resets the MED comparison influence.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example
```
OS10(conf-router-bgp-2)# bestpath med confed
```

Supported Releases
10.3.0E or later

bestpath router-id

Ignores comparing router-id information for external paths during best-path selection.

Syntax
```
bestpath router-id {ignore}
```

Parameters
- **ignore** — Enter to ignore AS path for best-path computation.

Default
Enabled

Command Mode
ROUTER-BGP

Usage Information
If you do not receive the same router ID for multiple paths, select the path that you received first. If you received the same router ID for multiple paths, ignore the path information. The `no` version of this command resets the value to the default.

NOTE: To configure these settings for a non-default VRF instance, first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example
```
OS10(conf-router-bgp-2)# bestpath router-id ignore
```

Supported Releases
10.3.0E or later

clear ip bgp

Resets BGP IPv4 or IPv6 neighbor sessions.

Syntax
```
clear ip bgp [vrf vrf-name] {ipv4-address | ipv6-address | *}
```

Parameters
- **vrf vrf-name** — (OPTIONAL) Enter the keyword vrf then the name of the VRF to clear IPv4 or IPv6 BGP neighbor sessions corresponding to that VRF.
- **IPv4-address** — Enter an IPv4 address to clear a BGP neighbor configuration.
- **IPv6-address** — Enter an IPv6 address to clear a BGP neighbor configuration.
- *** **— Clears all BGP sessions.

Default
Not configured

Command Mode
EXEC

Usage Information
None.

Example
OS10# clear ip bgp 1.1.15.4

Supported Releases
10.3.0E or later

clear ip bgp *

Resets BGP sessions. The soft parameter, BGP soft reconfiguration, clears policies without resetting the TCP connection.

Syntax
clear ip bgp * [vrf vrf-name] [ipv4 unicast | ipv6 unicast | soft [in | out]]

Parameters
- *** **— Enter to clear all BGP sessions.
- **vrf vrf-name** — (OPTIONAL) Enter the vrf then the name of the VRF to clear BGP session information corresponding to that VRF.
- **ipv4 unicast** — Enter to clear IPv4 unicast configuration.
- **ipv6 unicast** — Enter to clear IPv6 unicast configuration.
- **soft** — (Optional) Enter to configure and activate policies without resetting the BGP TCP session — BGP soft reconfiguration.
- **in** — (Optional) Enter to activate only ingress (inbound) policies.
- **out** — (Optional) Enter to activate only egress (outbound) policies.

Default
Not configured

Command Mode
EXEC

Usage Information
None.

Example
OS10# clear ip bgp * ipv6 unicast

Supported Releases
10.3.0E or later

clear ip bgp dampening

Clears the path information of the dampened and undampened prefixes.

Syntax
clear ip bgp dampening [vrf vrf-name] [ipv4-prefix | ipv6-prefix]

Parameters
- **vrf vrf-name** — (OPTIONAL) Enter vrf then the name of the VRF to clear dampened paths information.
- **ipv4-prefix** — (Optional) Enter an IPv4 prefix of the dampened path.
- **ipv6-prefix** — (Optional) Enter an IPv6 prefix of the dampened path.

Default
Not configured

Command Mode
EXEC
clear ip bgp flap-statistics

Clears all or specific IPv4 or IPv6 flap counts of prefixes.

Syntax:
clear ip bgp [vrf vrf-name] [ipv4-address | ipv6-address] flap-statistics [ipv4-prefix | ipv6-prefix]

Parameters:
- vrf vrf-name — (OPTIONAL) Enter vrf then the name of the VRF to clear flap statistics information.
- ipv4-address — (Optional) Enter an IPv4 address to clear the flap counts of the prefixes learned from the given peer.
- ipv6-address — (Optional) Enter an IPv6 address to clear the flap counts.
- ipv4-prefix — (Optional) Enter an IPv4 prefix to clear the flap counts of the given prefix.
- ipv6-prefix — (Optional) Enter an IPv6 prefix to clear the flap counts of the given prefix.

Default: Not configured

Command Mode: EXEC

Usage Information: None

Example (All Prefixes):
OS10# clear ip bgp flap-statistics

Example (IPv4):
OS10# clear ip bgp 1.1.15.4 flap-statistics

Example (Given Prefix):
OS10# clear ip bgp flap-statistics 1.1.15.0/24

Supported Releases: 10.3.0E or later

connection-retry-timer

Configures the timer to retry the connection to BGP neighbor or peer group.

Syntax:
connection-retry-timer retry-timer-value

Parameters:
- retry-timer-value — Enter the time interval in seconds, ranging from 10 to 65535.

Defaults:
- 60 seconds

Command Modes:
- CONFIG-ROUTER-NEIGHBOR
- CONFIG-ROUTER-TEMPLATE

Usage Information: The no version of this command resets the timer to default value.

Example:
OS10(config-router-neighbor)# connection-retry-timer 1000
OS10(config-router-template)# connection-retry-timer 100

Supported Releases: 10.3.0E or later
confederation

Confirms an identifier for a BGP confederation.

Syntax

```
confederation {identifier as-num | peers as-number}
```

Parameters

- `identifier as-num` — Enter an AS number, from 0 to 65535 for 2 bytes, 1 to 4294967295 for 4 bytes, or 0.1 to 65535.65535 for dotted format.
- `peers as-number` — Enter an AS number for peers in the BGP confederation, from 1 to 4294967295.

Default

Not configured

Command Mode

ROUTER-BGP

Usage Information

Configure your system to accept 4-byte formats before entering a 4-byte AS number. All routers in the Confederation must be 4-byte or 2-byte identified routers. You cannot have a mix of 2-byte and 4-byte identified routers. The autonomous system number you configure in this command is visible to the EBGP neighbors. Each autonomous system is fully meshed and contains a few connections to other autonomous systems. The next-hop (MED) and local preference information is preserved throughout the confederation. The system accepts confederation EBGP peers without a LOCAL_PREF attribute. OS10 sends AS_CONFED_SET and accepts AS_CONFED_SET and AS_CONF_SEQ. The no version of this command deletes the confederation configuration.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example (Identifier)

```
OS10(conf-router-bgp-2)# confederation identifier 1
```

Example (Peers)

```
OS10(conf-router-bgp-2)# confederation peers 2
```

Supported Releases

10.3.0E or later

client-to-client

Enables route reflection between clients in a cluster.

Syntax

```
client-to-client {reflection}
```

Parameters

- `reflection` — Enter to enable reflection of routes allowed in a cluster.

Default

Enabled

Command Mode

ROUTER-BGP

Usage Information

Configure the route reflector to enable route reflection between all clients. You must fully mesh all clients before you disable route reflection. The no version of this command disables route reflection in a cluster.
NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

OS10(conf-router-bgp-2)# client-to-client reflection

Supported Releases 10.2.0E or later

c**luster-id**

Assigns a cluster ID to a BGP cluster with multiple route reflectors.

Syntax

```
cluster-id {number | ip-address}
```

Parameters

- **number**—Enter a route reflector cluster ID as a 32-bit number, from 1 to 4294967295.
- **ip-address**—Enter an IP address as the route-reflector cluster ID.

Default

Router ID

Command Mode

ROUTER-BGP

Usage Information

If a cluster contains only one route reflector, the cluster ID is the route reflector’s router ID. For redundancy, a BGP cluster may contain two or more route reflectors. Without a cluster ID, the route reflector cannot recognize route updates from the other route reflectors within the cluster. The default format to display the cluster ID is A.B.C.D format. If you enter the cluster ID as an integer, an integer displays. The `no` version of this command resets the value to the default.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

OS10(conf-router-bgp-10)# cluster-id 3.3.3.3

Supported Releases 10.3.0E or later

bgp dampening

Enables BGP route-flap dampening and configures the dampening parameters.

Syntax

```
bgp dampening [half-life | reuse-limit | suppress-limit | max-suppress-time | route-map-name]
```

Parameters

- **half-life** — (Optional) Enter the half-life time, in minutes, after which the penalty decreases. After the router assigns a penalty of 1024 to a route, the penalty decreases by half after the half-life period expires, from 1 to 45.
- **reuse-limit** — (Optional) Enter a reuse-limit value, which compares to the flapping route’s penalty value. If the penalty value is less than the reuse value, the flapping route advertises again and is not suppressed, from 1 to 20000.
• **suppress-limit** — (Optional) Enter a suppress-limit value, which compares to the flapping route’s penalty value. If the penalty value is greater than the suppress value, the flapping route is no longer advertised, from 1 to 20000.

• **max-suppress-time** — (Optional) Enter the maximum number of minutes a route is suppressed, from 1 to 255.

• **route-map-name** — (Optional) Enter the name of the route-map.

Defaults

half-life 15; reuse-limit 75; suppress-limit 2000; max-suppress-time 60

Command Mode

ROUTER-BGP-AF

Usage Information

To reduce the instability of the BGP process, setup route flap dampening parameters. After setting up the dampening parameters, clear information on route dampening and return the suppressed routes to the Active state. You can also view statistics on route flapping or change the path selection from Default Deterministic mode to Non-Deterministic mode. The no version of this command resets the value to the default.

Example

```
OS10(conf-router-bgpv4-af)# dampening 2 751 2001 51 map1
```

Supported Releases

10.3.0E or later

description

Configures a description for the BGP neighbor or for peer template.

Syntax

description text

Parameters

text — Enter a description for the BGP neighbor or peer template.

Default

None

Command Mode

ROUTER-BGP-NEIGHBOR

ROUTER-BGP-TEMPLATE

Usage Information

The no version of this command removes the description.

Example

```
OS10# configure terminal
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# neighbor 8.8.8.8
OS10(config-router-neighbor)# description n1_abcd
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-100)# template t1
OS10(config-router-template)# description peer_template_1_abcd
```

Supported Releases

10.4.1.0 or later

default-metric

Assigns a default-metric of redistributed routes to locally originated routes.

Syntax

default-metric number

Parameters

number — Enter a number as the metric to assign to routes from other protocols, from 1 to 4294967295.

Default

Disabled

Command Mode

ROUTER-BGP
Usage Information
Assigns a metric for locally-originated routes such as redistributed routes. After you redistribute routes in BGP, use this command to reset the metric value — the new metric does not immediately take effect. The new metric takes effect only after you disable and re-enable route redistribution for a specified protocol. To re-enable route distribution use the redistribute {connected [route-map map-name] | ospf process-id | static [route-map map-name]} command, or use the clear ip bgp * command after you reset BGP. The no version of this command removes the default metric value.

Example (IPv4)
```
OS10(conf-router-bgpv4-af)# default-metric 60
```

Example (IPv6)
```
OS10(conf-router-bgpv6-af)# default-metric 60
```

Supported Releases
10.3.0E or later

default-originate

Configures the default route to a BGP peer or neighbor.

Syntax
```
default-originate [route-map route-map-name]
```

Parameters
- `route-map route-map-name` — (Optional) Enter a route-map name. A maximum of 140 characters.

Default
Enabled

Command Mode
- ROUTER-BGP-NEIGHBOR-AF
- ROUTER-TEMPLATE-AF

Usage Information
The no version of this command removes the default route.

Example
```
OS10(conf-router-bgp-10)# template lunar
OS10(conf-router-bgp-template)# address-family ipv6 unicast
OS10(conf-router-template-af)# default-originate route-map rmap-bgp
```

Supported Releases
10.4.1.0 or later

distance bgp

Sets the administrative distance for BGP routes.

Syntax
```
distance bgp external-distance internal-distance local-distance
```

Parameters
- `external-distance` — Enter a number to assign to routes learned from a neighbor external to the AS, from 1 to 255.
- `internal-distance` — Enter a number to assign to routes learned from a router within the AS, from 1 to 255.
- `local-distance` — Enter a number to assign to routes learned from networks listed in the `network` command, from 1 to 255.

Defaults
- `external-distance` — 20
- `internal-distance` — 200
- `local-distance` — 200
Command Modes

- CONFIG-ROUTER-BGP-ADDRESS-FAMILY
- CONFIG-ROUTER-BGP-VRF-ADDRESS-FAMILY

Usage Information

This command is used to configure administrative distance for eBGP route, iBGP route, and local BGP route. Administrative distance indicates the reliability of the route; the lower the administrative distance, the more reliable the route is. Routes that are assigned an administrative distance of 255 are not installed in the routing table. Routes from confederations are treated as iBGP routes.

Examples

Default VRF:

IPv4

OS10# configure terminal
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# address-family ipv4 unicast
OS10(configure-router-bgpv4-af)# distance bgp 10 200 210

IPv6

OS10# configure terminal
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# address-family ipv6 unicast
OS10(configure-router-bgpv6-af)# distance bgp 10 200 210

Non-default VRF

OS10(config-router-bgp-100)# vrf blue
OS10(config-router-bgp-100-vrf)# address-family ipv4 unicast
OS10(config-router-bgpv4-vrf-af)# distance bgp 21 200 200
OS10(config-router-bgp-100-vrf)# address-family ipv6 unicast
OS10(config-router-bgpv6-vrf-af)# distance bgp 21 201 250

Supported Releases

10.4.2.0 or later

distribute-list

Distributes BGP information through an established prefix list.

Syntax

distribute-list prefix-list-name {in | out}

Parameters

- prefix-list-name—Enter the name of established prefix list.
- in—Enter to distribute inbound traffic.
- out—Enter to distribute outbound traffic.

Defaults

None

Command Modes

ROUTER-BGP-NEIGHBOR-AF

ROUTER-TEMPLATE-AF

Usage Information

The no version of this command removes the route-map.

Example

OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# distribute-list inbgg in

OS10(conf-router-template)# address-family ipv4 unicast
OS10(conf-router-bgp-template-af)# distribute-list outbgg out
bgp default local-preference

Changes the default local preference value for routes exchanged between internal BGP peers.

Syntax

```
default local-preference number
```

Parameters

- `number` — Enter a number to assign to routes as the degree of preference for those routes. When routes compare, the route with the higher degree of preference or the local preference value is most preferred, from 1 to 4294967295.

Default

100

Command Mode

ROUTER-BGP

Usage Information

All routers apply this command setting within the AS. The `no` version of this command removes local preference value.

Example

```
OS10(conf-router-bgp-1)# default local-preference 200
```

ebgp-multihop

Allows EBGP neighbors on indirectly connected networks.

Syntax

```
ebgp-multihop hop count
```

Parameters

- `hop count` — Enter a value for the number of hops, from 1 to 255.

Default

1

Command Mode

ROUTER-NEIGHBOR

Usage Information

This command avoids installation of default multihop peer routes to prevent loops and creates neighbor relationships between peers. Networks indirectly connected are not valid for best path selection. The `no` version of this command removes multihop session.

Example

```
OS10(conf-router-neighbor)# ebgp-multihop 2
```

enforce-first-as

Enforces the first AS in the AS path of the route received from an EBGP peer to be the same as the configured remote AS.

Syntax

```
enforce-first-as
```

Parameters

None

Default

Enabled

Command Mode

ROUTER-BGP

Usage Information

To verify statistics of routes rejected, use the `show ip bgp neighbors` command. If routes are rejected, the session is reset. In the event of a failure, the existing BGP sessions flap. For updates received from EBGP peers,
BGP ensures that the first AS of the first AS segment is always the AS of the peer, otherwise the update drops and the counter increments. The no version of this command turns off the default.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example:
```
OS10(conf-router-bgp-1)# enforce-first-as
```

Supported Releases
10.3.0E or later

fall-over

Enables or disables BGP session fast fall-over for BGP neighbors.

Syntax
`fall-over`

Parameters
None

Default
Disabled

Command Mode
ROUTER-NEIGHBOR

Usage Information
Configure the BGP fast fall-over on a per-neighbor or peer-group basis. When you enable this command on a template, it simultaneously enables on all peers that inherit the peer group template. When you enable fall-over, BGP tracks IP reachability to the peer remote address and the peer local address. Whenever either address becomes unreachable — no active route exists in the routing table for peer IPv6 destinations or local address — BGP brings down the session with the peer. The no version of this command disables fall-over.

Example:
```
OS10(conf-router-neighbor)# fall-over
```

Supported Releases
10.3.0E or later

fast-external-fallover

Resets BGP sessions immediately when a link to a directly connected external peer fails.

Syntax
`fast-external-fallover`

Parameters
None

Default
Not configured

Command Mode
ROUTER-BGP

Usage Information
Fast external fall-over terminates the EBGP session immediately after the IP unreachability or link failure is detected. This only applies after you manually reset all existing BGP sessions. For the configuration to take effect, use the `clear ip bgp` command. The no version of this command disables fast external fallover.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example:
```
OS10(conf-router-bgp-1)# fast-external-fallover
```

Supported Releases
10.3.0E or later
inherit template

Configures a peer group template name that the neighbors use to inherit peer-group configuration.

Syntax

```plaintext
inherit template template-name
```

Parameters

- `template-name` — Enter a template name. A maximum of 16 characters.

Default

Not configured

Command Mode

ROUTER-NEIGHBOR

Usage Information

When network neighbors inherit a template, all features enabled on the template are also supported on the neighbors. The `no` version of this command disables the peer group template configuration.

Example

```
OS10(conf-router-neighbor)# inherit template zanzibar
```

Supported Releases

10.2.0E or later

listen

Enables peer listening and sets the prefix range for dynamic peers.

Syntax

```plaintext
listen ip-address [limit count]
```

Parameters

- `ip-address` — Enter the BGP neighbor IP address.
- `limit count` — (Optional) Enter a maximum dynamic peer count, from 1 to 4294967295.

Default

Not configured

Command Mode

ROUTER-TEMPLATE

Usage Information

Enables a passive peering session for listening. The `no` version of this command disables a passive peering session.

Example

```
OS10(conf-router-template)# listen 1.1.0.0/16 limit 4
```

Supported Releases

10.2.0E or later

local-as

Configures a local AS number for a peer.

Syntax

```plaintext
local-as as-number [no-prepend]
```

Parameters

- `as-number` — Enter the local AS number, from 1 to 4294967295.
- `no-prepend` — (Optional) Enter so that local AS values are not prepended to announcements from the neighbor.

Default

Disabled

Command Mode

ROUTER-NEIGHBOR or ROUTER-TEMPLATE
Usage Information: Facilitates the BGP network migration operation and allows you to maintain existing AS numbers. The no version of this command resets the value to the default.

Example (Neighbor)
```
OS10(conf-router-bgp-10)# neighbor lunar
OS10(conf-router-neighbor)# local-as 20
```

Example (Template)
```
OS10(conf-router-bgp-10)# template solar
OS10(conf-router-template)# local-as 20
```

Supported Releases: 10.3.0E or later

log-neighbor-changes

Enables logging for changes in neighbor status.

Syntax
```
log-neighbor-changes
```

Parameters
None

Default
Enabled

Command Mode
ROUTER-BGP

Usage Information
OS10 saves logs which includes the neighbor operational status and reset reasons. To view the logs, use the `show bgp config` command. The no version of this command disables the feature.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example
```
OS10(conf-router-bgp-10)# log-neighbor-changes
```

Supported Releases: 10.3.0E or later

maximum-paths

Configures the maximum number of equal-cost paths for load sharing.

Syntax
```
maximum-paths [ebgp number | ibgp number] maxpaths
```

Parameters
- `ebgp`—Enable multipath support for external BGP routes.
- `ibgp`—Enable multipath support for internal BGP routes.
- `number`—Enter the number of parallel paths, from 1 to 64.

Default
64 paths

Command Mode
ROUTER-BGP

Usage Information
Dell EMC recommends not using multipath and add path simultaneously in a route reflector. To recompute the best path, use the `clear ip bgp *` command. The no version of this command resets the value to the default.
NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example (EBGP)

```bash
OS10(conf-router-bgp-2)# maximum-paths ebgp 2 maxpaths
```

Example (IBGP)

```bash
OS10(conf-router-bgp-2)# maximum-paths ibgp 4 maxpaths
```

Supported Releases 10.3.0E or later

maximum-prefix

Configures the maximum number of prefixes allowed from a peer.

Syntax

```
maximum-prefix {number [threshold] [warning]}
```

Parameters

- `number`—Enter a maximum prefix number, from 1 to 4294967295.
- `threshold`—(Optional) Enter a threshold percentage, from 1 to 100.
- `warning-only`—(Optional) Enter to set the router to send a warning log message when the maximum limit is exceeded. If you do not set this parameter, the router stops peering when the maximum prefixes limit exceeds.

Default

75% threshold

Command Mode

ROUTER-BGP-NEIGHBOR-AF

Usage Information

If you configure this command and the neighbor receives more prefixes than the configuration allows, the neighbor goes down. To view the prefix information, use the `show ip bgp summary` command. The neighbor remains down until you use the `clear ip bgp` command for the neighbor or the peer group to which the neighbor belongs. The `no` version of this command resets the value to the default.

Example

```bash
OS10(conf-router-bgp-neighbor-af)# maximum-prefix 20 100 warning-only
```

Supported Releases

10.3.0E or later

neighbor

Creates a remote peer for the BGP neighbor and enters BGP Neighbor mode.

Syntax

```
neighbor ip address
```

Parameters

- `ip address`—Enter the IP address of the neighbor in dotted decimal format.

Default

Not configured

Command Mode

CONFIG-ROUTER-BGP

Usage Information

Create a remote peer with the BGP neighbor. Always enter the IP address of a BGP peer with this command. The command does not validate if the configured peer address is a local IP address. The `no` version of this command disables the BGP neighbor configuration.
NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

```
OS10(conf-router-bgp-2)# neighbor 32.1.0.0
OS10(conf-router-neighbor)#
```

Supported Releases 10.3.0E or later

next-hop-self

Disables the next-hop calculation for a neighbor.

Syntax `next-hop-self`

Parameters None

Default Enabled

Command Mode ROUTER-NEIGHBOR-AF

Usage Information Influences next-hop processing of EBGP routes to IBGP peers. The `no` version of this command disables the next-hop calculation.

Example

```
OS10(conf-router-neighbor-af)# next-hop-self
```

Supported Releases 10.3.0E or later

non-deterministic-med

Compares paths in the order they arrive.

Syntax `non-deterministic-med`

Parameters None

Default Disabled

Command Mode ROUTER-BGP

Usage Information Paths compare in the order they arrive. OS10 uses this method to choose different best paths from a set of paths, depending on the order they are received from the neighbors. MED may or may not be compared between adjacent paths. When you change the path selection from deterministic to non-deterministic, the path selection for the existing paths remains deterministic until you use the `clear ip bgp` command to clear the existing paths. The `no` version of this command configures BGP bestpath selection as non-deterministic.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

```
OS10(conf-router-bgp-10)# non-deterministic-med
```
outbound-optimization

Enables outbound optimization for IBGP peer-group members.

Syntax

```
outbound-optimization
```

Parameters

None

Default

Not configured

Command Mode

ROUTER-BGP

Usage Information

Enable or disable outbound optimization dynamically to reset all neighbor sessions. When you enable outbound optimization, all peers receive the same update packets. The next-hop address chosen as one of the addresses of neighbor’s reachable interfaces is also the same for the peers. The `no` version of this command disables outbound optimization.

NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

```
OS10(conf-router-bgp-10)# outbound-optimization
```

Supported Releases 10.3.0E or later

password

Configures a password for message digest 5 (MD5) authentication on the TCP connection between two neighbors.

Syntax

```
password {9 encrypted password-string| password-string}
```

Parameters

- 9 encrypted password-string—Enter 9 then the encrypted password.
- password-string—Enter a password for authentication. A maximum of 128 characters.

Default

Disabled

Command Mode

ROUTER-NEIGHBOR

ROUTER-TEMPLATE

Usage Information

You can enter the password either as plain text or in encrypted format. The password provided in ROUTER-NEIGHBOR mode takes preference over the password in ROUTER-TEMPLATE mode. The `no` version of this command disables authentication.

Example

```
OS10(conf-router-neighbor)# password abcdell
OS10(conf-router-neighbor)# password 9 f785498c228f365898c0efdc2f476b4b27c47d972c3cd8cd9b91f518c14ee42d
```

Supported Releases 10.3.0E or later
redistribute

Redistributes connected, static, and OSPF routes in BGP.

Syntax

```
redistribute {connected [route-map map name] | ospf process-id | static [route-map map name ]}
```

Parameters

- `connected` — Enter to redistribute routes from physically connected interfaces.
- `route-map map name` — (Optional) Enter the name of a configured route-map.
- `ospf process-id` — Enter a number for the OSPF process (1 to 65535).
- `static` — Enter to redistribute manually configured routes.

Default

Disabled

Command Mode

ROUTER-BGPv4-AF or ROUTER-BGPv6-AF

Usage Information

Static routes are treated as incomplete routes. When you use the `redistribute ospf process-id` command without other parameters, the system redistributes all OSPF internal routes, external type 1 routes, and external type 2 routes. The `no` version of this command resets the value to the default.

Example

(Connected)

```
OS10(conf-router-bgp-102)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)# redistribute connected route-map mapbgp1
```

Example (Static — IPv4)

```
OS10(conf-router-bgp-102)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)# redistribute static route-map mapbgp2
```

Example (Static — IPv6)

```
OS10(conf-router-bgp-102)# address-family ipv6 unicast
OS10(conf-router-bgpv6-af)# redistribute static
```

Example (OSPF — IPv4)

```
OS10(conf-router-bgp-102)# address-family ipv4 unicast
OS10(conf-router-bgpv4-af)# redistribute ospf 1
```

Example (OSPF — IPv6)

```
OS10(conf-router-bgp-102)# address-family ipv6 unicast
OS10(conf-router-bgpv6-af)# redistribute ospf 1
```

Supported Releases

10.2.0E or later

remote-as

Adds a remote AS to the specified BGP neighbor or peer group.

Syntax

```
remote-as as-number
```

Parameters

- `as-number` — Specify AS number ranging from 1 to 65535 for 2-byte or 1 to 4294967295 for 4-byte.

Defaults

None

Command Modes

CONFIG-ROUTER-NEIGHBOR

CONFIG-ROUTER-TEMPLATE

Usage Information

The `no` version of this command removes the remote AS.
Example
OS10(config)# router bgp 300
OS10(config-router-bgp-300)# template ebgppg
OS10(config-router-template)# remote-as 100

Supported Releases 10.4.1.0 or later

remove-private-as

Removes private AS numbers from receiving outgoing updates.

Syntax
remove-private-as

Parameters
None

Defaults
Disabled

Command Mode
CONFIG-ROUTER-NEIGHBOR
CONFIG-ROUTER-TEMPLATE

Usage Information
None

Example
OS10(config)# router bgp 300
OS10(config-router-bgp-300)# template ebgppg
OS10(config-router-template)# remove-private-as

Supported Releases 10.4.1.0 or later

route-map

Applies an established route-map to either incoming or outbound routes of a BGP neighbor or peer group.

Syntax
route-map route-map-name {in | out}

Parameters
- route-map-name — Enter the name of the configured route-map.
- in — attaches the route-map as the inbound policy
- out — attaches the route-map as the outbound policy

Defaults
None

Command Modes
ROUTER-BGP-TEMPLATE-AF

Usage Information
The no version of this command removes the route-map.

Example
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# route-map bgproutemap in

OS10(conf-router-template)# address-family ipv4 unicast
OS10(conf-router-bgp-template-af)# route-map bgproutemap in

Supported Releases 10.4.1.0 or later
route-reflector-client

Configures a neighbor as a member of a route-reflector cluster.

Syntax

```
route-reflector-client
```

Parameters

None

Default

Not configured

Command Mode

ROUTER-TEMPLATE

Usage Information

The device configures as a route reflector, and the BGP neighbors configure as clients in the route-reflector cluster. The no version of this command removes all clients of a route reflector—the router no longer functions as a route reflector.

Example

```
OS10(conf-router-template)# route-reflector-client
```

Supported Releases

10.3.0E or later

router bgp

Enables BGP and assigns an AS number to the local BGP speaker.

Syntax

```
router bgp as-number
```

Parameters

as-number—Enter the AS number range.

- 1 to 65535 in 2-byte
- 1 to 4294967295 in 4-byte

Default

None

Command Mode

CONFIGURATION

Usage Information

The AS number can be a 16-bit integer. The no version of this command resets the value to the default.

Example

```
OS10(config)# router bgp 3
OS10(conf-router-bgp-3)#
```

Supported Releases

10.3.0E or later

router-id

Assigns a user-given ID to a BGP router.

Syntax

```
router-id ip-address
```

Parameters

ip-address — Enter an IP address in dotted decimal format.

Default

First configured IP address or random number

Command Mode

ROUTER-BGP

Usage Information

Change the router ID of a BGP router to reset peer-sessions. The no version of this command resets the value to the default.
NOTE: To configure these settings for a non default VRF instance, you must first enter the ROUTER-CONFIG-VRF sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

```
OS10(conf-router-bgp-10)# router-id 10.10.10.40
```

send-community

Sends a community attribute to a BGP neighbor or peer group.

Syntax

```
send-community {extended | standard}
```

Parameters

- `extended` — Enter an extended community attribute.
- `standard` — Enter a started community attribute.

Default

Not configured

Command Mode

ROUTER-NEIGHBOR

Usage Information

A community attribute indicates that all routes with the same attributes belong to the same community grouping. All neighbors belonging to the template inherit the feature when configured for a template. The `no` version of this command disables sending a community attribute to a BGP neighbor or peer group.

Example

```
OS10(conf-router-neighbor)# send-community extended
```

Supported Releases

10.3.0E or later

sender-side-loop-detection

Enables the sender-side loop detection process for a BGP neighbor.

Syntax

```
sender-side-loop-detection
```

Parameters

None

Default

Enabled

Command Mode

ROUTER-BGP-NEIGHBOR-AF

Usage Information

This command helps detect routing loops, based on the AS path before it starts advertising routes. To configure a neighbor to accept routes use the `neighbor allowas-in` command. The `no` version of this command disables sender-side loop detection for that neighbor.

Example (IPv4)

```
OS10(conf-router-bgp-102)# neighbor 3.3.3.1
OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# sender-side-loop-detection
```

Example (IPv6)

```
OS10(conf-router-bgp-102)# neighbor 32::1
OS10(conf-router-neighbor)# address-family ipv6 unicast
OS10(conf-router-bgp-neighbor-af)# no sender-side-loop-detection
```

Supported Releases

10.3.0E or later
show ip bgp

Displays information that BGP neighbors exchange.

Syntax

show ip bgp [vrf vrf-name] ip-address/mask

Parameters

- vrf vrf-name — (OPTIONAL) Enter vrf and then the name of the VRF to view route information corresponding to that VRF.
- ip-address/mask — Enter the IP address and mask in A.B.C.D/x format.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show ip bgp 1.1.1.0/24
BGP routing table entry for 1.1.1.0/24
Paths: (1 available, table Default-IP-Routing-Table.)

Received from :
3.1.1.1(3.3.3.33) Best
AS_PATH : 100
Next-Hop : 3.1.1.1, Cost : 0
Origin INCOMPLETE, Metric 0, LocalPref 100, Weight 0, confed-external
Route-reflector origin : 0.0.0.0

Supported Releases

10.3.0E or later

show ip bgp dampened-paths

Displays BGP routes that are dampened or non-active.

Syntax

show ip bgp [vrf vrf-name] dampened-paths

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

- vrf vrf-name — (OPTIONAL) Enter vrf and then the name of the VRF to view routes that are affected by a specific community list corresponding to that VRF.
- Network — Displays the network ID where the route is dampened.
- From — Displays the IP address of the neighbor advertising the dampened route.
- Reuse — Displays the HH:MM:SS until the dampened route is available.
- Path — Lists all AS the dampened route passed through to reach the destination network.

Example

OS10# show ip bgp dampened-paths
BGP local router ID is 80.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2.0/24</td>
<td>80.1.1.2</td>
<td>00:00:12</td>
<td>800 9 8</td>
</tr>
</tbody>
</table>
show ip bgp flap-statistics

Displays BGP flap statistics on BGP routes.

Syntax
show ip bgp [vrf vrf-name] flap-statistics

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
- vrf vrf-name — (OPTIONAL) Enter vrf and then the name of the VRF to view flap statistics on BGP routes corresponding to that VRF.
- Network — Displays the network ID where the route is flapping.
- From — Displays the IP address of the neighbor advertising the flapping route.
- Duration — Displays the HH:MM:SS after the route first flapped.
- Flaps — Displays the number of times the route flapped.
- Reuse — Displays the HH:MM:SS until the flapped route is available.
- Path — Lists all AS the flapping route passed through to reach the destination network.

Example
OS10# show ip bgp flap-statistics
BGP local router ID is 80.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete
Network	From	Flaps	Duration	Reuse	Path
*> 3.1.2.0/24 | 80.1.1.2 | 1 | 00:00:11 | 00:00:00 | 800 9 8 i
*> 3.1.3.0/24 | 80.1.1.2 | 1 | 00:00:11 | 00:00:00 | 800 9 8 i
*> 3.1.4.0/24 | 80.1.1.2 | 1 | 00:00:11 | 00:00:00 | 800 9 8 i
*> 3.1.5.0/24 | 80.1.1.2 | 1 | 00:00:11 | 00:00:00 | 800 9 8 i
*> 3.1.6.0/24 | 80.1.1.2 | 1 | 00:00:11 | 00:00:00 | 800 9 8 i
Total number of prefixes: 5

Supported Releases
10.3.0E or later

show ip bgp ipv4 unicast

Displays route information for BGP IPv4 routes.

Syntax
show ip bgp [vrf vrf-name] ipv4 unicast {ip-address/mask | summary} [denied-routes]

Parameters
- vrf vrf-name — (OPTIONAL) Enter vrf then the name of the VRF to view IPv4 unicast summary information corresponding to that VRF.
- unicast ip-address/mask — Displays IPv4 unicast route information.
- summary — Displays IPv4 unicast summary information.
• denied-routes — (Optional) Displays the configured denied routes.

Default
Not configured

Command Mode
EXEC

Usage Information
This command displays locally advertised BGPv4 routes configured using the network command. These routes show as r for redistributed/network-learned routes.

Example
OS10# show ip bgp ipv4 unicast summary
BGP router identifier 80.1.1.1 local AS number 102
Neighbor AS MsgRcvd MsgSent Up/Down State/Pfx
80.1.1.2 800 8 4 00:01:10 5

Supported Releases
10.3.0E or later

show ip bgp ipv6 unicast
Displays route information for BGP IPv6 routes.

Syntax
show ip bgp [vrf vrf-name] ipv6 unicast [neighbors] {ip-address/mask | summary} | multicast {ip-address/mask | neighbors} [denied-routes]

Parameters
• vrf vrf-name — (OPTIONAL) Enter vrf then the name of the VRF to view IPv6 unicast information corresponding to that VRF.
• neighbors — Displays IPv6 neighbor information.
• ip-address/mask — Displays information about IPv6 unicast routes.
• summary — Displays IPv6 unicast summary information.
• multicast ip-address/mask — Displays IPv6 multicast routes information.
• denied-routes — (Optional) Displays the configured IPv6 denied routes.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show ip bgp ipv6 unicast summary
BGP router identifier 80.1.1.1 local AS number 102
Neighbor AS MsgRcvd MsgSent Up/Down State/Pfx
80.1.1.2 800 8 4 00:01:10 5

Supported Releases
10.3.0E or later

show ip bgp neighbors
Displays information that BGP neighbors exchange.

Syntax
show ip bgp [vrf vrf-name] neighbors ip-address [denied-routes]

Parameters
• vrf vrf-name — (OPTIONAL) Enter vrf and then the name of the VRF to view information exchanged between BGP neighbors corresponding to that VRF.
• ip-address — Enter the IP address for a specific neighbor
• denied-routes — (Optional) Displays the list of routes denied by policy
• advertised-routes — Displays the routes advertised to a neighbor
- **dampened-routes**—Displays the suppressed routes received from a neighbor
- **flap-statistics**—Displays the route's flap statistics received from a neighbor
- **received-routes**—Displays the routes received from a neighbor
- **routes**—Displays routes learned from a neighbor

Default
Not configured

Command Mode
EXEC

Usage Information
- **BGP neighbor** — Displays the BGP neighbor address and its AS number. The last phrase in the line indicates whether the link between the BGP router and its neighbor is an external or internal one. If they are located in the same AS, the link is internal; otherwise the link is external.
- **BGP version** — Displays the BGP version, always version 4, and the remote router ID.
- **BGP state** — Displays the neighbor’s BGP state and the amount of time in hours:minutes:seconds it has been in that state.
- **Last read** — Displays the information included in the last read:
 - Last read is the time in hours:minutes:seconds that the router read a message from its neighbor.
 - Hold time is the number of seconds configured between messages from its neighbor.
 - Keepalive interval is the number of seconds between keepalive messages to help ensure that the TCP session is still alive.
- **Received messages** — Displays the number of BGP messages received, the number of notifications or error messages, and the number of messages waiting in a queue for processing.
- **Sent messages** — Displays the number of BGP messages sent, the number of notifications or error messages, and the number of messages waiting in a queue for processing.
- **Description** — Displays the descriptive name configured for the BGP neighbor. This field is displayed only when the description is configured.
- **Local host** — Displays the peering address of the local router and the TCP port number.
- **Foreign host** — Displays the peering address of the neighbor and the TCP port number.

Although the status codes for routes received from a BGP neighbor may not display in the `show ip bgp neighbors ip-address received-routes` output, they display correctly in the `show ip bgp` output.

Example

```
OS10# show ip bgp neighbors
BGP neighbor is 80.1.1.2, remote AS 800, local AS 102  external link
BGP version 4, remote router ID 12.12.0.2
BGP state ESTABLISHED, in this state for 00:02:51
Last read 00:18:23 seconds
Hold time is 90, keepalive interval is 30 seconds
Configured hold time is 180, keepalive interval is 60 seconds
Fall-over disabled
Received 11 messages
  1 opens, 0 notifications, 3 updates
  7 keepalives, 0 route refresh requests
Sent 8 messages
  1 opens, 0 notifications, 0 updates
  7 keepalives, 0 route refresh requests
Minimum time between advertisement runs is 30 seconds
Description: n1_abcd
Capabilities received from neighbor for IPv4 Unicast:
  MULTIPROTO_EXT(1) MULTIPROTO_EXT(1) MULTIPROTO_EXT(1) ROUTERefresh(2)
Capabilities advertised to neighbor for IPv4 Unicast:
  MULTIPROTO_EXT(1) MULTIPROTO_EXT(1) ROUTERefresh(2) CISCO_ROUTE_REFRESH(128)
Prefixes accepted 5, Prefixes advertised 0
Connections established 1; dropped 1
Closed by neighbor sent 00:02:51 ago
```
For address family: IPv4 Unicast
Next hop set to self
Allow local AS number 0 times in AS-PATH attribute

For address family: IPv6 Unicast
Next hop set to self
Allow local AS number 0 times in AS-PATH attribute

Local host: 80.1.1.1, Local port: 57812
Foreign host: 80.1.1.2, Foreign port: 179

Example advertised-routes

```bash
OS10# show ip bgp ipv6 unicast neighbors 192:168:1:2 advertised-routes
BGP local router ID is 100.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete
Network          Next Hop       Metric    LocPrf    Weight  Path
*>55::/64        192:168:1:1:1   0         0         0       100i
*>55:0:0:1::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:2::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:3::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:4::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:5::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:6::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:7::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:8::/64  192:168:1:1:1   0         0         0       100i
*>55:0:0:9::/64  192:168:1:1:1   0         0         0       100i
*>172:16:1:1::/64 192:168:1:1:1  0         0         0       100i
Total number of prefixes: 11
OS10#
```

Example received-routes

```bash
OS10# show ip bgp ipv6 unicast neighbors 172:16:1:2 received-routes
BGP local router ID is 100.1.1.1
Status codes: D denied
Origin codes: i - IGP, e - EGP, ? - incomplete
Network        Next Hop       Metric    LocPrf  Path
D  55::/64        172:16:1:1:2  0        0       i
55:0:0:1::/64  172:16:1:1:2  0        0       i
55:0:0:2::/64  172:16:1:1:2  0        0       i
D  55:0:0:3::/64  172:16:1:1:2  0        0       i
D  55:0:0:4::/64  172:16:1:1:2  0        0       i
D  55:0:0:5::/64  172:16:1:1:2  0        0       i
D  55:0:0:6::/64  172:16:1:1:2  0        0       i
55:0:0:7::/64  172:16:1:1:2  0        0       i
55:0:0:8::/64  172:16:1:1:2  0        0       i
D  55:0:0:9::/64  172:16:1:1:2  0        0       i
Total number of prefixes: 10
OS10#
```

Example denied-routes

```bash
OS10# show ip bgp ipv6 unicast neighbors 172:16:1:2 denied-routes
BGP local router ID is 100.1.1.1
Status codes: D denied
Origin codes: i - IGP, e - EGP, ? - incomplete
Network       Next Hop       Metric    LocPrf  Path
D  55::/64     172:16:1:1:2  0        0       i
D  55:0:0:1::/64 172:16:1:1:2 0        0       i
D  55:0:0:2::/64 172:16:1:1:2 0        0       i
D  55:0:0:3::/64 172:16:1:1:2 0        0       i
D  55:0:0:4::/64 172:16:1:1:2 0        0       i
D  55:0:0:5::/64 172:16:1:1:2 0        0       i
D  55:0:0:6::/64 172:16:1:1:2 0        0       i
D  55:0:0:7::/64 172:16:1:1:2 0        0       i
D  55:0:0:8::/64 172:16:1:1:2 0        0       i
D  55:0:0:9::/64 172:16:1:1:2 0        0       i
Total number of prefixes: 3
OS10#
```

Example routes

```bash
OS10# show ip bgp ipv6 unicast neighbors 172:16:1:2 routes
BGP local router ID is 100.1.1.1
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete
Network       Next Hop       Metric    LocPrf  Weight  Path
*>55::/64     172:16:1:1:2  44       55       0       i
*>55:0:0:1::/64 172:16:1:1:2 44       55       0       i
```

OS10#
show ip bgp peer-group

Displays information on BGP peers in a peer-group.

Syntax

```
show ip bgp [vrf vrf-name] peer-group peer-group-name
```

Parameters

- `vrf vrf-name` — (OPTIONAL) Enter `vrf` to view information on BGP peers in a peer group corresponding to that VRF.
- `peer-group-name` — (Optional) Enter the peer group name to view information about that peer-group only.

Default

Not configured

Command Mode

EXEC

Usage Information

- **Peer-group** — Displays the peer group name. Minimum time displays the time interval between BGP advertisements.
- **Administratively shut** — Displays the peer group's status if you do not enable the peer group. If you enable the peer group, this line does not display.
- **BGP version** — Displays the BGP version supported.
- **Description** — Displays the descriptive name configured for the BGP peer template. This field is displayed only when the description is configured.
- **For address family** — Displays IPv4 unicast as the address family.
- **BGP neighbor** — Displays the name of the BGP neighbor.
- **Number of peers** — Displays the number of peers currently configured for this peer group.
- **Peer-group members** — Lists the IP addresses of the peers in the peer group. If the address is outbound optimized, an * displays next to the IP address.

Example

```
OS10# show ip bgp peer-group bgppg
Peer-group bgppg, remote AS 103
  BGP version 4
  Minimum time between advertisement runs is 30 seconds
  Description: peer_template_1_abcd
  For address family: Unicast
  BGP neighbor is bgppg, peer-group external
  Update packing has 4_OCTET_AS support enabled
```

Example (Summary)

```
OS10# show ip bgp peer-group ebgp summary
BGP router identifier 32.1.1.1  local AS number 6
Neighbor  AS  MsgRcvd  MsgSent  Up/Down  State/Pfx
17.1.1.2    7    7     6 00:01:54  5
```

Supported Releases

10.3.0E or later
show ip bgp summary

Displays the status of all BGP connections.

Syntax

```
show ip bgp [vrf vrf-name] summary
```

Parameters

- `vrf vrf-name` — (OPTIONAL) Enter `vrf` then the name of the VRF to view the status of all BGP connections corresponding to that VRF.

Default

Not configured

Command Mode

EXEC

Usage Information

- **Neighbor** — Displays the BGP neighbor address.
- **AS** — Displays the AS number of the neighbor.
- **MsgRcvd** — Displays the number of BGP messages that the neighbor received.
- **MsgSent** — Displays the number of BGP messages that the neighbor sent.
- **Up/Down** — Displays the amount of time that the neighbor is in the Established stage. If the neighbor has never moved into the Established stage, the word never displays. The output format is:


  ```
  1 day = 00:12:23 (hours:minutes:seconds), 1 week = 1d21h (DaysHours), 1 week + 11w2d (WeeksDays)
  ```

- **State/Pfxrcd** — If the neighbor is in the Established stage, this is the number of network prefixes received. If you configured a maximum limit using the `neighbor maximum-prefix` command, `prfxd` appears in this column. If the neighbor is not in the Established stage, the current stage - Idle, Connect, Active, OpenSent, OpenConfirm displays. When the peer is transitioning between states and clearing the routes received, the phrase Purging may appear in this column. If the neighbor is disabled, the phrase Admin shut appears in this column.

The suppressed status of aggregate routes may not display in the command output.

Example

```
OS10# show ip bgp summary
BGP router identifier 80.1.1.1 local AS number 102
Neighbor    AS    MsgRcvd  MsgSent  Up/Down    State/Pfx
80.1.1.2     800   24       23       00:09:15   5
```

Supported Releases

10.2.0E or later

show ip route

Displays information about IPv4 BGP routing table entries.

Syntax

```
show ip route
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

This command displays information about IPv4 BGP routing table entries.

Example

```
OS10# show ip route
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, E - BGP
```

Layer 3
E2 - OSPF external type 2, * - candidate default, + - summary route, > - non-active route

Gateway of last resort is not set

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 10.1.1.0/24</td>
<td>via 10.1.1.1</td>
<td>ethernet1/1/17</td>
<td>0/0</td>
</tr>
<tr>
<td>B IN 100.1.1.0/24</td>
<td>via 10.1.1.2</td>
<td></td>
<td>200/0</td>
</tr>
<tr>
<td>B IN 101.1.1.0/24</td>
<td>via 10.1.1.2</td>
<td></td>
<td>200/0</td>
</tr>
<tr>
<td>B IN 102.1.1.0/24</td>
<td>via 10.1.1.2</td>
<td></td>
<td>200/0</td>
</tr>
<tr>
<td>B IN 103.1.1.0/24</td>
<td>via 10.1.1.2</td>
<td></td>
<td>200/0</td>
</tr>
<tr>
<td>B IN 104.1.1.0/24</td>
<td>via 10.1.1.2</td>
<td></td>
<td>200/0</td>
</tr>
</tbody>
</table>

show ipv6 route

Displays information about IPv6 BGP routing table entries.

Syntax

show ipv6 route

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

This command displays information about IPv6 BGP routing table entries.

Example

OS10# show ipv6 route

Supported Releases

10.4.2.0 or later

soft-reconfiguration inbound

Enables soft-reconfiguration for a neighbor.

Syntax

soft-reconfiguration inbound

Parameters

None

Default

Not configured

Command Modes

ROUTER-BGP-NEIGHBOR-AF

Usage Information

This command is not supported on a peer-group level. To enable soft-reconfiguration for peers in a peer-group, you must enable this command at a per-peer level. With soft-reconfiguration inbound, all updates received from this neighbor are stored unmodified, regardless of the inbound policy. When inbound soft-reconfiguration is performed later, the stored information generates a new set of inbound updates. The no version of this command disables soft-reconfiguration inbound for a BGP neighbor.

Example (IPv4)

OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# soft-reconfiguration inbound

Example (IPv6)

OS10(conf-router-neighbor)# address-family ipv6 unicast
OS10(conf-router-bgp-neighbor-af)# soft-reconfiguration inbound

Supported Releases

10.3.0E or later
template

Creates a peer-group template to assign it to BGP neighbors.

Syntax

```
template template-name
```

Parameters

- `template-name` — Enter a peer-group template name. A maximum of 16 characters.

Default

Not configured

Command Mode

`CONFIG-ROUTER-BGP`

Usage Information

Members of a peer-group template inherit the configuration properties of the template and share the same update policy. The `no` version of this command removes a peer-template configuration.

NOTE: To configure these settings for a non default VRF instance, you must first enter the `ROUTER-CONFIG-VRF` sub mode using the following commands:

1. Enter the ROUTER BGP mode using the `router bgp as-number` command.
2. From the ROUTER BGP mode, enter the ROUTER BGP VRF mode using the `vrf vrf-name` command.

Example

```
OS10(conf-router-bgp-10)# template solar
OS10(conf-router-bgp-template)#
```

Supported Releases

10.3.0E or later

timers

Adjusts BGP keepalive and holdtime timers.

Syntax

```
timers keepalive holdtime
```

Parameters

- `keepalive`—Enter the time interval, in seconds, between keepalive messages sent to the neighbor routers, from 1 to 65535.
- `holdtime`—Enter the time interval, in seconds, between the last keepalive message and declaring a router dead, from 3 to 65535.

Default

- `keepalive` 60 seconds; `holdtime` 180 seconds

Command Mode

`ROUTER-BGP`

Usage Information

The configured timer value becomes effective after a BGP hard reset. The timer values negotiate from peers. The `no` version of this command resets the value to the default.

Example

```
OS10(conf-router-bgp)# timers 30 90
```

Supported Releases

10.3.0E or later

vrf

Enters the `CONFIG-ROUTER-VRF` command mode.

Syntax

```
vrf vrf-name
```
weight

Assigns a default weight for routes from the neighbor interfaces.

Syntax

weight number

Parameters

number—Enter a number as the weight for routes, from 1 to 4294967295.

Default

0

Command Mode

ROUTER-BGP-NEIGHBOR

Usage Information

The path with the highest weight value is preferred in the best-path selection process. The no version of this command resets the value to the default.

Example

OS10(conf-router-bgp-neighbor)# weight 4096

Supported Releases

10.3.0E or later

Equal cost multi-path

ECMP is a routing technique where next-hop packet forwarding to a single destination occurs over multiple best paths. When you enable ECMP, OS10 uses a hash algorithm to determine the next-hop. The hash algorithm makes hashing decisions based on values in various packet fields and internal values.

- Configure the hash algorithm in CONFIGURATION mode.

 hash-algorithm ecmp crc

Change hash algorithm

OS10(config)# hash-algorithm ecmp crc

Load balancing

To increase bandwidth of ECMP routes, traffic is balanced across member links. RTAG7 is a hash algorithm that load balances traffic within a trunk group in a controlled manner. RTAG7 balances traffic to more effectively use member links as traffic gets more diverse.

RTAG7 generates a hash that consists of two parts:

- The first part generates from packet headers to identify micro-flows in traffic. By default, all listed parameters are enabled for load balancing except the ingress port.

 OS10# show load-balance
Load-Balancing Configuration For LAG and ECMP:
--
IPV4 Load Balancing : Enabled
IPV6 Load Balancing : Enabled
MAC Load Balancing : Enabled
TCP-UDP Load Balancing : Enabled
Ingress Port Load Balancing : Disabled
IPV4 FIELDS : source-ip destination-ip protocol vlan-id l4-destination-port l4-source-port
IPV6 FIELDS : source-ip destination-ip protocol vlan-id l4-destination-port l4-source-port
MAC FIELDS : source-mac destination-mac ethertype vlan-id
TCP-UDP FIELDS: 14-destination-port 14-source-port

• The second part generates from the static physical configuration such as the ingress and egress port numbers.

To generate load balancing based on any parameters, change the hash field using the load-balance command.

ECMP commands

hash-algorithm

Changes the hash algorithm that distributes traffic flows across ECMP paths and the link aggregation group (LAG).

Syntax

```
hash-algorithm {ecmp | lag} crc
```

Parameters

- **ecmp** — Enables the ECMP hash configuration.
- **lag** — Enables the LAG hash configuration for Layer 2 (L2) only.
- **crc** — Enables the cyclic redundancy check (CRC) polynomial for hash computation.

Default

crc

Command Mode

CONFIGURATION

Usage Information

The hash value calculated with this command is unique to the entire system. Different hash algorithms are based on the number of port-channel members and packet values. The default hash algorithm yields the most balanced results in various test scenarios, but if the default algorithm does not provide a satisfactory distribution of traffic, use this command to designate another algorithm.

When a port-channel member leaves or is added to the port-channel, the hash algorithm recalculates to balance traffic across the members. The no version of this command returns the value to the default.

Example

```
OS10(config)# hash-algorithm lag crc
```

Supported Releases

10.3.0E or later

link-bundle-utilization trigger-threshold

Configures a threshold value to trigger traffic monitoring distribution on an ECMP link bundle.

Syntax

```
link-bundle-trigger-threshold value
```

Parameters

- **value** — Enter a link bundle trigger threshold value, from 0 to 100.

Defaults

Not configured

Command Mode

CONFIGURATION
Usage Information
The `no` version of this command disables the configuration.

Example
```
OS10(config)# link-bundle-trigger-threshold 80
```

Supported Releases
10.2.0E or later

load-balancing

Distributes or load balances incoming traffic using the default parameters in the hash algorithm.

Syntax
```
load-balancing {ingress-port enable | [tcp-udp-selection l4-destination-port | l4-source-port] | [ip-selection destination-ip | source-ip | protocol | vlan-id | l4-destination-port | l4-source-port] | [ipv6-selection destination-ip | source-ip | protocol | vlan-id | l4-destination-port | l4-source-port] | [mac-selection destination-mac | source-mac | ethertype | vlan-id]}
```

Parameters
- `ingress-port enable` — Enables load-balancing on ingress ports.
- `tcp-udp-selection` — Enables the TCP UDP port for the load-balancing configuration.
- `ip-selection` — Enables IPv4 key parameters to use in the hash computation.
- `ipv6-selection` — Enables IPv6 key parameters to use in hash computation.
- `destination-ip` — Enables the destination IP address in the hash calculation.
- `source-ip` — Enables the source IP address in the hash calculation.
- `protocol` — Enables protocol information in the hash calculation.
- `vlan-id` — Enables VLAN ID information in the hash calculation.
- `l4-destination-port` — Enables Layer 4 (L4) destination port information in the hash calculation.
- `l4-source-port` — Enables L4 source port information in the hash calculation.
- `mac-selection` — Enables MAC load-balancing configurations.
- `destination-mac` — Enables destination MAC information in the hash calculation.
- `source-mac` — Enables source MAC information in the hash calculation.
- `ethertype` — Enables Ethernet type information in the hash calculation.

Default
- `ip-selection-source-ip dest-ip vlan-id l4-source-port l4-dest-port ipv4 protocol`
- `ipv6-selection-source-ipv6 dest-ipv6 vlan-id l4-source-port l4-dest-port ipv6 protocol`
- `mac-selection-source-mac destination-mac vlan-id ethertype`
- `tcp-udp-selection-l4-source-port l4-dest-port`

Command Mode
CONFIGURATION

Usage Information
- IPv4 selection: `source-ip destination-ip protocol vlan-id l4-destination-port l4-source-port`
- IPv6 destination address: `source-ip destination-ip protocol vlan-id l4-destination-port l4-source-port`
- MAC parameters: `source-mac destination-mac ethertype vlan-id`
- TCP/UDP parameters: `l4-destination-port l4-dest-port`

The `no` version of this command resets the value to the default.
Example (Ingress)
OS10(config)# load-balancing ingress-port enable

Example (IP Selection)
OS10(config)# load-balancing ip-selection destination-ip source-ip

Supported Releases 10.2.0E or later

show hash-algorithm
Displays hash-algorithm information.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>show hash-algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Default</td>
<td>Not configured</td>
</tr>
<tr>
<td>Command Mode</td>
<td>EXEC</td>
</tr>
<tr>
<td>Usage Information</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>OS10# show hash-algorithm</td>
</tr>
<tr>
<td></td>
<td>EcmpAlgo - crc LabAlgo - crc</td>
</tr>
</tbody>
</table>

Supported Releases 10.3.0E or later

IPv4 routing
OS10 supports IPv4 addressing including variable-length subnetting mask (VLSM), Address Resolution Protocol (ARP), static routing, and routing protocols. With VLSM, you can configure one network with different masks. You can also use supernetting, which increases the number of subnets. You can add a mask to the IP address to separate the network and host portions of the IP address to add a subnet.

You need to configure IPv4 routing for IP hosts to communicate with one another in the same network, or in different networks.

Assign interface IP address
You can assign primary and secondary IP addresses to a physical or logical interface to enable IP communication between the system and hosts connected to a specific interface. Assign one primary address and secondary IP addresses to each interface. By default, all ports are in the default VLAN—VLAN 1.

1. Enter the interface type information to assign an IP address in CONFIGURATION mode.
 interface interface
 - ethernet—Physical interface
 - port-channel—Port-channel ID number
 - vlan—VLAN ID number
 - loopback—Loopback interface ID
 - mgmt—Management interface

2. Enable the interface in INTERFACE mode.
 no shutdown

3. Remove the interface from the default VLAN in INTERFACE mode.
 no switchport

4. Configure a primary IP address and mask on the interface in INTERFACE mode.
 ip address ip-address mask [secondary]
- **ip-address mask**—Enter the IP address in dotted decimal format—A.B.C.D. and mask in slash prefix-length format (/24).
- **secondary**—Enter a secondary backup IP address for the interface.

Assign interface IP address to interface

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# ip address 10.10.1.4/8
```

View interface configuration

```
OS10# show interface ethernet 1/1/1
Ethernet 1/1/1 is up, line protocol is up
Hardware is Dell EMC Eth, address is 00:0c:29:98:1b:79
  Current address is 00:0c:29:98:1b:79
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR 1.0M
  Wavelength is 64
  SFP receive power reading is 0.0
Interface index is 16866084
Internet address is not set
Mode of IPv4 Address Assignment: not set
MTU 1532 bytes
LineSpeed 40G, Auto-Negotiation on
Flowcontrol rx off tx off
ARP type: ARPA, ARP Timeout: 60
Last clearing of "show interface" counters: 3 weeks 1 day 23:12:50
Queuing strategy: fifo
Input statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 runts, 0 giants, 0 throttles
  0 CRC, 0 overrun, 0 discarded
Output statistics:
  0 packets, 0 octets
  0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts
  0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts
  0 Multicasts, 0 Broadcasts, 0 Unicasts
  0 throttles, 0 discarded, 0 Collisions, 0 wred drops
Rate Info(interval 299 seconds):
  Input 0 Mbits/sec, 0 packets/sec, 0% of line rate
  Output 0 Mbits/sec, 0 packets/sec, 0% of line rate
Time since last interface status change: 3 weeks 1 day 20:54:37
```

Configure static routing

You can configure a manual or static route for open shortest path first (OSPF).

- Configure a static route in CONFIGURATION mode.

  ```
  ip route ip-prefix/mask {next-hop | interface interface [route-preference]}
  ```

 - **ip-prefix**—IPv4 address in dotted decimal in A.B.C.D format.
 - **mask**—Mask in slash prefix-length format (/X).
 - **next-hop**—Next-hop IP address in dotted decimal in A.B.C.D format.
 - **interface**—Interface type with the node/slot/port information
 - **route-preference**—(Optional) Route-preference range, from 1 to 255.

Configure static routes

```
OS10(config)# ip route 200.200.200.0/24 10.1.1.2
```
View configured static routes

```
OS10# show ip route static
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set
```

```
Destination        Gateway                   Dist/Metric Last Change
------------------------------------------------------------------
S  200.200.200.0/24 via 10.1.1.2 ethernet1/1/1  0/0      00:00:03
```

OS10 installs a static route if the next hop is on a directly connected subnet. A next-hop that is not on the directly connected subnet which recursively resolves to a next-hop on the interface's configured subnet also automatically configures. For example, if `interface ethernet 1/1/5` has IP address on subnet 100.0.0.0/8, and if 10.1.1.0/24 recursively resolves to 100.1.1.1, the system installs the static route:

- When the interface goes down, OS10 withdraws the route.
- When the interface comes up, OS10 reinstalls the route.
- When the recursive resolution is broken, OS10 withdraws the route.
- When the recursive resolution is satisfied, OS10 reinstalls the route.

Address Resolution Protocol

Address Resolution Protocol (ARP) runs over Ethernet and enables end stations to learn the MAC addresses of neighbors on an IP network. Using ARP, OS10 automatically updates the ARP cache table that maps the MAC addresses to their corresponding IP addresses. The ARP cache enables dynamically learned addresses to be removed after a time period you configure.

Configure static ARP entries

You can manually configure static entries in the ARP mapping table. Dynamic ARP is vulnerable to spoofing. To avoid spoofing, configure static entries. Static entries take precedence over dynamic ARP entries.

1. Configure an IP address and MAC address mapping for an interface in INTERFACE mode.
   ```
   ip arp ip-address mac address
   ```
 - `ip-address`—IP address in dotted decimal format in A.B.C.D format.
 - `mac address`—MAC address in nnnn.nnnn.nnnn format

 These entries do not age, and you can only remove them manually. To remove a static ARP entry, use the `no arp ip-address` command.

Configure static ARP entries

```
OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ip arp 10.1.1.5 08:00:20:b7:bd:32
```

View ARP entries

```
OS10# show ip arp interface ethernet 1/1/6
Protocol Address Hardware Interface Interface VLAN
Internet 10.1.1.5 08:00:20:b7:bd:32 ethernet1/1/6
```

IPv4 routing commands
clear ip arp

Clears the dynamic ARP entries from a specific interface or optionally delete (no-refresh) ARP entries from the content addressable memory (CAM).

Syntax
```
clear ip arp [vrf vrf-name] [interface interface | ip ip-address] [no-refresh]
```

Parameters
- **vrf vrf-name** — Enter vrf then the name of the VRF to clear ARP entries corresponding to that VRF.
- **interface interface** — (Optional) Specify an interface type:
 - ethernet — Physical interface.
 - port-channel — Port-channel identifier.
 - vlan — VLAN identifier.
 - loopback — Loopback interface identifier.
- **ip ip-address** — (Optional) Specify the IP address of the ARP entry to clear.
- **no-refresh** — (Optional) Delete the ARP entry from CAM. You can also use this option with interface or ip ip-address to specify which dynamic ARP entries to delete.

Default
Not configured

Command Mode
EXEC

Usage Information
Transit traffic may not forward during the period when deleted ARP entries resolve again and re-install in CAM.

NOTE: Use this option with extreme caution.

Example
```
OS10# clear ip arp interface ethernet 1/1/5
```

Supported Releases
10.2.0E or later

clear ip route

Clears the specified routes from the IP routing table.

Syntax
```
clear ip route [vrf vrf-name] {* | A.B.C.D/mask}
```

Parameters
- **vrf vrf-name** — (Optional) Enter the keyword vrf and then the name of the VRF to clear the routes corresponding to that VRF.
- ***** — Clear the entire IP routing table. This option refreshes all the routes in the routing table. Traffic flow is affected for all the routes in the switch.
- **A.B.C.D/mask** — Specify the IP route to remove from the IP routing table. This option refreshes all the routes in the routing table. Traffic flow is affected only for the specified route in the switch.

Default
Not configured

Command Mode
EXEC

Usage Information
This command does not remove the static routes from the routing table.

Example
```
OS10# clear ipv6 route 10.1.1.0/24
```

Supported Releases
10.3.0E or later
ip address

Configure the IP address to an interface.

Syntax

```
ip address ip-address/mask
```

Parameters

`ip-address/mask` — Enter the IP address.

Defaults

None

Command Mode

INTERFACE

Usage Information

The `no` version of this command removes the IP address set for the interface.

Example

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip address 10.1.1.0/24
```

Supported Releases

10.3.0E or later

ip address dhcp

Enables DHCP client operations on the interface.

Syntax

```
ip address dhcp
```

Parameters

None

Defaults

None

Command Mode

INTERFACE

Usage Information

The `no` version of this command disables DHCP operations on the interface.

Example

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# ip address dhcp
```

Supported Releases

10.3.0E or later

ip arp

Configures static ARP and maps the IP address of the neighbor to a MAC address.

Syntax

```
ip arp mac-address
```

Parameters

`mac-address` — Enter the MAC address of the IP neighbor in A.B.C.D format.

Default

Not configured

Command Mode

INTERFACE

Usage Information

Do not use Class D (multicast) or Class E (reserved) IP addresses. Zero MAC addresses (00:00:00:00:00:00) are invalid. The `no` version of this command disables the IP ARP configuration.

Example

```
OS10(conf-if-eth1/1/6)# ip arp 10.1.1.5 08:00:20:b7:bd:32
```

Supported Releases

10.2.0E or later
ip route

Assigns a static route on the network device.

Syntax

```
ip route [dst-vrf vrf-name] ip-prefix mask {next-hop | interface interface-type
[route-preference]}
```

Parameters

- `dst-vrf vrf-name` — (Optional) Enter vrf and then the name of the VRF to configure a static route corresponding to that VRF. Use this VRF option after the `ip route` keyword to configure a static route on that specific VRF.
- `ip-prefix` — Enter the IP prefix in dotted decimal A.B.C.D format.
- `mask` — Enter the mask in slash prefix-length /x format.
- `next-hop` — Enter the next-hop IP address in dotted decimal A.B.C.D format.
- `interface interface-type` — Enter the interface type and interface information. The interface types supported are: Ethernet, port-channel, VLAN, and Null.
- `route-preference` — (Optional) Enter the range, from 1 to 255.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

The no version of this command deletes a static route configuration.

Example

```
OS10(config)# ip route 200.200.200.0/24 10.1.1.2
OS10(config)# ip route 200.200.200.0/24 interface null 0
```

Supported Releases

10.2.0E or later

show ip arp

Displays the ARP table entries for a specific IP address or MAC address, static, dynamic, and a summary of all ARP entries.

Syntax

```
show ip arp [vrf vrf-name] [interface [ethernet | vlan | port-channel] | ip-address | mac-address | static | dynamic | summary]
```

Parameters

- `vrf vrf-name` — Enter vrf then the name of the VRF to display ARP entries corresponding to that VRF.
- `interface` — (Optional) Enter the keyword and interface information:
 - `ethernet` — Enter the node/slot/port[:subport] information.
 - `vlan` — Enter the VLAN ID number, from 1 to 4093.
 - `port-channel` — Enter the port-channel ID number, from 1 to 128.
- `ip-address` — (Optional) Enter the IP address for the ARP entry in A.B.C.D format.
- `static` — (Optional) Enter the keyword to display static ARP entries.
- `dynamic` — (Optional) Enter the keyword to display dynamic ARP entries.
- `summary` — (Optional) Enter the keyword to display a summary of all ARP entries.

Default

Not configured

Command Mode

EXEC

Usage Information

This command shows both static and dynamic ARP entries.
show ip route

Displays IP route information.

Syntax

```
show ip route [vrf vrf-name] [all | bgp | connected | ospf process-id | static | ip-prefix/mask | summary]
```

Parameters

- `vrf vrf-name` — (Optional) Enter `vrf` and then the VRF name to list the routes in the route table of a specific VRF.
- `all` — (Optional) Displays both active and non-active IP routes.
- `bgp` — (Optional) Displays BGP route information.
- `connected` — (Optional) Displays only the directly connected routes.
- `ospf process-id` — (Optional) Displays route information for the OSPF process, from 1 to 65535.
- `static` — (Optional) Displays static route information.
- `ip-prefix/mask` — (Optional) Displays routes for the destination prefix list.
- `summary` — (Optional) Displays an IP route summary.

Defaults

Not configured

Command Mode

EXEC

Usage Information

None
Example

OS10# show ip route
Codes: C - connected
S - static
B - BGP, IN - internal BGP, EX - external BGP
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 10.1.1.0/24</td>
<td>via 10.1.1.1 vlan100</td>
<td>0/0</td>
<td>01:16:56</td>
</tr>
<tr>
<td>B EX 10.1.2.0/24</td>
<td>via 10.1.2.1 vlan101</td>
<td>20/0</td>
<td>01:16:56</td>
</tr>
<tr>
<td>O 10.1.3.0/24</td>
<td>via 10.1.3.1 vlan102</td>
<td>110/2</td>
<td>01:16:56</td>
</tr>
<tr>
<td>B IN 10.1.4.0/24</td>
<td>via 10.1.4.1 vlan103</td>
<td>200/0</td>
<td>01:16:56</td>
</tr>
</tbody>
</table>

Supported Releases

10.2.0E or later

IPv6 routing

OS10 supports IPv6 routing and addressing, including the Neighbor Discovery Protocol (NDP), stateless IPv6 address autoconfiguration, and stateful IPv6 address configuration. Configure IPv6 routing for IP hosts to communicate with one another in the same network, or in different networks.

Enable or disable IPv6

By default:

- IPv6 forwarding is enabled on physical Ethernet interfaces, VLANs, and port groups. IPv6 forwarding is disabled only when you enable IPv6 address autoconfiguration on an interface and set it in host mode using the `ipv6 address autoconfig` command.
- IPv6 forwarding is permanently disabled on the management Ethernet interface so that it remains in Host mode and does not operate as a router regardless of the `ipv6 address autoconfig` setting.

If necessary, you can manually disable IPv6 processing on an interface so that the configured IPv6 addresses do not take effect. The IPv6 addresses take effect again when you re-enable IPv6.

If you disable IPv6 and configure a Layer (L2) interface in Layer (L3) mode, IPv6 is not automatically re-enabled on the interface. You must manually re-enable it.

A link-local address automatically generates when you re-enable IPv6 on an interface with the `ipv6 enable` command.

Disable and enable IPv6

```
OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 address 2111:dddd:0eee::22/64
OS10(conf-if-eth1/1/8)# no ipv6 address autoconfig
OS10(conf-if-eth1/1/8)# no ipv6 enable
OS10(conf-if-eth1/1/8)# ipv6 enable
```

Display IPv6 status

```
OS10# show interface ethernet 1/1/20
Ethernet 1/1/20 is up, line protocol is up
Hardware is Dell EMC Eth, address is ec:f4:bb:fb:fa:30
    Current address is ec:f4:bb:fb:fa:30
Pluggable media present, QSFP+ type is QSFP+ 40GBASE CR 1.0M
    Wavelength is 850
    Receive power reading is 0.0
Interface index is 17305562
Internet address is 20.20.20.1/24
    Mode of IPv4 Address Assignment: MANUAL
Interface IPv6 oper status: Enabled
```
IPv6 addresses

An IPv6 address consists of a 48-bit global routing prefix, optional 16-bit subnet ID, and a 64-bit interface identifier in the extended universal identifier (EUI)-64 format.

IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal fields separated by colons: xxxx:xxxx:xxxx:xxxx.

2001:0db8:0000:0000:0000:0000:1428:57a

Leading zeros in each field are optional. You can also use two colons (::) to represent successive hexadecimal fields of zeros, but you can use this short version only one time in each address:

2001:db8::1428:57ab

In the following example, all the addresses are valid and equivalent:

- 2001:0db8:0000:0000:0000:0000:1428:57ab
- 2001:0db8:0000:0000:0000::1428:57ab
- 2001:0db8:0:0:0:0:0:1428:57ab
- 2001:0db8::0:0:1428:57ab
- 2001:0db8:1428:57ab
- 2001:db8:1428:57ab

Write IPv6 networks using CIDR notation. An IPv6 network or subnet is a contiguous group of IPv6 addresses which must be a power of two. The initial bits of addresses, which are identical for all hosts in the network, are the network's prefix.

A network is denoted by the first address in the network and the size in bits of the prefix in decimal, separated with a slash. Because a single host is seen as a network with a 128-bit prefix, host addresses may be written with a following /128.

As soon as you assign an IPv6 address, IPv6 packet processing is enabled on an interface. You can manually disable and re-enable IPv6 processing on an interface configured with an IPv6 address using the no ipv6 enable and ipv6 enable commands.

To remove all IPv6 addresses from an interface, use the no ipv6 address command. To remove a specific IPv6 address, use the ipv6 address ipv6-address/mask command.

Link-local addresses

When an OS10 switch boots up, an IPv6 unicast link-local address automatically assigns to an interface using stateless configuration. A link-local address allows IPv6 devices on a local link to communicate without requiring a globally unique address. IPv6 reserves the address block FE80::/10 for link-local unicast addressing.

Global addresses

OS10# show ipv6 interface brief

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>admin/protocol</th>
<th>IPV6 Address/Link-Local Address</th>
<th>IPv6 Oper Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet 1/1/1</td>
<td>up</td>
<td>fe80::eef4:bbff:febf:f9f0/64</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>up</td>
<td>2017::1/64</td>
<td>Enabled</td>
</tr>
<tr>
<td>Ethernet 1/1/20</td>
<td>up</td>
<td>fe80::eef4:bbff:febf:fa30/64</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>up</td>
<td>2020::1/64</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management 1/1/1</td>
<td>up</td>
<td>fe80::eef4:bbff:febf:f9ef/64</td>
<td>Enabled</td>
</tr>
<tr>
<td>Vlan 1</td>
<td>up</td>
<td>fe80::eef4:bbff:febf:fa59/64</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

IPv6 addresses

Link local IPv6 address: fe80::eef4:bbff:febf:fa30/64
Global IPv6 address: 2020::1/64
To enable stateless autoconfiguration of an IPv6 global address and set the interface to Host mode, use the `ipv6 address autoconfig` command. The router receives network prefixes in IPv6 router advertisements (RAs). An interface ID appends to the prefix. In Host mode, IPv6 forwarding is disabled.

The `no ipv6 address autoconfig` command disables IPv6 global address autoconfiguration, and sets the interface to Router mode with IPv6 forwarding enabled.

DHCP-assigned addresses

As an alternative to stateless autoconfiguration, you can enable a network host to obtain IPv6 addresses using a DHCP server via stateful autoconfiguration using the `ipv6 address dhcp` command. A DHCPv6 server uses a prefix pool to configure a network address on an interface. The interface ID automatically generates.

Manally configured addresses

An interface can have multiple IPv6 addresses. To configure an IPv6 address in addition to the link-local address, use the `ipv6 address ipv6-address/mask` command. Enter the full 128-bit IPv6 address, including the network prefix and a 64-bit interface ID.

You can also manually configure an IPv6 address by assigning:

- A network prefix with the EUI-64 parameter using the `ipv6 address ipv6-prefix eui64` command. A 64-bit interface ID automatically generates based on the MAC address.
- A link-local address to use instead of the link-local address that automatically configures when you enable IPv6 using the `ipv6 address link-local` command.

Configure IPv6 address

```
OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 address 2001:dddd:0eee::4/64
```

Configure network prefix

```
OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 address 2001:FF21:1:1::/64 eui64
```

Configure link-local address

```
OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 address FE80::1/64 link-local
```

Stateless autoconfiguration

When an interface comes up, OS10 uses stateless autoconfiguration to generate a unique link-local IPv6 address with a FE80::/64 prefix and an interface ID generated from the MAC address. To use stateless autoconfiguration to assign a globally unique address using a prefix received in router advertisements, use the `ipv6 address autoconfig` command.

Stateless autoconfiguration sets an interface in Host mode, and allows the interface connected to an IPv6 network to autoconfigure IPv6 addresses and communicate with other IPv6 devices on local links. A DHCP server is not required for automatic IPv6 interface configuration. IPv6 devices on a local link send router advertisement (RA) messages in response to solicitation messages received at startup.

Perform stateless autoconfiguration of IPv6 addresses using:

Prefix advertisement Routers use router advertisement messages to advertise the network prefix. Hosts append their interface-identifier MAC address to generate a valid IPv6 address.

Duplicate address detection An IPv6 host node checks whether that address is used anywhere on the network using this mechanism before configuring its IPv6 address.
Prefix renumbering Transparent renumbering of hosts in the network when an organization changes its service provider.

IPv6 provides the flexibility to add prefixes on RAs in response to a router solicitation (RS). By default, RA response messages are sent when an RS message is received. The system manipulation of IPv6 stateless autoconfiguration supports the router side only. Neighbor Discovery (ND) messages advertise so the neighbor can use the information to auto-configure its address. Received ND messages are not used to create an IPv6 address.

Inconsistencies in RA values between routers are logged. The values checked for consistency include:

- Current hop limit
- M and O flags
- Reachable time
- Retransmission timer
- MTU options
- Preferred and valid lifetime values for the same prefix

The router redirect functionality in the NDP is similar to IPv4 router redirect messages. NDP uses ICMPv6 redirect messages (Type 137) to inform nodes that a better router exists on the link.

Neighbor Discovery

The IPv6 NDP determines if neighboring IPv6 devices are reachable and receives the IPv6 addresses of IPv6 devices on local links. Using the link-layer and global prefixes of neighbor addresses, OS10 performs stateless autoconfiguration of IPv6 addresses on interfaces.

ICMPv6 RA messages advertise the IPv6 addresses of IPv6-enabled interfaces and allow a router to learn of any address changes in IPv6 neighbors. By default, RAs are disabled on an interface.

Prerequisites

To enable RA messages, the switch must be in Router mode with IPv6 forwarding enabled and stateless autoconfiguration disabled using the `no ipv6 address autoconfig` command.

Enable router advertisement messages

1. Enable IPv6 neighbor discovery and sending ICMPv6 RA messages in Interface mode.
   ```
   ipv6 nd send-ra
   ```

2. (Optional) Configure IPv6 neighbor discovery options in Interface mode.
   ```
   ipv6 nd hop-limit hops — (Optional) Sets the hop limit advertised in RA messages and included in IPv6 data packets sent by the router, from 0 to 255; default 64. 0 indicates that no hop limit is specified by the router.
   ipv6 nd managed-config-flag — (Optional) Sent in RA messages to tell hosts to use stateful address autoconfiguration, such as DHCPv6, to obtain IPv6 addresses.
   ipv6 nd max-ra-interval seconds — (Optional) Sets the maximum time interval for sending RA messages, from 4 to 1800 seconds; default 600.
   ipv6 nd mtu number — (Optional) Sets the maximum transmission unit (MTU) used in RA messages on the link, from 1280 to 65535 bytes; default 1500. By default, no MTU setting is included in RA messages.
   ipv6 nd other-config-flag — (Optional) Tells hosts to use stateful autoconfiguration to obtain nonaddress-related information.
   ipv6 nd ra-lifetime seconds — (Optional) Sets the lifetime of a default router in RA messages, from 0 to 9000 milliseconds; default 3 times the max-ra-interval setting. 0 indicates that this router is not used as a default router.
   ipv6 nd reachable-time milliseconds — (Optional) Sets the advertised time the router sees that a neighbor is up after it receives neighbor reachability confirmation, from 0 to 3600000 milliseconds; default 0. 0 indicates that no reachable time is sent in RA messages.
   ipv6 nd retrans-timer seconds — (Optional) Sets the time between retransmitting neighbor solicitation messages, from 100 to 4292967295 milliseconds. By default, no retransmit timer is configured.
   ```
Configure the IPv6 prefixes that are advertised by IPv6 neighbor discovery in Interface mode.

```
ipv6 nd prefix {ipv6-prefix | default} [no-advertise] [no-autoconfig] [no-rtr-address] [off-link] [lifetime {valid-lifetime seconds | infinite} {preferred-lifetime seconds | infinite}]
```

- `ipv6-prefix` — Enter an IPv6 prefix in `x:x::y/mask` format to include the prefix in RA messages. Include prefixes that are not already in the subnets configured on the interface.
- `default` — Configure the prefix parameters advertised in all subnets configured on the interface.
- `no-advertise` — (Optional) Do not advertise the specified prefix. By default, all prefixes in configured subnets are advertised.
- `no-autoconfig` — (Optional) Sets `AdvAutonomous` to Off for the specified prefix in the radvd.conf file. This setting tells hosts not to use this prefix for address autoconfiguration. By default, `AdvAutonomous` is On.
- `no-rtr-address` — (Optional) Sets `AdvRouterAddr` to Off for the prefix in the radvd.conf file. The Off setting tells hosts not to use the advertising router address for on-link determination. By default, `AdvRouterAddr` is On.
- `off-link` — (Optional) Sets `AdvOnLink` to Off for the prefix in the radvd.conf file. The Off setting tells hosts not to use this prefix for on-link determination. By default, `AdvOnLink` is On.
- `lifetime {valid-lifetime seconds | infinite}` — (Optional) Sets `AdvValidLifetime` in seconds for the prefix in the radvd.conf file. The prefix is valid for on-link determination only for the specified lifetime. The default is 86400 seconds (1 day). The infinite setting allows the prefix to be valid for on-link determination with no time limit.
- `lifetime {preferred-lifetime seconds | infinite}` — (Optional) Sets `AdvPreferredLifetime` in seconds for the prefix in the radvd.conf file. IPv6 addresses generated from the prefix using stateless autoconfiguration remain preferred for the configured lifetime. The default is 14400 seconds (4 hours). The infinite setting allows addresses that are autoconfigured using the prefix to be preferred with no time limit.

By default, all prefixes configured in IPv6 addresses on an interface are advertised. To modify the default values advertised for interface subnet prefixes, use the `ipv6 nd prefix default` command and specify new default settings.

On-link determination is the process used to forward IPv6 packets to a destination IPv6 address.

Configure neighbor discovery

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd mtu 1500
OS10(conf-if-eth1/1/1)# ipv6 nd send-ra
```

Configure advertised IPv6 prefixes

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd prefix default lifetime infinite infinite
OS10(conf-if-eth1/1/1)# ipv6 nd prefix 2002::/64
```

Duplicate address discovery

To determine if an IPv6 unicast address is unique before assigning it to an interface, an OS10 switch sends a neighbor solicitation message. If the process of duplicate address discovery (DAD) detects a duplicate address in the network, the address does not configure on the interface. DAD is enabled by default.

By default, IPv6 is not disabled when a duplicate address is detected. Only the duplicate address is not applied. Other IPv6 addresses are still active on the interface.

To disable IPv6 on an interface when a duplicate link-local address is detected, use the `ipv6 nd dad disable-ipv6-on-failure` command. To re-enable IPv6 after you resolve a duplicate link-local address, enter `no ipv6 enable`, then the `ipv6 enable` command.

- Disable or re-enable IPv6 duplicate address discovery in Interface mode.
  ```
  ipv6 nd dad {disable | enable}
  ```
- Disable IPv6 on an interface if a duplicate link-local address is discovered in Interface mode.
  ```
  ipv6 nd dad disable-ipv6-on-dad-failure
  ```
Disable duplicate address discovery

```bash
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd dad disable
```

Disable IPv6 for duplicate link-local address

```bash
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd dad disable-ipv6-on-dad-failure
```

Static IPv6 routing

To define an explicit route between two IPv6 networking devices, configure a static route on an interface. Static routing is useful for smaller networks with only one path to an outside network, or to provide security for certain traffic types in a larger network.

- Enter the static routing information including the IPv6 address and mask in x:x:x::x format in CONFIGURATION mode. The length is from 0 to 64.

  ```bash
  ipv6 route ipv6-prefix/mask {next-hop | interface interface [route-preference]}
  ```

 - `next-hop` — Enter the next-hop IPv6 address in x:x:x::x format.
 - `interface` — Enter the interface type then the slot/port or number information.
 - `route-preference` — (Optional) Enter a route-preference range, from 1 to 255.

After you configure a static IPv6 route, configure the forwarding router’s address on the interface. The IPv6 neighbor interface must have an IPv6 address configured.

Configure IPv6 static routing and view configuration

```bash
OS10(config)# ipv6 route 2111:dddd:0eee::22/128 2001:db86:0fff::2
OS10(config)# do show ipv6 route static
```

<table>
<thead>
<tr>
<th>Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>connected</td>
</tr>
<tr>
<td>S</td>
<td>static</td>
</tr>
<tr>
<td>B</td>
<td>BGP, IN - internal BGP, EX - external BGP</td>
</tr>
<tr>
<td>O</td>
<td>OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, > - non-active route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gateway of last resort is not set</th>
<th>Destination</th>
<th>Gateway</th>
<th>Dist/Metric</th>
<th>Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S 2111:dddd:eee::22/128via 2001:db86:ffff::2 ethernet1/1/1</td>
<td>1/1</td>
<td>00:01:24</td>
<td></td>
</tr>
</tbody>
</table>

IPv6 destination unreachable

By default, when no matching entry for an IPv6 route is found in the IPv6 routing table, a packet drops and no error message is sent. You can enable the capability to send an IPv6 destination unreachable error message to the source without dropping the packet.

Enable IPv6 unreachable destination messaging

```bash
OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 unreachables
```

IPv6 hop-by-hop options

A hop-by-hop header extension in an IPv6 packet contains options that are processed by all IPv6 routers in the packet's path. By default, hop-by-hop header options in an IPv6 packet do not process locally. To enable local processing of IPv6 hop-by-hop options on an interface, use the `ipv6 hop-by-hop` command.
Enable IPv6 hop-by-hop options forwarding

OS10(config)# interface ethernet 1/1/8
OS10(conf-if-eth1/1/8)# ipv6 hop-by-hop

View IPv6 information

To view IPv6 configuration information, use the `show ipv6 route` command. To view IPv6 address information, use the `show address ipv6` command.

View IPv6 connected information

```
OS10# show ipv6 route connected
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF,IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set
Destination       Gateway                  Dist/Metric  Last Change
-----------------------------------------------------------------
C 2001:db86::/32  via 2001:db86:fff::1 ethernet1/1/1  0/0   00:03:24
```

View IPv6 static information

```
OS10# show ipv6 route static
Codes: C - connected
       S - static
       B - BGP, IN - internal BGP, EX - external BGP
       O - OSPF,IA - OSPF inter area, N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2, E1 - OSPF external type 1,
       E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set
Destination       Gateway                 Dist/Metric  Last Change
------------------------------------------------------------------
S  2111:dddd:eee::22/12 via 2001:db86:fff::2 ethernet1/1/1  1/1 00:01:24
```

IPv6 commands

clear ipv6 neighbors

Deletes all entries in the IPv6 neighbor discovery cache or neighbors of a specific interface. Static entries are not removed.

Syntax

clear ipv6 neighbors [vrf vrf-name] [ipv6-address | interface]

Parameters

- **vrf vrf-name** — (Optional) Enter vrf then the name of the VRF to clear the neighbor corresponding to that VRF. If you do not specify this option, the neighbors in the default VRF clear.
- **ipv6-address** — Enter the IPv6 address of the neighbor in the x:x:x:x format to remove a specific IPv6 neighbor. The :: notation specifies successive hexadecimal fields of zero.
- **interface interface** — To remove all neighbor entries learned on a specific interface, enter the keyword interface then the interface type and slot/port or number information of the interface:
 - For a 10-Gigabit Ethernet interface, enter TenGigabitEthernet then the slot/port/subport[/subport] information.
 - For a 40-Gigabit Ethernet interface, enter fortyGigE then the slot/port information.
 - For a port channel interface, enter port-channel then a number.
For a VLAN interface, enter `vlan` then a number from 1 to 4093.

Defaults None.
Command Mode EXEC
Usage Information The no version of this command resets the value to the default.

clear ipv6 route

Clears routes from the IPv6 routing table.

Syntax
```
clear ipv6 route [vrf vrf-name] {* | A::B/mask}
```

Parameters
- `vrf vrf-name` — (Optional) Enter `vrf` then the name of the VRF to clear the IPv6 routes corresponding to that VRF.
- `{* | A::B/mask}` — Clears all routes and refreshes the IPv6 routing table. Traffic flow for all the routes in the switch is affected.
- `A::B/mask` — Removes the IPv6 route and refreshes the IPv6 routing table. Traffic flow in the switch is affected only for the specified route.

Default Not configured
Command Mode EXEC
Usage Information This command does not remove the static routes from the routing table.
Example
```
OS10# clear ipv6 route *
```

Supported Releases 10.3.0E or later

ipv6 address

Configures a global unicast IPv6 address on an interface.

Syntax
```
ipv6 address ipv6-address/prefix-length
```

Parameters
- `ipv6-address/prefix-length` — Enter a full 128-bit IPv6 address with the network prefix length, including the 64-bit interface identifier.

Defaults None
Command Mode INTERFACE
Usage Information An interface can have multiple IPv6 addresses. To configure an IPv6 address in addition to the link-local address, use the `ipv6 address ipv6-address/mask` command and specify the complete 128-bit IPv6 address. To configure a globally unique IPv6 address by entering only the network prefix and length, use the `ipv6 address ipv6-prefix/prefix-length eui-64` command.

The no version of this command removes the IPv6 address on the interface.
ipv6 address autoconfig

Acquires global IPv6 addresses by using the network prefix obtained from RAs.

Syntax

```
ipv6 address autoconfig
```

Parameters

None

Defaults

Disabled except on the management interface

Command Mode

INTERFACE

Usage Information

- This command sets an interface in Host mode to perform IPv6 stateless auto-configuration by discovering prefixes on local links, and adding an EUI-64 based interface identifier to generate each IPv6 address. The command disables IPv6 forwarding. Addresses are configured depending on the prefixes received in RA messages.
- The `no` version of this command disables IPv6 address autoconfiguration, resets the interface in Router mode, and re-enables IPv6 forwarding.

Example

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ipv6 address autoconfig
```

Supported Releases

10.3.0E or later

ipv6 address dhcp

Enables DHCP client operations on the interface.

Syntax

```
ipv6 address dhcp
```

Parameters

None

Defaults

None

Command Mode

INTERFACE

Usage Information

The `no` version of this command disables DHCP operations on the interface.

Example

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# ipv6 address dhcp
```

Supported Releases

10.3.0E or later

ipv6 enable

Enables and disables IPv6 forwarding on an interface configured with an IPv6 address.

Syntax

```
ipv6 enable
```

Parameters

None
Defaults None

Command Mode INTERFACE

Usage Information Use this command to disable and re-enable IPv6 forwarding on an interface for security purposes or to recover from a duplicate address discovery (DAD) failure. The no version of this command disables IPv6 forwarding.

Example

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 address 2111:dddd:0eee::22/128
OS10(conf-if-eth1/1/1)# no ipv6 enable
OS10(conf-if-eth1/1/1)# ipv6 enable
```

Supported Releases 10.3.0E or later

ipv6 address eui-64

Configures a global IPv6 address on an interface by entering only the network prefix and length.

Syntax

```
ipv6 address ipv6-prefix/prefix-length eui-64
```

Parameters

- `ipv6-prefix` — Enter an IPv6 prefix in `x:x::y/mask` format.

Defaults None

Command Mode INTERFACE

Usage Information Use this command to manually configure an IPv6 address in addition to the link-local address generated with stateless autoconfiguration. Specify only the network prefix and length. The 64-bit interface ID automatically computes from the MAC address. This command enables IPv6 processing on the interface. The no version of this command removes the IPv6 address configuration.

Example

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# ipv6 address 2111:dddd:0eee::/64 eui-64
```

Supported Releases 10.4.0E(R1) or later

ipv6 address link-local

Configures a link-local IPv6 address on the interface to use instead of the link-local address that is automatically configured with stateless autoconfiguration.

Syntax

```
ipv6 address ipv6-prefix link-local
```

Parameters

- `ipv6-prefix` — Enter an IPv6 prefix in `x:x::y/mask` format.

Defaults None

Command Mode INTERFACE

Usage Information

- An interface can have only one link-local address. By default, an IPv6 link-local address automatically generates with a MAC-based EUI-64 interface ID when a router boots up and IPv6 is enabled. Use this command to manually configure a link-local address to replace the autoconfigured address. For example, to configure a more user-friendly link-local address, replace `fe80::eef4:bbff:febf:fa30/64` with `fe80::1/64`.
- The no version of this command removes the specified link-local address.

Example

```
OS10(config)# interface mgmt 1/1/1
OS10(conf-if-ma-1/1/1)# ipv6 address 2111:dddd:0eee::22/64 link-local
```
ipv6 hop-by-hop

Enables and disables processing hop-by-hop options in IPv6 packet headers.

Syntax

```
ipv6 hop-by-hop
```

Parameters

None

Defaults

Hop-by-hop header options in an IPv6 packet do not process on an interface.

Command Mode

INTERFACE

Usage Information

- Use this command to enable local processing of IPv6 packets with hop-by-hop options in conformance with the RFC 8200, IPv6 Specification.
- The no version of this command disables IPv6 processing of hop-by-hop header options.

Example: Disable hop-by-hop option processing

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# no ipv6 hop-by-hop
```

Supported Releases

10.4.0E(R1) or later

ipv6 nd dad

Disables or re-enables IPv6 duplicate address discovery (DAD).

Syntax

```
ipv6 nd dad {disable | enable | disable-ipv6-on-dad-failure}
```

Parameters

- **disable** — Disable duplicate address discovery on the interface.
- **enable** — Re-enable IPv6 duplicate address discovery if you have disabled it.
- **disable-ipv6-on-dad-failure** — Enable duplicate address discovery on the existing autoconfigured link-local address.

Defaults

Duplicate address discovery is enabled on an interface.

Command Mode

INTERFACE

Usage Information

- An OS10 switch sends a neighbor solicitation message to determine if an autoconfigured IPv6 unicast link-local address is unique before assigning it to an interface. If the process of duplicate address discovery (DAD) detects a duplicate address in the network, the link-local address does not configure. Other IPv6 addresses are still active on the interface.
- By default, DAD does not disable IPv6 if a duplicate link-local address is detected in the network. To disable IPv6 on an interface when a duplicate link-local address is detected, use the `ipv6 nd dad disable-ipv6-on-failure` command.

Example: Disable DAD

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd dad disable
```

Example: Enable DAD on link-local address

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 nd dad disable-ipv6-on-dad-failure
```

Supported Releases

10.4.0E(R1) or later
ipv6 nd hop-limit

Sets the hop limit advertised in RA messages and included in IPv6 data packets sent by the router.

Syntax

ipv6 nd hop-limit hops

Parameters

- hop-limit hops — Enter the maximum number of hops allowed for RA messages, from 0 to 255.

Defaults

64 hops

Command Mode

INTERFACE

Usage Information

The configured hop limit is advertised in RA messages and included in IPv6 data packets sent by the router. 0 indicates that no hop limit is specified by the router.

Example

OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd hop-limit 100

Supported Releases

10.4.0E(R1) or later

ipv6 nd managed-config-flag

Sends RA messages that tell hosts to use stateful address autoconfiguration, such as DHCPv6, to obtain IPv6 addresses.

Syntax

ipv6 nd managed-config-flag

Parameters

None

Defaults

Not configured

Command Mode

INTERFACE

Usage Information

The no version of this command disables the managed-config-flag option in RA messages.

Example

OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd managed-config-flag

Supported Releases

10.4.0E(R1) or later

ipv6 nd max-ra-interval

Sets the maximum time interval between sending RA messages.

Syntax

ipv6 nd max-ra-interval seconds

Parameters

- max-ra-interval seconds — Enter a time interval in seconds, from 4 to 1800.

Defaults

600 seconds

Command Mode

INTERFACE

Usage Information

The no version of this command restores the default time interval used to send RA messages.

Example

OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd max-ra-interval 300
Supported Releases 10.4.0E(R1) or later

ipv6 nd mtu

Sets the maximum transmission unit (MTU) used on a local link in RA messages.

Syntax

```
ipv6 nd mtu number
```

Parameters

- `mtu number` — Enter the MTU size in bytes, from 1280 to 65535.

Defaults 1500 bytes

Command Mode INTERFACE

Usage Information The no version of this command restores the default MTU value advertised in RA messages.

Example

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd mtu 2500
```

Supported Releases 10.4.0E(R1) or later

ipv6 nd other-config-flag

Sends RA messages that tell hosts to use stateful autoconfiguration to obtain nonaddress-related information.

Syntax

```
ipv6 nd other-config-flag
```

Parameters None

Defaults Not configured

Command Mode INTERFACE

Usage Information The no version of this command disables the other-config-flag option in RA messages.

Example

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd other-config-flag
```

Supported Releases 10.4.0E(R1) or later

ipv6 nd prefix

Configures the IPv6 prefixes that are included in messages to neighboring IPv6 routers.

Syntax

```
ipv6 nd prefix {ipv6-prefix | default} [no-advertise] [no autoconfig] [no-rtr-address] [off-link] [lifetime {valid-lifetime seconds | infinite} {preferred-lifetime seconds | infinite}]
```

Parameters

- `ipv6-prefix` — Enter an IPv6 prefix in x:x::y/mask format to include the prefix in RA mesages. Include prefixes that are not already in the subnets on the interface.
- `default` — Configure the prefix parameters advertised in all subnets configured on the interface.
- `no-advertise` — (Optional) Do not advertise the specified prefix. By default, all prefixes in configured subnets advertise.
- `no-autoconfig` — (Optional) Sets AdvAutonomous to Off for the specified prefix in the radvd.conf file. This setting tells hosts to not use this prefix for address autoconfiguration. By default, AdvAutonomous is On.
• **no-rtr-address** — (Optional) Sets AdvRouterAddr to Off for the prefix in the radvd.conf file. The Off setting tells hosts to not use the advertising router's address for on-link determination. By default, AdvRouterAddr is On.

• **off-link** — (Optional) Sets AdvOnLink to Off for the prefix in the radvd.conf file. The Off setting tells hosts to not use this prefix for on-link determination. By default, AdvOnLink is On.

• **lifetime {valid-lifetime seconds | infinite}** — (Optional) Sets AdvValidLifetime in seconds for the prefix in the radvd.conf file. The prefix is valid for on-link determination only for the specified lifetime. The default is 86400 seconds (1 day). The infinite setting allows the prefix to be valid for on-link determination with no time limit.

• **lifetime {preferred-lifetime seconds | infinite}** — (Optional) Sets AdvPreferredLifetime in seconds for the prefix in the radvd.conf file. IPv6 addresses generated from the prefix using stateless autoconfiguration remain preferred for the configured lifetime. The default is 14400 seconds (4 hours). The infinite setting allows addresses that are autoconfigured using the prefix to be preferred with no time limit.

Defaults

All prefixes in IPv6 subnets configured on an interface advertise.

Command Mode

INTERFACE

Usage Information

• By default, all prefixes configured in IPv6 addresses on an interface advertise. To advertise all default parameters in the subnet prefixes on an interface, enter the default keyword.

• If you configure a prefix with valid or preferred lifetime values, the ipv6 nd prefix default no autoconfig command does not apply the default prefix values.

• On-link determination is used to forward IPv6 packets to a destination IPv6 address.

Examples

Enable router advertisements

OS10(conf-if-eth1/1/1)# ipv6 address 2001:0db8:2000::1/64
OS10(conf-if-eth1/1/1)# ipv6 nd send-ra

Change default settings for interface subnet prefixes

OS10(conf-if-eth1/1/1)# ipv6 nd prefix default lifetime infinite infinite

Disable advertising an interface subnet prefix

OS10(conf-if-eth1/1/1)# ipv6 nd prefix 2001:0db8:2000::/64 no-advertise

Advertise prefix for which there is no interface address

OS10(conf-if-eth1/1/1)# ipv6 nd prefix 2001:0db8:3000::/64 no-autoconfig

Supported Releases

10.4.0E(R1) or later

ipv6 nd ra-lifetime

Sets the lifetime of the default router in RA messages.

Syntax

```
ipv6 nd ra-lifetime seconds
```

Parameters

- **ra-lifetime seconds** — Enter a lifetime value in milliseconds, from 0 to 9000 milliseconds.

Defaults

Three times the max-ra-interval value

Command Mode

INTERFACE

Usage Information

The no version of this command restores the default lifetime value. 0 indicates that this router is not used as the default router.
ipv6 nd reachable-time

Sets the advertised time the router sees a neighbor to be up after it receives a reachability confirmation.

Syntax

```
ipv6 nd reachable-time milliseconds
```

Parameters

- `reachable-time milliseconds` — Enter the reachable time in milliseconds, from 0 to 3600000.

Defaults

0

Command Mode

INTERFACE

Usage Information

The `no` version of this command restores the default reachable time. 0 indicates that no reachable time is sent in RA messages.

Example

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd reachable-time 1000
```

Supported Releases

10.4.0E(R1) or later

ipv6 nd retrans-timer

Sets the time between retransmitting neighbor solicitation messages.

Syntax

```
ipv6 nd retrans-timer seconds
```

Parameters

- `retrans-timer seconds` — Enter the retransmission time interval in milliseconds, from 100 to 4292967295.

Defaults

Not configured

Command Mode

INTERFACE

Usage Information

The `no` version of this command disables the configured retransmission timer.

Example

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd retrans-timer 1000
```

Supported Releases

10.4.0E(R1) or later

ipv6 nd send-ra

Enables sending ICMPv6 RA messages.

Syntax

```
ipv6 nd send-ra
```

Parameters

None

Defaults

RA messages are disabled.

Command Mode

INTERFACE
Usage Information

- Using ICMPv6 RA messages, the Neighbor Discovery Protocol (NDP) advertises the IPv6 addresses of IPv6-enabled interfaces and learns of any address changes in IPv6 neighbors. Before you enable sending RA messages, the switch must be in Router mode with IPv6 forwarding enabled and stateless autoconfiguration disabled no ipv6 address autoconfig command.
- The no version command disables RA messages.

Example

OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 nd send-ra

Supported Releases

10.4.0E(R1) or later

ipv6 route

Configures a static IPv6 static route.

Syntax

ipv6 route [dst-vrf vrf-name] ipv6-prefix mask (next-hop | interface interface-type [route-preference])

Parameters

- dst-vrf vrf-name — (Optional) Enter vrf then the name of the VRF to install IPv6 routes in that VRF.
- ipv6-prefix — Enter the IPv6 address in x:x:x:x format.
- mask — Enter the mask in slash prefix-length /x format.
- next-hop — Enter the next-hop IPv6 address in x:x:x:x format.
- interface interface-type — Enter the interface type then the slot/port or number information. The interface types supported are: Ethernet, port-channel, VLAN, and Null.
- route-preference — (Optional) Enter a route-preference range, from 1 to 255.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

- When the interface fails, the system withdraws the route. The route reinstalls when the interface comes back up. When a recursive resolution breaks, the system withdraws the route. The route reinstalls when the recursive resolution is satisfied. After you create an IPv6 static route interface, if you do not assign an IP address to a peer interface, you must manually ping the peer to resolve the neighbor information.
- The no version of this command deletes the IPv6 route configuration.

Example

OS10(config)# ipv6 route 2111:dddd:0eee::22/128 2001:db86:0fff::2
OS10(config)# ipv6 route 2111:dddd:0eee::22/128 interface null 0

Supported Releases

10.2.0E or later

ipv6 unreachable

Enables generating error messages on an interface for IPv6 packets with unreachable destinations.

Syntax

ipv6 unreachable

Parameters

None

Defaults

ICMPv6 unreachable messages are not sent.

Command Mode

INTERFACE
Usage Information

- By default, when no matching entry for an IPv6 route is found in the IPv6 routing table, the packet drops and no error message is sent. Use this command to enable sending an IPv6 destination unreachable error message to the source without dropping the packet.
- The **no** version of this command disables generating unreachable destination messages.

Example

```
OS10(config)# interface ethernet 1/2/3
OS10(conf-if-eth1/2/3)# ipv6 unreachables
```

Supported Releases
10.4.0E(R1) or later

show ipv6 neighbors

Displays IPv6 discovery information. Entering the command without options shows all IPv6 neighbor addresses stored on the control processor (CP).

Syntax

```
show ipv6 neighbors [vrf vrf-name] [ipv6-address| interface interface]
```

Parameters

- **vrf vrf-name** — (Optional) Enter vrf then the name of the VRF to display the neighbors corresponding to that VRF. If you do not specify this option, neighbors corresponding to the default VRF display.
- **ipv6-address** — Enter the IPv6 address of the neighbor in the x:x:x:x::x format. The :: notation specifies successive hexadecimal fields of zero.
- **interface interface** — Enter interface then the interface type and slot/port or number information:
 - For a 10-Gigabit Ethernet interface, enter TenGigabitEthernet then the slot/port/subport[/subport] information.
 - For a 40-Gigabit Ethernet interface, enter fortyGigE then the slot/port information.
 - For a port channel interface, enter port-channel then a number.
 - For a VLAN interface, enter vlan then a number from 1 to 4093.

Defaults

None.

Command Mode

EXEC

Usage Information

The **no** version of this command resets the value to the default.

Example

```
OS10# show ipv6 neighbors
IPv6 Address   Hardware Address   State   Interface       VLAN
-----------------------------------------------------------------
1001:db8:a1::2  00:c5:05:02:12:91   REACH   ethernet1/1/5   12
1001:db8:a1::f  00:f5:50:02:54:75   REACH   port-channel5   12
200::2           00:c5:05:02:12:91   STALE   ethernet1/1/10
400::f           00:f5:50:02:54:75   REACH   port-channel20
```

Supported Releases
10.4.1.0 or later or later

show ipv6 route

Displays IPv6 routes.

Syntax

```
show ipv6 route [vrf vrf-name] [all | bgp | connected | static | A::B/mask | summary]
```

Layer 3
Parameters

- `vrf vrf-name` — (Optional) Enter vrf then the name of the VRF to display IPv6 routes corresponding to that VRF. If you do not specify this option, routes corresponding to the default VRF display.
- `all` — (Optional) Displays all routes including nonactive routes.
- `bgp` — (Optional) Displays BGP route information.
- `connected` — (Optional) Displays only the directly connected routes.
- `static` — (Optional) Displays all static routes.
- `A::B/mask` — (Optional) Enter the IPv6 destination address and mask.
- `summary` — (Optional) Displays the IPv6 route summary.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example (All)

OS10# show ipv6 route all
Codes: C - connected
S - static
B - BGP, IN - internal BGP, EX - external BGP
O - OSPF,IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set
Destination Gateway Dist/Metric Last Change

Example (Connected)

OS10# show ipv6 route connected
Codes: C - connected
S - static
B - BGP, IN - internal BGP, EX - external BGP
O - OSPF,IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, > - non-active route
Gateway of last resort is not set
Destination Gateway Dist/Metric Last Change

C 2001:db86::/32 via 2001:db86:fff::1 ethernet1/1/1 0/0 00:03:24

Example (Summary)

OS10# show ipv6 route summary
Route Source Active Routes Non-Active Routes
Ospf 0 0
Bgp 0 0
Connected 0 0
Static 0 0
Ospf Inter-area 0 0
NSSA External-1 0 0
NSSA External-2 0 0
Ospf External-1 0 0
Ospf External-2 0 0
Bgp Internal 0 0
Bgp External 0 0
Ospf Intra-area 0 0
Total 0 0

Supported Releases
10.2.0E or later
show ipv6 interface brief

Displays IPv6 interface information.

Syntax

show ipv6 interface brief

Parameters

brief — Displays a brief summary of IPv6 interface information.

Defaults

None

Command Mode

EXEC

Usage Information

Use the `do show ipv6 interface brief` command to view IPv6 interface information in other modes.

Example (Brief)

```
OS10# show ipv6 interface brief

Interface      admin/ IPV6 Address/             IPv6 Oper
Name          protocol  Link-Local Address           Status
============================================================
Management 1/1/1 up/up  fe80::20c:29ff:fe54:c852/64  Enabled
Vlan 1          up/up   fe80::20c:29ff:fe54:c8bc/64  Enabled
Ethernet 1/1/2  up/up   fe80::20c:29ff:fe54:c853/64 100::1/64
               up/up   1001:1:1:1:20c:29ff:fe54:c853/64  Enabled
Ethernet 1/1/3  up/up   fe80::4/64
               up/up   3000::1/64 4000::1/64
Ethernet 1/1/4  up/up   fe80::4/64
               up/up   4::1/64 5::1/64
               up/up   100::1/64

```

Supported Releases

10.2.0E or later

Internet Group Management Protocol

Internet Group Management Protocol (IGMP) is a communications protocol that establishes multicast group memberships using IPv4 networks. OS10 supports IGMPv1, IGMPv2, and IGMPv3 to manage the multicast group memberships on IPv4 networks.

IGMP snooping

IGMP snooping uses the information in IGMP packets to generate a forwarding table that associates ports with multicast groups. When switches receive multicast frames, they forward them to their intended receivers. OS10 supports IGMP snooping on virtual local area network (VLAN) interfaces.

Configure IGMP snooping

- Enable IGMP snooping globally using the `ip igmp snooping enable` command in CONFIGURATION mode. This command enables IGMP snooping on all VLAN interfaces.

- (Optional) Disable IGMP snooping on specific VLAN interfaces using the `no ip igmp snooping` command in VLAN INTERFACE mode.

- In a network, the snooping switch is connected to a multicast Router that sends IGMP queries. On a Layer 2 network that does not have a multicast router, you can configure the snooping switch to act as querier. Use the `ip igmp snooping querier` command in VLAN INTERFACE mode to send the queries.

- OS10 learns the multicast router interface dynamically based on the interface on which IGMP membership query is received. To assign a multicast router interface statically, use the `ip igmp snooping mrouter interface interface-type` command in VLAN INTERFACE mode.

- (Optional) Configure the IGMP version using the `ip igmp version version-number` command in VLAN INTERFACE mode.
The fast leave option allows the IGMP snooping switch to remove an interface from the multicast group immediately on receiving the leave message. Enable fast leave with the `ip igmp snooping fast-leave` command in VLAN INTERFACE mode.

Configure the time interval for sending IGMP general queries with the `ip igmp snooping query-interval` command in VLAN INTERFACE mode.

Configure the maximum time for responding to a query advertised in IGMP queries using the `ip igmp snooping query-max-resp-time` command in VLAN INTERFACE mode.

Configure the time interval between group-specific IGMP query messages with the `ip igmp snooping last-member-query-interval` command in VLAN INTERFACE mode.

IGMP snooping configuration

```
OS10(config)# ip igmp snooping enable
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping mrouter interface ethernet 1/1/32
OS10(conf-if-vl-100)# ip igmp snooping querier
OS10(conf-if-vl-100)# ip igmp version 3
OS10(conf-if-vl-100)# ip igmp snooping fast-leave
OS10(conf-if-vl-100)# ip igmp snooping query-interval 60
OS10(conf-if-vl-100)# ip igmp snooping query-max-resp-time 10
OS10(conf-if-vl-100)# ip igmp snooping last-member-query-interval 1000
```

View IGMP snooping information

```
OS10# show ip igmp snooping groups
Total Number of Groups: 480
IGMP Connected Group Membership

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Interface</th>
<th>Mode</th>
<th>Expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.1.0.0</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.1</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.2</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.3</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.4</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.5</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.6</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.7</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.8</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.0.9</td>
<td>vlan3531</td>
<td>IGMPv2-Compat</td>
<td>00:01:35</td>
</tr>
<tr>
<td></td>
<td>Member-ports :port-channel141,ethernet1/1/51,ethernet1/1/52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;&lt;Output Truncated&gt;&gt;</td>
</tr>
</tbody>
</table>

OS10# show ip igmp snooping interface
Vlan100 is up, line protocol is up
IGMP version is 3
IGMP snooping is enabled on interface
IGMP snooping query interval is 60 seconds
IGMP snooping querier timeout is 130 seconds
IGMP snooping last member query response interval is 1000 ms
IGMP Snooping max response time is 10 seconds
IGMP snooping fast-leave is disabled on this interface
IGMP snooping querier is enabled on this interface
```

```
show ip igmp snooping mrouter
Interface    Router Ports
Vlan 100      ethernet 1/1/32
```
IGMP snooping commands

ip igmp snooping

Enables IGMP snooping on the specified VLAN interface.

Syntax

```
ip igmp snooping
```

Parameters

None

Default

Depends on the global configuration.

Command Mode

VLAN INTERFACE

Usage Information

When you enable IGMP snooping globally, the configuration applies to all VLAN interfaces. You can disable IGMP snooping on specified VLAN interfaces. The `no` version of this command disables IGMP snooping on the specified VLAN interface.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# no ip igmp snooping
```

Supported Releases

10.4.0E(R1) or later

ip igmp snooping enable

Enables IGMP snooping globally.

Syntax

```
ip igmp snooping enable
```

Parameters

None

Default

Disabled

Command Mode

CONFIGURATION

Usage Information

The `no` version of this command disables IGMP snooping.

Example

```
OS10(config)# ip igmp snooping enable
```

Supported Releases

10.4.0E(R1) or later

ip igmp snooping fast-leave

Enables fast leave in IGMP snooping for specified VLAN.

Syntax

```
ip igmp snooping fast-leave
```

Parameters

None

Default

Disabled

Command Mode

VLAN INTERFACE

Usage Information

The fast leave option allows the IGMP snooping switch to remove an interface from the multicast group immediately on receiving the `leave` message. The `no` version of this command disables the fast leave functionality.
ip igmp snooping last-member-query-interval

Configures the time interval between group-specific IGMP query messages.

Syntax

```
ip igmp snooping last-member-query-interval query-interval-time
```

Parameters

- `query-interval-time`: Enter the query time interval in milliseconds, ranging from 100 to 65535.

Default

1000 milliseconds

Command Mode

VLAN INTERFACE

Usage Information

The `no` version of this command resets the last member query interval time to the default value.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping last-member-query-interval 2500
```

Supported Releases

10.4.1.0 or later

ip igmp snooping mrouter

Enables IGMP querier on the specified VLAN interface.

Syntax

```
ip igmp snooping mrouter interface
```

Parameters

- `interface`: Enter the interface type details. The interface must be a member of the VLAN.

Default

Not configured

Command Mode

VLAN INTERFACE

Usage Information

The `no` version of this command removes the multicast router configuration from the VLAN member port.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping mrouter interface ethernet 1/1/1
```

Supported Releases

10.4.0E(R1) or later

ip igmp snooping querier

Enables IGMP querier processing for the specified VLAN interface.

Syntax

```
ip igmp snooping querier
```

Parameters

None

Default

Not configured

Command Mode

VLAN INTERFACE

Usage Information

The `no` version of this command disables IGMP querier on the VLAN interface.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping querier
```

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping querier
```
Supported Releases 10.4.0E(R1) or later

ip igmp snooping query-interval

Configures time interval for sending IGMP general queries.

Syntax

```plaintext
ip igmp snooping query-interval query-interval-time
```

Parameters

- `query-interval-time`—Enter the interval time in seconds, ranging from 2 to 18000.

Default

60 seconds

Command Mode

VLAN INTERFACE

Usage Information

The no version of this command resets the query interval to the default value.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping query-interval 120
```

Supported Releases 10.4.1.0 or later

ip igmp query-max-resp-time

Configures the maximum time for responding to a query advertised in IGMP queries.

Syntax

```plaintext
ip igmp snooping query-max-resp-time query-response-time
```

Parameters

- `query-response-time`—Enter the query response time in seconds, ranging from 1 to 25.

Default

10 seconds

Command Mode

VLAN INTERFACE

Usage Information

The no version of this command resets the query response time to default value.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp snooping query-max-resp-time 15
```

Supported Releases 10.4.1.0 or later

ip igmp version

Configures IGMP version.

Syntax

```plaintext
ip igmp version version-number
```

Parameters

- `version-number`—Enter the version number as 2 or 3.

Default

3

Command Mode

VLAN INTERFACE

Usage Information

The no version of this command resets the version number to the default value.

Example

```
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ip igmp version 2
```

Supported Releases 10.4.1.0 or later
show ip igmp snooping groups

Displays IGMP snooping group membership details.

Syntax

```
show ip igmp snooping groups [vlan vlan-id [ip-address]]
```

Parameters

- `vlan-id`—(Optional) Enter the VLAN ID, from 1 to 4093.
- `ip-address`—(Optional) Enter the IP address of the multicast group.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show ip igmp snooping groups
Total Number of Groups: 480
IGMP Connected Group Membership
Group Address          Interface    Mode              Expires
225.1.0.0              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.1              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.2              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.3              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.4              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.5              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.6              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.7              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.8              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.9              vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
225.1.0.10             vlan3031    IGMPv2-Compat     00:01:26
Member-ports :port-channel51,ethernet1/1/51:1,ethernet1/1/52:1
```

```
418  Layer 3
```
Example (with VLAN and multicast IP address)

OS10# show ip igmp snooping groups vlan 3031 225.1.0.0
IGMP Connected Group Membership

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Interface</th>
<th>Mode</th>
<th>Expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.1.0.0</td>
<td>vlan3031</td>
<td>IGMPv2-Compat</td>
<td>00:01:30</td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel51,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source List</td>
<td>ethernet1/1/51:1</td>
<td>Include</td>
<td></td>
</tr>
<tr>
<td>Source List</td>
<td>ethernet1/1/52:1</td>
<td>Include</td>
<td></td>
</tr>
</tbody>
</table>

Supported Releases
10.4.0E(R1) or later

show ip igmp snooping groups detail

Displays the IGMP source information along with detailed member port information.

Syntax

```
show ip igmp snooping groups [vlan vlan-id [ip-address]] show ip igmp snooping groups [vlan vlan-id] [group ip-address] detail
```

Parameters

- `vlan-id`—(Optional) Enter the VLAN ID, ranging from 1 to 4093.
- `ip-address`—(Optional) Enter the IP address of the multicast group.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show ip igmp snooping groups detail
Interface vlan3041
Group 232.11.0.0
Source List 101.41.0.21
Member Port port-channel151 Include
 ethernet1/1/51:1 Include
 ethernet1/1/52:1 Include
 Uptime 1d:20:26:07
 Expires 00:01:41
Interface vlan3041
Group 232.11.0.1
Source List 101.41.0.21
Member Port port-channel151 Include
 ethernet1/1/51:1 Include
 ethernet1/1/52:1 Include
 Uptime 1d:20:26:07
 Expires 00:01:41
Interface vlan3041
Group 232.11.0.2
Source List 101.41.0.21
Member Port port-channel151 Include
 ethernet1/1/51:1 Include
 ethernet1/1/52:1 Include
 Uptime 1d:20:26:07
 Expires 00:01:41
--more-- <<Output truncated>>
Example (with VLAN and multicast IP address)

OS10# show ip igmp snooping groups vlan 3041 232.11.0.0 detail

Supported Releases

10.4.1.0 or later

show ip igmp snooping interface

Displays IGMP snooping interfaces details.

Syntax

show ip igmp snooping interface [vlan vlan-id]

Parameters

vlan-id—(Optional) Enter the VLAN ID, from 1 to 4093.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show ip igmp snooping interface
Vlan3031 is up, line protocol is up
IGMP version is 3
IGMP snooping is enabled on interface
IGMP snooping query interval is 60 seconds
IGMP snooping querier timeout is 130 seconds
IGMP snooping last member query response interval is 1000 ms
IGMP Snooping max response time is 10 seconds
IGMP snooping fast-leave is disabled on this interface
IGMP snooping querier is enabled on this interface

Vlan3032 is up, line protocol is up
IGMP version is 3
IGMP snooping is enabled on interface
IGMP snooping query interval is 60 seconds
IGMP snooping querier timeout is 130 seconds
IGMP snooping last member query response interval is 1000 ms
IGMP Snooping max response time is 10 seconds
IGMP snooping fast-leave is disabled on this interface
IGMP snooping querier is enabled on this interface

Vlan3033 is up, line protocol is up
IGMP version is 3
--more--
<<Output Truncated>>

Example (with VLAN)

OS10$ show ip igmp snooping interface vlan 3031
Vlan3031 is up, line protocol is up
IGMP snooping is enabled on interface
IGMP snooping query interval is 60 seconds
IGMP snooping querier timeout is 130 seconds
IGMP snooping last member query response interval is 1000 ms
IGMP Snooping max response time is 10 seconds
IGMP snooping fast-leave is disabled on this interface
IGMP snooping querier is enabled on this interface

Supported Releases 10.4.0E(R1) or later

show ip igmp snooping mrouter

Displays the multicast router ports details.

Syntax

```
show ip igmp snooping mrouter [vlan vlan-id]
```

Parameters

- `vlan-id`—(Optional) Enter the VLAN ID, from 1 to 4093.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show ip igmp snooping mrouter
Interface   Router Ports
vlan3031    port-channel31
vlan3032    port-channel31
vlan3033    port-channel31
vlan3034    port-channel31
vlan3035    port-channel31
vlan3036    port-channel31
vlan3037    port-channel31
vlan3038    port-channel31
vlan3039    port-channel31
vlan3040    port-channel31
vlan3041    port-channel31
vlan3042    port-channel31
vlan3043    port-channel31
vlan3044    port-channel31
vlan3045    port-channel31
vlan3046    port-channel31
vlan3047    port-channel31
vlan3048    port-channel31
vlan3049    port-channel31
vlan3050    port-channel31
vlan3051    port-channel31
vlan3052    port-channel31
--more--
<<Output Truncated>>
```
Multicast Listener Discovery Protocol

IPv6 networks use Multicast Listener Discovery (MLD) Protocol to manage multicast groups. OS10 supports MLDv1 and MLDv2 to manage the multicast group memberships on IPv6 networks.

MLD snooping

MLD snooping enables switches to use the information in MLD packets and generate a forwarding table that associates ports with multicast groups. When switches receive multicast frames, they forward them to their intended receivers.

OS10 supports MLD snooping on VLAN interfaces.

Configure MLD snooping

- Enable MLD snooping globally with the `ipv6 mld snooping enable` command in the CONFIGURATION mode. This command enables both MLDv2 and MLDv1 snooping on all VLAN interfaces.
- (Optional) You can disable MLD snooping on specific VLAN interfaces using the `no ipv6 mld snooping` command in the VLAN INTERFACE mode.
- In a network, the snooping switch is connected to a multicast Router that sends MLD queries. On a Layer 2 network that does not have a multicast router, you can configure the snooping switch to act as querier. Use the `ipv6 mld snooping querier` command in the VLAN INTERFACE mode to send the queries.
- OS10 learns the multicast router interface dynamically based on the interface on which MLD membership query is received. To assign a multicast router interface statically, use the `ipv6 mld snooping mrouter interface interface-type` command in VLAN INTERFACE mode.
- (Optional) Configure the MLD version using the `ipv6 mld version version-number` command in the VLAN INTERFACE mode.
- (Optional) The fast leave option allows the MLD snooping switch to remove an interface from the multicast group immediately on receiving the leave message. Enable fast leave with the `ipv6 mld snooping fast-leave` command in VLAN INTERFACE mode.
- (Optional) Configure the time interval for sending MLD general queries with the `ipv6 mld snooping query-interval query-interval-time` command in VLAN INTERFACE mode.
- (Optional) Configure the maximum time for responding to a query advertised in MLD queries using the `ipv6 mld snooping query-max-resp-time query-response-time` command in VLAN INTERFACE mode.
- (Optional) Configure the time interval between group-specific MLD query messages with the `ipv6 mld snooping last-member-query-interval query-interval-time` command in VLAN INTERFACE mode.

MLD snooping configuration

OS10(config)# ipv6 mld snooping enable
OS10(config)# interface vlan 11
OS10(conf-if-vl-11)# ipv6 mld snooping mrouter interface ethernet 1/1/32
OS10(conf-if-vl-11)# ipv6 mld snooping querier
OS10(conf-if-vl-11)# ipv6 mld version 1
OS10(conf-if-vl-11)# ipv6 mld snooping fast-leave
OS10(conf-if-vl-11)# ipv6 mld snooping query-interval 60
OS10(conf-if-vl-11)# ipv6 mld snooping query-max-resp-time 10
OS10(conf-if-vl-11)# ipv6 mld snooping last-member-query-interval 1000

View MLD snooping information

OS10# show ipv6 mld snooping groups
Total Number of Groups: 280
MLD Connected Group Membership
<table>
<thead>
<tr>
<th>Group Address</th>
<th>Interface</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ff02::2</td>
<td>vlan3531</td>
<td>Exclude</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ff0e:225::1</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:1::1</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:1::2</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:1::3</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:1::4</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:1::5</td>
<td>vlan3531</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff02::2</td>
<td>vlan3532</td>
<td>Exclude</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ff0e:225:2::</td>
<td>vlan3532</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:2::1</td>
<td>vlan3532</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
<tr>
<td>ff0e:225:2::2</td>
<td>vlan3532</td>
<td>MLDv1-Compat</td>
</tr>
<tr>
<td>(time expired)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member-ports</td>
<td>port-channel1</td>
<td>ethernet1/1/51,ethernet1/1/52</td>
</tr>
</tbody>
</table>

OS10# show ipv6 mld snooping interface vlan 3031
Vlan3031 is up, line protocol is up
MLD version is 2
MLD snooping is enabled on interface
MLD snooping query interval is 60 seconds
MLD snooping querier timeout is 130 seconds
MLD snooping last member query response interval is 1000 ms
MLD snooping max response time is 10 seconds
MLD snooping fast-leave is disabled on this interface
MLD snooping querier is disabled on this interface

OS10# show ipv6 mld snooping mrouter vlan 11
Interface Router Ports
Vlan 11 ethernet 1/1/32

MLD snooping commands

ipv6 mld snooping

Enables MLD snooping on the specified VLAN interface.

- **Syntax**: `ipv6 mld snooping`
- **Parameters**: None
- **Default**: Depends on the global configuration.
- **Command Mode**: VLAN INTERFACE
Usage Information
When you enable MLD snooping globally, the configuration is applied to all the VLAN interfaces. You can disable the MLD snooping on specified VLAN interfaces. The `no` version of this command disables the MLD snooping on the specified VLAN interface.

Example
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# no ipv6 mld snooping

Supported Releases
10.4.1.0 or later

ipv6 mld snooping enable

Enables MLD snooping globally.

Syntax
ipv6 mld snooping enable

Parameters
None

Default
Disabled

Command Mode
CONFIGURATION

Usage Information
The `no` version of this command disables the MLD snooping.

Example
OS10(config)# ipv6 mld snooping enable

Supported Releases
10.4.1.0 or later

ipv6 mld snooping fast-leave

Enables fast leave in MLD snooping for specified VLAN.

Syntax
ipv6 mld snooping fast-leave

Parameters
None

Default
Disabled

Command Mode
VLAN INTERFACE

Usage Information
The fast leave option allows the MLD snooping switch to remove an interface from the multicast group immediately on receiving the leave message. The `no` version of this command disables the fast leave functionality.

Example
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping fast-leave

Supported Releases
10.4.1.0 or later

ipv6 mld snooping last-member-query-interval

Configures the time interval between group-specific MLD query messages.

Syntax
ipv6 mld snooping last-member-query-interval query-interval-time

Parameters
query-interval-time—Enter the query time interval in milliseconds, ranging from 100 to 65535.

Default
1000 milliseconds
Command Mode	VLAN INTERFACE
Usage Information	The no version of this command resets the last member query interval time to the default value.
Example	OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping last-member-query-interval 2500	
Supported Releases | 10.4.1.0 or later

ipv6 mld snooping mrouter

Configures the specified VLAN member port as a multicast router interface.

Syntax

```
ipv6 mld snooping mrouter interface interface-type
```

Parameters

- `interface-type`: Enter the interface type details. The interface should be a member of the VLAN.

Default

Not configured

Command Mode	VLAN INTERFACE
Usage Information	The no version of this command removes the multicast router configuration from the VLAN member port.
Example	OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping mrouter interface ethernet 1/1/1	
Supported Releases | 10.4.1.0 or later

ipv6 mld snooping querier

Enables MLD querier on the specified VLAN interface.

Syntax

```
ipv6 mld snooping querier
```

Parameters

None

Default

Not configured

Command Mode	VLAN INTERFACE
Usage Information	The no version of this command disables the MLD querier on the VLAN interface.
Example	OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping querier	
Supported Releases | 10.4.1.0 or later

ipv6 mld snooping query-interval

Configures the time interval for sending MLD general queries.

Syntax

```
ipv6 mld snooping query-interval query-interval-time
```

Parameters

- `query-interval-time`: Enter the interval time in seconds, ranging from 2 to 18000.

Default

60 seconds

Command Mode	VLAN INTERFACE
Usage Information | The no version of this command resets the query interval to the default value.
Example

OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping query-interval 120

Supported Releases 10.4.1.0 or later

ipv6 mld query-max-resp-time

Configures the maximum time for responding to a query advertised in MLD queries.

Syntax
ipv6 mld snooping query-max-resp-time query-response-time

Parameters
query-response-time—Enter the query response time in seconds, ranging from 1 to 25.

Default
10 seconds

Command Mode VLAN INTERFACE

Usage Information The no version of this command resets the query response time to default value.

Example
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld snooping query-max-resp-time 15

Supported Releases 10.4.1.0 or later

ipv6 mld version

Configures the MLD version.

Syntax
ipv6 mld version version-number

Parameters
version-number—Enter the version number as 1 or 2.

Default
2

Command Mode VLAN INTERFACE

Usage Information The no version of this command resets the version number to the default value.

Example
OS10(config)# interface vlan 100
OS10(conf-if-vl-100)# ipv6 mld version 1

Supported Releases 10.4.1.0 or later

show ipv6 mld snooping groups

Displays MLD snooping group membership details.

Syntax
show ipv6 mld snooping groups [vlan vlan-id] [ipv6-address]

Parameters
- vlan-id—(Optional) Enter the VLAN ID, from 1 to 4093.
- ipv6-address—(Optional) Enter the IPv6 address of the multicast group.

Default Not configured

Command Mode EXEC

Usage Information None
Example

```bash
OS10# show ipv6 mld snooping groups
Total Number of Groups: 280
MLD Connected Group Membership
Group Address          Interface           Mode          Expires
ff02::2                vlan3531            Exclude       00:01:38
ff0e:225:1::           vlan3531            MLDv1-Compat  00:01:52
Member-ports           port-channel41,ethernet1/1/51,ethernet1/1/52
ff0e:225:1::1           vlan3531            MLDv1-Compat  00:01:52
ff0e:225:1::2           vlan3531            MLDv1-Compat  00:01:52
ff0e:225:1::3           vlan3531            MLDv1-Compat  00:01:52
ff0e:225:1::4           vlan3531            MLDv1-Compat  00:01:52
ff0e:225:1::5           vlan3531            MLDv1-Compat  00:01:52
```

Example (with VLAN)

```bash
OS10# show ipv6 mld snooping groups vlan 3531
Total Number of Groups: 7
MLD Connected Group Membership
Group Address          Interface           Mode          Expires
ff02::2                vlan3531            Exclude       00:02:08
ff0e:225:1::           vlan3531            MLDv1-Compat  00:02:12
Member-ports           port-channel41,ethernet1/1/51,ethernet1/1/52
ff0e:225:1::1           vlan3531            MLDv1-Compat  00:02:12
```

Example (with VLAN and multicast IP address)

```bash
OS10# show ipv6 mld snooping groups vlan 3531 ff0e:225:1::
MLD Connected Group Membership
Group Address          Interface           Mode          Expires
ff0e:225:1::           vlan3531            MLDv1-Compat  00:01:30
Member-ports           port-channel41,ethernet1/1/51,ethernet1/1/52
```

Supported Releases

10.4.0E(0)RI or later
show ipv6 mld snooping groups detail

Displays the MLD source information along with detailed member port information.

Syntax

```
show ipv6 mld snooping groups [vlan vlan-id] [group ipv6-address] detail
```

Parameters

- `vlan-id`—(Optional) Enter the VLAN ID, ranging from 1 to 4093.
- `ipv6-address`—(Optional) Enter the IPv6 address of the multicast group.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show ipv6 mld snooping groups detail
Interface       vlan3041
Group           ff02::2
Source List
--
Member Port         Mode                Uptime              Expires
port-channel31      Exclude             2d:11:57:08         00:01:44

Interface       vlan3041
Group           ff3e:232:b::
Source List
2001:101:29::1b
Member Port         Mode                Uptime              Expires
port-channel31      Include             2d:11:50:17         00:01:42
ethernet1/1/51:1    Include             2d:11:50:36         00:01:38
ethernet1/1/52:1    Include             2d:11:50:36         00:01:25

Interface       vlan3041
Group           ff3e:232:b::1
Source List
2001:101:29::1b
Member Port         Mode                Uptime              Expires
port-channel31      Include             2d:11:50:17         00:01:29
ethernet1/1/51:1    Include             2d:11:50:36         00:01:25
ethernet1/1/52:1    Include             2d:11:50:36         00:01:38

--more--
```

Example (with VLAN)

```
OS10# show ipv6 mld snooping groups vlan 3041 detail
Interface       vlan3041
Group           ff02::2
Source List
--
Member Port         Mode                Uptime              Expires
port-channel31      Exclude             2d:11:57:08         00:01:44

Interface       vlan3041
Group           ff3e:232:b::
Source List
2001:101:29::1b
Member Port         Mode                Uptime              Expires
port-channel31      Include             2d:11:50:17         00:01:42
ethernet1/1/51:1    Include             2d:11:50:36         00:01:38
ethernet1/1/52:1    Include             2d:11:50:36         00:01:25

Interface       vlan3041
Group           ff3e:232:b::1
Source List
2001:101:29::1b
Member Port         Mode                Uptime              Expires
port-channel31      Include             2d:11:50:17         00:01:42
ethernet1/1/51:1    Include             2d:11:50:36         00:01:38
ethernet1/1/52:1    Include             2d:11:50:36         00:01:25

```

Layer 3
<table>
<thead>
<tr>
<th>Member Port</th>
<th>Mode</th>
<th>Uptime</th>
<th>Expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-channel31</td>
<td>Include</td>
<td>2d:11:50:17</td>
<td>00:01:29</td>
</tr>
<tr>
<td>ethernet1/1/51:1</td>
<td>Include</td>
<td>2d:11:50:36</td>
<td>00:01:25</td>
</tr>
<tr>
<td>ethernet1/1/52:1</td>
<td>Include</td>
<td>2d:11:50:36</td>
<td>00:01:38</td>
</tr>
</tbody>
</table>

---more---

Example (with VLAN and multicast IP address)

OS10# show ipv6 mld snooping groups vlan 3041 ff3e:232:b:: detail
Interface vlan3041
Group ff3e:232:b::
Source List
2001:1101:29:1b

Supported Releases
10.4.1.0 or later

show ipv6 mld snooping interface

Displays the details of MLD snooping interfaces.

Syntax
```
show ipv6 mld snooping interface [vlan vlan-id]
```

Parameters
- `vlan-id`—(Optional) Enter the VLAN ID, ranging from 1 to 4093.

Default
Not configured

Command Mode EXEC

Usage Information
None

Example

OS10# show ipv6 mld snooping interface vlan 3031
Vlan3031 is up, line protocol is up
MLD version is 2
MLD snooping is enabled on interface
MLD snooping query interval is 60 seconds
MLD snooping querier timeout is 130 seconds
MLD snooping last member query response interval is 1000 ms
MLD snooping max response time is 10 seconds
MLD snooping fast-leave is disabled on this interface
MLD snooping querier is disabled on this interface

Supported Releases
10.4.1.0 or later

show ipv6 mld snooping mrouter

Displays the details of multicast router ports.

Syntax
```
show ipv6 mld snooping mrouter [vlan vlan-id]
```

Parameters
- `vlan-id`—(Optional) Enter the VLAN ID, ranging from 1 to 4093.

Default
Not configured

Command Mode EXEC

Usage Information
None

Example

OS10# show ipv6 mld snooping mrouter vlan 11
Interface Router Ports
Vlan 11 ethernet 1/1/32

Layer 3 429
Open shortest path first

OSPF routing is a link-state routing protocol that allows sending link-state advertisements (LSAs) to all other routers within the same autonomous system (AS) area. OSPF LSAs include information about attached interfaces, metrics used, and other attributes. OSPF routers accumulate link-state information, and use the shortest path first (SPF) algorithm to calculate the shortest path to each node.

Autonomous system areas

OSPF operates in a hierarchy. The largest entity within the hierarchy is the autonomous system (AS). The AS is a collection of networks under a common administration that share a common routing strategy. OSPF is an intra-AS, Interior Gateway Routing Protocol (IGRP) that receives routes from and sends routes to other AS.

You can divide an AS into several areas, which are groups of contiguous networks and attached hosts administratively grouped. Routers with multiple interfaces can participate in multiple areas. These routers, called area border routers (ABRs), maintain separate databases for each area. Areas are a logical grouping of OSPF routers that an integer or dotted-decimal number identifies.

Areas allow you to further organize routers within the AS with one or more areas within the AS. Areas allow subnetworks to hide within the AS—minimizing the size of the routing tables on all routers. An area within the AS may not see the details of another area’s topology. An area number or the router’s IP address identifies AS areas.

Areas, networks, and neighbors

The backbone of the network is Area 0, also called Area 0.0.0.0, the core of any AS. All other areas must connect to Area 0. An OSPF backbone distributes routing information between areas. It consists of all area border routers and networks not wholly contained in any area and their attached routers.
The backbone is the only area with a default area number. You configure all other areas Area ID. If you configure two nonbackbone areas, you must enable the B bit in OSPF. Routers, A, B, C, G, H, and I are the backbone, see Autonomous system areas.

- A stub area (SA) does not receive external route information, except for the default route. These areas do receive information from interarea (IA) routes.
- A not-so-stubby area (NSSA) can import AS external route information and send it to the backbone as type-7 LSA.
- Totally stubby areas are also known as no summary areas.

Configure all routers within an assigned stub area as stubby and do not generate LSAs that do not apply. For example, a Type 5 LSA is intended for external areas and the stubby area routers may not generate external LSAs. A virtual link cannot traverse stubby areas.

Networks and neighbors

As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them. The Up or Down state of those links is important. Routers that share a link become neighbors on that segment. OSPF uses the hello protocol as a neighbor discovery and keepalive mechanism. After two routers are neighbors, they may proceed to exchange and synchronize their databases, which creates an adjacency.

Router types

Router types are attributes of the OSPF process—multiple OSPF processes may run on the same router. A router connected to more than one area, receiving routing from a BGP process connected to another AS, acts as both an area border router and an autonomous system border router.

Each router has a unique ID, written in decimal A.B.C.D format. You do not have to associate the router ID with a valid IP address. To make troubleshooting easier, ensure the router ID is identical to the router’s IP address.
Backbone router A backbone router (BR) is part of the OSPF Backbone, Area 0, and includes all ABRs. The BR includes routers connected only to the backbone and another ABR, but are only part of Area 0—shown as Router I in the example.

Area border router Within an AS, an area border router (ABR) connects one or more areas to the backbone. The ABR keeps a copy of the link-state database for every area it connects to. It may keep multiple copies of the link state database. An ABR summarizes learned information from one of its attached areas before it is sent to other connected areas. An ABR can connect to many areas in an AS and is considered a member of each area it connects to—shown as Router H in the example.

Autonomous system border router The autonomous system border router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. The ASBR connects to a non-IGP such as BGP or uses static routes—shown as Router N in the example.

Internal router The internal router (IR) has adjacencies with ONLY routers in the same area—shown as Routers E, F, I, K, and M in the example.

Designated and backup designated routers

OSPF elects a designated router (DR) and a backup designated router (BDR). The DR generates LSAs for the entire multiaccess network. Designated routers allow a reduction in network traffic and in the size of the topological database.

Designated router Maintains a complete topology table of the network and sends updates to the other routers via multicast. All routers in an area form a slave/master relationship with the DR. Every time a router sends an update, the router sends it to the DR and BDR. The DR sends the update to all other routers in the area.

Backup designated router Router that takes over if the DR fails.

Each router exchanges information with the DR and BDR. The DR and BDR relay information to other routers. On broadcast network segments, the number of OSPF packets reduces by the DR sending OSPF updates to a multicast IP address that all OSPF routers on the network segment are listening on.

DRs and BDRs are configurable. If you do not define the DR or BDR, OS10 assigns them per the protocol. To determine which routers are the DR and BDR, OSPF looks at the priority of the routers on the segment. The default router priority is 1. The router with the highest priority is elected DR. If there is a tie, the router with the higher router ID takes precedence. After the DR is elected, the BDR is elected the same way. A router with a router priority set to zero cannot become a DR or BDR.

Link-state advertisements

A link-state advertisement (LSA) communicates the router’s routing topology to all other routers in the network.

Type 1—Router LSA Router lists links to other routers or networks in the same area. Type 1 LSAs flood across their own area only. The link-state ID of the Type 1 LSA is the originating router ID.

Type 2—Network LSA DR in an area lists which routers are joined within the area. Type 2 LSAs flood across their own area only. The link-state ID of the Type 2 LSA is the IP interface address of the DR.

Type 3—Summary LSA (OSPFv2), Inter-Area Prefix LSA (OSPFv3) ABR takes information it has learned on one of its attached areas and summarizes it before sending it out on other areas it connects to. The link-state ID of the Type 3 LSA is the destination network's IP address.

Type 4—AS Border Router Summary LSA (OSPFv2), In some cases, Type 5 External LSAs flood to areas where the detailed next-hop information may not be available because it may be using a different routing protocol. The ABR floods the information for the router, the ASBR where the Type 5 originated. The link-state ID for Type 4 LSAs is the router ID of the described ASBR.
Inter-Area-Router LSA (OSPFv3)

Type 5—AS-External LSA

LSAs contain information imported into OSPF from other routing processes. Type 5 LSAs flood to all areas except stub areas. The link-state ID of the Type 5 LSA is the external network number.

Type 7—NSSA-External LSA (OSPFv2), LSA (OSPFv3)

Type 7 LSAs are used in NSSAs to advertise external routes. They are flooded to the rest of the network except for stub areas.

Type 8—Link LSA (OSPFv3)

Type 8 LSA carries the IPv6 address information of the local links.

Type 9—Link-Local Opaque LSA (OSPFv2), Intra-Area Prefix LSA (OSPFv3)

Type 9 LSA carries the IPv6 prefixes of the router and network links.

Type 11—Grace LSA (OSPFv3)

Type 11 LSA is used during a graceful restart by an OSPFv3 router.

The LSA header is common to LSA types. Its size is 20 bytes. One of the fields of the LSA header is the link-state ID. Each router link is defined as one of four types—type 1, 2, 3, or 4. The LSA includes a link ID field that identifies the object this link connects to, by the network number and mask. Depending on the type, the link ID has different meanings.

1. Point-to-point connection to another router or neighboring router
2. Connection to a transit network IP address of the DR
3. Connection to a stub network IP network or subnet number
4. Virtual link neighboring router ID

Router priority

Router priority determines the designated router for the network. The default router priority is 1. When two routers attach to a network, both attempt to become the DR. The router with the higher router priority takes precedence. If there is a tie, the router with the higher router ID takes precedence. A router with a router priority set to zero cannot become the DR or BDR.

If not assigned, the system selects the router with the highest priority as the DR. The second highest priority is the BDR. Priority rates from 0 to 255, with 255 as the highest number with the highest priority.
OSPF route limit

OS10 supports up to 16,000 OSPF routes. Within this range, the only restriction is on intra-area routes that scale only up to 1000 routes. Other OSPF routes can scale up to 16 K.

Shortest path first throttling

Use shortest path first (SPF) throttling to delay SPF calculations during periods of network instability. In an OSPF network, a topology change event triggers an SPF calculation that is performed after a start time. When the start timer finishes, a hold time can delay the next SPF calculation for an additional time.

When the hold timer is running:

- Each time a topology change occurs, the SPF calculation delays for double the configured hold time up to maximum wait time.
- If no topology change occurs, an SPF calculation is performed and the hold timer is reset to its configured value.

Set the start, hold, and wait timers according to the stability of the OSPF network topology. Enter the values in milliseconds (ms). If you do not specify a start-time, hold-time, or max-wait value, the default values are used.

OSPFv2 and OSPFv3 instances support SPF throttling. By default, SPF timers are disabled in an OSPF instance. Enter the no version of this command to remove the configured SPF timers and disable SPF throttling.

1. Configure an OSPF instance from CONFIGURATION mode, from 1 to 65535.
   ```
   router {ospf | ospfv3} instance-number
   ```
2. Set SPF throttling timers in OSPF INSTANCE mode.
   ```
   timers spf [start-time [hold-time [max-wait]]]
   ```
 - **start-time** — Configure the initial delay before performing an SPF calculation after a topology change, from 1 to 600000 milliseconds; default 1000.
 - **hold-time** — Configure the additional delay before performing an SPF calculation when a new topology change occurs, from 1 to 600000 milliseconds; default 10000.
 - **max-wait** — Configure the maximum amount of hold time that can delay an SPF calculation, from 1 to 600000 milliseconds; default 10000.

Enable SPF throttling (OSPFv2)

```sh
OS10(config)# router ospf 100
OS10(config-router-ospf-100)# timers spf 1200 2300 3400
```
Enable SPF throttling (OSPFv3)

```bash
OS10(config)# router ospfv3 10
OS10(config-router-ospf-10)# timers spf 2000 3000 4000
```

View OSPFv2 SPF throttling

```bash
OS10(config-router-ospf-v2-100)# do show ip ospf
Routing Process ospf 100 with ID 12.1.1.1
Supports only single TOS (TOS0) routes
It is Flooding according to RFC 2328
SPF schedule delay 1200 msecs, Hold time between two SPFs 2300 msecs
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 1 stub 0 nssa 0
Area (0.0.0.1)
Number of interface in this area is 1
SPF algorithm executed 1 times
```

View OSPFv3 SPF throttling

```bash
OS10(config-router-ospfv3-100)# timers spf 1345 2324 9234
OS10(config-router-ospfv3-100)# do show ipv6 ospf
Routing Process ospfv3 100 with ID 129.240.244.107
SPF schedule delay 1345 msecs, Hold time between two SPFs 2324 msecs
Min LSA origination 5000 msec, Min LSA arrival 1000 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 1, normal 1 stub 0 nssa
Area (0.0.0.1)
Number of interface in this area is 1
SPF algorithm executed 2 times
```

OSPFv2

OSPFv2 supports IPv4 address families. OSPFv2 routers initially exchange `hello` messages to set up adjacencies with neighbor routers. The `hello` process establishes adjacencies between routers of the AS. It is not required that every router within the AS areas establish adjacencies. If two routers on the same subnet agree to become neighbors through this process, they begin to exchange network topology information in the form of LSAs.

In OSPFv2, neighbors on broadcast and non-broadcast multiple access (NBMA) network links are identified by their interface addresses, while neighbors on other types of links are identified by router-identifiers (RID).

Enable OSPFv2

OSPFv2 is disabled by default. Configure at least one interface as either Physical or Loopback and assign an IP address to the interface. You can assign any area besides area 0 a number ID. The OSPFv2 process starts automatically when you configure it globally and you can enable it for one or more interfaces.

1. Enable OSPF globally and configure an OSPF instance in `CONFIGURATION` mode.
   ```
   router ospf instance-number
   ```

2. Enter the interface information to configure the interface for OSPF in `INTERFACE` mode.
   ```
   interface ethernet node/slot/port[:subport]
   ```

3. Enable the interface in `INTERFACE` mode.
   ```
   no shutdown
   ```

4. Disable the default switchport configuration and remove it from an interface or a LAG port in `INTERFACE` mode.
   ```
   no switchport
   ```
5 Assign an IP address to the interface in INTERFACE mode.
 \texttt{ip address ip-address/mask}

6 Enable OSPFv2 on an interface in INTERFACE mode.
 \texttt{ip ospf process-id area area-id}

 \begin{itemize}
 \item \texttt{process-id}—Enter the OSPFv2 process ID for a specific OSPF process, from 1 to 65535.
 \item \texttt{area-id}—Enter the OSPFv2 area ID as an IP address (A.B.C.D) or number, from 1 to 65535.
 \end{itemize}

Enable OSPFv2 configuration

\begin{verbatim}
OS10(config)# router ospf 100
OS10(config-router-ospf-100)# exit
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/1)# ip ospf 100 area 0.0.0.0
\end{verbatim}

View OSPFv2 configuration

\begin{verbatim}
OS10# show running-configuration ospf
 !
 interface ethernet1/1/1
 ip ospf 100 area 0.0.0.0
 !
 router ospf 100
 ...
\end{verbatim}

Enable OSPFv2 in a non-default VRF instance

To enable OSPFv2 in a non-default VRF instance:

1 Create a non-default VRF instance in which you want to enable OSPFv2:
 \texttt{ip vrf vrf-name}

2 Enable OSPF and configure an OSPF instance in VRF CONFIGURATION mode.
 \texttt{router ospf instance-number vrf vrf-name}

3 Enter the interface information to configure the interface for OSPF in INTERFACE mode.
 \texttt{interface ethernet node/slot/port[:subport]}

4 Enable the interface in INTERFACE mode.
 \texttt{no shutdown}

5 Disable the default switchport configuration and remove it from an interface or a LAG port in INTERFACE mode.
 \texttt{no switchport}

6 Associate the interface with the non-default VRF instance that you created earlier.
 \texttt{ip vrf forwarding vrf-name}

7 Assign an IP address to the interface.
 \texttt{ip address ip-address/mask}

8 Enable OSPFv2 on the interface.
 \texttt{ip ospf process-id area area-id}

 \begin{itemize}
 \item \texttt{process-id}—Enter the OSPFv2 process ID for a specific OSPF process, from 1 to 65535.
 \item \texttt{area-id}—Enter the OSPFv2 area ID as an IP address (A.B.C.D) or number, from 1 to 65535.
 \end{itemize}

Enable OSPFv2 configuration

\begin{verbatim}
OS10(config)# ip vrf vrf-blue
OS10(config-vrf-blue)# router ospf 100 vrf-blue
OS10(config-router-ospf-100)# exit
OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
\end{verbatim}
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# ip vrf forwarding vrf-blue
OS10(conf-if-eth1/1/1)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/1)# ip ospf 100 area 0.0.0.0

Assign router identifier

For managing and troubleshooting purposes, you can assign a router ID for the OSPFv2 process. Use the router’s IP address as the router ID.

- Assign the router ID for the OSPFv2 process in ROUTER-OSPF mode

 \[\text{router-id ip-address}\]

Assign router ID

OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# router-id 10.10.1.5

View OSPFv2 status

OS10# show ip ospf 10
Routing Process ospf 10 with ID 10.10.1.5
Supports only single TOS (TOS0) routes
It is an Autonomous System Boundary Router
It is Flooding according to RFC 2328
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 1 stub 0 nssa 0

 Area (0.0.0.0)

 Number of interface in this area is 3
 SPF algorithm executed 38 times
 Area ranges are

Stub areas

Type 5 LSAs are not flooded into stub areas. The ABR advertises a default route into the stub area where it is attached. Stub area routers use the default route to reach external destinations.

1. Enable OSPF routing and enter ROUTER-OSPF mode, from 1 to 65535.

 \[\text{router ospf instance number}\]

2. Configure an area as a stub area in ROUTER-OSPF mode.

 \[\text{area area-id stub [no-summary]}\]

 - \text{area-id}—Enter the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
 - \text{no-summary}—(Optional) Enter to prevent an ABR from sending summary LSA to the stub area.

Configure stub area

OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# area 10.10.5.1 stub

View stub area configuration

OS10# show ip ospf
Routing Process ospf 10 with ID 130.6.196.14
Supports only single TOS (TOS0) routes
It is Flooding according to RFC 2328
SPF schedule delay 1000 msecs, Hold time between two SPF's 10000 msecs
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 0 stub 1 nssa 0
Area (10.10.5.1)
Number of interface in this area is 0
SPF algorithm executed 1 times
Area ranges are

OS10# show running-configuration ospf
!
router ospf 10
area 10.10.5.1 stub

Passive interfaces

A passive interface does not send or receive routing information. Configuring an interface as a passive interface suppresses both receiving and sending routing updates.

Although the passive interface does not send or receive routing updates, the network on that interface is included in OSPF updates sent through other interfaces.

1. Enter an interface type in INTERFACE mode.

   ```
   interface ethernet node/slot/port[:subport]
   ```

2. Configure the interface as a passive interface in INTERFACE mode.

   ```
   ip ospf passive
   ```

Configure passive interfaces

OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ip ospf passive

View passive interfaces

OS10# show running-configuration
!!!
!!
interface ethernet1/1/6
 ip address 10.10.10.1/24
 no switchport
 no shutdown
 ip ospf 100 area 0.0.0.0
 ip ospf passive
!!
!!

You can disable a passive interface using the `no ip ospf passive` command.

Fast convergence

Fast convergence sets the minimum origination and arrival LSA parameters to zero (0), allowing rapid route calculation. A higher convergence level can result in occasional loss of OSPF adjacency.

Convergence level 1 meets most convergence requirements. The higher the number, the faster the convergence, and the more frequent the route calculations and updates. This impacts CPU utilization and may impact adjacency stability in larger topologies.

NOTE: Select higher convergence levels only after checking with Dell EMC Technical Support.

When you disable fast-convergence, origination and arrival LSA parameters are set to 0 msec and 1000 msec, respectively. Setting the convergence parameter from 1 to 4 indicates the actual convergence level. Each convergence setting adjusts the LSA parameters to zero, but the `convergence-level` parameter changes the convergence speed. The higher the number, the faster the convergence.

- Enable OSPFv2 fast-convergence and enter the convergence level in ROUTER-OSPF mode, from 1 to 4.

  ```
  fast-converge convergence-level
  ```
Configure fast convergence

OS10(config)# router ospf 65535
OS10(conf-router-ospf-65535)# fast-converge 1

View fast convergence

OS10(conf-router-ospf-65535)# do show ip ospf

Supports only single TOS (TOS0) routes
It is an Autonomous System Border Router
It is an Area Border Router
It is Flooding according to RFC 2328
Convergence Level 1
Min LSA origination 0 msec, Min LSA arrival 0 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 3, normal 1 stub 1 nssa 1
 Area BACKBONE (0)
 Number of interface in this area is 1
 SPF algorithm executed 28 times
 Area ranges are

 Area (2)
 Number of interface in this area is 1
 SPF algorithm executed 28 times
 Area ranges are

 Area (3)
 Number of interface in this area is 1
 SPF algorithm executed 28 times
 Area ranges are

Disable fast convergence

OS10(conf-router-ospf-65535)# no fast-converge

Interface parameters

To avoid routing errors, interface parameter values must be consistent across all interfaces. For example, set the same time interval for the hello packets on all routers in the OSPF network to prevent misconfiguration of OSPF neighbors.

1. To change the OSPFv2 parameters in CONFIGURATION mode, enter the interface.
   ```
   interface interface-name
   ```

2. Change the cost associated with OSPF traffic on the interface in INTERFACE mode, from 1 to 65535. The default depends on the interface speed.
   ```
   ip ospf cost
   ```

3. Change the time interval, from 1 to 65535, that the router waits before declaring a neighbor dead in INTERFACE mode. The default time interval is 40. The dead interval must be four times the hello interval and must be the same on all routers in the OSPF network.
   ```
   ip ospf dead-interval seconds
   ```

4. Change the time interval between hello-packet transmission in INTERFACE mode, from 1 to 65535. The default time interval is 10. The hello interval must be the same on all routers in the OSPF network.
   ```
   ip ospf hello-interval seconds
   ```

5. Change the priority of the interface, which determines the DR for the OSPF broadcast network in INTERFACE mode, from 0 to 255. The default priority of the interface is 1.
   ```
   ip ospf priority number
   ```

6. Change the retransmission interval time, in seconds, between LSAs in INTERFACE mode, from 1 to 3600. The default retransmission interval time is 5. The retransmit interval must be the same on all routers in the OSPF network.
   ```
   ip ospf retransmit-interval seconds
   ```
7 Change the wait period between link state update packets sent out the interface in INTERFACE mode, from 1 to 3600. The default wait period is 1. The transmit delay must be the same on all routers in the OSPF network.

```plaintext
ip ospf transmit-delay seconds
```

Change parameters and view interface status

OS10(conf-if-eth1/1/1)# ip ospf hello-interval 5
OS10(conf-if-eth1/1/1)# ip ospf dead-interval 20
OS10(conf-if-eth1/1/1)# ip ospf retransmit-interval 30
OS10(conf-if-eth1/1/1)# ip ospf transmit-delay 200

View OSPF interface configuration

OS10(conf-if-eth1/1/1)# do show ip ospf interface

```
ethernet1/1/1 is up, line protocol is up
Internet Address 11.1.1.1/24, Area 0.0.0.0
Process ID 65535, Router ID 99.99.99.99, Network Type broadcast, Cost: 1
Transmit Delay is 200 sec, State BDR, Priority 1
Designated Router (ID) 150.1.1.1, Interface address 11.1.1.2
Backup Designated router (ID) 99.99.99.99, Interface address 11.1.1.1
Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 30
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 150.1.1.1(Designated Router)
```

Redistribute routes

Add routes from other routing instances or protocols to the OSPFv2 process and include BGP, static, or connected routes in the OSPFv2 process. Do not route IBGP routes to OSPFv2 unless there are route-maps associated with the OSPFv2 redistribution.

- Enter which routes redistribute into the OSPFv2 process in ROUTER-OSPF mode.

```plaintext
redistribute {bgp as-number | connected | static} [route-map map-name]
```

- bgp | connected | static—Enter a keyword to redistribute those routes.
- route-map map-name—Enter the name of a configured route map.

Configure redistribute routes

OS10(conf-router-ospf-10)# redistribute bgp 4 route-map aloha
OS10(conf-router-ospf-10)# redistribute connected route-map aloha
OS10(conf-router-ospf-10)# redistribute static route-map aloha

View OSPF configuration

OS10(conf-router-ospf-10)# do show running-configuration ospf

```
! router ospf 10
 redistribute bgp 4 route-map aloha
 redistribute connected route-map aloha
 redistribute static route-map aloha
! 
```

Default route

You can generate an external default route and distribute the default information to the OSPFv2 routing domain.

- Generate the default route using the default-information originate [always] command in ROUTER-OSPF mode.

Configure default route

OS10(config)# router ospf 10
OS10(config-router-ospf-10)# default-information originate always
View default route configuration

```
OS10(config-router-ospf-10)# show configuration
!
router ospf 10
default-information originate always
```

Summary address

You can configure a summary address for an ASBR to advertise one external route as an aggregate, for all redistributed routes that are covered by specified address range.

- Configure the summary address in ROUTER-OSPF mode.
  ```
  summary-address ip-address/mask [not-advertise | tag tag-value]
  ```

Configure summary address

```
OS10(config)# router ospf 100
OS10(config-router-ospf-100)# summary-address 10.0.0.0/8 not-advertise
```

View summary address

```
OS10(config-router-ospf-100)# show configuration
!
router ospf 100
summary-address 10.0.0.0/8 not-advertise
```

Graceful restart

When a networking device restarts, the adjacent neighbors and peers detect the condition. During a graceful restart, the restarting device and neighbors continue to forward the packets without interrupting network performance. The neighbors that help in the restart process are called helper routers.

When you enable graceful restart, the restarting device retains the routes learned by OSPF in the forwarding table. To re-establish OSPF adjacencies with neighbors, the restart OSPF process sends a grace LSA to all neighbors. In response, the helper router enters Helper mode and sends an acknowledgement back to the restarting device.

OS10 supports graceful restart Helper mode. Use the `graceful-restart role helper-only` command to enable Helper mode in ROUTER OSPF mode.

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# graceful-restart role helper-only
```

Use the `no` version of the command to disable Helper mode.

OSPFv2 authentication

You can enable OSPF authentication either with clear text or MD5.

- Set a clear text authentication scheme on the interface in INTERFACE mode.
  ```
  ip ospf authentication-key key
  ```
- Set MD5 authentication in INTERFACE mode.
  ```
  ip ospf message-digest-key keyid md5 key
  ```

Configure text authentication

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip ospf authentication-key sample
```
View text authentication

```
OS10(conf-if-eth1/1/1)# show configuration
!
interface ethernet1/1/1
  ip address 10.10.10.2/24
  no switchport
  no shutdown
  ip ospf 100 area 0.0.0.0
  ip ospf authentication-key sample
```

Configure MD5 authentication

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip ospf message-digest-key 2 md5 sample12345
```

View MD5 authentication

```
OS10(conf-if-eth1/1/1)# show configuration
!
interface ethernet1/1/1
  ip address 10.10.10.2/24
  no switchport
  no shutdown
  ip ospf 100 area 0.0.0.0
  ip ospf message-digest-key 2 md5 sample12345
```

Troubleshoot OSPFv2

You can troubleshoot OSPFv2 operations, and check questions for typical issues that interrupt a process.

- Is OSPF enabled globally?
- Is OSPF enabled on the interface?
- Are adjacencies established correctly?
- Are the interfaces configured for L3 correctly?
- Is the router in the correct area type?
- Are the OSPF routes included in the OSPF database?
- Are the OSPF routes included in the routing table in addition to the OSPF database?
- Are you able to ping the IPv4 address of adjacent router interface?

Troubleshooting OSPF with show commands

- View a summary of all OSPF process IDs enabled in EXEC mode.
  ```
  show running-configuration ospf
  ```
- View summary information of IP routes in EXEC mode.
  ```
  show ip route summary
  ```
- View summary information for the OSPF database in EXEC mode.
  ```
  show ip ospf database
  ```
- View the configuration of OSPF neighbors connected to the local router in EXEC mode.
  ```
  show ip ospf neighbor
  ```
- View routes that OSPF calculates in EXEC mode.
  ```
  show ip ospf routes
  ```

View OSPF configuration

```
OS10# show running-configuration ospf
!
interface ethernet1/1/1
  ip ospf 100 area 0.0.0.0
!```
**OSPFv2 commands**

### area default-cost
Sets the metric for the summary default route generated by the ABR and sends it to the stub area.

**Syntax**
```
area area-id default-cost cost
```

**Parameters**

- `area-id` — Enter the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
- `cost` — Enter a cost for the stub area's advertised external route metric, from 0 to 65535.

**Default**
Cost is 1

**Command Mode**
ROUTER-OSPF

**Usage Information**
The cost is also referred as `reference-bandwidth` or `bandwidth`. Use the `area default-cost` command on the border routers at the edge of a stub area. The `no` version of this command resets the value to the default.

**Example**
```
OS10(conf-router-ospf-10)# area 10.10.1.5 default-cost 10
```

**Supported Releases**
10.2.0E or later

### area nssa
Defines an area as a NSSA.

**Syntax**
```
area area-id nssa [default-information-originate | no-redistribution | no-summary]
```

**Parameters**

- `area-id` — Enter the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
- `no-redistribution` — (Optional) Prevents the redistribute command from distributing routes into the NSSA. Use `no-redistribution` command only in an NSSA ABR.
- `no-summary` — (Optional) Ensures that no summary LSAs are sent to the NSSA.

**Default**
Not configured

**Command Mode**
ROUTER-OSPF

**Usage Information**
The `no` version of this command deletes an NSSA.

**Example**
```
OS10(conf-router-ospf-10)# area 10.10.1.5 nssa
```

**Supported Releases**
10.2.0E or later

### area range
Summarizes routes matching an address/mask at an area in ABRs.

**Syntax**
```
area area-id range ip-address [no-advertise]
```

**Parameters**

- `area-id` — Set the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
- **ip-address** — (Optional) Enter an IP address/mask in dotted decimal format.
- **no-advertise** — (Optional) Set the status to Do Not Advertise. The Type 3 summary-LSA is suppressed and the component networks remain hidden from other areas.

**Default**
Not configured

**Command Mode**
ROUTER-OSPF

**Usage Information**
The no version of this command disables the route summarizations.

**Example**
```
OS10(conf-router-ospf-10)# area 0 range 10.1.1.4/8 no-advertise
```

**Supported Releases**
10.2.0E or later

---

**area stub**
Defines an area as the OSPF stub area.

**Syntax**
```
area area-id stub [no-summary]
```

**Parameters**
- **area-id**—Set the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
- **no-summary**—(Optional) Prevents an ABR from sending summary LAs into the stub area.

**Default**
Not configured

**Command Mode**
ROUTER-OSPF

**Usage Information**
The no version of this command deletes a stub area.

**Example**
```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# area 10.10.1.5 stub
```

**Supported Releases**
10.2.0E or later

---

**auto-cost reference-bandwidth**
Calculates default metrics for the interface based on the configured auto-cost reference bandwidth value.

**Syntax**
```
auto-cost reference-bandwidth value
```

**Parameters**
- **value**—Enter the reference bandwidth value to calculate the OSPF interface cost in megabits per second, from 1 to 4294967.

**Default**
100000

**Command Mode**
ROUTER-OSPF

**Usage Information**
The value set by the ip ospf cost command in INTERFACE mode overrides the cost resulting from the auto-cost command. The no version of this command resets the value to the default.

**Example**
```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# auto-cost reference-bandwidth 150
```

**Supported Releases**
10.2.0E or later
clear ip ospf process

Clears all OSPF routing tables.

Syntax

```
clear ip ospf {instance-number} [vrf vrf-name] process
```

Parameters

- `instance-number` — Enter an OSPF instance number, from 1 to 65535.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to reset the OSPF process configured in that VRF.

Default
Not configured

Command Mode
EXEC

Usage Information
This command clears all entries in the OSPF routing table.

Example
```
OS10# clear ip ospf 3 vrf vrf-test process
```

Supported Releases
10.2.0E or later

clear ip ospf statistics

Clears OSPF traffic statistics.

Syntax

```
clear ip ospf [instance-number] [vrf vrf-name] statistics
```

Parameters

- `instance-number` — (Optional) Enter an OSPF instance number, from 1 to 65535.
- `vrf vrf-name` — (Optional) Enter the keyword `vrf` followed by the name of the VRF to clear OSPF traffic statistics in that configured VRF.

Default
Not configured

Command Mode
EXEC

Usage Information
This command clears the OSPF traffic statistics in a specified instance or in all the configured OSPF instances, and resets them to zero.

Example
```
OS10# clear ip ospf 10 vrf vrf-test statistics
```

Supported Releases
10.4.0E(R1) or later

default-information originate

Generates and distributes a default external route information to the OSPF routing domain.

Syntax

```
default-information originate [always]
```

Parameters

- `always` — (Optional) Always advertise the default route.

Defaults
Disabled

Command Mode
ROUTER-OSPF

Usage Information
The no version of this command disables the distribution of default route.

Example
```
OS10(config)# router ospf 10
OS10(config-router-ospf-10)# default-information originate always
```
**default-metric**

Assigns a metric value to redistributed routes for the OSPF process.

**Syntax**

```
default-metric number
```

**Parameters**

- `number` — Enter a default-metric value, from 1 to 16777214.

**Default**

Not configured

**Command Mode**

ROUTER-OSPF

**Usage Information**

The `no` version of this command disables the default-metric configuration.

**Example**

```
OS10(config)# default-metric 2000
```

**Supported Releases**

10.3.0E or later

---

**fast-converge**

Sets the minimum LSA origination and arrival times to zero (0) allowing more rapid route computation so convergence takes less time.

**Syntax**

```
fast-converge convergence-level
```

**Parameters**

- `convergence-level` — Enter a desired convergence level value, from 1 to 4.

**Default**

Not configured

**Command Mode**

ROUTER-OSPF

**Usage Information**

Convergence level 1 (optimal) meets most convergence requirements.

**NOTE:** Only select higher convergence levels following consultation with Dell EMC Technical Support.

The `no` version of this command disables the fast-convergence configuration.

**Example**

```
OS10(config)# fast-converge 3
```

**Supported Releases**

10.2.0E or later

---

**graceful-restart**

Enables Helper mode during a graceful or hitless restart.

**Syntax**

```
graceful-restart role helper-only
```

**Parameters**

None

**Defaults**

Disabled

**Command Mode**

ROUTER-OSPF

**Usage Information**

The `no` version of this command disables Helper mode.

**Example**

```
OS10(config)# router ospf 10
OS10(config-router)# graceful-restart role helper-only
```

**Supported Releases**

10.3.0E or later
ip ospf area
Attaches an interface to an OSPF area.

Syntax
```
ip ospf process-id area area-id
```

Parameters
- `process-id` — Set an OSPF process ID for a specific OSPF process, from 1 to 65535.
- `area area-id` — Enter the OSPF area ID in dotted decimal A.B.C.D format or enter an area ID number, from 1 to 65535.

Default
Not configured

Command Mode
INTERFACE

Usage Information
The `no` version of this command removes an interface from an OSPF area.

Example
```
OS10(conf-if-vl-10)# ip ospf 10 area 5
```

Supported Releases
10.2.0E or later

ip ospf authentication-key
Configures a text authentication key to enable OSPF traffic on an interface.

Syntax
```
ip ospf authentication-key key
```

Parameters
- `key` — Enter an eight-character string for the authentication key.

Defaults
Not configured

Command Mode
INTERFACE

Usage Information
To exchange OSPF information, all neighboring routers in the same network must use the same authentication key. The `no` version of this command deletes the authentication key.

Example
```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip ospf authentication-key sample
```

Supported Releases
10.3.0E or later

ip ospf cost
Changes the cost associated with the OSPF traffic on an interface.

Syntax
```
ip ospf cost cost
```

Parameters
- `cost` — Enter a value as the OSPF cost for the interface, from 1 to 65335.

Default
Based on bandwidth reference

Command Mode
INTERFACE

Usage Information
If not configured, interface cost is based on the `auto-cost` command. This command configures OSPF over multiple vendors to ensure that all routers use the same cost. If you manually configure the cost, the calculated cost based on the reference bandwidth does not apply to the interface. The `no` version of this command removes the IP OSPF cost configuration.

Example
```
OS10(config)# interface vlan 10
OS10(conf-if-vl-1)# ip ospf cost 10
```
**Supported Releases**
10.2.0E or later

**ip ospf dead-interval**

Sets the time interval since the last hello-packet was received from a router. After the interval elapses, the neighboring routers declare the router dead.

**Syntax**

```
ip ospf dead-interval seconds
```

**Parameters**

- `seconds` — Enter the dead interval value in seconds, from 1 to 65535.

**Default**

40 seconds

**Command Mode**

INTERFACE

**Usage Information**

The dead interval is four times the default hello-interval by default. The `no` version of this command resets the value to the default.

**Example**

OS10(conf-if-vl-10)# ip ospf dead-interval 10

**Supported Releases**
10.2.0E or later

**ip ospf hello-interval**

Sets the time interval between the hello packets sent on the interface.

**Syntax**

```
ip ospf hello-interval seconds
```

**Parameters**

- `seconds` — Enter the hello-interval value in seconds, from 1 to 65535.

**Default**

10 seconds

**Command Mode**

INTERFACE

**Usage Information**

All routers in a network must have the same hello time interval between the hello packets. The `no` version of this command resets the value to the default.

**Example**

OS10(conf-if-vl-10)# ip ospf hello-interval 30

**Supported Releases**
10.2.0E or later

**ip ospf message-digest-key**

Enables OSPF MD5 authentication and sends an OSPF message digest key on the interface.

**Syntax**

```
ip ospf message-digest-key keyid md5 key
```

**Parameters**

- `keyid` — Enter an MD5 key ID for the interface, from 1 to 255.
- `key` — Enter a character string as the password. A maximum of 16 characters.

**Defaults**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

All neighboring routers in the same network must use the same key value to exchange OSPF information. The `no` version of this command deletes the authentication key.

**Example**

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip ospf message-digest-key 2 md5 sample12345
### ip ospf mtu-ignore

Enables OSPF MTU mismatch detection on receipt of DBD packets.

**Syntax**

```
ip ospf mtu-ignore
```

**Parameters**

- None

**Default**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

When neighbors exchange DBD packets, the OSPF process checks if the neighbors are using the same MTU on a common interface. If the receiving MTU in the DBD packet is higher than the IP MTU configured on the incoming interface, OSPF adjacency does not establish. The `no` version of this command disables the IP OSPF mtu-ignore configuration.

**Example**

```
OS10(conf-if-vl-10)# ip ospf mtu-ignore
```

### ip ospf network

Sets the network type for the interface.

**Syntax**

```
ip ospf network {point-to-point | broadcast}
```

**Parameters**

- **point-to-point** — Sets the interface as part of a point-to-point network.
- **broadcast** — Sets the interface as part of a broadcast network.

**Default**

Broadcast

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(conf-if-eth1/1/1)# ip ospf network broadcast
```

### ip ospf passive

Configures an interface as a passive interface and suppresses both receiving and sending routing updates to the passive interface.

**Syntax**

```
ip ospf passive
```

**Parameters**

- None

**Default**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

You must configure the interface before setting the interface to Passive mode. The `no` version of the this command disables the passive interface configuration.

**Example**

```
OS10(conf-if-eth1/1/6)# ip ospf passive
```

### Supported Releases

- **ip ospf mtu-ignore**
  - 10.3.0E or later
- **ip ospf network**
  - 10.2.0E or later
- **ip ospf passive**
  - 10.2.0E or later
**ip ospf priority**

Sets the priority of the interface to determine the DR for the OSPF network.

**Syntax**

```
ip ospf priority number
```

**Parameters**

`number` — Enter a router priority number, from 0 to 255.

**Default**

1

**Command Mode**

INTERFACE

**Usage Information**

When two routers attached to a network attempt to become the DR, the one with the higher router priority takes precedence. The `no` version of this command resets the value to the default.

**Example**

```
OS10(conf-if-eth1/1/6)# ip ospf priority 4
```

**Supported Releases**

10.2.0E or later

---

**ip ospf retransmit-interval**

Sets the retransmission time between lost LSAs for adjacencies belonging to the interface.

**Syntax**

```
ip ospf retransmit-interval seconds
```

**Parameters**

`seconds` — Enter a value in seconds as the interval between retransmission, from 1 to 3600.

**Default**

5 seconds

**Command Mode**

INTERFACE

**Usage Information**

Set the time interval to a number large enough to avoid unnecessary retransmission. The `no` version of this command resets the value to the default.

**Example**

```
OS10(conf-if-eth1/1/6)# ip ospf retransmit-interval 20
```

**Supported Releases**

10.2.0E or later

---

**ip ospf transmit-delay**

Sets the estimated time required to send a link state update packet on the interface.

**Syntax**

```
ip ospf transmit-delay seconds
```

**Parameters**

`seconds` — Set the time in seconds required to send a link-state update, from 1 to 3600.

**Default**

1 second

**Command Mode**

INTERFACE

**Usage Information**

When you set the `ip ospf transmit-delay` value, take into account the transmission and propagation delays for the interface. The `no` version of this command resets the value to the default.

**Example**

```
OS10(conf-if-eth1/1/4)# ip ospf transmit-delay 5
```

**Supported Releases**

10.2.0E or later
**log-adjacency-changes**

Enables logging of syslog messages regarding changes in the OSPF adjacency state.

**Syntax**

```
log-adjacency-changes
```

**Parameters**

None

**Default**

Disabled

**Command Mode**

ROUTER-OSPF

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# log-adjacency-changes
```

**Supported Releases**

10.2.0E or later

---

**max-metric router-lsa**

Configures OSPF to advertise a maximum metric on a router so that it is not desired as an intermediate hop from other routers.

**Syntax**

```
max-metric router-lsa
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

ROUTER-OSPF

**Usage Information**

Routers in the network do not prefer other routers as the next intermediate hop after they calculate the shortest path. The `no` version of this command disables the maximum metric advertisement configuration.

**Example**

```
OS10(conf-router-ospf-10)# max-metric router-lsa
```

**Supported Releases**

10.2.0E or later

---

**maximum-paths**

Enables forwarding of packets over multiple paths.

**Syntax**

```
maximum-paths number
```

**Parameters**

`number` — Enter the number of paths for OSPF, from 1 to 128.

**Default**

64

**Command Mode**

ROUTER-OSPF

**Usage Information**

The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# maximum-paths 1
```

**Supported Releases**

10.2.0E or later
**redistribute**

Redistributes information from another routing protocol or routing instance to the OSPFv2 process.

**Syntax**

```
redistribute {bgp as-number | connected | static} [route-map map-name]
```

**Parameters**

- `as-number` — Enter an autonomous number to redistribute BGP routing information throughout the OSPF instance, from 1 to 4294967295.
- `connected` — Enter the information from the connected active routes on interfaces to redistribute.
- `static` — Enter the information from static routes on interfaces to redistribute.
- `route-map name` — Enter the name of a configured route-map.

**Defaults**
Not configured

**Command Mode**
ROUTER-OSPF

**Usage Information**
When an OSPF redistributes, the process does not completely remove from the BGP configuration. The `no` version of this command disables the redistribute configuration.

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# redistribute bgp 4 route-map dell1
```

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# redistribute connected route-map dell2
```

**Supported Releases**
10.2.0E or later

**router-id**

Configures a fixed router ID for the OSPF process.

**Syntax**

```
router-id ip-address
```

**Parameters**

- `ip-address` — Enter the IP address of the router as the router ID.

**Default**
Not configured

**Command Mode**
ROUTER-OSPF

**Usage Information**
Configure an arbitrary value in the IP address format for each router. Each router ID must be unique. Use the fixed router ID for the active OSPF router process. Changing the router ID brings down the existing OSPF adjacency. The new router ID becomes effective immediately. The `no` version of this command disables the router ID configuration.

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# router-id 10.10.1.5
```

**Supported Releases**
10.2.0E or later

**router ospf**

Enters Router OSPF mode and configures an OSPF instance.

**Syntax**

```
router ospf instance-number [vrf vrf-name]
```

**Parameters**

- `instance-number` — Enter a router OSPF instance number, from 1 to 65535.
• `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an OSPF instance in that VRF.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
Assign an IP address to an interface before using this command. The `no` version of this command deletes an OSPF instance.

**Example**
```
OS10(config)# router ospf 10 vrf vrf-test
```

**Supported Releases**
10.2.0E or later

**show ip ospf**
Displays OSPF instance configuration information.

**Syntax**
```
show ip ospf [instance-number] [vrf vrf-name]
```

**Parameters**
- `instance-number` — View OSPF information for a specified instance number from 1 to 65535.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to display OSPF configuration information corresponding to that VRF.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
None

**Example**
```
OS10# show ip ospf 10
Routing Process ospf 10 with ID 111.2.1.1
Supports only single TOS (TOS0) routes
It is an Autonomous System Boundary Router
It is Flooding according to RFC 2328
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 1 stub 0 nssa 0
 Area (0.0.0.0)
 Number of interface in this area is 3
 SPF algorithm executed 38 times
 Area ranges are
```

**Supported Releases**
10.2.0E or later

**show ip ospf asbr**
Displays all the ASBR visible to OSPF.

**Syntax**
```
show ip ospf [process-id] [vrf vrf-name] asbr
```

**Parameters**
- `process-id` — (Optional) Displays information based on the process ID.
- `vrf vrf-name` — (Optional) Displays the ASBR router visible to the OSPF process configured in the specified VRF.

**Default**
Not configured

**Command Mode**
EXEC
Usage Information
You can isolate problems with external routes. External OSPF routes are calculated by adding the LSA cost to the cost of reaching the ASBR router. If an external route does not have the correct cost, this command determines if the path to the originating router is correct. ASBRs that are not in directly connected areas display. You can determine if an ASBR is in a directly connected area by the flags. For ASBRs in a directly connected area, E flags are set.

Example
OS10# show ip ospf 10 asbr

<table>
<thead>
<tr>
<th>RouterID</th>
<th>Flags</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.2.1.1</td>
<td>E/-/-/</td>
<td>1</td>
<td>110.1.1.2</td>
<td>vlan3050</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>111.2.1.1</td>
<td>E/-/-/</td>
<td>0</td>
<td>0.0.0.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Supported Releases
10.2.0E or later

show ip ospf database

Displays all LSA information. You must enable OSPF to generate output.

Syntax
show ip ospf [process-id] [vrf vrf-name] database

Parameters
- process-id — (Optional) View LSA information for a specific OSPF process ID. If you do not enter a process ID, the command applies to all the configured OSPF processes.
- vrf vrf-name — (Optional) Enter the keyword vrf followed by the name of the VRF to display LSA information for the OSPF process corresponding to that VRF.

Default
Not configured

Command Mode
EXEC

Usage Information
- Link ID — Identifies the router ID.
- ADV Router — Identifies the advertising router's ID.
- Age — Displays the LS age.
- Seq# — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- Checksum — Displays the Fletcher checksum of an LSA's complete contents.
- Link count — Displays the number of interfaces for that router.

Example
OS10# show ip ospf 10 database
OSPF Router with ID (111.2.1.1) (Process ID 10)

Router (Area 0.0.0.0)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Checksum</th>
<th>Link count</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.2.1.1</td>
<td>111.2.1.1</td>
<td>1281</td>
<td>0x8000000d</td>
<td>0x9bf2</td>
<td>3</td>
</tr>
<tr>
<td>111.111.111.1</td>
<td>111.111.111.1</td>
<td>1430</td>
<td>0x8000021a</td>
<td>0x515a</td>
<td>1</td>
</tr>
<tr>
<td>111.111.111.2</td>
<td>111.111.111.2</td>
<td>1430</td>
<td>0x8000021a</td>
<td>0x5552</td>
<td>1</td>
</tr>
<tr>
<td>112.2.1.1</td>
<td>112.2.1.1</td>
<td>1282</td>
<td>0x8000000b</td>
<td>0x0485</td>
<td>3</td>
</tr>
<tr>
<td>112.112.112.1</td>
<td>112.112.112.1</td>
<td>1305</td>
<td>0x80000250</td>
<td>0xbab2</td>
<td>1</td>
</tr>
<tr>
<td>112.112.112.2</td>
<td>112.112.112.2</td>
<td>1305</td>
<td>0x80000250</td>
<td>0xbeaa</td>
<td>1</td>
</tr>
</tbody>
</table>

Network (Area 0.0.0.0)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.1.1.2</td>
<td>112.2.1.1</td>
<td>1287</td>
<td>0x80000008</td>
<td>0xd2b1</td>
</tr>
<tr>
<td>111.111.111.1</td>
<td>111.2.1.1</td>
<td>1458</td>
<td>0x80000008</td>
<td>0x1b8f</td>
</tr>
<tr>
<td>111.2.1.1</td>
<td>111.2.1.1</td>
<td>1458</td>
<td>0x80000008</td>
<td>0x198f</td>
</tr>
<tr>
<td>112.1.1.1</td>
<td>112.2.1.1</td>
<td>1372</td>
<td>0x80000008</td>
<td>0x287c</td>
</tr>
<tr>
<td>112.2.1.1</td>
<td>112.2.1.1</td>
<td>1372</td>
<td>0x80000008</td>
<td>0x267c</td>
</tr>
</tbody>
</table>
show ip ospf database asbr-summary

Displays information about AS boundary LSAs.

**Syntax**

```
show ip ospf [process-id] database asbr-summary
```

**Parameters**

- `process-id` — (Optional) Displays the AS boundary LSA information for a specified OSPF process ID. If you do not enter a process ID, this applies only to the first OSPF process.
- `vrf vrf-name` — (Optional) Displays the AS boundary LSA information for a OSPF process ID corresponding to the specified VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

- **LS Age**—Displays the LS age.
- **Options**—Displays optional capabilities.
- **LS Type**—Displays the LS type.
- **Link State ID**—Identifies the router ID.
- **Advertising Router**—Identifies the advertising router’s ID.
- **LS Seq Number**—Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum**—Displays the Fletcher checksum of an LSA’s complete contents.
- **Length**—Displays the LSA length in bytes.
- **Network Mask**—Identifies the network mask implemented on the area.
- **TOS**—Displays the ToS options. The only option available is zero.
- **Metric**—Displays the LSA metric.

**Example**

```
OS10# show ip ospf 10 database asbr-summary

OSPF Router with ID (1.1.1.1) (Process ID 100)
 Summary Asbr (Area 0.0.0.1)
 LS age: 32
 Options: (No TOS-Capability, No DC)
 LS type: Summary Asbr
 Link State ID: 8.1.1.1
 Advertising Router: 2.2.2.2
 LS Seq Number: 0x80000001
 Checksum: 0xB595
 Length: 28
 Network Mask: /0
 TOS: 0 Metric: 0
```

**Supported Releases**

10.2.0E or later

show ip ospf database external

Displays information about the AS external Type 5 LSAs.

**Syntax**

```
show ip ospf [process-id] [vrf vrf-name] database external
```
Parameters

- **process-id** — (Optional) Displays AS external Type 5 LSA information for a specified OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- **vrf vrf-name** — (Optional) Displays AS external (Type 5) LSA information for a specified OSPF Process ID corresponding to a VRF.

Default

Not configured

Command Mode

EXEC

Usage Information

- **LS Age** — Displays the LS age.
- **Options** — Displays the optional capabilities available on the router.
- **LS Type** — Displays the LS type.
- **Link State ID** — Identifies the router ID.
- **Advertising Router** — Identifies the advertising router’s ID.
- **LS Seq Number** — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum** — Displays the Fletcher checksum of an LSA’s complete contents.
- **Length** — Displays the LSA length in bytes.
- **Network Mask** — Identifies the network mask implemented on the area.
- **TOS** — Displays the ToS options. The only option available is zero.
- **Metric** — Displays the LSA metric.

Example

```
OS10# show ip ospf 10 database external

OSPF Router with ID (111.2.1.1) (Process ID 10)

Type-5 AS External

LS age: 1424
Options: (No TOS-capability, No DC, E)
LS type: Type-5 AS External
Link State ID: 110.1.1.0
Advertising Router: 111.2.1.1
LS Seq Number: 0x80000009
Checksum: 0xc69a
Length: 36
Network Mask: /24
 Metric Type: 2
 TOS: 0
 Metric: 20
 Forward Address: 110.1.1.1
 External Route Tag: 0
```

Supported Releases

10.2.0E or later

**show ip ospf database network**

Displays information about network Type 2 LSA information.

Syntax

```
show ip ospf [process-id] [vrf vrf-name] database network
```

Parameters

- **process-id** — (Optional) Displays network Type2 LSA information for a specified OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- **vrf vrf-name** — (Optional) Displays network Type2 LSA information for a specified OSPF process ID corresponding to a VRF.
Default Not configured

Command Mode EXEC

Usage Information

- LS Age—Displays the LS age.
- Options—Displays optional capabilities.
- LS Type—Displays the LS type.
- Link State ID—Identifies the router ID.
- Advertising Router—Identifies the advertising router’s ID.
- LS Seq Number—Identifies the LS sequence number. This identifies old or duplicate LSAs.
- Checksum—Displays the Fletcher checksum of an LSA’s complete contents.
- Length—Displays the LSA length in bytes.
- Network Mask—Identifies the network mask implemented on the area.
- TOS—Displays the ToS options. The only option available is zero.
- Metric—Displays the LSA metric.

Example

OS10# show ip ospf 10 database network
OSPF Router with ID (111.2.1.1) (Process ID 10)

Network (Area 0.0.0.0)

LS age: 1356
Options: (No TOS-capability, No DC, E)
LS type: Network
Link State ID: 110.1.1.2
Advertising Router: 112.2.1.1
LS Seq Number: 0x80000008
Checksum: 0xd2b1
Length: 32
Network Mask: /24
  Attached Router: 111.2.1.1
  Attached Router: 112.2.1.1

Supported Releases 10.2.0E or later

show ip ospf database nssa external

Displays information about the NSSA-External Type 7 LSA.

Syntax show ip ospf [process-id] [vrf vrf-name] database nssa external

Parameters

- process-id — (Optional) Displays NSSA-External Type7 LSA information for a specified OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- vrf vrf-name — (Optional) Displays NSSA-External Type7 LSA information for a specified OSPF process ID corresponding to a VRF.

Default Not configured

Command Mode EXEC

Usage Information

- LS Age—Displays the LS age.
- Options—Displays the optional capabilities available on the router.
- LS Type—Displays the LS type.
- Link State ID—Identifies the router ID.
- Advertising Router — Identifies the advertising router’s ID.
- LS Seq Number — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- Checksum — Displays the Fletcher checksum of an LSA’s complete contents.
- Length — Displays the LSA length in bytes.
- Network Mask — Identifies the network mask implemented on the area.
- TOS — Displays the ToS options. The only option available is zero.
- Metric — Displays the LSA metric.

**Example**

```
OS10# show ip ospf database nssa external

OSPF Router with ID (2.2.2.2) (Process ID 100)
Nssa External (Area 0.0.0.1)

LS age: 98
Options: (No TOS-Capability, No DC, No Type 7/5 translation)
LS type: NSSA External
Link State ID: 0.0.0.0
Advertising Router: 1.1.1.1
LS Seq Number: 0x80000001
Checksum: 0x430C
Length: 36
Network Mask: /0
 Metric Type: 1
 TOS: 0
 Metric: 16777215
 Forward Address: 0.0.0.0
 External Route Tag: 0

LS age: 70
Options: (No TOS-Capability, No DC, No Type 7/5 translation)
LS type: NSSA External
Link State ID: 0.0.0.0
Advertising Router: 2.2.2.2
LS Seq Number: 0x80000001
Checksum: 0x2526
Length: 36
Network Mask: /0
 Metric Type: 1
 TOS: 0
 Metric: 0
 Forward Address: 0.0.0.0
 External Route Tag: 0

LS age: 65
Options: (No TOS-Capability, No DC, No Type 7/5 translation)
LS type: NSSA External
Link State ID: 12.1.1.0
Advertising Router: 2.2.2.2
LS Seq Number: 0x80000001
Checksum: 0xBDEA
Length: 36
Network Mask: /24
 Metric Type: 2
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0

LS age: 65
Options: (No TOS-Capability, No DC, No Type 7/5 translation)
LS type: NSSA External
Link State ID: 13.1.1.0
Advertising Router: 2.2.2.2
LS Seq Number: 0x80000001
```
Supported Releases 10.2.0E or later

**show ip ospf database opaque-area**

Displays information about the opaque-area Type 10 LSA.

**Syntax**

```
show ip ospf [process-id] [vrf vrf-name] database opaque-area
```

**Parameters**

- `process-id` — (Optional) Displays the opaque-area Type 10 information for an OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- `vrf vrf-name` — (Optional) Displays the opaque-area Type 10 information for an OSPF process ID corresponding to a VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

- **LS Age** — Displays the LS age.
- **Options** — Displays the optional capabilities available on the router.
- **LS Type** — Displays the LS type.
- **Link State ID** — Identifies the router ID.
- **Advertising Router** — Identifies the advertising router’s ID.
- **LS Seq Number** — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum** — Displays the Fletcher checksum of an LSA’s complete contents.
- **Length** — Displays the LSA length in bytes.
- **Opaque Type** — Identifies the Opaque type field, the first 8 bits of the LS ID.
- **Opaque ID** — Identifies the Opaque type-specific ID, the remaining 24 bits of the LS ID.

**Example**

```
OS10# show ip ospf database opaque-area
 OSPF Router with ID (1.1.1.1) (Process ID 100)
 Type-10 Area Local Opaque (Area 0.0.0.0)
 LS age: 3600
 Options: (No TOS-Capability, No DC)
```
**Supported Releases**

10.2.0E or later

### show ip ospf database opaque-as

Displays information about the opaque-as Type 11 LSAs.

**Syntax**

```plaintext
show ip ospf [process-id] opaque-as
```

**Parameters**

- `process-id` — (Optional) Displays opaque-as Type 11 LSA information for a specified OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

- **LS Age** — Displays the LS age.
- **Options** — Displays the optional capabilities available on the router.
- **LS Type** — Displays the LS type.
- **Link State ID** — Identifies the router ID.
- **Advertising Router** — Identifies the advertising router’s ID.
- **LS Seq Number** — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum** — Displays the Fletcher checksum of an LSA’s complete contents.
- **Length** — Displays the LSA length in bytes.
- **Opaque Type** — Identifies the Opaque type field, the first 8 bits of the LS ID.
- **Opaque ID** — Identifies the Opaque type-specific ID, the remaining 24 bits of the LS ID.

**Example**

```
OS10# show ip ospf 100 database opaque-as

OSPF Router with ID (1.1.1.1) (Process ID 100)

 Type-11 AS Opaque

 LS age: 3600
 Options: (No TOS-Capability, No DC)
 LS type: Type-11 AS Opaque
 Link State ID: 8.1.1.3
 Advertising Router: 2.2.2.2
 LS Seq Number: 0x8000000D
 Checksum: 0x61D3
 Length: 36
 Opaque Type: 8
 Opaque ID: 65795
```

**Supported Releases**

10.2.0E or later
show ip ospf database opaque-link

Displays information about the opaque-link Type 9 LSA.

Syntax

```
show ip ospf [process-id] [vrf vrf-name] database opaque-link
```

Parameters

- `process-id` — (Optional) Displays the opaque-link Type 9 LSA information for an OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- `vrf vrf-name` — (Optional) Displays the opaque-link Type 9 LSA information for an OSPF process ID corresponding to a VRF.

Default

Not configured

Command Mode

EXEC

Usage Information

- **LS Age** — Displays the LS age.
- **Options** — Displays the optional capabilities available on the router.
- **LS Type** — Displays the LS type.
- **Link State ID** — Identifies the router ID.
- **Advertising Router** — Identifies the advertising router’s ID.
- **LS Seq Number** — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum** — Displays the Fletcher checksum of an LSA’s complete contents.
- **Length** — Displays the LSA length in bytes.
- **Opaque Type** — Identifies the Opaque type field, the first 8 bits of the LS ID.
- **Opaque ID** — Identifies the Opaque type-specific ID, the remaining 24 bits of the LS ID.

Example

```
OS10# show ip ospf 100 database opaque-link
OSPF Router with ID (1.1.1.1) (Process ID 100)
 Type-9 Link Local Opaque (Area 0.0.0.1)
 LS age: 3600
 Options: (No TOS-Capability, No DC)
 LS type: Type-9 Link Local Opaque
 Link State ID: 8.1.1.1
 Advertising Router: 2.2.2.2
 LS Seq Number: 0x80000007
 Checksum: 0x9DA1
 Length: 28
 Opaque Type: 8
 Opaque ID: 65793
```

Supported Releases

10.2.0E or later

show ip ospf database router

Displays information about the router Type 1 LSA.

Syntax

```
show ip ospf process-id [vrf vrf-name] database router
```

Parameters

- `process-id` — (Optional) Displays the router Type 1 LSA for an OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- `vrf vrf-name` — (Optional) Displays the router Type 1 LSA for an OSPF process ID corresponding to a VRF.
Default: Not configured

Command Mode: EXEC

Usage Information:

- **LS age**—Displays the LS age.
- **Options**—Displays optional capabilities.
- **LS Type**—Displays the LS type.
- **Link State ID**—Identifies the router ID.
- **Advertising Router**—Identifies the advertising router’s ID.
- **LS Seq Number**—Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum**—Displays the Fletcher checksum of an LSA’s complete contents.
- **Length**—Displays the LSA length in bytes.
- **TOS**—Displays the ToS options. The only option available is zero.
- **Metric**—Displays the LSA metric.

Example:

```
OS10# show ip ospf 10 database router
OSPF Router with ID (111.2.1.1) (Process ID 10)
 Router (Area 0.0.0.0)
 LS age: 1419
 Options: (No TOS-capability, No DC, E)
 LS type: Router
 Link State ID: 111.2.1.1
 Advertising Router: 111.2.1.1
 LS Seq Number: 0x8000000d
 Checksum: 0x9bf2
 Length: 60
 AS Boundary Router
 Number of Links: 3

 Link connected to: a Transit Network
 (Link ID) Designated Router address: 110.1.1.2
 (Link Data) Router Interface address: 110.1.1.1
 Number of TOS metric: 0
 TOS 0 Metric: 1

 Link connected to: a Transit Network
 (Link ID) Designated Router address: 111.1.1.1
 (Link Data) Router Interface address: 111.1.1.1
 Number of TOS metric: 0
 TOS 0 Metric: 1

 Link connected to: a Transit Network
 (Link ID) Designated Router address: 111.2.1.1
 (Link Data) Router Interface address: 111.2.1.1
 Number of TOS metric: 0
 TOS 0 Metric: 1
```

Supported Releases: 10.2.0E or later

**show ip ospf database summary**

Displays the network summary Type 3 LSA routing information.

Syntax: `show ip ospf [process-id] [vrf vrf-name] database summary`
Parameters

- **process-id**—(Optional) Displays LSA information for a specific OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- **vrf vrf-name**—(Optional) Displays LSA information for a specified OSPF process ID corresponding to a VRF.

Default

Not configured

Command Mode

EXEC

Usage Information

- **LS Age**—Displays the LS age.
- **Options**—Displays the optional capabilities available on the router.
- **LS Type**—Displays the LS type.
- **Link State ID**—Identifies the router ID.
- **Advertising Router**—Identifies the advertising router’s ID.
- **LS Seq Number**—Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum**—Displays the Fletcher checksum of an LSA’s complete contents.
- **Length**—Displays the LSA length in bytes.
- **Network Mask**—Identifies the network mask implemented on the area.
- **TOS**—Displays the ToS options. The only option available is zero.
- **Metric**—Displays the LSA metric.

Example

```
OS10# show ip ospf 10 database summary
OSPF Router with ID (111.2.1.1) (Process ID 10)
 Summary Network (Area 0.0.0.0)
 LS age: 623
 Options: (No TOS-capability, No DC)
 C: Summary Network
 Link State ID: 115.1.1.0
 Advertising Router: 111.111.111.1
 LS Seq Number: 0x800001e8
 Checksum: 0x4a67
 Length: 28
 Network Mask: /24
 TOS: 0 Metric: 0
```

Supported Releases

10.2.0E or later

show ip ospf interface

Displays the configured OSPF interfaces. You must enable OSPF to display output.

Syntax

```
show ip ospf interface [process-id] [vrf vrf-name] interface or show ip ospf [process-id] [vrf vrf-name] interface [interface]
```

Parameters

- **process-id**—(Optional) Displays information for an OSPF process ID. If you do not enter a process ID, this command applies only to the first OSPF process.
- **vrf vrf-name**—(Optional) Displays information for an OSPF instance corresponding to a VRF.
- **interface**—(Optional) Enter the interface information:
  - **ethernet**—Enter the Ethernet interface information, from 1 to 48.
  - **port channel**—Enter the port-channel interface number, from 1 to 128.
- `vlan` — Enter the VLAN interface number, from 1 to 4093.

**Default**
Not configured

**Command Mode**
EXEC

**Example**
```
OS10# show ip ospf 10 interface
ethernet1/1/1 is up, line protocol is up
 Internet Address 110.1.1.1/24, Area 0.0.0.0
 Process ID 10, Router ID 1.1.1.1, Network Type broadcast, Cost: 10
 Transmit Delay is 1 sec, State WAIT, Priority 1
 BFD enabled (Interface level) Interval 300 Min rx 300 Multiplier 3 Role Active
 Designated Router (ID) , Interface address 0.0.0.0
 Backup Designated router (ID) , Interface address 0.0.0.0
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Neighbor Count is 0, Adjacent neighbor count is 0
```

**Supported Releases**
10.2.0E or later

### show ip ospf routes

Displays OSPF routes received from neighbors along with parameters such as cost, next-hop, area, interface, and type of route.

**Syntax**
```
show ip ospf [process-id] [vrf vrf-name] routes [prefix IP-prefix]
```

**Parameters**
- `process-id` — (Optional) Enter OSPFv2 process ID to view information specific to the ID.
- `vrf vrf-name` — (Optional) Enter the keyword `vrf` followed by the name of the VRF to display the routes calculated by OSPF in the configured VRF.
- `IP-prefix` — (Optional) Specify an IP address to view information specific to the IP address.

**Default**
None

**Command Mode**
EXEC

**Usage Information**
Displays the cost metric for each neighbor and interfaces.

**Example**
```
OS10# show ip ospf 10 routes
Prefix Cost Nexthop Interface Area Type
110.1.1.1 1 0.0.0.0 vlan3050 0.0.0.0 intra-area
111.1.1.1 1 0.0.0.0 vlan3051 0.0.0.0 intra-area
111.2.1.1 1 0.0.0.0 vlan3053 0.0.0.0 intra-area
```

**Supported Releases**
10.2.0E or later

### show ip ospf statistics

Displays OSPF traffic statistics.

**Syntax**
```
show ip ospf [instance-number] [vrf vrf-name] statistics [interface interface]
```

**Parameters**
- `instance-number` — (Optional) Enter an OSPF instance number, from 1 to 65535.
- `vrf vrf-name` — (Optional) Enter the keyword `vrf` followed by the name of the VRF to display OSPF traffic statistics corresponding to that VRF.
- `interface interface` — (Optional) Enter the interface information:
  - `ethernet node/slot/port[:subport]` — Enter an Ethernet port interface.
- port-channel number — Enter the port-channel interface number, from 1 to 128.
- vlan vlan-id — Enter the VLAN ID number, from 1 to 4093.

Default
Not configured

Command Mode
EXEC

Usage Information
This command displays OSPFv2 traffic statistics for a specified instance or interface, or for all OSPFv2 instances and interfaces.

Example
OS10# show ip ospf 10 statistics
Interface vlan3050
  Receive Statistics
  rx-invalid 0  rx-invalid-bytes 0
  rx-hello 0  rx-hello-bytes 0
  rx-db-des 0  rx-db-des-bytes 0
  rx-ls-req 0  rx-ls-req-bytes 0
  rx-ls-upd 0  rx-ls-upd-bytes 0
  rx-ls-ack 0  rx-ls-ack-bytes 0
  Transmit Statistics
  tx-failed 0  tx-failed-bytes 0
  tx-hello 0  tx-hello-bytes 0
  tx-db-des 0  tx-db-des-bytes 0
  tx-ls-req 0  tx-ls-req-bytes 0
  tx-ls-upd 0  tx-ls-upd-bytes 0
  tx-ls-ack 0  tx-ls-ack-bytes 0

Error packets (Receive statistics)
  bad-src 0  dupe-id 0  hello-err 0
  mtu-mismatch 0  nbr-ignored 0  wrong,proto 0
  resource-err 0  bad-lsa-len 0  lsa-bad-type 0
  lsa-bad-len 0  lsa-bad-cksum 0  auth-fail 0
  netmask-mismatch 0  hello-tmr-mismatch 0  dead-ivl-mismatch 0
  options-mismatch 0  nbr-admin-down 0  own-hello-drop 0
  self-orig 0  wrong-length 0  checksum-error 0
  version-mismatch 0  area-mismatch 0

Supported Releases
10.2.0E or later

**show ip ospf topology**

Displays routers that directly connect to OSPF areas.

Syntax
show ip ospf [process-id] [vrf vrf-name] topology

Parameters
- process-id — (Optional) Displays OSPF process information. If you do not enter a process ID, this applies only to the first OSPF process.
- vrf vrf-name — (Optional) Displays the routers in the directly connected OSPF areas in the configured VRF.

Default
Not configured

Command Mode
EXEC

Usage Information
The “E” flag output indicates the router listed is an ASBR. The “B” flag indicates that the router listed is an ABR. If the Flag field shows both E and B, it indicates that the listed router is both an ASBR and an ABR.

Example
OS10# show ip ospf 10 topology

<table>
<thead>
<tr>
<th>Router ID</th>
<th>Flags</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.111.111.1</td>
<td>/-/</td>
<td>1</td>
<td>1.1.1.1.2</td>
<td>Vl 3051</td>
<td>0</td>
</tr>
<tr>
<td>111.111.111.2</td>
<td>/-/</td>
<td>1</td>
<td>1.1.2.1.2</td>
<td>Vl 3053</td>
<td>0</td>
</tr>
<tr>
<td>112.2.1.1</td>
<td>E/-</td>
<td>1</td>
<td>1.10.1.1.2</td>
<td>Vl 3050</td>
<td>0</td>
</tr>
</tbody>
</table>
**Supported Releases**  
10.2.0E or later

### summary-address

Configures a summary address for an ASBR to advertise one external route as an aggregate for all redistributed routes covered by a specified address range.

**Syntax**  
`summary-address ip-address/mask [not-advertise | tag tag-value]`

**Parameters**
- `ip-address/mask`—Enter the IP address to summarize along with the mask.
- `not-advertise`—(Optional) Suppresses IP addresses that do not match the network prefix/mask.
- `tag-value`—(Optional) Enter a value to match the routes redistributed through a route map, from 1 to 65535.

**Default**  
Not configured

**Command Mode**  
ROUTER-OSPF

**Usage Information**  
The `no` version of this command disables the summary address.

**Example**

```
OS10(config)# router ospf 100
OS10(config-router-ospf-100)# summary-address 10.0.0.0/8 not-advertise
```

**Supported Releases**  
10.3.0E or later

### timers lsa arrival

Configures the LSA acceptance intervals.

**Syntax**  
`timers lsa arrival arrival-time`

**Parameters**
- `arrival-time`—Set the interval between receiving the LSA in milliseconds, from 0 to 600,000.

**Default**  
1000 milliseconds

**Command Mode**  
ROUTER-OSPF

**Usage Information**  
Setting the LSA arrival time between receiving the LSA repeatedly ensures that the system gets enough time to accept the LSA. The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# timers lsa arrival 2000
```

**Supported Releases**  
10.2.0E or later

### timers spf

Enables shortest path first (SPF) throttling to delay an SPF calculation when a topology change occurs.

**Syntax**  
`timers spf [start-time [hold-time [max-wait]]]`

**Parameters**
- `start-time`—Sets the initial SPF delay in milliseconds, from 1 to 600000; default 1000.
- `hold-time`—Sets the additional hold time between two SPF calculations in milliseconds, from 1 to 600000; default 10000.

466  Layer 3
- **max-wait** — Sets the maximum wait time between two SPF calculations in milliseconds, from 1 to 600000; default 10000.

**Default**
- **start-time** — 1000 milliseconds
- **hold-time** — 10000 milliseconds
- **max-wait** — 10000 milliseconds

**Command Mode**
- **ROUTER-OSPF**

**Usage Information**
By default, SPF timers are disabled in an OSPF instance.

Use SPF throttling to delay SPF calculations during periods of network instability. In an OSPF network, a topology change event triggers an SPF calculation after a start time. When the start timer finishes, a hold time may delay the next SPF calculation for an additional time. When the hold timer is running:

- Each time a topology change occurs, the SPF calculation delays for double the configured hold time up to maximum wait time.
- If no topology change occurs, an SPF calculation performs and the hold timer is reset to its configured value.

If you do not specify a start-time, hold-time, or max-wait value, the default values are used. The `no` version of this command removes the configured SPF timers and disables SPF throttling in an OSPF instance.

**Example**
```
OS10(config)# router ospf 100
OS10(config-router-ospf-100)# timers spf 1200 2300 3400
OS10(config-router-ospf-100)# do show ip ospf
Routing Process ospf 100 with ID 12.1.1.1
Supports only single TOS (TOS0) routes
It is Flooding according to RFC 2328
SPF schedule delay 1200 msecs, Hold time between two SPFs 2300 msecs
Convergence Level 0
Min LSA origination 0 msec, Min LSA arrival 1000 msec
Min LSA hold time 5000 msec, Max LSA wait time 5000 msec
Number of area in this router is 1, normal 1 stub 0 nssa 0
Area (0.0.0.1)
Number of interface in this area is 1
SPF algorithm executed 1 times
```

**Supported Releases**
10.4.0E(R1) or later

**timers throttle lsa all**

Configures the LSA transmit intervals.

**Syntax**
```
timers lsa all [start-interval | hold-interval | max-interval]
```

**Parameters**
- **start-interval** — Sets the minimum interval between initial sending and re-sending the same LSA in milliseconds, from 0 to 600,000.
- **hold-interval** — Sets the next interval to send the same LSA in milliseconds. This is the time between sending the same LSA after the start-interval is attempted, from 1 to 600,000.
- **max-interval** — Sets the maximum amount of time the system waits before sending the LSA in milliseconds, from 1 to 600,000.

**Default**
- **start-interval** — 0 milliseconds
- **hold-interval** — 5000 milliseconds
• max-interval — 5000 milliseconds

Command Mode
ROUTER-OSPF

Usage Information
The no version of this command removes the LSA transmit timer.

Example
OS10(config)# router ospf 10
OS10(conf-router-ospf-10)# timers throttle lsa all 100 300 1000

Supported Releases
10.2.0E or later

OSPFv3

OSPFv3 is an IPv6 link-state routing protocol that supports IPv6 unicast address families (AFs). OSPFv3 is disabled by default. You must configure at least one interface, either physical or Loopback. The OSPF process automatically starts when OSPFv3 is enabled for one or more interfaces. Any area besides area 0 can have any number ID assigned to it.

Enable OSPFv3

1. Enable OSPFv3 globally and configure an OSPFv3 instance in CONFIGURATION mode.
   ```
 router ospfv3 instance-number
   ```

2. Enter the interface information to configure the interface for OSPFv3 in INTERFACE mode.
   ```
 interface ethernet node/slot/port[:subport]
   ```

3. Enable the interface in INTERFACE mode.
   ```
 no shutdown
   ```

4. Disable the default switchport configuration and remove it from an interface or a LAG port in INTERFACE mode.
   ```
 no switchport
   ```

5. Enable the OSPFv3 on an interface in INTERFACE mode.
   ```
 ipv6 ospfv3 process-id area area-id
   ```
   - **process-id** — Enter the OSPFv3 process ID for a specific OSPFv3 process, from 1 to 65535.
   - **area-id** — Enter the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.

Enable OSPFv3

OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# exit
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ipv6 ospfv3 300 area 0.0.0.0

Enable OSPFv3 in a non-default VRF instance

1. Create the non-default VRF instance in which you want to enable OSPFv3:
   ```
 ip vrf vrf-name
   ```
   **CONFIGURATION Mode**

2. Enable OSPFv3 in the non-default VRF instance that you created earlier and configure an OSPFv3 instance in VRF CONFIGURATION mode.
   ```
 router ospfv3 instance-number vrf vrf vrf-name
   ```
Enter the interface information to configure the interface for OSPFv3 in INTERFACE mode.

```
interface ethernet node/slot/port[:subport]
```

Enable the interface in INTERFACE mode.

```
no shutdown
```

Disable the default switchport configuration and remove it from an interface or a LAG port in INTERFACE mode.

```
no switchport
```

Associate the interface with the non-default VRF instance that you created earlier.

```
ip vrf forwarding vrf-name
```

Enable the OSPFv3 on an interface.

```
ipv6 ospfv3 process-id area area-id
```

- `process-id` — Enter the OSPFv3 process ID for a specific OSPFv3 process, from 1 to 65535.
- `area-id` — Enter the OSPF area ID as an IP address in A.B.C.D format or number, from 1 to 65535.

### Enable OSPFv3

OS10(config)# ip vrf vrf-blue
OS10(config-vrf-blue)# router ospfv3 100 vrf vrf-blue
OS10(config-router-ospfv3-100)# exit
OS10(config)# interface ethernet 1/1/2
OS10(config-if-eth1/1/2)# no shutdown
OS10(config-if-eth1/1/2)# no switchport
OS10(config-if-eth1/1/2)# ip vrf forwarding vrf-blue
OS10(config-if-eth1/1/1)# ipv6 ospfv3 300 area 0.0.0.0

### Assign Router ID

You can assign a router ID for the OSPFv3 process. Configure an arbitrary value in the IP address format for each router. Each router ID must be unique. Use the fixed router ID for the active OSPFv3 router process. Changing the router ID brings down the existing OSPFv3 adjacency. The new router ID becomes effective immediately.

- Assign the router ID for the OSPFv3 process in ROUTER-OSPFv3 mode.

```
router-id ip-address
```

### Assign router ID

OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# router-id 10.10.1.5

### View OSPFv3 Status

OS10# show ipv6 ospf
Routing Process ospfv3 100 with ID 10.10.1.5
It is an Area Border Router
Min LSA origination 5000 msec, Min LSA arrival 1000 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 2, normal 2 stub 0 nssa
  Area (0.0.0.0)
    Number of interface in this area is 1
    SPF algorithm executed 42 times
  Area (0.0.0.1)
    Number of interface in this area is 1
    SPF algorithm executed 42 times

### Configure Stub Areas

Type 5 LSAs are not flooded into stub areas. The ABR advertises a default route into the stub area where it is attached. Stub area routers use the default route to reach external destinations.
1. Enable OSPFv3 routing and enter ROUTER-OSPFv3 mode, from 1 to 65535.
   ```
 router ospfv3 instance number
   ```

2. Configure an area as a stub area in ROUTER-OSPFv3 mode.
   ```
 area area-id stub [no-summary]
   ```
   - `area-id` — Enter the OSPFv3 area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
   - `no-summary` — (Optional) Enter to prevent an ABR from sending summary LSAs into the stub area.

**Configure Stub Area**

OS10(config)# router ospfv3 10
OS10(conf-router-ospf-10)# area 10.10.5.1 stub no-summary

**View Stub Area Configuration**

OS10# show running-configuration ospfv3
```text
! interface ethernet1/1/3
ipv6 ospf 65 area 0.0.0.2
!
router ospfv3 65
area 0.0.0.2 stub no-summary
```

OS10# show ipv6 ospf database
```
OSPF Router with ID (199.205.134.103) (Process ID 65)
```

**Enable Passive Interfaces**

A passive interface is one that does not send or receive routing information. Configuring an interface as a passive interface suppresses both the receiving and sending routing updates.
Although the passive interface does not send or receive routing updates, the network on that interface is included in OSPF updates sent through other interfaces. You can remove an interface from passive interfaces using the `no ipv6 ospf passive` command.

1. Enter an interface type in INTERFACE mode.
   ```
 interface ethernet node/slot/port[:subport]
   ```
2. Configure the interface as a passive interface in INTERFACE mode.
   ```
 ipv6 ospf passive
   ```

**Configure Passive Interfaces**

OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ipv6 ospf passive

**View Passive Interfaces**

OS10# show running-configuration
```
!!!
!!
interface ethernet1/1/1
ip address 10.10.10.1/24
no switchport
no shutdown
ipv6 ospf 100 area 0
ipv6 ospf passive
!!
```

## Interface OSPFv3 Parameters

Interface parameter values must be consistent across all interfaces to avoid routing errors. For example, set the same time interval for the hello packets on all routers in the OSPF network to prevent misconfiguration of OSPF neighbors.

1. Enter the interface to change the OSPFv3 parameters in CONFIGURATION mode.
   ```
 interface interface-name
   ```

2. Change the cost associated with OSPFv3 traffic on the interface in INTERFACE mode, from 1 to 65535, default depends on the interface speed.
   ```
 ipv6 ospf cost
   ```

3. Change the time interval the router waits before declaring a neighbor dead in INTERFACE mode, from 1 to 65535, default 40. The dead interval must be four times the hello interval. The dead interval must be the same on all routers in the OSPFv3 network.
   ```
 ipv6 ospf dead-interval seconds
   ```

4. Change the time interval in seconds between hello-packet transmission in INTERFACE mode, from 1 to 65535, default 10. The hello interval must be the same on all routers in the OSPFv3 network.
   ```
 ipv6 ospf hello-interval seconds
   ```

5. Change the priority of the interface, which determines the DR for the OSPFv3 broadcast network in INTERFACE mode, from 0 to 255, default 1.
   ```
 ipv6 ospf priority number
   ```

**Change OSPFv3 Interface Parameters**

OS10(config)# interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# ipv6 ospf hello-interval 5
OS10(config-if-eth1/1/1)# ipv6 ospf dead-interval 20
OS10(config-if-eth1/1/1)# ipv6 ospf priority 4

**View OSPFv3 Interface Parameters**

OS10# show ipv6 ospf interface
```
ethernet1/1/1 is up, line protocol is up
 Link Local Address fe80::20c:29ff:fe0a:d59/64, Interface ID 5
 Area 0.0.0.0, Process ID 200, Instance ID 0, Router ID 10.0.0.2
 Network Type broadcast, Cost: 1
 Transmit Delay is 1 sec, State BDR, Priority 1
```
Default route

You can generate an external default route and distribute the default information to the OSPFv3 routing domain.

- Generate the default route, using the `default-information originate [always]` command in ROUTER-OSPFv3 mode.

Configure default route

OS10(config)# router ospfv3 100
OS10(config-router-ospf-100)# default-information originate always

View default route configuration

OS10(config-router-ospf-100)# show configuration

```
! router ospfv3 100
default-information originate always
```

OSPFv3 IPsec authentication and encryption

Unlike OSPFv2, OSPFv3 does not have authentication fields in its protocol header to provide security. To provide authentication and confidentiality, OSPFv3 uses IP Security (IPsec) — a collection of security protocols for authenticating and encrypting data packets. OS10 OSPFv3 supports IPsec using the IPv6 authentication header (AH) or IPv6 encapsulating security payload (ESP).

- AH authentication verifies that data is not altered during transmission and ensures that users are communicating with the intended individual or organization. The authentication header is inserted after the IP header with a value of 51. MD5 and SHA1 authentication types are supported; encrypted and unencrypted keys are supported.
- ESP encryption encapsulates data, enabling data protection that follows in the datagram. The ESP extension header is inserted after the IP header and before the next layer protocol header. 3DES, DES, AES-CBC, and NULL encryption algorithms are supported; encrypted and unencrypted keys are supported.

Apply IPsec authentication or encryption on a physical, port-channel, or VLAN interface or in an OSPFv3 area. Each configuration consists of a security policy index (SPI) and the OSPFv3 packets validation key. After you configure an IPsec protocol for OSPFv3, IPsec operation is invisible to the user.

You can only enable one authentication or encryption security protocol at a time on an interface or for an area. Enable IPsec AH using the `ipv6 ospf authentication` command; enable IPsec ESP with the `ipv6 ospf encryption` command.

- A security policy configured for an area is inherited on all interfaces in the area by default.
- A security policy configured on an interface overrides any area-level configured security for the area where the interface is assigned.
- The configured authentication or encryption policy applies to all OSPFv3 packets transmitted on the interface or in the area. The IPsec security associations are the same on inbound and outbound traffic on an OSPFv3 interface.
- There is no maximum AH or ESP header length because the headers have fields with variable lengths.

Configure IPsec authentication on interfaces

**Prerequisite:** Before you enable IPsec authentication on an OSPFv3 interface, first enable IPv6 unicast routing globally; then enable OSPFv3 on the interface, and assign it to an area.

The SPI value must be unique to one IPsec authentication or encryption security policy on the router. You cannot configure the same SPI value on another interface even if it uses the same authentication or encryption algorithm.
You cannot use an IPsec MD5 or SHA-1 authentication type and the null setting at the same time on an interface. These settings are mutually exclusive.

- Enable IPsec authentication for OSPFv3 packets in Interface mode.
  
  `ipv6 ospf authentication {null | ipsec spi number {MD5 | SHA1} key}
  
  - `null` — Prevent an authentication policy configured for the area to be inherited on the interface. Only use this parameter if you configure IPsec area authentication.
  - `ipsec spi number` — Enter a unique security policy index (SPI) value, from 256 to 4294967295.
  - `md5` — Enable message digest 5 (MD5) authentication.
  - `sha1` — Enable secure hash algorithm 1 (SHA-1) authentication.
  - `key` — Enter the text string used in the authentication type. All neighboring OSPFv3 routers must share the key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA-1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

To delete an IPsec authentication policy, use the `no ipv6 ospf authentication ipsec spi number` or `no ipv6 ospf authentication null` command.

### Configure IPsec authentication on interface

```bash
OS10(conf-if-eth1/1/1)# ipv6 ospf authentication ipsec spi 400 md5 123456781234567812345678
OS10(conf-if-eth1/1/1)# show configuration

interface ethernet1/1/1
ipv6 ospf authentication ipsec spi 400 md5 123456781234567812345678
no switchport
no shutdown
ipv6 address 1::1/64
```

### IPsec encryption on interfaces

**Prerequisite:** Before you enable IPsec encryption on an OSPFv3 interface, enable IPv6 unicast routing globally, enable OSPFv3 on the interface, and assign it to an area.

When you configure encryption on an interface, both IPsec encryption and authentication are enabled. You cannot configure encryption if you have already configured an interface for IPsec authentication using the `ipv6 ospf authentication ipsec` command. To configure encryption, you must first delete the authentication policy.

- Enable IPsec encryption for OSPFv3 packets in Interface mode.
  
  `ipv6 ospf encryption ipsec spi number esp encryption-type key authentication-type key
  
  - `ipsec spi number` — Enter a unique security policy index (SPI) value, from 256 to 4294967295.
  - `esp encryption-type key` — Enter the encryption algorithm used with ESP (3DES, DES, AES-CBC, or NULL). For AES-CBC, only the AES-128 and AES-192 ciphers are supported.
  - `key` — Enter the text string used in the encryption algorithm. All neighboring OSPFv3 routers must share the key to decrypt information. Only a non-encrypted key is supported. Required lengths of the non-encrypted key are: 3DES — 48 hex digits; DES — 16 hex digits; AES-CBC — 32 hex digits for AES-128 and 48 hex digits for AES-192.
  - `authentication-type key` — Enter the encryption authentication MD5 or SHA1 algorithm to use.
  - `key` — Enter the text string used in the authentication algorithm. All neighboring OSPFv3 routers must share the key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

To delete an IPsec encryption policy, use the `no ipv6 ospf encryption ipsec spi number` or `no ipv6 ospf encryption null` command.

### Configure IPsec encryption on interface

```bash
OS10(conf-if-eth1/1/1)# ipv6 ospf encryption ipsec spi 500 esp des 123456781234567812345678
 md5 123456781234567812345678
```
### Configure IPsec authentication for OSPFv3 area

**Prerequisite:** Before you enable IPsec authentication for an OSPFv3 area, enable OSPFv3 globally on the router.

- Enable IPsec authentication for OSPFv3 packets in an area in Router-OSPFv3 mode.

  ```
 area area-id authentication ipsec spi number {MD5 | SHA1} key
  ```
  - `area area-id` — Enter an area ID as a number or IPv6 prefix.
  - `ipsec spi number` — Enter a unique security policy index (SPI) value, from 256 to 4294967295.
  - `md5` — Enable message digest 5 (MD5) authentication.
  - `sha1` — Enable secure hash algorithm 1 (SHA1) authentication.
  - `key` — Enter the text string used in the authentication type. All OSPFv3 routers in the area share the key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

To delete an IPsec area authentication policy, use the `no area area-id authentication ipsec spi number` command.

### Configure IPsec encryption for OSPFV3 area

**Prerequisite:** Before you enable IPsec encryption for an OSPFV3 area, first enable OSPFV3 globally on the router.

When you configure encryption at the area level, both IPsec encryption and authentication are enabled. You cannot configure encryption if you have already configured an IPsec area authentication using the `area ospf authentication ipsec` command. To configure encryption, you must first delete the authentication policy.

- Enable IPsec encryption for OSPFV3 packets in an area in Router-OSPFV3 mode.

  ```
 area area-id encryption ipsec spi number esp encryption-type key
  ```
  - `area area-id` — Enter an area ID as a number or IPv6 prefix.
  - `ipsec spi number` — Enter a unique security policy index (SPI) value, from 256 to 4294967295.
  - `esp encryption-type` — Enter the encryption algorithm used with ESP (3DES, DES, AES-CBC, or NULL). For AES-CBC, only the AES-128 and AES-192 ciphers are supported.
  - `key` — Enter the text string used in the encryption algorithm. All neighboring OSPFV3 routers must share the key to decrypt information. Only a non-encrypted key is supported. Required lengths of the non-encrypted key are: 3DES — 48 hex digits; DES — 16 hex digits; AES-CBC — 32 hex digits for AES-128 and 48 hex digits for AES-192.
  - `authentication-type` — Enter the encryption authentication MD5 or SHA1 algorithm to use.
  - `key` — Enter the text string used in the authentication algorithm. All neighboring OSPFV3 routers must share the key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

To delete an IPsec encryption policy, use the `no area area-id encryption ipsec spi number` command.
**Configure IPsec encryption for OSPFv3 area**

```bash
OS10(config-router-ospfv3-100)# area 1 encryption ipsec spi 401 esp des
123456781234567812345678 md5
OS10(config-router-ospfv3-100)# show configuration

```

**Troubleshoot OSPFv3**

You can troubleshoot OSPFv3 operations and check questions for typical issues that interrupt a process.

- Is OSPFv3 enabled globally?
- Is OSPFv3 enabled on the interface?
- Are adjacencies established correctly?
- Are the interfaces configured for L3 correctly?
- Is the router in the correct area type?
- Are the OSPF routes included in the OSPF database?
- Are the OSPF routes included in the routing table in addition to the OSPF database?
- Are you able to ping the link-local IPv6 address of adjacent router interface?

**Troubleshooting OSPFv3 with show Commands**

- View a summary of all OSPF process IDs enabled in EXEC mode.
  ```bash
 show running-configuration ospfv3
  ```
- View summary information of IP routes in EXEC mode.
  ```bash
 show ipv6 route summary
  ```
- View summary information for the OSPF database in EXEC mode.
  ```bash
 show ipv6 ospf database
  ```
- View the configuration of OSPF neighbors connected to the local router in EXEC mode.
  ```bash
 show ipv6 ospf neighbor
  ```

**View OSPF Configuration**

```bash
OS10# show running-configuration ospfv3
!
interface ethernet1/1/1
ip ospf 100 area 0.0.0.0
!
router ospfv3 100
log-adjacency-changes
```

**OSPFv3 Commands**

**area authentication**

Configures authentication for an OSPFv3 area.

```bash
Syntax

 area area-id authentication ipsec spi number {MD5 | SHA1} key

Parameters

- **area area-id** — Enter an area ID as a number or IPv6 prefix.
- **ipsec spi number** — Enter a unique security policy index (SPI) value, from 256 to 4294967295.
```
• md5 — Enable MD5 authentication.
• sha1 — Enable SHA1 authentication.
• key — Enter the text string used in the authentication type.

Default
OSPFv3 area authentication is not configured.

Command Mode
ROUTER-OSPFv3

Usage Information
• Before you enable IPsec authentication for an OSPFv3 area, you must enable OSPFv3 globally on each router.
• All OSPFv3 routers in the area must share the same authentication key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

Example
OS10(config-router-ospfv3-100)# area 1 authentication ipsec spi 400 md5 12345678123456781234567812345678

Supported Releases
10.4.0E(R1) or later

area encryption

Configures encryption for an OSPFv3 area.

Syntax
area area-id encryption ipsec spi number esp encryption-type key authentication-type key

Parameters
• area area-id — Enter an area ID as a number or IPv6 prefix.
• ipsec spi number — Enter a unique security policy index number, from 256 to 4294967295.
• esp encryption-type — Enter the encryption algorithm used with ESP (3DES, DES, AES-CBC, or NULL). For AES-CBC, only the AES-128 and AES-192 ciphers are supported.
• key — Enter the text string used in the encryption algorithm.
• authentication-type — Enter the encryption authentication MD5 or SHA1 algorithm to use.
• key — Enter the text string used in the authentication algorithm.

Default
OSPFv3 area encryption is not configured.

Command Mode
ROUTER-OSPFv3

Usage Information
• Before you enable IPsec encryption for an OSPFv3 area, you must enable OSPFv3 globally on each router.
• When you configure encryption at the area level, both IPsec encryption and authentication are enabled. You cannot configure encryption if you have already configured an IPsec area authentication using the area ospf authentication ipsec command. To configure encryption, you must first delete the authentication policy.
• All OSPFv3 routers in the area must share the same encryption key to decrypt information. Only a non-encrypted key is supported. Required lengths of the non-encrypted key are: 3DES — 48 hex digits; DES — 16 hex digits; AES-CBC — 32 hex digits for AES-128 and 48 hex digits for AES-192.
• All OSPFv3 routers in the area must share the same authentication key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

Example
OS10(config-router-ospfv3-100)# area 1 encryption ipsec spi 401 esp des 1234567812345678123456781234567812345678 md5 1234567812345678123456781234567812345678

Supported Releases
10.4.0E(R1) or later
area stub

Defines an area as the OSPF stub area.

Syntax
area area-id stub [no-summary]

Parameters
- area-id—Set the OSPFv3 area ID as an IP address in A.B.C.D format or number, from 1 to 65535.
- no-summary—(Optional) Prevents an ABR from sending summary LAs into the stub area.

Default
Not configured

Command Mode
ROUTER-OSPFv3

Usage Information
The no version of this command deletes a stub area.

Example
OS10(config)# router ospfv3 10
OS10(conf-router-ospfv3-10)# area 10.10.1.5 stub

Supported Releases
10.3.0E or later

auto-cost reference-bandwidth

Calculates default metrics for the interface based on the configured auto-cost reference bandwidth value.

Syntax
auto-cost reference-bandwidth value

Parameters
- value—Enter the reference bandwidth value to calculate the OSPFv3 interface cost in megabits per second, from 1 to 4294967.

Default
100000

Command Mode
ROUTER-OSPFv3

Usage Information
The value set by the ipv6 ospf cost command in INTERFACE mode overrides the cost resulting from the auto-cost command. The no version of this command resets the value to the default.

Example
OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# auto-cost reference-bandwidth 150

Supported Releases
10.3.0E or later

clear ipv6 ospf process

Clears all OSPFv3 routing tables.

Syntax
clear ipv6 ospf {instance-number} [vrf vrf-name] process

Parameters
- instance-number — Enter an OSPFv3 instance number, from 1 to 65535.
- vrf vrf-name — (Optional) Enter the keyword vrf followed by the name of the VRF to clear OSPFv3 processes in that VRF.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# clear ipv6 ospf 3 process
**clear ipv6 ospf statistics**

Clears OSPFv3 traffic statistics.

**Syntax**

```plaintext
clear ipv6 ospf [instance-number] [vrf vrf-name] statistics
```

**Parameters**

- **instance-number** — (Optional) Enter an OSPFv3 instance number, from 1 to 65535.
- **vrf vrf-name** — (Optional) Enter the keyword vrf followed by the name of the VRF to clear OSPFv3 statistics in that VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

This command clears the OSPFv3 traffic statistics in a specified instance or in all the configured OSPFv3 instances, and resets them to zero.

**Example**

```
OS10# clear ipv6 ospf 100 statistics
```

**Supported Releases**

10.4.0E(R1) or later

---

**default-information originate**

Generates and distributes a default external route information to the OSPFv3 routing domain.

**Syntax**

```plaintext
default-information originate [always]
```

**Parameters**

- **always** — (Optional) Always advertise the default route.

**Defaults**

Disabled

**Command Mode**

ROUTER-OSPFv3

**Usage Information**

The `no` version of this command disables the distribution of default route.

**Example**

```
OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# default-information originate always
```

**Supported Releases**

10.3.0E or later

---

**ipv6 ospf area**

Attaches an interface to an OSPF area.

**Syntax**

```plaintext
ipv6 ospf process-id area area-id
```

**Parameters**

- **process-id**—Enter an OSPFv3 process ID for a specific OSPFv3 process, from 1 to 65535.
- **area-id**—Enter the OSPFv3 area ID in dotted decimal A.B.C.D format or enter an area ID number, from 1 to 65535.

**Default**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

The `no` version of this command removes an interface from an OSPFv3 area.
**ipv6 ospf authentication**

Configures OSPFV3 authentication on an IPv6 interface.

**Syntax**

ipv6 ospf authentication {null | ipsec spi number {MD5 | SHA1} key}

**Parameters**

- **null** — Prevents area authentication from being inherited on the interface.
- **ipsec spi number** — Enter a unique security policy index number, from 256 to 4294967295.
- **md5** — Enable MD5 authentication.
- **sha1** — Enable SHA1 authentication.
- **key** — Enter the text string used by the authentication type.

**Default**
IPv6 OSPF authentication is not configured on an interface.

**Command Mode**

INTERFACE

**Usage Information**

- Before you enable IPsec authentication on an OSPFV3 interface, you must enable IPv6 unicast routing globally, configure an IPv6 address and enable OSPFV3 on the interface, and assign it to an area.
- The SPI value must be unique to one IPsec authentication or encryption security policy on the router. You cannot configure the same SPI value on another interface even if it uses the same authentication or encryption algorithm.
- You cannot use an IPsec MD5 or SHA1 authentication type and the **null** setting at same time on an interface. These settings are mutually exclusive.
- All neighboring OSPFV3 routers must share the key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

**Example**

OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ipv6 ospf authentication ipsec spi 400 md5 12345678123456781234567812345678

**Supported Releases**
10.4.0E(R1) or later

**ipv6 ospf cost**

Changes the cost associated with the OSPFV3 traffic on an interface.

**Syntax**

ipv6 ospf cost cost

**Parameters**

- **cost** — Enter a value as the OSPFV3 cost for the interface, from 1 to 65335.

**Default**
Based on bandwidth reference

**Command Mode**

INTERFACE

**Usage Information**

If not configured, the interface cost is based on the auto-cost command. This command configures OSPFV3 over multiple vendors to ensure that all routers use the same cost value. The no version of this command removes the IPv6 OSPF cost configuration.

**Example**

OS10(config)# interface vlan 10
OS10(conf-if-vl-10)# ipv6 ospf 10 area 1

**Supported Releases**
10.3.0E or later
**ipv6 ospf dead-interval**

Sets the time interval since the last hello-packet was received from a router. After the interval elapses, the neighboring routers declare the router dead.

**Syntax**

```
ipv6 ospf dead-interval seconds
```

**Parameters**

- `seconds` — Enter the dead interval value in seconds, from 1 to 65535.

**Default**

40 seconds

**Command Mode**

INTERFACE

**Usage Information**

The dead interval is four times the default hello-interval by default. The no version of this command resets the value to the default.

**Example**

```
OS10(config)# interface vlan 10
OS10(conf-if-vl-10)# ipv6 ospf dead-interval 10
```

**Supported Releases**

10.3.0E or later

---

**ipv6 ospf encryption**

Configures OSPFv3 encryption on an IPv6 interface.

**Syntax**

```
ipv6 ospf encryption {ipsec spi number esp encryption-type key authentication-type key | null}
```

**Parameters**

- `ipsec spi number` — Enter a unique security policy index number, from 256 to 4294967295.
- `esp encryption-type` — Enter the encryption algorithm used with ESP (3DES, DES, AES-CBC, or NULL). For AES-CBC, only the AES-128 and AES-192 ciphers are supported.
- `key` — Enter the text string used in the encryption algorithm.
- `authentication-type` — Enter the encryption MD5 or SHA1 authentication algorithm to use.
- `key` — Enter the text string used in the authentication algorithm.
- `null` — Enter the keyword to not use the IPsec encryption.

**Default**

IPv6 OSPF encryption is not configured on an interface.

**Command Mode**

INTERFACE

**Usage Information**

- Before you enable IPsec authentication on an OSPFv3 interface, you must enable IPv6 unicast routing globally, configure an IPv6 address and enable OSPFv3 on the interface, and assign it to an area.
- When you configure encryption on an interface, both IPsec encryption and authentication are enabled. You cannot configure encryption if you have already configured an interface for IPsec authentication using the `ipv6 ospf authentication ipsec` command. To configure encryption, you must first delete the authentication policy.
- All neighboring OSPFv3 routers must share the same encryption key to decrypt information. Only a non-encrypted key is supported. Required lengths of the non-encrypted key are: 3DES — 48 hex digits; DES — 16 hex digits; AES-CBC — 32 hex digits for AES-128 and 48 hex digits for AES-192.
All neighboring OSPFv3 routers must share the same authentication key to exchange information. Only a non-encrypted key is supported. For MD5 authentication, the non-encrypted key must be 32 plain hex digits. For SHA1 authentication, the non-encrypted key must be 40 hex digits. An encrypted key is not supported.

Example
```
OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ipv6 ospf encryption ipsec spi 500 esp des 1234567812345678 md5 12345678123456781234567812345678

OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# ipv6 ospf encryption null
```

Supported Releases 10.4.0E(R1) or later

**ipv6 ospf hello-interval**

Sets the time interval between hello packets sent on an interface.

Syntax `ipv6 ospf hello-interval seconds`

Parameters `seconds` — Enter the hello-interval value in seconds, from 1 to 65535.

Default 10 seconds

Command Mode INTERFACE

Usage Information All routers in a network must have the same hello time interval between the hello packets. The `no` version of this command resets the value to the default.

Example
```
OS10(config)# interface vlan 10
OS10(conf-if-vl-10)# ipv6 ospf hello-interval 30
```

Supported Releases 10.3.0E or later

**ipv6 ospf network**

Sets the network type for the interface.

Syntax `ipv6 ospf network {point-to-point | broadcast}`

Parameters

- `point-to-point` — Sets the interface as part of a point-to-point network.
- `broadcast` — Sets the interface as part of a broadcast network.

Default Broadcast

Command Mode INTERFACE

Usage Information The `no` version of this command resets the value to the default.

Example
```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ipv6 ospf network broadcast
```

Supported Releases 10.3.0E or later

**ipv6 ospf passive**

Configures an interface as a passive interface and suppresses both receiving and sending routing updates to the passive interface.

Syntax `ipv6 ospf passive`

Parameters None
ipv6 ospf priority

Sets the priority of the interface to determine the DR for the OSPFv3 network.

**Syntax**
```
ipv6 ospf priority number
```

**Parameters**
- `number` — Enter a router priority number, from 0 to 255.

**Default**
1

**Command Mode**
INTERFACE

**Usage Information**
When two routers attached to a network attempt to become the DR, the one with the higher router priority takes precedence. The no version of this command resets the value to the default.

**Example**
```
OS10(config)# interface ethernet 1/1/6
OS10(conf-if-eth1/1/6)# ipv6 ospf priority 4
```

**Supported Releases**
10.3.0E or later

log-adjacency-changes

Enables logging of syslog messages about changes in the OSPFv3 adjacency state.

**Syntax**
```
log-adjacency-changes
```

**Parameters**
None

**Default**
Disabled

**Command Mode**
ROUTER-OSPFv3

**Usage Information**
The no version of this command resets the value to the default.

**Example**
```
OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# log-adjacency-changes
```

**Supported Releases**
10.3.0E or later

maximum-paths

Enables forwarding of packets over multiple paths.

**Syntax**
```
maximum-paths number
```

**Parameters**
- `number` — Enter the number of paths for OSPFv3, from 1 to 128.

**Default**
Disabled

**Command Mode**
ROUTER-OSPFv3

---

Layer 3
Usage Information
The no version of this command resets the value to the default.

Example
```
OS10(config)# router ospfv3
OS10(config-router-ospfv3-100)# maximum-paths 1
```

Supported Releases
10.3.0E or later

redistribute

Redistributes information from another routing protocol or routing instance to the OSPFv3 process.

Syntax
```
redistribute {bgp as-number | connected | static} [route-map route-map name]
```

Parameters
- `as-number` — Enter an autonomous number to redistribute BGP routing information throughout the OSPFv3 instance, from 1 to 4294967295.
- `route-map name` — Enter the name of a configured route-map.
- `connected` — Enter the information from the connected active routes on interfaces to redistribute.
- `static` — Enter the information from static routes on interfaces redistribute.

Defaults
Not configured

Command Mode
ROUTER-OSPFv3

Usage Information
When an OSPFv3 redistributes, the process is not completely removed from the BGP configuration. The no version of this command disables the redistribute configuration.

Example
```
OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# redistribute bgp 4 route-map dell1
```

Example (Connected)
```
OS10((config-router-ospfv3-100)# redistribute connected route-map dell2
```

Supported Releases
10.3.0E or later

router-id

Configures a fixed router ID for the OSPFv3 process.

Syntax
```
router-id ip-address
```

Parameters
- `ip-address` — Enter the IP address of the router as the router ID.

Default
Not configured

Command Mode
ROUTER-OSPFv3

Usage Information
Configure an arbitrary value in the IP address format for each router. Each router ID must be unique. Use the fixed router ID for the active OSPFv3 router process. Changing the router ID brings down the existing OSPFv3 adjacency. The new router ID becomes effective immediately. The no version of this command disables the router ID configuration.

Example
```
OS10(config)# router ospfv3 10
OS10(config-router-ospfv3-100)# router-id 10.10.1.5
```

Supported Releases
10.3.0E or later
**router ospfv3**

Enters Router OSPFv3 mode and configures an OSPFv3 instance.

**Syntax**

```
router ospfv3 [instance-number] [vrf vrf-name]
```

**Parameters**

- `instance-number` — Enter a router OSPFv3 instance number, from 1 to 65535.
- `vrf vrf-name` — Enter the keyword `vrf` followed by the name of the VRF to configure an OSPFv3 instance in that VRF.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The no version of this command deletes an OSPFv3 instance.

**Example**

```
OS10(config)# router ospfv3 10 vrf vrf-test
```

**Supported Releases**

10.3.0E or later

---

**show ipv6 ospf**

Displays OSPFv3 instance configuration information.

**Syntax**

```
show ipv6 ospf [instance-number]
```

**Parameters**

- `instance-number` — (Optional) View OSPFv3 information for a specified instance number, from 1 to 65535.

**Default**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show ipv6 ospf
Routing Process ospfv3 200 with ID 1.1.1.1
It is an Area Border Router
Min LSA origination 5000 msec, Min LSA arrival 1000 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 2, normal 2 stub 0 nssa
 Area (0.0.0.0)
 Number of interface in this area is 1
 SPF algorithm executed 42 times
 Area (0.0.0.1)
 Number of interface in this area is 1
 SPF algorithm executed 42 times
OS10# show ipv6 ospf 200
Routing Process ospfv3 200 with ID 10.0.0.2
Min LSA origination 5000 msec, Min LSA arrival 1000 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 1, normal 1 stub 0 nssa
 Area (0.0.0.0)
 Number of interface in this area is 1
 SPF algorithm executed 3 times
```

**Supported Releases**

10.3.0E or later
show ipv6 ospf database

Displays all LSA information. You must enable OSPFv3 to generate output.

Syntax

```
show ipv6 ospf process-id [vrf vrf-name] database
```

Parameters

- `process-id` — Enter the OSPFv3 process ID to view a specific process. If you do not enter a process ID, the command applies to all the configured OSPFv3 processes.
- `vrf vrf-name` — Enter the keyword vrf followed by the name of the VRF to display LSA information for that VRF.

Default

Not configured

Command Mode

EXEC

Usage Information

- **Link ID** — Identifies the router ID.
- **ADV Router** — Identifies the advertising router’s ID.
- **Age** — Displays the LS age.
- **Seq#** — Identifies the LS sequence number. This identifies old or duplicate LSAs.
- **Checksum** — Displays the Fletcher checksum of an LSA’s complete contents.
- **Link count** — Displays the number of interfaces for that router.
- **Rtr Count** — Displays the router count.
- **Dest RtrID** — Displays the destination router ID.
- **Interface** — Displays the interface type.
- **Prefix** — Displays the prefix details.

Example

```
OS10# show ipv6 ospf database
OSPF Router with ID (10.0.0.2) (Process ID 200)
Router Link States (Area 0.0.0.0)
ADV Router Age Seq# Fragment ID Link count Bits

1.1.1.1 1610 0x80000144 0 1 B
2.2.2.2 1040 0x8000013A 0 1
10.0.0.2 1039 0x80000002 0 1
Net Link States (Area 0.0.0.0)
ADV Router Age Seq# Link ID Rtr count
--
2.2.2.2 1045 0x80000001 5 2
Inter Area Router States (Area 0.0.0.0)
ADV Router Age Seq# Link ID Dest RtrID

1.1.1.1 1605 0x80000027 1 3.3.3.3
Link (Type-8) Link States (Area 0.0.0.0)
ADV Router Age Seq# Link ID Interface
--
1.1.1.1 1615 0x80000125 5 ethernet1/1/1
2.2.2.2 1369 0x8000011B 5 ethernet1/1/1
10.0.0.2 1044 0x80000001 5 ethernet1/1/1
Type-5 AS External Link States
ADV Router Age Seq# Prefix
--
3.3.3.3 3116 0x80000126 400::/64
3.3.3.3 3116 0x80000124 34::/64
```

Supported Releases

10.3.0E or later
**show ipv6 ospf interface**

Displays the configured OSPFv3 interfaces. You must enable OSPFv3 to display the output.

**Syntax**

```
show ipv6 ospf interface [vrf vrf-name]
```

**Parameters**

- **interface** — (Optional) Enter the interface information:
  - **ethernet** — Physical interface, from 1 to 48.
  - **port-channel** — Port-channel interface, from 1 to 128.
  - **vlan** — VLAN interface, from 1 to 4093.
- **vrf vrf-name** — (Optional) Enter the keyword vrf followed by the name of the VRF to display the configured OSPFv3 enabled interfaces in that VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Example**

```
OS10# show ipv6 ospf interface
ethernet1/1/1 is up, line protocol is up
 Link Local Address fe80::20c:29ff:fe0a:d59/64, Interface ID 5
 Area 0.0.0.0, Process ID 200, Instance ID 0, Router ID 10.0.0.2
 Network Type broadcast, Cost: 1
 Transmit Delay is 1 sec, State BDR, Priority 1
 BFD enabled(Interface level) Interval 300 Min_rx 300 Multiplier 3 Role Active
 Backup Designated router on this network is 2.2.2.2
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 2.2.2.2(Designated Router)
```

**Supported Releases**

10.3.0E or later

---

**show ipv6 ospf neighbor**

Displays a list of OSPFv3 neighbors connected to the local router.

**Syntax**

```
show ipv6 ospf [vrf vrf-name] neighbor
```

**Parameters**

- **vrf vrf-name** — Enter the keyword vrf followed by the name of the VRF to display a list of OSPFv3 neighbors in that VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

- **Neighbor ID** — Displays the neighbor router ID.
- **Pri** — Displays the priority assigned neighbor.
- **State** — Displays the OSPF state of the neighbor.
- **Dead Time** — Displays the expected time until the system declares the neighbor dead.
- **Interface ID** — Displays the neighbor interface ID
- **Interface** — Displays the interface type, node/slot/port or number information.

**Example**

```
OS10(conf-if-eth1/1/1)# show ipv6 ospf neighbor
Neighbor ID Pri State Dead Time Interface ID Interface
```

---

486   Layer 3
2.2.2.2       1       Full/DR   00:00:30    5             ethernet1/1/1

Supported Releases 10.3.0E or later

**show ipv6 ospf statistics**

Displays OSPFv3 traffic statistics.

**Syntax**

`show ipv6 ospf [instance-number] statistics [interface interface]`

**Parameters**

- `instance-number` — (Optional) Enter an OSPFv3 instance number, from 1 to 65535.
- `interface interface` — (Optional) Enter the interface information:
  - `ethernet node/slot/port[:subport]` — Enter an Ethernet port interface.
  - `port-channel number` — Enter the port-channel interface number, from 1 to 128.
  - `vlan vlan-id` — Enter the VLAN ID number, from 1 to 4093.

**Default** Not configured

**Command Mode** EXEC

**Usage Information** This command displays OSPFv3 traffic statistics for a specified instance or interface, or for all OSPFv3 instances and interfaces.

**Example**

```
OS10# show ipv6 ospf interface ethernet 1/1/1
```

```
Interface ethernet1/1/1
 Receive Statistics
 rx-invalid 0 rx-invalid-bytes 0
 rx-hello 0 rx-hello-bytes 0
 rx-db-des 0 rx-db-des-bytes 0
 rx-ls-req 0 rx-ls-req-bytes 0
 rx-ls-ack 0 rx-ls-ack-bytes 0
 Transmit Statistics
 tx-hello 1054 tx-hello-bytes 37944
 tx-db-des 0 tx-db-des-bytes 0
 tx-ls-req 0 tx-ls-req-bytes 0
 tx-ls-ack 0 tx-ls-ack-bytes 0
 Error packets (Receive statistics)
 bad-src 0 dupe-id 0 hello-err 0
 mtu-mismatch 0 nbr-ignored 0
 resource-err 0 bad-lsa-len 0 lsa-bad-type 0
 lsa-bad-len 0 lsa-bad-cksum 0
 hello-tmr-mismatch 0 dead-ivl-mismatch 0
 options-mismatch 0 nbr-admin-down 0 own-hello-drop 0
 self-orig 0 wrong-length 0
 version-mismatch 0 area-mismatch 0
```

Supported Releases 10.4.0E(R1) or later

**timers spf (OSPFv3)**

Enables shortest path first (SPF) throttling to delay an SPF calculation when a topology change occurs.

**Syntax**

`timers spf [start-time [hold-time [max-wait]]]`

**Parameters**

- `start-time` — Sets the initial SPF delay in milliseconds, from 1 to 600000; default 1000.
- **hold-time** — Sets the additional hold time between two SPF calculations in milliseconds, from 1 to 600000; default 10000.
- **max-wait** — Sets the maximum wait time between two SPF calculations in milliseconds, from 1 to 600000; default 10000.

**Default**
- **start-time** — 1000 milliseconds
- **hold-time** — 10000 milliseconds
- **max-wait** — 10000 milliseconds

**Command Mode** ROUTER-OSPFv3

**Usage Information** OSPFv2 and OSPFv3 support SPF throttling. By default, SPF timers are disabled in an OSPF instance.

Use SPF throttling to delay SPF calculations during periods of network instability. In an OSPF network, a topology change event triggers an SPF calculation after a specified start time. When the start timer finishes, a hold time may delay the next SPF calculation for an additional time. When the hold timer is running:

- Each time a topology change occurs, the SPF calculation delays for double the configured hold time up to maximum wait time.
- If no topology change occur, an SPF calculation performs and the hold timer resets to its configured value.

If you do not specify a start-time, hold-time, or max-wait value, the default values are used. The no version of this command removes the configured SPF timers and disables SPF throttling in an OSPF instance.

**Example**

```
OS10(config)# router ospfv3 100
OS10(config-router-ospfv3-100)# timers spf 1345 2324 9234
```

```
OS10(config-router-ospfv3-100)# do show ipv6 ospf
Routing Process ospfv3 100 with ID 129.240.244.107
SPF schedule delay 1345 msecs, Hold time between two SPFs 2324 msecs
Min LSA origination 5000 msec, Min LSA arrival 1000 msec
Min LSA hold time 0 msec, Max LSA wait time 0 msec
Number of area in this router is 1, normal 1 stub 0 nssa
Area (0.0.0.1)
Number of interface in this area is 1
SPF algorithm executed 2 times
```

**Supported Releases** 10.4.0E(R1) or later

---

**Object tracking manager**

OTM allows you to track the link status of Layer 2 (L2) interfaces, and the reachability of IPv4 and IPv6 hosts. You can increase the availability of the network and shorten recovery time if an object state goes Down.

Object tracking monitors the status of tracked objects and communicates any changes made to interested client applications. OTM client applications are virtual router redundancy protocol (VRRP) and policy-based routing (PBR). Each tracked object has a unique identifying number that clients use to configure the action to take when a tracked object changes state. You can also optionally specify a time delay before changes in a tracked object's state report to a client application.

VRRP subscribes to a track object which tracks the interface line protocol state. It uses the tracked object status to determine the priority of the VRRP router in a VRRP group. If a tracked state or interface goes down, VRRP updates the priority based on how you configure the new priority for the tracked state. When the tracked state comes up, VRRP restores the original priority for the virtual router group.
Interface tracking

You can create an object that tracks the line-protocol state of an L2 interface, and monitors its operational up or down status. You can configure up to 500 objects. Each object is assigned a unique ID.

When the link-level status goes down, the tracked resource status is also considered Down. If the link-level status goes up, the tracked resource status is also considered Up. For logical interfaces such as port-channels or VLANs, the link-protocol status is considered Up if any physical interface under the logical interface is Up.

The list of available interfaces include:

- ethernet — Physical interface
- port-channel — Port-channel identifier
- VLAN — Virtual local area network (VLAN) identifier
- Loopback — Loopback interface identifier
Configure object tracking in CONFIGURATION mode, from 1 to 500.

track object-id

(Required) Enter interface object tracking on the line-protocol state of an L2 interface in OBJECT TRACKING mode.

interface interface line-protocol

(Required) Configure the time delay used before communicating a change to the status of a tracked interface in OBJECT TRACKING mode, from 0 to 80 seconds; default 0.

delay [up seconds] [down seconds]

(Optional) View the tracked object information in EXEC mode.

show track object-id

(Optional) View all interface object information in EXEC mode.

show track interface

(Optional) View all IPv4 or IPv6 next-hop object information in EXEC mode.

show track [ip | ipv6]

(Optional) View brief status of object information in EXEC mode.

show track brief

Configure object tracking

OS10(config)# track 1
OS10(conf-track-1)# interface ethernet 1/1/1 line-protocol
OS10(conf-track-1)# delay up 20
OS10(conf-track-1)# delay down 10
OS10(conf-track-1)# do show track 1
Interface ethernet1/1/1 line-protocol
Line protocol is UP
1 changes, Last change 2017-04-26T06:41:36Z

Host tracking

If you configure an IP host as a tracked object, the entry or next-hop address in the ARP cache determines the Up or Down state of the route.

A tracked host is reachable if there is an ARP cache entry for the router's next-hop address. An attempt to regenerate the ARP cache entry occurs if the next-hop address appears before considering the route Down.

Configure object tracking

OS10 (config)# track 2
OS10 (conf-track-2)# ip 1.1.1.1 reachability
OS10 (conf-track-2)# do show track 2
IP Host 1.1.1.1 reachability
Reachability is DOWN

Configure IPv4 host tracking

OS10 (conf-track-2)# track 2
OS10 (conf-track-2)# do show track 2
IP Host 1.1.1.1 reachability
Reachability is DOWN
Configure IPv6 host tracking

```
OS10 (conf-track-2)# track 3
OS10 (conf-track-3)# ipv6 20::20 reachability
OS10 (conf-track-3)# delay up 20
OS10 (conf-track-3)# do show track 3
IP Host 20::20 reachability
Reachability is DOWN
```

Set tracking delays

You can configure an optional Up or Down timer for each tracked object. The timer allows you to set the time delay before a change in the state of a tracked object communicates to the clients. The time delay starts when the state changes from Up to Down or from Down to Up.

If the state of an object changes back to its former Up or Down state before the timer expires, the timer is canceled without notifying the client. If the timer expires and an object’s state has changed, a notification is sent to the client. For example, if the Down timer is running and an interface goes down then comes back up, the Down timer is canceled. The client is not notified of the event.

If you do not configure a delay, a notification is sent when a change in the state of a tracked object is detected. The time delay in communicating a state change is specified in seconds.

Object tracking

As a client, VRRP can track up to 20 interface objects plus 12 tracked interfaces supported for each VRRP group. You can assign a unique priority-cost value, from 1 to 254, to each tracked VRRP object or group interface.

If a tracked VRRP object is in a Down state, the priority cost is subtracted from the VRRP group priority. If a VRRP group router acts as owner-master, the run-time VRRP group priority remains fixed at 255. Changes in the state of a tracked object have no effect.

In VRRP object tracking, the sum of the priority costs for all tracked objects and interfaces cannot equal or exceed the priority of the VRRP group.

View tracked objects

You can view the status of currently tracked L2 or L3 interfaces, or the IPv4 or IPv6 hosts.

View brief object tracking information

```
OS10# show track brief
TrackID Resource Parameter Status LastChange

1 line-protocol ethernet1/1/1 DOWN 2017-02-03T08:41:25Z
2 ipv4-reachability 1.1.1.1 DOWN 2017-02-03T08:41:43Z
3 ipv6-reachability 20::20 DOWN 2017-02-03T08:41:55Z
```

View all object tracking information

```
OS10# show track
```
View interface object tracking information

OS10# show track interface
TrackID Resource Parameter Status LastChange
1 line-protocol ethernet1/1/1 DOWN 2017-02-03T08:41:25Z

OS10# show track ip
TrackID Resource Parameter Status LastChange
2 ipv4-reachability 1.1.1.1 DOWN 2017-02-03T08:41:43Z

OS10# show track ipv6
TrackID Resource Parameter Status LastChange
3 ipv6-reachability 10::10 DOWN 2017-02-03T08:41:55Z

View IPv4 next-hop object tracking
OS10# show track ip

View IPv6 next-hop object tracking
OS10# show track ipv6

View running configuration
OS10# show running-configuration

**OTM commands**

**delay**

Configures the delay timers.

**Syntax**

```
delay {up | down} seconds
```

**Parameters**

```
seconds — Enter the delay time in seconds. A maximum of 180 characters.
```

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

None

**Example**

```
OS10(conf-track-100)# delay up 200 down 100
```

**Supported Releases**

10.3.0E or later

**interface line-protocol**

Configures an object to track a specific interface's line-protocol status.

**Syntax**

```
interface interface line-protocol
```

**Parameters**

```
interface — Enter the interface information:
```

- ethernet — Physical interface.
- port-channel — Enter the port-channel identifier.
- vlan — Enter the VLAN identifier.
- loopback — Enter the Loopback interface identifier.
- `mgmt` — Enter the Management interface.

**Defaults**
- Not configured

**Command Mode**
- CONFIGURATION

**Usage Information**
- None

**Example**
```
OS10(conf-track-100)# interface ethernet line-protocol
```

**Supported Releases**
- 10.3.0E or later

### ip reachability

Configures an object to track a specific next-hop host's reachability.

**Syntax**
```
ip host-ip-address reachability
```

**Parameters**
- `host-ip-address` — Enter the IPv4 host address.

**Defaults**
- Not configured

**Command Mode**
- CONFIGURATION

**Usage Information**
- None

**Example**
```
OS10(config)# track 100
OS10(conf-track-100)# ip 10.10.10.1 reachability
```

**Supported Releases**
- 10.3.0E or later

### ipv6 reachability

Configures an object to track a specific next-hop host's reachability.

**Syntax**
```
ipv6 host-ip-address reachability
```

**Parameters**
- `host-ip-address` — Enter the IPv6 host address.

**Defaults**
- Not configured

**Command Mode**
- CONFIGURATION

**Usage Information**
- None

**Example**
```
OS10(config)# track 200
OS10(conf-track-200)# ipv6 10::1 reachability
```

**Supported Releases**
- 10.3.0E or later

### reachability-refresh

Configures a polling interval for reachability tracking.

**Syntax**
```
reachability-refresh interval
```

**Parameters**
- `interval` — Enter the polling interval value. A maximum of 3600 seconds.

**Defaults**
- 0 seconds
Command Mode CONFIGURATION

Usage Information Set the interval to 0 to disable the refresh.

Example
OS10(conf-track-100)# reachability-refresh 600

Supported Releases 10.3.0E or later

**show track**

Displays tracked object information.

**Syntax**

```
show track [brief] [object-id] [interface] [ip | ipv6]
```

**Parameters**

- `brief` — (Optional) Displays brief tracked object information.
- `object-id` — (Optional) Displays tracked object information for a specific object ID.
- `interface` — (Optional) Displays all interface object information.
- `ip` — (Optional) Displays all IPv4 next-hop object information.
- `ipv6` — (Optional) Displays all IPv6 next-hop object information.

**Defaults**

None

**Command Mode** CONFIGURATION

**Usage Information** None

**Example (Brief)**

```
OS10# show track brief
+--------+----------------+---------------+-------+---------------------------+
| TrackID| Resource | Parameter | Status| LastChange |
|--------+----------------+---------------+-------+---------------------------+
| 1 | line-protocol | ethernet1/1/1 | DOWN | 2017-02-03T08:41:25Z1 |
| 2 | ipv4-reachablity | 1.1.1.1 | DOWN | 2017-02-03T08:41:43Z1 |
| 3 | ipv6-reachablity | 10::10 | DOWN | 2017-02-03T08:41:55Z1 |
```

**Supported Releases** 10.3.0E or later

**track**

Configures and manages tracked objects.

**Syntax**

```
track object-id
```

**Parameters**

- `object-id` — Enter the object ID to track. A maximum of 500.

**Defaults**

Not configured

**Command Mode** CONFIGURATION

**Usage Information** The no version of this command deletes the tracked object from an interface.

**Example**

```
OS10# track 100
```

**Supported Releases** 10.3.0E or later
Policy-based routing

PBR provides a mechanism to redirect IPv4 and IPv6 data packets based on the policies defined to override the switch’s forwarding decisions based on the routing table.

Policy-based route-maps

A route-map is an ordered set of rules that controls the redistribution of IP routes into a protocol domain. When you enable PBR on an interface, all IPv4 or IPv6 data packets process based on the policies that you define in the route-maps. The rules defined in route-maps are based on access control lists (ACLs) and next-hop addresses, and only apply to ACLs used in policy-based routing.

You can create a route-map that specifies the match criteria and resulting action if all the match clauses are met. After you create the route-map, you can enable PBR for that route-map on a specific interface. Route-maps contain match and set statements that you can mark as permit.

Access-list to match route-map

You can assign an IPv4 or IPv6 access-list to match a route-map. The IP access list contains the criteria to match the traffic content based on the header field, such as the destination IP or source IP.

When permit or deny is present in the access-list, it is omitted and the action present in the route-map command is used for policy-based routing. The permit keyword in the route-map statement indicates policy-based routing. The deny keyword in the route-map statement indicates a switch-based forwarding decision, a PBR exception. Only use access list for the packet match criteria in policy-based routing.

1. Assign an access-list to match the route-map in CONFIGURATION mode.
   
   ```bash
 ip access-list access-list-name
   ```

2. Set the IP address to match the access-list in IP-ACL mode.
   
   ```bash
 permit ip ip-address
   ```

Configure IPv4 access-list to match route-map

OS10(config)# ip access-list acl5
OS10(config-if)# permit ip 10.10.10.0/24 any

Configure IPv6 access-list to match route-map

OS10(config)# ipv6 access-list acl8
OS10(config-if)# permit ipv6 10::10 any

Set address to match route-map

You can set an IPv4 or IPv6 address to match a route-map.

1. Enter the IPv4 or IPv6 address to match and specify the access-list name in Route-Map mode.
   
   ```bash
 match {ip | ipv6} address access-list-name
   ```

2. Set the next-hop IP address in Route-Map mode.
   
   ```bash
 set {ip | ipv6} next-hop ip-address
   ```
Apply match and set parameters to IPv4 route-map
OS10(conf-route-map)# route-map map1
OS10(conf-route-map)# match ip address acl5
OS10(conf-route-map)# set ip next-hop 10.10.10.10

Apply match and set parameters to IPv6 route-map
OS10(conf-route-map)# route-map map1
OS10(conf-route-map)# match ipv6 address acl8
OS10(conf-route-map)# set ipv6 next-hop 20::20

Assign route-map to interface
You can assign a route-map to an interface for IPv4 or IPv6 policy-based routing to an interface.

• Assign the IPv4 or IPv6 policy-based route-map to an interface in INTERFACE mode.

  {ip | ipv6} policy route-map map-name

Assign route-map to an IPv4 interface
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# ip policy route-map map1

Assign route-map to an IPv6 interface
OS10(conf-if-eth1/1/5)# ipv6 policy route-map map2

View PBR information
Display PBR information to verify IPv4 or IPv6 configuration and view statistics.

1 View IPv4 or IPv6 PBR policy information in EXEC mode.
   show {ip | ipv6} policy name
2 View current PBR statistics in EXEC mode.
   show route-map map-name pbr-statistics
3 Clear all policy statistics information in EXEC mode.
   clear route-map map-name pbr-statistics

Verify IPv4 PBR configuration
OS10# show ip policy abc
Interface Route-map
---------------------
eternet1/1/1  abc
eternet1/1/3  abc
vlan100      abc

Verify IPv6 PBR configuration
OS10# show ipv6 policy abc
Interface Route-map
---------------------
eternet1/1/1  abc
eternet1/1/3  abc
vlan100      abc

View current PBR statistics
show route-map pbr-sample pbr-statistics
route-map pbr-sample, permit, sequence 10
**PBR commands**

**clear route-map pbr-statistics**

Clears all PBR counters.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>clear route-map [map-name] pbr-statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>map-name—Enter the name of a configured route-map. A maximum of 140 characters.</td>
</tr>
<tr>
<td>Defaults</td>
<td>None</td>
</tr>
<tr>
<td>Command Mode</td>
<td>EXEC</td>
</tr>
<tr>
<td>Usage Information</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>OS10# clear route-map map1 pbr-statistics</td>
</tr>
<tr>
<td>Supported Releases</td>
<td>10.3.0E or later</td>
</tr>
</tbody>
</table>

**match address**

Matches the access-list to the route-map.

| Syntax             | match {ip | ipv6} address [name] |
|--------------------|--------------------------------|
| Parameters         | name—Enter the name of an access-list. A maximum of 140 characters. |
| Defaults           | Not configured                |
| Command Mode       | ROUTE-MAP                     |
| Usage Information  | None                          |
| Example            | OS10(conf-route-map)# match ip address acl1 |
| Supported Releases | 10.3.0E or later              |

**policy route-map**

Assigns a route-map for IPv4 or IPv6 policy-based routing to the interface.

| Syntax             | {ip | ipv6} policy route-map [map-name] |
|--------------------|--------------------------------------|
| Parameters         | map-name—Enter the name of a configured route-map. A maximum of 140 characters. |
| Defaults           | Not configured                        |
| Command Mode       | INTERFACE                             |
| Usage Information  | None                                  |
| Example            | OS10(config)# interface ethernet 1/1/1 |
|                    | OS10(config-if-eth1/1/1)# ip policy route-map map1 |
**Supported Releases**
10.3.0E or later

### route-map pbr-statistics

Enables counters for PBR statistics.

**Syntax**

```
route-map [map-name] pbr-statistics
```

**Parameters**

- `map-name`—Enter the name of a configured route-map. A maximum of 140 characters.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

None

**Example**

```
OS10(config)# route-map map1 pbr-statistics
```

**Supported Releases**
10.3.0E or later

### set next-hop

Sets an IPv4 or IPv6 next-hop address for policy-based routing.

**Syntax**

```
set {ip | ipv6} next-hop address
```

**Parameters**

- `address`—Enter the next-hop IPv4 or IPv6 address.

**Defaults**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

None

**Example**

```
OS10(conf-route-map)# set ip next-hop 10.10.10.10
```

**Supported Releases**
10.3.0E or later

### set next-hop track

Sets the next-hop IPv4 or IPv6 address to track the PBR object.

**Syntax**

```
set {ip | ipv6} next-hop address track track-id
```

**Parameters**

- `address`—Enter an IPv4 or IPv6 address.
- `track-id`—(Optional) Enter the track ID of the PBR object.

**Defaults**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

None

**Example**

```
OS10(conf-route-map)# set ip next-hop 10.10.10.10 track-id 12
```

**Supported Releases**
10.3.0E or later
show policy

Displays policy information.

**Syntax**
```
show {ip | ipv6} policy [map-name]
```

**Parameters**
- `map-name` — (Optional) Enter the name of a configured route map. A maximum of 140 characters.

**Defaults**
None

**Command Mode**
EXEC

**Usage Information**
None

**Example**
```
OS10# show ip policy map-name
```

**Supported Releases**
10.3.0E or later

show route-map pbr-statistics

Displays the current PBR statistics.

**Syntax**
```
show route-map [map-name] pbr-statistics
```

**Parameters**
- `map-name` — (Optional) Enter the name of a configured route map. A maximum of 140 characters.

**Defaults**
None

**Command Mode**
EXEC

**Usage Information**
None

**Example**
```
OS10# show route-map map1 pbr-statistics
```

**Supported Releases**
10.3.0E or later

**Virtual Router Redundancy Protocol**

VRRP allows you to form virtual routers from groups of physical routers on your local area network (LAN). These virtual routing platforms — master and backup pairs — provide redundancy in case of hardware failure. VRRP also allows you to easily configure a virtual router as the default gateway to all your hosts and avoids the single point of failure of a physical router.

VRRP:
- Provides a virtual default routing platform
- Provides load balancing
- Supports multiple logical IP subnets on a single LAN segment
- Enables simple traffic routing without the single point of failure of a static default route
- Avoids issues with dynamic routing and discovery protocols
- Takes over a failed default router:
  - Within a few seconds
  - With a minimum of VRRP traffic
  - Without any interaction from hosts

Layer 3 499
VRRP specifies a master, or active, router that owns the next-hop IP and MAC address for end stations on a LAN. The master router is chosen from the virtual routers by an election process and forwards packets sent to the next-hop IP address. If the master router fails, VRRP begins the election process to choose a new master router which continues routing traffic.

VRRP packets transmit with the virtual router MAC address as the source MAC address. The virtual router MAC address associated with a virtual router is in 00:00:5E:00:01:{VRID} format for IPv4 and 00:00:5E:00:02:{VRID} format for IPv6. The VRID is the virtual router identifier that allows up to 255 IPv4 and IPv6 VRRP routers on a network. The first four octets are unquenchable, the last two octets are 01:{VRID} for IPv4 and 02:{VRID} for IPv6. The final octet changes depending on the VRRP virtual router identifier.

**Basic VRRP Configuration**

The example shows a typical network configuration using VRRP. Instead of configuring the hosts on network 10.10.10.0 with the IP address of either Router A or Router B as the default router, the default router of all hosts is set to the IP address of the virtual router. When any host on the LAN segment requests Internet access, it sends packets to the IP address of the virtual router.

Router A is configured as the master router with the virtual router IP address and sends any packets addressed to the virtual router to the Internet. Router B is the backup router and is also configured with the virtual router IP address.

If Router A, the master router, becomes unavailable, Router B, the backup router, automatically becomes the master router and responds to packets sent to the virtual IP address. All workstations continue to use the IP address of the virtual router to transmit packets destined to the Internet. Router B receives and forwards packets on interface ethernet 1/1/5. Until Router A resumes operation, VRRP allows Router B to provide uninterrupted service to the users on the LAN segment accessing the Internet.
Create virtual router

VRRP uses the VRID to identify each virtual router configured. Before using VRRP, you must configure the interface with the primary IP address and enable it.

• Create a virtual router for the interface with the VRRP identifier in INTERFACE mode, from 1 to 255.
  
  vrrp-group vrrp-id

• Delete a VRRP group in INTERFACE mode.
  
  no vrrp-group vrrp-id

Configure VRRP

OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# vrrp-group 254

Verify VRRP

OS10(conf-eth1/1/5-vrid-254)# do show running-configuration
...
! interface ethernet 1/1/5
ip address 10.10.10.1/24
! vrrp-group 254
no shutdown
...

Group version

Configure a VRRP version for the system. Define either VRRPv2 — vrrp version 2 or VRRPv3 — vrrp version 3.

• Configure the VRRP version for IPv4 in INTERFACE mode.
  
  vrrp version

Configure VRRP version 3

OS10(config)# vrrp version 3

1. Set the switch with the lowest priority to vrrp version 2.
2. Set the switch with the highest priority to vrrp version 3.
3. Set all switches from vrrp version 2 to vrrp version 3.

Migrate IPv4 group from VRRPv2 to VRRPv3

OS10_backup_switch1(config)# vrrp version 2
OS10_backup_switch2(config)# vrrp version 2

Set master switch to VRRPv3

OS10_master_switch(config)# vrrp version 3

Set backup switches to VRRPv3

OS10_backup_switch1(config)# vrrp version 3
OS10_backup_switch2(config)# vrrp version 3
Virtual IP addresses

Virtual routers contain virtual IP addresses configured for that VRRP group (VRID). A VRRP group does not transmit VRRP packets until you assign the virtual IP address to the VRRP group.

To activate a VRRP group on an interface, configure at least one virtual IP address for a VRRP group. The virtual IP address is the IP address of the virtual router and does not require an IP address mask. You can configure up to 10 virtual IP addresses on a single VRRP group (VRID).

These rules apply to virtual IP addresses:

- The virtual IP addresses must be in the same subnet as the primary or secondary IP addresses configured on the interface. Though a single VRRP group can contain virtual IP addresses belonging to multiple IP subnets configured on the interface, Dell EMC recommends configuring virtual IP addresses belonging to the same IP subnet for any one VRRP group. An interface on which you enable VRRP contains a primary IP address of 50.1.1.24 and a secondary IP address of 60.1.1.24. The VRRP group (VRID 1) must contain virtual addresses belonging to subnet 50.1.1.0/24 or subnet 60.1.1.0/24.
- If the virtual IP address and the interface’s primary/secondary IP address are the same, the priority of the VRRP group is set to 255 by default. The interface then becomes the owner router of the VRRP group and the interface’s physical MAC address changes to that of the owner VRRP group’s MAC address.
- If you configure multiple VRRP groups on an interface, only one of the VRRP groups can contain the interface primary or secondary IP address.

Configure virtual IP address

Configure the virtual IP address — the primary IP address and the virtual IP addresses must be on the same subnet.

1. Configure a VRRP group in INTERFACE mode, from 1 to 255.
   ```config
 vrrp-group vrrp-id
   ```

2. Configure virtual IP addresses for this VRRP ID in INTERFACE-VRRP mode. A maximum of 10 IP addresses.
   ```config
 virtual-address ip-address1 [...ip-address10]
   ```

Configure virtual IP address

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 10.1.1.1/24
OS10(conf-if-eth1/1/1)# vrrp-group 10
OS10(conf-eth1/1/1-vrid-10)# virtual-address 10.1.1.8

Verify virtual IP address

OS10# show running-configuration
! Version 10.1.9999P.2281
! Last configuration change at Jul 26 12:01:58 2016
!
aaa authentication system:local
!
interface ethernet1/1/1
  ip address 10.1.1.1/24
  no switchport
  no shutdown
  vrrp-group 10
  virtual-address 10.1.1.8
!
interface ethernet1/1/2
  switchport access vlan 1
  no shutdown
!
interface ethernet1/1/3
  switchport access vlan 1
  no shutdown

interface ethernet1/1/4
  switchport access vlan 1

View VRRP information

When the VRRP process completes initialization, the State field contains either master or backup.

OS10# show vrrp brief
Interface      Group   Priority  Preemption  State Master-addr  Virtual addr(s)
----------------------------------------------------------------------------
ethernet1/1/1  IPv4 10 100       true       master 10.1.1.8    10.1.1.8

View VRRP group 1

OS10# show vrrp 1
Interface : ethernet1/1/1    IPv4 VRID : 1
Primary IP Address : 10.1.1.1    State : master-state
Virtual MAC Address : 00:00:5e:00:01:01
Version : version-3    Priority : 100
Preempt :     Hold-time : 0
Authentication : no-authentication
Virtual IP address :
10.1.1.1
master-transitions : 1   advertise-rcvd : 0
advertise-interval-errors : 0   ip-ttl-errors : 0
priority-zero-pkts-rcvd : 0   priority-zero-pkts-sent : 0
invalid-type-pkts-rcvd : 0   address-list-errors : 0
pkt-length-errors : 0

Configure virtual IP address in a VRF

You can configure a VRRP group in a non-default VRF instance and assign a virtual address to this group. To configure VRRP under a specific VRF:

1  Create the non-default VRF in which you want to configure VRRP.
   ip vrf vrf-name

   CONFIGURATION Mode

2  In the VRF Configuration mode, enter the desired interface.
   interface interface-id

   VRF CONFIGURATION Mode

3  Remove the interface from L2 switching mode.
   no switchport

   INTERFACE CONFIGURATION Mode

4  Assign the interface to the non-default VRF that you have created.
   ip vrf forwarding vrf-name

   INTERFACE CONFIGURATION Mode

5  Assign an IP address to the interface.
   ip address ip-address

   INTERFACE CONFIGURATION Mode
Configure a VRRP group.

```
vrrp-group group-id
```

**INTERFACE CONFIGURATION Mode**

7 Configure virtual IP address for the VRRP ID.

```
virtual-address ip-address
```

**INTERFACE VRRP Mode**

OS10(config)# ip vrf vrf-test
OS10(config-vrf)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip vrf forwarding vrf-test
OS10(conf-if-eth1/1/1)# ip address 10.1.1.1/24
OS10(conf-if-eth1/1/1)# vrrp-group 10
OS10(conf-eth1/1/1-vrid-10)# virtual-address 10.1.1.8

Before removing an interface from a VRF, delete the configured VRRP groups from the interface associated with the VRF. If you do not delete the configured VRRP groups, these groups remain active on the default VRF resulting in duplicate virtual IP address configurations.

**Set group priority**

The router that has the highest primary IP address of the interface becomes the master. The default priority for a virtual router is 100. If the master router fails, VRRP begins the election process to choose a new master router based on the next-highest priority. The virtual router priority is automatically set to 255, if any of the configured virtual IP addresses matches the interface IP address.

1. Create a virtual router for the interface with the VRRP identifier in INTERFACE mode, from 1 to 255.

```
vrrp-group vrrp-id
```

2. Configure the priority number for the VRRP group in INTERFACE-VRRP mode, from 1 to 254, default 100.

```
priority number
```

**Set VRRP group priority**

OS10(config)# interface ethernet 1/1/5
OS10(config-if-eth1/1/5)# vrrp-group 254
OS10(conf-if-eth1/1/5-vrid-254)# priority 200

**Verify VRRP group priority**

OS10(conf-eth1/1/5-vrid-254)# do show vrrp 254

```
Interface : ethernet1/1/5 IPv4 VRID : 254
Primary IP Address : 10.1.1.1 State : master-state
Virtual MAC Address : 00:00:5e:00:01:01
Version : version-3 Priority : 200
Preempt : Hold-time :
Authentication : no-authentication
Virtual IP address :
master-transitions : 1 advertise-rcvd : 0
advertise-interval-errors : 0 ip-ttl-errors : 0
priority-zero-pkts-rcvd : 0 priority-zero-pkts-sent : 0
invalid-type-pkts-rcvd : 0 address-list-errors : 0
pkt-length-errors : 0
```
Authentication

Simple authentication of VRRP packets ensures that only trusted routers participate in VRRP processes. When you enable authentication, OS10 includes the password in its VRRP transmission. The receiving router uses that password to verify the transmission.

You must configure all virtual routers in the VRRP group with the same password. You must enable authentication with the same password or authentication is disabled. Authentication for VRRPv3 is not supported.

1. Create a virtual router for the interface with the VRRP identifier in INTERFACE mode, from 1 to 255.
   
   ```
 vrrp-group vrrp-id
   ```

2. Configure a simple text password in INTERFACE-VRRP mode.
   
   ```
 authentication-type simple-text text
   ```
   
   `simple-text text` — Enter the keyword and a simple text password.

Configure VRRP authentication

```
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# vrrp-group 250
OS10(conf-eth1/1/5-vrid-250)# authentication simple-text eureka
```

Verify VRRP authentication configuration

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# vrrp-group 1
OS10(conf-eth1/1/1-vrid-1)# authentication simple-text dell
```

Disable preempt

Prevent the Backup router with the higher priority from becoming the master router by disabling the preemption process. The `preempt` command is enabled by default. The command forces the system to change the master router if another router with a higher priority comes online.

You must configure all virtual routers in the VRRP group with the same settings. Configure all routers with preempt enabled or configure all with preempt disabled.

1. Create a virtual router for the interface with the VRRP identifier in INTERFACE mode, from 1 to 255.
   
   ```
 vrrp-group vrrp-id
   ```

2. Prevent any backup router with a higher priority from becoming the Master router in INTERFACE-VRRP mode.
   
   ```
 no preempt
   ```

Disable preempt

```
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# vrrp-group 254
OS10(conf-eth1/1/5-vrid-254)# no preempt
```

View running configuration

```
OS10(conf-eth1/1/5-vrid-254)# do show running-configuration
! Version 10.2.0E
! Last configuration change at Sep 24 07:17:45 2016
! debug radius false
snmp-server contact http://www.dell.com/support/softwarecontacts
snmp-server location "United States"
username admin password 6q9QBeYj2SjfxzVqGhkxX3sxmXJSH9DDz7/3OJc6m5wjF8nnLD7/VKx8Sl0Ihp4NoG2s0I/
```
UNwh8WVuxwfd9q4pWlgs5BKH.

aaa authentication system:local
!
interface ethernet1/1/5
  ip address 1.1.1.1/16
  no switchport
  no shutdown
  !
  vrrp-group 254
  priority 125
  virtual-address 1.1.1.3
  no preempt
!

Advertisement interval

By default, the master router transmits a VRRP advertisement to all members of the VRRP group every one second, indicating it is operational and is the master router.

If the VRRP group misses three consecutive advertisements, the election process begins and the backup virtual router with the highest priority transitions to master. To avoid throttling VRRP advertisement packets, Dell EMC recommends increasing the VRRP advertisement interval to a value higher than the default value of one second. If you change the time interval between VRRP advertisements on one router, change it on all participating routers.

If you configure VRRP version 2, you must configure the timer values in multiple of whole seconds. For example, a timer value of 3 seconds or 300 centisecs is valid and equivalent. A time value of 50 centisecs is invalid because it not a multiple of 1 second. If you are using VRRP version 3, you must configure the timer values in multiples of 25 centisecs. A centisecs is 1/100 of a second.

- Create a virtual router for the interface with the VRRP identifier in INTERFACE mode, from 1 to 255.
  
  `vrrp-group vrrp-id`

- For VRRPv2, change the advertisement interval setting in seconds in INTERFACE-VRRP mode, from 1 to 255, default 1.
  
  `advertise-interval seconds`

- For VRRPv3, change the advertisement centisecs interval setting INTERFACE-VRRP mode, from 25 to 4075, default 100.
  
  `advertise-interval centisecs centisecs`

Change advertisement interval

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# vrrp-group 1
OS10(conf-eth1/1/1-vrid-1)# advertise-interval centisecs 200

View running configuration

OS10(conf-eth1/1/1-vrid-1)# do show running-configuration

! Version 10.1.9999P.2281
! Last configuration change at Jul  26 12:22:33 2016
!
aaa authentication system:local
!
interface ethernet1/1/1
  ip address 10.1.1.1/16
  no switchport
  no shutdown
  !
  vrrp-group 1
    advertisement-interval centisecs 200
    priority 200
    virtual-address 10.1.1.1
  !
interface ethernet1/1/2
Interface/object tracking

You can monitor the state of any interface according to the virtual group. OS10 supports a maximum of 10 track groups and each track group can track only one interface.

If the tracked interface goes down, the VRRP group’s priority decreases by a default value of 10 — also known as cost. If the tracked interface’s state goes up, the VRRP group’s priority increases by the priority cost.

The lowered priority of the VRRP group may trigger an election. As the master/backup VRRP routers are selected based on the VRRP group’s priority, tracking features ensure that the best VRRP router is the master for that group. The priority cost of the tracking group must be less than the configured priority of the VRRP group. If you configure the VRRP group as the owner router with a priority 255, tracking for that group is disabled, regardless of the state of the tracked interfaces. The priority of the owner group always remains 255.

For a virtual group, track the line-protocol state of any interface using the interface command. Enter an interface type and node/slot/port[:subport] information, or VLAN number:

- ethernet — Physical interface, from 1 to 48
- vlan — VLAN interface, from 1 to 4093

For a virtual group, track the status of a configured object using the track command and the object number. You can also configure a tracked object for a VRRP group with this command before you create the tracked object. No changes in the VRRP group’s priority occur until the tracked object is determined to be down.

Configure tracking

To track the objects in a VRRP group or on interfaces, use these commands. The sum of all the costs for all tracked interfaces must be less than the configured priority of the VRRP group.

1. Assign an object tracking unique ID number in CONFIGURATION mode, from 1 to 500.
   
   ```
 track track-id
   ```

2. Monitor an interface in Track CONFIGURATION mode.

   ```
 interface ethernet node/slot/port[:subport]
   ```

Configure interface tracking

```
OS10(config)# track 10
OS10(conf-track-10)# interface ethernet 1/1/5 line-protocol
```
To associate a track object with a VRRP group, use the `track` command inside VRRP GROUP CONFIGURATION mode.

**VRRP commands**

**advertise-interval**

Sets the time interval between VRRP advertisements.

**Syntax**

```
advertise-interval [seconds | centisecs centisecs]
```

**Parameters**

- `seconds` — Set the advertise interval in seconds, from 1 to 255.
- `centisecs centisecs` — (Optional) Enter a value in multiples of 25, from 25 to 4075.

**Default**

1 second or 100 centisecs

**Command Mode**

INTERFACE-VRRP

**Usage Information**

Dell EMC recommends keeping the default setting for this command. If you change the time interval between VRRP advertisements on one router, change it on all routers. The `no` version of this command sets the VRRP advertisements timer interval back to its default value, 1 second or 100 centisecs.

**Example**

```
OS10(conf-eth1/1/6-vrid-250)# advertise-interval 120 centisecs 100
```

**Supported Releases**

10.2.0E or later
**authentication-type**

Enables authentication of VRRP data exchanges.

**Syntax**

```
authentication-type simple-text password
```

**Parameters**

- `simple-text password` — Enter a simple text password.

**Default**

Disabled

**Command Mode**

INTERFACE-VRRP

**Usage Information**

With authentication enabled, OS10 ensures that only trusted routers participate in routing in an autonomous network. The `no` version of this command disables authentication of VRRP data exchanges.

**Example**

```
OS10(conf-ethernet1/1/6-vrid-250)# authentication simple-text eureka
```

**Supported Releases**

10.2.0E or later

---

**preempt**

Permits or preempts a backup router with a higher priority value to become the master router.

**Syntax**

```
preempt
```

**Parameters**

None

**Default**

Enabled

**Command Mode**

INTERFACE-VRRP

**Usage Information**

VRRP uses preempt to determine what happens after a VRRP backup router becomes the master. With preempt enabled by default, VRRP switches to a backup if that backup router comes online with a priority higher than the new master router. If you disable preempt, VRRP switches only if the original master recovers or the new master fails. The `no` version of this command disables preemption.

**Example**

```
OS10(conf-eth1/1/5-vrid-254)# preempt
```

**Supported Releases**

10.2.0E or later

---

**priority**

Assigns a VRRP priority value for the VRRP group. The VRRP uses this value during the master election process.

**Syntax**

```
priority number
```

**Parameters**

- `number` — Enter a priority value, from 1 to 254.

**Default**

100

**Command Mode**

INTERFACE-VRRP

**Usage Information**

To guarantee that a VRRP group becomes master, configure the priority of the VRRP group to the 254, which is the highest priority or configure the VRRP group’s virtual IP address with same IP address as the interface’s primary IP address. If you set the priority to 254 and the virtual-address is not equal to the interface’s primary IP address, the system displays an error message. The `no` version of this command resets the value to the default of 100.
show vrrp

Displays VRRP group information.

Syntax

```
show vrrp [vrf vrf-name] {brief | vrrp-id | ipv6 group-id}
```

Parameters

- `vrf vrf-name` — Displays the VRRP group information corresponding to the specified VRF.
- `brief` — Displays the configuration information for all VRRP instances in the system.
- `vrrp-id` — Enter a VRRP group ID number to view the VRRP IPv4 group operational status information, from 1 to 255.
- `ipv6 group-id` — (Optional) Enter a VRRP group ID number to view the specific IPv6 group operational status information, from 1 to 255.

Default

All IPv4 VRRP group configuration

Command Mode

EXEC

Usage Information

Displays all active VRRP groups. If no VRRP groups are active, the system displays No Active VRRP group.

Example (Brief)

```
OS10 # show vrrp brief
Interface Group Priority Preemption State Master-addr Virtual addr(s)

ethernet1/1/1 1 200 true master-state 10.1.1.1 10.1.1.1
```

Example (IPv6)

```
OS10 # show vrrp ipv6 1
Interface : ethernet1/1/1 IPv6 VRID : 1
Primary IP Address : 10::1 State : master-state
Virtual MAC Address : 00:00:5e:00:02:01
Version : version-3 Priority : 200
Preempt : Hold-time :
Authentication : no-authentication
Virtual IP address :
10::1
master-transitions : 1 advertise-rcvd : 0
advertise-interval-errors : 0 ip-ttl-errors : 0
priority-zero-pkts-rcvd : 0 priority-zero-pkts-sent : 0
invalid-type-pkts-rcvd : 0 address-list-errors : 0
pkt-length-errors : 0
```

Supported Releases

10.2.0E or later

track

Assigns a unique identifier to track an object.

Syntax

```
track track-id [priority cost [value]]
```

Parameters

- `track-id` — Enter the object tracking resource ID number, from 1 to 500.
- `priority cost value` — (Optional) Enter a cost value to subtract from the priority value, from 1 to 254.

Default

10
Command Mode INTERFACE-VRRP

Usage Information If you disable the interface, the cost value subtracts from the priority value and forces a new master election. This election process is applicable when the priority value is lower than the priority value in the backup virtual router. The no version of this command resets the value to the default.

Example

```
OS10(conf-eth1/1/5-vrid-254)# track 400
```

Example (Priority Cost)

```
OS10(conf-eth1/1/5-vrid-254)# track 400 priority-cost 20
```

Supported Releases 10.2.0E or later

### track interface

Track an interface and lowers the priority value of the VRRP group on that interface, if disabled.

**Syntax**

```
interface {ethernet node/slot/port[:subport]} [line-protocol]
```

**Parameters**

- `ethernet node/slot/port[:subport]` — (Optional) Enter the keyword and the interface information to track.
- `line-protocol` — (Optional) Tracks the interface line-protocol operational status.

**Default** Disabled

**Command Mode** EXEC

**Usage Information** Assign an object tracking unique ID number before tracking the interface. Use the `line-protocol` parameter to track for interface operational status information. The no version of this command resets the value to the default.

**Example**

```
OS10(config)# track 10
OS10(conf-track-10)# interface ethernet 1/1/5 line-protocol
```

**Supported Releases** 10.2.0E or later

### virtual-address

Configures up to 10 virtual router IP addresses in the VRRP group. Set at least one virtual IP address for the VRRP group to start sending VRRP packets.

**Syntax**

```
virtual-address ip-address1 [ip-address2...ip-address10]
```

**Parameters**

- `ip-address1` — Enter the IP address of a virtual router in A.B.C.D format. The IP address must be on the same subnet as the interface’s primary IP address.
- `ip-address2...ip-address10` — (Optional) Enter up to nine additional IP addresses of virtual routers, separated by a space. The IP addresses must be on the same subnet as the interface’s primary IP address.

**Default** Enabled

**Command Mode** INTERFACE-VRRP

**Usage Information** The VRRP group only becomes active and sends VRRP packets when you configure a virtual IP address. When you delete the virtual address, the VRRP group stops sending VRRP packets. To guarantee that a VRRP group becomes master, configure the VRRP group’s virtual address with the same IP address as the interface’s primary IP address and change the priority of the VRRP group to 255. You can ping the virtual addresses configured in all VRRP groups. The no version of this command deletes one or more virtual-addresses configured in the system.
vrrp delay reload

Sets the delay time for VRRP initialization after a system reboot.

Syntax: `vrrp delay reload seconds`

Parameters:
- `seconds` — Enter the number of seconds for the VRRP reload time, from 0 to 900.

Default: 0

Command Mode: CONFIGURATION

Usage Information: VRRP delay reload time of zero seconds indicates no delays. This command configuration applies to all the VRRP configured interfaces. The no version of this command resets the value to the default.

Example:
```
OS10(config)# vrrp delay reload 5
```

Supported Releases: 10.4.0E(R1) or later

vrrp-group

Assigns a VRRP group identification number to an IPv4 interface or VLAN

Syntax: `vrrp-group vrrp-id`

Parameters:
- `vrrp-id` — Enter a VRRP group identification number, from 1 to 255.

Default: Not configured

Command Mode: INTERFACE-VRRP

Usage Information: The VRRP group only becomes active and sends VRRP packets when you configure a virtual IP address. When you delete the virtual address, the VRRP group stops sending VRRP packets. The no version of this command removes the vrrp-group configuration.

Example:
```
OS10(conf-if-eth1/1/5)# vrrp-group 254
```

Example (VLAN):
```
OS10(conf-if-vl-10)# vrrp-group 5
```

Supported Releases: 10.2.0E or later

vrrp-ipv6-group

Assigns a VRRP group identification number to an IPv6 interface.

Syntax: `vrrp-ipv6-group vrrp-id`

Parameters:
- `vrrp-id` — Enter a VRRP group identification number, from 1 to 255.

Default: Not configured

Command Mode: INTERFACE-VRRP
Usage Information
The VRRP group only becomes active and sends VRRP packets when you configure a virtual IP address. When you delete the virtual address, the VRRP group stops sending VRRP packets. The no version of this command removes the vrrp-ipv6-group configuration.

Example
OS10(conf-if-eth1/1/7)# vrrp-ipv6-group 250

Supported Releases
10.2.0E or later

vrrp version

Sets the VRRP version for the IPv4 group.

Syntax
vrrp version {2 | 3}

Parameters
- 2 — Set to VRRP version 2.
- 3 — Set to VRRP version 3.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command disables the VRRP version for the IPv4 group.

Example
OS10(config)# vrrp version 2

Supported Releases
10.2.0E or later
A virtual extensible LAN (VXLAN) extends Layer 2 server connectivity over an underlying Layer 3 transport network in a virtualized data center. A virtualized data center consists of virtual machines (VMs) in a multi-tenant environment. OS10 supports VXLAN as described in RFC 7348.

VXLAN provides a Layer 2 overlay mechanism on an existing Layer 3 network by encapsulating the Layer 2 frames in Layer 3 packets. The VXLAN shared forwarding domain allows hosts (virtual and physical machines) in tenant Layer 2 segments to communicate over the shared IP network. Each tenant Layer 2 segment is identified by a 24-bit ID called a VXLAN network identifier (VNI).

Deployed as a VXLAN gateway, an OS10 switch performs encapsulation/de-encapsulation of L2 frames in L3 packets while tunneling server traffic. In this role, an OS10 switch operates as a VXLAN tunnel endpoint (VTEP). Using VXLAN tunnels, server VLAN segments communicate through the extended L2 forwarding domain.

**VXLAN concepts**

**Network virtualization overlay (NVO)**

An overlay network extends L2 connectivity between server virtual machines (VMs) in a tenant segment over an underlay L3 IP network. A tenant segment can be a group of hosts or servers that are spread across an underlay network.

- The NVO overlay network uses a separate L2 bridge domain (virtual network), which is independent of legacy VLAN forwarding.
- The NVO underlay network operates in the default VRF using the existing L3 infrastructure and routing protocols.
Virtual extensible LAN (VXLAN)
A type of network virtualization overlay that encapsulates a tenant's payload into IP UDP packets for transport across the IP underlay network.

VXLAN network identifier (VNI)
A 24-bit ID number that identifies a tenant segment and is transmitted in a VXLAN encapsulated packet.

VXLAN tunnel endpoint (VTEP)
A switch with connected end hosts that are assigned to virtual networks, and the virtual networks are mapped to VXLAN segments. Local and remote VTEPs performs encapsulation and de-capapsulation of VXLAN headers for the traffic between end hosts. A VTEP is sometimes referred to as a network virtualization edge (NVE) node.

Bridge domain
A Layer 2 domain that receives packets from member interfaces and forwards or floods them to other member interfaces based on a packet's destination MAC address. OS10 supports two types of bridge domains: simple VLAN and virtual network.
- Simple VLAN: A bridge domain represented by a VLAN ID. Traffic on all member ports are assigned with the same VLAN ID.
- Virtual network: A bridge domain represented by a virtual network ID (VNID). A virtual network supports overlay encapsulation and is mapped with either a single VLAN ID in a switch-scoped VLAN or with multiple (Port,VLAN) pairs in a port-scoped VLAN.

Virtual network
In OS10, each Layer 2 flooding domain in the overlay network is represented as a virtual network.

Virtual network identifier (VNID)
A 16-bit ID number that identifies a virtual network in OS10.

Access port
A port on a VTEP switch that connects to an end host and is part of the overlay network.

Network port
A port on a VTEP switch that connects to the underlay network.

Switch-scoped VLAN
A VLAN that is mapped to a virtual network ID (VNID) in OS10. All member ports of the VLAN are automatically added to the virtual network.
- You can map only one VLAN ID to a virtual network.
- Ideally suited for existing tenant VLANs that need to stretch over an IP fabric using VXLAN

Port-scoped VLAN
A Port,VLAN pair that is mapped to a virtual network ID (VNID) in OS10. You can assign an individual member interface to a virtual network either with an associated tagged VLAN or as an untagged member. Using a port-scoped VLAN, you can configure:
- The same VLAN ID on different access interfaces to different virtual networks.
- Different VLAN IDs on different access interfaces to the same virtual network.

VXLAN as NVO solution
Network virtualization overlay (NVO) is a solution designed to address the requirements of a multi-tenant data center, especially one with virtualized hosts. An NVO network is an overlay network used to extend L2 connectivity among VMs belonging to a tenant segment over an underlay IP network. Each tenant's payload is encapsulated in an IP packet at the originating VTEP and stripped of the encapsulation at the destination VTEP to access the payload. Each tenant segment is called a virtual-network and is uniquely identified in OS10 using a virtual network ID (VNID).

VXLAN is a type of encapsulation that is used as an NVO solution. VXLAN encapsulates a tenant's payload into IP UDP packets for transport across the IP underlay network. In OS10, each virtual network is assigned a 24-bit number called a VXLAN network identifier (VNI) that is carried in the VXLAN-encapsulated packet. The VNI uniquely identifies the tenant segment on all VTEPs. OS10 sets up ASIC tables to:
- Enable the creation of a Layer 2 bridge flooding domain across a Layer 3 network.
- Facilitate packet forwarding between local ports and tunneling packets from the local to a remote device.
Configure VXLAN

To extend a L2 tenant segment using VXLAN, follow these configuration steps on each VTEP switch:

1. Configure the source IP address used in encapsulated VXLAN packets.
2. Configure a virtual network and assign a VXLAN VNI.
3. Configure VLAN-tagged access ports.
4. Configure untagged access ports.
5. (Optional) Enable routing for hosts on different virtual networks.
6. Advertise the local VXLAN source IP address to remote VTEPs.
7. (Optional) Configure VLT.

Configure source IP address on VTEP

When you configure a switch as a VXLAN tunnel endpoint (VTEP), configure a loopback interface, whose IP address is used as the source IP address in encapsulated packet headers. Only a loopback interface assigned to a network virtualization edge (NVE) instance can be used as a source VXLAN interface.

- You cannot reconfigure the VXLAN source interface or the IP address assigned to the source interface if there is at least one VXLAN network ID (VNI) already assigned to a virtual-network ID (VNID) on the switch.
- The source loopback IP address must be reachable from a remote VTEP.
- An IPv6 address is not supported as the source VXLAN address.
- Do not assign the source loopback interface to a non-default VRF instance.
- VXLAN VTEP functionality is not supported for non-default VRF instances.

1. Configure a loopback interface to serve as the source VXLAN tunnel endpoint in CONFIGURATION mode (0 to 255).
   ```
 interface loopback number
   ```
2. Configure an IP address on the loopback interface in INTERFACE mode. The IP address allows the source VTEP to send VXLAN frames over the L3 transport network.
   ```
 ip address ip-address/mask
   ```
3. Return to CONFIGURATION mode.
   ```
 exit
   ```
4. Enter NVE mode from CONFIGURATION mode. NVE mode allows you to configure the VXLAN tunnel endpoint on the switch.
   ```
 nve
   ```
5. Configure the loopback interface as the source tunnel endpoint for all virtual networks on the switch in NVE mode.
   ```
 source-interface loopback number
   ```
6. Return to CONFIGURATION mode.
   ```
 exit
   ```

Configure a VXLAN virtual network

To create a VXLAN, assign a VXLAN segment ID (VNI) to a virtual network ID (VNID) and configure a remote VTEP. A virtual network is identified by a unique 2-byte VNID. You cannot assign the same VXLAN VNI to more than one virtual network. VXLAN tunnel endpoints can either be manually configured in a static VXLAN or automatically discovered using BGP EVPN.

1. Create a virtual-network bridge domain in CONFIGURATION mode. Valid virtual-network ID (VNID) numbers are 1 to 65535.
   ```
 virtual-network vn-id
   ```
2. Assign a VXLAN network identifier (VNI) to the virtual network in VIRTUAL-NETWORK mode (1 to 16,777,215). Configure the VNI for the same tenant segment on each VTEP switch.
   ```
 vxlan-vni vni
   ```
3. (Optional) If you use BGP EVPN for VXLAN, this step is not required — To set up a static VXLAN, configure the source IP address of a remote VTEP in VXLAN-VNI mode. You can configure up to 1024 remote VTEP addresses for a VXLAN VNI.
   ```
 remote-vtep ip-address
   ```
After you configure the remote VTEP, when the IP routing path to the remote VTEP IP address in the underlay IP network is known, the virtual network is enabled to send and receive VXLAN-encapsulated traffic from and to downstream servers and hosts. All broadcast, multicast, and unknown unicast (BUM) traffic received on access interfaces is replicated and sent to all configured remote VTEPs. Each packet contains the VXLAN VNI in its header.

By default, MAC learning from a remote VTEP is enabled and unknown unicast packets are flooded to all remote VTEPs. Re-enter the `remote-vtep ip-address` command to configure additional remote VTEPs.

4 Return to VIRTUAL-NETWORK mode.
   exit

5 Return to CONFIGURATION mode.
   exit

Configure VLAN-tagged access ports

Configure local access ports in the VXLAN overlay network using either a switch-scoped VLAN or port-scoped VLAN. Only one method is supported. You cannot assign tagged VLAN member interfaces to a virtual network using both switch-scoped and port-scoped VLANs.

- To use a switch-scoped VLAN to add VLAN-tagged member ports to a virtual network:
  a. Assign a VLAN to the virtual network in VLAN Interface mode.
     ```
 interface vlan vlan-id
 virtual-network vn-id
     ```
  b. Configure port interfaces as trunk members of the VLAN in Interface mode.
     ```
 interface ethernet node/slot/port[:subport]
 switchport mode trunk
 switchport trunk allowed-vlan vlan-id
 exit
     ```

     The local physical ports assigned to the VLAN transmit packets over the virtual network.

     **NOTE:** A switch-scoped VLAN assigned to a virtual network cannot have a configured IP address and cannot participate in L3 routing; for example:
     ```
 OS10(config)# interface vlan 102
 OS10(conf-if-vlan-5)# ip address 1.1.1.1/24
 % Error: vlan102, IP address cannot be configured for VLAN attached to Virtual Network.
     ```

- To use a port-scoped VLAN to add VLAN-tagged member ports to a virtual network:
  a. Configure interfaces as trunk members in Interface mode.
     ```
 interface ethernet node/slot/port[:subport]
 switchport mode trunk
 exit
     ```
  b. Assign a trunk member interface as a Port,VLAN ID pair to the virtual network in VIRTUAL-NETWORK mode. All traffic sent and received for the virtual network on the interface carries the VLAN tag. Multiple tenants connected to different switch interfaces can have the same vlan-tag VLAN ID.
     ```
 virtual-network vn-id
 member-interface ethernet node/slot/port[:subport] vlan-tag vlan-id
     ```

     The Port,VLAN pair starts to transmit packets over the virtual network.

  c. Repeat Steps a) and b) to assign additional member Port,VLAN pairs to the virtual network.
     - You cannot assign the same Port,VLAN member interface pair to more than one virtual network.
     - You can assign the same vlan-tag VLAN ID with different member interfaces to different virtual networks.
     - You can assign a member interface with different vlan-tag VLAN IDs to different virtual networks.

The VLAN ID tag is removed from packets transmitted in a VXLAN tunnel. Each packet is encapsulated with the VXLAN VNI in the packet header before it is sent from the egress source interface for the tunnel. At the remote VTEP, the VXLAN VNI is removed and the packet is transmitted on the virtual-network bridge domain. The VLAN ID is regenerated using the VLAN ID associated with the virtual-network egress interface on the VTEP and included in the packet header.

Configure untagged access ports
Add untagged access ports to the VXLAN overlay network using either a switch-scoped VLAN or port-scoped VLAN. Only one method is supported.

- To use a switch-scoped VLAN to add untagged member ports to a virtual network:
  a. Assign a VLAN to a virtual network in VLAN Interface mode.
     ```
 interface vlan vlan-id
 virtual-network vn-id
 exit
     ```
  b. Configure port interfaces as access members of the VLAN in Interface mode.
     ```
 interface ethernet node/slot/port[:subport]
 switchport access vlan vlan-id
 exit
     ```
  Packets received on the untagged ports are transmitted over the virtual network.

- To use a port-scoped VLAN to add untagged member ports to a virtual network:
  a. Create a reserved VLAN ID to assign untagged traffic on member interfaces to a virtual network in CONFIGURATION mode. The VLAN ID is used internally for all untagged member interfaces on the switch that belong to virtual networks.
     ```
 virtual-network untagged-vlan untagged-vlan-id
     ```
  b. Configure port interfaces as trunk members and remove the access VLAN in Interface mode.
     ```
 interface ethernet node/slot/port[:subport]
 switchport mode trunk
 no switchport access vlan
 exit
     ```
  c. Assign the trunk interfaces as untagged members of the virtual network in VIRTUAL-NETWORK mode. You cannot use the reserved VLAN ID for a legacy VLAN or for tagged traffic on member interfaces of virtual networks.
     ```
 virtual-network vn-id
 member-interface ethernet node/slot/port[:subport] untagged
 exit
     ```

If at least one untagged member interface is assigned to a virtual network, you cannot delete the reserved untagged VLAN ID. If you reconfigure the reserved untagged VLAN ID, you must either reconfigure all untagged member interfaces in the virtual networks to use the new ID or reload the switch.

**Enable routing between virtual networks**

In a virtualized data center, when hosts in tenant Layer 2 segments are in different IP subnets, configure the VTEPs in the same and different VXLAN virtual networks to act as gateway routers. OS10 supports distributed anycast routing. To route host traffic between virtual networks, you must configure an anycast gateway on each VTEP in a virtual network, including:

- Configure the same anycast MAC address on all VTEPs across all virtual networks. For example, if you use two VTEP switches in three virtual networks:

<table>
<thead>
<tr>
<th>VXLAN virtual network</th>
<th>VTEP</th>
<th>Anycast gateway MAC address</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNI 11</td>
<td>VTEP 1</td>
<td>00:11:22:33:44:55</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>00:11:22:33:44:55</td>
</tr>
<tr>
<td>VNI 12</td>
<td>VTEP 1</td>
<td>00:11:22:33:44:55</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>00:11:22:33:44:55</td>
</tr>
<tr>
<td>VNI 13</td>
<td>VTEP 1</td>
<td>00:11:22:33:44:55</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>00:11:22:33:44:55</td>
</tr>
</tbody>
</table>

- Configure a unique IP address on the virtual-network interface on each VTEP across all virtual networks. Configure the same anycast gateway IP address on all VTEPs in the same virtual network; configure a different anycast gateway IP address on all VTEPs in a different virtual network. For example:
### VXLAN virtual network configuration

<table>
<thead>
<tr>
<th>VXLAN virtual network</th>
<th>VTEP 1</th>
<th>Virtual-network IP address</th>
<th>Anycast gateway IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNI 11</td>
<td>VTEP 1</td>
<td>10.10.1.201</td>
<td>10.10.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>10.10.1.202</td>
<td>10.10.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 3</td>
<td>10.10.1.203</td>
<td>10.10.1.254</td>
</tr>
<tr>
<td>VNI 12</td>
<td>VTEP 1</td>
<td>10.20.1.201</td>
<td>10.20.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>10.20.1.202</td>
<td>10.20.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 3</td>
<td>10.20.1.203</td>
<td>10.20.1.254</td>
</tr>
<tr>
<td>VNI 13</td>
<td>VTEP 1</td>
<td>10.30.1.201</td>
<td>10.30.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 2</td>
<td>10.30.1.202</td>
<td>10.30.1.254</td>
</tr>
<tr>
<td></td>
<td>VTEP 3</td>
<td>10.30.1.203</td>
<td>10.30.1.254</td>
</tr>
</tbody>
</table>

1. As a best practice, create a non-default VRF instance for overlay routing in Configuration mode. For multi-tenancy, create additional VRF instances.
   ```
 ip vrf tenant-vrf-name
 exit
   ```

2. Configure the MAC address of an anycast Layer 3 gateway in Configuration mode. This is a global MAC address that is shared by all anycast gateway IP addresses on all VTEPs in all VXLAN virtual networks.
   ```
 ip virtual-router mac-address mac-address
   ```

3. Configure a virtual-network router interface, assign it to the tenant VRF, and configure an IP address. Then enable the interface. The virtual-network IP address must be unique on each VTEP, including VTEPs in VLT pairs and for different VXLAN virtual networks configured on the same VTEP.
   ```
 interface virtual-network vn-id
 ip vrf forwarding tenant-vrf-name
 ip address ip-address
 no shutdown
 exit
   ```

4. Configure an anycast gateway IP address for each VXLAN virtual network in VIRTUAL-NETWORK mode. Configure the same IP address on all VTEPs in the same virtual network. Each VXLAN virtual network must use a unique anycast gateway IP address. The anycast gateway IP address is used as the default gateway IP address even if host VMs move from one VTEP to another in a VXLAN.
   ```
 virtual-network vn-id
 ip virtual-router address ip-address
   ```

### Advertise the VXLAN source IP address to remote VTEPs

1. Advertise the IP address of the local source tunnel interface to all VTEPs in the underlay IP network using the existing routing infrastructure. This example uses OSPF to advertise the VXLAN source IP address on Ethernet1/1/3, which is the underlay network-facing interface:
   ```
 OS10(config)# router ospf 100
 OS10(config-ospf)# router-id 110.111.170.195
 OS10(config-ospf)# exit
 OS10(config)# interface ethernet1/1/3
 OS10(config-interface)# ip ospf 100 area 0.0.0.0
 OS10(config)# interface loopback 1
 OS10(config-interface)# ip ospf 100 area 0.0.0.0
   ```

   Each VTEP switch in the underlay IP network learns the IP address of the VXLAN source interface. If a remote VTEP switch is not reachable, its status displays as DOWN in show nve remote-vtep output.

2. Configure the MTU value on L3 underlay network-facing interfaces in Interface mode (1280 to 65535) to be at least 50 bytes higher than the MTU on the server-facing links to allow for VXLAN encapsulation.
   ```
 mtu value
   ```

3. Return to CONFIGURATION mode.
   ```
 exit
   ```
Configure VLT

(Optional) To use VXLAN in a VLT domain, configure the VLT domain — including the VLT Interconnect (VLTi) interfaces, backup heartbeat, and VLT MAC address — as described in Virtual link trunking.

Required VLT VXLAN configuration:

- The IP address of the VTEP source loopback interface must be same on the VLT peers.
- If you use a port-scoped VLAN to assign tagged access interfaces to a virtual network, you must configure a unique VLAN ID for the VLT Interconnect (VLTi) link to identify traffic belonging to each virtual network. Configure a VLAN to transmit VXLAN traffic over the VLTi link in VIRTUAL-NETWORK mode. All traffic sent and received from a virtual network on the VLTi carries the VLTi VLAN ID tag. Configure the same VLTi VLAN ID on both VLT peers. You cannot use the ID of an existing VLAN on a VLT peer or the reserved untagged VLAN ID. You can use the VLTi VLAN ID to assign tagged or untagged access interfaces to a virtual network.

  ```
 virtual-network vn-id
 vlti-vlan vlan-id
  ```

Best practices:

- If a VLT peer loses connectivity to the underlay L3 network, it continues to transmit routing traffic to the network through the VLTi link on a dedicated L3 VLAN to the other VLT peer. It is best practice to configure a L3 VLAN between VLT peers in the underlay network and enable routing on the VLAN; for example:

  ```
 OS10(config)# interface vlan4000
 OS10(config-if-vl-4000)# no shutdown
 OS10(config-if-vl-4000)# ip address 41.1.1.1/24
 OS10(config-if-vl-4000)# ip ospf 1 area 0.0.0.0
  ```

- To reduce traffic loss when a VLT peer boots up and joins an existing VLT domain, or when the VLTi links fails and the VLT peer is still up as detected by the VLT heartbeat, create an uplink state group. Configure all access VLT port channels on the peer as upstream links. Configure all network-facing links as downstream link. For example:

  ```
 OS10(config)# uplink-state-group 1
 OS10(conf-uplink-state-group-1)# enable
 OS10(conf-uplink-state-group-1)# downstream ethernet1/1/1-1/1/2
 OS10(conf-uplink-state-group-1)# upstream port-channel 10
  ```

  If the VLTi link fails and the peer is up, all access ports and network links are automatically brought down on the secondary VLT peer. The secondary node is isolated to avoid traffic loss for connected dual-homed hosts.

Monitor VXLAN

Use show commands to verify the VXLAN configuration and monitor VXLAN operation.

View VXLAN virtual network

```
OS10# show virtual-network
Virtual-Network: 1000
Members:
 Vlan 100: ethernet1/1/1, ethernet1/1/2
 Vlan 101: port-channel5
VXLAN Virtual Network Identifier : 10005
 Codes : DP - MAC-learn Dataplane, CP - MAC-learn Controlplane, UUD - Unknown-Unicast-Drop
Source Interface: loopback1 (3.3.3.3)
Peers (flood-list): 10.10.10.10 (DP), 20.20.20.10 (DP, UUD)
```
View VXLAN virtual-network VLAN

OS10# show virtual-network vlan 100
Vlan  Virtual-network   Interface
100    1000             ethernet1/1/1,ethernet1/1/2
100    5000             ethernet1/1/2

View VXLAN virtual-network VLANs

OS10# show vlans
Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs,
@ – Attached to Virtual Network
Q: A - Access (Untagged), T - Tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>up</td>
<td>A</td>
<td>Eth1/1/1-1/1/48</td>
<td></td>
</tr>
<tr>
<td>@ 100</td>
<td>up</td>
<td>T Eth1/1/2,Eth1/1/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 101</td>
<td>up</td>
<td>T port-channel15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>up</td>
<td>T Eth1/1/11-1/1/15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View VXLAN virtual-network statistics

OS10# show virtual-network counters
Virtual-Network      Input (Packets/Bytes)       Output (Packets/Bytes)
1000                 857/8570                    257/23709
2000                 457/3570                    277/13709

OS10# show virtual-network counters interface 1/1/3 vlan 100
Virtual-Network      Input (Packets/Bytes)       Output (Packets/Bytes)
1000                 857/8570                    257/23709
2000                 457/3570                    277/13709

NOTE: Using flex counters, OS10 may display additional packets in the Output field number, but the additional packets are not transmitted. For an accurate count, use the Output Bytes number.

View VXLAN remote VTEPs

OS10# show remote-vtep summary
Remote-VTEP      State
----------------------
2.2.2.2          up

OS10# show remote-vtep
Codes: DP - MAC-learn Dataplane, CP - MAC-learn Controlplane, UUD - Unknown-Unicast-Drop
IP Address: 2.2.2.2, State: up, Encap: VxLAN
VNI list: 10000(DP), 200(DP), 300(DP)

View VXLAN statistics on remote VTEPs

OS10# show remote-vtep counters
Remote-VTEP      Input (Packets/Bytes)       Output (Packets/Bytes)
----------------------
10.10.10.10         857/8570                    257/23709
20.20.20.20         457/3570                    277/13709

View VXLAN virtual network by VN-ID

OS10# show vlan-vni
VNI   Virtual-Network   Source-IP   Remote-VTEPs
--------------------------------------------
101   101               44.44.44.44       11.11.11.11,22.22.22.22,33.33.33.33
102   102               44.44.44.44       11.11.11.11,22.22.22.22,33.33.33.33
103   103               44.44.44.44       11.11.11.11,22.22.22.22,33.33.33.33
104   104               44.44.44.44       11.11.11.11,22.22.22.22,33.33.33.33

View VXLAN routing between virtual networks
The `show ip arp` and `show ipv6 neighbors` outputs display information about IPv4 and IPv6 neighbors learned in VXLAN virtual networks configured on the switch.

```
OS10# show ip arp
Address Hardware address Interface Egress Interface
--
100.0.0.1 00:89:05:03:34:90 ethernet1/1/6 ethernet1/1/6
101.0.0.2 00:c5:05:02:12:91 vlan12 ethernet1/1/5
101.0.0.5 00:c5:05:02:12:94 vlan12 ethernet1/1/9
102.0.0.3 00:c5:05:02:12:92 port-channel2 port-channel2
105.0.0.6 00:c5:05:02:12:95 vlan15 port-channel5
111.0.0.2 00:c5:15:02:12:f1 virtual-network20 ethernet1/1/5
111.0.0.3 00:c5:15:02:12:a2 virtual-network20 port-channel5
111.0.0.4 00:12:98:1f:34:1f virtual-network20 VXLAN(20.0.0.1)
121.0.0.3 00:12:28:1f:34:15 virtual-network20 port-channel5
121.0.0.4 00:f2:34:ac:34:09 virtual-network20 VXLAN(20.0.0.1)
```

```
OS10# show ipv6 neighbors
IPv6 Address Hardware Address State Interface Egress Interface

1001:db8:a1::2 00:c5:05:02:12:91 REACH vlan12 ethernet1/1/5
1001:db8:a1::f 00:f5:50:02:54:75 REACH vlan12 port-channel5
1005:34:a1::2 00:c5:05:02:12:91 REACH ethernet1/1/10 ethernet1/1/10
1005:34:a1::f 00:f5:50:02:54:75 REACH port-channel20 port-channel20
200::2 00:12:28:1f:34:15 STALE virtual-network40 port-channel5
200::f 00:f2:34:ac:34:09 REACH virtual-network40 VXLAN(20.0.0.1)
```

**VXLAN MAC addresses**

Use the `show mac address-table virtual-network` or `show mac address-table extended` commands to display the MAC addresses learned on a VXLAN virtual network or learned on both VXLAN virtual networks and legacy VLANs.

Use the `clear mac address-table dynamic virtual-network` and `clear mac address-table dynamic nve remote-vtep` commands to delete address entries from the MAC address virtual-network table.

**Note:** The existing `show mac address-table` and `clear mac-address table` commands do not display and clear MAC addresses in a virtual-network bridge domain even when access ports in a switch-scoped VLAN are assigned to a VXLAN virtual network.

**Display VXLAN MAC addresses**

**Table 5. Display VXLAN MAC addresses**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| show mac address-table virtual-network [vn-id | local | remote | static | dynamic | address mac-address | interface [ethernet node/slot/ port/subport | port-channel number]] | Displays all MAC addresses learned on all or a specified virtual network.  
vn-id: Displays only information about the specified virtual network.  
local: Displays only locally-learned MAC addresses.  
remote: Displays only remote MAC addresses.  
static: Displays only static MAC addresses.  
dynamic: Displays only dynamic MAC addresses.  
address mac-address: Displays only information about the specified MAC address. |
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table extended {address mac-address</td>
<td>interface {ethernet node/slot/port:subport</td>
</tr>
<tr>
<td>Displays MAC addresses learned on all VLANs and VXLANs (default).</td>
<td>Displays only MAC addresses learned on the specified interface.</td>
</tr>
<tr>
<td>show mac address-table nve {vxlan-vni vn-id</td>
<td>remote-vtep ip-address}</td>
</tr>
<tr>
<td>Displays MAC addresses learned on NVE from the specified VXLAN virtual-network ID.</td>
<td>Displays MAC addresses learned on NVE from the specified remote VTEP.</td>
</tr>
<tr>
<td>show mac address-table count virtual-network [dynamic</td>
<td>local</td>
</tr>
<tr>
<td>Displays the number of MAC addresses learned on all virtual networks (default).</td>
<td>Displays the number of dynamic MAC addresses learned on all or a specified virtual network.</td>
</tr>
<tr>
<td>show mac address-table count nve {remote-vtep ip-address</td>
<td>vxlan-vni vn-id}</td>
</tr>
<tr>
<td>Displays the number of MAC addresses learned for a virtual network or from a remote VTEP.</td>
<td>Displays the number of MAC addresses learned on the specified remote VTEP.</td>
</tr>
</tbody>
</table>
### Command

```
show mac address-table count extended [interface ethernet node/slot/port:subport | port-channel number]
```

**Description**

Displays the number of MAC addresses learned on all VLANs and VXLAN virtual networks.

```
interface ethernet node/slot/port:subport
```

Displays the number of MAC addresses learned from VLANs and VXLANs on the specified interface.

```
port-channel number
```

Displays the number of MAC addresses learned from VLANs and VXLANs on the specified port channel.

### Clear VXLAN MAC addresses

#### Table 6. Clear VXLAN MAC addresses

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear mac address-table dynamic virtual-network [interface {ethernet node/slot/port:subport</td>
<td>port-channel number}</td>
</tr>
<tr>
<td>interface ethernet node/slot/port:subport</td>
<td>Clears only MAC addresses learned on the specified interface.</td>
</tr>
<tr>
<td>interface port-channel number</td>
<td>Clears only MAC addresses learned on the specified port channel.</td>
</tr>
<tr>
<td>local</td>
<td>Clears only locally-learned MAC addresses.</td>
</tr>
<tr>
<td>vn-id</td>
<td>Clears only the MAC addresses learned on the specified virtual network.</td>
</tr>
<tr>
<td>vn-id address mac-address</td>
<td>Clears only the MAC address learned on the specified virtual network.</td>
</tr>
<tr>
<td>clear mac address-table dynamic nve remote-vtep ip-address</td>
<td>Clears all MAC addresses learned from the specified remote VTEP.</td>
</tr>
</tbody>
</table>

### VXLAN commands

#### member-interface

Assign untagged or tagged VLAN traffic on a member interface to a virtual network.

**Syntax**

```
member-interface {ethernet node/slot/port[:subport] | port-channel number} {vlan-tag vlan-id | untagged}
```

**Parameters**

- `ethernet node/slot/port[:subport]` Assign the specified interface to a virtual network.
- `port-channel number` Assign the specified port channel to a virtual network.
- `untagged` Assign untagged traffic on an interface or port channel to a virtual network.
**vlan vlan-id**  Assign tagged traffic on the specified VLAN to a virtual network.

Default: Not configured  
Command mode: VIRTUAL-NETWORK  
Usage information: Use the member-interface command to assign traffic on the same VLAN or interface to different virtual networks. The no version of this command removes the configured value.

Example:
```
OS10(config)# virtual-network 10000
OS10(config-vn)# member-interface port-channel 10 vlan-tag 200
OS10(config-vn)# member-interface port-channel 20 untagged
```

Supported releases: 10.4.2.0 or later

**nve**

Enter network virtualization edge (NVE) configuration mode to configure source VXLAN tunnel endpoint.

Syntax: `nve`

Parameters: None

Default: None

Command mode: CONFIGURATION

Usage information: In NVE mode, you can configure the source tunnel endpoint for all virtual networks on the switch.

Example:
```
OS10# nve
OS10(config-nve)#
```

Supported releases: 10.4.2.0 or later

**remote-vtep**

Configures the IP address of a remote tunnel endpoint in a VXLAN network.

Syntax: `remote-vtep ip-address`

Parameters:  
- `ip-address` — Enter the IP address of a remote virtual tunnel endpoint (VTEP).

Default: Not configured

Command mode: VIRTUAL-NETWORK-VXLAN-VNI

Usage information: After you configure the remote VTEP, the VXLAN virtual network is enabled to start sending server traffic. You can configure multiple remote VTEPs. All broadcast, multicast, and unknown unicast (BUM) traffic received on an access interface is replicated on remote VTEPs. The no version of this command removes the configured value.

Example:
```
OS10(config-vn-vxlan-vni)# remote-vtep 20.20.20.1
OS10(config-vn-vxlan-vni-remote-vtep)# exit
OS10(config-vn-vxlan-vni)# remote-vtep 30.20.20.1
```

Supported releases: 10.4.2.0 or later
**show nve remote-vtep**

Displays information about remote VXLAN tunnel endpoints.

**Syntax**

`show nve remote-vtep [ip-address | summary]`

**Parameters**

- `ip-address` — Display detailed information about a specified remote VTEP.
- `summary` — Display summary information about remote VTEP.

**Default**

Display detailed information about remote VTEPs.

**Command mode**

EXEC

**Usage information**

Use the `show nve remote-vtep` command to display the IP address, operational state, and configured VXLANs for each remote VTEP. The remote MAC learning and unknown unicast drop settings used for each VXLAN ID (VNI) are also displayed.

**Example**

```
OS10# show nve remote-vtep summary
Remote-VTEP State

2.2.2.2 up

OS10# show nve remote-vtep
Codes: DP - MAC-learn Dataplane, CP - MAC-learn Controlplane, UUD - Unknown-Unicast-Drop
IP Address: 2.2.2.2, State: up, Encap: VxLAN
VNI list: 10000(DP), 200(DP), 300(DP)
```

**Supported releases**

10.4.2.0 or later

**show nve remote-vtep counters**

Displays VXLAN packet statistics for a remote VTEP.

**Syntax**

`show nve remote-vtep [ip-address] counters`

**Parameters**

- `ip-address` — Enter IP address of a remote VTEP.

**Default**

Not configured

**Command mode**

EXEC

**Usage information**

Use the `show nve remote-vtep counters` command to display input and output statistics for VXLAN traffic on a remote VTEP. A VTEP is identified by its IP address.

Use the `clear nve remote-vtep [ip-address] counters` command to clear VXLAN packet statistics.

**Example**

```
OS10# show nve remote-vtep counters
Peer Input (Packets/Bytes) Output (Packets/Bytes)
10.10.10.10 857/8570 257/23709
20.20.20.20 457/3570 277/13709
```

**Supported releases**

10.4.2.0 or later
show nve vxlan-vni

Displays information about the VXLAN virtual networks on the switch.

Syntax
show nve vxlan-vni

Parameters
None

Default
Not configured

Command mode
EXEC

Usage information
Use the show nve vxlan-vni command to display information about configured VXLAN virtual networks. Each VXLAN virtual network is identified by its virtual-network ID.

Example

```
OS10# show nve vxlan-vni
VNI Virtual-Network Source-IP Remote-VTEPs

 10000 1 1.1.1.1 2.2.2.2
 200 2 1.1.1.1 2.2.2.2
 300 300 1.1.1.1 2.2.2.2
```

Supported releases
10.4.2.0 or later

show virtual-network

Displays a virtual-network configuration, including all VXLAN configurations.

Syntax
show virtual-network [vn-id]

Parameters
vn-id
Enter a virtual-network ID (1 to 65535).

Default
Not configured

Command mode
EXEC

Usage information
Use the show virtual-network command to display the VNID, port members, source interface, and remote tunnel endpoints of a VXLAN virtual network.

Example

```
OS10# show virtual-network
Virtual-Network: 1000
Members:
 Vlan 100: ethernet1/1/1, ethernet1/1/2
 Vlan 101: port-channel15
VXLAN Virtual Network Identifier: 10005
Codes: DP - MAC-learn Dataplane, CP - MAC-learn Controlplane, UUD - Unknown-Unicast-Drop
Source Interface: loopback1 (3.3.3.3)
Remote-VTEPs (flood-list): 10.10.10.10 (DP), 20.20.20.10 (DP, UUD)
```

Supported releases
10.4.2.0 or later
show virtual-network counters

Displays packet statistics for virtual networks.

Syntax

```
show virtual-network [vn-id] counters
```

Parameters

- **vn-id**: Enter a virtual-network ID (1 to 65535).

Default

Not configured

Command mode

EXEC

Usage information

Use the `show virtual-network counters` command to monitor the packet throughput on virtual networks, including VXLANs.

Use the `clear virtual-network counters` command to clear virtual-network counters.

Example

```
OS10# show virtual-network counters
Virtual-Network Input (Packets/Bytes) Output (Packets/Bytes)
1000 857/8570 257/23709
2000 457/3570 277/13709
```

Supported releases

10.4.2.0 or later

show virtual-network interface counters

Displays packet statistics for a member port, port channel, or VLAN members in VXLAN virtual networks.

Syntax

```
show virtual-network interface (ethernet node/slot/port:subport | port-channel number) [vlan vlan-id] counters
```

Parameters

- **interface ethernet node/slot/port [:subport]**: Enter the port information for an Ethernet interface.
- **interface port-channel number**: Enter a port-channel number (1-128).
- **vlan vlan-id**: (Optional) Enter a VLAN ID (1 to 4093).

Default

Not configured

Command mode

EXEC

Usage information

Use the `show virtual-network interface counters` command to monitor the packet throughput on a port interface that is a member of a VXLAN virtual network. A VLAN member interface can be assigned to only one virtual network.
To clear VXLAN packet counters on a member port or VLAN members of a virtual network, enter the `clear virtual-network interface {ethernet node/slot/port:subport | port-channel number} [vlan vlan-id] counters` command.

**Example**

```
OS10# show virtual-network interface 1/1/3 vlan 100 counters
```

<table>
<thead>
<tr>
<th>Virtual-Network</th>
<th>Input (Packets/Bytes)</th>
<th>Output (Packets/Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>457/3570</td>
<td>277/13709</td>
</tr>
</tbody>
</table>

**Supported releases** 10.4.2.0 or later

### show virtual-network interface

Displays the VXLAN virtual networks and server VLANs to which a port is assigned.

**Syntax**

```
show virtual-network interface {ethernet node/slot/port:subport | port-channel number}
```

**Parameters**

- `interface ethernet node/slot/port[:subport]` Enter the port information for an Ethernet interface.
- `interface port-channel number` Enter a port-channel number (1-128).

**Default** Not configured

**Command mode** EXEC

**Usage information** Use the `show virtual-network interface ethernet` command to verify the VXLAN VLANs in which an Ethernet port connected to downstream servers is a member.

**Example**

```
OS10# show virtual-network interface ethernet 1/1/1
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Vlan</th>
<th>Virtual-network</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>ethernet1/1/1</td>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>ethernet1/1/1</td>
<td>300</td>
<td>3000</td>
</tr>
</tbody>
</table>

**Supported releases** 10.4.2.0 or later

### show virtual-network vlan

Displays the VXLAN virtual networks to which a VLAN is assigned.

**Syntax**

```
show virtual-network vlan vlan-id
```

**Parameters**

- `vlan vlan-id` Enter a VLAN ID (1 to 4093).

**Default** Not configured

**Command mode** EXEC

**Usage information** Use the `show virtual-network vlan` command to verify the VXLAN virtual networks to which a VLAN is assigned, including the port members connected to downstream servers.

**Supported releases** 10.4.2.0 or later
show vlan (virtual network)

Displays the VLANs assigned to virtual networks.

Syntax

```
show vlan
```

Parameters

None

Default

Not configured

Command mode

EXEC

Usage information

Use the `show vlan` command to display the VLAN port interfaces that transmit VXLAN packets over a virtual network.

Example

```
OS10# show vlan
Codes: * - Default VLAN, M - Management VLAN, R - Remote Port Mirroring VLANs, @ - Attached to Virtual Network
Q: A - Access (Untagged), T - Tagged

<table>
<thead>
<tr>
<th>NUM</th>
<th>Status</th>
<th>Description</th>
<th>Q</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1</td>
<td>up</td>
<td>A</td>
<td>Eth1/1/1-1/1/48</td>
<td></td>
</tr>
<tr>
<td>@ 100</td>
<td>up</td>
<td>T</td>
<td>Eth1/1/2,Eth1/1/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>Eth1/1/1</td>
<td></td>
</tr>
<tr>
<td>@ 101</td>
<td>up</td>
<td>T</td>
<td>port-channel5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>up</td>
<td>T</td>
<td>Eth1/1/11-1/1/15</td>
<td></td>
</tr>
</tbody>
</table>
```

Supported releases

10.4.2.0 or later

source-interface loopback

Configures a dedicated loopback interface as the source virtual tunnel endpoint (VTEP).

Syntax

```
source-interface loopback number
```

Parameters

- `loopback number`

Enter the loopback interface used as the source interface of a VXLAN virtual tunnel (0–16383).

Default

Not configured

Command mode

NVE-INSTANCE

Usage information

- The IP address of the loopback interface serves as the source IP address in encapsulated packets transmitted from the switch as an NVE VTEP. The `no` version of this command removes the configured value.
- The loopback interface must have an IP address configured. The loopback IP address must be reachable from the remote VTEP.
- You cannot change the source interface if at least one VXLAN virtual network ID (VNID) is configured for the NVE instance.
Enter the `source-interface loopback number` command in VXLAN-VNI mode to override a previously configured value and reconfigure the source IP address.

**Examples**

```
OS10(config-nve)# source-interface loopback 1
```

**Supported releases** 10.4.2.0 or later

---

**virtual-network**

Creates a virtual network for VXLAN tunneling.

**Syntax**

```
virtual-network vn-id
```

**Parameters**

- **vn-id**
  
  Enter the virtual-network ID (1 to 65535).

**Default**

Not configured

**Command mode**

CONFIGURATION

**Usage information**

The virtual network operates as a Layer 2 bridging domain. To add a VXLAN to the virtual network, use the `vxlan-vni` command. The `no` version of this command removes the configured virtual network.

**Example**

```
OS10(config)# virtual-network 1000
OS10(config-vn)#
```

**Supported releases** 10.4.2.0 or later

---

**virtual-network untagged-vlan**

Configures a dedicated VLAN for internal use to transmit untagged traffic on member ports in virtual networks on the switch.

**Syntax**

```
virtual-network untagged-vlan vlan-id
```

**Parameters**

- **id**
  
  Enter the reserved untagged VLAN ID (1 to 4093).

**Default**

Not configured

**Command mode**

CONFIGURATION

**Usage information**

The untagged VLAN ID is used internally for all untagged member interfaces that belong to virtual networks. You cannot use the reserved untagged VLAN ID for a simple VLAN bridge or for tagged traffic on member interfaces of virtual networks. The `no` version of this command removes the configured value.

**Example**

```
OS10(config)# virtual-network untagged-vlan 10
```

**Supported releases** 10.4.2.0 or later

---

**vxlan-vni**

Assigns a VXLAN ID to a virtual network.

**Syntax**

```
vxlan-vni vni
```

---

**vxlan**

Assigns a VXLAN ID to a virtual network.
Parameters  
**vni**  
Enter the VXLAN ID for a virtual network (1-16,777,215).

Default  
Not configured

Command mode  
VIRTUAL-NETWORK

Usage information  
The `vxlan-vni` associates a VXLAN ID number with a virtual network. The `no` version of this command removes the configured ID.

Example  
```
OS10 (conf-vn-100)# vxlan-vni 100
OS10 (config-vn-vxlan-vni)#
```

Supported releases  
10.4.2.0 or later

**VXLAN MAC commands**

clear mac address-table dynamic nve remote-vtep

Clears all MAC addresses learned from a remote VTEP.

Syntax  
`clear mac address-table dynamic nve remote-vtep ip-address`

Parameters  
**remote-vtep ip-address**  
Clear MAC addresses learned from the specified remote VTEP.

Default  
Not configured

Command mode  
EXEC

Usage information  
To display the MAC addresses learned from a remote VTEP, use the `show mac address-table nve remote-vtep` command. Use the `clear mac address-table dynamic nve remote-vtep` command to delete all MAC address entries learned from a remote VTEP.

Example  
```
OS10# clear mac address-table dynamic nve remote-vtep 32.1.1.1
```

Supported releases  
10.4.2.0 or later

clear mac address-table dynamic virtual-network

Clears MAC addresses learned on all or a specified VXLAN virtual network.

Syntax  
`clear mac address-table dynamic virtual-network [interface {ethernet node/slot/port:subport | port-channel number} | local | vn-id [address mac-address | local]]`

Parameters  
**interface ethernet node/slot/port[:subport]**  
Clear all MAC addresses learned on the specified interface.
### clear mac address-table dynamic virtual-network

Clear all MAC addresses learned on the specified port channel.
Clear all MAC addresses learned on the specified virtual network (1 to 65535).
Clear only locally-learned MAC addresses.
Clear learned MAC addresses on the specified virtual network (1 to 65535).
Clear locally learned MAC addresses on the specified virtual network (1 to 65535).
Clear only the MAC address entry learned in the specified virtual network. Enter the MAC address in `EEE.EEEE.EEEE` format.

**Default**
Not configured

**Command mode**
EXEC

**Usage information**
Use the `clear mac address-table dynamic virtual-network` command with no optional parameters to delete all dynamic MAC address entries that are learned only on virtual-network bridges from the MAC address table. This command does not delete MAC address entries learned on simple VLAN bridges. Use the `show mac address-table virtual-network` command to display the MAC addresses learned on a virtual network.

**Example**
```
OS10# clear mac address-table dynamic virtual-network
```

**Supported releases**
10.4.2.0 or later

### show mac address-table count extended

Displays the number of MAC addresses learned on all VLANs and VXLAN virtual networks.

**Syntax**
```
show mac address-table count extended [interface {ethernet node/slot/port:subport | port-channel number}]
```

**Parameters**
- `interface` (required)
  - `ethernet node/slot/port:subport` or `port-channel number`
    - Display the number of MAC addresses learned on all VLANs and VXLANs on the specified interface.
    - Display the number of MAC addresses learned on all VLANs and VXLANs on the specified port channel.

**Default**
Not configured

**Command mode**
EXEC

**Usage information**
Use the `show mac address-table count extended` command to display the number of MAC address entries learned on all VLANs and VXLAN virtual networks.

**Example**
```
OS10# show mac address-table count extended
MAC Entries for all vlans :
Dynamic Address Count : 10
Static Address (User-defined) Count : 2
Total MAC Addresses in Use: 12
```
show mac address-table count nve

Displays the number of MAC addresses learned on a VXLAN virtual network or from a remote VXLAN tunnel endpoint.

Syntax

```
show mac address-table count nve {vxlan-vni vni | remote-vtep ip-address}
```

Parameters

- **vxlan-vni vni**: Display MAC addresses learned on the specified VXLAN virtual network (1-16,777,215).
- **remote-vtep ip-address**: Display MAC addresses learned from the specified remote VTEP.

Default

Not configured

Command mode

EXEC

Usage information

Use the `clear mac address-table dynamic nve remote-vtep` command to delete all MAC address entries learned from a remote VTEP. Use the `clear mac address-table dynamic virtual-network vn-id` command to delete all dynamic MAC address entries learned on a virtual-network bridge.

Example

```
OS10# show mac address-table count nve
MAC Entries for all vlans :
Dynamic Address Count : 1
Static Address (User-defined) Count : 0
Total MAC Addresses in Use: 1

OS10# show mac address-table count nve remote-vtep 32.1.1.1
MAC Entries for all vlans :
Dynamic Address Count : 2
Static Address (User-defined) Count : 0
Total MAC Addresses in Use: 2
```

show mac address-table count virtual-network

Displays the number of MAC addresses learned on virtual networks.

Syntax

```
show mac address-table count virtual-network [dynamic | local | remote | static | interface {ethernet node/slot/port:subport | port-channel number} | vn-id]
```

Parameters

- **dynamic**: Display the number of local dynamically-learned MAC addresses.
- **local**: Display the number of local MAC addresses.
- **remote**: Display the number of MAC addresses learned from remote VTEPs.
- **static**: Display the number of local statically-configured MAC addresses.
- **interface ethernet node/slot/port[:subport]**: Display the number of MAC addresses learned on the specified interface.
interface port-channel number

Display the number of MAC addresses learned on the specified port channel.

Default
Not configured

Command mode
EXEC

Usage information
Use the `show mac address-table count virtual-network` command to display the number of MAC address entries learned on virtual networks in the MAC address table.

Example
OS10# show mac address-table count virtual-network
MAC Entries for all vlans :
Dynamic Address Count :                  8
Static Address (User-defined) Count :    0
Total MAC Addresses in Use:              8

show mac address-table extended

Displays MAC addresses learned on all VLANs and VXLANs.

Syntax
```
show mac address-table extended [address mac-address] [interface {ethernet node/slot/port:subport | port-channel number}] [static | dynamic]
```

Parameters
- **address mac-address**
  Display only information about the specified MAC address.
- **interface ethernet node/slot/port[:subport]**
  Display only MAC addresses learned on the specified interface.
- **interface port-channel number**
  Display only MAC addresses learned on the specified port channel.
- **static**
  Display only static MAC addresses.
- **dynamic**
  Display only dynamic MAC addresses.

Default
Not configured

Command mode
EXEC

Usage information
By default, MAC learning from a remote VTEP is enabled. Use the `show mac address-table extended` command to verify the MAC addresses learned both on VXLAN virtual networks and VLANs on the switch. The `show mac address-table` command displays the MAC addresses learned only on LAN port and VLAN interfaces.

Example
OS10# show mac address-table extended
+--------------+----------------+----------+----------------+---------------------------+
<table>
<thead>
<tr>
<th>Virtual-Network</th>
<th>VlanId</th>
<th>MAC Address</th>
<th>Type</th>
<th>Interface/Remote-VTEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>500</td>
<td>00:00:00:00:11:11</td>
<td>dynamic</td>
<td>ethernet1/1/31:1</td>
</tr>
<tr>
<td>-</td>
<td>500</td>
<td>00:00:00:00:44:44</td>
<td>dynamic</td>
<td>port-channel1000</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>aa:bb:cc:dd:f0:03</td>
<td>static</td>
<td>port-channel1000</td>
</tr>
<tr>
<td>-</td>
<td>500</td>
<td>aa:bb:cc:dd:f0:03</td>
<td>static</td>
<td>port-channel1000</td>
</tr>
</tbody>
</table>
**show mac address-table nve**

Displays the MAC addresses learned on a VXLAN virtual network or from a remote VXLAN tunnel endpoint.

**Syntax**

```
show mac address-table nve {vxlan-vni vni | remote-vtep ip-address}
```

**Parameters**

- `vxlan-vni vni` Display MAC addresses learned on the specified VXLAN virtual network (1-16,777,215).
- `remote-vtep ip-address` Display MAC addresses learned from the specified remote VTEP.

**Default**

Not configured

**Command mode**

EXEC

**Usage information**

Use the `clear mac address-table dynamic nve remote-vtep` command to delete all MAC address entries learned from a remote VTEP. Use the `clear mac address-table dynamic virtual-network vn-id` command to delete all dynamic MAC address entries learned on a virtual-network bridge.

**Example**

```
OS10# show mac address-table nve remote-vtep 32.1.1.1
Virtual-Network VNI MAC Address Type Remote-VTEP

10000 9999 00:00:00:00:00:77 dynamic VxLAN(32.1.1.1)
20000 19999 00:00:00:00:00:88 dynamic VxLAN(32.1.1.1)
```

**show mac address-table virtual-network**

Displays the MAC addresses learned on all or a specified virtual network.

**Syntax**

```
show mac address-table virtual-network [vn-id | local | remote | static | dynamic | address mac-address | interface {ethernet node/slot/port:subport | port-channel number}]
```

**Parameters**

- `vn-id` Display only information about the specified virtual network.
- `local` Display only locally-learned MAC addresses.
- `remote` Display only remote MAC addresses.
**static**
Display only static MAC addresses.

**dynamic**
Display only dynamic MAC addresses.

**address mac-address**
Display only information about the specified MAC address. Enter the MAC address in **EEE.EEE.EEE** format.

**interface ethernet node/slot/port[:subport]**
Display only MAC addresses learned on the specified interface.

**interface port-channel number**
Display only MAC addresses learned on the specified port channel.

**Default**
Not configured

**Command mode**
EXEC

**Usage information**
By default, MAC learning from a remote VTEP is enabled. Use the `show mac address-table virtual-network` command to verify the MAC addresses learned on VXLAN virtual networks.

**Example**
```
OS10# show mac address-table virtual-network
Virtual-Network VlanId MAC Address Type Interface/Remote-VTEP

10000 100 00:00:00:00:00:11 dynamic ethernet1/1/31:1
10000 100 00:00:00:00:00:44 dynamic port-channel1000
10000 100 00:00:00:00:00:55 dynamic port-channel10
10000 100 00:00:00:00:00:77 dynamic VxLAN(32.1.1.1)
10000 100 34:a0:a0:a1:a2:f6 dynamic port-channel10
20000 300 00:00:00:00:00:22 dynamic port-channel1000
20000 300 00:00:00:00:00:33 dynamic port-channel1000
20000 300 00:00:00:00:00:66 dynamic port-channel10
20000 300 00:00:00:00:00:88 dynamic VxLAN(32.1.1.1)
20000 300 34:a0:a0:a1:a2:f6 dynamic port-channel10
```

**Supported releases**
10.4.2.0 or later

---

**Example: VXLAN with static VTEP**

This example uses a typical Clos leaf-spine topology with static VXLAN tunnel endpoints (VTEPs) in VLT dual-homing domains. Individual switch configuration shows how to set up an end-to-end VXLAN. The underlay IP network for routing packets is OSPF. No overlay IP network is used.

- On VTEPs 1 and 2, access ports are assigned to the virtual network using a switch-scoped VLAN configuration.
- On VTEPs 3 and 4, access ports are assigned to the virtual network using a port-scoped VLAN configuration.
- Overlay routing between hosts in different IP subnets is configured on the VTEPs.
Figure 6. VXLAN use case

VTEP 1 Leaf Switch

1. Configure the underlay OSPF protocol

Do not configure the same IP address for the router ID and the source loopback interface in Step 2.

```
OS10(config)# router ospf 1
OS10(config-router-ospf-1)# router-id 21.1.1.1
OS10(config-router-ospf-1)# exit
```

2. Configure a loopback interface

```
OS10(config)# interface loopback0
OS10(config-if-lo-0)# no shutdown
OS10(config-if-lo-0)# ip address 31.1.1.1/32
OS10(config-if-lo-0)# ip ospf 1 area 0.0.0.0
OS10(config-if-lo-0)# exit
```
3. Configure the loopback interface as the VXLAN source tunnel interface

OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit

4. Configure a VXLAN virtual network with a static VTEP

OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# remote-vtep 32.1.1.1
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit

5. Assign VLAN member interfaces to a virtual network

Use either a switch-scoped VLAN-to-VNI mapping:

OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# no shutdown
OS10(config-if-vl-100)# exit

6. Configure access ports as VLAN members for a switch-scoped VLAN-to-VNI mapping

OS10(config)# interface port-channel10
OS10(conf-if-po-10)# no shutdown
OS10(conf-if-po-10)# switchport mode trunk
OS10(conf-if-po-10)# switchport trunk allowed vlan 100
OS10(conf-if-po-10)# exit

OS10(config)# interface ethernet1/1/5
OS10(conf-if-eth1/1/5)# no shutdown
OS10(conf-if-eth1/1/5)# switchport trunk allowed vlan 100
OS10(conf-if-eth1/1/5)# exit

OS10(config)# interface ethernet1/1/6
OS10(conf-if-eth1/1/6)# no shutdown
OS10(conf-if-eth1/1/6)# switchport trunk allowed vlan 100
OS10(conf-if-eth1/1/6)# exit

7. Configure upstream network-facing ports

OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# mtu 1650
OS10(conf-if-eth1/1/1)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# mtu 1650
OS10(conf-if-eth1/1/2)# ip address 12.1.1.1/24
OS10(conf-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/2)# exit

8. Configure VLT
Configure dedicated L3 underlay path to reach VLT Peer in case of network failure

OS10(config)# interface vlan4000
OS10(config-if-vl-4000)# no shutdown
OS10(config-if-vl-4000)# ip address 41.1.1.1/24
OS10(config-if-vl-4000)# ip ospf 1 area 0.0.0.0
OS10(config-if-vl-4000)# exit

Configure VLT port channel

OS10(config)# interface port-channel10
OS10(conf-if-po-10)# vlt port-channel 10
OS10(conf-if-po-10)# exit

OS10(config)# interface port-channel20
OS10(conf-if-po-20)# vlt port-channel 20
OS10(conf-if-po-20)# exit

Configure VLTi member links

OS10(config)# interface ethernet1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# exit

Configure VLT domain

OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination 10.16.150.2
OS10(conf-vlt-1)# discovery-interface ethernet1/1/3,1/1/4
OS10(conf-vlt-1)# peer-routing
OS10(conf-vlt-1)# vlt-mac aa:bb:cc:dd:ee:ff
OS10(conf-vlt-1)# exit

Configure UFD with uplink VLT ports and downlink network ports

OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# enable
OS10(conf-uplink-state-group-1)# downstream ethernet1/1/1-1/1/2
OS10(conf-uplink-state-group-1)# upstream port-channel10
OS10(conf-uplink-state-group-1)# upstream port-channel20
OS10(conf-uplink-state-group-1)# exit

9. Configure overlay IP routing

Create tenant VRF

OS10(config)# ip vrf tenant1
OS10(config-vrf)# exit

Configure anycast L3 gateway

OS10(config)# ip virtual-router mac-address 00:01:01:01:01:01

Configure routing on virtual network

OS10(config)# interface virtual-network 10000
OS10(config-if-vn)# ip vrf forwarding tenant1
OS10(config-if-vn)# ip address 10.1.0.1/16
OS10(config-if-vn)# no shutdown
Configure anycast gateway IP address

OOS10(config-if-vn)# ip virtual-router address 10.1.0.100

VTEP 2 Leaf Switch

1. Configure the underlay OSPF protocol

Do not configure the same router ID on other VTEP switches.

OS10(config)# router ospf 1
OS10(config-router-ospf-1)# router-id 22.1.1.1
OS10(config-router-ospf-1)# exit

2. Configure a loopback interface

The source-interface IP address must be same as the source-interface IP address on the VLT peer.

OS10(config)# interface loopback0
OS10(config-if-lo-0)# no shutdown
OS10(config-if-lo-0)# ip address 31.1.1.1/32
OS10(config-if-lo-0)# ip ospf 1 area 0.0.0.0
OS10(config-if-lo-0)# exit

3. Configure the loopback interface as the VXLAN source tunnel interface

OOS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit

4. Configure a VXLAN virtual network with a static VTEP

OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# remote-vtep 32.1.1.1
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit

5. Assign switch-scoped VLAN to a virtual network

OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# no shutdown
OS10(config-if-vl-100)# exit

6. Configure access ports as VLAN members

OS10(config)# interface port-channel10
OS10(config-if-po-10)# no shutdown
OS10(config-if-po-10)# switchport mode trunk
OS10(config-if-po-10)# switchport trunk allowed vlan 100
OS10(config-if-po-10)# exit

OS10(config)# interface ethernet1/1/5
OS10(config-if-eth1/1/5)# no shutdown
OS10(config-if-eth1/1/5)# channel-group 10 mode active
OS10(config-if-eth1/1/5)# no switchport
OS10(config-if-eth1/1/5)# exit

OS10(config)# interface port-channel20
OS10(config-if-po-20)# no shutdown
OS10(config-if-po-20)# switchport access vlan 100
OS10(config-if-po-20)# exit

OS10(config)# interface ethernet1/1/6
7. Configure upstream network-facing ports

```
OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# mtu 1650
OS10(conf-if-eth1/1/1)# ip address 13.1.1.1/24
OS10(conf-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/1)# exit
```

```
OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# mtu 1650
OS10(conf-if-eth1/1/2)# ip address 14.1.1.1/24
OS10(conf-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/2)# exit
```

8. Configure VLT

Configure dedicated L3 underlay path to reach VLT Peer in case of network failure

```
OS10(config)# interface vlan4000
OS10(conf-if-vl-4000)# no shutdown
OS10(conf-if-vl-4000)# ip address 41.1.1.2/24
OS10(conf-if-vl-4000)# ip ospf 1 area 0.0.0.0
OS10(conf-if-vl-4000)# exit
```

Configure VLT port channel

```
OS10(config)# interface port-channel10
OS10(conf-if-po-10)# vlt port-channel 10
OS10(conf-if-po-10)# exit
```

```
OS10(config)# interface port-channel20
OS10(conf-if-po-20)# vlt port-channel 20
OS10(conf-if-po-20)# exit
```

Configure VLTi member links

```
OS10(config)# interface ethernet1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# exit
```

```
OS10(config)# interface ethernet1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# exit
```

Configure VLT domain

```
OS10(config)# vlt-domain 1
OS10(config-vlt-1)# backup destination 10.16.150.1
OS10(config-vlt-1)# discovery-interface ethernet1/1/3,1/1/4
OS10(config-vlt-1)# peer-routing
OS10(config-vlt-1)# vlt-mac aa:bb:cc:dd:ee:ff
OS10(config-vlt-1)# exit
```

Configure UFD with uplink VLT ports and downlink network ports

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# enable
```
9. Configure overlay IP routing

Create tenant VRF

OS10(config)# ip vrf tenant1
OS10(config-vrf)# exit

Configure anycast L3 gateway

OS10(config)# ip virtual-router mac-address 00:01:01:01:01:01

Configure routing on virtual network

OS10(config)# interface virtual-network 10000
OS10(config-if-vn)# ip vrf forwarding tenant1
OS10(config-if-vn)# ip address 10.1.0.2/16
OS10(config-if-vn)# no shutdown

Configure anycast gateway IP address

OS10(config-if-vn)# ip virtual-router address 10.1.0.100

VTEP 3 Leaf Switch

1. Configure the underlay OSPF protocol

Do not configure the same IP address for the router ID and the source loopback interface in Step 2.

OS10(config)# router ospf 1
OS10(config-router-ospf-1)# router-id 23.1.1.1
OS10(config-router-ospf-1)# exit

2. Configure a loopback interface

OS10(config)# interface loopback0
OS10(config-if-lo-0)# no shutdown
OS10(config-if-lo-0)# ip address 32.1.1.1/32
OS10(config-if-lo-0)# ip ospf 1 area 0.0.0.0
OS10(config-if-lo-0)# exit

3. Configure the loopback interface as the VXLAN source tunnel interface

OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit

4. Configure a VXLAN virtual network with a static VTEP

OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# remote-vtep 31.1.1.1
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit

5. Configure reserved VLAN ID for untagged member interfaces

OS10(config)# virtual-network untagged-vlan 44
6. Configure access ports

```
OS10(config)# interface port-channel10
OS10(config-if-po-10)# no shutdown
OS10(config-if-po-10)# switchport mode trunk
OS10(config-if-po-10)# no switchport access vlan
OS10(config-if-po-10)# exit

OS10(config)# interface ethernet1/1/5
OS10(config-if-eth1/1/5)# no shutdown
OS10(config-if-eth1/1/5)# channel-group 10 mode active
OS10(config-if-eth1/1/5)# no switchport
OS10(config-if-eth1/1/5)# exit

OS10(config)# interface port-channel20
OS10(config-if-po-20)# no shutdown
OS10(config-if-po-20)# switchport mode trunk
OS10(config-if-po-20)# no switchport access vlan
OS10(config-if-po-20)# exit

OS10(config)# interface ethernet1/1/6
OS10(config-if-eth1/1/6)# no shutdown
OS10(config-if-eth1/1/6)# channel-group 20 mode active
OS10(config-if-eth1/1/6)# no switchport
OS10(config-if-eth1/1/6)# exit
```

7. Add access ports to VXLAN virtual network

```
OS10(config)# virtual-network 10000
OS10(config-vn)# member-interface port-channel 10 vlan-tag 200
OS10(config-vn)# member-interface port-channel 20 untagged
OS10(config-vn)# exit
```

**NOTE:** This step shows how to add access ports using a port-scoped VLAN-to-VNI mapping. You can also add access ports using a switch-scoped VLAN-to-VNI mapping. However, you cannot use both methods at the same time; you must use either a port-scoped or switch-scoped VLAN-to-VNI mapping.

8. Configure upstream network-facing ports

```
OS10(config)# interface ethernet1/1/1
OS10(config-if-eth1/1/1)# no shutdown
OS10(config-if-eth1/1/1)# no switchport
OS10(config-if-eth1/1/1)# mtu 1650
OS10(config-if-eth1/1/1)# ip address 15.1.1.1/24
OS10(config-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(config-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/2
OS10(config-if-eth1/1/2)# no shutdown
OS10(config-if-eth1/1/2)# no switchport
OS10(config-if-eth1/1/2)# mtu 1650
OS10(config-if-eth1/1/2)# ip address 16.1.1.1/24
OS10(config-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(config-if-eth1/1/2)# exit
```

9. Configure VLT

**Configure VLTi VLAN for VXLAN virtual network**

```
OS10(config)# virtual-network 10000
OS10(config-vn)# vlti-vlan 100
OS10(config-vn)# exit
```

**Configure dedicated L3 underlay path to reach VLT Peer in case of network failure**

```
OS10(config)# interface vlan4000
OS10(config-if-vl-4000)# no shutdown
OS10(config-if-vl-4000)# ip address 42.1.1.1/24
```
Configure VLT port channel

OS10(config)# interface port-channel10
OS10(conf-if-po-10)# vlt port-channel 10
OS10(conf-if-po-10)# exit

OS10(config)# interface port-channel20
OS10(conf-if-po-20)# vlt port-channel 20
OS10(conf-if-po-20)# exit

Configure VLTi member links

OS10(config)# interface ethernet1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# exit

Configure VLT domain

OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination 10.16.150.4
OS10(conf-vlt-1)# discovery-interface ethernet1/1/3,1/1/4
OS10(conf-vlt-1)# peer-routing
OS10(conf-vlt-1)# vlt-mac bb:aa:dd:cc:ff:ee
OS10(conf-vlt-1)# exit

Configure UFD with uplink VLT ports and downlink network ports

OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# enable
OS10(conf-uplink-state-group-1)# downstream ethernet1/1/1-1/1/2
OS10(conf-uplink-state-group-1)# upstream port-channel10
OS10(conf-uplink-state-group-1)# upstream port-channel20
OS10(conf-uplink-state-group-1)# exit

10. Configure overlay IP routing

Create tenant VRF

OS10(config)# ip vrf tenant1
OS10(config-vrf)# exit

Configure anycast L3 gateway

OS10(config)# ip virtual-router mac-address 00:01:01:01:01:01

Configure routing on virtual network

OS10(config)# interface virtual-network 10000
OS10(config-if-vn)# ip vrf forwarding tenant1
OS10(config-if-vn)# ip address 10.1.0.3/16
OS10(config-if-vn)# no shutdown

Configure anycast gateway IP address

OS10(config-if-vn)# ip virtual-router address 10.1.0.100
VTEP 4 Leaf Switch

1. Configure the underlay OSPF protocol

   Do not configure the same IP address for the router ID and the source loopback interface in Step 2.

   ```
 OS10(config)# router ospf 1
 OS10(config-router-ospf-1)# router-id 24.1.1.1
 OS10(config-router-ospf-1)# exit
   ```

2. Configure a loopback interface

   ```
 OS10(config)# interface loopback0
 OS10(conf-if-lo-0)# no shutdown
 OS10(conf-if-lo-0)# ip address 32.1.1.1/32
 OS10(conf-if-lo-0)# ip ospf 1 area 0.0.0.0
 OS10(conf-if-lo-0)# exit
   ```

3. Configure the loopback interface as the VXLAN source tunnel interface

   ```
 OS10(config)# nve
 OS10(config-nve)# source-interface loopback0
 OS10(config-nve)# exit
   ```

4. Configure a VXLAN virtual network with a static VTEP

   ```
 OS10(config)# virtual-network 10000
 OS10(config-vn)# vxlan-vni 100
 OS10(config-vn-vxlan-vni-100)# remote-vtep 31.1.1.1
 OS10(config-vn-vxlan-vni-100)# exit
 OS10(config-vn)# exit
   ```

5. Configure reserved VLAN ID for untagged member interfaces

   ```
 OS10(config)# virtual-network untagged-vlan 44
   ```

6. Configure access ports

   ```
 OS10(config)# interface port-channel10
 OS10(conf-if-po-10)# no shutdown
 OS10(conf-if-po-10)# switchport mode trunk
 OS10(conf-if-po-10)# no switchport access vlan
 OS10(conf-if-po-10)# exit
 OS10(config)# interface ethernet1/1/5
 OS10(conf-if-eth1/1/5)# no shutdown
 OS10(conf-if-eth1/1/5)# channel-group 10 mode active
 OS10(conf-if-eth1/1/5)# no switchport
 OS10(conf-if-eth1/1/5)# exit
 OS10(config)# interface port-channel20
 OS10(conf-if-po-20)# no shutdown
 OS10(conf-if-po-20)# switchport mode trunk
 OS10(conf-if-po-20)# no switchport access vlan
 OS10(conf-if-po-20)# exit
 OS10(config)# interface ethernet1/1/6
 OS10(conf-if-eth1/1/6)# no shutdown
 OS10(conf-if-eth1/1/6)# channel-group 20 mode active
 OS10(conf-if-eth1/1/6)# no switchport
 OS10(conf-if-eth1/1/6)# exit
   ```
7. Add access ports to VXLAN virtual network

OS10(config)# virtual-network 10000
OS10(config-vn)# member-interface port-channel 10 vlan-tag 200
OS10(config-vn)# member-interface port-channel 20 untagged
OS10(config-vn)# exit

8. Configure upstream network-facing ports

OS10(config)# interface ethernet1/1/1
OS10(config-if-eth1/1/1)# no shutdown
OS10(config-if-eth1/1/1)# no switchport
OS10(config-if-eth1/1/1)# mtu 1650
OS10(config-if-eth1/1/1)# ip address 17.1.1.1/24
OS10(config-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(config-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/2
OS10(config-if-eth1/1/2)# no shutdown
OS10(config-if-eth1/1/2)# no switchport
OS10(config-if-eth1/1/2)# mtu 1650
OS10(config-if-eth1/1/2)# ip address 18.1.1.1/24
OS10(config-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(config-if-eth1/1/2)# exit

9. Configure VLT

Configure VLTi VLAN for VXLAN virtual network

OS10(config)# virtual-network 10000
OS10(config-vn)# vlti-vlan 100
OS10(config-vn)# exit

Configure dedicated L3 underlay path to reach VLT Peer in case of network failure

OS10(config)# interface vlan4000
OS10(config-if-vl-4000)# no shutdown
OS10(config-if-vl-4000)# ip address 42.1.1.2/24
OS10(config-if-vl-4000)# ip ospf 1 area 0.0.0.0
OS10(config-if-vl-4000)# exit

Configure VLT port channel

OS10(config)# interface port-channel10
OS10(config-if-po-10)# vlt port-channel 10
OS10(config-if-po-10)# exit

OS10(config)# interface port-channel20
OS10(config-if-po-20)# vlt port-channel 20
OS10(config-if-po-20)# exit

Configure VLTi member links

OS10(config)# interface ethernet1/1/3
OS10(config-if-eth1/1/3)# no shutdown
OS10(config-if-eth1/1/3)# no switchport
OS10(config-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/4
OS10(config-if-eth1/1/4)# no shutdown
OS10(config-if-eth1/1/4)# no switchport
OS10(config-if-eth1/1/4)# exit

Configure VLT domain

OS10(config)# vlt-domain 1
OS10(config-vlt-1)# backup destination 10.16.150.3
OS10(config-vlt-1)# discovery-interface ethernet1/1/3,1/1/4
OS10(conf-vlt-1)# peer-routing
OS10(conf-vlt-1)# vlt-mac bb:aa:dd:cc:ff:ee
OS10(conf-vlt-1)# exit

Configure UFD with uplink VLT ports and downlink network ports

OS10(config)# uplink-state-group 1
OS10(config-uplink-state-group-1)# enable
OS10(config-uplink-state-group-1)# downstream ethernet1/1/1-1/1/2
OS10(config-uplink-state-group-1)# upstream port-channel10
OS10(config-uplink-state-group-1)# upstream port-channel20
OS10(config-uplink-state-group-1)# exit

10. Configure overlay IP routing

Create tenant VRF

OS10(config)# ip vrf tenant1
OS10(conf-vrf)# exit

Configure anycast L3 gateway

OS10(config)# ip virtual-router mac-address 00:01:01:01:01:01

Configure routing on virtual network

OS10(config)# interface virtual-network 10000
OS10(config-if-vn)# ip vrf forwarding tenant1
OS10(config-if-vn)# ip address 10.1.0.4/16
OS10(config-if-vn)# no shutdown

Configure anycast gateway IP address

OS10(config-if-vn)# ip virtual-router address 10.1.0.100

Spine Switch 1

1. Configure downstream ports on underlay links to leaf switches

OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 11.1.1.2/24
OS10(conf-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# ip address 13.1.1.2/24
OS10(conf-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/2)# exit

OS10(config)# interface ethernet1/1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# ip address 15.1.1.2/24
OS10(conf-if-eth1/1/3)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# ip address 17.1.1.2/24
OS10(conf-if-eth1/1/4)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/4)# exit
2. Configure the underlay OSPF protocol

OS10(config)# router ospf 1
OS10(config-router-ospf-1)# router-id 25.1.1.1
OS10(config-router-ospf-1)# exit

Spine Switch 2

1. Configure downstream ports on underlay links to leaf switches

OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 12.1.1.2/24
OS10(conf-if-eth1/1/1)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# ip address 14.1.1.2/24
OS10(conf-if-eth1/1/2)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/2)# exit

OS10(config)# interface ethernet1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# ip address 16.1.1.2/24
OS10(conf-if-eth1/1/3)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# ip address 18.1.1.2/24
OS10(conf-if-eth1/1/4)# ip ospf 1 area 0.0.0.0
OS10(conf-if-eth1/1/4)# exit

2. Configure the underlay OSPF protocol

OS10(config)# router ospf 1
OS10(config-router-ospf-1)# router-id 26.1.1.1
OS10(config-router-ospf-1)# exit

BGP EVPN for VXLAN

Ethernet Virtual Private Network (EVPN) is a control plane for VXLAN that is used to reduce flooding in the network and resolve scalability concerns. EVPN uses MP-BGP to exchange information between VTEPs. The MP-BGP EVPN control plane provides protocol-based remote VTEP discovery and MAC learning. As a result, flooding related to L2 unknown unicast traffic is reduced. The distribution of host MAC reachability information supports virtual machine mobility and scalable VXLAN overlay network designs. EVPN was introduced in RFC 7432 and is based on BGP MPLS-based VPNs.

Benefits of BGP EVPN-based VXLAN

- Eliminates the flood-and-learn method of VTEP discovery by enabling control-plane learning of end-host L2 and L3 reachability information.
- Minimizes the network flooding of unknown unicast and broadcast traffic through EVPN-based MAC and IP route advertisements on local VTEPs.
- Provides support for host MAC mobility.
BGP EVPN compared to static VXLAN

OS10 supports two types of VXLAN NVO overlay networks:

- Static VXLAN
- BGP EVPN

Static VXLAN and BGP EVPN for VXLAN are configured and operate in the same ways:

- The overlay and underlay networks are manually configured.
- Each virtual network and VNI are manually configured.
- Access port membership in a virtual network is manually configured.
- Underlay reachability to VTEP peers is provisioned or learned using existing routing protocols.

Static VXLAN and BGP EVPN for VXLAN configuration and operation differ as described in the following table.

Table 7. Differences between Static VXLAN and VXLAN BGP EVPN

<table>
<thead>
<tr>
<th>Static VXLAN</th>
<th>VXLAN BGP EVPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>To start sending and receiving virtual-network traffic to and from a remote VTEP, you must manually configure the VTEP as a member of the virtual network.</td>
<td>No manual configuration is required. Each remote VTEP is automatically learned as a member of a virtual network from the EVPN routes received from the remote VTEP. After a remote VTEP's address is learned, VXLAN traffic is sent to, and received from, the VTEP.</td>
</tr>
<tr>
<td>Remote host MAC addresses are learned from data packets after decapsulation of the VXLAN header in the data plane.</td>
<td>Remote host MAC addresses are learned in the control plane using BGP EVPN Type 2 routes.</td>
</tr>
</tbody>
</table>

VXLAN BGP EVPN operation

The EVPN address family allows VXLAN to carry EVPN routes in eBGP and iBGP sessions. In a data center network, you can use eBGP or iBGP for route exchange in both the IP underlay network and EVPN.

This sample BGP EVPN topology shows a typical data center (leaf-spine) network in which eBGP is used for exchanging IP routes in the IP underlay network, and EVPN routes in the VXLAN overlay network. All spine nodes are in one autonomous system (AS 65535). All leaf nodes are in another autonomous system (AS 65000).
Figure 7. BGP EVPN topology

Leaf nodes

The leaf nodes are typically top-of-rack (TOR) switches in a data center network. They act as the VXLAN tunnel endpoints and perform VXLAN encapsulation and decapsulation. The leaf nodes also participate in the MP-BGP EVPN to support control plane and data plane functions.

The control plane functions include:

- Initiate and maintain route adjacencies using any routing protocol in the underlay network.
- Advertise locally learned routes to all MP-BGP EVPN peers.
- Process the routes received from remote MP-BGP EVPN peers and install them in the local forwarding plane.

The data plane functions include:

- Encapsulate server traffic with VXLAN headers and forward the packets in the underlay network.
- Decapsulate VXLAN packets received from remote VTEPs and forward the native packets to downstream hosts.
- Perform underlay route processing, including routing based on the outer IP address.

Spine nodes

The role of a spine node changes based on its control plane and data plane functions. Spine nodes participate in underlay route processing to forward packets and in the overlay network to advertise EVPN routes to all MP-BGP peers.
The control plane functions include:

- Initiate BGP peering with all neighbor leaf nodes.
- Advertise BGP routes to all BGP peers.
- In the underlay network, initiate and maintain the routing adjacencies with all leaf and spine nodes.

The data plane functions include:

- Perform only the underlay route processing based on the outer header in VXLAN encapsulated packets.
- Does not perform VXLAN encapsulation or decapsulation.

BGP EVPN running on each VTEP listens to the exchange of route information in the local overlay, encodes the learned routes as BGP EVPN routes, and injects them into BGP to be advertised to the peers. Tunnel endpoints are advertised as Type 3 EVPN routes. MAC/IP addresses are advertised as Type 2 EVPN routes.

**EVPN Instance**

An EVPN instance (EVI) spans across the VTEPs that participate in an Ethernet VPN. Each virtual network (tenant segment) that needs to be advertised using EVPN must be associated with an EVI. In OS10, you can configure EVIs in auto-EVI or manual configuration mode.

- **Auto-EVI** — After you configure a virtual network on a VTEP, auto-EVI mode automatically creates an EVPN instance. The route distinguisher and route target values are automatically generated:
  - The EVI ID is auto-generated with the same value as the virtual-network ID (VNID) configured on the VTEP and is associated with the VXLAN network ID (VNI).
  - A Route Distinguisher (RD) is auto-generated for each EVI ID. A Route Distinguisher maintains the uniqueness of an EVPN route between different EVI instances.
  - A Route Target (RT) import and export value are auto-generated for each EVI ID. A Route Target determines how EVPN routes are distributed among EVI instances.
- **Manual EVI configuration** — If you need to specify the Route Distinguisher and Route Target values, manually configure EVI instances and associate each EVI with the overlay virtual network using the VXLAN VNI. The EVI is activated only when the virtual network, Router Distinguisher, and Route Target values are configured.

  In manual EVI configuration, you can either manually configure the RD and RT or have them auto-configured.

**Route Distinguisher**

The Route Distinguisher is an 8-byte identifier, which uniquely identifies an EVPN instance (EVI). Each EVPN route is prefixed with a unique RD and exchanged between BGP peers, making the tenant's route unique across the network. In this way, overlapping address spaces among tenants are supported.

A Route Distinguisher for each EVI can be auto-generated or manually configured. In auto-EVI mode, the RD is auto-generated. In manual EVI configuration mode, the RD can be auto-generated or manually configured.

As specified in RFC 7432, a manually configured RD are encoded in the format: `4-octet-ipv4-address:2-octet-number`. An auto-generated RD has the format: `vtep-ip-address:evi`.

**Route Target**

While a Route Distinguisher maintains the uniqueness of an EVPN route among different EVIs, a Route Target controls the way in which EVPN routes are distributed among EVIs. Each EVI is configured with an import and export Route Target value. BGP EVPN routes advertised for an EVI carry the export Route Target associated with the EVI. A receiving VTEP downloads information in the BGP EVPN route to EVIs that have a matching import Route Target value.

The Route Target import and export for each EVI can be auto-generated or manually configured. In auto-EVI mode, the RT is auto-generated. In manual EVI configuration mode, the RT can be auto-generated or manually configured.

The Route Target consists of a 2-octet type and a 6-octet value. If a Route Target is auto-configured, the encoding format is different for a 2-byte and 4-byte AS number (ASN):
For a 2-byte ASN, the RT type is set to 0200 (Type 0 in RFC 4364). The RT value is encoded in the format described in section 5.1.2.1 of RFC 8365: 2-octet-ASN: 4-octet-number, where the following values are used in the 4-octet-number field:

- Type: 1
- D-ID: 0
- Service-ID: VNI

For a 4-byte ASN, OS10 can auto-configure RTs for both 2-byte and 4-byte ASNs. The RT type is set to 0202 (Type 2 in RFC 4364). The RT value is encoded in the format: 4-octet-ASN: 2-octet-number, where the 2-octet-number field contains the EVI ID. In auto-EVI mode, the EVI ID is the same as the virtual network ID (VNID). Therefore, in 4-byte ASN deployment, OS10 supports RT auto-configuration if the VNID-to-VNI mapping is the same on all VTEPs.

### Configure BGP EVPN for VXLAN

To set up BGP EVPN service in a VXLAN overlay network:

1. Configure the VXLAN overlay network (see Configure VXLAN). If you enable routing for VXLAN virtual networks, integrated routing and bridging (IRB) for BGP EVPN is automatically enabled.
2. Configure BGP to advertise EVPN routes.
3. Configure EVPN, including the VNI, RD, and RT values associated with the EVPN instance.
4. Verify the BGP EVPN configuration.

**Usage guidelines**

- Only EVPN bridging (L2 gateway) functionality is supported.
- All broadcast, multicast, and unknown unicast (BUM) traffic received from hosts is transmitted to all remote VTEPs using VXLAN EVPN ingress replication, which maintains a list of remote VTEP IP addresses.
- Only EVPN route types 2 and 3 are supported.
- VLT is not supported on leaf nodes in VXLAN BGP EVPN.
- OS10 only supports asymmetric IRB. Symmetric IRB is not supported.

**Configuration**

1. Configure BGP to advertise EVPN routes.

   EVPN requires that you establish MP-BGP sessions between leaf and spine nodes in the underlay network. On each spine and leaf node, configure at least two BGP peering sessions:
   - A directly connected BGP peer in the underlay network to advertise VTEP and loopback IP addresses using the IPv4 unicast address family
   - A BGP peer in the overlay network to advertise overlay information using the EVPN address family. In BGP peer sessions in the overlay, activate only the EVPN address family.

   For each BGP peer session in the underlay network:
   a. Create a BGP instance in CONFIGURATION mode. You enter router BGP configuration mode.
      
      ```plaintext
 router bgp as-number
      ```
   b. Assign an IP address to the BGP instance in ROUTER-BGP mode.
      
      ```plaintext
 router-id ip-address
      ```
   c. Enter IPv4 address-family configuration mode from ROUTER-BGP mode.
      
      ```plaintext
 address-family ipv4 unicast
      ```
   d. Advertise the IPv4 prefix to BGP peers in the address family in ROUTER-BGP-ADDRESS-FAMILY mode.
      
      ```plaintext
 network ip-address/mask
      ```
   e. Return to ROUTER-BGP mode.
      
      ```plaintext
 exit
      ```
   f. Configure the BGP peer address in ROUTER-BGP mode.
      
      ```plaintext
 neighbor ip-address
      ```
Assign the BGP neighbor to an autonomous system in ROUTER-BGP-NEIGHBOR mode.
remote-as as-number

Enable the peer session with the BGP neighbor in ROUTER-BGP-NEIGHBOR mode.
no shutdown

Return to ROUTER-BGP mode.
exit

For each BGP peer session in the overlay network:

- Configure the BGP peer using its loopback IP address on the VTEP in ROUTER-BGP mode.
neighbor loopback-ip-address

- Assign the BGP neighbor loopback address to the autonomous system in ROUTER-BGP-NEIGHBOR mode. The neighbor loopback IP address is used as the source interface on the remote VTEP.
remote-as as-number

- Use the local loopback address as the source address in BGP packets sent to the neighbor in ROUTER-BGP-NEIGHBOR mode.
update-source loopback0

- Send an extended community attribute to the BGP neighbor in ROUTER-BGP-NEIGHBOR mode.
send-community extend

- Enable the peer session with the BGP neighbor in ROUTER-BGP-NEIGHBOR mode.
no shutdown

- Configure the L2 VPN EVPN address family for VXLAN host-based routing to the BGP peer in ROUTER-BGP-NEIGHBOR mode.
address-family l2vpn evpn

- Enable the exchange of L2VPN EVPN addresses with the BGP peer in ROUTER-BGP-NEIGHBOR mode.
activate

- Return to ROUTER-BGP mode.
exit

- Enter IPv4 address-family configuration mode from ROUTER-BGP mode.
address-family ipv4 unicast

- Disable the exchange of IPv4 addresses with BGP peers in ROUTER-BGP mode.
no activate

Configure EVPN.
An EVPN instance (EVI) spans across the VTEPs that participate in the EVPN. In OS10, you can configure an EVI in auto-EVI or manual configuration mode.

- **Auto-EVI mode**
  1. Enable the EVPN control plane in CONFIGURATION mode.
evpn
  2. Enable auto-EVI creation for overlay virtual networks in EVPN mode. Auto-EVI creation is supported only if BGP EVPN is used with 2-byte AS numbers and if at least one BGP instance is enabled with the EVPN address family. No further manual configuration is allowed in auto-EVI mode.
auto-evi

- **Manual EVI configuration mode**
  1. Enable the EVPN control plane in CONFIGURATION mode.
evpn
  2. Manually create an EVPN instance in EVPN mode (1 to 65535).
evi id
  3. Configure the Route Distinguisher in EVPN EVI mode.
  rd (A.B.C.D:[1-65535] | auto)

Where:
- **rd A.B.C.D:[1-65535]** configures the Route Distinguisher with a 4-octet IPv4 address followed by a 2-octet number.
rd auto automatically generates the Route Distinguisher.

4 Configure the Route Target values in EVPN EVI mode.

```
route-target {auto | value [asn4] {import | export | both}}
```

Where:

- `route-target auto` auto-configures an import and export value for EVPN routes.
- `route-target value [asn4] {import | export | both}` configures an import or export value for EVPN routes in the format `2-octet-ASN:4-octet-number` or `4-octet-ASN:2-octet-number`.
  - The 2-octet ASN number is 1 to 65535.
  - The 4-octet ASN number is 1 to 4294967295.

To configure the same value for the RT import and export values, use the `both` option. `asn4` advertises a 2-byte AS number as a 4-byte route target value. If you specify the `asn4` option, configure the VXLAN network ID associated with the EVPN instance in EVPN EVI mode (1 to 16,777,215). You must configure the same VNI value that you configured for the VXLAN virtual network (see Configure VXLAN).

```
vni vni
```

3 Verify the BGP EVPN configuration.

**Display EVPN instance configuration**

```
OS10# show evpn evi 1
EVI : 65447, State : up
 Bridge-Domain : (Virtual-Network)100, (VNI)100
 Route-Distinguisher : 1:110.111.170.102:65447(auto)
 Route-Targets : 0:101:16777316(auto) both
 Inclusive Multicast : 110.111.170.107
```

**Display VXLAN overlay for EVPN instance**

```
OS10# show evpn vxlan-vni
VXLAN-VNI EVI Virtual-Network-Instance
 100001 1 1
 100010 2 2
```

**Display BGP neighbors in EVPN instances**

```
OS10# show ip bgp neighbors 110.111.170.102
 BGP neighbor is 110.111.170.102, remote AS 100, local AS 100 internal link
 BGP version 4, remote router ID 110.111.170.102
 BGP state ESTABLISHED, in this state for 04:02:59
 Last read 00:21:21 seconds
 Hold time is 180, keepalive interval is 60 seconds
 Configured hold time is 180, keepalive interval is 60 seconds
 Fall-over disabled

 Received 311 messages
 2 opens, 2 notifications, 3 updates
 304 keepalives, 0 route refresh requests
 Sent 307 messages
 4 opens, 0 notifications, 2 updates
 301 keepalives, 0 route refresh requests
 Minimum time between advertisement runs is 30 seconds
 Minimum time before advertisements start is 0 seconds
 Capabilities received from neighbor for IPv4 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)
 4_OCTET_AS(65)
 MP_L2VPN_EVPN
 Capabilities advertised to neighbor for IPv4 Unicast:
 MULTIPROTO_EXT(1)
 ROUTE_REFRESH(2)
 CISCO_ROUTE_REFRESH(128)
 4_OCTET_AS(65)
 MP_L2VPN_EVPN
 Prefixes accepted 1, Prefixes advertised 1
```
Connections established 2; dropped 0
Last reset never
Prefixes ignored due to:
  Martian address 0, Our own AS in AS-PATH 0
  Invalid Next hop, Invalid AS-PATH length 0
  Well-known community 0, Locally originated 0

Local host: 110.111.180.195, Local port: 43081
Foreign host: 110.111.170.102, Foreign port: 179

Display BGP L2VPN EVPN address family

    OS10# show ip bgp l2vpn evpn
    BGP local RIB : Routes to be Added , Replaced , Withdrawn
    BGP local router ID is 110.111.170.102
    Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
    Path source: I - internal, a - aggregate, c - confed-external,
    r - redistributed/network, S - stale
    Origin codes: i - IGP, e - EGP, ? - incomplete

    | Network | Next Hop        | Metric | LocPrf | Weight | Path |
    |---------|----------------|--------|--------|--------|------|
    | *[3]:[0]:[32]:[110.111.170.102]/152 | 110.111.170.102 | 0      | 100    | 32768 | ?    |
    | *[3]:[0]:[32]:[110.111.170.107]/152 | 110.111.170.107 | 0      | 100    | 100   | 101  |

Display EVPN routes for host MAC addresses

    OS10# show evpn mac all
    Type -(lcl): Local (rmt): remote

    | EVI | Mac-Address | Type | Seq-No | Interface/Next-Hop |
    |-----|-------------|------|--------|--------------------|
    | 50  | 00:00:00:aa:aa:aa | rmt  | 0      | 55.1.1.3           |
    | 50  | 00:00:00:cc:cc:cc | lcl  | 0      | ethernet1/1/8:1    |

    OS10# show evpn mac evi 50
    Type -(lcl): Local (rmt): remote

    | EVI | Mac-Address | Type | Seq-No | Interface/Next-Hop |
    |-----|-------------|------|--------|--------------------|
    | 50  | 00:00:00:aa:aa:aa | rmt  | 0      | 55.1.1.3           |
    | 50  | 00:00:00:cc:cc:cc | lcl  | 0      | ethernet1/1/8:1    |

VXLAN BGP commands

activate

Enables the neighbor or peer group to be the current address-family identifier (AFI).

Syntax activate

Parameters None

Default Not configured

Command Mode ROUTER-BGP-NEIGHBOR-AF

Usage Information This command exchanges IPv4 or IPv6 address family information with an IPv4 or IPv6 neighbor. IPv4 unicast Address family is enabled by default. To activate IPv6 address family for IPv6 neighbor, use the activate command. To de-activate IPv4 address family for IPv6 neighbor, use the no activate command.

Example OS10(conf-router-neighbor)# address-family ipv4 unicast
OS10(conf-router-bgp-neighbor-af)# activate
address-family l2vpn evpn

Configures the L2 VPN EVPN address family for VXLAN host-based routing to a BGP neighbor.

Syntax
address-family l2vpn evpn

Parameters
None

Default
Not configured

Command mode
ROUTER-NEIGHBOR

Usage information
To use BGP EVPN service in a VXLAN, you must configure and enable the L2VPN EVPN address family on a VTEP to support host-based routing to each BGP neighbor.

Example
OS10(config)# router bgp 100
OS10(config-router-bgp-100)# neighbor 45.0.0.1
OS10(config-router-neighbor)# address-family l2vpn evpn

allowas-in

Configures the number of times the local AS number can appear in the BGP AS_PATH path attribute before the switch rejects the route.

Syntax
allowas-in as-number

Parameters
as-number—Enter the number of occurrences for a local AS number, from 1 to 10.

Default
Disabled

Command mode
ROUTER-BPG-TEMPLATE-AF

Usage Information
Use this command to enable the BGP speaker to accept a route with the local AS number in updates received from a peer for the specified number of times. This configuration does not apply to updates received from a BGP peer in a peer group. A BGP peer cannot be assigned to a peer group that is configured with an AS number. The no version of this command resets the value to the default.

Example (IPv4)
OS10(conf-router-template)# address-family ipv4 unicast
OS10(conf-router-bgp-template-af)# allowas-in 5

Example (IPv6)
OS10(conf-router-template)# address-family ipv6 unicast
OS10(conf-router-bgp-template-af)# allowas-in 5

sender-side-loop-detection

Enables the sender-side loop detection process for a BGP neighbor.

Syntax
sender-side-loop-detection

Parameters
None

Default
Enabled
show ip bgp l2vpn evpn

Displays the internal BGP routes in the L2VPN EVPN address family in EVPN instances.

Syntax

```
show ip bgp l2vpn evpn [summary | neighbors]
```

Parameters

- **summary**: Display a summary of the BGP routes in the L2VPN address family that are exchanged with remote VTEPs.
- **neighbors**: Display the remote VTEPs with whom BGP routes in the L2VPN address family are exchanged.

Default

Not configured

Command mode

EXEC

Usage information

Use the `show ip bgp l2vpn evpn` command to display the BGP routes used for the L2VPN EVPN address family in EVPN instances on the switch.

Examples

```
OS10# show ip bgp l2vpn evpn
BGP local RIB : Routes to be Added , Replaced , Withdrawn
BGP local router ID is 110.111.170.102
Status codes: s suppressed, S stale, d dampened, h history, * valid, > best
Path source: I - internal, a - aggregate, c - confed-external,
r - redistributed/network, S - stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf
Weight Path Metric Location
*>r Route distinguisher: 110.111.170.102:65447
[3]:[0]:[32]:[110.111.170.102]/152 110.111.170.102 0 100 32768 ?
*> Route distinguisher: 110.111.170.107:64536
[3]:[0]:[32]:[110.111.170.107]/152 110.111.170.107 0 100 0 100 101 ?

OS10# show ip bgp l2vpn evpn summary
BGP router identifier 2.2.2.2 local AS number 4294967295
Neighbor AS MsgRcvd MsgSent Up/Down State/Pfx
3.3.3.3 4294967295 2831 9130 05:57:27 504
4.4.4.4 4294967295 2364 9586 05:56:43 504
5.5.5.5 4294967295 4947 8399 01:10:39 11514
6.6.6.6 4294967295 2413 7310 05:51:56 504

OS10# show ip bgp l2vpn evpn neighbors
BGP neighbor is 3.3.3.3, remote AS 4294967295, local AS 4294967295 internal link
```
Supported releases 10.4.2.0 or later

**VXLAN EVPN commands**

**auto-evi**

Automatically creates an EVPN instance, including Route Distinguisher and Route Target values.

**Syntax** auto-evi

**Parameters** None

**Default** Not configured

**Command mode** EVPN

**Usage information** In deployments running BGP with 2-byte or 4-byte autonomous systems, auto-EVI automatically creates EVPN instances when you create a virtual network on a VTEP in the overlay network. In auto-EVI mode, the Route Distinguisher and Route Target values are automatically generated:

- For a 2-byte autonomous system:
  - The RD auto-configures as Type 1 from the overlay network source IP address and the auto-generated EVI index.
  - The RT auto-configures as Type 0 from the 2-byte AS and the 3-byte VNI (Type encoded as 0x0002).
- For a 4-byte autonomous system:
- The RD auto-configures as Type 1 from the overlay network source IP address and the auto-generated EVI index.
- The RT auto-configures as Type 2 from the 4-byte AS and the 2-byte EVI (Type encoded as 0x0202).

**Example**

```
OS10(config)# evpn
OS10(config-evpn)# auto-evi
```

**Supported releases**

10.4.2.0 or later

**evi**

Creates an EVPN instance (EVI) in EVPN mode.

**Syntax**

```
evi id
```

**Parameters**

```
 id
```

Enter the EVPN instance ID (1 to 65535).

**Default**

Not configured

**Command mode**

EVPN

**Usage information**

If an MP-BGP network uses 4-byte autonomous systems or if you need to specify the Route Distinguisher and Route Target values, manually configure EVPN instances and associate each EVI with the overlay VXLAN virtual network. The EVI is activated only when the VXLAN network ID (VNI), Router Distinguisher, Route Target, and virtual network are configured.

**Example**

```
OS10(config)# evpn
OS10(config-evpn)# evi 10
OS10(config-evpn-evi)#
```

**Supported releases**

10.4.2.0 or later

**evpn**

Enable the EVPN control plane for VXLAN.

**Syntax**

```
evpn
```

**Parameters**

None

**Default**

Not configured

**Command mode**

CONFIGURATION

**Usage information**

Enabling EVPN triggers BGP to advertise EVPN capability with AFI=25 and SAFI=70 to all BGP peers in an autonomous system. The no evpn command disables EVPN on the switch.

**Example**

```
OS10(config)# evpn
OS10(config-evpn)#
```

**Supported releases**

10.4.2.0 or later
**rd**

Configures the Route Distinguisher (RD) value used in EVPN routes.

**Syntax**
```
rd {A.B.C.D:[1-65535] | auto}
```

**Parameters**
- **A.B.C.D:** Manually configure the route distinguisher with a 4-octet IPv4 address followed by a 2-octet-number (1-65535).
- **auto:** Configure the route distinguisher to be automatically generated.

**Default**
Not configured

**Command mode**
EVPN-EVI

**Usage information**
A route distinguisher (RD) maintains the uniqueness of an EVPN route between different EVPN instances. The RD auto-configures as Type 1 from the overlay network source IP address and the auto-generated EVPN instance ID.

**Example**
```
OS10(config)# evpn
OS10(config-evpn)# evi 10
OS10(config-evpn-evi)# vni 10000
OS10(config-evpn-evi)# rd 111.111.111.111:65535
```

**Supported releases**
10.4.2.0 or later

---

**route-target**

Configures the route target (RT) values used in EVPN routes.

**Syntax**
```
route-target {auto | value {import | export | both} [asn4]}
```

**Parameters**
- **value {import | export | both}** Configure an RT import or export value, or both values, in the format `2-octet-ASN:4-octet-number` or `4-octet-ASN:2-octet-number`.
  - The `2-octet` ASN or number is 1 to 65535.
  - The `4-octet` ASN or number is 1 to 4294967295.
- **auto** Configure the RT import and export values to be automatically generated.
- **asn4** (Optional) Advertises a 4-byte AS number in route target values.

**Default**
Not configured

**Command mode**
EVPN-EVI

**Usage information**
A route target determines how EVPN routes are distributed among EVPN instances. Configure each RT with an import and export value. When the EVPN routes are advertised, the RT export value configured for export is attached to each route. The receiving VTEP compares a route's export value with the local RT's import value. If the values match, the routes are downloaded and installed on the VTEP.

- For 2-byte autonomous systems, the RT auto-configures as Type 0 from the 2-byte AS and the 3-byte VNI (Type encoded as 0x0002).
- For 4-byte autonomous systems, the RT auto-configures as Type 2 from the 4-byte AS and the 2-byte EVI (Type encoded as 0x0202).
### show evpn evi

Displays BGP EVPN routes for host MAC addresses.

**Syntax**

```
show evpn evi [id]
```

**Parameters**

- `id` — (Optional) Enter the EVPN instance ID (1 to 65535).

**Default**

Not configured

**Command mode**

EXEC

**Usage information**

Use the `show evpn evi` command to verify EVPN instance status, associated VXLAN virtual networks and the RD and RT values used in BGP EVPN routes in the EVI.

**Example**

```
OS10# show evpn evi 1
EVI : 65447, State : up
 Bridge-Domain : (Virtual-Network)100, (VNI)100
 Route-Distinguisher : 1:110.111.170.102:65447(auto)
 Route-Targets : 0:101:16777316(auto) both
 Inclusive Multicast : 110.111.170.107
```

**Supported releases**

10.4.2.0 or later

### show evpn mac

Displays BGP EVPN routes for host MAC addresses.

**Syntax**

```
show evpn mac {count | mac-address nn.nn.nn.nn | evi id [mac-address nn.nn.nn.nn | count | next-hop ip-address count]}
```

**Parameters**

- `count` — Displays the total number of local and remote host MAC addresses in EVPN instances.
- `mac-address nn.nn.nn.nn` — Displays the BGP EVPN routes for a specific 48-bit host MAC address.
- `evi id` — Displays the host MAC addresses and next hops in a specified EVPN instance (1 to 65535). To filter the output, you can display information on the host MAC address count for an EVPN ID or for a next-hop IP address, and BGP routes for a specified MAC address.

**Default**

Not configured

**Command mode**

EXEC

**Usage information**

Use the `show evpn mac` command to display the BGP routes for host MAC addresses in EVPN instances.

**Examples**

```
OS10# show evpn mac
Type -(lcl): Local (rmt): remote
EVI Mac-Address Type Seq-No Interface/Next-Hop
50 00:00:00:00:aa:aa:aa rmt 0 55.1.1.3
OS10# show evpn mac count
```

**Supported releases**

10.4.2.0 or later
show evpn vxlan-vni

Displays the VXLAN overlay network for EVPN instances.

Syntax
show evpn vxlan-vni [vni]

Parameters
vni — (Optional) Enter the VXLAN virtual-network ID (1 to 16,777,215).

Default
Not configured

Command mode
EXEC

Usage information
Use the show evpn vxlan command to verify the VXLAN virtual network and bridge domain used by an EVPN instance.

Example
<table>
<thead>
<tr>
<th>VXLAN-VNI</th>
<th>EVI</th>
<th>Bridge-Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>65447</td>
<td>65447</td>
</tr>
</tbody>
</table>

Supported releases
10.4.2.0 or later

vni

Associates an EVPN instance with a VXLAN network ID.

Syntax
vni vni

Parameters
vni — Enter the virtual-network ID (1 to 16,777,215).

Default
Not configured

Command mode
EVPN-EVI

Usage information
Use the vni command in EVPN-EVI mode to configure an EVPN instance with RD and RT values to an overlay VXLAN virtual network.

Example
OS10 (config)# evpn
OS10 (config-evpn)# evi 10
OS10 (config-evpn-evi)# vni 10000

Supported releases
10.4.2.0 or later
Example: VXLAN with BGP EVPN

This VXLAN with BGP EVPN example uses a typical Clos leaf-spine topology with VXLAN tunnel endpoints (VTEPs). Individual switch configuration shows how to set up an end-to-end VXLAN. eBGP is used for exchanging IP routes in the IP underlay network, and EVPN routes in the VXLAN overlay network. All spine nodes are in one autonomous system — AS 65001. All leaf nodes are in another autonomous system — AS 65002.

- On VTEPs 1 and 2: Access ports are assigned to the virtual network using a switch-scoped VLAN. EVPN is configured using auto-EVI mode.
- On VTEP 3: Access ports are assigned to the virtual network using a port-scoped VLAN. The EVPN instance is configured using manual configuration mode. The Route Distinguisher and Route Target are configured using auto-EVI mode.
- On VTEP 4: Access ports are assigned to the virtual network using a port-scoped VLAN. EVPN is configured using manual configuration mode, including the EVPN instance, Route Distinguisher, and Route Target.

Figure 8. VXLAN BGP EVPN use case
VTEP 1 Leaf Switch

1. Configure a loopback interface

```bash
OS10(config)# interface loopback0
OS10(conf-if-lo-0)# ip address 1.1.1.1/32
OS10(conf-if-lo-0)# exit
```

2. Configure the loopback interface as the VXLAN source tunnel interface

```bash
OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit
```

3. Configure eBGP for the IPv4 address family and advertise the VTEP’s loopback IP address

```bash
OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# address-family ipv4 unicast
OS10(config-router-bgpv4-af)# network 1.1.1.1/32
OS10(config-router-bgpv4-af)# exit
OS10(config-router-bgp-65002)# router-id 1.1.1.1
OS10(config-router-bgp-65002)# neighbor 11.1.1.2
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# allowas-in 1
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# neighbor 12.1.1.2
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# allowas-in 1
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# exit
```

4. Configure eBGP for the EVPN address family

```bash
OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# neighbor 11.11.11.11
OS10(config-router-neighbor)# remote-as 65501
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no activate
OS10(config-router-neighbor)# address-family 12vpn evpn
OS10(config-router-neighbor-af)# activate
OS10(config-router-neighbor-af)# allowas-in 1
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# neighbor 22.22.22.22
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no activate
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family 12vpn evpn
OS10(config-router-neighbor-af)# activate
OS10(config-router-neighbor-af)# allowas-in 1
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# exit
```
5. Configure a VXLAN virtual network with a remote tunnel endpoint

OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit

6. Assign VLAN member interfaces to a virtual network

Use a switch-scoped VLAN-to-VNI mapping:

OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# exit

7. Configure access ports as members of the switch-scoped VLAN

OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# switchport access vlan 100
OS10(conf-if-eth1/1/5)# exit

8. Configure upstream network-facing ports

OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# mtu 1650
OS10(conf-if-eth1/1/1)# ip address 11.1.1.1/24
OS10(conf-if-eth1/1/1)# exit
OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# mtu 1650
OS10(conf-if-eth1/1/2)# ip address 12.1.1.1/24
OS10(conf-if-eth1/1/2)# exit

9. Configure EVPN

Configure the EVPN instance, Route Distinguisher, and Route Target using auto-EVI mode:

OS10(config)# evpn
OS10(config-evpn)# auto-evi
OS10(config-evpn)# exit

VTEP 2 Leaf Switch

1. Configure a loopback interface

OS10(config)# interface loopback0
OS10(config-if-lo-0)# no shutdown
OS10(config-if-lo-0)# ip address 2.2.2.2/32
OS10(config-if-lo-0)# exit

2. Configure the loopback interface as the VXLAN source tunnel interface

OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit

3. Configure eBGP for the IPv4 address family and advertise the VTEP’s loopback IP address

OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# address-family ipv4 unicast
OS10(config-router-bgpv4-af)# network 2.2.2.2/32
OS10(config-router-bgpv4-af)# exit
OS10(config-router-bgp-65002)# router-id 2.2.2.2
4. Configure eBGP for the EVPN address family

```
OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# neighbor 11.11.11.11
OS10(config-router-neighbor)# remote-as 65501
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# address-family l2vpn evpn
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# exit
```

5. Configure a VXLAN virtual network with a remote tunnel endpoint

```
OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit
```

6. Assign VLAN member interfaces to a virtual network

Use a switch-scoped VLAN-to-VNI mapping:

```
OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# exit
```

7. Configure access ports as members of the switch-scoped VLAN

```
OS10(config)# interface ethernet 1/1/5
OS10(config-if-eth1/1/5)# switchport mode trunk
OS10(config-if-eth1/1/5)# switchport access vlan 100
OS10(config-if-eth1/1/5)# exit
```
8. Configure upstream network-facing ports

OS10(config)# interface ethernet1/1/1
OS10(config-if-eth1/1/1)# no shutdown
OS10(config-if-eth1/1/1)# no switchport
OS10(config-if-eth1/1/1)# mtu 1650
OS10(config-if-eth1/1/1)# ip address 13.1.1.1/24
OS10(config-if-eth1/1/1)# exit
OS10(config)# interface ethernet1/1/2
OS10(config-if-eth1/1/2)# no shutdown
OS10(config-if-eth1/1/2)# no switchport
OS10(config-if-eth1/1/2)# mtu 1650
OS10(config-if-eth1/1/2)# ip address 14.1.1.1/24
OS10(config-if-eth1/1/2)# exit

9. Configure EVPN

Configure the EVPN instance, Route Distinguisher, and Route Target using auto-EVI mode:

OS10(config)# evpn
OS10(config-evpn)# auto-evi
OS10(config-evpn)# exit

VTEP 3 Leaf Switch

1. Configure a loopback interface

OS10(config)# interface loopback0
OS10(config-if-lo-0)# ip address 3.3.3.3/32
OS10(config-if-lo-0)# exit

2. Configure the loopback interface as the VXLAN source tunnel interface

OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit

3. Configure eBGP for the IPv4 address family and advertise the VTEP’s loopback IP address

OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# address-family ipv4 unicast
OS10(config-router-bgpv4-af)# network 3.3.3.3/32
OS10(config-router-bgpv4-af)# exit
OS10(config-router-bgp-65002)# router-id 3.3.3.3
OS10(config-router-bgp-65002)# neighbor 15.1.1.2
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# exit

4. Configure eBGP for the EVPN address family

OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# neighbor 11.11.11.11
OS10(config-router-neighbor)# remote-as 65501
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
5. Configure a VXLAN virtual network with a remote tunnel endpoint

```
OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit
```

6. Assign VLAN member interfaces to a virtual network

Use a switch-scoped VLAN-to-VNI mapping:

```
OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# exit
```

7. Configure a reserved VLAN ID for untagged member interfaces

```
OS10(config)# virtual-network untagged-vlan 44
```

8. Configure access ports as members of the switch-scoped VLAN

```
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# switchport mode trunk
OS10(conf-if-eth1/1/5)# switchport access vlan 100
OS10(conf-if-eth1/1/5)# exit
```

9. Add access ports to the VXLAN virtual network

```
OS10(config)# virtual-network 10000
OS10(config-vn-10000)# member-interface ethernet 1/1/5 untagged
OS10(config-vn-10000)# exit
```

10. Configure upstream network-facing ports

```
OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# mtu 1650
OS10(conf-if-eth1/1/1)# ip address 15.1.1.1/24
OS10(conf-if-eth1/1/1)# exit
OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# mtu 1650
```
11. Configure EVPN

Manually configure the EVPN instance. Configure the Route Distinguisher, and Route Target using auto-EVI mode:

```plaintext
OS10(config)# evpn
OS10(config-evpn)# evi 10000
OS10(config-evpn-evi-10000)# vni 100
OS10(config-evpn-evi-10000)# rd auto
OS10(config-evpn-evi-10000)# route-target auto
OS10(config-evpn-evi-10000)# exit
OS10(config-evpn)# exit
```

**VTEP 4 Leaf Switch**

1. Configure a loopback interface

```plaintext
OS10(config)# interface loopback0
OS10(conf-if-lo-0)# ip address 4.4.4.4/32
OS10(conf-if-lo-0)# exit
```

2. Configure the loopback interface as the VXLAN source tunnel interface

```plaintext
OS10(config)# nve
OS10(config-nve)# source-interface loopback0
OS10(config-nve)# exit
```

3. Configure eBGP for the IPv4 address family and advertise the VTEP's loopback IP address

```plaintext
OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# address-family ipv4 unicast
OS10(config-router-bgpv4-af)# network 4.4.4.4/32
OS10(config-router-bgpv4-af)# exit
OS10(config-router-bgp-65002)# neighbor 17.1.1.2
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# neighbor 18.1.1.2
OS10(config-router-neighbor)# remote-as 65001
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# allowas-in 1
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65002)# exit
```

4. Configure eBGP for the EVPN address family

```plaintext
OS10(config)# router bgp 65002
OS10(config-router-bgp-65002)# neighbor 11.11.11.11
OS10(config-router-neighbor)# remote-as 65501
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit
```
5. Configure a VXLAN virtual network with a remote tunnel endpoint

```
OS10(config)# virtual-network 10000
OS10(config-vn)# vxlan-vni 100
OS10(config-vn-vxlan-vni-100)# exit
OS10(config-vn)# exit
```

6. Assign VLAN member interfaces to a virtual network

```
OS10(config)# interface vlan100
OS10(config-if-vl-100)# virtual-network 10000
OS10(config-if-vl-100)# exit
```

7. Configure access ports as members for a switch-scoped VLAN-to-VNI mapping

```
OS10(config)# interface ethernet 1/1/5
OS10(config-if-eth1/1/5)# switchport mode trunk
OS10(config-if-eth1/1/5)# switchport access vlan 100
OS10(config-if-eth1/1/5)# exit
```

8. Add access ports to the VXLAN virtual network

```
OS10(config)# virtual-network 10000
OS10(config-vn-10000)# member-interface ethernet 1/1/5 untagged
OS10(config-vn-10000)# exit
```

9. Configure upstream network-facing ports

```
OS10(config)# interface ethernet1/1/1
OS10(config-if-eth1/1/1)# no shutdown
OS10(config-if-eth1/1/1)# no switchport
OS10(config-if-eth1/1/1)# mtu 1650
OS10(config-if-eth1/1/1)# ip address 17.1.1.1/24
OS10(config-if-eth1/1/1)# exit
OS10(config)# interface ethernet1/1/2
OS10(config-if-eth1/1/2)# no shutdown
OS10(config-if-eth1/1/2)# no switchport
OS10(config-if-eth1/1/2)# mtu 1650
OS10(config-if-eth1/1/2)# ip address 18.1.1.1/24
OS10(config-if-eth1/1/2)# exit
```

10. Configure EVPN

Manually configure the EVPN instance, Route Distinguisher, and Route Target:

```
OS10(config)# evpn
OS10(config-evpn)# evi 10000
OS10(config-evpn-evi-10000)# vni 100
OS10(config-evpn-evi-10000)# rd 1.1.1.1:10000
OS10(config-evpn-evi-10000)# route-target 65002:16777316 both
OS10(config-evpn-evi-10000)# exit
OS10(config-evpn)# exit
```
Spine Switch 1

1. Configure downstream ports on underlay links to leaf switches

```
OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 11.1.1.2/24
OS10(conf-if-eth1/1/1)# exit

OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# ip address 13.1.1.2/24
OS10(conf-if-eth1/1/2)# exit

OS10(config)# interface ethernet1/1/3
OS10(conf-if-eth1/1/3)# no shutdown
OS10(conf-if-eth1/1/3)# no switchport
OS10(conf-if-eth1/1/3)# ip address 15.1.1.2/24
OS10(conf-if-eth1/1/3)# exit

OS10(config)# interface ethernet1/1/4
OS10(conf-if-eth1/1/4)# no shutdown
OS10(conf-if-eth1/1/4)# no switchport
OS10(conf-if-eth1/1/4)# ip address 17.1.1.2/24
OS10(conf-if-eth1/1/4)# exit
```

2. Configure a loopback interface

```
OS10(config)# interface loopback0
OS10(conf-if-lo-0)# ip address 11.11.11.11/32
OS10(conf-if-lo-0)# exit
```

3. Configure eBGP for the IPv4 address family and advertise the VTEP's loopback IP address

```
OS10(config)# router bgp 65001
OS10(config-router-bgp-65001)# address-family ipv4 unicast
OS10(config-router-bgp-ipv4-af)# network 11.11.11.32
OS10(config-router-bgp-ipv4-af)# exit
OS10(config-router-bgp-65001)# neighbor 11.1.1.1
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit
```

VXLAN
4. Configure eBGP for the EVPN address family

OS10(config)# router bgp 65001
OS10(config-router-bgp-65001)# neighbor 1.1.1.1
OS10(config-router-neighbor)# remote-as 65502
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-neighbor)# address-family 12vpn evpn
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit

OS10(config-router-bgp-65001)# neighbor 2.2.2.2
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit

OS10(config-router-bgp-65001)# neighbor 3.3.3.3
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit

OS10(config-router-bgp-65001)# neighbor 4.4.4.4
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor)# exit
OS10(config-router-neighbor)# exit

Spine Switch 2

1. Configure downstream ports on underlay links to leaf switches

OS10(config)# interface ethernet1/1/1
OS10(conf-if-eth1/1/1)# no shutdown
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# ip address 12.1.1.2/24
OS10(conf-if-eth1/1/1)# exit
OS10(config)# interface ethernet1/1/2
OS10(conf-if-eth1/1/2)# no shutdown
2. Configure a loopback interface

OS10(config)# interface loopback0
OS10(config-if-lo-0)# ip address 22.22.22.22/32
OS10(config-if-lo-0)# exit

3. Configure eBGP for the IPv4 address family and advertise the VTEP's loopback IP address

OS10(config)# router bgp 65001
OS10(config-router-bgp-65001)# address-family ipv4 unicast
OS10(config-router-af)# network 22.22.22.22/32
OS10(config-router-af)# exit
OS10(config-router-bgp-65001)# neighbor 12.1.1.1
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor-af)# exit

4. Configure eBGP for the EVPN address family

OS10(config)# router bgp 65001
OS10(config-router-bgp-65001)# neighbor 1.1.1.1
OS10(config-router-neighbor)# remote-as 65502
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-neighbor-af)# no activate
OS10(config-router-neighbor-af)# exit
OS10(config-router-neighbor)# address-family l2vpn evpn
OS10(config-router-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-neighbor)# exit
OS10(config-router-bgp-65001)# neighbor 2.2.2.2
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-65001)# neighbor 3.3.3.3
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# address-family 12vpn evpn
OS10(config-router-bgp-neighbor-af)# activate
OS10(config-router-bgp-neighbor-af)# no sender-side-loop-detection
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-65001)# neighbor 4.4.4.4
OS10(config-router-neighbor)# remote-as 65002
OS10(config-router-neighbor)# update-source loopback 0
OS10(config-router-neighbor)# no shutdown
OS10(config-router-neighbor)# send-community extended
OS10(config-router-neighbor)# address-family ipv4 unicast
OS10(config-router-bgp-neighbor-af)# no activate
OS10(config-router-bgp-neighbor-af)# exit
OS10(config-router-bgp-65001)# exit
OS10(config-router-bgp-65001)# exit
A switch in a Layer 2 (L2) network may require a larger MAC address table size, while a switch in a Layer 3 (L3) network may require a larger routing table size. Unified forwarding table (UFT) offers the flexibility to configure internal L2/L3 forwarding table sizes.

OS10 supports several UFT modes for the forwarding tables. By default, OS10 selects a UFT mode that provides a reasonable size for all tables. The supported UFT modes are: default, scaled-l2–switch, scaled-l3–hosts, and scaled-l3–routes.

NOTE: S5148–ON does not support UFT modes.

Table 8. UFT Modes — Table Size for S4048–ON, S4048T-ON, S6010–ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2–switch</td>
<td>294912</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3–hosts</td>
<td>98304</td>
<td>212992</td>
<td>98304</td>
</tr>
<tr>
<td>Scaled-l3–routes</td>
<td>32768</td>
<td>16384</td>
<td>131072</td>
</tr>
<tr>
<td>Default</td>
<td>163840</td>
<td>147456</td>
<td>16384</td>
</tr>
</tbody>
</table>

Table 9. UFT Modes — Table Size for S3048–ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2–switch</td>
<td>40960</td>
<td>2048</td>
<td>8192</td>
</tr>
<tr>
<td>Scaled-l3–hosts</td>
<td>8192</td>
<td>18432</td>
<td>8192</td>
</tr>
<tr>
<td>Default</td>
<td>28672</td>
<td>8192</td>
<td>8192</td>
</tr>
</tbody>
</table>

Table 10. UFT Modes — Table Size for S41XX-ON series

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2–switch</td>
<td>278528</td>
<td>4096</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3–hosts</td>
<td>16384</td>
<td>266240</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3–routes</td>
<td>16384</td>
<td>4096</td>
<td>262144</td>
</tr>
<tr>
<td>Default</td>
<td>81920</td>
<td>69632</td>
<td>131072</td>
</tr>
</tbody>
</table>
### Table 11. UFT Modes — Table Size for Z9100-ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2-switch</td>
<td>139264</td>
<td>8192</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3-hosts</td>
<td>8192</td>
<td>139264</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3-routes</td>
<td>8192</td>
<td>8192</td>
<td>131072</td>
</tr>
<tr>
<td>Default</td>
<td>73728</td>
<td>73728</td>
<td>16384</td>
</tr>
</tbody>
</table>

### Table 12. UFT Modes — Table Size for Z9264F-ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2-switch</td>
<td>270336</td>
<td>8192</td>
<td>32768</td>
</tr>
<tr>
<td>Scaled-l3-hosts</td>
<td>8192</td>
<td>270336</td>
<td>32768</td>
</tr>
<tr>
<td>Scaled-l3-routes</td>
<td>8192</td>
<td>8192</td>
<td>262144</td>
</tr>
<tr>
<td>Default</td>
<td>139264</td>
<td>139264</td>
<td>32768</td>
</tr>
</tbody>
</table>

### Table 13. UFT Modes — Table Size for S52XX-ON series

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled-l2-switch</td>
<td>294912</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3-hosts</td>
<td>32768</td>
<td>278528</td>
<td>16384</td>
</tr>
<tr>
<td>Scaled-l3-routes</td>
<td>32768</td>
<td>16384</td>
<td>389120</td>
</tr>
<tr>
<td>Default</td>
<td>163840</td>
<td>147456</td>
<td>16384</td>
</tr>
</tbody>
</table>

### Table 14. UFT Modes — Table Size for S42xxFB-ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>250 K</td>
<td>48 K</td>
<td>130 K</td>
</tr>
</tbody>
</table>

### Table 15. UFT Modes — Table Size for S42xxFBL-ON

<table>
<thead>
<tr>
<th>UFT Mode</th>
<th>L2 MAC Table Size</th>
<th>L3 Host Table Size</th>
<th>L3 Routes Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>250 K</td>
<td>48 K</td>
<td>2 Million</td>
</tr>
</tbody>
</table>

## Configure UFT modes

Available UFT modes include L2 MAC table, L3 host table, or L3 route table sizes.

- Select a mode to initialize the maximum table size in CONFIGURATION mode.

```bash
hardware forwarding-table mode [scaled-l2 | scaled-l3-routes | scaled-l3-hosts]
```
• Disable UFT mode in CONFIGURATION mode.

    no hardware forwarding-table

Configure UFT mode

OS10(config)# hardware forwarding-table mode scaled-13-hosts

View UFT mode information

<table>
<thead>
<tr>
<th>Mode</th>
<th>Current Settings</th>
<th>Next-boot Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 MAC Entries</td>
<td>163840</td>
<td>98304</td>
</tr>
<tr>
<td>L3 Host Entries</td>
<td>147456</td>
<td>212992</td>
</tr>
<tr>
<td>L3 Route Entries</td>
<td>16384</td>
<td>98304</td>
</tr>
</tbody>
</table>

View UFT information for all modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>default</th>
<th>scaled-12</th>
<th>scaled-13-routes</th>
<th>scaled-13-hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 MAC Entries</td>
<td>163840</td>
<td>294912</td>
<td>32768</td>
<td>98304</td>
</tr>
<tr>
<td>L3 Host Entries</td>
<td>147456</td>
<td>16384</td>
<td>16384</td>
<td>212992</td>
</tr>
<tr>
<td>L3 Route Entries</td>
<td>16384</td>
<td>16384</td>
<td>131072</td>
<td>98304</td>
</tr>
</tbody>
</table>

IPv6 extended prefix routes

IPv6 addresses that contain prefix routes with mask between /64 to /128 are called as IPv6 extended prefix routes. These routes require double the key size in the Longest prefix match (LPM) table.

You can configure the number of route entries for extended prefix using the `hardware l3 ipv6-extended-prefix prefix-number` command.

Save and Reload the switch for the settings to become effective.

Configure IPv6 extended prefix route

OS10# configure terminal
OS10(config)# hardware l3 ipv6-extended-prefix 2048
  % Warning: IPv6 Extended Prefix Installation will be applied only after a save and reload.
OS10(config)# do write memory
OS10(config)# reload

View IPv6 extended prefix route configuration

OS10# show running-configuration | grep hardware
  hardware l3 ipv6-extended-prefix 2048

Configuration before reload:

<table>
<thead>
<tr>
<th>IPv6 Extended Prefix Entries:</th>
<th>Current Settings</th>
<th>Next-boot Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2048</td>
<td></td>
</tr>
</tbody>
</table>

Configuration after reload:

<table>
<thead>
<tr>
<th>IPv6 Extended Prefix Entries:</th>
<th>Current Settings</th>
<th>Next-boot Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>2048</td>
<td></td>
</tr>
</tbody>
</table>

The `no` version of the command removes the IPv6 extended prefix route configuration. Save and Reload the switch to remove the configuration.

OS10(config)# no hardware l3 ipv6-extended-prefix
  % Warning: Un-configuring IPv6 Extended Prefix will be applied only after a save and reload.
**UFT commands**

**hardware forwarding-table mode**

Selects a mode to initialize the maximum scalability size. The available options are: scaled L2 MAC address table, scaled L3 routes table, or scaled L3 hosts table.

**Syntax**

```plaintext
hardware forwarding-table mode {scaled-l2 | scaled-l3-routes | scaled-l3-hosts}
```

**Parameters**

- `scaled-l2` — Enter the L2 MAC address table size.
- `scaled-l3-routes` — Enter the L3 routes table size.
- `scaled-l3-hosts` — Enter the L3 hosts table size.

**Defaults**

The default parameters vary according to the platform. See UFT modes.

**Command Mode**

CONFIGURATION

**Usage Information**

Configure the sizes of internal L2 and L3 forwarding tables for your requirements of the network environment. To apply the changes, reload the switch.

The `no` version of this command resets the UFT mode to default.

**Example**

```
OS10(config)# hardware forwarding-table mode scaled-l3-hosts
```

**Supported Releases**

10.3.0E or later

---

**hardware l3 ipv6-extended-prefix**

Configures the maximum number of route entries for IPv6 extended prefix route.

**Syntax**

```plaintext
hardware l3 ipv6-extended-prefix prefix-number
```

**Parameters**

- `prefix-number` — Enter the maximum number of route entries for IPv6 extended prefix route. The options available are: 1024, 2048, or 3072.

**Defaults**

None

**Command Mode**

CONFIGURATION

**Usage Information**

Save and Reload the switch for the settings to become effective. The `no` version of the command removes the IPv6 extended prefix route configuration.

**Example**

```
OS10# configure terminal
OS10(config)# hardware l3 ipv6-extended-prefix 2048
% Warning: IPv6 Extended Prefix Installation will be applied only after a save and reload.
OS10(config)# do write memory
OS10(config)# reload
```

**Supported Releases**

10.4.1.0 or later
**show hardware forwarding-table mode**

Displays the current hardware forwarding table mode, and the mode after the next boot.

**Syntax**
show hardware forwarding-table mode

**Parameters**
None

**Defaults**
None

**Command Mode**
EXEC

**Usage Information**
None

**Example**

```
OS10# show hardware forwarding-table mode
 Current Settings Next-boot Settings
 Mode default-mode scaled-l3-hosts
 L2 MAC Entries : 163840 98304
 L3 Host Entries : 147456 212992
 L3 Route Entries : 16384 98304
```

**Supported Releases**
10.3.0E or later

---

**show hardware forwarding-table mode all**

Displays table sizes for the hardware forwarding table modes.

**Syntax**
show hardware forwarding-table mode all

**Parameters**
None

**Defaults**
None

**Command Mode**
EXEC

**Usage Information**
None

**Example**

```
OS10# show hardware forwarding-table mode all
 Mode default scaled-l2 scaled-l3-routes scaled-l3-hosts
 L2 MAC Entries : 163840 294912 32768 98304
 L3 Host Entries : 147456 16384 16384 212992
 L3 Route Entries : 16384 16384 131072 98304
```

**Supported Releases**
10.3.0E or later

---

**show hardware l3**

Displays the IPv6 extended prefix route configuration.

**Syntax**
show hardware l3

**Parameters**
None

**Defaults**
None

**Command Mode**
EXEC

**Usage Information**
None
Example

OS10# show hardware 13

<table>
<thead>
<tr>
<th>IPv6 Extended Prefix Entries:</th>
<th>Current Settings</th>
<th>Next-boot Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2048</td>
<td>2048</td>
</tr>
</tbody>
</table>

Supported Releases

10.4.1.0 or later
Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations, also known as hosts, based on configuration policies network administrators determine.

**Packet format and options**

The DHCP server listens on port 67 and transmits to port 68. The DHCP client listens on port 68 and transmits to port 67.
Configuration parameters are options in the DHCP packet in type, length, value (TLV) format. To limit the number of parameters that servers must provide, hosts enter the parameters that they require and the server sends only those parameters. DHCP uses the User Datagram Protocol (UDP) as its transport protocol.

![DHCP Packet Format](image)

**Figure 10. DHCP Packet Format**

The table shows common options using DHCP packet formats.

<table>
<thead>
<tr>
<th>DHCP Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet mask</td>
<td>1 — Subnet mask of the client</td>
</tr>
<tr>
<td>Router</td>
<td>3 — Router IP addresses that serve as the default gateway for the client</td>
</tr>
<tr>
<td>Domain name server</td>
<td>6 — Domain name servers (DNS) that are available to the client</td>
</tr>
<tr>
<td>Domain name</td>
<td>15 — Domain name that clients use to resolve hostnames via DNS</td>
</tr>
<tr>
<td>IP address lease time</td>
<td>51 — Amount of time that the client uses an assigned IP address</td>
</tr>
<tr>
<td>DHCP message type</td>
<td>53:</td>
</tr>
<tr>
<td></td>
<td>• 1 — DHCPDISCOVER</td>
</tr>
<tr>
<td></td>
<td>• 2 — DHCPOFFER</td>
</tr>
<tr>
<td></td>
<td>• 3 — DHCPREQUEST</td>
</tr>
<tr>
<td></td>
<td>• 4 — DHCPDECLINE</td>
</tr>
<tr>
<td></td>
<td>• 5 — DHCPACK</td>
</tr>
<tr>
<td></td>
<td>• 6 — DHCPNACK</td>
</tr>
<tr>
<td></td>
<td>• 7 — DHCPRELEASE</td>
</tr>
<tr>
<td></td>
<td>• 8 — DHCPIPFORM</td>
</tr>
<tr>
<td>Parameter request list</td>
<td>55 — Parameters the server requires for DHCP clients. This is a series of octets where each octet is a DHCP option code</td>
</tr>
<tr>
<td>Renewal time</td>
<td>58 — Amount of time, after the IP address is granted, that the client attempts to renew its lease with the original server</td>
</tr>
<tr>
<td>Rebinding time</td>
<td>59 — Amount of time, after the IP address is granted, that the client attempts to renew its lease with any server, if the original server does not respond</td>
</tr>
<tr>
<td>Vendor class identifier</td>
<td>60 — User-defined string the Relay Agent uses to forward DHCP client packets to a specific DHCP server</td>
</tr>
<tr>
<td>User port stacking</td>
<td>230 — Stacking option variable that provides the DHCP server stack-port details when the DHCP offer is set</td>
</tr>
<tr>
<td>End</td>
<td>255 — Signal of the last option in the DHCP packet</td>
</tr>
</tbody>
</table>

System management 583
DHCP server

The Dynamic Host Configuration Protocol (DHCP) server provides network configuration parameters to DHCP clients on request. A DHCP server dynamically allocates four required IP parameters to each computer on the virtual local area network (VLAN) — the IP address, network mask, default gateway, and name server address. DHCP IP address allocation works on a client/server model where the server assigns the client reusable IP information from an address pool.

DHCP automates network-parameter assignment to network devices. Even in small networks, DHCP makes it easier to add new devices to the network. The DHCP access service provides a centralized, server-based setup to add clients to the network. This setup means you do not have to manually create and maintain IP address assignments for clients.

When you use DHCP to manage a pool or IP addresses among hosts, you reduce the number of IP addresses you need. DHCP manages the IP address pool by leasing an IP address to a host for a limited period, allowing the DHCP server to share a limited number of IP addresses. DHCP also provides a central database of devices that connects to the network and eliminates duplicate resource assignments.

Automatic address allocation

Automatic address allocation is an address assignment method that the DHCP server uses to lease an IP address to a client from a pool of available addresses. You cannot configure an empty DHCP pool, under a DHCP pool configuration. For a successful commit, you must have either a network statement or host/hardware-address (manual binding) configuration. An IP address pool is a range of addresses that the DHCP server assigns. The subnet number indexes the address pools.

1. Enable DHCP server-assigned dynamic addresses on an interface in DHCP <POOL> mode.
   ```
 ip dhcp server
   ```

2. Create an IP address pool and provide a name in DHCP mode.
   ```
 pool name
   ```

3. Enter the subnet from which the DHCP server may assign addresses in DHCP <POOL> mode. The network option specifies the subnet address. The prefix-length option specifies the number of bits used for the network portion of the address (18 to 31).
   ```
 network network/prefix-length
   ```

4. Enter a range of IP addresses from the subnet specified above, which the DHCP server uses to assign addresses in DHCP <POOL> mode.
   ```
 range {ip-address1 [ip-address2]}
   ```

   **NOTE:** Configure at least one interface to match one of the configured network pools. An interface matches a network pool when its IP address is included in the subnet defined for that network pool. For example, an interface with IP address 10.1.1.1/24 matches a pool configured with network 10.1.1.0/24.

DHCP server automatic address allocation

OS10(config)# ip dhcp server
OS10(config-dhcp)# pool Dell
OS10(config-dhcp-Dell)# default-router 20.1.1.1
OS10(config-dhcp-Dell)# network 20.1.1.0/24
OS10(config-dhcp-Dell)# range 20.1.1.2 20.1.1.8

Show running configuration

OS10(conf-dhcp-Dell)# do show running-configuration
...!
ip dhcp server
  !
  pool Dell
  network 20.1.1.0/24
default-router 20.1.1.1
  range 20.1.1.2 20.1.1.8
**Address lease time**

Use the `lease {days [hours] [minutes] | infinite}` command to configure an address lease time (default 24 hours).

OS10(config)# ip dhcp server
OS10(conf-dhcp)# pool Dell
OS10(conf-dhcp-Dell)# lease 36

**Default gateway**

Ensure the IP address of the default router is on the same subnet as the client.

1. Enable DHCP server-assigned dynamic addresses on an interface in CONFIGURATION mode.
   
   ```
 ip dhcp server
   ```

2. Create an IP address pool and provide a name in DHCP mode.
   
   ```
 pool name
   ```

3. Enter the default gateway(s) for the clients on the subnet in order of preference in DHCP <POOL> mode.
   
   ```
 default-router address
   ```

**Change default gateway name**

OS10(config)# ip dhcp server
OS10(conf-dhcp)# pool Dell
OS10(conf-dhcp-Dell)# default-router 20.1.1.1

**Enable DHCP server**

Use the `ip dhcp server` command to enable DHCP server-assigned dynamic addresses on an interface in CONFIGURATION mode. The DHCP server is disabled by default.

OS10(config)# ip dhcp server
OS10(conf-dhcp)# no disable

**Hostname resolution**

You have two choices for hostname resolution — domain name server (DNS) or NetBIOS Windows internet naming service (WINS). Both DHCP and WINS clients query IP servers to compare host names to IP addresses.

1. Enable DHCP server-assigned dynamic addresses on an interface in DHCP <POOL> mode.
   
   ```
 ip dhcp server
   ```

2. Create an IP address pool and enter the name in DHCP mode.
   
   ```
 pool name
   ```

3. Create a domain and enter the domain name in DHCP <POOL> mode.
   
   ```
 domain-name name
   ```

4. Enter the DNS servers in order of preference that are available to a DHCP client in DHCP <POOL> mode.
   
   ```
 dns-server address
   ```

**DNS address resolution**

OS10(config)# ip dhcp server
OS10(conf-dhcp)# pool Dell
OS10(conf-dhcp-Dell)# domain-name dell.com
OS10(conf-dhcp-Dell)# dns-server 192.168.1.1
**NetBIOS WINS address resolution**

DHCP clients can be one of four types of NetBIOS nodes — broadcast, peer-to-peer, mixed, or hybrid. Dell EMC recommends using hybrid as the NetBIOS node type.

1. Enable DHCP server-assigned dynamic addresses on an interface in DHCP `<POOL>` mode.
   ```
 ip dhcp server
   ```

2. Create an IP address pool and enter the pool name in DHCP mode.
   ```
 pool name
   ```

3. Enter the NetBIOS WINS name servers in order of preference that are available to DHCP clients in DHCP `<POOL>` mode.
   ```
 netbios-name-server ip-address
   ```

4. Enter the keyword Hybrid as the NetBIOS node type in DHCP `<POOL>` mode.
   ```
 netbios-node-type type
   ```

**Configure NetBIOS WINS address resolution**

```
OS10(config)# ip dhcp server
OS10(conf-dhcp)# pool Dell
OS10(conf-dhcp-Dell)# netbios-name-server 192.168.10.5
OS10(conf-dhcp-Dell)# netbios-node-type Hybrid
```

**Manual binding entries**

Address binding is mapping between the IP address and the media access control (MAC) address of a client. The DHCP server assigns the client an available IP address automatically and then creates an entry in the binding table. You can also manually create an entry for a client. Manual bindings help to guarantee that a particular network device receives a particular IP address.

Consider manual bindings as single-host address pools. There is no limit to the number of manual bindings, but you can only configure one manual binding per host. Manual binding entries do not display in the `show ip dhcp binding` output.

1. Create an address pool in DHCP mode.
   ```
 pool name
   ```

2. Enter the client IP address in DHCP `<POOL>` mode.
   ```
 host address
   ```

3. Enter the client hardware address in DHCP `<POOL>` mode.
   ```
 hardware-address hardware-address
   ```

**Configure manual binding**

```
OS10(config)# ip dhcp server
OS10(conf-dhcp)# pool static
OS10(conf-dhcp-static)# host 20.1.1.2
OS10(conf-dhcp-static)# hardware-address 00:01:e8:8c:4d:0a
```

**View DHCP binding table**

```
OS10# show ip dhcp binding
IP Address Hardware address Lease expiration Hostname
+---
11.1.1.254 00:00:12:12:12:12 Jan 27 2016 06:23:45

Total Number of Entries in the Table = 1
```
With a fixed host configuration, also known as manual binding, you must configure a network pool with a matching subnet. The static host-to-MAC address mapping pool inherits the network mask from the network pool with subnet configuration, which includes the host’s address range.

Consider the following example:

```
OS10# show running-configuration interface ethernet 1/1/2
!
interface ethernet1/1/2
no shutdown
no switchport
ip address 100.1.1.1/24
flowcontrol receive off
OS10# show running-configuration ip dhcp
!
ip dhcp server
no disable
!
pool host1
host 100.1.1.34
hardware-address 00:0c:29:ee:4c:f4
!
pool hostnetwork
lease infinite
network 100.1.1.0/24
!
pool host2
host 20.1.1.34
hardware-address 00:0c:29:aa:22:f4
```

In this example, the pool host1, which is the fixed host mapping pool, inherits the subnet and other attributes from the pool hostnetwork, which is the DHCP client IP address pool. There is no matching network pool for host2. Therefore, the DHCP client with the MAC address 00:0c:29:aa:22:f4 does not obtain the correct parameters.

**DHCP relay agent**

A DHCP relay agent relays DHCP messages to and from a remote DHCP server, even if the client and server are on different IP networks. You can configure the IP address of the remote DHCP server.

You can configure a device either as a DHCP server or a DHCP relay agent — but not both.

The DHCP relay agent supports multi-virtual routing and forwarding (VRF) instances. The client-facing and server-facing interfaces must be in the same VRF.

The DHCPv6 relay agent performs the same role as that of a DHCP relay agent, but in an IPv6 network. The DHCP relay agent forwards the DHCPv4/DHCPv6 messages from the configured interface to the DHCPv6 server as a unicast message. The DHCP relay agent then forwards the server’s response to the client.

When you configure DHCPv6 relay on an interface, you must:
- Configure an IPv6 address on the interface.
- Ensure that the DHCPv6 server is reachable.

**Option 82 for security**

DHCP, as defined by RFC 2131, provides no authentication or security mechanisms. To provide security, the DHCP relay agent supports Option-82 with Circuit ID sub option, which is the printable name of the interface where the client request was received.
This option secures all DHCP traffic that goes through a DHCP relay agent, and ensures that communication between the DHCP relay agent and the DHCP server is not compromised.

The DHCP relay agent inserts Option 82 before forwarding DHCP packets to the DHCP server. The DHCP server includes Option 82 back in its response to the relay agent. The relay agent uses this information to forward a reply out the interface on which the request was received rather than flooding it on the entire VLAN. However, the relay agent removes Option 82 from its DHCP responses before forwarding the responses to the client.

**NOTE:** Option 82 is supported, but not configurable.

### View DHCP Information

Use the `show ip dhcp binding` command to view the DHCP binding table entries.

#### View DHCP Binding Table

```
OS10# show ip dhcp binding
+-----------------+-----------------+---------------------+----------+
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1.254</td>
<td>00:00:12:12:12:12</td>
<td>Jan 27 2016 06:23:45</td>
<td></td>
</tr>
</tbody>
</table>
+-----------------+-----------------+---------------------+----------+
Total Number of Entries in the Table = 1
```

### System domain name and list

If you enter a partial domain, the system searches different domains to finish or fully qualify that partial domain. A fully qualified domain name (FQDN) is any name that terminates with a period or dot.

OS10 searches the host table first to resolve the partial domain. The host table contains both statically configured and dynamically learned host and IP addresses. If OS10 cannot resolve the domain, it tries the domain name assigned to the local system. If that does not resolve the partial domain, the system searches the list of domains configured.

You can configure the `ip domain-list` command up to five times to enter a list of possible domain names. The system searches the domain names in the order they were configured until a match is found or the list is exhausted.

1. Enter a domain name in `CONFIGURATION` mode (up to 64 alphanumeric characters).
   ```
 ip domain-name name
   ```

2. Add names to complete unqualified host names in `CONFIGURATION` mode.
   ```
 ip domain-list name
   ```

#### Configure local system domain name and list

```
OS10(config)# ip domain-name ntengg.com
OS10(config)# ip domain-list dns1
OS10(config)# ip domain-list dns2
OS10(config)# ip domain-list dns3
OS10(config)# ip domain-list dns4
OS10(config)# ip domain-list dns5
```

#### View local system domain name information

```
OS10# show running-configuration
! Version 10.2.9999E
! Last configuration change at Feb 20 04:50:33 2017
! username admin password 6q9QBeYj2$jfxzVqGhkxX3smxJSH9DDz7/30Jc6m5wjF8nnLD7/VKx8SloIhp4NoGZs0I/UNwh8WVuxxfd9q4pWIGNs5BK.
```
aaa authentication system:local
ip domain-name dell.com
ip domain-list f10.com
ip name-server 1.1.1.1 2::2
ip host dell-f10.com 10.10.10.10
snmp-server community public read-only
snmp-server contact http://www.dell.com/support/
snmp-server location United States
debug radius false

# DHCP commands

default-router address
Assigns a default gateway to clients based on the IP address pool.

Syntax  
default-router address [address2...address8]

Parameters  
- address — Enter an IPv4 or IPv6 address to use as the default gateway for clients on the subnet in A.B.C.D or A:B format.
- address2...address8 — (Optional) Enter up to eight IP addresses, in order of preference.

Default  
Not configured

Command Mode  
DHCP-POOL

Usage Information  
Configure up to eight IP addresses, in order of preference. Use the no version of this command to remove the configuration.

Example  
OS10(conf-dhcp-20.1.1.1)# default-router 20.1.1.100

Supported Releases  
10.2.0E or later

disable
Disables the DHCP server.

Syntax  
disable

Parameters  
None

Default  
Disabled

Command Mode  
DHCP

Usage Information  
The no version of this command enables the DHCP server.

Example  
OS10(conf-dhcp)# no disable

Supported Releases  
10.2.0E or later
**dns-server address**

Assigns a DNS server to clients based on the address pool.

**Syntax**

dns-server address [address2...address8]

**Parameters**

- *address* — Enter the DNS server IP address that services clients on the subnet in A.B.C.D or A::B format.
- *address2...address8* — (Optional) Enter up to eight DNS server addresses, in order of preference.

**Default**

Not configured

**Command Mode**

DHCP-POOL

**Usage Information**

None

**Example**

OS10 (conf-dhcp-Dell)# dns-server 192.168.1.1

**Supported Releases**

10.2.0E or later

---

**domain-name**

Configures the name of the domain where the device is located.

**Syntax**

domain-name domain-name

**Parameters**

- *domain-name* — Enter the name of the domain (up to 32 characters).

**Default**

Not configured

**Command Mode**

DHCP-POOL

**Usage Information**

This is the default domain name that appends to hostnames that are not fully qualified. The no version of this command removes the configuration.

**Example**

OS10 (conf-dhcp-Dell)# domain-name dell.com

**Supported Releases**

10.2.0E or later

---

**hardware-address**

Configures the client hardware address for manual configurations.

**Syntax**

hardware-address nn:nn:nn:nn:nn:nn

**Parameters**


**Default**

Not configured

**Command Mode**

DHCP-POOL

**Usage Information**

The client hardware address is the MAC address of the client machine to which to lease a static IP address from.

**Example**

OS10 (conf-dhcp-static)# hardware-address 00:01:e8:8c:4d:0a

**Supported Releases**

10.2.0E or later
host

Assigns a host to a single IPv4 or IPv6 address pool for manual configurations.

Syntax: `host A.B.C.D/A::B`

Parameters:
- `A.B.C.D/A::B` — Enter the host IP address in A.B.C.D or A::B format.

Default: Not configured

Command Mode: DHCP-POOL

Usage Information:
The host address is the IP address used by the client machine for DHCP.

Example:
```
OS10(conf-dhcp-Dell)# host 20.1.1.100
```

Supported Releases: 10.2.0E or later

ip dhcp server

Enters DHCP mode.

Syntax: `ip dhcp server`

Parameters: None

Default: Not configured

Command Mode: CONFIGURATION

Usage Information:
This command is used to enter DHCP mode.

Example:
```
OS10(config)# ip dhcp server
OS10(conf-dhcp)#
```

Supported Releases: 10.2.0E or later

ip helper-address

Configure the DHCP server address. Forwards UDP broadcasts received on an interface to the DHCP server. You can configure multiple helper addresses per interface by repeating the same command for each DHCP server address.

Syntax: `ip helper-address address [vrf vrf-name]`

Parameters:
- `address` — Enter the IPv4 address to forward UDP broadcasts to the DHCP server in A.B.C.D format.
- `vrf vrf-name` — (Optional) Enter vrf and then the name of the VRF through which the host address is reached.

Default: Disabled

Command Mode: INTERFACE

Usage Information:
The DHCP server is available on L3 interfaces only. The no version of this command returns the value to the default. The client-facing and server-facing interfaces must be in the same VRF.

Example (IPv4):
```
OS10(config)# interface eth 1/1/22
OS10(conf-if-eth1/1/22)# ip helper-address 20.1.1.1 vrf blue
```
**ipv6 helper-address**

Configure the DHCPv6 server address. Forwards UDP broadcasts received from IPv6 clients to the DHCPv6 server. You can configure multiple helper addresses per interface by repeating the same command for each DHCPv6 server address.

**Syntax**

```
ipv6 helper-address ipv6-address [vrf vrf-name]
```

**Parameters**

- `vrf vrf-name` — (Optional) Enter the keyword `vrf` and then the name of the VRF through which the host address can be reached.
- `ipv6-address` — Specify the DHCPv6 server address in the A::B format.

**Defaults**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

- The `no` version of this command deletes the IPv6 helper address.
- Use this command on the interfaces where the DHCPv6 clients connect to forward the packets from clients to DHCPv6 server and vice-versa.

**Example**

```
OS10(config)# interface ethernet 1/1/22
OS10(conf-if-eth1/1/22)# ipv6 helper-address 2001:db8:0:1:1:1:1:1 vrf blue
```

**Supported Releases**

10.4.1.0 or later

---

**lease**

Configures a lease time for the IP addresses in a pool.

**Syntax**

```
lease {infinite | days [hours] [minutes]}
```

**Parameters**

- `infinite` — Enter the keyword to configure a lease which never expires.
- `days` — Enter the number of lease days (0 to 31).
- `hours` — Enter the number of lease hours (0 to 23).
- `minutes` — Enter the number of lease minutes (0 to 59).

**Default**

24 hours

**Command Mode**

DHCP-POOL

**Usage Information**

- The `no` version of this command removes the lease configuration.

**Example**

```
OS10(conf-dhcp-Dell)# lease 2 5 10
```

**Example (Infinite)**

```
OS10(conf-dhcp-Dell)# lease infinite
```

**Supported Releases**

10.2.0E or later
netbios-name-server address

Configures a NetBIOS WINS server which is available to DHCP clients.

Syntax

```
netbios-name-server ip-address [address2...address8]
```

Parameters

- `ip-address` — Enter the address of the NetBIOS WINS server.
- `address2...address8` — (Optional) Enter additional server addresses.

Default

Not configured

Command Mode

DHCP-POOL

Usage Information

Configure up to eight NetBIOS WINS servers available to a Microsoft DHCP client, in order of preference. The `no` version of this command returns the value to the default.

Example

```
OS10(conf-dhcp-Dell)# netbios-name-server 192.168.10.5
```

Supported Releases

10.2.0E or later

netbios-node-type

Configures the NetBIOS node type for the DHCP client.

Syntax

```
netbios-node-type type
```

Parameters

- `type` — Enter the NetBIOS node type:
  - `Broadcast` — Enter `b-node`.
  - `Hybrid` — Enter `h-node`.
  - `Mixed` — Enter `m-node`.
  - `Peer-to-peer` — Enter `p-node`.

Default

Hybrid

Command Mode

DHCP-POOL

Usage Information

The `no` version of this command resets the value to the default.

Example

```
OS10(conf-dhcp-Dell)# netbios-node-type h-node
```

Supported Releases

10.2.0E or later

network

Configures a range of IPv4 or IPv6 addresses in the address pool.

Syntax

```
network address/mask
```

Parameters

- `address/mask` — Enter a range of IP addresses and subnet mask in A.B.C.D/x or A::B/x format.

Default

Not configured

Command Mode

DHCP-POOL
Usage Information

Use this command to configure a range of IPv4 or IPv6 addresses.

Example

OS10(config-dhcp-Dell)# network 20.1.1.1/24

Supported Releases

10.2.0E or later

pool

Creates an IP address pool name.

Syntax

pool pool-name

Parameters

pool-name — Enter the DHCP server pool name.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

Use this command to create an IP address pool name.

Example

OS10(conf-dhcp)# pool Dell
OS10(conf-dhcp-Dell)#

Supported Releases

10.2.0E or later

range

Configures a range of IP addresses.

Syntax

range {ip-address1 [ip-address2]}

Parameters

- ip-address1 — First IP address of the IP address range.
- ip-address2 — Last IP address of the IP address range.

Default

Not configured

Command Mode

DHCP-POOL

Usage Information

This command is used to configure a range of IP addresses that the OS10 switch, acting as the DHCP server, can assign to DHCP clients. The no version of this command requires only the first IP address to remove the range configuration.

Example

OS10(config)# OS10(config)# ip dhcp server
OS10(config-dhcp)# pool pooll
OS10(config-dhcp-pooll)# network 192.168.10.0/24
OS10(config-dhcp-pooll)# range 192.168.10.2 192.168.10.8

Supported Releases

10.4.1 or later

show ip dhcp binding

Displays the DHCP binding table with IPv4 addresses.

Syntax

show ip dhcp binding

Parameters

None
**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
Use this command to view the DHCP binding table.

**Example**
```
OS10# show ip dhcp binding
+---
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1.254</td>
<td>00:00:12:12:12:12</td>
<td>Jan 27 2016 06:23:45</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
```

Total Number of Entries in the Table = 1

**Supported Releases**
10.2.0E or later

---

**DNS commands**

OS10 supports the configuration of a DNS host and domain parameters.

**ip domain-list**

Adds a domain name to the DNS list. This domain name appends to incomplete hostnames in DNS requests.

**Syntax**
```
ip domain-list [vrf vrf-name] [server-name] name
```

**Parameters**
- `vrf vrf-name` — (Optional) Enter `vrf` and then the name of the VRF to add a domain name to the DNS list corresponding to that VRF.
- `server-name` — (Optional) Enter the server name to add a domain name to the DNS list.
- `name` — Enter the name of the domain to append to the DNS list.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
There is a maximum of six domain names to the DNS list. Use this domain name to complete unqualified host names. The `no` version of this command removes a domain name from the DNS list.

**Example**
```
OS10(config)# ip domain-list jay dell.com
```

**Supported Releases**
10.2.0E or later

---

**ip domain-name**

Configures the default domain and appends to incomplete DNS requests.

**Syntax**
```
ip domain-name [vrf vrf-name] server-name
```

**Parameters**
- `vrf vrf-name` — (Optional) Enter `vrf` and then the name of the VRF to configure the domain corresponding to that VRF.
- `server-name` — (Optional) Enter the server name the default domain uses.

**Default**
Not configured

**Command Mode**
CONFIGURATION
Usage Information    This domain appends to incomplete DNS requests. The no version of this command returns the value to the default.

Example    OS10(config)# ip domain-name jay dell.com

Supported Releases    10.2.0E or later

ip host

Configures mapping between the host name server and the IP address.

Syntax    ip host [vrf vrf-name] [host-name] address

Parameters

- vrf vrf-name — (Optional) Enter vrf and then the name of the VRF to configure the name server to IP address mapping for that VRF.
- host-name — (Optional) Enter the name of the host.
- address — Enter an IPv4 or IPv6 address of the name server in A.B.C.D or A:B format.

Default    Not configured

Command Mode    CONFIGURATION

Usage Information    The name-to-IP address table uses this mapping information to resolve host names. The no version of this command disables the mapping.

Example    OS10(config)# ip host dell 1.1.1.1

Supported Releases    10.2.0E or later

ip name-server

Configures up to a three IPv4 or IPv6 addresses used for network name servers.

Syntax    ip name-server ip-address [ip-address2 ip-address3]

Parameters

- ip-address — Enter the IPv4 or IPv6 address of a domain name server to use for completing unqualified names (incomplete domain names that cannot be resolved).
- ip-address2 ip-address3 — (Optional) Enter up two additional IPv4 or IPv6 name servers, separated with a space.

Default    Not configured

Command Mode    CONFIGURATION

Usage Information    OS10 does not support sending DNS queries over a VLAN. DNS queries are sent out on all other interfaces, including the Management port. You can separately configure both IPv4 and IPv6 domain name servers. In a dual stack setup, the system sends both A (request for IPv4) and AAAA (request for IPv6) record requests to a DNS server even if you only configure this command. The no version of this command removes the IP name-server configuration.

Example    OS10(config)# ip name-server 10.1.1.5

Supported Releases    10.2.0E or later
show hosts

Displays the host table and DNS configuration.

**Syntax**

show hosts [vrf vrf-name]

**Parameters**

vrf vrf-name — Enter vrf then the name of the VRF to display DNS host information corresponding to that VRF.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show hosts
Default Domain Name : dell.com
Domain List : abc.com
Name Servers : 1.1.1.1 20::2

Static Host to IP mapping Table

<table>
<thead>
<tr>
<th>Host</th>
<th>IP-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>dell-pc1</td>
<td>20.1.1.1</td>
</tr>
</tbody>
</table>
```

**Supported Releases**

10.2.0E or later

---

IPv4 DHCP limitations

This section lists the DHCP limitations.

IPv4 DHCP asymmetric routing

OS10 does not support DHCP relay with IPv4 asymmetric routing. OS10 supports DHCP relay with IPv6 asymmetric routing.

The DHCP relay agent listens on the best DHCP server path. If the DHCP OFFER packet is sent through a path that the DHCP relay agent is not listening on, the DHCP OFFER packet drops. In this case, the DHCP client-enabled interface does not receive the IPv4 address.

For example, in the following topology, the DHCP DISCOVER packet is sent by the relay agent (R4) on link 2. The relay agent routing table points only to link 2 to reach the DHCP server. However, the DHCP server sends the DHCP OFFER packet to relay agent (R4) on a different path and the DHCP OFFER packet drops.

This issue occurs because the relay agent listens only on the best path uplink interfaces where the DHCP server is reachable.
Network Time Protocol

Network Time Protocol (NTP) synchronizes timekeeping among a set of distributed time servers and clients. The protocol coordinates time distribution in a large, diverse network. NTP clients synchronize with NTP servers that provide accurate time measurement. NTP clients choose from several NTP servers to determine which offers the best available source of time and the most reliable transmission of information.

To get the correct time, OS10 synchronizes with a time-serving host. For the current time, you can set the system to poll specific NTP time-serving hosts. From those time-serving hosts, the system chooses one NTP host to synchronize with and acts as a client to the NTP host. After the host-client relationship establishes, the networking device propagates the time information throughout its local network.

The NTP client sends messages to one or more servers and processes the replies as received. Information included in the NTP message allows each client/server peer to determine the timekeeping characteristics of its other peers, including the expected accuracies of their clocks. Using this information, each peer selects the best time from several other clocks, updates the local clock, and estimates its accuracy.

### NTP Fields

<table>
<thead>
<tr>
<th>Code 0x00</th>
<th>Code 0x04</th>
<th>Code 0x08</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Warning</td>
<td>Offset 0</td>
<td>Offset 4</td>
</tr>
<tr>
<td>1 second</td>
<td>1 second</td>
<td>1 second</td>
</tr>
<tr>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
</tr>
</tbody>
</table>

**NOTE:** OS10 supports both NTP server and client roles.
Enable NTP

NTP is disabled by default. To enable NTP, configure an NTP server where the system synchronizes. To configure multiple servers, enter the command multiple times. Multiple servers may impact CPU resources.

- Enter the IP address of the NTP server where the system synchronizes in CONFIGURATION mode.
  
  \[ \text{ntp server ip-address} \]

View system clock state

OS10(config)# do show ntp status
system peer:          0.0.0.0
system peer mode:     unspec
leap indicator:       11
stratum:              16
precision:            -22
root distance:        0.00000 s
root dispersion:      1.28647 s
reference ID:         [73.78.73.84]
reference time:       00000000.00000000  Mon, Jan 1 1900  0:00:00.000
system flags:         monitor ntp kernel stats
jitter:               0.000000 s
stability:            0.000 ppm
broadcastdelay:       0.000000 s
authdelay:            0.000000 s

View calculated NTP synchronization variables

OS10(config)# do show ntp associations
remote           local    st poll reach  delay   offset    disp
=======================================================================
10.16.150.185   10.16.151.123 16 1024    0 0.00000  0.000000 3.99217
OS10# show ntp associations
remote           local    st poll reach  delay   offset    disp
=======================================================================
10.16.150.185   10.16.151.123 16 1024    0 0.00000  0.000000 3.99217

Broadcasts

Receive broadcasts of time information and set interfaces within the system to receive NTP information through broadcast. NTP is enabled on all active interfaces by default. If you disable NTP on an interface, the system drops any NTP packets sent to that interface.

1  Set the interface to receive NTP packets in INTERFACE mode.
   ntp broadcast client

2  Disable NTP on the interface in INTERFACE mode.
   ntp disable

Configure NTP broadcasts

OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# ntp broadcast client

Disable NTP broadcasts

OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# ntp disable
Source IP address

Configure one interface IP address to include in all NTP packets. The source address of NTP packets is the interface IP address the system uses to reach the network by default.

- Configure a source IP address for NTP packets in CONFIGURATION mode.
  ```
 ntp source interface
 - ethernet — Enter the keyword and node/slot/port information.
 - port-channel — Enter the keyword and number.
 - vlan — Enter the keyword and VLAN number, from 1 to 4093.
 - loopback — Enter the keyword and number, from 0 to 16383.
 - mgmt — Enter the keyword and node/slot/port information. The default is 1/1/1.
  ```

Configure source IP address

```
OS10(config)# ntp source ethernet 1/1/10
```

View source IP configuration

```
OS10(config)# do show running-configuration | grep source
ntp source ethernet1/1/1
```

Authentication

NTP authentication and the corresponding trusted key provides a reliable exchange of NTP packets with trusted time sources. NTP authentication begins with creating the first NTP packet after the key configuration. NTP authentication uses the message digest 5 (MD5) algorithm. The key is embedded in the synchronization packet that is sent to an NTP time source.

1. Enable NTP authentication in CONFIGURATION mode.
   ```
 ntp authenticate
   ```

2. Set an authentication key number and key in CONFIGURATION mode, from 1 to 4294967295.
   ```
 ntp authentication-key number md5 key
   ```
   - The number must match in the ntp trusted-key command.
   - The key is an encrypted string.

3. Define a trusted key in CONFIGURATION mode, from 1 to 4294967295. This number must match the number in the ntp trusted-key command.
   ```
 ntp trusted-key number
   ```

4. Configure an NTP server in CONFIGURATION mode.
   ```
 ntp server {hostname | ipv4-address | ipv6-address} [key keyid] [prefer]
   ```
   - hostname — Enter the keyword to see the IP address or host name of the remote device.
   - ipv4-address — Enter an IPv4 address in A.B.C.D format.
   - ipv6-address — Enter an IPv6 address in nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn format (elision of zeros is supported).
   - key keyid — Enter a text string as the key exchanged between the NTP server and the client.
   - prefer — Enter the keyword to set this NTP server as the preferred server.

5. Configure the NTP master and enter the stratum number that identifies the NTP server hierarchy in CONFIGURATION mode, from 2 to 10, default 8.
   ```
 ntp master <2-10>
   ```
Configure NTP

OS10(config)# ntp authenticate
OS10(config)# ntp trusted-key 345
OS10(config)# ntp authentication-key 345 mdf 0 5A60910FED211F02
OS10(config)# ntp server 1.1.1.1 key 345
OS10(config)# ntp master 7

View NTP configuration

OS10(config)# do show running-configuration
!
ntp authenticate
ntp authentication-key 345 mdf 0 5A60910FED211F02
ntp server 1.1.1.1 key 345
ntp trusted-key 345
ntp master 7
...

NTP commands

ntp authenticate

Enables authentication of NTP traffic between the device and the NTP time serving hosts.

Syntax

    ntp authenticate

Parameters

None

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

You must also configure an authentication key for NTP traffic using the ntp authentication-key command. The no version of this command disables NTP authentication.

Example

OS10(config)# ntp authenticate

Supported Releases

10.2.0E or later

ntp authenticate-key

Configures the authentication key for trusted time sources.

Syntax

    ntp authenticate-key number md5 [0 | 7] key

Parameters

-  number — Enter the authentication key number, from 1 to 4294967295.
-  md5 — Set to MD5 encryption.
-  0 — Set to unencrypted format, the default.
-  7 — Set to hidden encryption.
-  key — Enter the authentication key.

Default

0

Command Mode

CONFIGURATION
Usage Information

The authentication number must be the same as the number parameter configured in the ntp trusted-key command. Use the ntp authenticate command to enable NTP authentication.

Example

OS10(config)# ntp authentication-key 1200 md5 0 dell

Supported Releases

10.2.0E or later

ntp broadcast client

Configures the interface to receive NTP broadcasts from an NTP server.

Syntax

ntp broadcast client

Parameters

None

Default

Not configured

Command Mode

INTERFACE

Usage Information

The no version of this command disables broadcast.

Example

OS10(conf-if-eth1/1/1)# ntp broadcast client

Supported Releases

10.2.0E or later

ntp disable

By default, NTP is enabled on all interfaces. Prevents an interface from receiving NTP packets.

Syntax

ntp disable

Parameters

None

Default

Enabled

Command Mode

INTERFACE

Usage Information

Use this command to configure OS10 to not listen to a particular server and prevent the interface from receiving NTP packets. The no version of this command re-enables NTP on an interface.

Example

OS10(conf-if-eth1/1/7)# ntp disable

Supported Releases

10.2.0E or later

ntp enable vrf

Enables NTP for the management or non-default VRF instance.

Syntax

ntp enable vrf {management | vrf vrf-name}

Parameters

- management — Enter the keyword management to enable NTP for the management VRF instance.
- vrf vrf-name — Enter the keyword vrf followed by the name of the VRF to enable NTP for that non-default VRF instance.

Defaults

Disabled

Command Mode

CONFIGURATION
Usage Information  The `no` version of this command disables NTP for the management VRF instance.

Example

```
OS10(config)# ntp enable vrf management
OS10(config)# ntp enable vrf vrf-blue
```

Supported Releases  10.4.0E(R1) or later

### ntp master

Configures an NTP master server.

**Syntax**

```
ntp master stratum
```

**Parameters**

- `stratum` — Enter the stratum number to identify the NTP server hierarchy, from 2 to 10.

**Default**  8

**Command Mode**  CONFIGURATION

**Usage Information**  The `no` version of this command resets the value to the default.

**Example**

```
OS10(config)# ntp master 6
```

**Supported Releases**  10.2.0E or later

### ntp server

Configures an NTP time-serving host.

**Syntax**

```
ntp server {hostname | ipv4-address | ipv6-address} [key keyid] [prefer]
```

**Parameters**

- `hostname` — Enter the host name of the server.
- `ipv4-address | ipv6-address` — Enter the IPv4 address in A.B.C.D format or IPv6 address in A::B format of the NTP server.
- `key keyid` — (Optional) Enter the NTP peer key ID, from 1 to 4294967295.
- `prefer` — (Optional) Configures this peer to have priority over other servers.

**Default**  Not configured

**Command Mode**  CONFIGURATION

**Usage Information**  You can configure multiple time-serving hosts. From these time-serving hosts, the system chooses one NTP host to synchronize with. To determine which server to select, use the `show ntp associations` command. Dell EMC recommends limiting the number of hosts you configure, as many polls to the NTP hosts can impact network performance.

**Example**

```
OS10(config)# ntp server eureka.com
```

**Supported Releases**  10.2.0E or later

### ntp source

Configures an interface IP address to include in NTP packets.

**Syntax**

```
ntp source interface
```
Parameters  
  
  **interface** — Set the interface type:
  
  -  **ethernet node/slot/port[:subport]** — Enter the Ethernet interface information.
  -  **port-channel id-number** — Enter the port-channel number, from 1 to 128.
  -  **vlan vlan-id** — Enter the VLAN number, from 1 to 4093.
  -  **loopback loopback-id** — Enter the Loopback interface number, from 0 to 16383.
  -  **mgmt node/slot/port** — Enter the Management port interface information.

Default  
  Not configured

Command Mode  
  CONFIGURATION

Usage Information  
  The **no** version of this command removes the configuration.

Example  
  
  ```
 OS10(config)# ntp source ethernet 1/1/24
  ```

Supported Releases  
  10.2.0E or later

**ntp trusted-key**

Sets a key to authenticate the system to which NTP synchronizes with.

Syntax  
  ntp trusted-key number

Parameters  
  **number** — Enter the trusted key ID (1 to 4294967295).

Default  
  Not configured

Command Mode  
  CONFIGURATION

Usage Information  
  The **number** parameter must be the same number as the **number** parameter in the **ntp authentication-key** command. If you change the **ntp authentication-key** command, you must also change this command. The **no** version of this command removes the key.

Example  
  
  ```
 OS10(config)# ntp trusted-key 234567
  ```

Supported Releases  
  10.2.0E or later

**show ntp associations**

Displays the NTP master and peers.

Syntax  
  show ntp associations [vrf {management | vrf vrf-name}]

Parameters  
  
  -  **management** — Enter the keyword **management** to display NTP information corresponding to the management VRF instance.
  -  **vrf vrf-name** — Enter the keyword **vrf** followed by the name of the VRF to display NTP information corresponding to that non-default VRF instance.

Default  
  Not configured

Command Mode  
  EXEC

Usage Information  
  
  -  **(none)** — One or more of the following symbols displays:
  -  ***** — Synchronized to this peer.
# — Almost synchronized to this peer.
+ — Peer was selected for possible synchronization.
- — Peer is a candidate for selection.
~ — Peer is statically configured.

- remote — Remote IP address of the NTP peer.
- ref clock — IP address of the remote peer’s reference clock.
- st — Peer stratum, the number of hops away from the external time source. 16 means that the NTP peer cannot reach the time source.
- when — Last time the device received an NTP packet.
- poll — Polling interval in seconds.
- reach — Reachability to the peer in octal bitstream.
- delay — Time interval or delay for a packet to complete a round-trip to the NTP time source in milliseconds.
- offset — Relative time of the NTP peer’s clock to the network device clock in milliseconds.
- disp — Dispersion.

Example

OS10# show ntp associations
remote      ref clock  st  when poll reach delay  offset  disp
=======================================================================
10.10.120.5 0.0.0.0     16 - 256        0 0.00 0.000 16000.0
*172.16.1.33 127.127.1.0 11 6 16         377   -0.08 -1499.9 104.16
172.31.1.33 0.0.0.0     16 - 256        0 0.00 0.000 16000.0
192.200.0.2 0.0.0.0     16 - 256        0 0.00 0.000 16000.0

OS10# show ntp associations vrf management
remote     local      st  poll reach  delay       offset        disp
=======================================================================
*1.1.1.2  1.1.1.1     3    64    1     0.00027     0.000056    0.43309

Supported Releases
10.2.0E or later

**show ntp status**

Displays NTP configuration information.

**Syntax**

```
show ntp status [vrf management]
```

**Parameters**

- status — (Optional) View the NTP status.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example (Status)**

OS10# show ntp status
system peer: 0.0.0.0
system peer mode: unspec
leap indicator: 11
stratum: 16
precision: -22
root distance: 0.00000 s
root dispersion: 1.28647 s
reference ID: [73.78.73.84]
reference time: 00000000.00000000 Mon, Jan 1 1900 0:00:00.000
system flags: monitor ntp kernel stats
jitter: 0.000000 s
stability: 0.000 ppm
Supported Releases
10.2.0E or later

**System clock**

OS10 uses the network time protocol (NTP) to synchronize the system clock with a time-serving host. If you do not use NTP, set the system time and the timezone. The hardware-based real-clock time (RTC) is reset to the new system time.

You can set the current time and date after you disable NTP. When you enable NTP, it overwrites the system time.

- Enter the time and date in EXEC mode.

  ```
 clock set time year-month-day
  ```

  Enter `time` in the format `hour:minute:second`, where `hour` is 1 to 24; `minute` is 1 to 60; `second` is 1 to 60. For example, enter 5:15 PM as `17:15:00`.

  Enter `year-month-day` in the format `YYYY-MM-DD`, where `YYYY` is a four-digit year, such as 2016; `MM` is a month from 1 to 12; `DD` is a day from 1 to 31.

- Enter the timezone in CONFIGURATION mode.

  ```
 clock timezone timezone-string Hours Minutes
  ```

  Enter `timezone-string` which is the name of the time zone.

  Enter `Hours` offset from UTC, ranging from -23 to 23.

  Enter `Minutes` offset from UTC, ranging from 0 to 59.

**Set time and date**

OS10# clock set 13:00:00 2018-08-30

**View system time and date**

OS10# show clock
2018-08-30T13:01:01.45+00:00

**Set time zone**

OS10(config)# clock timezone IST 5 30

**View system time and date with time zone configured**

OS10# show clock
2018-08-30T13:01:01.57+05:30
System Clock commands

clock set

Sets the system time.

Syntax

```
clock set time year-month-day
```

Parameters

- **time**
  - Enter *time* in the format *hour:minute:second*, where *hour* is 1 to 24; *minute* is 1 to 60; *second* is 1 to 60. For example, enter 5:15 PM as *17:15:00*.
- **year-month-day**
  - Enter *year-month-day* in the format *YYYY-MM-DD*, where *YYYY* is a four-digit year, such as 2016; *MM* is a month from 1 to 12; *DD* is a day from 1 to 31.

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to reset the system time if the system clock is out of synch with the NTP time. The hardware-based real-clock time (RTC) resets to the new time. The new system clock setting applies immediately.

Example

```
OS10# clock set 18:30:10 2017-01-25
```

Supported Releases

10.2.1E or later

clock timezone

Sets the time zone used for the system clock.

Syntax

```
clock timezone timezone-string Hours Minutes
```

Parameters

- **timezone-string**
  - Enter *timezone-string* which is the name of the time zone.
- **Hours**
  - Enter *Hours* offset from UTC, ranging from –23 to 23.
- **Minutes**
  - Enter *Minutes* offset from UTC, ranging from 0 to 59.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

Universal time coordinated (UTC) is the time standard based on Greenwich Mean time. To set the time zone for the system clock, enter the difference of hours between UTC and your time zone.

Example

```
OS10(config)# clock timezone IST 5 30
```

Supported Releases

10.3.0E or later

show clock

Displays the current system clock settings.

Syntax

```
show clock
```

System management
**System banners**

You can configure a system login and message of the day (MOTD) text banners. The system login banner displays before you log in. The MOTD banner displays immediately after a successful login.

You can reset the banner text to the Dell EMC default banner or disable the banner display.

### Login banner

Configure a system login banner that displays before you log in using interactive mode. Starting and ending double-quotes are not necessary. Enter a single delimiter character or the key combination ^C to specify the start and end of the text banner.

1. Enter the `banner login` command with a single delimiter character and press Enter.
2. Enter each line of text and press Enter. Enter a maximum of 4096 characters. There is no limit to the number of lines.
3. Complete the banner configuration by entering a line that contains only the delimiter character.

   ```
 banner login delimiter <Enter>
 banner-text <Enter>
 banner-text <Enter>
 ... <Enter>
 delimiter
   ```

### MOTD banner

Configure a message of the day banner that displays after you log in. Enter up to 4096 characters. To start and end the MOTD banner, enter a single delimiter character or the key combination ^C. You can enter any character as the delimiter.

To enter a MOTD banner text, use the interactive mode. Enter the command with the delimiter character and press Enter. Then enter each line and press Enter. Complete the banner configuration by entering a line that contains only the delimiter character. Starting and ending double-quotes are not necessary.
Configure MOTD banner

OS10(config)# banner motd %
DellEMC S4148U-ON
Today’s tip: Press tab or spacebar for command completion.
Have a nice day!
%

To delete a MOTD banner and reset it to the Dell EMC default MOTD banner, enter the `no banner motd` command. To disable MOTD banner display after login, enter the `banner motd disable` command.

System banner commands

**banner login**

Configures a login banner that displays before you log in to the system.

**Syntax**

```
banner login delimiter <Enter>
banner-text <Enter>
... <Enter>
delimiter
```

**Parameters**

- `delimiter` — Enter a single delimiter character or the key combination ^C to specify the start and end of the text banner.
- `banner-text` — Enter a maximum of 4096 characters. There is no limit to the number of lines.

**Default**

The Dell EMC default banner is displayed before you log in.

**Command Mode**

CONFIGURATION

**Usage Information**

- To enter multiline banner text, use the interactive mode. Enter the command with the delimiter character and press Enter. Then enter each line and press Enter. Complete the banner configuration by entering a line that contains only the delimiter character. Starting and ending double-quotes are not necessary.
- To delete a login banner and reset it to the Dell EMC default banner, enter the `no banner login` command. To disable banner display before login, enter the `banner login disable` command.

**Example**

OS10(config)# banner login %
Welcome to DellEMC Z9100-ON
Enter your username and password
%

**Supported Releases**

10.4.1.0 or later

**banner motd**

Configures a multi-line message of the day banner that displays after you log in.

**Syntax**

```
banner motd delimiter <Enter>
banner-text <Enter>
```

**Example**

OS10(config)# banner motd %
DellEMC Z9100-ON
Today’s tip: Press tab or spacebar for command completion.
Have a nice day!
%

**Supported Releases**

10.4.1.0 or later
Parameters

- **delimiter** — Enter a single delimiter character or the key combination `^C` to specify the start and end of the text banner.
- **banner-text** — Enter a maximum of 4096 characters. There is no limit on the number of lines.

Default

The Dell EMC default MOTD banner is displayed after you log in.

Command Mode

CONFIGURATION

Usage Information

- To enter a MOTD banner text, use the interactive mode. Enter the command with the delimiter character and press **Enter**. Then enter each line and press **Enter**. Complete the banner configuration by entering a line that contains only the delimiter character. Starting and ending double-quotes are not necessary.
- To delete a login banner and reset it to the Dell EMC default banner, enter the `no banner motd` command. To disable banner display before login, enter the `banner motd disable` command.

Example

```
OS10(config)# banner motd %
DellEMC S4148U-ON
Today's tip: Press tab or spacebar for command completion.
Have a nice day!
%
```

Supported releases

10.4.0 or later

User session management

You can manage the active user sessions using the following commands:

- Configure the timeout for all the active user sessions using the `exec-timeout timeout-value` command in the **CONFIGURATION** mode.
- Clear any user session using the `kill-session session-ID` command in the **EXEC** mode.
- View the active user sessions using the `show sessions` command in the **EXEC** mode.

Configure timeout for user sessions

```
OS10(config)# exec-timeout 300
OS10(config)#
```

Clear user session

```
OS10# kill-session 3
```

View active user sessions

```
OS10# show sessions

Current session's operation mode: Non-transaction

+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| Session-ID | User | In-rpcs | In-bad-rpcs | Out-rpc-err | Out-notify | Login-time | Lock |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| 3 | snmp_user | 114 | 0 | 0 | 0 | 2017-07-10T23:58:39Z | |
| 4 | snmp_user | 57 | 0 | 0 | 0 | 2017-07-10T23:58:40Z | |
| 6 | admin | 17 | 0 | 0 | 4 | 2017-07-12T03:55:18Z | |
| *7 | admin | 10 | 0 | 0 | 0 | 2017-07-12T04:42:55Z | |
```

OS10#
User session management commands

exec-timeout

Configure timeout in seconds for all the user sessions.

Syntax
exec-timeout timeout-value

Parameters
timeout-value — Enter the timeout value in seconds, from 0 to 3600.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command disables the timeout.

Example
OS10(config)# exec-timeout 300
OS10(config)#

Supported Releases
10.3.1E or later

kill-session

Terminate a user session.

Syntax
kill-session session-ID

Parameters
session-ID — Enter the user session ID.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# kill-session 3

Supported Releases
10.3.1E or later

show sessions

Displays the active management sessions.

Syntax
show sessions

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Use this command to view information about the active user management sessions.

Example
OS10# show sessions
Current session's operation mode: Non-transaction

Session-ID User In-rpcs In-bad-rpcs Out-rpc-err Out-notify Login-time Lock

System management 611
**Telnet server**

To allow Telnet TCP/IP connections to an OS10 switch, enable the Telnet server. The OS10 Telnet server uses the Debian `telnetd` package. By default, the Telnet server is disabled.

When you enable the Telnet server, connect to the switch using the IP address configured on the management or any front-panel port. The Telnet server configuration is persistent and is maintained after you reload the switch. To verify the Telnet server configuration, enter the `show running-configuration` command.

**Enable Telnet server**

```
OS10(config)# ip telnet server enable
```

**Disable Telnet server**

```
OS10(config)# no ip telnet server enable
```

By default, the Telnet server is disabled on the default virtual routing and forwarding (VRF). To configure the Telnet server to be reachable on the management VRF, use the `ip telnet server vrf management` command.

**Configure Telnet server on management VRF**

```
OS10(config)# ip telnet server vrf management
```

**Telnet commands**

**ip telnet server enable**

Enables Telnet TCP/IP connections to an OS10 switch.

**Syntax**

```
ip telnet server enable
```

**Parameters**

None

**Default**

Disabled

**Command Mode**

CONFIGURATION

**Usage Information**

By default, the Telnet server is disabled. When you enable the Telnet server, use the IP address configured on the management or any front-panel port to connect to an OS10 switch. After you reload the switch, the Telnet server configuration is maintained. To verify the Telnet server configuration, use the `show running-configuration` command.

**Example**

```
OS10(config)# ip telnet server enable
```

**Example (disable)**

```
OS10(config)# no ip telnet server enable
```

**Supported Releases**

10.4.0E(R1) or later
ip telnet server vrf

Configures the Telnet server for the management or non-default VRF instance.

Syntax

```
ip telnet server vrf {management | vrf vrf-name}
```

Parameters

- **management** — Configures the management VRF used to reach the Telnet server.
- **vrf vrf-name** — Enter the keyword vrf followed by the name of the VRF to configure the non-default VRF instance used to reach the Telnet server.

Default

The Telnet server is reachable on the default VRF.

Command Mode

CONFIGURATION

Usage Information

By default, the Telnet server is disabled. To enable the Telnet server, use the `telnet enable` command.

Example

```
OS10(config)# ip telnet server vrf management
OS10(config)# ip telnet server vrf vrf-blue
```

Supported Releases

10.4.0E(R1) or later

Security

Authentication, authorization, and accounting (AAA) services secure networks against unauthorized access. In addition to local authentication, OS10 supports remote authentication dial-in user service (RADIUS) and terminal access controller access control system (TACACS+) client/server authentication systems. For RADIUS and TACACS+, an OS10 switch acts as a client and sends authentication requests to a server that contains all user authentication and network service access information.

A RADIUS or TACACS+ server provides authentication (user credentials verification), authorization (role-based permissions), and accounting services. You can configure the security protocol used for different login methods and users. RADIUS provides very limited authorization and accounting services compared to TACACS+.

An OS10 switch uses a list of authentication methods to define the types of authentication and the sequence in which they apply. By default, only the `local` authentication method is configured.

The authentication methods in the method list execute in the order in which you configure them. You can re-enter the methods to change the order. The `local` authentication method remains enabled even if you remove all configured methods in the list using the `no aaa authentication login {console | default}` command.

- Configure the AAA authentication method in CONFIGURATION mode.
  
  ```
 aaa authentication login {console | default} {local | group radius | group tacacs+}
  ```
  
  - **console** — Configure authentication methods for console logins.
  - **default** — Configure authentication methods for non-console such as SSH and Telnet logins.
  - **local** — Use the local username, password, and role entries configured with the `username password role` command.
  - **group radius** — Use the RADIUS servers configured with the `radius-server host` command.
  - **group tacacs+** — Use the TACACS+ servers configured with the `tacacs-server host` command.

Configure user role on server

If a console user logs in with RADIUS or TACACS+ authentication, the role you configured for the user on the RADIUS or TACACS+ server applies. User authentication fails if no role is configured on the authentication server.

In addition, you must configure the user role on the RADIUS or TACACS+ server using the vendor-specific attribute (VSA) or the authentication fails. Dell's vendor ID is 674. You create a VSA with `Name = Dell-group-name, OID = 2, Type = string`. Valid
values for Dell-group-name are sysadmin, secadmin, netadmin, and netoperator. Use the VSA Dell-group-name values when you create users on a Radius or TACACS+ server.

For detailed information about how to configure vendor-specific attributes on a RADIUS or TACACS+ server, refer to the respective RADIUS or TACACS+ server documentation.

**Configure AAA authentication**

```
OS10(config)# aaa authentication login default group radius local
OS10(config)# do show running-configuration aaa
aaa authentication login default group radius local
aaa authentication login console local
```

**Remove AAA authentication methods**

```
OS10(config)# no aaa authentication login default
OS10(config)# do show running-configuration aaa
aaa authentication login default local
aaa authentication login console local
```

**User re-authentication**

To prevent users from accessing resources and performing tasks for which they are not authorized, OS10 allows you to require users to re-authenticate by logging in again when an authentication method or server changes, such as:

- Adding or removing a RADIUS server using the radius-server host command
- Adding or removing an authentication method using the aaa authentication login {console | default} {local | group radius | group tacacs+} command

You can enable this feature so that user re-authentication is required when any of these actions are performed. In these cases, logged-in users are logged out of the switch and all OS10 sessions terminate. By default, user re-authentication is disabled.

**Enable user re-authentication**

- Enable user re-authentication in CONFIGURATION mode.
  ```
 aaa re-authenticate enable
  ```

  The no version of this command disables user re-authentication.

**Password strength**

By default, the password you configure with the username password command must be at least nine alphanumeric characters.

To increase password strength, you can create password rules using the password-attributes command. When you enter the command, at least one parameter is required. When you enter the character-restriction parameter, at least one option is required.

- Create rules for stronger passwords in CONFIGURATION mode.
  ```
 password-attributes {[min-length number] [character-restriction {
 [upper number] [lower number] [numeric number] [
 special-char number]]}]
  ```

  - min-length number — Enter the minimum number of required alphanumeric characters, from 6 to 32; default 9.
  - character-restriction — Enter a requirement for the alphanumeric characters in a password:
    - upper number — Minimum number of uppercase characters required, from 0 to 31; default 0.
    - lower number — Minimum number of lowercase characters required, from 0 to 31; default 0.
    - numeric number — Minimum number of numeric characters required, from 0 to 31; default 0.
    - special-char number — Minimum number of special characters required, from 0 to 31; default 0.
Create password rules

OS10(config)# password-attributes min-length 7 character-restriction upper 4 numeric 2

Display password rules

OS10(config)# do show running-configuration password-attributes
password-attributes min-length 7 character-restriction upper 4 numeric 2

Role-based access control

RBAC provides control for access and authorization. Users are granted permissions based on defined roles — not on their individual system user ID. Create user roles based on job functions to help users perform their associated job function. You can assign each user only a single role, and many users can have the same role. A user role authenticates and authorizes a user at login, and places you in EXEC mode (see CLI basics).

OS10 supports four pre-defined roles: sysadmin, secadmin, netadmin, and netoperator. Each user role assigns permissions that determine the commands a user can enter, and the actions a user can perform. RBAC provides an easy and efficient way to administer user rights. If a user’s role matches one of the allowed user roles for a command, command authorization is granted.

The OS10 RBAC model provides separation of duty as well as greater security. It places some limitations on each role’s permissions to allow you to partition tasks. For greater security, only some user roles can view events, audits, and security system logs.

Assign user role

To limit OS10 system access, assign a role when you configure each user.

- Enter a user name, password, and role in CONFIGURATION mode.

  username username password password role role

  - username username — Enter a text string. A maximum of 32 alphanumeric characters; 1 character minimum.
  - password password — Enter a text string. A maximum of 32 alphanumeric characters; 9 characters minimum.
  - role role — Enter a user role:
    - sysadmin — Full access to all commands in the system, exclusive access to commands that manipulate the file system, and access to the system shell. A system administrator can create user IDs and user roles.
    - secadmin — Full access to configuration commands that set security policy and system access, such as password strength, AAA authorization, and cryptographic keys. A security administrator can display security information, such as cryptographic keys, login statistics, and log information.
    - netadmin — Full access to configuration commands that manage traffic flowing through the switch, such as routes, interfaces, and ACLs. A network administrator cannot access configuration commands for security features or view security information.
    - netoperator — Access to EXEC mode to view the current configuration. A network operator cannot modify any configuration setting on a switch.

Create user and assign role

OS10(config)# username smith password silver403! newuser role sysadmin

View users

OS10# show users

<table>
<thead>
<tr>
<th>Index</th>
<th>Line</th>
<th>User</th>
<th>Role</th>
<th>Application</th>
<th>Idle</th>
<th>Login-Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ttyS</td>
<td>root</td>
<td>root</td>
<td>-bash</td>
<td>&gt;24h</td>
<td>2018-05-23 T23:05:03Z</td>
<td>console</td>
</tr>
</tbody>
</table>
RADIUS authentication

To configure a RADIUS server for authentication, enter the server's IP address or host name, and the key used to authenticate the OS10 switch on a RADIUS host. You can enter the authentication key in plain text or encrypted format. You can change the user datagram protocol (UDP) port number on the server.

- Configure a RADIUS authentication server in CONFIGURATION mode. By default, a RADIUS server uses UDP port 1812.
  ```
 radius-server host {hostname | ip-address} key {0 authentication-key | 9 authentication-key | authentication-key} [auth-port port-number]
  ```

Re-enter the `radius-server host` command multiple times to configure more than one RADIUS server. If you configure multiple RADIUS servers, OS10 attempts to connect in the order you configured them. An OS10 switch connects with the configured RADIUS servers one at a time, until a RADIUS server responds with an accept or reject response. The switch tries to connect with a server for the configured number of retransmit retries and timeout period.

Configure global settings for the timeout and retransmit attempts allowed on RADIUS servers using the `radius-server retransmit`, `radius-server timeout`, and `ip radius source-interface` commands. By default, OS10 supports three RADIUS authentication attempts and times out after five seconds. No source interface is configured.

- Configure the number of times OS10 retransmits a RADIUS authentication request in CONFIGURATION mode, from 0 to 100 retries; default 3.
  ```
 radius-server retransmit retries
  ```

- Configure the timeout period used to wait for an authentication response from a RADIUS server in CONFIGURATION mode, from 0 to 1000 seconds; default 5.
  ```
 radius-server timeout seconds
  ```

- (Optional) Configure an arbitrary IP address as the source interface used in RADIUS connections in CONFIGURATION mode. The IP address of the specified interface is included in the IP header of RADIUS packets without changing the source IP address. The `ip radius source-interface` command is optional for RADIUS-based user authentication. RADIUS authentication is still performed if you do not specify an IP RADIUS source interface.
  ```
 ip radius source-interface interface
  ```

Configure RADIUS server

```
OS10(config)# radius-server host 1.2.4.5
OS10(config)# radius-server retransmit 10
OS10(config)# radius-server timeout 10
OS10(config)# ip radius source-interface mgmt 1/1/1
```  

View RADIUS server configuration

```
OS10# show running-configuration
... radius-server host 1.2.4.5 key 9 3a95c26b2a5b96a6b80036839f296babe03560f4b0b7220d6454b3e71bd59b radius-server retransmit 10 radius-server timeout 10 ip radius source-interface mgmt 1/1/1 ...
```

Delete RADIUS server

```
OS10# no radius server host 1.2.4.5
```
TACACS+ authentication

Configure a TACACS+ authentication server by entering the server's IP address or host name. You must also enter a text string for the key used to authenticate the OS10 switch on a TACACS+ host. The TCP port entry is optional.

TACACS+ provides greater data security by encrypting the entire protocol portion in a packet sent from the switch to an authentication server. RADIUS encrypts only passwords.

- Configure a TACACS+ authentication server in CONFIGURATION mode. By default, a TACACS+ server uses TCP port 49 for authentication.

  ```
 tacacs-server host {hostname | ip-address} key {0 authentication-key | 9 authentication-key}
 | authentication-key} [auth-port port-number]
  ```

  Re-enter the `tacacs-server host` command multiple times to configure more than one TACACS+ server. If you configure multiple TACACS+ servers, OS10 attempts to connect in the order you configured them. An OS10 switch connects with the configured TACACS+ servers one at a time, until a TACACS+ server responds with an accept or reject response.

- Configure the global timeout used to wait for an authentication response from TACACS+ servers in CONFIGURATION mode, from 1 to 1000 seconds; default 5.

  ```
 tacacs-server timeout seconds
  ```

- (Optional) Configure an arbitrary IP address as the source interface used in TACACS+ connections in CONFIGURATION mode. The IP address of the specified interface is included in the IP header of TACACS+ packets without changing the source IP address. The `ip tacacs source-interface` command is optional for TACACS+-based user authentication. TACACS+ authentication is still performed if you do not specify an IP TACACS+ source interface.

  ```
 ip radius source-interface interface
  ```

Configure TACACS+ server

OS10(config)# tacacs-server host 1.2.4.5 key mysecret
OS10(config)# ip tacacs source-interface loopback 2

View TACACS+ server configuration

OS10# show running-configuration
...
tacacs-server host 1.2.4.5 key 9
3a95c26b2a5b96a6b80036839f29babe03560f4b0b7220d6454b3e71bdfc59b
ip tacacs source-interface loopback 2
...

Delete TACACS+ server

OS10# no tacacs server host 1.2.4.5

TACACS+ unknown or missing user role

When a TACACS+ server authenticates a user and does not return a role or returns an unknown role, OS10 assigns the `netoperator` role to the user by default. You can reconfigure the default assigned role and the associated permissions. In addition, you can configure a specified TACACS+ user-role name to inherit the permissions of an existing OS10 system-defined role.

- Enter an OS10 user role in CONFIGURATION mode.

  ```
 userrole {default | name} inherit existing-role-name
  ```

  - `default inherit` — Reconfigure the default permissions assigned to an authenticated user with a missing or unknown TACACS+ role.
  - `name inherit` — Enter the name of the TACACS+ user role that inherits permissions from an OS10 user role; 32 characters maximum.
  - `existing-role-name` — Assign the permissions associated with an existing OS10 user role:
- **sysadmin** — Full access to all commands in the system, exclusive access to commands that manipulate the file system, and access to the system shell. A system administrator can create user IDs and user roles.
- **secadmin** — Full access to configuration commands that set security policy and system access, such as password strength, AAA authorization, and cryptographic keys. A security administrator can display security information, such as cryptographic keys, login statistics, and log information.
- **netadmin** — Full access to configuration commands that manage traffic flowing through the switch, such as routes, interfaces, and ACLs. A network administrator cannot access configuration commands for security features or view security information.
- **netoperator** — Access only to EXEC mode to view the current configuration. A network operator cannot modify any configuration setting on a switch.

**Reconfigure permissions for an unknown TACACS+ user role**

```
OS10(config)# userrole default inherit sysadmin
```

**Configure permissions for a TACACS+ user role**

```
OS10(config)# userrole tacacsadmin inherit netadmin
```

**SSH server**

In OS10, the secure shell (SSH) server allows an SSH client to access an OS10 switch through a secure, encrypted connection. The SSH server authenticates remote clients using RADIUS challenge/response, a trusted host file, locally-stored passwords, and public keys.

**Configure SSH server**

- The SSH server is enabled by default. You can disable the SSH server using the `no ip ssh server enable` command.
- Challenge response authentication is disabled by default. To enable, use the `ip ssh server challenge-response-authentication` command.
- Host-based authentication is disabled by default. To enable, use the `ip ssh server hostbased-authentication` command.
- Password authentication is enabled by default. To disable, use the `no ip ssh server password-authentication` command.
- Public key authentication is enabled by default. To disable, use the `no ip ssh server pubkey-authentication` command.
- Password-less login is disabled by default. To enable, use the `username sshkey` or `username sshkey filename` commands.
- Configure the list of cipher algorithms using the `ip ssh server cipher cipher-list` command.
- Configure Key Exchange algorithms using the `ip ssh server kex key-exchange-algorithm` command.
- Configure hash message authentication code (HMAC) algorithms using the `ip ssh server mac hmac-algorithm` command.
- Configure the SSH server listening port using the `ip ssh server port port-number` command.
- Configure the SSH server to be reachable on the management VRF using the `ip ssh server vrf` command.
- Configure the SSH login timeout using the `ip ssh server login-grace-time seconds` command, from 0 to 300; default 60. To reset the default SSH prompt timer, use the `no ip ssh server login-grace-time` command.
- Configure the maximum number of authentication attempts using the `ip ssh server max-auth-tries number` command, from 0 to 10; default 6. To reset the default, use the `no ip ssh server max-auth-tries` command.

The `max-auth-tries` value includes all authentication attempts, including public-key and password. If you enable both, public-key based authentication and password authentication, the public-key authentication is the default and is tried first. If it fails, the number of `max-auth-tries` is reduced by one. In this case, if you configured `ip ssh server max-auth-tries 1`, the password prompt does not display.

**Regenerate public keys**

When enabled, the SSH server generates public keys by default and uses them for client authentication:

- A Rivest, Shamir, and Adelman (RSA) key using 2048 bits.
- An Elliptic Curve Digital Signature Algorithm (ECDSA) key using 256 bits
An Ed25519 key using 256 bits

**NOTE:** RSA1 and DSA keys are not supported on the OS10 SSH server.

An SSH client must exchange the same public key to establish a secure SSH connection to the OS10 switch. If necessary, you can regenerate the keys used by the SSH server with a customized bit size. You cannot change the default size of the Ed25519 key. The `crypto key generate` command is available only to the `sysadmin` and `secadmin` roles.

1. Regenerate keys for the SSH server in EXEC mode.

   ```sh
crypto ssh-key generate {rsa {2048|3072|4096} | ecdsa {256|384|521} | ed25519}
```

2. Enter `yes` at the prompt to overwrite an existing key.

   ```sh
 Host key already exists. Overwrite [confirm yes/no]:yes
 Generated 2048-bit RSA key
   ```

3. Display the SSH public keys in EXEC mode.

   ```sh
 show crypto ssh-key
   ```

After you regenerate SSH server keys, disable and re-enable the SSH server to use the new keys. Restarting the SSH server does not impact current OS10 sessions.

### Virtual terminal line

Use Virtual terminal line (VTY) to control Telnet or SSH connections to the switch.

Enter VTY mode using the `line vty` command in CONFIGURATION mode.

```sh
OS10(config)# line vty
OS10(config-line-vty)#
```

### Control access to VTY

You can control the Telnet or SSH connections to the switch by applying access lists on VTY lines.

Create IPv4 or IPv6 access lists with `permit` or `deny` filters.

Enter VTY mode using the `line vty` command in CONFIGURATION mode.

Apply the access lists to the VTY line with the `{ip | ipv6} access-class access-list-name` command.

**Example**

```sh
OS10(config)# ip access-list permit10
OS10(config-ipv4-acl)# permit ip 172.16.0.0 255.255.0.0 any
OS10(config-ipv4-acl)# exit
OS10(config)# line vty
OS10(config-line-vty)# ip access-class permit10
OS10(config-line-vty)#
```

**View VTY ACL configuration**

```sh
OS10(config-line-vty)# show configuration
!
line vty
 ip access-class permit10
ipv6 access-class deny10
OS10(config-line-vty)#
```
Enable AAA accounting

To record information about all user-entered commands, use the AAA accounting feature — not supported for RADIUS accounting. AAA accounting records login and command information in OS10 sessions on console connections using the `console` option and remote connections using the `default` option, such as Telnet and SSH.

AAA accounting sends accounting messages:

- Sends a start notice when a process begins, and a stop notice when the process ends using the `start-stop` option
- Sends only a stop notice when a process ends using the `stop-only` option
- No accounting notices are sent using the `none` option
- Logs all accounting notices in syslog using the `logging` option
- Logs all accounting notices on configured TACACS+ servers using the `group tacacs+` option

Enable AAA accounting

- Enable AAA accounting in `CONFIGURATION` mode.

```
aaa accounting commands all {console | default} {start-stop | stop-only | none} [logging] [group tacacs+]
```

The `no` version of this command disables AAA accounting.

Enable user lockout

By default, a maximum of three consecutive failed password attempts is supported on the switch. You can set a limit to the maximum number of allowed password retries with a specified lockout period for the user ID.

This feature is available only for the `sysadmin` and `secadmin` roles.

- Configure user lockout settings in `CONFIGURATION` mode.

```
password-attributes {
 max-retry number [lockout-period minutes]
}
```

- `max-retry number` — Sets the maximum number of consecutive failed login attempts for a user before the user is locked out, from 0 to 16; default 3.
- `lockout-period minutes` — Sets the amount of time that a user ID is prevented from accessing the system after exceeding the maximum number of failed login attempts, from 0 to 43,200; default 0.

When a user is locked out due to exceeding the maximum number of failed login attempts, other users can still access the switch.

By default, `lockout-period minutes` is 0; no lockout period is configured. Failed login attempts do not lock out a user.

Configure user lockout

```
OS10(config)# password-attributes max-retry 4 lockout period 360
```

Limit concurrent login sessions

To avoid an unlimited number of active sessions on a switch for the same user ID, you can limit the number of console and remote connections. Log in from a console connection by cabling a terminal emulator to the console serial port on the switch. Log in to the switch remotely through a virtual terminal line (VTY), such as Telnet and SSH.

- Configure the maximum number of concurrent login sessions in `CONFIGURATION` mode.

```
OS10(config)# login concurrent-session limit number
```
- limit number — Sets the maximum number of concurrent login sessions allowed for a user ID, from 1 to 12; default 10.

When you configure the maximum number of allowed concurrent login sessions, take into account that:

- Each remote VTY connection counts as one login session.
- All login sessions from a terminal emulator on an attached console count as one session.

**Configure concurrent login sessions**

```
OS10(config)# login concurrent-session limit 4
```

If you log in to the switch after the maximum number of concurrent sessions are active, an error message displays. To log in to the system, close one of your existing sessions.

```
OS10(config)# login concurrent-session limit 4
Too many logins for 'admin'.
Connection to 10.11.178.26 closed.
Current sessions for user admin:
Line Location
2 vty 0 10.14.1.97
3 vty 1 10.14.1.97
4 vty 2 10.14.1.97
5 vty 3 10.14.1.97
```

**Enable login statistics**

To monitor system security, allow users to view their own login statistics when they sign in to the system. A large number of login failures or an unusual login location may indicate a system hacker. Enable the display of login information after a user successfully logs in; for example:

```
OS10 login: admin
Password:
Last login: Thu Nov 2 16:02:44 UTC 2017 on ttyS1
Linux OS10 3.16.43 #2 SMP Debian 3.16.43-2+deb8u5 x86_64
...
Time-frame for statistics : 25 days
Role changed since last login : false
Failures since last login : 0
Failures in time period : 1
Successes in time period : 14
```

This feature is available only for the sysadmin and secadmin roles.

- Enable the display of login information in CONFIGURATION mode.
  ```
 login-statistics enable
  ```

To display information about user logins, use the `show login-statistics` command.

**Enable login statistics**

```
OS10(config)# login-statistics enable
```

To disable login statistics, use the `no login-statistics enable` command.

**Security commands**
aaa accounting

Enables AAA accounting.

**Syntax**

```
aaa accounting commands all {console | default} {start-stop | stop-only | none} [logging] [group tacacs+]
```

**Parameters**

- `commands all` — Record all user-entered commands. This option is not supported for RADIUS accounting.
- `console` — Record all user authentication and logins or all user-entered commands in OS10 sessions on console connections.
- `default` — Record all user authentication and logins or all user-entered commands in OS10 sessions on remote connections; for example, Telnet and SSH.
- `start-stop` — Send a start notice when a process begins, and a stop notice when the process ends.
- `stop-only` — Send only a stop notice when a process ends.
- `none` — No accounting notices are sent.
- `logging` — Logs all accounting notices in syslog.
- `group tacacs+` — Logs all accounting notices on the first reachable TACACS+ server.

**Default**

AAA accounting is disabled.

**Command Mode**

CONFIGURATION

**Usage Information**

You can enable the recording of accounting events in both the syslog and on TACACS+ servers. The `no` version of the command disables AAA accounting.

**Example**

```
OS10(config)# aaa accounting commands all console start-stop logging group tacacs+
```

**Supported Releases**

10.4.1.0 or later

aaa authentication login

Configures the AAA authentication method used for console, and SSH and Telnet logins.

**Syntax**

```
aaa authentication login {console | default} {local | group radius | group tacacs+}
```

**Parameters**

- `console` — Configure authentication methods for console logins.
- `default` — Configure authentication methods for SSH and Telnet logins.
- `local` — Use the local username, password, and role entries configured with the `username password role` command.
- `group radius` — Use the RADIUS servers configured with the `radius-server host` command.
- `group tacacs+` — Use the TACACS+ servers configured with the `tacacs-server host` command.

**Default**

Local authentication

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes all configured authentication methods and defaults to using local authentication.

**Example**

```
OS10(config)# aaa authentication login default group radius local
OS10(config)# do show running-configuration aaa
```
aaa authentication login default group radius local
aaa authentication login console local

OS10(config)# no aaa authentication login default
OS10(config)# do show running-configuration aaa
aaa authentication login default local
aaa authentication login console local

Supported Releases 10.4.1.0 or later

aaa re-authenticate enable

Requires user re-authentication after a change in the authentication method or server.

Syntax
aaa re-authenticate enable

Parameters
None

Default Disabled

Command Mode EXEC

Usage Information
• After you enable user re-authentication and change the authentication method or server, users are logged out of the switch and are prompted to log in again to re-authenticate. User re-authentication is triggered by:
  – Adding or removing a RADIUS server as a configured server host with the radius-server host command.
  – Adding or removing an authentication method with the aaa authentication [local | radius] command.
• The no version of the command disables user re-authentication.

Example OS10(config)# aaa re-authenticate enable

Supported Releases 10.4.0E(R1) or later

crypto ssh-key generate

Regenerate public keys used in SSH authentication.

Syntax crypto ssh-key generate {rsa bits | ecdsa bits | ed25519}

Parameters
• rsa bits — Regenerates the RSA key with the specified bit size (2048, 3072, or 4096; default 2048).
• ecdsa bits — Regenerates the ECDSA key with the specified bit size (256, 384, or 521; default 256).
• ed25519 — Regenerates the Ed25519 key with the default bit size.

Default The SSH server uses default public key lengths for client authentication:
• RSA key: 2048 bits
• ECDSA key: 256 bits
• Ed25519 key: 256 bits

Command Mode EXEC

Usage Information If necessary, you can regenerate the public keys used by the SSH server with a customized bit size. You cannot change the default size of the Ed25519 key. The crypto ssh-key generate command is available only to the sysadmin and secadmin roles.
Example

OS10# crypto ssh-key generate rsa 4096
Host key already exists. Overwrite [confirm yes/no]:yes
Generated 4096-bit RSA key
OS10#

Supported Releases

10.4.1.0 or later

**ip access-class**

Filters connections based on an IPv4 access list in virtual terminal line.

**Syntax**

```
ip access-class access-list-name
```

**Parameters**

- `access-list-name`—Enter the access list name.

**Default**

Not configured

**Command Mode**

LINE VTY CONFIGURATION

**Usage Information**

The `no` version of this command removes the filter.

**Example**

```plaintext
OS10(config)# line vty
OS10(config-line-vty)# ip access-class deny10
```

**Supported Releases**

10.4.0E(R1) or later

**ipv6 access-class**

Filters connections based on an IPv6 access list in virtual terminal line.

**Syntax**

```
ipv6 access-class access-list-name
```

**Parameters**

- `access-list-name`—Enter the access list name.

**Default**

Not configured

**Command Mode**

LINE VTY CONFIGURATION

**Usage Information**

The `no` version of this command removes the filter.

**Example**

```plaintext
OS10(config)# line vty
OS10(config-line-vty)# ipv6 access-class permit10
```

**Supported Releases**

10.4.0E(R1) or later

**ip ssh server challenge-response-authentication**

Enable challenge response authentication in an SSH server.

**Syntax**

```
ip ssh server challenge-response-authentication
```

**Parameters**

None

**Default**

Disabled

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command disables the challenge response authentication.
ip ssh server cipher

Configure the list of cipher algorithms in the SSH server.

Syntax  
ip ssh server cipher cipher-list

Parameters  
cipher-list — Enter the list of cipher algorithms separated by space. The following is the list of cipher algorithms the SSH server supports:

- 3des-cbc
- aes128-cbc
- aes192-cbc
- aes256-cbc
- aes128-ctr
- aes192-ctr
- aes256-ctr
- aes128-gcm@openssh.com
- aes256-gcm@openssh.com
- blowfish-cbc
- cast128-cbc
- chacha20-poly1305@opens

Default  
- aes128-ctr
- aes192-ctr
- aes256-ctr
- aes128-gcm@openssh.com
- aes256-gcm@openssh.com
- chacha20-poly1305@opens

Command Mode  
CONFIGURATION

Usage Information  
The no version of this command removes the configuration.

Example  
OS10(config)# ip ssh server cipher 3des-cbc aes128-cbc

Supported Releases  
10.3.0E or later

ip ssh server enable

Enable the SSH server.

Syntax  
ip ssh server enable

Parameters  
None

Default  
Enabled

Command Mode  
CONFIGURATION
Usage Information
The no version of this command disables the SSH server.

Example
OS10(config)# ip ssh server enable

Supported Releases
10.3.0E or later

ip ssh server hostbased-authentication
Enable host-based authentication in an SSH server.

Syntax
ip ssh server hostbased-authentication

Parameters
None

Default
Disabled

Command Mode
CONFIGURATION

Usage Information
The no version of this command disables the host-based authentication.

Example
OS10(config)# ip ssh server hostbased-authentication

Supported Releases
10.3.0E or later

ip ssh server kex
Configure the list of Key Exchange algorithms in the SSH server.

Syntax
ip ssh server kex key-exchange-algorithm

Parameters
key-exchange-algorithm — Enter the list of Key Exchange algorithms separated by space. The following is the list of Key Exchange algorithms the SSH server supports:

- curve25519-sha256
- diffie-hellman-group1-sha1
- diffie-hellman-group14-sha1
- diffie-hellman-group-exchange-sha1
- diffie-hellman-group-exchange-sha256
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521

Default
- curve25519-sha256
- diffie-hellman-group14-sha1
- diffie-hellman-group-exchange-sha256
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521

Command Mode
CONFIGURATION

Usage Information
The no version of this command removes the configuration.
**ip ssh server mac**

Configure the list of hash message authentication code (HMAC) algorithms in the SSH server.

**Syntax**

```plaintext
ip ssh server mac hmac-algorithm
```

**Parameters**

- `hmac-algorithm` — Enter the list of HMAC algorithms separated by space. The following is the list of HMAC algorithms the SSH server supports:
  - hmac-md5
  - hmac-md5-96
  - hmac-ripemd160
  - hmac-sha1
  - hmac-sha1-96
  - hmac-sha2-256
  - hmac-sha2-512
  - umac-64@openssh.com
  - umac-128@openssh.com
  - hmac-md5-etm@openssh.com
  - hmac-md5-96-etm@openssh.com
  - hmac-ripemd160-etm@openssh.com
  - hmac-sha1-etm@openssh.com
  - hmac-sha1-96-etm@openssh.com
  - hmac-sha2-256-etm@openssh.com
  - hmac-sha2-512-etm@openssh.com
  - umac-64-etm@openssh.com
  - umac-128-etm@openssh.com

**Default**

- hmac-sha1
- hmac-sha2-256
- hmac-sha2-512
- umac-64@openssh.com
- umac-128@openssh.com
- hmac-md5-etm@openssh.com
- hmac-md5-96-etm@openssh.com
- hmac-ripemd160-etm@openssh.com
- hmac-sha1-etm@openssh.com
- hmac-sha1-96-etm@openssh.com
- hmac-sha2-256-etm@openssh.com
- hmac-sha2-512-etm@openssh.com
- umac-64-etm@openssh.com
- umac-128-etm@openssh.com

**Command Mode**

`CONFIGURATION`

**Usage Information**

The `no` version of this command removes the configuration.

**Example**

```
OS10(config)# ip ssh server mac hmac-md5 hmac-md5-96 hmac-ripemd160
```

**Supported Releases**

10.3.0E or later
### ip ssh server password-authentication

Enable password authentication in an SSH server.

**Syntax**

```
ip ssh server password-authentication
```

**Parameters**

None

**Default**

Enabled

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command disables the password authentication.

**Example**

```
OS10(config)# ip ssh server password-authentication
```

**Supported Releases**

10.3.0E or later

### ip ssh server port

Configure the SSH server listening port.

**Syntax**

```
ip ssh server port port-number
```

**Parameters**

`port-number` — Enter the listening port number, from 1 to 65535.

**Default**

22

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the configuration.

**Example**

```
OS10(config)# ip ssh server port 255
```

**Supported Releases**

10.3.0E or later

### ip ssh server pubkey-authentication

Enable public key authentication in an SSH server.

**Syntax**

```
ip ssh server pubkey-authentication
```

**Parameters**

None

**Default**

Enabled

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command disables the public key authentication.

**Example**

```
OS10(config)# ip ssh server pubkey-authentication
```

**Supported Releases**

10.3.0E or later
ip ssh server vrf

Configures an SSH server for the management or non-default VRF instance.

Syntax

ip ssh server vrf {management | vrf vrf-name}

Parameters

- management — Configures the management VRF instance to reach the SSH server.
- vrf vrf-name — Enter the keyword vrf followed by the name of the VRF to configure that non-default VRF instance to reach the SSH server.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
By default, the SSH server is enabled.

Example

OS10(config)# ip ssh server vrf management
OS10(config)# ip ssh server vrf vrf-blue

Supported Releases
10.4.0E(R1) or later

line vty

Enters the virtual terminal line mode to access the virtual terminal (VTY).

Syntax

line vty

Parameters
None

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
None

Example

OS10(config)# line vty
OS10(config-line-vty)#

Supported Releases
10.4.0E(R1) or later

login concurrent-session limit

Configures the maximum number of concurrent login sessions allowed for a user ID.

Syntax

login concurrent-session limit number

Parameters

limit number — Enter the limit of concurrent login sessions, from 1 to 12.

Default
10 concurrent login sessions are supported.

Command Mode
CONFIGURATION

Usage Information
The total number of concurrent login sessions for the same user ID includes all console and remote connections, where:

- Each remote VTY connection counts as one login session.
- All login sessions from a terminal emulator on an attached console count as one session.

The `no` version of the command disables the configured number of allowed login sessions.

**Example**

```
OS10(config)# login concurrent-session limit 7
```

**Supported Releases** 10.4.1.0 or later

### login-statistics enable

Enables the display of login statistics to users.

**Syntax**

```
login-statistics enable
```

**Parameters**

None

**Default**

Disabled

**Command Mode**

CONFIGURATION

**Usage Information**

Only the `sysadmin` and `secadmin` roles have access to this command. When enabled, user login information, including the number of successful and failed logins, role changes, and the last time a user logged in, displays after a successful login. The `no login-statistics enable` command disables login statistics.

**Example**

```
OS10(config)# login-statistics enable
```

**Supported Releases** 10.4.0E(R1) or later

### password-attributes

Configures rules for password entries.

**Syntax**

```
password-attributes {[min-length number] [character-restriction {[upper number] [lower number] [numeric number] [special-char number]}}}
```

**Parameters**

- `min-length number` — (Optional) Sets the minimum number of required alphanumeric characters, from 6 to 32; default 9.
- `character-restriction`:
  - `upper number` — (Optional) Sets the minimum number of uppercase characters required, from 0 to 31; default 0.
  - `lower number` — (Optional) Sets the minimum number of lowercase characters required, from 0 to 31; default 0.
  - `numeric number` — (Optional) Sets the minimum number of numeric characters required, from 0 to 31; default 0.
  - `special-char number` — (Optional) Sets the minimum number of special characters required, from 0 to 31; default 0.

**Default**

- Minimum length: 9 characters
- Uppercase characters: 0
- Lowercase characters: 0
- Numeric characters: 0
- Special characters: 0
Command Mode EXEC

Usage Information

- By default, the password you configure with the `username password` command must be at least nine alphanumeric characters.
- Use this command to increase password strength. When you enter the command, at least one parameter is required. When you enter the `character-restriction` parameter, at least one option is required.
- To reset parameters to their default values, enter the `no password-attributes` command.

Example

```
OS10(config)# password-attributes min-length 6 character-restriction upper 2 lower 2 numeric 2
```

Supported Releases 10.4.0E(R1) or later

**password-attributes max-retry lockout-period**

Configures a maximum number of consecutive failed login attempts and the lockout period for the user ID.

**Syntax**

```
password-attributes {[max-retry number] [lockout-period minutes]}
```

**Parameters**

- `max-retry number` — (Optional) Sets the maximum number of consecutive failed login attempts for a user before the user is locked out, from 0 to 16.
- `lockout-period minutes` — (Optional) Sets the amount of time that a user ID is prevented from accessing the system after exceeding the maximum number of failed login attempts, from 0 to 43,200.

**Default**

- Maximum retries: 3 — A maximum of three failed login attempts is supported.
- Lockout period: 0 — No lockout period is configured. Failed login attempts do not lock out a user.

Command Mode CONFIGURATION

Usage Information

- To remove the configured `max-retry` or `lockout-period` settings, enter the `no password-attributes {max-retry | lockout-period}` command.
- When a user is locked out due to exceeding the maximum number of failed login attempts, other users can still access the switch.

Example

```
OS10(config)# password-attributes max-retry 5 lockout-period 30
```

Supported Releases 10.4.1.0 or later

**radius-server host**

Configures a RADIUS server and the key used to authenticate the switch on the server.

**Syntax**

```
radius-server host {hostname | ip-address} key {0 authentication-key | 9 authentication-key | authentication-key} [auth-port port-number]
```

**Parameters**

- `hostname` — Enter the host name of the RADIUS server.
- `ip-address` — Enter the IPv4 (A.B.C.D) or IPv6 (x:x:x:x) address of the RADIUS server.
- `key 0 authentication-key` — Enter an authentication key in plain text. A maximum of 42 characters.
- `key 9 authentication-key` — Enter an authentication key in encrypted format. A maximum of 128 characters.
- **authentication-key** — Enter an authentication in plain text. A maximum of 42 characters. It is not necessary to enter 0 before the key.
- **auth-port port-number** — (Optional) Enter the UDP port number used on the server for authentication, from 0 to 65535, default 1812.

**Default**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The authentication key must match the key configured on the RADIUS server. You cannot enter spaces in the key. The show running-configuration output displays both unencrypted and encrypted keys in encrypted format. Configure global settings for the timeout and retransmit attempts allowed on RADIUS servers using the radius-server retransmit and radius-server timeout commands. The no version of this command removes a RADIUS server configuration.

**Example**
OS10(config)# radius-server host 1.5.6.4 key secret1

**Supported Releases**
10.2.0E or later

### radius-server retransmit

Configures the number of authentication attempts allowed on RADIUS servers.

**Syntax**
```
radius-server retransmit retries
```

**Parameters**
- **retries** — Enter the number of retry attempts, from 0 to 100.

**Default**
An OS10 switch retransmits a RADIUS authentication request three times.

**Command Mode**
CONFIGURATION

**Usage Information**
Use this command to globally configure the number of retransmit attempts allowed for authentication requests on RADIUS servers. The no version of this command resets the value to the default.

**Example**
OS10(config)# radius-server retransmit 50

**Supported Releases**
10.2.0E or later

### radius-server timeout

Configures the timeout used to resend RADIUS authentication requests.

**Syntax**
```
radius-server timeout seconds
```

**Parameters**
- **seconds** — Enter the time in seconds for retransmission, from 0 to 1000.

**Default**
An OS10 switch stops sending RADIUS authentication requests after five seconds.

**Command Mode**
CONFIGURATION

**Usage Information**
Use this command to globally configure the timeout value used on RADIUS servers. The no version of this command resets the value to the default.

**Example**
OS10(config)# radius-server timeout 360

**Supported Releases**
10.2.0E or later
radius-server vrf

Configures the RADIUS server for the management or non-default VRF instance.

Syntax

radius-server vrf {management | vrf vrf-name}

Parameters

- **management** — Enter the keyword management to configure the RADIUS server for the management VRF instance.
- **vrf vrf-name** — Enter the keyword vrf followed by the name of the VRF to configure the RADIUS server for that non-default VRF instance.

Defaults

Not configured

Command Mode

CONFIGURATION

Usage Information

The no version of this command removes the RADIUS server from the management VRF instance.

Example

```bash
OS10(config)# radius-server vrf management
```

Supported Releases

10.4.0E(R1) or later

---

show crypto ssh-key

Display the current host public keys used in SSH authentication.

Syntax

show crypto ssh-key {rsa | ecdsa | ed25119}

Parameters

- **rsa** — Displays the RSA public key.
- **ecdsa** — Displays the ECDSA public key.
- **ed25519** — Displays the Ed25519 key.

Default

Not configured

Command Mode

EXEC

Usage Information

After you regenerate an SSH server key with a customized bit size, disable and re-enable the SSH server to use the new public keys. Use the show crypto command to verify the changes.

If a remote SSH client uses strict host-key checking, copy a newly generated host key to the list of known hosts on the client device.

Example

```bash
OS10# show crypto ssh-key rsa
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCogJtArA0fHJkFpioGaAcp+vrDQFC313XHFtd41wXY9kM0Ar+37yRsDu18vKodqSdiGLRuPjFTcVjvDdSKwblJRSybkmA6nuHJIyPOSscDepLlicMI0x DhXEE92VRAmGuU2AoeV +IneWxhwOKoFLtpxfnsiQY65CFs4aGoHOHSfX3W7boEDRDuv28gzRxTuM16Qr+RxBLJ7/OzkjN1N1/80k+8aJtcJoJbcYaduMjmhVNrNUW5TXoCnp1XNRpkJzgS7Lt47yi86rqrTCAQ4eSYJIJs4+4gI9b4MF2D34990fn8uS82Mjtj0N1011bTbP3gsF4YYdBWAFqp root@OS10
```

Supported Releases

10.4.1.0 or later
**show ip ssh**

Displays the SSH server information.

**Syntax**

```
show ip ssh
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Use this command to view information about the established SSH sessions.

**Example**

```
OS10# show ip ssh
SSH Server: Enabled
--
SSH Server Ciphers: chacha20-poly1305@openssh.com,aes128-ctr,
aes192-ctr,aes256-ctr,
aes128-gcm@openssh.com,aes256-gcm@openssh.com
SSH Server MACs: umac-64-etm@openssh.com,umac-128-etm@openssh.com,
hmac-sha2-256-etm@openssh.com,
hmac-sha2-512-etm@openssh.com,
hmac-sha1-etm@openssh.com,umac-64@openssh.com,
hmac-sha2-256,hmac-sha1
SSH Server KEX algorithms: curve25519-sha256@libssh.org,ecdh-sha2-nistp256,
ecdh-sha2-nistp384,ecdh-sha2-nistp521,
diffie-hellman-group-exchange-sha256,
diffie-hellman-group14-sha1
Password Authentication: Enabled
Host-Based Authentication: Disabled
RSA Authentication: Enabled
Challenge Response Auth: Disabled
```

**Supported Releases**

10.3.0E or later

---

**show login-statistics**

Displays statistics on user logins to the system.

**Syntax**

```
show login-statistics {user user-id | all}
```

**Parameters**

- `user user-id` — Enter an OS10 username.
- `all` — Displays login statistics for all system users.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Only the sysadmin and secadmin roles can access this command. The show output displays login information for system users, including the number of successful and failed logins, role changes, and the last time a user logged in.

**Example**

```
OS10# show login-statistics all
Display statistics upon user login: Enabled
Time-frame in days: 25
```
### show users

Displays information for all users logged into OS10.

**Syntax**

```
show users
```

**Parameters**

- None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show users

Index Line User Role Application Idle Time Location
----- ----- ----- ---- ----------- ---- ---------- ---------------
1 ttyS0 root root -bash >24h 2018-05-23 console
2 pts/0 admin sysadmin bash 1.1s 2018-05-30 10.14.1.214 [ssh]
```

**Supported Releases**

10.2.0E or later

### tacacs-server host

Configures a TACACS+ server and the key used to authenticate the switch on the server.

**Syntax**

```
tacacs-server host {hostname | ip-address} key {0 authentication-key | 9 authentication-key} [auth-port port-number]
```

**Parameters**

- `hostname` — Enter the host name of the TACACS+ server.
- `ip-address` — Enter the IPv4 (A.B.C.D) or IPv6 (x:x:x::x) address of the TACACS+ server.
- `key` 0 `authentication-key` — Enter an authentication key in plain text. A maximum of 42 characters.
• key 9 authentication-key — Enter an authentication key in encrypted format. A maximum of 128 characters.
• authentication-key — Enter an authentication in plain text. A maximum of 42 characters. It is not necessary to enter 0 before the key.
• key authentication-key — Enter a text string for the encryption key used to authenticate the switch on the TACACS+ server. A maximum of 42 characters.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
The authentication key must match the key configured on the TACACS+ server. You cannot enter spaces in the key. The show running-configuration output displays both unencrypted and encrypted keys in encrypted format. Configure the global timeout allowed for authentication requests on TACACS+ servers using the tacacs-server timeout command. By default, OS10 times out an authentication attempt on a TACACS+ server after five seconds. The no version of this command removes a TACACS+ server configuration.

Example
OS10(config)# tacacs-server host 1.5.6.4 key secret1

Supported Releases
10.4.0E(R2) or later

**tacacs-server timeout**

Configures the global timeout used for authentication attempts on TACACS+ servers.

Syntax
tacacs-server timeout seconds

Parameters
- seconds — Enter the timeout period used to wait for an authentication response from a TACACS+ server, from 1 to 1000 seconds.

Default
5 seconds

Command Mode
CONFIGURATION

Usage Information
The no version of this command resets the TACACS+ server timeout to the default.

Example
OS10(config)# tacacs-server timeout 360

Supported Releases
10.4.0E(R2) or later

**username password role**

Creates an authentication entry based on a user name and password, and assigns a role to the user.

Syntax
username username password password role role

Parameters
- username username — Enter a text string. A maximum of 32 alphanumeric characters; 1 character minimum.
- password password — Enter a text string. A maximum of 32 alphanumeric characters; 9 characters minimum.
- role role — Enter a user role:
  - sysadmin — Full access to all commands in the system, exclusive access to commands that manipulate the file system, and access to the system shell. A system administrator can create user IDs and user roles.
  - secadmin — Full access to configuration commands that set security policy and system access, such as password strength, AAA authorization, and cryptographic keys. A security administrator can display security information, such as cryptographic keys, login statistics, and log information.
- **netadmin** — Full access to configuration commands that manage traffic flowing through the switch, such as routes, interfaces, and ACLs. A network administrator cannot access configuration commands for security features or view security information.
- **netoperator** — Access to EXEC mode to view the current configuration. A network operator cannot modify any configuration setting on a switch.

**Default**
- User name and password entries are in clear text.
- There is no default user role.

**Command Mode** CONFIGURATION

**Usage Information**
- By default, the password must be at least nine alphanumeric characters. Only the following special characters are supported:
  
  ```
 ! # $ % ^ & ' () ; < = > [] * + - . / : ^ _
  ```

  Enter the password in clear text. It is converted to SHA-512 format in the running configuration. For backward compatibility with OS10 releases 10.3.1E and earlier, passwords entered in MD-5, SHA-256, and SHA-512 format are supported.
- To increase the required password strength, use the `password-attributes` command.
- The `no` version of this command deletes authentication for a user.

**Example**

```bash
OS10(config)# username user05 password newpwd404 role sysadmin
```

**Supported Releases**

10.2.0E or later

---

**username sshkey**

Enables SSH password-less login using the public key for a remote client. The remote client is not prompted to enter a password.

**Syntax**

```
username user_name sshkey sshkey_string
```

**Parameters**
- `user_name` — Enter the user name of the remote client. This value is the user name configured with the `username password role` command.
- `sshkey_string` — Enter the public key used by the remote client device to log in to the OS10 switch.

**Default**

The default SSH server keys are an RSA key generated using 2048 bits, an ECDSA key with 256 bits, and an Ed2559 key with 256 bits.

**Command Mode** CONFIGURATION

**Usage Information**

Locate the public keys on a remote client in the `~/.ssh/id_rsa.pub` file. Use the public key as the `sshkey_string` parameter.

The `no username user_name sshkey` command removes the SSH password-less configuration for a specified user name.

To configure multiple user names for SSH password-less login, use the `username sshkey filename` command.

**Example**

```bash
OS10(config)# username user10 sshkey abcd
OS10(config)# do show running-configuration users
username admin password 6q9QBeYjZ$3jfxzVgkx3smxJSH9Dz7/30Jc6m5wjF8nnLD7/VKx8SloIhp4NoGZs0I/UNwh8WVuxwfd9q4pWigNs5BKH. role sysadmin
```
username user10 password $6$rounds=656000$G10VRFTJB291ekwo
$iTGf0zd4bTUCBBpIVsbr60StnUZMydN51Ds4WE6G3XHEtWbcKrGTeAo1wEF0cenEgRRPzi3SMmYyzAHCCC8wSO
role sysadmin
username user10 sshkey abcd

Supported Releases 10.4.1.0 or later

**username sshkey filename**

Enables SSH password-less login for remote clients using multiple public keys. A remote client is not prompted to enter a password.

**Syntax**

```
username user_name sshkey filename file_path
```

**Parameters**

- `user_name` — Enter an OS10 user name who logs in on a remote client. This value is the user name configured with the `username password role` command.
- `file_path` — Enter the absolute path name of the local file containing the public keys used by remote devices to log in to the OS10 switch.

**Default**

The default SSH server keys are an RSA key generated using 2048 bits, an ECDSA key with 256 bits, and an Ed2559 key with 256 bits.

**Command Mode**

`CONFIGURATION`

**Usage Information**

Before you use the command, locate the public keys on a remote client in the `~/.ssh/id_rsa.pub` file. Create a text file and copy the SSH public keys on the remote client into the file. Enter each public key on a separate line. Download the file to your home OS10 directory.

**NOTE:** Entering the command when an SSH key file is not present has no effect and results in a silent failure. SSH password-less login is not enabled.

The `no username user_name sshkey` command removes the SSH password-less configuration for the specified user name.

**Example**

```
OS10(config)# username user10 sshkey filename /test_file.txt
OS10(config)# do show running-configuration users
username admin password 6q9QBeYjZ$jfxzVqGhkxX3smxJSH9DDz7/30Jc6m5wjF8nnLD7/ VKx8Sl01hp4NoG2s0I/UNWh8WVuxwfd9q4pWIGNs5BKH. role sysadmin
username user10 password 6rounds=656000$G10VRFTJB291ekwo
$iTGf0zd4bTUCBBpIVsbr60StnUZMydN51Ds4WE6G3XHEtWbcKrGTeAo1wEF0cenEgRRPzi3SMmYyzAHCCC8wSO
role sysadmin
username user10 sshkey filename /test_file.txt
```

**Supported Releases** 10.4.1.0 or later

**userrole inherit**

Reconfigures the default `netoperator` role and permissions assigned to a TACACS+-authenticated user with a missing or unknown user role. You can also configure an unknown TACACS+ user role to inherit permissions from an existing OS10 role.

**Syntax**

```
userrole {default | name} inherit existing-role-name
```

**Parameters**

- `default inherit` — Reconfigure the default permissions assigned to an authenticated user with a missing or unknown TACACS+ role.
• **name** inherit — Enter the name of the TACACS+ user role that inherits permissions from an OS10 user role; 32 characters maximum.

• **existing-role-name** — Assign the permissions associated with an OS10 user role:
  - sysadmin — Full access to all commands in the system, exclusive access to commands that manipulate the file system, and access to the system shell. A system administrator can create user IDs and user roles.
  - secadmin — Full access to configuration commands that set security policy and system access, such as password strength, AAA authorization, and cryptographic keys. A security administrator can display security information, such as cryptographic keys, login statistics, and log information.
  - netadmin — Full access to configuration commands that manage traffic flowing through the switch, such as routes, interfaces, and ACLs. A network administrator cannot access configuration commands for security features or view security information.
  - netoperator — Access only to EXEC mode to view the current configuration. A network operator cannot modify any configuration setting on a switch.

**Default**
OS10 assigns the netoperator role to a user authenticated by a TACACS+ server with a missing or unknown role.

**Command Mode**
CONFIGURATION

**Usage Information**
• When a TACACS+ server authenticates a user and does not return a role or returns an unknown role, OS10 assigns the netoperator role to the user by default. Use this command to reconfigure the default netoperator permissions.

• To assign OS10 user role permissions to a specified TACACS+ user role, enter a value for name inherit. The no userrole default version of the command resets the role to netoperator.

**Example**
OS10(config)# userrole default inherit sysadmin

**Supported Releases**
10.4.0E(R3P3) or later

---

### Simple Network Management Protocol

Network management stations use simple network management protocol (SNMP) to retrieve and modify software configurations for managed objects on an agent in network devices. A managed object is a datum of management information.

The SNMP agent in a managed device maintains the data for managed objects in management information bases (MIBs). Managed objects are identified by their object identifiers (OIDs). A remote SNMP agent performs an SNMP walk on the OIDs stored in MIBs on the local switch to view and retrieve information.

OS10 supports standard and private SNMP MIBs, including all get requests. MIBs are hierarchically structured and use object identifiers to access managed objects. For a list of MIBs supported in the OS10 version running on a switch, refer to the OS10 Release Notes for the release.

**NOTE:** OS10 supports SNMP set operations only on SysName in System MIBs.

OS10 supports different security models and levels in SNMP communication between SNMP managers and agents. Each security model refers to an SNMP version used in SNMP messages. SNMP versions provide different levels of security, such as user authentication and message encryption.

### SNMP security models and levels

OS10 supports SNMP security models v1, v2c, and v3. The supported security levels are no authentication, authentication, and privacy.
You specify the SNMP security model and level when you configure SNMP groups and users. Each security model corresponds to an SNMP version that provides different security levels:

- SNMPv1 provides no user authentication or privacy protection (encryption). SNMP messages are sent in plain text.
- SNMPv2c provides no user authentication or encryption. SNMP messages are sent in plain text.
- SNMPv3 provides user-configured security levels for user authentication and encryption of SNMP messages:
  - No user password or message encryption
  - User authentication only
  - User authentication and message encryption

**SNMPv3**

SNMP version 3 (SNMPv3) provides an enhanced security model for user authentication and encryption of SNMP messages. User authentication requires that SNMP packets come from an authorized source. Message encryption ensures that packet contents cannot be viewed by an unauthorized source.

To configure SNMPv3-specific security settings — user authentication and message encryption — use the `snmp-server user` command. You can generate localized keys with enhanced security for authentication and privacy (encryption) passwords.

**SNMP engine ID**

An engine ID identifies the SNMP entity, local agent, on the switch. The engine ID is an octet colon-separated number; for example, `00:00:17:8B:02:00:00:01`.

When you configure an SNMPv3 user, you can specify that a localized authentication and/or privacy key be generated. The localized password keys are generated using the engine ID of the switch. A localized key is more complex and provides greater privacy protection.

The engine ID used to generate the password keys is unique to the switch. For this reason, you cannot copy and use localized SNMP security passwords on another switch.

**SNMP groups and users**

A member of an SNMP group that accesses the local SNMP agent is referred to as an SNMP user. An SNMP user on a remote device is identified by an IP address and UDP port from which the user accesses the local agent.

In OS10, users are assigned SNMP access privileges according to the group they belong to. You configure each group for access to SNMP MIB tree views.

**SNMP views**

In OS10, you configure views for each security model and level in an SNMP user group. Each type of view specifies the object ID (OID) in the MIB tree hierarchy at which the view starts. You can also specify whether the rest of the MIB tree structure is included or excluded from the view.

- A read view provides read-only access to the specified OID tree.
- A write view provides read-write access to the specified OID tree.
- A notify view allows SNMP notifications (traps and informs) from the specified OID tree to be sent to other members of the group.
Configure SNMP

To set up communication with SNMP agents in your network:

- Configure the read-only, read-write, and notify access for SNMP groups.
- Configure groups with SNMP views for specified SNMP versions (security models).
- Assign users to groups and configure SNMPv3-specific authentication and encryption settings, and optionally, localized security keys and ACL-based access.

Configuring SNMP consists of these tasks in any order:

- Configure SNMP engine ID
- Configure SNMP views
- Configure SNMP groups
- Configure SNMP users

Configure SNMP engine ID

The engine ID identifies the SNMP local agent on a switch. The engine ID is an octet colon-separated number; for example, 80:00:02:b8:04:61:62:63.

The local engine ID is used to create a localized authentication and/or privacy key for greater security in SNMPv3 messages. You generate a localized authentication and/or privacy key when you configure an SNMPv3 user.

Configure a remote device and its engine ID to allow a remote user to query the local SNMP agent. The remote engine ID is included in the query and used to generate the authentication and privacy password keys to access the local agent. If you do not configure the remote engine ID, remote users' attempts to access the local agent fail.

NOTE: Be sure to create a remote engine ID with the snmp-server engineID command before you configure a remote user with the snmp-server user command. If you change the configured engine ID for a remote device, you must reconfigure the authentication and privacy passwords for all remote users associated with the remote engine ID.

snmp-server engineID [local engineID] [remote ip-address {udp-port port-number} remote-engineID]

To display the localized authentication and privacy keys in an SNMPv3 user configuration, enter the show snmp engineID local command.

Generate SNMPv3 localized keys

OS10(config)# snmp-server engineID local 80:00:02:b8:04:61:62:63
OS10(config)# snmp-server engineID remote 1.1.1.2 udp-port 432 0xabeecc

Display localized keys

OS10# show snmp-server engineID local
Local default SNMP engineID: 80:00:02:b8:04:61:62:63

Configure SNMP views

Configure a read-only, read-write, or notify view of the MIB tree structure in the SNMP agent on the switch.
The oid-tree value specifies the OID in the MIB tree hierarchy at which a view starts. Enter included or excluded to include or exclude the rest of the sub-tree MIB contents in the view. If necessary, re-enter the command to exclude tree entries in the included content.

```
snmp-server view view-name oid-tree [included | excluded]
```

**Configure read-only view**

```
OS10(config)# snmp-server view readonly 1.3.6.1.2.1.31.1.1.1.6 included
```

**Configure read-write view**

```
OS10(config)# snmp-server view rwView 1.3.6.1.2.1.31.1.1.1.6 included
OS10(config)# snmp-server view rwView 1.3.6.1.2.1.31.0.0.0.0 excluded
```

**Display SNMP views**

```
OS10# show snmp-server view
view name : readview
OID : 1.3.6.5
excluded : True
```

**Configure SNMP groups**

Configure an SNMP group with the views allowed for the members of the group. Specify the read-only, read-write, and/or notification access to the SNMP agent.

The security model corresponds to the SNMP version that users use to send and receive SNMP messages. The security level configures SNMPv3 user authentication and privacy settings:

- **auth** — Authenticate users in SNMP messages.
- **noauth** — Do not authenticate users or encrypt SNMP messages; send messages in plain text.
- **priv** — Authenticate users and encrypt/decrypt SNMP messages.

Enter an ACL to limit user access so that only messages from and to ACL-allowed users are received and sent from the SNMP agent on the switch.

```
snmp-server group group-name {v1 | v2c | v3 security-level} [access acl-name] [read view-name] [write view-name] [notify view-name]
```

To configure a view of the MIB tree on the SNMP agent, use the `snmp-server view` command.

To configure an SNMPv3 user's authentication and privacy settings, use the `snmp-server user` command.

To display the configured SNMP groups, use the `show snmp group` command.

**Configure SNMPv1 or v2c group**

```
OS10(config)# snmp-server group v2group 2c read readview notify GetsSets
```

**Configure SNMPv3 group**

```
OS10(config)# snmp-server group v3group 3 priv read readview write writeview notify alltraps
```

**Display SNMP groups**

```
OS10# show snmp-server group
 groupname : v2group
 version : 2c
 notifyview : GetsSets
 readview : readview
 groupname : v3group
```
Configure SNMP users

Configure user access to the SNMP agent on the switch using group membership. Assign each user to a group and configure SNMPv3-specific authentication and encryption settings, and optionally, localized security keys and ACL-based access. Re-enter the command multiple times to configure SNMP security settings for all users.

```
snmp-server user user-name group-name security-model [noauth | auth {md5 | sha} auth-password] [priv {des | aes}] [localized] [access acl-name] [remote ip-address udp-port port-number]
```

The group to which a user is assigned determines the user’s access privilege. To configure a group’s access privilege — read, write, and notify — to the switch, use the `snmp-server group` command. The security model for SNMPv3 provides the strongest security with user authentication and packet encryption.

No default values exist for SNMPv3 authentication and privacy algorithms and passwords. If you forget a password, you cannot recover it — you must reconfigure the user. You can specify either a plain-text password or an encrypted cypher-text password. In either case, the password stores in the configuration in encrypted form and displays as encrypted in `show running-config snmp` output.

A localized authentication or privacy key is more complex and provides greater privacy protection. Localized keys are generated using the engine ID of the switch. For this reason, you cannot use the localized SNMP security passwords in the configuration file on another switch. For more information, see Configure SNMP engine ID. To display the localized authentication and privacy keys in an SNMPv3 user configuration, use the `show running-configuration snmp` command.

To limit user access to the SNMP agent on the switch, enter an `access acl-name` value. In IPv6 ACLs, SNMP supports only IPv6 and UDP types. TCP, ICMP, and port rules are not supported.

To display the configured SNMP users, use the `show snmp user` command.

### Configure SNMPv1 or v2c users

OS10(config)# snmp-server user admin1 netadmingroup 2c acl acl_AdminOnly

### Configure SNMPv3 users

OS10(config)# snmp-server user privuser v3group 3 encrypted auth md59fc53d9d908118b2804fe80e3ba8763d priv des56 d0452401a8c3ce42804fe80e3ba8763d

OS10(config)# snmp-server user n3user ngroup remote 172.31.1.3 udp-port 5009 3auth md5 authpasswd

### Display SNMP users

OS10# show snmp-server user
User name : privuser
Group : v3group
Version : 3
Authentication Protocol : MD5
Privacy Protocol : AES

### SNMP commands

SNMP traps: Enable SNMP notifications to send to network management host devices.
show snmp community

Displays the SNMP communities configured on the switch.

Syntax: show snmp community
Parameters: None
Defaults: None
Command Mode: EXEC
Usage Information: To configure an SNMP community, use the snmp-server community command.

Example:
```
OS10# show snmp community
Community : public
Access : read-only
Community : dellOS10
Access : read-write
ACL : dellacl
```

Supported Releases: 10.4.2.0 or later

show snmp engineID

Displays the SNMP engine ID on the switch or on remote devices that access the SNMP agent on the switch.

Syntax: show snmp engineID {local | remote}
Parameters:  
  - local — Display the local engine ID.
  - remote — Display the SNMP engine ID of remote devices configured on the switch.
Defaults: None
Command Mode: EXEC
Usage Information: To configure the local engine ID or the engine ID for a remote device, use the snmp-server engineID command.

Example:
```
OS10# show snmp engineID remote
Remote Engine ID IP-addr Port
0x0712 1.1.1.1 23
```
```
OS10# show snmp engineID local
Local default SNMP engineID: 0x80001f880390b11cf4abe7
```

Supported Releases: 10.4.2.0 or later

show snmp group

Displays the SNMP groups configured on the switch, including SNMP views and security models.

Syntax: show snmp group
Parameters: None
show snmp user

Displays the users configured to access the SNMP agent on the switch, including the SNMP group and security model.

Syntax:
```
show snmp user
```

Parameters:
None

Defaults:
None

Command Mode:
EXEC

Usage Information:
To configure an SNMP user, use the `snmp-server user` command.

Example:
```
OS10# show snmp user
User name : privuser
Group : v3group
Version : 3
Authentication Protocol : MD5
Privacy Protocol : AES
```

Supported Releases:
10.4.2.0 or later

show snmp view

Displays the SNMP views configured on the switch, including the SNMP object ID at which the view starts.

Syntax:
```
show snmp view
```

Parameters:
None

Defaults:
None

Command Mode:
EXEC

Usage Information:
Use the `show snmp view` command to verify the OID starting point for SNMP views in MIB trees. To configure an SNMP view, use the `snmp-server view` command.

Example:
```
OS10# show snmp view
view name : readview
```

Supported Releases:
10.4.2.0 or later
Supported Releases 10.4.2.0 or later

**snmp-server community**

Configures an SNMP user community.

**Syntax**

```
snmp-server community name {ro | rw} [acl acl-name]
```

**Parameters**

- **community name** — Set the community name string to act as a password for SNMPv1 and SNMPv2c access. A maximum of 20 alphanumeric characters.
- **ro** — Set read-only access for the SNMP community.
- **rw** — Set read-write access for the SNMP community.
- **acl acl-name** — Enter an existing IPv4 ACL name to limit SNMP access in the SNMP community.

**Defaults**

An SNMP community has read-only access.

**Command Mode**

CONFIGURATION

**Usage Information**

The SNMPv1 and SNMPv2c security models use a community-based form of security. Use the `snmp-server community` command to configure read-only or read-write access for an SNMP community name. The configured community text string is used for SNMPv1 and SNMPv2c user authentication.

To display the SNMP communities on the switch, use the `show snmp-server community` command. The **no** version of the command removes the configured community text string.

**Example**

```
OS10(config)# snmp-server community admin rw
OS10(config)# snmp-server community public ro acl snmp-read-only-acl
```

Supported Releases 10.2.0E or later

**snmp-server contact**

Configures contact information for troubleshooting the local SNMP switch.

**Syntax**

```
snmp-server contact text
```

**Parameters**

- **text** — Enter an alphanumeric text string. A maximum of 55 characters.

**Default**

The SNMP server contact is `support`.

**Command Mode**

CONFIGURATION

**Usage Information**

The **no** version of this command resets the SNMP server contact to the default value.

**Example**

```
OS10(config)# snmp-server contact administrator
```

Supported Releases 10.2.0E or later
**snmp-server enable traps**

Enables SNMP traps on a switch.

**Syntax**

```
snmp-server enable traps [notification-type] [notification-option]
```

**Parameters**

- `notification-type notification-option` — Enter an SNMP notification type, and optionally, a notification option for the type.

**Table 16. Notification types and options**

<table>
<thead>
<tr>
<th>Notification type</th>
<th>Notification option</th>
</tr>
</thead>
<tbody>
<tr>
<td>entity</td>
<td>None</td>
</tr>
<tr>
<td>envmon — Enable SNMP environmental monitor traps.</td>
<td>- fan — Enable fan traps.</td>
</tr>
<tr>
<td></td>
<td>- power-supply — Enable power-supply traps.</td>
</tr>
<tr>
<td></td>
<td>- temperature — Enable temperature traps.</td>
</tr>
<tr>
<td>lldp — Enable LLDP state change traps.</td>
<td>- rem-tables-change — Enable the lldpRemTablesChange trap.</td>
</tr>
<tr>
<td>snmp — Enable SNMP traps.</td>
<td>- authentication — Enable authentication traps.</td>
</tr>
<tr>
<td></td>
<td>- coldstart — Enable coldstart traps when you power on the switch and the SNMP agent initializes.</td>
</tr>
<tr>
<td></td>
<td>- linkdown — Enable link-down traps.</td>
</tr>
<tr>
<td></td>
<td>- linkup — Enable link-up traps.</td>
</tr>
<tr>
<td></td>
<td>- warmstart — Enable warmstart traps when the switch reloads and the SNMP agent reinitializes.</td>
</tr>
</tbody>
</table>

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

If you do not enter a `notification-type` or `notification-option` parameter with the command, all traps are enabled. If you enter only a `notification-type`, all `notification-option` traps associated with the type are enabled.

Re-enter the command multiple times with different notification types and options to enable specific SNMP trap types.

The `no` version of the `snmp-server enable traps` command disables SNMP traps on the switch.

**Example**

```
OS10(config)# snmp-server enable traps envmon fan
OS10(config)# snmp-server enable traps envmon power-supply
OS10(config)# snmp-server enable traps snmp
OS10(config)# no snmp-server enable traps snmp
```

**Supported Releases**

10.4.1.0 or later
**snmp-server engineID**

Configures the local and remote SNMP engine IDs.

**Syntax**

```
snmp-server engineID [local engineID] [remote ip-address {[udp-port port-number] remote-engineID]}
```

**Parameters**

- `local engineID` — Enter the engine ID that identifies the local SNMP agent on the switch as an octet colon-separated number. A maximum of 27 characters.
- `remote ip-address` — Enter the IPv4 or IPv6 address of a remote SNMP device that accesses the local SNMP agent.
- `udp-port port-number` — Enter the UDP port number on the remote device, from 0 to 65535.
- `remote-engineID` — Enter the engine ID that identifies the SNMP agent on a remote device, 0x followed by a hexadecimal string).

**Defaults**

The local engine ID is generated using the MAC address of the management Ethernet interface.

**Command Mode**

CONFIGURATION

**Usage Information**

The local engine ID is used to generate the localized keys for the authentication and privilege passwords. These passwords authenticate SNMP users and encrypt SNMP messages. If you reconfigure the local Engine ID, the localized keys also change. The existing values are no longer valid and a warning message is displayed. As a result, you must reconfigure SNMP users with new localized password keys.

In addition, if you change the configured engine ID for a remote device, you must reconfigure the authentication and privacy passwords for the remote user.

To display the current local engine ID, use the `show snmp engineID local` command. The `no` version of this command resets the default engine ID values.

**Example**

```
OS10(config)# snmp-server engineID local 80:00:02:b8:04:61:62:63
OS10(config)# snmp-server engineID local 80:00:02:b8:04:61:62:63
% Warning: Localized passwords need to be regenerated for local user.
OS10(config)# snmp-server engineID remote 1.1.1.1 0xaaffcc
OS10(config)# snmp-server engineID remote 1.1.1.2 udp-port 432 0xabeecc
```

**Supported Releases**

10.4.2.0 or later

---

**snmp-server group**

Configures the views allowed for the users in an SNMP group.

**Syntax**

```
snmp-server group group-name {v1 | v2c | v3 security-level} [access acl-name] [read view-name] [write view-name] [notify view-name]
```

**Parameters**

- `group-name` — Enter the name of the group. A maximum of 32 alphanumeric characters.
- `v1` — SNMPv1 provides no user authentication or privacy protection. SNMP messages are sent in plain text.
- `v2c` — SNMPv2c provides no user authentication or privacy protection. SNMP messages are sent in plain text.
• **v3 security-level** — SNMPv3 provides optional user authentication and encryption for SNMP messages, configured with the `snmp-server user` command.

• **security-level** — (SNMPv3 only) Configure the security level for SNMPv3 users:
  - `auth` — Authenticate users in SNMP messages.
  - `noauth` — Do not authenticate users or encrypt SNMP messages; send messages in plain text.
  - `priv` — Authenticate users and encrypt/decrypt SNMP messages.

• **access acl-name** — (Optional) Enter the name of an IPv4 or IPv6 access list to filter SNMP requests received on the switch. A maximum of 16 characters.

• **read view-name** — (Optional) Enter the name of a read-only view. A maximum of 32 characters maximum.

• **write view-name** — (Optional) Enter the name of a read-write view. A maximum of 32 characters maximum.

• **notify view-name** — (Optional) Enter the name of a notification view. A maximum of 32 characters maximum.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
Use the `snmp-server group` command to set up the access privileges for a group of SNMP users. Configure the security level for receiving SNMP messages. Specify read-only, read-write, and/or notification access to the SNMP agent. To configure an SNMPv3 user’s authentication and privacy settings, use the `snmp-server user` command.

Enter an `access acl-name` value to limit access to the SNMP agent on the switch to only ACL-allowed users.

A read-view provides read-only access to the SNMP agent. A read-write view allows read-write access. A notify-view allows SNMP notifications to be sent to group members.

The `no snmp-server group group-name` command deletes an SNMP group.

**Example**
```
OS10(config)# snmp-server group os10admin p3 priv read readonlyview
```

**Supported Releases**
10.4.2.0 or later

---

### `snmp-server host`

**Configures a host to receive SNMP notifications.**

**Syntax**
```
snmp-server host {ipv4-address | ipv6-address} {informs version version-number | traps version version-number | version version-number} [snmpv3-security-level] [community-name] [udp-port port-number] [entity | envmon | lldp | snmp]
```

**Parameters**
- `ipv4-address | ipv6-address` — Enter the IPv4 or IPv6 address of the SNMP host.
- `informs` — Send inform messages to the SNMP host.
- `traps` — Send trap messages to the SNMP host.
- `version version-number` — Enter the SNMP security model used to send traps or informs to the SNMP host — 1, 2c, or 3. All security models support traps; only 2c and 3 support informs. To send only SNMP notifications, enter only a `version-number`; do not enter `informs` or `traps`. For SNMPv3 traps and informs, enter the security level:
  - `noauth` — (SNMPv3 only) Send SNMPv3 traps without user authentication and privacy encryption.
  - `auth` — (SNMPv3 only) Include a user authentication key for SNMPv3 messages sent to the host:
    - `md5` — Generate an authentication key using the Message Digest Algorithm (MD5) algorithm.
    - `sha` — Generate an authentication key using the Secure Hash Algorithm (SHA) algorithm.
- `auth-password` — Enter a text string used to generate the authentication key that identifies the user. A maximum of 32 alphanumeric characters. For an encrypted password, enter the encrypted string instead of plain text.

- `priv` — (SNMPv3 only) Configure encryption for SNMPv3 messages sent to the host:
  - `aes` — Encrypt messages using an AES 128-bit algorithm.
  - `des` — Encrypt messages using a DES 56-bit algorithm.
  - `priv-password` — Enter a text string used to generate the privacy key used in encrypted messages. A maximum of 32 alphanumeric characters. For an encrypted password, you can enter the encrypted string instead of plain text.

- `community-name` — (Optional) Enter an SNMPv1 or SNMPv2c community string name or an SNMPv3 user name.
- `udp-port port-number` — (Optional) Enter the UDP port number on the SNMP host, from 0 to 65535.
- `entity | envmon | lldp | snmp` — Enter one or more types of traps and notifications to send to the SNMP host — entity change, environment monitor, or LLDP state change traps, or SNMP-type notifications.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The local SNMP agent sends SNMP notifications, traps, and informs to SNMP managers configured as host receivers. You can configure multiple host receivers. An SNMP host does not acknowledge the trap messages and notifications received from the SNMP agent. SNMP hosts send an acknowledgement when receiving informs.

The no version of this command disables the local agent from sending SNMP traps, informs, or notifications to a host receiver.

**Example — Send SNMP traps to host**
```
OS10(config)# snmp-server host 1.1.1.1 traps version 3 priv user01 udp-port 32 entity lldp
```

**Example — Send SNMP informs to host**
```
OS10(config)# snmp-server host 1.1.1.1 informs version 2c public envmon snmp
```

**Example — Send SNMP notifications to host**
```
OS10(config)# snmp-server host 1.1.1.1 version 3 noauth u1 snmp lldp
```

**Supported Releases**
10.2.0E or later

### snmp-server location

Configures the location of the SNMP server.

**Syntax**
```
snmp-server location text
```

**Parameters**
- `text` — Enter an alphanumeric string. A maximum of 55 characters.

**Default**
None

**Command Mode**
CONFIGURATION

**Usage Information**
The no version of this command removes the SNMP location.

**Example**
```
OS10(config)# snmp-server location datacenter10
```

**Supported Releases**
10.2.0E or later
### snmp-server user

Authorizes a user to access the SNMP agent and receive SNMP messages.

**Syntax**

```
snmp-server user user-name group-name security-model [[noauth | auth {md5 | sha} auth-password] [priv {des | aes} priv-password]] [localized] [access acl-name] [remote ip-address udp-port port-number]
```

**Parameters**

- **user-name** — Enter the name of the user. A maximum of 32 alphanumeric characters.
- **group-name** — Enter the name of the group to which the user belongs. A maximum of 32 alphanumeric characters.
- **security-model** — Enter an SNMP version that sets the security level for SNMP messages:
  - 1 — SNMPv1 provides no user authentication or privacy protection. SNMP messages are sent in plain text.
  - 2c — SNMPv2c provides no user authentication or privacy protection. SNMP messages are sent in plain text.
  - 3 — SNMPv3 provides optional user authentication and encryption for SNMP messages.
- **noauth** — (SNMPv3 only) Configure SNMPv3 messages to send without user authentication and privacy encryption.
- **auth** — (SNMPv3 only) Include a user authentication key for SNMPv3 messages sent to the user:
  - md5 — Generate an authentication key using the MD5 algorithm.
  - sha — Generate an authentication key using the SHA algorithm.
  - **auth-password** — Enter a text string used to generate the authentication key that identifies the user (32 alphanumeric characters maximum). For an encrypted password, you can enter the encrypted string instead of plain text.
- **priv** — (SNMPv3 only) Configure encryption for SNMPv3 messages sent to the user:
  - aes — Encrypt messages using AES 128-bit algorithm.
  - des — Encrypt messages using DES 56-bit algorithm.
  - **priv-password** — Enter a text string used to generate the privacy key used in encrypted messages. A maximum of 32 alphanumeric characters. For an encrypted password, enter the encrypted string instead of plain text.
- **localized** — (SNMPv3 only) Generate an SNMPv3 authentication and/or privacy key in localized key format.
- **access acl-name** — (Optional) Enter the name of an IPv4 or IPv6 access list to filter SNMP requests on the switch. A maximum of 16 characters.
- **remote ip-address/prefix-length udp-port port-number** — (Optional) Enter the IPv4 or IPv6 address of the user's remote device and the UDP port number used to connect to the SNMP agent on the switch, from 0 to 65535; default 162.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

Use the `snmp-server user` command to set up the desired security level for SNMP access. For SNMPv3 users, configure user authorization and message encryption. Re-enter this command multiple times to configure SNMP security settings for all users.

The group to which a user is assigned determines the user's SNMP access. To configure a group's SNMP access to the switch — read, write, and notify, use the `snmp-server user` command.

No default values exist for SNMPv3 authentication and privacy algorithms and passwords. If you forget a password, you cannot recover it — you must reconfigure the user. You can specify either a plain-text password or
an encrypted cypher-text password. In either case, the password stores in the configuration in an encrypted form and displays as encrypted in the show running-config snmp output.

A localized authentication or privacy key is more complex and provides greater privacy protection. To display the localized authentication and privacy keys in an SNMPv3 user configuration, use the show running-configuration snmp command.

To limit user access to the SNMP agent on the switch, enter an access acl-name value. In IPv6 ACLs, SNMP supports only IPv6 and UDP types. TCP, ICMP, and port rules are not supported.

The no version of this command removes a user from the SNMP group.

Example (Encrypted passwords)
OS10(config)# snmp-server user privuser v3group v3 auth md5 9fc53d9d908118b2804fe80e3ba8763d priv des d0452401a8c3ce42804fe80e3ba8763d

Example (Plain-text passwords)
OS10(config)# snmp-server user authuser v3group v3 auth md5 authpasswd

Example (Remote user)
OS10(config)# snmp-server user n3user ngroup remote 172.31.1.3 udp-port 5009 3 auth md5 authpasswd

Supported Releases 10.4.2.0 or later

### snmp-server view

Configures an SNMPv3 view.

**Syntax**

```
snmp-server view view-name oid-tree [included | excluded]
```

**Parameters**

- `view-name` — Enter the name of a read-only, read-write, or notify view. A maximum of 32 characters.
- `oid-tree` — Enter the SNMP object ID at which the view starts in 12-octet dotted-decimal format.
- `included` — (Optional) Include the MIB family in the view.
- `excluded` — (Optional) Exclude the MIB family from the view.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**

The `oid-tree` value specifies the OID in the MIB tree hierarchy at which a view starts. Enter `included` or `excluded` to include or exclude the remaining part of the MIB sub-tree contents in the view.

The no version of this command removes an SNMPv3 view.

**Example**
OS10(config)# snmp-server view readview 1.3.6.5 excluded

**Supported Releases** 10.4.2.0 or later

### snmp-server vrf

Configures an SNMP agent to receive SNMP traps for the management VRF instance.

**Syntax**

```
snmp-server vrf management
```
Parameters
None

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command disables the SNMP agent from receiving the SNMP traps.

Example
OS10(config)# snmp-server vrf management

Supported Releases
10.4.1.0 or later

OS10 image upgrade

The `image download` command simply downloads the software image — it does not install the software on your device. The `image install` command installs the downloaded image to the standby partition.

**NOTE:** If the active partition contains any modified text files or custom packages installed, they would not be available in the standby partition. Backup the modified files and re-install the packages after downloading the image.

1. (Optional) Backup the current running configuration to the startup configuration in EXEC mode.
   `copy running-configuration startup-configuration`

2. Backup the startup configuration in EXEC mode.
   `copy config://startup.xml config://<backup file name>`

3. Download the new software image from dell.com/support, extract the bin files from the tar file, and save the file in EXEC mode.
   `image download file-url`

4. (Optional) View the current software download status in EXEC mode.
   `show image status`

5. Install the software image in EXEC mode.
   `image install image-url`

6. (Optional) View the status of the current software install in EXEC mode. For the S5148F-ON platform, open a new SSH or Telnet session to check the status of the current software.
   `show image status`

7. Change the next boot partition to the standby partition in EXEC mode. Use the `active` parameter to set the next boot partition from standby to active.
   `boot system standby`

8. (Optional) Check whether the next boot partition has changed to standby in EXEC mode.
   `show boot detail`

9. Reload the new software image in EXEC mode.
   `reload`

Image download

OS10# image download ftp://userid:passwd@hostip://filepath

Image install

OS10# image install image://filename.bin

Show version

OS10# show version
Dell EMC Networking OS10-Enterprise
Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.
OS Version: 10.4.2.0
Build Version: 10.4.2.0.226
Build Time: 2018-11-08T21:43:05-0800
System Type: S6010-ON
Boot system partition

Set the boot partition to active or standby for subsequent boot cycles. Boot OS10 from standby to load the image on the standby partition, or boot from active to load the currently running image.

1. Display current boot information in EXEC mode.
   
   ```
 show boot detail
   ```

2. Configure the boot system in EXEC mode.

   ```
 boot system [active | standby]
   ```

   - active — Resets the running partition as the subsequent boot partition.
   - standby — Sets the standby partition as the subsequent boot partition.

View boot detail

```
OS10# show boot detail
Current system image information detail:
==
Type: Node-id 1
Boot Type: Flash Boot
Active Partition: B
Active SW Version: 10.4.2.0
Active SW Build Version: 10.4.2.0.226
Active Kernel Version: Linux 4.9.110
Active Build Date/Time: 2018-11-08T13:43:05Z
Standby Partition: A
Standby SW Version: 10.4.2.0
Standby SW Build Version: 10.4.2.0.219
Standby Build Date/Time: 2018-11-03T13:08:46Z
Next-Boot: active[B]
```

View boot summary

```
OS10# show boot
Current system image information:
===================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Boot Type</th>
<th>Active</th>
<th>Standby</th>
<th>Next-Boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-id 1</td>
<td>Flash Boot</td>
<td>[B] 10.4.2.0</td>
<td>[A] 10.4.2.0</td>
<td>[B] active</td>
</tr>
</tbody>
</table>
```

Upgrade commands

boot system

Sets the boot partition to use during the next reboot.

```
Syntax boot system {active | standby}
Parameters
 - active — Reset the running partition as the next boot partition.
 - standby — Set the standby partition as the next boot partition.
Default Active
```
**Command Mode**
EXEC

**Usage Information**
Use this command to configure the location of the OS10 image used to reload the software at boot time. Use the show boot command to view the configured next boot image. This command applies immediately and does not require the commit command.

**Example**
```
OS10# boot system standby
```

**Supported Releases**
10.2.0E or later

---

**image cancel**

Cancels an active image download.

**Syntax**
```
image cancel
```

**Parameters**
None

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
This command attempts to cancel an active file download in progress.

**Example**
```
OS10# image cancel
```

**Supported Releases**
10.2.0E or later

---

**image copy**

Copies the entire image in the active partition to the standby partition, a mirror image.

**Syntax**
```
image copy active-to-standby
```

**Parameters**
active-to-standby — Enter to copy the entire image in the active partition to the standby partition, a mirror image.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
Duplicate the active, running software image to the standby image location.

**Example**
```
OS10# image copy active-to-standby
```

**Supported Releases**
10.2.0E or later

---

**image download**

Downloads a new software image to the local file system.

**Syntax**
```
image download file-url
```

**Parameters**
file-url — Set the path to the image file:

- `ftp://userid:passwd@hostip:/filepath` — Enter the path to copy from the remote FTP server.
- `http[s]://hostip:/filepath` — Enter the path to copy from the remote HTTP or HTTPS server.
image download

Downloads an image file or from a remote location.

Syntax
image download file-url

Parameters
- file-url — Location of the image file:
  - ftp://userid:passwd@hostip:/filepath — Enter the path to copy from the remote FTP file system.
  - http[s]://hostip:/filepath — Enter the path to copy from the remote HTTP or HTTPS server.
  - scp://userid:passwd@hostip:/filepath — Enter the path to copy from the remote SCP file system.
  - sftp://userid:passwd@hostip:/filepath — Enter the path to copy from the remote SFTP file system.
  - tftp://hostip:/filepath — Enter the path to copy from the remote TFTP file system.
  - usb://filepath — Enter the path to copy from the USB file system.

Default Not configured

Command Mode EXEC

Usage Information Use the show image status command to view the progress.

Example
OS10# image download ftp://admin@10.206.28.174:/PKGS_OS10-Enterprise-10.3.2E.55-installer-x86_64.bin
OS10# image download ftp://admin@10.206.28.174:/PKGS_OS10-Enterprise-10.4.0E.55-installer-x86_64.bin

Supported Releases 10.2.0E or later

image install

Installs a new image, either from a previously downloaded file or from a remote location.

Syntax
image install file-url

Parameters
- file-url — Location of the image file:
  - ftp://userid:passwd@hostip:/filepath — Enter the path to install from a remote FTP server.
  - http[s]://hostip:/filepath — Enter the path to install from the remote HTTP or HTTPS server.
  - scp://userid:passwd@hostip:/filepath — Enter the path to install from a remote SCP file system.
  - sftp://userid:passwd@hostip:/filepath — Enter the path to install from a remote SFTP file system.
  - tftp://hostip:/filepath — Enter the path to install from a remote TFTP file system.
  - image://filename — Enter the path to install from a local file system.
  - usb://filepath — Enter the path to install from the USB file system.

Default All

Command Mode EXEC

Usage Information Use the show image status command to view the installation progress.

Example
OS10# image install ftp://10.206.28.174:/PKGS_OS10-Enterprise-10.3.2E.55-installer-x86_64.bin
OS10# image install ftp://10.206.28.174:/PKGS_OS10-Enterprise-10.4.0E.55-installer-x86_64.bin

Supported Releases 10.2.0E or later
**show boot**

Displays boot partition-related information.

**Syntax**

```
show boot [detail]
```

**Parameters**

`detail` — (Optional) Enter to display detailed information.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Use the `boot system` command to set the boot partition for the next reboot.

**Example**

```
OS10# show boot
Current system image information:
===================================
Type Boot Type Active Standby Next-Boot

Node-id 1 Flash Boot [B] 10.2.0E [A] 10.2.0E [B] active
```

**Example (Detail)**

```
OS10# show boot detail
Current system image information detail:
==
Type: Node-id 1
Boot Type: Flash Boot
Active Partition: B
Active SW Version: 10.2.0E
Active Kernel Version: Linux 3.16.7-ckt25
Active Build Date/Time: 2016-10-03T23:11:14Z
Standby Partition: A
Standby SW Version: 10.2.0E
Standby Build Date/Time: 2016-10-03T23:11:14Z
Next-Boot: active[B]
```

**Supported Releases**

10.2.0E or later

---

**show image status**

Displays image transfer and installation information.

**Syntax**

```
show image status
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show image status
Image Upgrade State: idle
==
File Transfer State: idle

State Detail: No download information available
Task Start: 0000-00-00T00:00:00Z
Task End: 0000-00-00T00:00:00Z
Transfer Progress: 0 %
Transfer Bytes: 0 bytes
File Size: 0 bytes
Transfer Rate: 0 kbps
```
show version

Displays software version information.

Syntax

```
show version
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show version
Dell EMC Networking OS10-Enterprise
Copyright (c) 1999-2018 by Dell Inc. All Rights Reserved.
OS Version: 10.4.2.0
Build Version: 10.4.2.0.226
Build Time: 2018-11-08T21:43:05-0800
System Type: S6010-ON
Architecture: x86_64
Up Time: 3 days 00:28:58
```

Supported Releases

10.2.0E or later
Switches implement the control plane and data plane in the same hardware. Software-defined network (SDN) decouples the software (control plane) from the hardware (data plane). A centralized SDN controller handles the control plane traffic and hardware configuration for data plane flows.

The SDN controller is the "brain" of an SDN. The SDN controller uses north-bound application programming interfaces (APIs) to communicate with the business logic applications and south-bound APIs to set up controlled network devices, such as OS10 switches.

OpenFlow is an implementation of SDN. OpenFlow enables programmable networks. You can develop SDN controller network applications using representational state transfer (REST) or JAVA APIs (north-bound APIs) to business logic applications. The SDN controller uses OpenFlow south-bound APIs to communicate with the switches and relay information from business logic applications.

Advantages of an SDN include customization, accelerating new feature development, lower operating costs, and fostering an open, multi-vendor environment.

OS10 supports OpenFlow protocol versions 1.0 and 1.3.

OS10 supports OpenFlow-only mode. In this mode, the SDN controller controls data path of the switch. The OpenFlow pipeline processes all data packets.

**NOTE:** When the switch is in OpenFlow mode, all Layer 2 (L2) and Layer 3 (L3) protocols are disabled. Link-level protocols such as Link Layer Discovery Protocol (LLDP), Dot1x, and Virtual Link Trunking (VLT) are disabled as well.

**NOTE:** OpenFlow Hybrid mode is not supported.

**Supported Platforms**

- S4048–ON
- S4048T-ON
- S4100-ON
- S4248FB-ON
- S4248FBL-ON
- S6010–ON
- Z9100–ON
- Z9264F-ON

**NOTE:** S5148F-ON and S3048-ON are not supported.

OS10 OpenFlow implementation reserves VLANs 1 and 4095.

The following is a known OpenFlow restriction in OS10:

Converting the switch from OpenFlow mode back to Normal mode removes all OpenFlow configurations. The switch returns to the pre-Openflow status. The management, interface (maximum transmission unit (MTU) and LLDP), and authentication, authorization, and accounting (AAA) settings specified in the Normal mode are retained.

To start up the switch in Factory Default mode, you must:

1. Delete the startup configuration using the `delete startup-configuration` command.
2. Enter the `reload` command.
NOTE: Do not use the no openflow or no mode openflow-only command.

OS10# delete startup-configuration
OS10# reload

OpenFlow logical switch instance

In OpenFlow-only mode, you can configure only one logical switch instance. After you enable OpenFlow mode, create a logical switch instance. The logical switch instance is disabled by default. When the logical switch instance is enabled, the OpenFlow application starts the connection with the configured controller.

When you create an OpenFlow logical switch instance, all the physical interfaces are automatically added to it.

OpenFlow controller

OS10 is qualified with the following SDN controllers:

- Ryu
- Open Network Operating System (ONOS)

To establish a connection with the controller, configure the IPv4 address of the controller and port ID in the OpenFlow logical switch instance. The default port is 6653. You can connect controllers to the switch in OOB Connection mode. However, you can use any of the front-panel ports as the management interface using the in-band command. The inband port is removed from the OpenFlow switch instance and is not controlled by the controller.

The management port MTU is 1532 and the inband port MTU is 9216.

OpenFlow uses the Transmission Control Protocol (TCP) and Transport Layer Security (TLS) protocol for communication.

If the OpenFlow switch loses connection with the controller, the switch immediately enters Fail Secure mode. All the flows the controller installs are retained on the switch. The flow entries are removed based on the hard or idle timeout that you configure.

OpenFlow version 1.3

This section provides information about OpenFlow version 1.3 specifications for OS10.

Ports

An OpenFlow switch supports the following OpenFlow ports:

<table>
<thead>
<tr>
<th>Port types</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical ports</td>
<td>Supported</td>
</tr>
<tr>
<td>Logical ports</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Reserved ports

(Required) ALL	Supported
(Required) CONTROLLER	Supported
(Required) TABLE	Not supported
(Required) IN PORT	Not supported

Table 17. Supported port types
<table>
<thead>
<tr>
<th>Port types</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Required) ANY</td>
<td>Supported</td>
</tr>
<tr>
<td>(Optional) LOCAL</td>
<td>Not supported</td>
</tr>
<tr>
<td>(Optional) NORMAL</td>
<td>Not supported</td>
</tr>
<tr>
<td>(Optional) FLOOD</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Flow table**

An OpenFlow flow table consists of flow entries. Each flow table entry contains the following fields:

**Table 18. Supported fields**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>match_fields</td>
<td>Supported</td>
</tr>
<tr>
<td>priority</td>
<td>Supported</td>
</tr>
<tr>
<td>counters</td>
<td>Supported</td>
</tr>
<tr>
<td>instructions</td>
<td>Supported</td>
</tr>
<tr>
<td>timeouts</td>
<td>Supported</td>
</tr>
<tr>
<td>cookie</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Group table**

Not supported

**Meter table**

Not supported

**Instructions**

Each flow entry contains a set of instructions that execute when a packet matches the entry.

**Table 19. Supported instructions**

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Meter meter id</td>
<td>Not supported</td>
</tr>
<tr>
<td>(Optional) Apply-Actions action(s)</td>
<td>Supported</td>
</tr>
<tr>
<td>(Optional) Clear-Actions</td>
<td>Not supported</td>
</tr>
<tr>
<td>(Required) Write-Actions action(s)</td>
<td>Supported</td>
</tr>
<tr>
<td>(Optional) Write-Metadata metadata/mask</td>
<td>Not supported</td>
</tr>
<tr>
<td>(Required) Goto-table next-table-id</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
**Action set**

An action set associates with each packet.

Table 20. Supported action sets

<table>
<thead>
<tr>
<th>Action set</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy TTL inwards</td>
<td>Not supported</td>
</tr>
<tr>
<td>pop</td>
<td>Not supported</td>
</tr>
<tr>
<td>push-MPLS</td>
<td>Not supported</td>
</tr>
<tr>
<td>push-VLAN</td>
<td>Not supported</td>
</tr>
<tr>
<td>copy TTL outwards</td>
<td>Not supported</td>
</tr>
<tr>
<td>decrement TTL</td>
<td>Not supported</td>
</tr>
<tr>
<td>set</td>
<td>Supported (selective fields)</td>
</tr>
<tr>
<td>qos</td>
<td>Not supported</td>
</tr>
<tr>
<td>group</td>
<td>Not supported</td>
</tr>
<tr>
<td>output</td>
<td>Supported</td>
</tr>
</tbody>
</table>

**Action types**

An action type associates with each packet.

Table 21. Supported action types

<table>
<thead>
<tr>
<th>Action type</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Supported</td>
</tr>
<tr>
<td>Set-queue</td>
<td>Not supported</td>
</tr>
<tr>
<td>Drop</td>
<td>Supported</td>
</tr>
<tr>
<td>Group</td>
<td>Not supported</td>
</tr>
<tr>
<td>Push-tag/Pop-tag</td>
<td>Not supported</td>
</tr>
<tr>
<td>Set-field</td>
<td>Partially supported</td>
</tr>
<tr>
<td></td>
<td>- Source MAC—Supported</td>
</tr>
<tr>
<td></td>
<td>- Destination MAC—Supported</td>
</tr>
<tr>
<td></td>
<td>- VLAN ID—Supported</td>
</tr>
<tr>
<td></td>
<td>- VLAN PCP—Supported</td>
</tr>
<tr>
<td></td>
<td>- IP DSCP—Supported</td>
</tr>
<tr>
<td>change-TTL</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Counters

Counters are used for statistical purposes.

### Table 22. Supported counters

<table>
<thead>
<tr>
<th>Required/Optional</th>
<th>Counter</th>
<th>Bits</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Per flow table</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td>Reference count (active entries)</td>
<td>32</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Packet lookups</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Packet matches</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td><strong>Per flow entry</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>Received packets</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Received bytes</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Required</td>
<td>Duration (seconds)</td>
<td>32</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Duration (nanoseconds)</td>
<td>32</td>
<td>Supported</td>
</tr>
<tr>
<td><strong>Per port</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td>Received packets</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Required</td>
<td>Transmitted packets</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Received bytes</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Transmitted bytes</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Receive drops</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Transmit drops</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Receive errors</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Transmit errors</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Receive frame alignment errors</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Receive overrun errors</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Receive CRC errors</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Collisions</td>
<td>64</td>
<td>Supported</td>
</tr>
<tr>
<td>Required</td>
<td>Duration (seconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Duration (nanoseconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Per queue</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td>Transmit packets</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Transmit bytes</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Transmit overrun errors</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Required</td>
<td>Duration (seconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Duration (nanoseconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Per group</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>Reference count (flow entries)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Counter</td>
<td>Bits</td>
<td>Support</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Optional</td>
<td>Packet count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Byte count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Required</td>
<td>Duration (seconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Duration (nanoseconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Per group bucket**

<table>
<thead>
<tr>
<th>Required/Optional</th>
<th>Counter</th>
<th>Bits</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>Packet count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Byte count</td>
<td>64</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Per meter**

<table>
<thead>
<tr>
<th>Required/Optional</th>
<th>Counter</th>
<th>Bits</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>Flow count</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Input packet count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Input byte count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Required</td>
<td>Duration (seconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>Duration (nanoseconds)</td>
<td>32</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Per meter band**

<table>
<thead>
<tr>
<th>Required/Optional</th>
<th>Counter</th>
<th>Bits</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>In-band packet count</td>
<td>64</td>
<td>Not supported</td>
</tr>
<tr>
<td>Optional</td>
<td>In-band byte count</td>
<td>64</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**OpenFlow protocol**

The OpenFlow protocol supports three message types, each with multiple subtypes:

- Controller-to-switch
- Asynchronous
- Symmetric

**Controller-to-switch**

**Table 23. Supported controller-to-switch types**

<table>
<thead>
<tr>
<th>Controller-to-switch types</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature request</td>
<td>Supported</td>
</tr>
<tr>
<td>Configuration get</td>
<td>Supported</td>
</tr>
<tr>
<td>Configuration set</td>
<td>Supported</td>
</tr>
<tr>
<td>Modify-state</td>
<td>Supported</td>
</tr>
<tr>
<td>Read-state</td>
<td>Supported</td>
</tr>
<tr>
<td>Packet-out</td>
<td>Supported</td>
</tr>
<tr>
<td>Barrier</td>
<td>Supported</td>
</tr>
<tr>
<td>Role-request</td>
<td>Supported</td>
</tr>
</tbody>
</table>

**Asynchronous**
Table 24. Supported asynchronous types

<table>
<thead>
<tr>
<th>Asynchronous types</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet-in</td>
<td>Supported</td>
</tr>
<tr>
<td>Flow-removed</td>
<td>Supported</td>
</tr>
<tr>
<td>Port-status</td>
<td>Supported</td>
</tr>
<tr>
<td>Error</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Symmetric

Table 25. Supported symmetric types

<table>
<thead>
<tr>
<th>Symmetric types</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>Supported</td>
</tr>
<tr>
<td>Echo</td>
<td>Supported</td>
</tr>
<tr>
<td>Experimenter</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Connection setup TCP

Table 26. Supported modes

<table>
<thead>
<tr>
<th>Modes</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection interruption</td>
<td></td>
</tr>
<tr>
<td>– fail-secure-mode—Supported</td>
<td></td>
</tr>
<tr>
<td>– fail-standalone-mode—Not supported</td>
<td></td>
</tr>
<tr>
<td>TLS encryption</td>
<td>Supported</td>
</tr>
<tr>
<td>Multiple controller</td>
<td>Not supported</td>
</tr>
<tr>
<td>Auxiliary connections</td>
<td>Not supported</td>
</tr>
<tr>
<td>Number of logical switches</td>
<td>One</td>
</tr>
</tbody>
</table>

Supported controllers

REST APIs on
- Ryu
- ONOS

Flow table modification messages

Table 27. Supported messages

<table>
<thead>
<tr>
<th>Flow table modification messages</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPFC_ADD=0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFC_MODIFY=1</td>
<td>Supported</td>
</tr>
</tbody>
</table>
### Flow table modification messages

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Message</th>
<th>Supported / Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPFC_MODIFY_STRICT</td>
<td>2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFC_DELETE</td>
<td>3</td>
<td>Supported</td>
</tr>
<tr>
<td>OFCPC_DELETE_STRICT</td>
<td>4</td>
<td>Supported</td>
</tr>
</tbody>
</table>

### Message types

#### Table 28. Supported message types

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Message</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immutable messages</td>
<td>OFPT_HELLO</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_ERROR</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_ECHO_REQUEST</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_ECHO_REPLY</td>
<td>Supported</td>
</tr>
<tr>
<td>Switch configuration messages</td>
<td>OFPT_FEATURES_REQUEST</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_FEATURES_REPLY</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_GET_CONFIG_REQUEST</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_GET_CONFIG_REPLY</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_SET_CONFIG</td>
<td>Supported</td>
</tr>
<tr>
<td>Asynchronous messages</td>
<td>OFPT_PACKET_IN</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_FLOW_REMOVED</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_PORT_STATUS</td>
<td>Supported</td>
</tr>
<tr>
<td>Controller command messages</td>
<td>OFPT_PACKET_OUT</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_FLOW_MOD</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_GROUP_MOD</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_PORT_MOD</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_TABLE_MOD</td>
<td>Not supported</td>
</tr>
<tr>
<td>Multipart messages</td>
<td>OFPT_MULTIPART_REQUEST</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_MULTIPART_REPLY</td>
<td>Supported</td>
</tr>
<tr>
<td>Barrier messages</td>
<td>OFPT_BARRIER_REQUEST</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_BARRIER_REPLY</td>
<td>Supported</td>
</tr>
<tr>
<td>Queue configuration messages</td>
<td>OFPT_QUEUE_GET_CONFIG_REQUEST</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_QUEUE_GET_CONFIG_REPLY</td>
<td>Not supported</td>
</tr>
<tr>
<td>Controller role change request messages</td>
<td>OFPT_ROLE_REQUEST</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_ROLE_REPLY</td>
<td>Not supported</td>
</tr>
<tr>
<td>Asynchronous message configuration</td>
<td>OFPT_GET_ASYNC_REQUEST</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>OFPT_GET_ASYNC_REPLY</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Flow match fields

Table 29. Supported fields

<table>
<thead>
<tr>
<th>Flow match fields</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPXMTOFB_IN_PORT = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IN_PHY_PORT  = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPXMTOFB_METADATA = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPXMTOFB_ETH_DST = 3</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_ETH_SRC = 4</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_ETH_TYPE = 5</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_VLAN_VID = 6</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_VLAN_PCP = 7</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IP_DSCP = 8</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IP_ECN = 9</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IP_PROTO = 10</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IPV4_SRC = 11</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_IPV4_DST = 12</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_TCP_SRC = 13</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_TCP_DST = 14</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_UDP_SRC = 15</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_UDP_DST = 16</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_SCTP_SRC = 17</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPXMTOFB_SCTP_DST = 18</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPXMTOFB_ICMPV4_TYPE = 19</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPXMTOFB_ICMPV4_CODE = 20</td>
<td>Supported</td>
</tr>
</tbody>
</table>

OpenFlow 667
Flow match fields

OFPXMT_OFB_ARP_OP = 21  Not supported
OFPXMT_OFB_ARP_SPA = 22  Not supported
OFPXMT_OFB_ARP_TPA = 23  Not supported
OFPXMT_OFB_ARP_SHA = 24  Not supported
OFPXMT_OFB_ARP_THA = 25  Not supported
OFPXMT_OFB_IPV6_SRC = 26  Not supported
OFPXMT_OFB_IPV6_DST = 27  Not supported
OFPXMT_OFB_IPV6_FLABEL = 28  Not supported
OFPXMT_OFB_ICMPV6_TYPE = 29  Not supported
OFPXMT_OFB_ICMPV6_CODE = 30  Not supported
OFPXMT_OFB_IPV6_ND_TARGET = 31  Not supported
OFPXMT_OFB_IPV6_ND_SLL = 32  Not supported
OFPXMT_OFB_IPV6_ND_TLL = 33  Not supported
OFPXMT_OFB_MPLS_LABEL = 34  Not supported
OFPXMT_OFB_MPLS_TC = 35  Not supported
OFPXMT_OFP_MPLS_BOS = 36  Not supported
OFPXMT_OFB_PBB_ISID = 37  Not supported
OFPXMT_OFB_TUNNEL_ID = 38  Not supported
OFPXMT_OFB_IPV6_EXTHDR = 39  Not supported

Action structures

Table 30. Supported action structures

<table>
<thead>
<tr>
<th>Action structures</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPAT_OUTPUT = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPAT_COPY_TTL_OUT  = 11</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_COPY_TTL_IN   = 12</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_SET_MPLS_TTL  = 15</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_DEC_MPLS_TTL  = 16</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
### Action structures

<table>
<thead>
<tr>
<th>Action structure</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPAT_PUSH_VLAN = 17</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_POP_VLAN = 18</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_PUSH_MPLS = 19</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_POP_MPLS = 20</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_SET_QUEUE = 21</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_GROUP = 22</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_SET_NW_TTL = 23</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_DEC_NW_TTL = 24</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_SET_FIELD = 25</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPAT_PUSH_PBB = 26</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPAT_POP_PBB = 27</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Capabilities supported by the data path

**Table 31. Supported capabilities**

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPC_FLOW_STATS = 1 &lt;&lt; 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPC_TABLE_STATS = 1 &lt;&lt; 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPC_PORT_STATS = 1 &lt;&lt; 2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPC_GROUP_STATS = 1 &lt;&lt; 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPC_IP_REASM = 1 &lt;&lt; 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPC_QUEUE_STATS = 1 &lt;&lt; 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPC_PORT_BLOCKED = 1 &lt;&lt; 8</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Multipart message types

**Table 32. Supported message types**

<table>
<thead>
<tr>
<th>Message type description</th>
<th>Request/Reply Body</th>
<th>Message</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of this OpenFlow switch</td>
<td>The request body is empty</td>
<td>OFPMP_DESC = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>Message type description</td>
<td>Request/Reply Body</td>
<td>Message</td>
<td>Support</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Individual flow statistics</td>
<td>• The reply body is struct ofp_desc</td>
<td>OFPMP_FLOW = 1</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>• The request body is struct ofp_flow_stats_request</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_flow_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate flow statistics</td>
<td>• The request body is struct ofp_aggregate_stats_request</td>
<td>OFPMP_AGGREGATE = 2</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is struct ofp_aggregate_stats_reply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow table statistics</td>
<td>• The request body is empty</td>
<td>OFPMP_TABLE = 3</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_table_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port statistics</td>
<td>• The request body is struct ofp_port_stats_request</td>
<td>OFPMP_PORT_STATS = 4</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_port_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue statistics for a port</td>
<td>• The request body is struct ofp_queue_stats_request</td>
<td>OFPMP_QUEUE = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_queue_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group counter statistics</td>
<td>• The request body is struct ofp_group_stats_request</td>
<td>OFPMP_GROUP = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply is an array of struct ofp_group_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group description</td>
<td>• The request body is empty</td>
<td>OFPMP_GROUP_DESC = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_group_desc_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group features</td>
<td>• The request body is empty</td>
<td>OFPMP_GROUP_FEATURES = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is struct ofp_group_features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter statistics</td>
<td>• The request body is struct ofp_meter_multipart_requests</td>
<td>OFPMP_METER = 9</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_meter_stats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter configuration</td>
<td>• The request body is struct ofp_meter_multipart_requests</td>
<td>OFPMP_METER_CONFIG = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>• The reply body is an array of struct ofp_meter_config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter features</td>
<td>• The request body is empty</td>
<td>OFPMP_METER_FEATURES = 11</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
### Message type description

<table>
<thead>
<tr>
<th>Request/Reply Body</th>
<th>Message</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The reply body is struct ofp_meter_features</td>
<td>OFPMP_TABLE_FEATURES = 12</td>
<td>Supported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The request body is empty or contains an array of struct ofp_table_features that includes the controller's desired view of the switch.</td>
</tr>
<tr>
<td>If the switch is unable to set the specified view an error is returned</td>
</tr>
<tr>
<td>• The reply body is an array of struct ofp_table_features</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The request body is empty</td>
</tr>
<tr>
<td>• The reply body is an array of struct ofp_port</td>
</tr>
</tbody>
</table>

### Switch description

The OFPMP_DESC multipart request type includes information about the switch manufacturer, hardware revision, software revision, serial number, and description.

#### Table 33. Supported descriptions

<table>
<thead>
<tr>
<th>Switch description</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>char mfr_desc[DESC_STR_LEN]</td>
<td>Supported</td>
</tr>
<tr>
<td>char hw_desc[DESC_STR_LEN]</td>
<td>Supported</td>
</tr>
<tr>
<td>char sw_desc[DESC_STR_LEN]</td>
<td>Supported</td>
</tr>
<tr>
<td>char serial_num[SERIAL_NUM_LEN]</td>
<td>Supported</td>
</tr>
<tr>
<td>char dp_desc[DESC_STR_LEN]</td>
<td>Supported</td>
</tr>
</tbody>
</table>

### Property type

#### Table 34. Supported properties

<table>
<thead>
<tr>
<th>Property type</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPTFPT_INSTRUCTIONS = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_INSTRUCTIONS_MISS = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_NEXT_TABLES = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_NEXT_TABLES_MISS = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_WRITE_ACTIONS = 4</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_WRITE_ACTIONS_MISS = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_APPLY_ACTIONS = 6</td>
<td>Supported</td>
</tr>
</tbody>
</table>
### Property type

<table>
<thead>
<tr>
<th>Property type</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPTFPT_APPLY_ACTIONS_MISS = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_MATCH = 8</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_WILDCARDS = 10</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_WRITE_SETFIELD = 12</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_WRITE_SETFIELD_MISS = 13</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFPT_APPLY_SETFIELD = 14</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFPT_APPLY_SETFIELD_MISS = 15</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Group configuration

**Table 35. Supported configurations**

<table>
<thead>
<tr>
<th>Group configuration</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPGFC_SELECT_WEIGHT = 1 &lt;&lt; 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGFC_SELECT_LIVENESS = 1 &lt;&lt; 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGFC_CHAINING = 1 &lt;&lt; 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGFC_CHAINING_CHECKS = 1 &lt;&lt; 3</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Controller roles

**Table 36. Supported controller roles**

<table>
<thead>
<tr>
<th>Controller roles</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPCR_ROLE_NOCHANGE = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPCR_ROLE_EQUAL = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPCR_ROLE_MASTER = 2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPCR_ROLE_SLAVE = 3</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Packet-in reasons

**Table 37. Supported reasons**

<table>
<thead>
<tr>
<th>Packet-in reasons</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPR_NO_MATCH = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPR_ACTION = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPR_INVALID_TTL = 2</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
### Flow-removed reasons

**Table 38. Supported reasons**

<table>
<thead>
<tr>
<th>Flow-removed reasons</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPRR_IDLE_TIMEOUT = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPRR_HARD_TIMEOUT = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPRR_DELETE = 2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPRR_GROUP_DELETE = 3</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

### Error types from switch to controller

**Table 39. Supported error types**

<table>
<thead>
<tr>
<th>Error types</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPET_HELLO_FAILED = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_BAD_REQUEST = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_BAD_ACTION = 2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_BAD_INSTRUCTION = 3</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_BAD.Match = 4</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_FLOW_MOD_FAILED = 5</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_GROUP_MOD_FAILED = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_PORT_MOD_FAILED = 7</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPET_TABLE_MOD_FAILED = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_QUEUE_OP_FAILED = 9</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_SWITCH_CONFIG_FAILED = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_ROLE_REQUEST_FAILED = 11</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_METER_MOD_FAILED = 12</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPET_TABLE_FEATURES_FAILED = 13</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

**Bad request code**

<p>| OFPBRC_BAD_VERSION = 0                | Supported               |</p>
<table>
<thead>
<tr>
<th>Error types</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPBRC_BAD_TYPE = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_MULTIPART = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_EXPERIMENTER = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_EXP_TYPE = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_EPERM = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_LEN = 6</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBRC_BUFFER EMPTY = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BUFFER_UNKNOWN = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_TABLE_ID = 9</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBRC_IS_SLAVE = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_PORT = 11</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBRC_BAD_PACKET = 12</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBRC_MULTIPART_BUFFER_OVERFLOW = 13</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bad action code</th>
<th>Supported/Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFPBAC_BAD_TYPE = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_LEN = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_EXPERIMENTER = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_EXP_TYPE = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_OUT_PORT = 4</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_ARGUMENT = 5</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBAC_EPERM = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_TOO_MANY = 7</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_QUEUE = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_OUT_GROUP = 9</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_MATCH_INCONSISTENT = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_UNSUPPORTED_ORDER = 11</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_TAG = 12</td>
<td>Not supported</td>
</tr>
<tr>
<td>Error types</td>
<td>Supported/Not supported</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>OFPBAC_BAD_SET_TYPE = 13</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_SET_LEN = 14</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBAC_BAD_SET_ARGUMENT = 15</td>
<td>Supported</td>
</tr>
<tr>
<td><strong>Bad instruction code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPBIC_UNKNOWN_INST = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_UNSUP_INST = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_BAD_TABLE_ID = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_UNSUP_METADATA = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_UNSUP_METADATA_MASK = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_BAD_EXPERIMENTER = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_BAD_EXP_TYPE = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_BAD_LEN = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBIC_EPERM = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Bad match code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPBMC_BAD_TYPE = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_LEN = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_TAG = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_DL_ADDR_MASK = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_NW_ADDR_MASK = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_WILDCARDS = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_FIELD = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_VALUE = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_MASK = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_BAD_PREREQ = 9</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_DUP_FIELD = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPBMC_EPERM = 11</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Flow modification failed code</strong></td>
<td></td>
</tr>
<tr>
<td>Error types</td>
<td>Supported/Not supported</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>OFPFMFC_UNKNOWN = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFMFC_TABLE_FULL = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFMFC_BAD_TABLE_ID = 2</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFMFC_OVERLAP = 3</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFMFC_EPERM = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPFMFC_BAD_TIMEOUT = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPFMFC_BAD_COMMAND = 6</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPFMFC_BAD_FLAGS = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>Group modification failed code</td>
<td></td>
</tr>
<tr>
<td>OFPGMFC_GROUP_EXISTS = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_INVALID_GROUP = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_WEIGHT_UNSUPPORTED = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_OUT_OF_GROUPS = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_OUT_OF_BUCKETS = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_CHAINING_UNSUPPORTED = 5</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_WATCH_UNSUPPORTED = 6</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_LOOP = 7</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_UNKNOWN_GROUP = 8</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_CHAINED_GROUP = 9</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_BAD_TYPE = 10</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_BAD_COMMAND = 11</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_BAD_BUCKET = 12</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_BAD_WATCH = 13</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGMFC_EPERM = 14</td>
<td>Not supported</td>
</tr>
<tr>
<td>Port modification failed code</td>
<td></td>
</tr>
<tr>
<td>OFPPMFC_BAD_PORT = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPPMFC_BAD_HW_ADDR = 1</td>
<td>Supported</td>
</tr>
<tr>
<td>Error types</td>
<td>Supported/Not supported</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>OFPPMFC_BAD_CONFIG = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPPMFC_BAD_ADVERTISE = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPPMFC_EPERM = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Table modification failed code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPTMFC_BAD_TABLE = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTMFC_BAD_CONFIG = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTMFC_EPERM = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Queue operation failed code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPGQOFC_BAD_PORT = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPGQOFC_BAD_QUEUE = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPGQOFC_EPERM = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Switch configuration failed code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPSCFC_BAD_FLAGS = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPSCFC_BAD_LEN = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPSCFC_EPERM = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Role request failed code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPRRFC_STALE = 0</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPRRFC_UNSUP = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPRRFC_BAD_ROLE = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td><strong>Table features failed code</strong></td>
<td></td>
</tr>
<tr>
<td>OFPTFFC_BAD_TABLE = 0</td>
<td>Supported</td>
</tr>
<tr>
<td>OFPTFFC_BAD_METADATA = 1</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFFC_BAD_TYPE = 2</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFFC_BAD_LEN = 3</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFFC_BAD_ARGUMENT = 4</td>
<td>Not supported</td>
</tr>
<tr>
<td>OFPTFFC_EPERM = 5</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
OpenFlow use cases

OS10 OpenFlow protocol support allows the flexibility of using vendor-neutral applications and to use applications that you create. For example, the OS10 OpenFlow implementation supports L2 applications similar to the ones found in the following websites:

- https://github.com/osrg/ryu/tree/master/ryu/app (only L2 applications are supported)
- https://github.com/osrg/ryu/tree/master/ryu/app

**NOTE:** OS10 supports applications based on OpenFlow versions 1.0 and 1.3.

- **Switching loop removal**
  Consider the case of a single broadcast domain where switching loops are common. This issue occurs because of redundant paths in an L2 network.

  Switching loops create broadcast storms with broadcasts and multicasts being forwarded out of every switch port. Every switch in the network repeatedly re-broadcasts the messages and floods the entire network.

  To solve broadcast storms in an OpenFlow network, a centralized controller makes all the control plane decisions and manages the switches. The controller has the complete view of the topology, MAC address learning is centralized. OpenFlow identifies the correct path and forwards the packets to the relevant switch thereby avoiding switching loops.

- **Reactive flow installation**
  Consider the case of dynamic learning of flows for bidirectional traffic. Flows are learnt as and when a packet arrives.

  With dynamic learning in an OpenFlow network, the OpenFlow switch receives a packet that does not match the flow table entries and sends the packet to the SDN controller to process it. The controller identifies the path the packet has to traverse and updates the flow table with a new entry. The controller also decides the caching time of the flow table entries.

Configure OpenFlow

Ensure IP connectivity between the switch and the controller. When you convert the switch from Normal mode to OpenFlow mode, the switch retains the management, interface, and AAA settings.

The following example lists the minimum configuration needed to establish the connection between the OpenFlow controller and a logical switch instance.

1. Enter the OPENFLOW configuration mode.
   ```
 OS10# configure terminal
 OS10 (config)# openflow
 OS10 (config-openflow)#
   ```

2. Enable the OpenFlow-only mode.
   ```
 OS10 (config-openflow)# mode openflow-only
   ```
   The system prompts you to reload the switch. Enter yes to enable OpenFlow-only mode.

3. Configure a logical switch instance.
   a. Option 1; for OOB management:
      ```
 Configure an IP address for the management port. Ensure that there is IP connectivity between the switch and the controller.
 OS10# configure terminal
 OS10 (config)# interface management 1/1/1
 OS10 (config-if-ma-1/1/1)# ip address 11.1.1.1/24
 OS10 (config-if-ma-1/1/1)# no shutdown
 OS10 (config-if-ma-1/1/1)# exit
      ```

**NOTE:** When the switch starts up in OpenFlow mode, it disables all L2 and 3 protocols. Many CLI commands are not available when the switch is in OpenFlow-only mode. For a list of commands that are available in OpenFlow-only mode, see CLI commands available in the OpenFlow-only mode.
2 Configure the logical switch instance, `of-switch-1`.

```markdown
OS10# configure terminal
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
```

**Option 2:** for in-band management:

1 Configure one of the front-panel ports as the management port.

```markdown
OS10# configure terminal
OS10 (config)# openflow
OS10 (config-openflow)# in-band-mgmt interface ethernet 1/1/1
OS10 (config-openflow)#
```

2 Configure an IPv4 address on the front-panel management port.

```markdown
OS10# configure terminal
OS10 (config)# interface ethernet 1/1/1
OS10 (conf-if-eth1/1/1)# ip address 11.1.1.1/24
OS10 (conf-if-eth1/1/1)# no shutdown
```

3 Configure the logical switch instance, `of-switch-1`.

```markdown
OS10# configure terminal
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
```

4 Configure the OpenFlow controller to establish a connection with the logical switch instance.

```bash
OS10 (config-openflow-switch)# controller ipv4 ip-address port port-id
```

where `a.b.c.d` is the IP address of the controller and port 6633 is for OpenFlow communication.

5 Enter the `no shutdown` command to enable the logical switch instance.

```bash
OS10 (config-openflow-switch) no shutdown
```

### Establish TLS connection

- Generate the switch and controller certificates from a server that supports public-key infrastructure (PKI). You need the following certificates:
  - Controller certificate
  - Switch certificate
  - Private key file to verify the switch certificate
- The certificates and private key files must be in the Privacy-Enhanced Mail (PEM) format.

For certificate-based authentication, you must establish a TLS connection between the switch and the controller before you configure OpenFlow on the switch. The following procedure explains how to install the controller and switch certificates on the OS10 switch. Refer to the controller documentation for information on how to install the certificates on the controller.

**NOTE:** This procedure is optional. Use this procedure if you want to configure certificate-based authentication between the switch and the controller.

1 Log in to the OS10 switch with administrator credentials.
2 Enter the following command to copy the certificates to the OS10 switch.

In the following commands, the destination path and the destination file name on the OS10 switch, for example, `config://../openflow/cacert.pem`, remain the same in your deployment. Ensure that you enter the destination path and destination file names as specified in the following example:

```bash
OS10# copy scp://username:password@server-ip/full-path-to-the-certificates/controller-cert.pem config://../openflow/cacert.pem
OS10# copy scp://username:password@server-ip/full-path-to-the-certificates/switch-cert.pem config://../openflow/sc-cert.pem
OS10# copy scp://username:password@server-ip/full-path-to-the-certificates/switch-privkey.pem config://../openflow/sc-privkey.pem
```
where server-ip refers to the server where you have stored the certificates, and username and password refers to the credentials you need to access the server with the certificates.

3. Perform the steps described in the Configure OpenFlow protocol on the switch topic to configure OpenFlow.

**OpenFlow commands**

### controller

Configures an OpenFlow controller that the logical switch instance connects to.

**Syntax**

```plaintext
controller ipv4 ipv4-address [port port-number] [security {none|tls}]
```

**Parameters**

- `ipv4 ipv4-address`—Enter `ipv4`, then the IP address of the controller.
- `port port-number`—Enter the keyword, then the port number, from 1 to 65,535. The default port is 6653.
- `security {none|tls}`—Specify the type of connection. The default is `security none`. The TCP connection is used.

**Default**

TCP. The default port number is 6653.

**Command Mode**

OPENFLOW SWITCH CONFIGURATION

**Usage Information**

If you specify the `security tls` option, the OpenFlow application looks for the following certificates and private key in the following locations specified for certificate-based authentication. For information about obtaining certificates and installing them on the switch and the controller, see Establish TLS connection between the switch and the controller.

- `ca_cert` (certificate that identifies the controller as being trustworthy)
  ```plaintext
 /config/etc/opt/dell/os10/openflow/cacert.pem
  ```

- `certificate` (certificate that identifies the switch as being trustworthy)
  ```plaintext
 /config/etc/opt/dell/os10/openflow/sc-cert.pem
  ```

- `private key` (the private key corresponding to the switch certificate)
  ```plaintext
 /config/etc/opt/dell/os10/openflow/sc-privkey.pem
  ```

**Example**

The following example configures an OpenFlow controller with IP address 10.11.63.56 on port 6633 for the logical switch instance, of-switch-1.

```plaintext
OS10# configure terminal
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# controller ipv4 10.11.63.56 port 6633
OS10 (config-openflow-switch)#
```

**Supported Releases**

10.4.1 or later
**dpid-mac-address**

Specifies the MAC address bits of the datapath ID (DPID) of the logical switch instance.

**Syntax**

dpid-mac-address  MAC-address

**Parameters**


**Default**

MAC address

**Command Mode**

OPENFLOW SWITCH CONFIGURATION

**Usage Information**

The controller uses the DPID to identify the logical switch instance. The DPID is a 64-bit number that is sent to the controller in the features_reply message. The DPID is constructed from the instance ID, which is the most significant 16 bits (default to 0) and the DPID-MAC-ADDRESS, which is the least significant 48 bits. OS10 currently supports only one logical switch instance and the instance ID is automatically set to 0. This value is not configurable.

You can use this command to modify the MAC address bits of the DPID.

**Example**

DPID MAC address is 00:00:00:00:00:0a.

```
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# dpid-mac-address 00:00:00:00:00:0a
OS10 (config-openflow-switch)#
```

**Supported Releases**

10.4.1 or later

---

**in-band-mgmt**

Configures the front-panel ports as the management interface that the SDN controller connects to.

**Syntax**

in-band-mgmt interface ethernet node/slot/port[:subport]

**Parameters**

node/slot/port[:subport]—Enter the physical port information.

**Default**

None

**Command Mode**

OPENFLOW CONFIGURATION

**Usage Information**

Use this command to convert any one of the front-panel ports as the management interface. This port is not part of the OpenFlow logical switch instance. All the ports are L2 ports by default. If you configure one of the front-panel ports as the management interface, the port becomes an L3 port. You can configure an L3 IPv4 address only to the front-panel port that you have specified in this command. Ensure that you have IP connectivity between the specified port and the controller.

The no form of this command removes this configuration and the front-panel port becomes part of the OpenFlow logical switch instance.

**Example**

```
OS10# configure terminal
OS10(config)# openflow
```
Supported Releases 10.4.1 or later

**max-backoff**

Configures the time interval, in seconds, that the logical switch instance waits after requesting a connection with the OpenFlow controller.

**Syntax**

```
max-backoff interval
```

**Parameters**

`interval`—Enter the amount of time, in seconds, that the logical switch instance waits after it attempts to establish a connection with the OpenFlow controller, from 1 to 65,535.

**Default**

8 seconds

**Command Mode**

OPENFLOW SWITCH CONFIGURATION

**Usage Information**

If the interval time lapses, the logical switch instance re-attempts to establish a connection with the OpenFlow controller.

**Example**

```
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# max-backoff 25
OS10 (config-openflow-switch)#
```

Supported Releases 10.4.1 or later

**mode openflow-only**

Enables OpenFlow-only mode on the switch.

**Syntax**

```
mode openflow-only
```

**Parameters**

None

**Default**

None

**Command Mode**

OPENFLOW CONFIGURATION

**Usage Information**

Use this command to enable OpenFlow-only mode. This command reloads the switch and boots to OpenFlow-only mode. This command deletes all L2 and L3 configurations. However, the system management and AAA configurations are retained.

The `no` form of this command prompts you to reload the switch. If you enter `yes`, the switch deletes all OpenFlow configurations, including the controller IP, port, certificates, and reloads, then returns to the Normal mode.

**NOTE:** For a list of available commands when the switch is in the OpenFlow-only mode, see CLI commands available in the OpenFlow-only mode.

**Example**

```
OS10 (config-openflow)# mode openflow-only
OS10 (config-openflow)#
```

Supported Releases 10.4.1 or later
openflow

Enters OPENFLOW configuration mode.

**Syntax**
```
openflow
```

**Parameters**
None

**Default**
None

**Command Mode**
CONFIGURATION

**Usage Information**
All OpenFlow configurations are performed in this mode.

The `no` form of this command prompts a switch reload. If you enter `yes`, the system deletes all OpenFlow configurations and the switch returns to the normal mode after the reload.

**Example**
```
OS10# configure terminal
OS10(config)# openflow
OS10 (config-openflow)#
```

**Supported Releases**
10.4.1 or later

---

probe-interval

Configures the echo request interval, in seconds, for the controller configured with the logical switch instance.

**Syntax**
```
probe-interval interval
```

**Parameters**

- `interval`—Enter the amount of time, in seconds, between the keepalive messages, also known as echo requests, from 1 to 65,535.

**Default**
5 seconds

**Command Mode**
OPENFLOW SWITCH CONFIGURATION

**Usage Information**
None

**Example**
```
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# probe-interval 20
OS10 (config-openflow-switch)#
```

**Supported Releases**
10.4.1 or later

---

protocol-version

Specifies protocol version the logical switch interface uses.

**Syntax**
```
protocol-version version
```

**Parameters**

- `version`—Choose from one of the following:
- **negotiate**—Enter the keyword to negotiate versions 1.0 or 1.3 with the controller. The highest of the supported versions is selected.
- **1.0**—Specify the logical switch instance OpenFlow protocol version as 1.0.
- **1.3**—Specify the logical switch instance OpenFlow protocol version as 1.3.

**Default**

negotiate

**Command Mode**

OPENFLOW SWITCH CONFIGURATION

**Usage Information**

**NOTE:** Only use this command should be run when the logical switch instance is disabled. Use the `shutdown` command to disable the logical switch instance. After you run this command, enter the `no shutdown` command to enable the logical switch instance again.

- When you specify `negotiate`, the switch negotiates versions 1.0 and 1.3 and selects the highest of the versions supported by the controller. The negotiation is based on the hello handshake described in the OpenFlow Specification 1.3.
- When you specify `1.0`, the switch establishes a connection with the controller that supports version 1.0 only.
- When you specify `1.3`, the switch establishes a connection with the controller that supports version 1.3 only.

**Example**

The following example shows a logical switch instance, `of-switch-1`, configured to interact with controllers that support the OpenFlow protocol version 1.3.

```
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# shutdown
OS10 (config-openflow-switch)# protocol-version 1.3
OS10 (config-openflow-switch)# no shutdown
OS10 (config-openflow-switch)#
```

**Supported Releases**

10.4.1 or later

---

**rate-limit packet_in**

Configures the maximum packet rate for the controller connection, and the maximum packets permitted in a burst sent to the controller in a second.

**Syntax**

```
rate-limit packet_in controller-packet-rate [burst maximum-packets-to-controller]
```

**Parameters**

- **controller-packet-rate**—Rate in packets per second for the controller OpenFlow channel connection, from 100 to 268000000 seconds. The default is 0 seconds, disabled.
- **maximum-packets-to-controller**—Burst in packets for the controller OpenFlow channel connection, from 25 to 1073000. The default is 0 seconds, disabled. This parameter is optional. It is set to 25% of the configured rate value, if not configured.

**Default**

Disabled

**Command Mode**

OPENFLOW SWITCH CONFIGURATION

**Usage Information**

OpenFlow sets the specified rate and burst for the controller's connection with the logical switch instance. The actual rate and burst on the controller has a maximum of two times the configured values. For example, when you configure a rate of 1000 PPS and a burst of 300 packet bursts per second, the packets can egress on the connection at rates of up to 2000 PPS and 600 packet bursts per second.
The no form of this command disables rate limiting on the controller connection.

**NOTE:** This command is a software rate limiting command and applies only to the OpenFlow channel connection between the controller and the logical switch instance. This command is not related to the switch's data-plane rate limits.

### Example

The following example configures a logical switch instance, of-switch-1, with an OpenFlow controller at a rate of 1000 PPS and packet bursts of 300 packets.

```bash
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# controller ipv4 10.11.63.56 port 6633
OS10 (config-openflow-switch)# rate-limit packet_in 1000 burst 300
OS10 (config-openflow-switch)#
```

### Supported Releases

10.4.1 or later

### show openflow

Displays general OpenFlow switch and the logical switch instance information.

**Syntax**

```
show openflow
```

**Parameters**

None

**Default**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```bash
OS10# show openflow

Manufacturer : DELL
Hardware Description :
Software Description : Dell Networking OS10-Premium, Dell Networking
Application Software Version: 10.4.9999EX
Serial Number :
Capabilities : port, table, flow
Switch mode : openflow-only
Match fields :
Layer-1 : in-port
Layer-2 : eth-src, eth-dst, eth-type, vlan-id, vlan-pcp
Layer-3 : ipv4-src, ipv4-dst, ip-protocol, ip-dscp, ip-ecn
Layer-4 : tcp-src, tcp-dst, udp-src, udp-dst, icmpv4-type, icmpv4-code
Instructions : apply-actions, write-actions
Actions : output, set-field
Set field actions : eth-src, eth-dst, vlan-id, vlan-pcp, ip-dscp
TLS parameters : certificate identifying trustworthy controller : /config/etc/opt/dell/os10/openflow/cacert.pem
certificate identifying trustworthy switch : /config/etc/opt/dell/os10/openflow/sc-cert.pem
private key : /config/etc/opt/dell/os10/openflow/sc-privkey.pem
```

**Supported Releases**

10.4.1 or later
show openflow flows

Displays OpenFlow flows for a specific logical switch instance.

**Syntax**

```markdown
show openflow switch logical-switch-name flows
```

**Parameters**

- `logical-switch-name`—Enter the logical switch instance name to view flow information.

**Default**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```bash
OS10# show openflow switch of-switch-1 flows
Logical switch name: of-switch-1
Total flows: 1
Flow: 0
 Table ID: 0, Table: Ingress ACL TCAM table
 Flow ID: 0
 Priority: 32768, Cookie: 0
 Hard Timeout: 0, Idle Timeout: 0
 Packets: 0, Bytes: 0
 Match Parameters:
 In Port: ethernet1/1/1
 EType: 0x800
 SMAC: 00:0b:c4:a8:22:b0/ff:ff:ff:ff:ff:ff
 DMAC: 00:0b:c4:a8:22:b1/ff:ff:ff:ff:ff:ff
 VLAN id: 2/4095
 VLAN PCP: 1
 IP DSCP: 4
 IP ECN: 1
 IP Proto: 1
 Src Ip: 10.0.0.1/255.255.255.255
 Dst Ip: 20.0.0.1/255.255.255.255
 ICMPv4 Type: 1
 ICMPv4 Code: 10
 L4 Src Port: *
 L4 Dst Port: *
 Apply-Actions: Output= ethernet1/1/2, ethernet1/1/3:1
 Write-Actions: Drop
```

**Supported Releases**

10.4.1 or later

show openflow ports

Displays the OpenFlow ports for a specific logical switch instance.

**Syntax**

```markdown
show openflow switch logical-switch-name ports
```

**Parameters**

- `logical-switch-name`—Enter the name of the logical switch instance to view port information.

**Default**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```bash
OS10# show openflow switch of-switch-1 ports
Logical switch name: of-switch-1
```
<table>
<thead>
<tr>
<th>Interface Name</th>
<th>of-port ID</th>
<th>Config-State</th>
<th>Link-State</th>
<th>SPEED</th>
<th>DUPLEX</th>
<th>AUTONEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet1/1/1</td>
<td>1</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>40GB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/2</td>
<td>5</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>40GB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/3:1</td>
<td>9</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>10GB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/3:2</td>
<td>10</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/3:3</td>
<td>11</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/3:4</td>
<td>12</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/4</td>
<td>13</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>40GB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/5:1</td>
<td>17</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>10GB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/5:2</td>
<td>18</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/5:3</td>
<td>19</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/5:4</td>
<td>20</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/6</td>
<td>21</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/7</td>
<td>25</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/8</td>
<td>29</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/9</td>
<td>33</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/10</td>
<td>37</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/11</td>
<td>41</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>40GB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/12</td>
<td>45</td>
<td>PORT_UP (CLI)</td>
<td>LINK_UP</td>
<td>40GB</td>
<td>FD</td>
<td>YES</td>
</tr>
<tr>
<td>ethernet1/1/13</td>
<td>49</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/14</td>
<td>53</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/15</td>
<td>57</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/16</td>
<td>61</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/17</td>
<td>65</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/18</td>
<td>69</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/19</td>
<td>73</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/20</td>
<td>77</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/21</td>
<td>81</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/22</td>
<td>85</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/23</td>
<td>89</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/24</td>
<td>93</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/25</td>
<td>97</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/26</td>
<td>101</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/27</td>
<td>105</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
<tr>
<td>ethernet1/1/28</td>
<td>109</td>
<td>PORT_UP (CLI)</td>
<td>LINK_DOWN</td>
<td>0MB</td>
<td>FD</td>
<td>NO</td>
</tr>
</tbody>
</table>
Supported Releases 10.4.1 or later

show openflow switch

Displays OpenFlow parameters for the switch instance.

Syntax
show openflow switch

Parameters
None

Default
None

Command Mode EXEC

Usage Information
None

Example
OS10# show openflow switch
Logical switch name: of-switch-1
    Internal switch instance ID: 0
    Config state: true
    Signal Version: negotiate
    Data plane: secure
    Max backoff (sec): 8
    Probe Interval (sec): 5
    DPID: 90:bl:1c:f4:a5:23
    Switch Name : of-switch-1
    Number of buffers: 0
    Number of tables: 1
    Table ID: 0
    Table name: Ingress ACL TCAM table
    Max entries: 1000
    Active entries: 0
    Lookup count: 0
    Matched count: 0
    Controllers:
        10.16.208.150:6633, Protocol: none,
        packet-in Rate limit (packet per second): 0
        packet-in Burst limit: 0

Supported Releases 10.4.1 or later

show openflow switch controllers

Displays OpenFlow controllers for a specific logical switch instance.

Syntax
show openflow switch logical-switch-name controllers

Parameters
logical-switch-name—Enter the name of the logical switch instance to query.

Default
None
**switch**

Creates a logical switch instance or modifies an existing logical switch instance.

**Syntax**

```
switch logical-switch-name
```

**Parameters**

- `logical-switch-name`: Enter the name of the logical switch instance that you want to create or modify, a maximum of 15 characters. OS10 supports only one instance of the logical switch.

**Default**

None

**Command Mode**

OPENFLOW CONFIGURATION

**Usage Information**

You must configure a controller for the logical switch instance. The logical switch instance is disabled by default. To establish a connection with the controller, enable the logical switch instance using the `no shutdown` command. All physical and logical interfaces in the switch are assigned to the configured logical switch.

The `no` form of this command removes the logical switch instance.

**Example**

```
OS10# config terminal
OS10 (config)# openflow
OS10 (config-openflow)# switch of-switch-1
OS10 (config-openflow-switch)# no shutdown
```

**Supported Releases**

10.4.1 or later

---

**OpenFlow-only mode commands**

When you configure the switch to OpenFlow-only mode, only the following commands are available; all other commands are disabled.
NOTE:

- The `ntp` subcommand under the `interface` command is not applicable when the switch is in OpenFlow mode.
- The `ip` and `ipv6` subcommands under the `interface` command are applicable only when you configure the interface as the management port using the `in-band-mgmt` command.
- The `ip` and `ipv6` commands must be used only in In-Band mode (using the `in-band-mgmt` command).

Table 40. Modes and CLI commands

<table>
<thead>
<tr>
<th>Mode</th>
<th>Available CLI commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaa</td>
</tr>
<tr>
<td></td>
<td>alias</td>
</tr>
<tr>
<td></td>
<td>banner</td>
</tr>
<tr>
<td></td>
<td>class-map</td>
</tr>
<tr>
<td></td>
<td>clock</td>
</tr>
<tr>
<td></td>
<td>control-plane</td>
</tr>
<tr>
<td></td>
<td>crypto</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>eula-consent</td>
</tr>
<tr>
<td></td>
<td>exec-timeout</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>feature</td>
</tr>
<tr>
<td></td>
<td>help</td>
</tr>
<tr>
<td></td>
<td>host-description</td>
</tr>
<tr>
<td></td>
<td>hostname</td>
</tr>
<tr>
<td></td>
<td>interface</td>
</tr>
<tr>
<td></td>
<td>ip</td>
</tr>
<tr>
<td></td>
<td>• ip access-list</td>
</tr>
<tr>
<td></td>
<td>• ip route</td>
</tr>
<tr>
<td></td>
<td>• ip ssh</td>
</tr>
<tr>
<td></td>
<td>• ip telnet</td>
</tr>
<tr>
<td></td>
<td>ipv6</td>
</tr>
<tr>
<td></td>
<td>• ip access-list</td>
</tr>
<tr>
<td></td>
<td>line</td>
</tr>
<tr>
<td></td>
<td>logging</td>
</tr>
<tr>
<td></td>
<td>login</td>
</tr>
<tr>
<td></td>
<td>management</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>ntp</td>
</tr>
<tr>
<td></td>
<td>openflow</td>
</tr>
<tr>
<td></td>
<td>password-attributes</td>
</tr>
<tr>
<td></td>
<td>policy-map</td>
</tr>
</tbody>
</table>

OpenFlow
<table>
<thead>
<tr>
<th>Mode</th>
<th>Available CLI commands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>radius-server</td>
</tr>
<tr>
<td></td>
<td>rest</td>
</tr>
<tr>
<td></td>
<td>scale-profile</td>
</tr>
<tr>
<td></td>
<td>support-assist</td>
</tr>
<tr>
<td></td>
<td>system</td>
</tr>
<tr>
<td></td>
<td>tacacs-server</td>
</tr>
<tr>
<td></td>
<td>trust</td>
</tr>
<tr>
<td></td>
<td>username</td>
</tr>
<tr>
<td></td>
<td>userrole</td>
</tr>
<tr>
<td>EXEC</td>
<td>All commands</td>
</tr>
<tr>
<td></td>
<td>The following debug commands are not available:</td>
</tr>
<tr>
<td></td>
<td>• debug iscsi</td>
</tr>
<tr>
<td></td>
<td>• debug radius</td>
</tr>
<tr>
<td></td>
<td>• debug tacacs+</td>
</tr>
<tr>
<td>LAG INTERFACE CONFIGURATION</td>
<td>LAG is not supported.</td>
</tr>
<tr>
<td>LOOPBACK INTERFACE CONFIGURATION</td>
<td>Loopback interface is not supported.</td>
</tr>
<tr>
<td>INTERFACE CONFIGURATION</td>
<td>description</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>ip</td>
</tr>
<tr>
<td></td>
<td>mtu</td>
</tr>
<tr>
<td></td>
<td>negotiation</td>
</tr>
<tr>
<td></td>
<td>ntp</td>
</tr>
<tr>
<td></td>
<td>show</td>
</tr>
<tr>
<td></td>
<td>shutdown</td>
</tr>
<tr>
<td>VLAN INTERFACE CONFIGURATION</td>
<td>VLAN is not supported.</td>
</tr>
</tbody>
</table>
OS10 uses two types of access policies — hardware-based ACLs and software-based route-maps. Use an ACL to filter traffic and drop or forward matching packets. To redistribute routes that match configured criteria, use a route-map.

**ACLs**

ACLs are a filter containing criterion to match; for example, examine internet protocol (IP), transmission control protocol (TCP), or user datagram protocol (UDP) packets, and an action to take such as forwarding or dropping packets at the NPU. ACLs permit or deny traffic based on MAC and/or IP addresses. The number of ACL entries is hardware-dependent.

ACLs have only two actions — forward or drop. Route-maps not only permit or block redistributed routes but also modify information associated with the route when it is redistributed into another protocol. When a packet matches a filter, the device drops or forwards the packet based on the filter’s specified action. If the packet does not match any of the filters in the ACL, the packet drops, an implicit deny. ACL rules do not consume hardware resources until you apply the ACL to an interface.

ACLs process in sequence. If a packet does not match the criterion in the first filter, the second filter applies. If you configure multiple hardware-based ACLs, filter rules apply on the packet content based on the priority numeric processing unit (NPU) rule.

**Route maps**

Route-maps are software-based protocol filtering redistributing routes from one protocol to another and used in decision criterion in route advertisements. A route-map defines which of the routes from the specified routing protocol redistributes into the target routing process, see Route-maps.

Route-maps which have more than one match criterion, two or more matches within the same route-map sequence, have different match commands. Matching a packet against this criterion is an AND operation. If no match is found in a route-map sequence, the process moves to the next route-map sequence until a match is found, or until there are no more sequences. When a match is found, the packet forwards and no additional route-map sequences process. If you include a continue clause in the route-map sequence, the next route-map sequence also processes after a match is found.

The S5148F-ON switch has the following limitations:

- ACL counter does not support byte count.
- ACL rule does not look up the next header for IPv6 packets.
- Layer 2 (L2) Egress ACL does not work for unknown unicast traffic.
- L2 User ACL has a higher priority than the Layer 3 (L3) User ACL.
- You cannot modify or extend the hardware table for each ACL type.
- In IPv6 packets, only the protocol number of first header is matched.
- The egress Deny ACL entry does not block soft-forwarded packets and CPU-originated ICMP packets.

**IP ACLs**

An ACL filters packets based on the:

- IP protocol number
- Source and destination IP address
- Source and destination TCP port number
• Source and destination UDP port number

For ACL, TCP, and UDP filters, match criteria on specific TCP or UDP ports. For ACL TCP filters, you can also match criteria on established TCP sessions.

When creating an ACL, the sequence of the filters is important. You can assign sequence numbers to the filters as you enter them or OS10 can assign numbers in the order you create the filters. The sequence numbers display in the `show running-configuration` and `show ip access-lists [in | out]` command output.

Ingress and egress hot-lock ACLs allow you to append or delete new rules into an existing ACL without disrupting traffic flow. Existing entries in the content-addressable memory (CAM) shuffle to accommodate the new entries. Hot-lock ACLs are enabled by default and support ACLs on all platforms.

![NOTE: Hot-lock ACLs support ingress ACLs only.](image)

**MAC ACLs**

MAC ACLs filter traffic on the header of a packet. This traffic filtering is based on:

- **Source MAC packet address**: MAC address range—address mask in 3x4 dotted hexadecimal notation, and any to denote that the rule matches all source addresses.
- **Destination MAC packet address**: MAC address range—address-mask in 3x4 dotted hexadecimal notation, and any to denote that the rule matches all destination addresses.
- **Packet protocol**: Set by its EtherType field contents and assigned protocol number for all protocols.
- **VLAN ID**: Set in the packet header
- **Class of service**: Present in the packet header

IPv4/IPv6 and MAC ACLs apply separately for inbound and outbound packets. You can assign an interface to multiple ACLs, with a limit of one ACL per packet direction per ACL type.

**Control-plane ACLs**

OS10 offers control-plane ACLs to selectively restrict packets that are destined to the CPU port, thereby providing increased security. Control-plane ACLs offer:

- An option to protect the CPU from denial of service (DoS) attacks.
- Fine-grained control to allow or block traffic going to the CPU.

Control-plane ACLs apply on the front-panel and management ports. Control-plane ACLs are one of the following types:

- IP ACL
- IPv6 ACL
- MAC ACL

![NOTE: MAC ACL is applied only on packets that enter through the front-panel ports.](image)

There is no implicit deny rule. If none of the configured conditions match, the default behavior is to permit. If you need to deny traffic that does not match any of the configured conditions, explicitly configure a deny statement.

The control-plane ACL is mutually exclusive with VTY ACL, the management ACL. VTY ACL provides secure access for session connection protocols, such as SSH or TELNET; however, control-plane ACLs permit or deny any TCP or UDP, including SSH and TELNET sessions, from specific hosts and networks, and also filters both IPv4 and IPv6 traffic.

**Configure control-plane ACL**
To configure control-plane ACLs, use the existing ACL template and create the appropriate rules to permit or deny traffic as needed, similar to creating an access list for VTY ACLs. However, when you apply this control-plane ACL, you must apply it in CONTROL-PLANE mode instead of VTY mode. For example:

```
OS10# configure terminal
OS10(config)# control-plane
OS10(config-control-plane)# ip access-group acl_name in
```

where `acl_name` is the name of the control-plane ACL, a maximum of 140 characters.

**NOTE:** Apply control-plane ACLs on ingress traffic only.

## Control-plane ACL qualifiers

This section lists the supported control-plane ACL rule qualifiers.

**NOTE:** OS10 supports only the qualifiers listed below. Ensure that you use only these qualifiers in ACL rules.

- **IPv4 qualifiers:**
  - **DST_IP**—Destination IP address
  - **SRC_IP**—Source IP address
  - **IP_TYPE**—IP type
  - **IP_PROTOCOL**—Protocols such as TCP, UDP, and so on
  - **L4_DST_PORT**—Destination port number

- **IPv6 qualifiers:**
  - **DST_IPv6**—Destination address
  - **SRC_IPv6**—Source address
  - **IP_TYPE**—IP Type; for example, IPv4 or IPv6
  - **IP_PROTOCOL**—TCP, UDP, and so on
  - **L4_DST_PORT**—Destination port

- **MAC qualifiers:**
  - **OUT_PORT**—Egress CPU port
  - **SRC_MAC**—Source MAC address
  - **DST_MAC**—Destination MAC address
  - **ETHER_TYPE**—Ethertype
  - **OUTER_VLAN_ID**—VLAN ID
  - **IP_TYPE**—IP type
  - **OUTER_VLAN_PRI**—DOT1P value

## IP fragment handling

OS10 supports a configurable option to explicitly deny IP-fragmented packets, particularly for the second and subsequent packets. This option extends the existing ACL command syntax with the `fragments` keyword for all L3 rules:

- Second and subsequent fragments are allowed because you cannot apply a L3 rule to these fragments. If the packet is denied eventually, the first fragment must be denied and the packet as a whole cannot be reassembled.
- The system applies implicit permit for the second and subsequent fragment before the implicit deny.
- If you configure an explicit deny, the second and subsequent fragments do not hit the implicit permit rule for fragments.
**IP fragments ACL**

When a packet exceeds the maximum packet size, the packet is fragmented into a number of smaller packets that contain portions of the contents of the original packet. This packet flow begins with an initial packet that contains all of the L3 and Layer 4 (L4) header information contained in the original packet, and is followed by a number of packets that contain only the L3 header information.

This packet flow contains all of the information from the original packet distributed through packets that are small enough to avoid the maximum packet size limit. This provides a particular problem for ACL processing.

If the ACL filters based on L4 information, the non-initial packets within the fragmented packet flow will not match the L4 information, even if the original packet would have matched the filter. Because of this filtering, packets are not processed by the ACL.

The examples show denying second and subsequent fragments, and permitting all packets on an interface. These ACLs deny all second and subsequent fragments with destination IP 10.1.1.1, but permit the first fragment and non-fragmented packets with destination IP 10.1.1.1. The second example shows ACLs which permits all packets — both fragmented and non-fragmented — with destination IP 10.1.1.1.

**Deny second and subsequent fragments**

```
OS10(config)# ip access-list ABC
OS10(conf-ipv4-acl)# deny ip any 10.1.1.1/32 fragments
OS10(conf-ipv4-acl)# permit ip any 10.1.1.1/32
```

**Permit all packets on interface**

```
OS10(config)# ip access-list ABC
OS10(conf-ipv4-acl)# permit ip any 10.1.1.1/32
OS10(conf-ipv4-acl)# deny ip any 10.1.1.1/32 fragments
```

**L3 ACL rules**

Use ACL commands for L3 packet filtering. TCP packets from host 10.1.1.1 with the TCP destination port equal to 24 are permitted, and all others are denied.

TCP packets that are first fragments or non-fragmented from host 10.1.1.1 with the TCP destination port equal to 24 are permitted, and all TCP non-first fragments from host 10.1.1.1 are permitted. All other IP packets that are non-first fragments are denied.

**Permit ACL with L3 information only**

If a packet’s L3 information matches the information in the ACL, the packet's fragment offset (FO) is checked:

- If a packet's FO > 0, the packet is permitted
- If a packet's FO = 0, the next ACL entry processes

**Deny ACL with L3 information only**

If a packet's L3 information does not match the L3 information in the ACL, the packet's FO is checked:

- If a packet's FO > 0, the packet is denied
- If a packet's FO = 0, the next ACL line processes
Permit all packets from host

OS10(config)# ip access-list ABC
OS10(conf-ipv4-acl)# permit tcp host 10.1.1.1 any eq 24
OS10(conf-ipv4-acl)# deny ip any any fragment

Permit only first fragments and non-fragmented packets from host

OS10(config)# ip access-list ABC
OS10(conf-ipv4-acl)# permit tcp host 10.1.1.1 any eq 24
OS10(conf-ipv4-acl)# permit tcp host 10.1.1.1 any fragment
OS10(conf-ipv4-acl)# deny ip any any fragment

To log all packets denied and to override the implicit deny rule and the implicit permit rule for TCP/UDP fragments, use a similar configuration. When an ACL filters packets, it looks at the FO to determine whether it is a fragment:

- FO = 0 means it is either the first fragment or the packet is a non-fragment
- FO > 0 means it is the fragments of the original packet

Assign sequence number to filter

IP ACLs filter on source and destination IP addresses, IP host addresses, TCP addresses, TCP host addresses, UDP addresses, and UDP host addresses. Traffic passes through the filter by filter sequence. Configure the IP ACL by first entering IP ACCESS-LIST mode and then assigning a sequence number to the filter.

User-provided sequence number

- Enter IP ACCESS LIST mode by creating an IP ACL in CONFIGURATION mode.
  `ip access-list access-list-name`
- Configure a drop or forward filter in IPV4-ACL mode.
  `seq sequence-number {deny | permit | remark} {ip-protocol-number | icmp | ip | protocol | tcp | udp} {source prefix | source mask | any | host} {destination mask | any | host ip-address} [count [byte]] [fragments]`

Auto-generated sequence number

If you are creating an ACL with only one or two filters, you can let the system assign a sequence number based on the order you configure the filters. The system assigns sequence numbers to filters using multiples of ten values.

- Configure a deny or permit filter to examine IP packets in IPV4-ACL mode.
  `{deny | permit} {source mask | any | host ip-address} [count [byte]] [fragments]`
- Configure a deny or permit filter to examine TCP packets in IPV4-ACL mode.
  `{deny | permit} tcp {source mask | any | host ip-address} [count [byte]] [fragments]`
- Configure a deny or permit filter to examine UDP packets in IPV4-ACL mode.
  `{deny | permit} udp {source mask | any | host ip-address} [count [byte]] [fragments]`
Assign sequence number to filter

OS10(config)# ip access-list acl1
OS10(conf-ipv4-acl)# seq 5 deny tcp any any capture session 1 count

View ACLs and packets processed through ACL

OS10# show ip access-lists in
Ingress IP access-list acl1
Active on interfaces:
  ethernet1/1/5
  seq 5 permit ip any any count (10000 packets)

Delete ACL rule

Before release 10.4.2, deleting ACL rules required a sequence number.

After release 10.4.2 or later, you can also delete ACL rules using the no form of the CLI command without using a sequence number.

While deleting ACL rules, the following conditions apply:

- Enter the exact no form of the CLI command. Each ACL rule is an independent entity. For example, the rule, deny ip any any is different from deny ip any any count.

  For example, if you configured the following rules:

  ```
 deny ip 1.1.1.1/24 2.2.2.2/24
 deny ip any any
  ```

  Using the no deny ip any any command deletes only the deny ip any any rule.

  To delete the deny ip 1.1.1.1/24 2.2.2.2/24 rule, you must explicitly use the no deny ip 1.1.1.1/24 2.2.2.2/24 command.

  **NOTE:** Wildcard option is not supported.

- You can no longer configure the same ACL rule multiple times using different sequence numbers. This option prevents duplicate rules from being entered in the system and taking up memory space.

- When you upgrade from a previous release to release 10.4.2 or later, the upgrade procedure removes all duplicate ACL rules and only one instance of an ACL rule remains in the system.

L2 and L3 ACLs

Configure both L2 and L3 ACLs on an interface in L2 mode. Rules apply if you use both L2 and L3 ACLs on an interface.

- L3 ACL filters packets and then the L2 ACL filters packets
- Egress L3 ACL filters packets

Rules apply in order:

- Ingress L3 ACL
- Ingress L2 ACL
- Egress L3 ACL
- Egress L2 ACL

**NOTE:** In ingress ACLs, L2 has a higher priority than L3 and in egress ACLs, L3 has a higher priority than L2.
### Table 41. L2 and L3 targeted traffic

<table>
<thead>
<tr>
<th>L2 ACL / L3 ACL</th>
<th>Targeted traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deny / Deny</td>
<td>L3 ACL denies</td>
</tr>
<tr>
<td>Deny / Permit</td>
<td>L3 ACL permits</td>
</tr>
<tr>
<td>Permit / Deny</td>
<td>L3 ACL denies</td>
</tr>
<tr>
<td>Permit / Permit</td>
<td>L3 ACL permits</td>
</tr>
</tbody>
</table>

### Assign and apply ACL filters

To filter an Ethernet interface, a port-channel interface, or a VLAN, assign an IP ACL filter to a physical interface. The IP ACL applies to all traffic entering a physical or port-channel interface. The traffic either forwards or drops depending on the criteria and actions you configure in the ACL filter.

To change the ACL filter functionality, apply the same ACL filters to different interfaces. For example, take ACL “ABCD” and apply it using the in keyword and it becomes an ingress ACL. If you apply the same ACL filter using the out keyword, it becomes an egress ACL.

You can apply an IP ACL filter to a physical or port-channel interface. The number of ACL filters allowed is hardware-dependent.

1. Enter the interface information in CONFIGURATION mode.
   ```
 interface ethernet node/slot/port
   ```
2. Configure an IP address for the interface, placing it in L3 mode in INTERFACE mode.
   ```
 ip address ip-address
   ```
3. Apply an IP ACL filter to traffic entering or exiting an interface in INTERFACE mode.
   ```
 ip access-group access-list-name {in | out}
   ```

#### Configure IP ACL

```bash
OS10(config)# interface ethernet 1/1/28
OS10(conf-if-eth1/1/28)# ip address 10.1.2.0/24
OS10(conf-if-eth1/1/28)# ip access-group abcd in
```

#### View ACL filters applied to interface

```bash
OS10# show ip access-lists in
Active on interfaces:
 ethernet1/1/28
seq 10 permit ip host 10.1.1.1 host 100.1.1.1 count (0 packets)
seq 20 deny ip host 20.1.1.1 host 200.1.1.1 count (0 packets)
seq 30 permit ip 10.1.2.0/24 100.1.2.0/24 count (0 packets)
seq 40 deny ip 20.1.2.0/24 200.1.2.0/24 count (0 packets)
seq 50 permit ip 10.0.3.0 255.0.255.0 any count (0 packets)
seq 60 deny ip 20.0.3.0 255.0.255.0 any count (0 packets)
seq 70 permit tcp any eq 1000 100.1.4.0/24 eq 1001 count (0 packets)
seq 80 deny tcp any eq 2100 200.1.4.0/24 eq 2200 count (0 packets)
seq 90 permit udp 10.1.5.0/28 eq 10000 any eq 10100 count (0 packets)
seq 100 deny tcp host 20.1.5.1 any rst psh count (0 packets)
seq 110 permit tcp any any fin syn rst psh ack urg count (0 packets)
seq 120 deny icmp 20.1.6.0/24 any fragment count (0 packets)
seq 130 permit 150 any any dscp 63 count (0 packets)
```

To view the number of packets matching the ACL, use the **count** option when creating ACL entries.

- Create an ACL that uses rules with the count option, see [Assign sequence number to filter](#).
Apply the ACL as an inbound or outbound ACL on an interface in CONFIGURATION mode, and view the number of packets matching the ACL.

```
show ip access-list {in | out}
```

### Ingress ACL filters

To create an ingress ACL filter, use the `ip access-group` command in EXEC mode. To configure ingress, use the `in` keyword. Apply rules to the ACL with the `ip access-list acl-name` command. To view the access-list, use the `show access-lists` command.

1. Apply an ingress access-list on the interface in INTERFACE mode.
   ```
 ip access-group access-group-name in
   ```
2. Return to CONFIGURATION mode.
   ```
 exit
   ```
3. Create the access-list in CONFIGURATION mode.
   ```
 ip access-list access-list-name
   ```
4. Create the rules for the access-list in ACCESS-LIST mode.
   ```
 permit ip host ip-address host ip-address count
   ```

### Apply ACL rules to access-group and view access-list

```
OS10(config)# interface ethernet 1/1/28
OS10(conf-if-eth1/1/28)# ip access-group abcd in
OS10(conf-if-eth1/1/28)# exit
OS10(config)# ip access-list acl1
OS10(conf-ipv4-acl)# permit ip host 10.1.1.1 host 100.1.1.1 count
```  

### Egress ACL filters

Egress ACL filters affect the traffic leaving the network. Configuring egress ACL filters onto physical interfaces protects the system infrastructure from a malicious and intentional attack by explicitly allowing only authorized traffic. These system-wide ACL filters eliminate the need to apply ACL filters onto each interface.

You can use an egress ACL filter to restrict egress traffic. For example, when you isolate denial of service (DoS) attack traffic to a specific interface, and apply an egress ACL filter to block the DoS flow from exiting the network, you protect downstream devices.

1. Apply an egress access-list on the interface in INTERFACE mode.
   ```
 ip access-group access-group-name out
   ```
2. Return to CONFIGURATION mode.
   ```
 exit
   ```
3. Create the access-list in CONFIGURATION mode.
   ```
 ip access-list access-list-name
   ```
4. Create the rules for the access-list in ACCESS-LIST mode.
   ```
 seq 10 deny ip any any count fragment
   ```

### Apply rules to ACL filter

```
OS10(config)# interface ethernet 1/1/29
OS10(conf-if-eth1/1/29)# ip access-group egress out
OS10(conf-if-eth1/1/29)# exit
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 10 deny ip any any count fragment
```  

### View IP ACL filter configuration

```
OS10# show ip access-lists out
Egress IP access-list abcd
Active on interfaces :
```
Clear access-list counters

Clear IPv4, IPv6, or MAC access-list counters for a specific access-list or all lists. The counter counts the number of packets that match each permit or deny statement in an access-list. To get a more recent count of packets matching an access-list, clear the counters to start at zero. If you do not configure an access-list name, all IP access-list counters clear.

To view access-list information, use the `show access-lists` command.

- Clear IPv4 access-list counters in EXEC mode.
  
  ```
 clear ip access-list counters access-list-name
  ```

- Clear IPv6 access-list counters in EXEC mode.
  
  ```
 clear ipv6 access-list counters access-list-name
  ```

- Clear MAC access-list counters in EXEC mode.
  
  ```
 clear mac access-list counters access-list-name
  ```

IP prefix-lists

IP prefix-lists control the routing policy. An IP prefix-list is a series of sequential filters that contain a matching criterion and an permit or deny action to process routes. The filters process in sequence so that if a route prefix does not match the criterion in the first filter, the second filter applies, and so on.

A route prefix is an IP address pattern that matches on bits within the IP address. The format of a route prefix is `A.B.C.D/x`, where `A.B.C.D` is a dotted-decimal address and `/x` is the number of bits that match the dotted decimal address.

When the route prefix matches a filter, the system drops or forwards the packet based on the filter’s designated action. If the route prefix does not match any of the filters in the prefix-list, the route drops, an implicit deny.

For example, in `112.24.0.0/16`, the first 16 bits of the address `112.24.0.0` match all addresses between `112.24.0.0` to `112.24.255.255`. Use permit or deny filters for specific routes with the `le` (less or equal) and `ge` (greater or equal) parameters, where `x.x.x.x/x` represents a route prefix:

- To deny only `/8` prefixes, enter `deny x.x.x.x/x ge 8 le 8`
- To permit routes with the mask greater than `/8` but less than `/12`, enter `permit x.x.x.x/x ge 8 le 12`
- To deny routes with a mask less than `/24`, enter `deny x.x.x.x/x le 24`
- To permit routes with a mask greater than `/20`, enter `permit x.x.x.x/x ge 20`

The following rules apply to prefix-lists:

- A prefix-list without permit or deny filters allows all routes
- An implicit deny is assumed — the route drops for all route prefixes that do not match a permit or deny filter
- After a route matches a filter, the filter’s action applies and no additional filters apply to the route

Use prefix-lists in processing routes for routing protocols such as open shortest path first (OSPF), route table manager (RTM), and border gateway protocol (BGP).

To configure a prefix-list, use commands in `PREFIX-LIST` and `ROUTER-BGP` modes. Create the prefix-list in `PREFIX-LIST` mode and assign that list to commands in `ROUTER-BGP` modes.
Route-maps

Route-maps are a series of commands that contain a matching criterion and action. They change the packets meeting the matching criterion. ACLs and prefix-lists can only drop or forward the packet or traffic while route-maps process routes for route redistribution. For example, use a route-map to filter only specific routes and to add a metric.

- Route-maps also have an implicit deny. Unlike ACLs and prefix-lists where the packet or traffic drops, if a route does not match the route-map conditions, the route does not redistribute.
- Route-maps process routes for route redistribution. For example, to add a metric, a route-map can filter only specific routes. If the route does not match the conditions, the route-map decides where the packet or traffic drops. The route does not redistribute if it does not match.
- Route-maps use commands to decide what to do with traffic. To remove the match criteria in a route-map, use the no match command.
- In a BGP route-map, if you repeat the same match statements; for example, a match metric, with different values in the same sequence number, only the last match and set values are taken into account.

Configure match metric

OS10(config)# route-map hello
OS10(conf-route-map)# match metric 20

View route-map

OS10(conf-route-map)# do show route-map
route-map hello, permit, sequence 10
  Match clauses:
    metric 20

Change match

OS10(conf-route-map)# match metric 30

View updated route-map

OS10(conf-route-map)# do show route-map
route-map hello, permit, sequence 10
  Match clauses:
    metric 30

To filter the routes for redistribution, combine route-maps and IP prefix lists. If the route or packet matches the configured criteria, OS10 processes the route based on the permit or deny configuration of the prefix list.

When a route-map and a prefix list combine:

- For a route map with the permit action:
  - If a route matches a prefix-list set to deny, the route is denied
  - If a route matches a prefix-list set to permit, the route is permitted and any set of actions apply
- For a route map with the deny action:
  - If a route matches a prefix-list set to deny, the route is denied
  - If a route matches a prefix-list set to permit, the route is permitted and any set of actions apply

View both IP prefix-list and route-map configuration

OS10(conf-router-bgp-neighbor-af)# do show ip prefix-list
ip prefix-list p1:
  seq 1 deny 10.1.1.0/24
  seq 10 permit 0.0.0.0/0 le 32
ip prefix-list p2:
  seq 1 permit 10.1.1.0/24
  seq 10 permit 0.0.0.0/0 le 32
View route-map configuration

OS10(conf-router-bgp-neighbor-af)# do show route-map
route-map test1, deny, sequence 10
Match clauses:
ip address prefix-list p1
Set clauses:
route-map test2, permit, sequence 10
Match clauses:
ip address prefix-list p1
Set clauses:
route-map test3, deny, sequence 10
Match clauses:
ip address prefix-list p2
Set clauses:
route-map test4, permit, sequence 10
Match clauses:
ip address prefix-list p2
Set clauses:

Match routes

Configure match criterion for a route-map. There is no limit to the number of match commands per route map, but keep the number of match filters in a route-map low. The set commands do not require a corresponding match command.

- Match routes with a specific metric value in ROUTE-MAP mode, from 0 to 4294967295.
  ```
 match metric metric-value
  ```
- Match routes with a specific tag in ROUTE-MAP mode, from 0 to 4294967295.
  ```
 match tag tag-value
  ```
- Match routes whose next hop is a specific interface in ROUTE-MAP mode.
  ```
 match interface interface
 - ethernet — Enter the Ethernet interface information.
 - port-channel — Enter the port-channel number.
 - vlan — Enter the VLAN ID number.
  ```

Check match routes

OS10(config)# route-map test permit 1
OS10(conf-route-map)# match tag 250000
OS10(conf-route-map)# set weight 100

Set conditions

There is no limit to the number of set commands per route map, but keep the number of set filters in a route-map low. The set commands do not require a corresponding match command.

- Enter the IP address in A.B.C.D format of the next-hop for a BGP route update in ROUTE-MAP mode.
  ```
 set ip next-hop address
  ```
- Enter an IPv6 address in A:B format of the next-hop for a BGP route update in ROUTE-MAP mode.
  ```
 set ipv6 next-hop address
  ```
- Enter the range value for the BGP route’s LOCAL_PREF attribute in ROUTE-MAP mode, from 0 to 4294967295.
  ```
 set local-preference range-value
  ```
- Enter a metric value for redistributed routes in ROUTE-MAP mode, from 0 to 4294967295.
  ```
 set metric {+ | - | metric-value}
  ```
- Enter an OSPF type for redistributed routes in ROUTE-MAP mode.
  ```
 set metric-type {type-1 | type-2 | external | internal}
  ```
• Enter an ORIGIN attribute in ROUTE-MAP mode.
  
  `set origin {egp | igp | incomplete}`

• Enter a tag value for the redistributed routes in ROUTE-MAP mode, from 0 to 4294967295.
  
  `set tag tag-value`

• Enter a value as the route’s weight in ROUTE-MAP mode, from 0 to 65535.
  
  `set weight value`

**Check set conditions**

```bash
OS10(config)# route-map ip permit 1
OS10(conf-route-map)# match metric 2567
```

## Continue clause

Only BGP route-maps support the `continue` clause. When a match is found, `set` clauses run and the packet forwards — no route-map processing occurs. If you configure the `continue` clause without configuring a module, the next sequential module processes.

If you configure the `continue` command at the end of a module, the next module processes even after a match is found. The example shows a `continue` clause at the end of a route-map module — if a match is found in the route-map `test` module 10, module 30 processes.

**Route-map continue clause**

```bash
OS10(config)# route-map test permit 10
OS10(conf-route-map)# continue 30
```

## ACL flow-based monitoring

Flow-based monitoring conserves bandwidth by selecting only the required flow to mirror instead of mirroring entire packets from an interface. This feature is available for L2 and L3 ingress traffic. Specify flow-based monitoring using ACL rules. Flow-based monitoring copies incoming packets that match the ACL rules applied on the ingress port and forwards, or mirrors them to another port. The source port is the monitored port (MD), and the destination port is the monitoring port (MG).

When a packet arrives at a monitored port, the packet validates against the configured ACL rules. If the packet matches an ACL rule, the system examines the corresponding flow processor and performs the action specified for that port. If the mirroring action is set in the flow processor entry, the port details are sent to the destination port.

## Flow-based mirroring

Flow-based mirroring is a mirroring session in which traffic matches specified policies that mirrors to a destination port. Port-based mirroring maintains a database that contains all monitoring sessions, including port monitor sessions. The database has information regarding the sessions that are enabled or not enabled for flow-based monitoring. Flow-based mirroring is also known as policy-based mirroring.

To enable flow-based mirroring, use the `flow-based enable` command. Traffic with particular flows that traverse through the ingress interfaces are examined. Appropriate ACL rules apply in the ingress direction. By default, flow-based mirroring is not enabled.

To enable evaluation and replication of traffic traversing to the destination port, configure the monitor option using the `permit`, `deny`, or `seq` commands for ACLs assigned to the source or the monitored port (MD). Enter the keywords `capture session session-id` with the `seq`, `permit`, or `deny` command for the ACL rules to allow or drop IPv4, IPv6, ARP, UDP, EtherType, ICMP, and TCP packets.

**IPV4-ACL mode**

```bash
seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte]] [fragments] [threshold-in msgs count] [capture session session-id]
```
If you configure the `flow-based enable` command and do not apply an ACL on the source port or the monitored port, both flow-based monitoring and port mirroring do not function. Flow-based monitoring is supported only for ingress traffic.

The `show monitor session session-id` command displays output that indicates if a particular session is enabled for flow-monitoring.

**View flow-based monitoring**

```plaintext
OS10# show monitor session 1
S.Id Source Destination Dir SrcIP DstIP DSCP TTL State Reason
--
1 ethernet1/1/1 ethernet1/1/4 both N/A N/A N/A N/A true Is UP
```

Traffic matching ACL rule

```plaintext
OS10# show ip access-lists in
Ingress IP access-list testflow
Active on interfaces :
 ethernet1/1/1
 seq 5 permit icmp any any capture session 1
 seq 10 permit ip 102.1.1.0/24 any capture session 1
 seq 15 deny udp any any capture session 2
 seq 20 deny tcp any any capture session 3
```

**Enable flow-based monitoring**

Flow-based monitoring conserves bandwidth by mirroring only specified traffic, rather than all traffic on an interface. It is available for L2 and L3 ingress and egress traffic. Configure traffic to monitor using ACL filters.

1. Create a monitor session in MONITOR-SESSION mode.
   ```plaintext
 monitor session session-number type local
   ```

2. Enable flow-based monitoring for the mirroring session in MONITOR-SESSION mode.
   ```plaintext
 flow-based enable
   ```

3. Define ACL rules that include the keywords `capture session session-id` in CONFIGURATION mode. The system only considers port monitoring traffic that matches rules with the keywords `capture session`.
   ```plaintext
 ip access-list
   ```

4. Apply the ACL to the monitored port in INTERFACE mode.
   ```plaintext
 ip access-group access-list
   ```

**Enable flow-based monitoring**

```plaintext
OS10(config)# monitor session 1 type local
OS10(conf-mon-local-1)# flow-based enable
OS10(config)# ip access-list testflow
OS10(config-ipv4-acl)# seq 5 permit icmp any any capture session 1
OS10(config-ipv4-acl)# seq 10 permit ip 102.1.1.0/24 any capture session 1
OS10(config-ipv4-acl)# seq 15 deny udp any any capture session 2
OS10(config-ipv4-acl)# seq 20 deny tcp any any capture session 3
OS10(config-ipv4-acl)# exit
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# ip access-group testflow in
OS10(conf-if-eth1/1/1)# no shutdown
```

**View access-list configuration**

```plaintext
OS10# show ip access-lists in
Ingress IP access-list testflow
Active on interfaces :
 ethernet1/1/1
 seq 5 permit icmp any any capture session 1
 seq 10 permit ip 102.1.1.0/24 any capture session 1
 seq 15 deny udp any any capture session 2
 seq 20 deny tcp any any capture session 3
```
ACL table profiles

Ternary content-addressable memory (TCAM) space used for ACL rules is a limited ASIC hardware resource. The ACL table profiles feature allows you to manage the TCAM space depending on the feature that you deploy. You can increase the memory space allocated for features that require more ACL rules and decrease the memory space allocated for features that use a lesser number of ACL rules. Using this feature, your switch can support up to 2048 IPv4 or IPv6 user ACL entries.

**NOTE:** OS10 supports the ACL table profiles feature starting from release 10.4.2.1. This feature is supported only on the S5148F-ON platform.

The ACL table space is divided into six slices, of 512 entries each, corresponding to the six application groups. Out of the six slices, five are allocated for ingress application groups that are configurable, and one slice is allocated for egress application group that is fixed and not configurable. The application groups and features mapped to them are fixed and are not configurable.

The application groups are predefined and are mapped to a set of features. The following table lists the different application groups, the stage (ingress or egress), the features mapped to the application groups, the default number of pools, the minimum number of pools that you must maintain for each of the application groups, and the maximum number of pools supported by the different application groups.

The following terms are used in this section:

- **Pool**—The hardware space or slice allocated for an application group is called a pool. There are a total of 6 pools; 5 for ingress application groups and 1 for egress application group.
  - **Hardware pool**—Refers to the amount of hardware space allocated for an application group.
  - **Service pool**—Refers to the amount of ACL table space used by each of the features within a hardware pool. The system creates the service pool when you configure a feature for the first time. For example, when you add L2 QOS ACLs, the system creates a service pool for L2 QOS ACLs within ingress application group 2 (app-group-2).
- **Entry**—An entry refers to a single row in a pool. The amount of space required to store a single ACL rule in a pool depends on the key width of the TCAM slice. For example, on an S5148F-ON platform, a single ACL rule takes up more than one row in the pool.
- **Application group**—The features that share a single hardware pool are grouped into an application group. By default, each application group is allocated one pool.

<table>
<thead>
<tr>
<th>Application Group</th>
<th>Stage</th>
<th>Feature(s)</th>
<th>Default number of pools</th>
<th>Minimum number of pools required</th>
<th>Maximum number of pools supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>app-group-1</td>
<td>ingress</td>
<td>SYSTEM-FLOW, VLT, L2-USER-ACL</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>app-group-2</td>
<td>ingress</td>
<td>L2-QOS-ACL</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>app-group-3</td>
<td>ingress</td>
<td>IPV4-USER-ACL, IPV6-USER-ACL</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>app-group-4</td>
<td>ingress</td>
<td>ISCSI-SNOOOPING-ACL, IPV4-PBR-ACL, IPV6-PBR-ACL</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>app-group-5</td>
<td>ingress</td>
<td>IPV4-QOS-ACL, IPV6-QOS-ACL, ISCSI-COS-ACL</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>app-group-1</td>
<td>egress</td>
<td>L2-EGR-USER-ACL, IPV4-EGR-USER-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
You can create a user-defined ACL table profile that defines the application groups you need and the number of hardware pools you wish to allocate for those application groups. This profile-based approach assumes that not all features are used at the same time. You can even allocate all the ACL hardware pools to ingress application group 1, or app-group-1.

The `ingress app-group` command allows you to specify the amount of space you wish to allocate for the different features within a particular application group. You can choose to share the space among the various features in the group, or reserve a certain percentage of space for each of the features in the group.

**Important Notes**

- The system flow entries are added to the hardware through the system-flow ACL table (ingress app-group-1). This group is mandatory and by default is assigned one pool. You can configure the size of this group, from 1 to 5 pools.
- You can configure the size of ACL tables for ingress application groups 2 to 5 based on your requirements, from 0 to 4 pools.
- There is only one hardware pool supported for egress in the S5148F-ON platform. Hence, egress app-group-1 is mandatory and is not configurable.
- Before you reduce the size of an ACL table for an application group, be sure to run the `show acl-table-usage details` command to determine the current utilization and then configure the ACL table size for the different application groups accordingly.
- You might need to delete some of the existing ACL rules in order to reduce the utilization of the slice associated with the application group, if you plan to reduce its size.
- After you apply the ACL table profile, be sure to save the configuration and reload the switch. The new profile takes effect only after the system reboots.
- Do not add new ACL rules after you change the ACL table profile and before you reload the switch.

## Configure ACL table profile

You can configure ACL table space for the five ingress application groups. Before you configure the ACL table space, run the `show acl-table-usage detail` command to view the current utilization.

1. Create an ACL table profile.
   ```
 OS10(config)# configure terminal
 OS10(config)# acl-table-profile V4-USER-SCALE
 OS10(config-acl-table-profile)#
   ```

2. Define the number of hardware pools for the application groups and the amount of space for the features within the application group. There are a total of 5 pools, corresponding to the five application groups.

   ```
 OS10(config-acl-table-profile)# ingress app-group-1 pool-count 2 L2-USER-ACL shared VLT-ACL max 50
 OS10(config-acl-table-profile)# ingress app-group-3 pool-count 3 IPv4-USER-ACL shared IPV6-USER-ACL shared
   ```

**NOTE:** Ingress app-group-1 is mandatory and is assigned one hardware pool by default. You can increase the number of pools for ingress app-group-1, if needed. You must explicitly configure the number of pools for ingress application groups 2 to 5. In this example, app-group-2, app-group-4, and app-group-5 are not configured. In this case, the system does not allocate any space for the respective ACL tables (L2-QOS-ACL, ISCSI-SNOOP-ACL, IPv4-QOS-ACL, etc). Instead, the hardware space gets allocated to app-group-1 and app-group-3.

Using the `shared` keyword implies that you do not explicitly reserve space for the features that share the same group. Instead, the ACL rules are allocated space in the pool on a first come-first serve basis. For example, when you configure app-group-3 and choose to share the pool space between the IPv4-USER-ACL and IPv6-USER-ACL features, the pool space could be shared between the two features, or used up by either IPv4-USER-ACLs or IPv6-USER-ACLs, depending on whichever entries are added first.
3. Apply the newly-created ACL table profile to the switch.

   OS10(config)# hardware acl-table-profile V4-USER-SCALE

   The system prompts you to save and reload the switch.

4. Save the configuration and reload the switch for the changes to take effect.

   OS10# write memory
   OS10# reload

   After the switch reloads, the user-defined profile that you created earlier replaces the default ACL table profile.

5. Verify the configuration changes using the `show acl-table-profile` command. This command displays the current and next-boot ACL table profile configurations.

   OS10# show acl-table-profile

---

**View ACL table utilization report**

The `show acl-table-usage detail` command shows the ingress and egress ACL tables for the various features and their utilization.

The hardware pool area displays the ingress application groups (pools), the features mapped to each of these groups, and the amount of used and free space available in each of the pools. The amount of space required to store a single ACL rule in a pool depends on the keywidth of the TCAM slice.

The service pool displays the amount of used and free space for each of the features. The number of ACL rules configured for a feature is displayed in the configured rules column. The number of used rows depends on the number of ports the configured rules are applied on. Under Allocated pools, you can view the percentage of dedicated space reserved for a particular feature or the phrase Shared if you have not reserved space for each of the features individually, against the total number of pools allocated for the application group. In the example given below, the SYSTEM_FLOW feature has 15 percentage of space reserved in ingress app-group-1 with a pool count of 1, which is represented by 15:1.

OS10# show acl-table-usage detail

Ingress ACL utilization
Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
</tr>
<tr>
<td>1024</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
</tr>
<tr>
<td>1</td>
<td>USER_IPV4_ACL</td>
<td>3</td>
<td>1021</td>
</tr>
<tr>
<td>1024</td>
<td>USER_L2_ACL</td>
<td>2</td>
<td>1022</td>
</tr>
<tr>
<td>2</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>512</td>
<td>FCOE</td>
<td>55</td>
<td>457</td>
</tr>
<tr>
<td>512</td>
<td>ISCSI_SNOOPING</td>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td>512</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
</tr>
<tr>
<td>512</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
</tr>
</tbody>
</table>

---

Access Control Lists  707
Known behavior

- On the S4200-ON platform, the `show acl-table-usage detail` command output lists several hardware pools as available (FREE), but you will see an "ACL CAM table full" warning log when the system creates a new service pool. The system will not be able to create any new service pools. The existing groups, however, can continue to grow up to the maximum available pool space.

- On the S4200-ON platform, the `show acl-table usage detail` command output lists all the available hardware pools under Ingress ACL utilization table and none under the Egress ACL utilization table. The system allocates pool space for Egress ACL table only when you configure Egress ACLs. You can run the `show acl-table-usage detail` command again to view pool space allocated under Egress ACL utilization table as well.
On S52xx-ON, Z91xx-ON, Z92xx-ON platforms, the number of Configured Rules listed under Service Pools for each of the features is the number of ACLs multiplied by the number of ports on which they are applied. This number is cumulative. You can view the Used rows and Free rows that indicate the actual amount of space that is utilized and available in the hardware.

ACL commands

**acl-table-profile**

Creates a user-defined ACL table profile.

**Syntax**

```
_acl-table-profile profile-name
```

**Parameters**

- `profile-name` — Enter the name of the ACL table profile, a maximum of 32 characters.

**Default**

By default, the system allocates one pool for each of the five ingress application groups, and one pool for the egress application group. The default allocation is given below. The default allocation is fixed and you cannot modify it. To change the ACL table space allocation, create a user-defined ACL table profile and apply it on the switch.

**Default ACL table profile**

<table>
<thead>
<tr>
<th>App Group</th>
<th>Apps</th>
<th>Pools Allocated</th>
<th>Entries Allocation in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>USER_L2_ACL</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>VLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L2_QOS</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV4_ACL</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>USER_IPV6_ACL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ISCSI_SNOOPING</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>PBR_V4</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>PBR_V6</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td>5</td>
<td>L3_QOS</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>L3_IPV6_QOS</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>ISCSI_COS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Command Mode**

CONFIG

**Usage Information**

Use this command to create an ACL table profile for TCAM carving. After you create and apply the ACL table profile, be sure to run the **write memory** and **reload** commands for the changes to take effect. The **no** form of the command deletes the ACL table profile.

**Example**

```bash
OS10(config)# configure terminal
OS10(config)# acl-table-profile V4-USER-SCALE
OS10(config-acl-table-profile)#
```

**Supported Releases**

10.4.2.1 and later
clear ip access-list counters

Clears ACL counters for a specific access-list.

**Syntax**
```
clear ip access-list counters [access-list-name]
```

**Parameters**
- `access-list-name` — (Optional) Enter the name of the IP access-list to clear counters. A maximum of 140 characters.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
If you do not enter an access-list name, all IPv6 access-list counters clear. The counter counts the number of packets that match each permit or deny statement in an access-list. To get a more recent count of packets matching an access list, clear the counters to start at zero. To view access-list information, use the `show access-lists` command.

**Example**
```
OS10# clear ip access-list counters
```

**Supported Releases**
10.2.0E or later

---

clear ipv6 access-list counters

Clears IPv6 access-list counters for a specific access-list.

**Syntax**
```
clear ipv6 access-list counters [access-list-name]
```

**Parameters**
- `access-list-name` — (Optional) Enter the name of the IPv6 access-list to clear counters. A maximum of 140 characters.

**Default**
Not configured

**Command Mode**
EXEC

**Usage Information**
If you do not enter an access-list name, all IPv6 access-list counters clear. The counter counts the number of packets that match each permit or deny statement in an access-list. To get a more recent count of packets matching an access list, clear the counters to start at zero. To view access-list information, use the `show access-lists` command.

**Example**
```
OS10# clear ipv6 access-list counters
```

**Supported Releases**
10.2.0E or later

---

clear mac access-list counters

Clears counters for a specific or all MAC access lists.

**Syntax**
```
clear mac access-list counters [access-list-name]
```

**Parameters**
- `access-list-name` — (Optional) Enter the name of the MAC access list to clear counters. A maximum of 140 characters.

**Default**
Not configured

**Command Mode**
EXEC
Usage Information
If you do not enter an access-list name, all MAC access-list counters clear. The counter counts the number of packets that match each permit or deny statement in an access list. To get a more recent count of packets matching an access list, clear the counters to start at zero. To view access-list information, use the `show access-lists` command.

Example
OS10# clear mac access-list counters

Supported Releases
10.2.0E or later

deny

Configures a filter to drop packets with a specific IP address.

Syntax
deny [protocol-number | icmp | ip | tcp | udp] [A.B.C.D | A.B.C.D/x | any | host ip-address] [A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]

Parameters
• protocol-number — (Optional) Enter the protocol number identified in the IP header, from 0 to 255.
• icmp — (Optional) Enter the ICMP address to deny.
• ip — (Optional) Enter the IP address to deny.
• tcp — (Optional) Enter the TCP address to deny.
• udp — (Optional) Enter the UDP address to deny.
• A.B.C.D — Enter the IP address in dotted decimal format.
• A.B.C.D/x — Enter the number of bits to match to the dotted decimal address.
• any — (Optional) Enter the filter type to subject routes to.
  • capture — (Optional) Capture packets the filter processes.
  • dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  • fragment — (Optional) Use ACLs to control packet fragments.
• host ip-address — (Optional) Enter the keyword and the IP address to use a host address only.

Default
Not configured

Command Mode
IPV4-ACL

Usage Information
The `no` version of this command removes the filter.

Example
OS10(config)# ip access-list testflow
OS10(config-ipv4-acl)# deny udp any any

Supported Releases
10.2.0E or later
deny (IPv6)

Configures a filter to drop packets with a specific IPv6 address.

Syntax
deny [protocol-number | icmp | ipv6 | tcp | udp] [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]

Parameters
• protocol-number — (Optional) Enter the protocol number identified in the IP header, from 0 to 255.
- **icmp** — (Optional) Enter the ICMP address to deny.
- **ipv6** — (Optional) Enter the IPv6 address to deny.
- **tcp** — (Optional) Enter the TCP address to deny.
- **udp** — (Optional) Enter the UDP address to deny.
- **A::B** — Enter the IPv6 address in dotted decimal format.
- **A::B/x** — Enter the number of bits to match to the IPv6 address.
- **any** — (Optional) Enter so that all routes are subject to the filter:
  - **capture** — (Optional) Capture packets the filter processes.
  - **dscp value** — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - **fragment** — (Optional) Use ACLs to control packet fragments.
- **host ipv6-address** — (Optional) Enter the keyword and the IPv6 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV6-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**
```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# deny ipv6 any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

### deny (MAC)

Configures a filter to drop packets with a specific MAC address.

**Syntax**
```
deny {nn:nn:nn:nn:nn:nn [00:00:00:00:00:00] | any} {nn:nn:nn:nn:nn:nn [00:00:00:00:00:00] | any} [protocol-number | capture | cos | vlan]
```

**Parameters**
- **nn:nn:nn:nn:nn:nn** — Enter the MAC address of the network from or to which the packets are sent.
- **00:00:00:00:00:00** — (Optional) Enter which bits in the MAC address must match. If you do not enter a mask, a mask of 00:00:00:00:00:00 applies.
- **any** — (Optional) Set routes which are subject to the filter.
- **protocol-number** — (Optional) MAC protocol number identified in the header, from 600 to ffff.
- **capture** — (Optional) Capture packets the filter processes.
- **cos** — (Optional) CoS value, from 0 to 7.
- **vlan** — (Optional) VLAN number, from 1 to 4093.

**Default**
Disabled

**Command Mode**
MAC-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**
```
OS10(config)# mac access-list macacl
OS10(conf-mac-acl)# deny any any cos 7
OS10(conf-mac-acl)# deny any any vlan 2
```
deny icmp

Configures a filter to drop all or specific Internet Control Message Protocol (ICMP) messages.

Syntax

```
deny icmp [A.B.C.D | A.B.C.D/x | any | host ip-address] [A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

Parameters

- A.B.C.D — Enter the IP address in hexadecimal format separated by colons.
- A.B.C.D/x — Enter the number of bits to match to the IP address.
- any — (Optional) Set all routes subject to the filter.
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ip-address — (Optional) Enter the IP address to use a host address only.

Default
Not configured

Command Mode
IPV4-ACL

Usage Information
The no version of this command removes the filter.

Example
```
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# deny icmp any any capture session 1
```

Supported Releases
10.2.0E or later

deny icmp (IPv6)

Configures a filter to drop all or specific ICMP messages.

Syntax

```
deny icmp [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

Parameters

- A::B — Enter the IPv6 address in hexadecimal format separated by colons.
- A::B/x — Enter the number of bits to match to the IPv6 address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ipv6-address — (Optional) Enter the IPv6 address to use a host address only.

Default
Not configured

Command Mode
IPV6-ACL

Usage Information
The no version of this command removes the filter.

Example
```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# deny icmp any any capture session 1
```

Supported Releases
10.2.0E or later
deny ip

Configures a filter to drop all or specific packets from an IPv4 address.

**Syntax**

```
deny ip [A.B.C.D | A.B.C.D/x | any | host ip-address] [[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

**Parameters**

- A.B.C.D — Enter the IPv4 address in dotted decimal format.
- A.B.C.D/x — Enter the number of bits to match to the dotted decimal address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ip-address — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The `no` version of this command removes the filter.

**Example**

```
OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# deny ip any any capture session 1 count
```

**Supported Releases**
10.2.0E or later

deny ipv6

Configures a filter to drop all or specific packets from an IPv6 address.

**Syntax**

```
deny ipv6 [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp | fragment]
```

**Parameters**

- A::B — (Optional) Enter the source IPv6 address from which the packet was sent and the destination address.
- A::B/x — (Optional) Enter the source network mask in /prefix format (/x) and the destination mask.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ipv6-address — (Optional) Enter the IPv6 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV6-ACL

**Usage Information**
The `no` version of this command removes the filter.

**Example**

```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# deny ipv6 any any capture session 1
```
**deny tcp**

Configures a filter that drops Transmission Control Protocol (TCP) packets meeting the filter criteria.

**Syntax**

deny tcp [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]

**Parameters**

- **A.B.C.D** — Enter the IPv4 address in A.B.C.D format.
- **A.B.C.D/x** — Enter the number of bits to match in A.B.C.D/x format.
- **any** — (Optional) Enter to subject all routes to the filter:
  - **capture** — (Optional) Capture packets the filter processes.
  - **dscp value** — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - **fragment** — (Optional) Use ACLs to control packet fragments.
  - **ack** — (Optional) Set the bit as acknowledgement.
  - **fin** — (Optional) Set the bit as finish—no more data from sender.
  - **psh** — (Optional) Set the bit as push.
  - **rst** — (Optional) Set the bit as reset.
  - **syn** — (Optional) Set the bit as synchronize.
  - **urg** — (Optional) Set the bit as urgent.
- **operator** — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - **eq** — Equal to
  - **gt** — Greater than
  - **lt** — Lesser than
  - **neq** — Not equal to
  - **range** — Range of ports, including the specified port numbers.
- **host ip-address** — (Optional) Enter the keyword and the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The **no** version of this command removes the filter.

**Example**

OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# deny tcp any any capture session 1

**Supported Releases**

10.2.0E or later

---

**deny tcp (IPv6)**

Configures a filter that drops TCP IPv6 packets meeting the filter criteria.

**Syntax**

deny tcp [A::B | A::B/x | any | host ipv6-address [operator]] [[A::B | A::B/x | any | host ipv6-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
**Parameters**

- **A::B** — Enter the IPv6 address in hexadecimal format separated by colons.
- **A::B/x** — Enter the number of bits to match to the IPv6 address.
- **any** — (Optional) Set all routes which are subject to the filter.
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- **operator** — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - eq — Equal to
  - gt — Greater than
  - lt — Lesser than
  - neq — Not equal to
  - range — Range of ports, including the specified port numbers.
- **host ipv6-address** — (Optional) Enter the IPv6 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV6-ACL

**Usage Information**

The **no** version of this command removes the filter.

**Example**

```plaintext
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# deny tcp any any capture session 1
```

**Supported Releases**

10.2.0E or later

---

**deny udp**

Configures a filter to drop User Datagram Protocol (UDP) packets meeting the filter criteria.

**Syntax**

```plaintext
deny udp [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- **A.B.C.D** — Enter the IPv4 address in dotted decimal format.
- **A.B.C.D/x** — Enter the number of bits to match to the dotted decimal address.
- **any** — (Optional) Set all routes which are subject to the filter.
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
  - ack — (Optional) Set the bit as acknowledgement.
  - fin — (Optional) Set the bit as finish—no more data from sender.
  - psh — (Optional) Set the bit as push.
  - rst — (Optional) Set the bit as reset.
  - syn — (Optional) Set the bit as synchronize.
  - urg — (Optional) Set the bit as urgent.
- **operator** — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - eq — Equal to
deny udp (IPv6)

Configures a filter to drop UDP IPv6 packets that match filter criteria.

**Syntax**

```
deny udp [A::B | A::B/x | any | host ipv6-address [operator]] [A::B | A::B/x | any | host ipv6-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits to match to the IPv6 address.
- `any` — (Optional) Enter for all routes to be subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgement.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ipv6-address` — (Optional) Enter the keyword and the IPv6 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV6-ACL

**Usage Information**

The no version of this command removes the filter.
**description**

Configures an ACL description.

**Syntax**

description text

**Parameters**
text — Enter the description text string. A maximum of 80 characters.

**Default**
Disabled

**Command Modes**
IPV4-ACL, IPV6-ACL, MAC-ACL

**Usage Information**
The no version of this command deletes the ACL description.

**Example**

```
OS10(conf-ipv4-acl)# description ipacltest
```

**Supported Releases**
10.2.0E or later

---

**hardware acl-table-profile**

Applies the user-defined ACL table profile to the switch.

**Syntax**

hardware acl-table-profile profile-name

**Parameters**
profile-name — Enter the name of the user-defined ACL table profile, a maximum of 32 characters.

**Default**
By default, the system allocates one pool for each of the five ingress application groups. The default allocation is given below.

**Default ACL table profile**

<table>
<thead>
<tr>
<th>App Group</th>
<th>Apps</th>
<th>Pools Allocated</th>
<th>Entries Allocation in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USER_L2_ACL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L2_QOS</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV4_ACL</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>USER_IPV6_ACL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ISCSI_SNOOPING</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>PBR_V4</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>PBR_V6</td>
<td></td>
<td>Shared</td>
</tr>
<tr>
<td>5</td>
<td>L3_QOS</td>
<td>1</td>
<td>Shared</td>
</tr>
<tr>
<td></td>
<td>L3_IPV6_QOS</td>
<td></td>
<td>Shared</td>
</tr>
</tbody>
</table>
Command Mode

**CONFIG**

Usage Information

After you run this command, enter the `write memory` and `reload` commands to save the changes and to reboot the switch.

The `no` form of this command removes the user-defined profile and applies the default ACL table profile to the switch. Again, you must run the `write memory` and `reload` commands for the changes to take effect.

Example

```
OS10(config)# hardware acl-table-profile V4-USER-Scale
OS10(config)# exit
OS10# write memory
OS10# reload
```

Supported Releases 10.4.2.1 and later

**ingress app-group**

Defines the number of hardware pools for each of the application groups, and the amount of space to be reserved for each of the features within the application group.

**Syntax**

- `ingress app-group-1 pool-count count [L2-USER-ACL shared]`
- `ingress app-group-2 pool-count count [L2-QOS-ACL shared]`
- `ingress app-group-3 pool-count count [IPV4-USER-ACL {shared | max {reserved percentage}} IPV6-USER-ACL {shared | max {reserved percentage}}]`
- `ingress app-group-4 pool-count count [ISCSI-SNOOP-ACL {max {reserved percentage}} IPV4-PBR-ACL {shared | max {reserved percentage}} IPV6-PBR-ACL {shared | max {reserved percentage}}]`
- `ingress app-group-5 pool-count count [IPV4-QOS-ACL {max {reserved percentage}} IPV6-QOS-ACL {shared | max {reserved percentage}} ISCSI-COS-ACL {max {reserved percentage}}]`

**Parameters**

- `count` — Number of hardware pools you want to allocate for the particular application group:
  - app-group-1 — from 1 to 5
  - app-group-2 — from 0 to 4
  - app-group-3 — from 0 to 4
  - app-group-4 — from 0 to 4
  - app-group-5 — from 0 to 4
- `shared` — Enter the `shared` keyword if you want the ACL table space to be shared among the features within the application group.
  Using the `shared` keyword implies that you do not explicitly reserve space for the features that share the same group. Instead, the ACL rules are allocated space in the pool on a first come-first serve basis. For example, when you configure `app-group-3` and choose to share the pool space between the `IPv4-USER-ACL` and `IPv6-USER-ACL` features, the pool space could be shared between the two features, or used up by either `IPv4-USER-ACLs` or `IPv6-USER-ACLs`, depending on whichever entries are added first.
- `max` — Enter the `max` keyword and specify the percentage of dedicated space that you want to allocate for each of the features within the application group.
- `reserved percentage` — Enter percentage in multiples of five.
By default, the ingress app-group-1 in the ACL table profile has one pool count allocated to it. You can choose to increase this pool count, if needed, from 2 to 5. If you do not explicitly configure ingress app-group-1, the system by default allocates one pool to it. From the pool space allocated to ingress app-group-1, the system reserves space for 64 ACL entries for system-flow and 8 ACL entries for VLT features. You cannot override the default reservations for system-flow and VLT features.

For app-group-4, if you allocate only the pool count and do not specify the amount of space for the various features, the system by default reserves space for 296 ACL entries for the iSCSI-SNOOP-ACL feature. Similarly, when you allocate only the pool count for app-group-5 and do not specify the amount of space for the features within this group, the system by default reserves space for 40 ACL entries for the iSCSI-COS-ACL feature. You can choose to override the default reservations by configuring the percentage of space for the iSCSI-SNOOP-ACL and iSCSI-COS-ACL features.

<table>
<thead>
<tr>
<th>ACL table</th>
<th>Max reserved usage (number of ACL entries allowed) or Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4-EGR-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>V4-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>V4-PBR</td>
<td>Shared</td>
</tr>
<tr>
<td>V4-QOS</td>
<td>Shared</td>
</tr>
<tr>
<td>V6-EGR-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>V6-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>V6-PBR</td>
<td>Shared</td>
</tr>
<tr>
<td>V6-QOS</td>
<td>Shared</td>
</tr>
<tr>
<td>iSCSI-COS</td>
<td>40</td>
</tr>
<tr>
<td>iSCSI Snooping</td>
<td>296</td>
</tr>
<tr>
<td>L2-QOS</td>
<td>Shared</td>
</tr>
<tr>
<td>L2-EGR-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>L2-USER</td>
<td>Shared</td>
</tr>
<tr>
<td>system-flow</td>
<td>64</td>
</tr>
<tr>
<td>VLT</td>
<td>8</td>
</tr>
</tbody>
</table>

**Command Mode**

`CONFIG-ACL-TABLE-PROFILE`

**Usage Information**

- **app-group-1** — Minimum of 1 pool; maximum of 5 pools
- **app-group-2** — Optional; maximum of 4 pools
- **app-group-3** — Optional; maximum of 4 pools
- **app-group-4** — Optional; maximum of 4 pools
- **app-group-5** — Optional; maximum of 4 pools

**Example**

In the following example, ingress app-group-1 is not configured. However, by default, ingress app-group-1 has one pool allocated to it. The app-group-3 and app-group-4 have three and one pools allocated respectively.

```
OS10# configure terminal
OS10(config)# acl-table-profile V4-USER-SCALE
OS10(config-acl-table-profile)# ingress app-group-3 pool-count 3 IPV4-USER-ACL
```
ip access-group

Configures an IPv4 access group.

Syntax

    ip access-group access-list-name {in | out}

Parameters

- access-list-name — Enter the name of an IPv4 access list. A maximum of 140 characters.
- in — Apply the ACL to incoming traffic.
- out — Apply the ACL to outgoing traffic.

Default

Not configured

Command Mode

INTERFACE

Usage Information

Use this command in the INTERFACE mode to apply a control-plane ACL. Control-plane ACLs are only applied on the ingress traffic. By default, the control-plane ACL is applied to the front-panel ports as well as the management port. The no version of this command deletes the IPv4 ACL configuration.

Example

    OS10(config-if-eth1/1/8)# ip access-group testgroup in

Example (Control-plane ACL)

    OS10# configure terminal
    OS10(config)# control-plane
    OS10(config-control-plane)# ip access-group aaa-cp-acl in

Supported Releases

10.2.0E or later; 10.4.1 or later (control-plane ACL)

ip access-list

Creates an IP access list to filter based on an IP address.

Syntax

    ip access-list access-list-name

Parameters

- access-list-name — Enter the name of an IPv4 access list. A maximum of 140 characters.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

None

Example

    OS10(config)# ip access-list acl1

Supported Releases

10.2.0E or later
**ip as-path access-list**

Create an AS-path ACL filter for BGP routes using a regular expression.

| Syntax             | `ip as-path access-list name {deny | permit} regexp-string` |
|--------------------|-------------------------------------------------------------|
| Parameters         | • `name` — Enter an access list name.                      |
|                    | • `deny | permit` — Reject or accept a matching route.        |
|                    | • `regexp-string` — Enter a regular expression string to match an AS-path route attribute. |

<table>
<thead>
<tr>
<th>Defaults</th>
<th>Not configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Mode</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>Usage Information</td>
<td>You can specify an access-list filter on inbound and outbound BGP routes. The ACL filter consists of regular expressions. If a regular expression matches an AS path attribute in a BGP route, the route is rejected or accepted. The AS path does not contain the local AS number. The <strong>no</strong> version of this command removes a single access list entry if you specify <strong>deny</strong> and a <strong>regexp</strong>. Otherwise, the entire access list is removed. The question mark (?) character is not supported in the regular expressions. All other special characters are supported. When you are using backslash() or double quotes (&quot;) in the regular expression, precede these characters with backslash(). For example, enter <code>\</code> or <code>&quot;</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>OS10(config)# ip as-path access-list abc deny 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Release</td>
<td>10.3.0E or later</td>
</tr>
</tbody>
</table>

**ip community-list standard deny**

Creates a standard community list for BGP to deny access.

| Syntax             | `ip community-list standard name deny (aa:nn | no-advertise | local-AS | no-export | internet)` |
|--------------------|-------------------------------------------------------------|
| Parameters         | • `name` — Enter the name of the standard community list used to identify one more deny groups of communities. |
|                    | • `aa:nn` — Enter the community number in the format `aa:nn`, where `aa` is the number that identifies the autonomous system and `nn` is a number the identifies the community within the autonomous system. |
|                    | • `no-advertise` — BGP does not advertise this route to any internal or external peer. |
|                    | • `local-AS` — BGP does not advertise this route to external peers. |
|                    | • `no-export` — BGP does not advertise this route outside a BGP confederation boundary. |
|                    | • `internet` — BGP does not advertise this route to an Internet community. |

<table>
<thead>
<tr>
<th>Defaults</th>
<th>Not configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Mode</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>Usage Information</td>
<td>The <strong>no</strong> version of this command removes the community list.</td>
</tr>
<tr>
<td>Example</td>
<td>OS10(config)# ip community-list standard STD_LIST deny local-AS</td>
</tr>
</tbody>
</table>
**Supported Release**  10.3.0E or later

### ip community-list standard permit

Creates a standard community list for BGP to permit access.

**Syntax**

```
ip community-list standard name permit {aa:nn | no-advertise | local-as | no-export | internet}
```

**Parameters**

- **name** — Enter the name of the standard community list used to identify one or more deny groups of communities.
- **aa:nn** — Enter the community number in the format aa:nn, where aa is the number that identifies the autonomous system and nn is a number the identifies the community within the autonomous system.
- **no-advertise** — BGP does not advertise this route to any internal or external peer.
- **local-as** — BGP does not advertise this route to external peers.
- **no-export** — BGP does not advertise this route outside a BGP confederation boundary
- **internet** — BGP does not advertise this route to an Internet community.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the community list.

**Example**

```
OS10(config)# ip community-list standard STD_LIST permit local-AS
```

**Supported Release**  10.3.0E or later

### ip extcommunity-list standard deny

Creates an extended community list for BGP to deny access.

**Syntax**

```
ip extcommunity-list standard name deny {4byteas-generic | rt | soo}
```

**Parameters**

- **name** — Enter the name of the community list used to identify one or more deny groups of extended communities.
- **4byteas-generic**—Enter the generic extended community then the keyword transitive or non-transitive.
- **rt** — Enter the route target.
- **soo** — Enter the route origin or site-of-origin.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the extended community list.

**Example**

```
OS10(config)# ip extcommunity-list standard STD_LIST deny 4byteas-generic transitive 1.65534:40
```

**Supported Release**  10.3.0E or later
ip extcommunity-list standard permit

Creates an extended community list for BGP to permit access.

**Syntax**
```
ip extcommunity-list standard name permit {4byteas-generic | rt | soo}
```

**Parameters**
- `name` — Enter the name of the community list used to identify one or more permit groups of extended communities.
- `rt` — Enter the route target.
- `soo` — Enter the route origin or site-of-origin.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The `no` version of this command removes the extended community list.

**Example**
```
OS10(config)# ip extcommunity-list standard STD_LIST permit 4byteas-generic transitive 1.65412:60
```

**Supported Release**
10.3.0E or later

ip prefix-list description

Configures a description of an IP prefix list.

**Syntax**
```
ip prefix-list name description
```

**Parameters**
- `name` — Enter the name of the prefix list.
- `description` — Enter the description for the named prefix list.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The `no` version of this command removes the specified prefix list.

**Example**
```
OS10(config)# ip prefix-list TEST description TEST_LIST
```

**Supported Release**
10.3.0E or later

ip prefix-list deny

Creates a prefix list to deny route filtering from a specified network address.

**Syntax**
```
ip prefix-list name deny [A.B.C.D/x [ge | le]] prefix-len
```

**Parameters**
- `name` — Enter the name of the prefix list.
- `A.B.C.D/x` — (Optional) Enter the source network address and mask in /prefix format (/x).
- `ge` — Enter to indicate the network address is greater than or equal to the range specified.
• le — Enter to indicate the network address is less than or equal to the range specified.
• prefix-len — Enter the prefix length.

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command removes the specified prefix-list.

Example
OS10(config)# ip prefix-list denyprefix deny 10.10.10.2/16 le 30

Supported Release
10.3.0E or later

**ip prefix-list permit**

Creates a prefix-list to permit route filtering from a specified network address.

Syntax
ip prefix-list name permit [A.B.C.D/x [ge | le]] prefix-len

Parameters
• name — Enter the name of the prefix list.
• A.B.C.D/x — (Optional) Enter the source network address and mask in /prefix format (/x).
• ge — Enter to indicate the network address is greater than or equal to the range specified.
• le — Enter to indicate the network address is less than or equal to the range specified.
• prefix-len — Enter the prefix length.

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command removes the specified prefix-list.

Example
OS10(config)# ip prefix-list allowprefix permit 10.10.10.1/16 ge 10

Supported Release
10.3.0E or later

**ip prefix-list seq deny**

Configures a filter to deny route filtering from a specified prefix list.

Syntax
ip prefix-list name seq num deny {A.B.C.D/x [ge | le] prefix-len

Parameters
• name — Enter the name of the prefix list.
• num — Enter the sequence list number.
• A.B.C.D/x — Enter the source network address and mask in /prefix format (/x).
• ge — Enter to indicate the network address is greater than or equal to the range specified.
• le — Enter to indicate the network address is less than or equal to the range specified.
• prefix-len — Enter the prefix length.

Defaults
Not configured

Command Mode
CONFIGURATION
Usage Information
The `no` version of this command removes the specified prefix list.

Example
```
OS10(config)# ip prefix-list seqprefix seq 65535 deny 10.10.10.1/16 ge 10
```

Supported Release
10.3.0E or later

**ip prefix-list seq permit**

Configures a filter to permit route filtering from a specified prefix list.

**Syntax**
```
ipv6 prefix-list [name] seq num permit A::B/x [ge | le} prefix-len
```

**Parameters**
- `name` — Enter the name of the prefix list.
- `num` — Enter the sequence list number.
- `A::B/x` — Enter the source network address and mask in /prefix format (/x).
- `ge` — Enter to indicate the network address is greater than or equal to the range specified.
- `le` — Enter to indicate the network address is less than or equal to the range specified.
- `prefix-len` — Enter the prefix length.

**Defaults**
Not configured

**Command Mode**
CONFIGURATION

**Usage Information**
The `no` version of this command removes the specified prefix list.

**Example**
```
OS10(config)# ip prefix-list seqprefix seq 65535 permit 10.10.10.1/16 le 30
```

**Supported Release**
10.3.0E or later

**ipv6 access-group**

Configures an IPv6 access group.

**Syntax**
```
ipv6 access-group access-list-name {in | out}
```

**Parameters**
- `access-list-name` — Enter the name of an IPv6 ACL. A maximum of 140 characters.
- `in` — Apply the ACL to incoming traffic.
- `out` — Apply the ACL to outgoing traffic.

**Default**
Not configured

**Command Mode**
INTERFACE

**CONTROL-PLANE**

**Usage Information**
Use this command in the CONTROL-PLANE mode to apply a control-plane ACL. Control-plane ACLs are only applied on the ingress traffic. By default, the control-plane ACL is applied to the front-panel ports as well as the management port. The `no` version of this command deletes an IPv6 ACL configuration.

**Example**
```
OS10(conf-if-eth1/1/8)# ipv6 access-group test6 in
```
ipv6 access-list

Creates an IP access list to filter based on an IPv6 address.

Syntax
ipv6 access-list access-list-name

Parameters
access-list-name — Enter the name of an IPv6 access list. A maximum of 140 characters.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
None

Example
OS10(config)# ipv6 access-list acl6

Supported Release
10.2.0E or later

ipv6 prefix-list deny

Creates a prefix list to deny route filtering from a specified IPv6 network address.

Syntax
ipv6 prefix-list prefix-list-name deny {A::B/x [ge | le] prefix-len}

Parameters
• prefix-list-name — Enter the IPv6 prefix list name.
• A::B/x — Enter the IPv6 address to deny.
• ge — Enter to indicate the network address is greater than or equal to the range specified.
• le — Enter to indicate the network address is less than or equal to the range specified.
• prefix-len — Enter the prefix length.

Defaults
Not configured

Command Mode
CONFIGURATION

Usage Information
The no version of this command removes the specified prefix list.

Example
OS10(config)# ipv6 prefix-list TEST deny AB10::1/128 ge 10 le 30

Supported Release
10.3.0E or later

ipv6 prefix-list description

Configures a description of an IPv6 prefix-list.

Syntax
ipv6 prefix-list name description

Parameters
• name — Enter the name of the IPv6 prefix-list.
**ipv6 prefix-list permit**

Creates a prefix-list to permit route filtering from a specified IPv6 network address.

**Syntax**

```
ipv6 prefix-list prefix-list-name permit {A::B/x [ge | le] prefix-len}
```

**Parameters**

- `prefix-list-name` — Enter the IPv6 prefix-list name.
- `A::B/x` — Enter the IPv6 address to permit.
- `ge` — Enter to indicate the network address is greater than or equal to the range specified.
- `le` — Enter to indicate the network address is less than or equal to the range specified.
- `prefix-len` — Enter the prefix length.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the specified prefix-list.

**Example**

```
OS10(config)# ipv6 prefix-list TEST permit AB20::1/128 ge 10 le 30
```

**Supported Release**

10.3.0E or later

---

**ipv6 prefix-list seq deny**

Configures a filter to deny route filtering from a specified prefix-list.

**Syntax**

```
ipv6 prefix-list [name] seq num deny {A::B/x [ge | le] prefix-len}
```

**Parameters**

- `name` — (Optional) Enter the name of the IPv6 prefix-list.
- `num` — Enter the sequence number of the specified IPv6 prefix-list.
- `A::B/x` — Enter the IPv6 address and mask in /prefix format (/x).
- `ge` — Enter to indicate the network address is greater than or equal to the range specified.
- `le` — Enter to indicate the network address is less than or equal to the range specified.
- `prefix-len` — Enter the prefix length.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the specified prefix-list.
**ipv6 prefix-list seq permit**

Configures a filter to permit route filtering from a specified prefix-list.

**Syntax**

```
ipv6 prefix-list [name] seq num permit A::B/x [ge | le} prefix-len
```

**Parameters**

- **name** — (Optional) Enter the name of the IPv6 prefix-list.
- **num** — Enter the sequence number of the specified IPv6 prefix list.
- **A::B/x** — Enter the IPv6 address and mask in /prefix format (/x).
- **ge** — Enter to indicate the network address is greater than or equal to the range specified.
- **le** — Enter to indicate the network address is less than or equal to the range specified.
- **prefix-len** — Enter the prefix length.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The no version of this command removes the specified prefix-list.

**Example**

```
OS10(config)# ipv6 prefix-list TEST seq 65535 permit AB10::1/128 ge 30
```

**Supported Release**

10.3.0E or later

---

**mac access-group**

Configures a MAC access group.

**Syntax**

```
mac access-group access-list-name {in | out}
```

**Parameters**

- **access-list-name** — Enter the name of a MAC access list. A maximum of 140 characters.
- **in** — Apply the ACL to incoming traffic.
- **out** — Apply the ACL to outgoing traffic.

**Defaults**

Not configured

**Command Mode**

CONFIGURATION

CONTROL-PLANE

**Usage Information**

Use this command in the CONTROL-PLANE mode to apply a control-plane ACL. Control-plane ACLs are only applied on the ingress traffic. By default, the control-plane ACL is applied to the front-panel ports. The no version of this command resets the value to the default.

**Example**

```
OS10(config)# mac access-group maclist in
OS10(conf-mac-acl)#
```
Example (Control-plane ACL)

```
OS10# configure terminal
OS10(config)# control-plane
OS10(config-control-plane)# mac access-group maclist in
```

Supported Releases 10.2.0E or later; 10.4.1 or later (control-plane ACL)

**mac access-list**

Creates a MAC access list to filter based on a MAC address.

**Syntax**

```
mac access-list access-list-name
```

**Parameters**

- `access-list-name` — Enter the name of a MAC access list. A maximum of 140 characters.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

None

**Example**

```
OS10(config)# mac access-list maclist
```

**Supported Releases** 10.2.0E or later

**permit**

Configures a filter to allow packets with a specific IPv4 address.

**Syntax**

```
permit [protocol-number | icmp | ip | tcp | udp] [A.B.C.D | A.B.C.D/x | any | host ip-address] [A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value| fragment]
```

**Parameters**

- `protocol-number` — (Optional) Enter the protocol number identified in the IP header, from 0 to 255.
- `icmp` — (Optional) Enter the ICMP address to permit.
- `ip` — (Optional) Enter the IPv4 address to permit.
- `tcp` — (Optional) Enter the TCP address to permit.
- `udp` — (Optional) Enter the UDP address to permit.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The `no` version of this command removes the filter.
## permit (IPv6)

Configures a filter to allow packets with a specific IPv6 address.

### Syntax

```
permit [protocol-number | icmp | ipv6 | tcp | udp] [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

### Parameters

- **protocol-number** — (Optional) Enter the protocol number identified in the IPv6 header, from 0 to 255.
- **icmp** — (Optional) Enter the ICMP address to permit.
- **ipv6** — (Optional) Enter the IPv6 address to permit.
- **tcp** — (Optional) Enter the TCP address to permit.
- **udp** — (Optional) Enter the UDP address to permit.
- **A::B** — Enter the IPv6 address in hexadecimal format separated by colons.
- **A::B/x** — Enter the number of bits that must match the IPv6 address.
- **any** — (Optional) Set all routes which are subject to the filter:
  - **capture** — (Optional) Capture packets the filter processes.
  - **dscp value** — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - **fragment** — (Optional) Use ACLs to control packet fragments.
- **host ipv6-address** — (Optional) Enter the IPv6 address to use a host address only.

### Default

Not configured

### Command Mode

IPV6-ACL

### Usage Information

The `no` version of this command removes the filter.

### Example

```
OS10(config)# ip access-list testflow
OS10(config)# permit udp any any capture session 1
```

### Supported Releases

10.2.0E or later

## permit (MAC)

Configures a filter to allow packets with a specific MAC address.

### Syntax

```
permit {nn:nn:nn:nn:nn} [00:00:00:00:00:00] | any} {nn:nn:nn:nn:nn:nn [00:00:00:00:00:00] | any} [protocol-number | capture | cos | vlan]
```

### Parameters

- **00:00:00:00:00:00** — (Optional) Enter which bits in the MAC address must match. If you do not enter a mask, a mask of 00:00:00:00:00:00 applies.
- **any** — (Optional) Set which routes are subject to the filter:
  - **protocol-number** — Enter the MAC protocol number identified in the MAC header, from 600 to ffff.
  - **capture** — (Optional) Enter the capture packets the filter processes.
- **cos** — (Optional) Enter the CoS value, from 0 to 7.
- **vlan** — (Optional) Enter the VLAN number, from 1 to 4093.

**Default**
Not configured

**Command Mode**
MAC-ACL

**Usage Information**
The `no` version of this command removes the filter.

**Example**
```
OS10(config)# mac access-list macacl
OS10(conf-mac-acl)# permit 00:00:00:00:11:11 00:00:11:11:11:11 any cos 7
OS10(conf-mac-acl)# permit 00:00:00:00:11:11 00:00:11:11:11:11 any vlan 2
```

**Supported Releases**
10.2.0E or later

### permit icmp

Configures a filter to permit all or specific ICMP messages.

**Syntax**
```
permit icmp [A.B.C.D | A.B.C.D/x | any | host ip-address] [[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

**Parameters**
- **A.B.C.D** — Enter the IPv4 address in dotted decimal format.
- **A.B.C.D/x** — Enter the number of bits that must match the dotted decimal address.
- **any** — (Optional) Set all routes which are subject to the filter:
  - **capture** — (Optional) Capture packets the filter processes.
  - **dscp value** — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - **fragment** — (Optional) Use ACLs to control packet fragments.
- **host ip-address** — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The `no` version of this command removes the filter.

**Example**
```
OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# permit icmp any any capture session 1
```

**Supported Releases**
10.2.0E or later

### permit icmp (IPv6)

Configures a filter to permit all or specific ICMP messages.

**Syntax**
```
permit icmp [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

**Parameters**
- **A::B** — Enter the IPv6 address in hexadecimal format separated by colons.
- **A::B/x** — Enter the number of bits that must match the IPv6 address.
- **any** — (Optional) Set all routes which are subject to the filter:
  - **capture** — (Optional) Capture packets the filter processes.
- dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
- fragment — (Optional) Use ACLs to control packet fragments.
- host ipv6-address — (Optional) Enter the IPv6 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV6-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**
```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# permit icmp any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

**permit ip**

Configures a filter to permit all or specific packets from an IPv4 address.

**Syntax**
```
permit ip [A.B.C.D | A.B.C.D/x | any | host ip-address] [[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp | fragments]
```

**Parameters**
- A.B.C.D — Enter the IPv4 address in dotted decimal format.
- A.B.C.D/x — Enter the number of bits to match to the dotted decimal address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - fragments — (Optional) Use ACLs to control packet fragments.
- host ip-address — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**
```
OS10(config)# permit ip any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

**permit ipv6**

Configures a filter to permit all or specific packets from an IPv6 address.

**Syntax**
```
permit ipv6 [A::B | A::B/x | any | host ipv6-address] [[A::B | A::B/x | any | host ipv6-address] [capture | dscp | fragments]
```

**Parameters**
- A::B — (Optional) Enter the source IPv6 address from which the packet was sent and the destination address.
- A::B/x — (Optional) Enter the source network mask in /prefix format (/x) and the destination mask.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Enter to capture packets the filter processes.
- dscp value — (Optional) Enter to deny a packet based on the DSCP values, from 0 to 63.
- fragment — (Optional) Enter to use ACLs to control packet fragments.
- host ipv6-address — Enter the IPv6 address to use a host address only.

Default: Not configured

Command Mode: IPV6-ACL

Usage Information: The no version of this command removes the filter.

Example:
```
OS10(conf-ipv6-acl)# permit ipv6 any any count capture session 1
```

Supported Releases: 10.2.0E or later

### permit tcp

Configures a filter to permit TCP packets meeting the filter criteria.

**Syntax**
```
permit tcp [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**
- A.B.C.D — Enter the IPv4 address in dotted decimal format.
- A.B.C.D/x — Enter the number of bits that must match the dotted decimal address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
  - ack — (Optional) Set the bit as acknowledgement.
  - fin — (Optional) Set the bit as finish—no more data from sender.
  - psh — (Optional) Set the bit as push.
  - rst — (Optional) Set the bit as reset.
  - syn — (Optional) Set the bit as synchronize.
  - urg — (Optional) Set the bit set as urgent.
- operator — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - eq — Equal to
  - gt — Greater than
  - lt — Lesser than
  - neq — Not equal to
  - range — Range of ports, including the specified port numbers.

**NOTE:** The control-plane ACLs do not support the any parameter.

**NOTE:** The control-plane ACLs support only the eq operator.

- host ip-address — (Optional) Enter the IPv4 address to use a host address only.

Default: Not configured

Command Mode: IPV4–ACL
**permit tcp (IPv6)**

Configures a filter to permit TCP packets meeting the filter criteria.

**Syntax**

```
permit tcp [A::B | A::B/x | any | host ipv6-address [eq | lt | gt | neq | range]] [A::B | A::B/x | any | host ipv6-address [eq | lt | gt | neq | range]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- A::B — Enter the IPv6 address in hexadecimal format separated by colons.
- A::B/x — Enter the number of bits that must match the IPv6 address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.

**Default**
Not configured

**Command Mode**
IPV6-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**

```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# permit tcp any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

**permit udp**

Configures a filter that allows UDP packets meeting the filter criteria.

**Syntax**

```
permit udp [A.B.C.D | A.B.C.D/x | any | host ip-address [eq | lt | gt | neq | range]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [eq | lt | gt | neq | range]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- A.B.C.D — Enter the IPv4 address in dotted decimal format.
- A.B.C.D/x — Enter the number of bits that must match the dotted decimal address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
  - eq — (Optional) Permit packets which are equal to.
- `lt` — (Optional) Permit packets which are less than.
- `gt` — (Optional) Permit packets which are greater than.
- `neq` — (Optional) Permit packets which are not equal to.
- `range` — (Optional) Permit packets with a specific source and destination address.
- `ack` — (Optional) Set the bit as acknowledgement.
- `fin` — (Optional) Set the bit as finish—no more data from sender.
- `psh` — (Optional) Set the bit as push.
- `rst` — (Optional) Set the bit as reset.
- `syn` — (Optional) Set the bit as synchronize.
- `urg` — (Optional) Set the bit set as urgent.

⚠️ **NOTE:** The control-plane ACL supports only the `eq` operator.

- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The no version of this command removes the filter.

**Example**
```
OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# permit udp any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

### permit udp (IPv6)

Configures a filter to permit UDP packets meeting the filter criteria.

**Syntax**
```
permit udp [A::B | A::B/x | any | host ipv6-address [operator]] [A::B | A:B/x | any | host ipv6-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Enter for all routes to be subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgement.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.

⚠️ **NOTE:** The control-plane ACL supports only the `eq` operator.

- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
- `gt` — Greater than
- `lt` — Lesser than
- `neq` — Not equal to
- `range` — Range of ports, including the specified port numbers.

- `host ipv6-address` — (Optional) Enter the keyword and the IPv6 address to use a host address only.

Default: Not configured

Command Mode: IPV6-ACL

Usage Information: The `no` version of this command removes the filter.

Example:
```
OS10(conf-ipv6-acl)# permit udp any any capture session 1 count
```

Supported Releases: 10.2.0E or later

### remark

Specifies an ACL entry description.

**Syntax**
```
remark description
```

**Parameters**
- `description` — Enter a description. A maximum of 80 characters.

Default: Not configured

Command Mode: IPV4-ACL

Usage Information: Configure up to 16777214 remarks for a given IPv4, IPv6, or MAC. The `no` version of the command removes the ACL entry description.

Supported Releases: 10.2.0E or later

### seq deny

Assigns a sequence number to deny IPv4 addresses while creating the filter.

**Syntax**
```
seq sequence-number deny [protocol-number | icmp | ip | tcp | udp] [A.B.C.D | A.B.C.D/x | any | host ip-address] [A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

**Parameters**
- `sequence-number` — Enter the sequence number to identify the ACL for editing and sequencing number, from 1 to 16777214.
- `protocol-number` — (Optional) Enter the protocol number, from 0 to 255.
- `icmp` — (Optional) Enter the ICMP address to deny.
- `ip` — (Optional) Enter the IPv4 address to deny.
- `tcp` — (Optional) Enter the TCP address to deny.
- `udp` — (Optional) Enter the UDP address to deny.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
- **dscp value** — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
- **fragment** — (Optional) Use ACLs to control packet fragments.
- **host ip-address** — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**
```
OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# seq 10 deny tcp any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

**seq deny (IPv6)**

Assigns a sequence number to deny IPv6 addresses while creating the filter.

**Syntax**
```
seq sequence-number deny [protocol-number icmp | ip | tcp | udp] [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

**Parameters**
- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `protocol-number` — (Optional) Enter the protocol number, from 0 to 255.
- `icmp` — (Optional) Enter the ICMP address to deny.
- `ip` — (Optional) Enter the IPv6 address to deny.
- `tcp` — (Optional) Enter the TCP address to deny.
- `udp` — (Optional) Enter the UDP address to deny.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Determine route types:
  - `capture` — (Optional) Enter to capture packets the filter processes.
  - `dscp value` — (Optional) Enter to deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Enter to use ACLs to control packet fragments.
- `host ipv6-address` — (Optional) Enter to use an IPv6 host address only.

**Default**
Not configured

**Command Mode**
IPV6-ACL

**Usage Information**
The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**
```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# seq 5 deny ipv6 any any capture session 1 count
```

**Supported Releases**
10.2.0E or later
**seq deny (MAC)**

Assigns a sequence number to a deny filter in a MAC access list while creating the filter.

**Syntax**

```
seq sequence-number deny {nn:nn:nn:nn:nn:nn [00:00:00:00:00:00] | any}
{nn:nn:nn:nn:nn:nn [00:00:00:00:00:00] | any} [protocol-number | capture | cos
| vlan]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `00:00:00:00:00:00` — (Optional) Enter which bits in the MAC address must match. If you do not enter a mask, a mask of 00:00:00:00:00:00 applies.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `protocol-number` — Protocol number identified in the MAC header, from 600 to ffff.
  - `capture` — (Optional) Capture packets the filter processes.
  - `cos` — (Optional) CoS value, from 0 to 7.
  - `vlan` — (Optional) VLAN number, from 1 to 4093.

**Default**

Not configured

**Command Mode**

`CONFIG-MAC-ACL`

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# mac access-list macacl
OS10(conf-mac-acl)# seq 10 deny 00:00:00:00:11:11 00:00:11:11:11:11 any cos 7
OS10(conf-mac-acl)# seq 20 deny 00:00:00:00:11:11 00:00:11:11:11:11 any vlan 2
```

**Supported Releases**

10.2.0E or later

**seq deny icmp**

Assigns a filter to deny ICMP messages while creating the filter.

**Syntax**

```
seq sequence-number deny icmp [A.B.C.D | A.B.C.D/x | any | host ip-address]
[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value| fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host IP address only.
**seq deny icmp (IPv6)**

Assigns a sequence number to deny ICMP messages while creating the filter.

**Syntax**

```
seq sequence-number deny icmp [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ipv6-address` — (Optional) Enter the IPv6 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV6-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# seq 10 deny icmp any any capture session 1
```

**Supported Releases**

10.2.0E or later

---

**seq deny ip**

Assigns a sequence number to deny IPv4 addresses while creating the filter.

**Syntax**

```
seq sequence-number deny ip [A.B.C.D | A.B.C.D/x | any | host ip-address]
[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
seq deny ipv6

Assigns a filter to deny IPv6 addresses while creating the filter.

Syntax

```plaintext
seq sequence-number deny ip [A:B | A::B/x | any | host ipv6-address] [A::B | A:B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

Parameters

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ip-address` — (Optional) Enter the IPv6 address to use a host address only.

Default

Not configured

Command Mode

IPV6-ACL

Usage Information

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

Example

```
OS10(config)# ipv6 access-list ipv6test
OS10(config-ipv6-acl)# seq 10 deny ipv6 any any capture session 1
```

Supported Releases

10.2.0E or later
seq deny tcp

Assigns a filter to deny TCP packets while creating the filter.

**Syntax**

```
seq sequence-number deny tcp [A.B.C.D | A.B.C.D/x | any | host ip-address
[operator]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [operator]]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgement.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 10 deny tcp any any capture session 1
```

**Supported Releases**

10.2.0E or later
**seq deny tcp (IPv6)**

Assigns a filter to deny TCP packets while creating the filter.

**Syntax**
```
seq sequence-number deny tcp [A::B | A::B/x | any | host ipv6-address
[operator]] [A::B | A:B/x | any | host ipv6-address [operator]] [ack | fin |
psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**
- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgement.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ip-address` — (Optional) Enter the IPv6 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPv6-ACL

**Usage Information**
The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**
```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# seq 10 deny tcp any any capture session 1
```

**Supported Releases**
10.2.0E or later
**seq deny udp**

Assigns a filter to deny UDP packets while creating the filter.

**Syntax**

```
seq sequence-number deny udp [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 10 deny udp any any capture session 1
```

**Supported Releases**

10.2.0E or later
**seq deny udp (IPv6)**

Assigns a filter to deny UDP packets while creating the filter.

**Syntax**

```
seq sequence-number deny udp [A::B | A::B/x | any | host ipv6-address
 [operator]] [A::B | A:B/x | any | host ipv6-address [operator]] [ack | fin |
psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ipv6-address` — (Optional) Enter the IPv6 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV6-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# seq 10 deny udp any any capture session 1
```

**Supported Releases**

10.2.0E or later
**seq permit**

Assigns a sequence number to permit packets while creating the filter.

**Syntax**

```
seq sequence-number permit [protocol-number A.B.C.D | A.B.C.D/x | any | host ip-address] [A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value| fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `protocol-number` — (Optional) Enter the protocol number, from 0 to 255.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The `no` version of this command removes the filter.

**Example**

```
OS10(config)# ip access-list testflow
OS10(conf-ipv4-acl)# seq 10 permit ip any any capture session 1
```

**Supported Releases**

10.2.0E or later

---

**seq permit (IPv6)**

Assigns a sequence number to permit IPv6 packets, while creating a filter.

**Syntax**

```
seq sequence-number permit protocol-number [A::B | A::B/x | any | host ipv6-address] [A::B | A:B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `protocol-number` — (Optional) Enter the protocol number, from 0 to 255.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Enter to capture packets the filter processes.
  - `dscp value` — (Optional) Enter the DSCP value to permit a packet, from 0 to 63.
  - `fragment` — (Optional) Enter to use ACLs to control packet fragments.
- `host ipv6-address` — (Optional) Enter the IPv6 address to be used as the host address.
seq permit (MAC)

Assigns a sequence number to permit MAC addresses while creating a filter.

Syntax

```
seq sequence-number permit {nn:nn:nn:nn:nn [00:00:00:00:00:00] | any}
{nn:nn:nn:nn:nn [00:00:00:00:00:00] | any} [protocol-number | capture | cos
| vlan]
```

Parameters

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing, from 1 to 16777214.
- `nn:nn:nn:nn:nn` — Enter the MAC address of the network from or to which the packets were sent.
- `00:00:00:00:00:00` — (Optional) Enter which bits in the MAC address must match. If you do not enter a mask, a mask of `00:00:00:00:00:00` applies.
- `any` — (Optional) Set all routes to be subject to the filter:
  - `protocol-number` — (Optional) Enter the protocol number identified in the MAC header, from 600 to `ffff`.
  - `capture` — (Optional) Enter the capture packets the filter processes.
  - `cos` — (Optional) Enter the CoS value, from 0 to 7.
  - `vlan` — (Optional) Enter the VLAN number, from 1 to 4093.

Default Not configured

Command Mode MAC-ACL

Usage Information The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

Example

```
OS10(config)# mac access-list macacl
OS10(conf-mac-acl)# seq 10 permit 00:00:00:00:11:11 00:00:11:11:11:11 any cos 7
OS10(conf-mac-acl)# seq 20 permit 00:00:00:00:11:11 00:00:11:11:11:11 any vlan 2
```

Supported Releases 10.2.0E or later

seq permit icmp

Assigns a sequence number to allow ICMP messages while creating the filter.

Syntax

```
seq sequence-number permit icmp [A.B.C.D | A.B.C.D/x | any | host ip-address]
[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value| fragment]
```

Access Control Lists 747
Parameters

- **sequence-number** — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- A.B.C.D — Enter the IPv4 address in dotted decimal format.
- A.B.C.D/x — Enter the number of bits that must match the dotted decimal address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ip-address — (Optional) Enter the IPv4 address to use a host address only.

Default
Not configured

Command Mode
IPV4-ACL

Usage Information
The no version of this command removes the filter, or use the no seq sequence-number command if you know the filter’s sequence number.

Example
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 5 permit icmp any any capture session 1

Supported Releases
10.2.0E or later

---

**seq permit icmp (IPv6)**

Assigns a sequence number to allow ICMP messages while creating the filter.

Syntax
seq sequence-number permit icmp [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]

Parameters

- **sequence-number** — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- A::B — Enter the IPv6 address in hexadecimal format separated by colons.
- A::B/x — Enter the number of bits that must match the IPv6 address.
- any — (Optional) Set all routes which are subject to the filter:
  - capture — (Optional) Capture packets the filter processes.
  - dscp value — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - fragment — (Optional) Use ACLs to control packet fragments.
- host ipv6-address — (Optional) Enter the IPv6 address to use a host address only.

Default
Not configured

Command Mode
IPV6-ACL

Usage Information
The no version of this command removes the filter, or use the no seq sequence-number command if you know the filter’s sequence number.

Example
OS10(config)# ipv6 access-list ipv6test
OS10(conf-ipv6-acl)# seq 5 permit icmp any any capture session 1

Supported Releases
10.2.0E or later
seq permit ip

Assigns a sequence number to allow packets while creating the filter.

**Syntax**
```
seq sequence-number permit ip [A.B.C.D | A.B.C.D/x | any | host ip-address]
[A.B.C.D | A.B.C.D/x | any | host ip-address] [capture | dscp value | fragment]
```

**Parameters**
- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV4-ACL

**Usage Information**
The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**
```
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 5 permit ip any any capture session 1
```

**Supported Releases**
10.2.0E or later

---

seq permit ipv6

Assigns a sequence number to allow packets while creating the filter.

**Syntax**
```
seq sequence-number permit ipv6 [A::B | A::B/x | any | host ipv6-address] [A::B | A::B/x | any | host ipv6-address] [capture | dscp value | fragment]
```

**Parameters**
- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
- `host ipv6-address` — (Optional) Enter the IPv6 address to use a host address only.

**Default**
Not configured

**Command Mode**
IPV6-ACL
Usage Information

The no version of this command removes the filter, or use the no seq sequence-number command if you know the filter’s sequence number.

Example

OS10(config)# ipv6 access-list egress
OS10(conf-ipv6-acl)# seq 5 permit ipv6 any any capture session 1

Supported Releases

10.2.0E or later

seq permit tcp

Assigns a sequence number to allow TCP packets while creating the filter.

Syntax

```
seq sequence-number permit tcp [A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] ([A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

Parameters

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

Default

Not configured

Command Mode

IPV4-ACL

Usage Information

The no version of this command removes the filter, or use the no seq sequence-number command if you know the filter’s sequence number.

Example

OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 5 permit tcp any any capture session 1

Supported Releases

10.2.0E or later
**seq permit tcp (IPv6)**

Assigns a sequence number to allow TCP IPv6 packets while creating the filter.

**Syntax**

```plaintext
seq sequence-number permit tcp [A::B | A::B/x | any | host ipv6-address [operator]] [A::B | A:B/x | any | host ipv6-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value| fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ipv6-address` — (Optional) Enter the IPv6 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV6-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```bash
OS10(config)# ipv6 access-list egress
OS10(conf-ipv6-acl)# seq 5 permit tcp any any capture session 1
```

**Supported Releases**

10.2.0E or later
seq permit udp

Assigns a sequence number to allow UDP packets while creating the filter.

**Syntax**

```
seq sequence-number permit udp [A.B.C.D | A.B.C.D/x | any | host ip-address
[operator]] [[A.B.C.D | A.B.C.D/x | any | host ip-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

**Parameters**

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A.B.C.D` — Enter the IPv4 address in dotted decimal format.
- `A.B.C.D/x` — Enter the number of bits that must match the dotted decimal address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Deny a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ip-address` — (Optional) Enter the IPv4 address to use a host address only.

**Default**

Not configured

**Command Mode**

IPV4-ACL

**Usage Information**

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

**Example**

```
OS10(config)# ip access-list egress
OS10(conf-ipv4-acl)# seq 5 permit udp any any capture session 1
```

**Supported Releases**

10.2.0E or later
seq permit udp (IPv6)

Assigns a sequence number to allow UDP IPv6 packets while creating a filter.

Syntax

```
seq sequence-number permit udp [A::B | A::B/x | any | host ipv6-address [operator]] [A::B | A::B/x | any | host ipv6-address [operator]] [ack | fin | psh | rst | syn | urg] [capture | dscp value | fragment]
```

Parameters

- `sequence-number` — Enter the sequence number to identify the route-map for editing and sequencing number, from 1 to 16777214.
- `A::B` — Enter the IPv6 address in hexadecimal format separated by colons.
- `A::B/x` — Enter the number of bits that must match the IPv6 address.
- `any` — (Optional) Set all routes which are subject to the filter:
  - `capture` — (Optional) Capture packets the filter processes.
  - `dscp value` — (Optional) Permit a packet based on the DSCP values, from 0 to 63.
  - `fragment` — (Optional) Use ACLs to control packet fragments.
  - `ack` — (Optional) Set the bit as acknowledgment.
  - `fin` — (Optional) Set the bit as finish—no more data from sender.
  - `psh` — (Optional) Set the bit as push.
  - `rst` — (Optional) Set the bit as reset.
  - `syn` — (Optional) Set the bit as synchronize.
  - `urg` — (Optional) Set the bit set as urgent.
- `operator` — (Optional) Enter a logical operator to match the packets on the specified port number. The following options are available:
  - `eq` — Equal to
  - `gt` — Greater than
  - `lt` — Lesser than
  - `neq` — Not equal to
  - `range` — Range of ports, including the specified port numbers.
- `host ipv6-address` — (Optional) Enter the IPv6 address to use a host address only.

Default

Not configured

Command Mode

IPV6-ACL

Usage Information

The `no` version of this command removes the filter, or use the `no seq sequence-number` command if you know the filter’s sequence number.

Example

```
OS10(config)# ipv6 access-list egress
OS10(conf-ipv6-acl)# seq 5 permit udp any any capture session 1
```

Supported Releases

10.2.0E or later

show access-group

Displays IP, MAC, or IPv6 access-group information.

Syntax

```
show {ip | mac | ipv6} access-group name
```

Access Control Lists 753
Parameters

- **ip** — View IP access group information.
- **mac** — View MAC access group information.
- **ipv6** — View IPv6 access group information.
- **access-group name** — Enter the name of the access group.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example (IP)

```
OS10# show ip access-group aaa
Ingress IP access list aaa on ethernet1/1/1
Ingress IP access list aaa on ethernet1/1/2
Egress IP access list aaa on ethernet1/1/2
```

Example (MAC)

```
OS10# show mac access-group bbb
Ingress MAC access list bbb on ethernet1/1/1
Ingress MAC access list bbb on ethernet1/1/2
Egress MAC access list bbb on ethernet1/1/2
```

Example (IPv6)

```
OS10# show ipv6 access-group ccc
Ingress IPV6 access list ccc on ethernet1/1/1
Ingress IPV6 access list ccc on ethernet1/1/2
Egress IPV6 access list ccc on ethernet1/1/2
```

Example (Control-plane ACL - IP)

```
OS10# show ip access-group aaa-cp-acl
Ingress IP access-list aaa-cp-acl on control-plane data mgmt
```

Example (Control-plane ACL - MAC)

```
OS10# show mac access-group aaa-cp-acl
Ingress MAC access-list aaa-cp-acl on control-plane data
```

Example (Control-plane ACL - IPv6)

```
OS10# show ipv6 access-group aaa-cp-acl
Ingress IPV6 access-list aaa-cp-acl on control-plane data mgmt
```

Supported Releases
10.2.0E or later; 10.4.1 or later (control-plane ACL)

### show access-lists

Displays IP, MAC, or IPv6 access-list information.

**Syntax**

```
show {ip | mac | ipv6} access-lists {in | out} access-list-name
```

**Parameters**

- **ip** — View IP access list information.
- **mac** — View MAC access list information.
- **ipv6** — View IPv6 access list information.
- **access-lists in | out** — Enter either access lists in or access lists out.
- **access-list-name** — Enter the name of the access-list.

Default
Not configured

Command Mode
EXEC

Usage Information
None
### Example (MAC In)
```
OS10# show mac access-lists in
Ingress MAC access list aaa
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit any any
```

### Example (MAC Out)
```
OS10# show mac access-lists out
Egress MAC access list aaa
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit any any
```

### Example (IP In)
```
OS10# show ip access-lists in
Ingress IP access list aaaa
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit ip any any
seq 20 permit tcp any any
seq 30 permit udp any any
```

### Example (IP Out)
```
OS10# show ip access-lists out
Egress IP access list aaaa
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit ip any any
seq 20 permit tcp any any
seq 30 permit udp any any
```

### Example (IPv6 In)
```
OS10# show ipv6 access-lists in
Ingress IPV6 access list bbb
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit any any
Ingress IPV6 access list ggg
Active on interfaces :
 ethernet 1/1/3
seq 5 permit ipv6 11::/32 any
```

### Example (IPv6 Out)
```
OS10# show ipv6 access-lists out
Egress IPV6 access list bbb
Active on interfaces :
 ethernet1/1/1
 ethernet1/1/2
seq 10 permit any any
Egress IPV6 access list ggg
Active on interfaces :
 ethernet 1/1/1
seq 5 permit ipv6 11::/32 any
```

### Example (IP In - Control-plane ACL)
```
OS10# show ip access-lists in
Ingress IP access-list aaa-cp-acl
Active on interfaces :
 control-plane data
 control-plane mgmt
seq 10 permit ip any any
```
Example (IPv6 In - Control-plane ACL)

```
OS10# show ipv6 access-lists in
Ingress IPv6 access-list aaa-cp-acl
Active on interfaces:
 control-plane data
 seq 10 permit ipv6 any any
 control-plane mgmt
 seq 10 permit ipv6 any any
```

Example (MAC In - Control-plane ACL)

```
OS10# show mac access-lists in
Ingress MAC access-list mac-cp1
Active on interfaces:
 control-plane data
 seq 10 deny any any count (159 packets)
```

Supported Releases

10.2.0E or later; 10.4.1 or later (control-plane ACL)

**show acl-table-profile**

Displays the currently active ACL table profile.

**Syntax**

```
show acl-table-profile [default]
```

**Parameters**

None

**Default**

By default, the system allocates one pool for each of the five ingress application groups.

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show acl-table-profile
ACL table profile
<table>
<thead>
<tr>
<th>App Group</th>
<th>Apps</th>
<th>Pools Allocated</th>
<th>Entries Allocation in %</th>
<th>Current</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>USER_L2_ACL</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L2_QOS</td>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>USER_IPV4_ACL</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USER_IPV6_ACL</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ISCSI_SNOOPING</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBR_V4</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBR_V6</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L3_QOS</td>
<td>1</td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L3_IPV6_QOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISCSI_COS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L3_QOS</td>
<td>1</td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L3_IPV6_QOS</td>
<td></td>
<td>Shared</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

756  Access Control Lists
show acl-table-usage detail

Displays the ingress and egress ACL tables, the features that are used, and their space utilizations.

Syntax

show acl-table-usage detail

Parameters

None

Default

None

Command Mode

EXEC

Usage Information

The hardware pool displays the ingress application groups (pools), the features mapped to each of these groups, and the amount of space available in each of the pools. The amount of space required to store a single ACL rule in a pool depends on the keywidth.

The service pool displays the amount of used and free space for each of the features. The number of ACL rules configured for a feature is displayed in the configured rules column. The number of used rows depends on the number of ports the configured rules are applied on.

Examples

Z9100-ON platform

OS10# show acl-table-usage detail

Ingress ACL utilization - Pipe 0

Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV4_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV4_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>USER_IPV6_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>USER_IPV6_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>USER_IPV6_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>USER_L2_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>USER_L2_ACL</td>
<td>4</td>
<td>508</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>

Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_L2_ACL</td>
<td>Shared:2</td>
<td>G9</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>USER_IPV4_ACL</td>
<td>Shared:2</td>
<td>G3</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>USER_IPV6_ACL</td>
<td>Shared:3</td>
<td>G6</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:3</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>207</td>
<td></td>
</tr>
</tbody>
</table>

Ingress ACL utilization - Pipe 1

Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
</tbody>
</table>
### Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:3</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>207</td>
<td>256</td>
</tr>
</tbody>
</table>

#### Ingress ACL utilization - Pipe 2

**Hardware Pools**

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV4_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV4_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>USER_L2_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>USER_L2_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>

#### Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:3</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>207</td>
<td>256</td>
</tr>
</tbody>
</table>

#### Ingress ACL utilization - Pipe 3

**Hardware Pools**

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>SYSTEM_FLOW</td>
<td>98</td>
<td>414</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV4_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV4_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>USER_IPV6_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>USER_L2_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>USER_L2_ACL</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>

#### Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:3</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>207</td>
<td>256</td>
</tr>
</tbody>
</table>

#### Egress ACL utilization

**Hardware Pools**
### Ingress ACL utilization

#### Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
<td>1024</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
<td>1024</td>
</tr>
<tr>
<td>2</td>
<td>USER_IPV4_ACL</td>
<td>3</td>
<td>1021</td>
<td>1024</td>
</tr>
<tr>
<td>3</td>
<td>USER_L2_ACL</td>
<td>2</td>
<td>1022</td>
<td>1024</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>FCOE</td>
<td>55</td>
<td>457</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>FCOE</td>
<td>55</td>
<td>457</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>ISCSI_SNOOPING</td>
<td>12</td>
<td>500</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
<td>512</td>
</tr>
</tbody>
</table>

#### Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_L2_ACL</td>
<td>Shared:1</td>
<td>G3</td>
<td>1</td>
<td>2</td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>USER_IPV4_ACL</td>
<td>Shared:1</td>
<td>G2</td>
<td>2</td>
<td>3</td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>USER_IPV6_ACL</td>
<td>Shared:2</td>
<td>G4</td>
<td>1</td>
<td>2</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>PBR_V6</td>
<td>Shared:2</td>
<td>G10</td>
<td>1</td>
<td>1</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:2</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>ISCSI_SNOOPING</td>
<td>Shared:1</td>
<td>G8</td>
<td>12</td>
<td>12</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>FCOE</td>
<td>Shared:2</td>
<td>G6</td>
<td>55</td>
<td>55</td>
<td>457</td>
<td></td>
</tr>
</tbody>
</table>

### Egress ACL utilization

#### Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>USER_IPV4_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>1</td>
<td>USER_L2_ACL_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>USER_IPV6_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV6_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
</tbody>
</table>

---

**S6010-ON platform**

**Ingress ACL utilization**

```
OS10# show acl-table-usage detail
Ingress ACL utilization

Hardware Pools

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
<td>1024</td>
</tr>
<tr>
<td>1</td>
<td>SYSTEM_FLOW</td>
<td>49</td>
<td>975</td>
<td>1024</td>
</tr>
<tr>
<td>2</td>
<td>USER_IPV4_ACL</td>
<td>3</td>
<td>1021</td>
<td>1024</td>
</tr>
<tr>
<td>3</td>
<td>USER_L2_ACL</td>
<td>2</td>
<td>1022</td>
<td>1024</td>
</tr>
<tr>
<td>4</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>USER_IPV6_ACL</td>
<td>2</td>
<td>510</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>FCOE</td>
<td>55</td>
<td>457</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>FCOE</td>
<td>55</td>
<td>457</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>ISCSI_SNOOPING</td>
<td>12</td>
<td>500</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>FREE</td>
<td>0</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>PBR_V6</td>
<td>1</td>
<td>511</td>
<td>512</td>
</tr>
</tbody>
</table>

Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_L2_ACL</td>
<td>Shared:1</td>
<td>G3</td>
<td>1</td>
<td>2</td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>USER_IPV4_ACL</td>
<td>Shared:1</td>
<td>G2</td>
<td>2</td>
<td>3</td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>USER_IPV6_ACL</td>
<td>Shared:2</td>
<td>G4</td>
<td>1</td>
<td>2</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>PBR_V6</td>
<td>Shared:2</td>
<td>G10</td>
<td>1</td>
<td>1</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>SYSTEM_FLOW</td>
<td>Shared:2</td>
<td>G0</td>
<td>49</td>
<td>49</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>ISCSI_SNOOPING</td>
<td>Shared:1</td>
<td>G8</td>
<td>12</td>
<td>12</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>FCOE</td>
<td>Shared:2</td>
<td>G6</td>
<td>55</td>
<td>55</td>
<td>457</td>
<td></td>
</tr>
</tbody>
</table>

Egress ACL utilization

```

**Hardware Pools**

<table>
<thead>
<tr>
<th>Pool ID</th>
<th>App(s)</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>USER_IPV4_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>1</td>
<td>USER_L2_ACL_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>USER_IPV6_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>USER_IPV6_EGRESS</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
</tbody>
</table>
Service Pools

<table>
<thead>
<tr>
<th>App</th>
<th>Allocated pools</th>
<th>App group</th>
<th>Configured rules</th>
<th>Used rows</th>
<th>Free rows</th>
<th>Max rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER_L2_ACL_EGRESS</td>
<td>Shared:1</td>
<td>G1</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>USER_IPV4_EGRESS</td>
<td>Shared:1</td>
<td>G0</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
<tr>
<td>USER_IPV6_EGRESS</td>
<td>Shared:2</td>
<td>G2</td>
<td>1</td>
<td>2</td>
<td>254</td>
<td>256</td>
</tr>
</tbody>
</table>

Supported Releases  10.4.2 and later

**show ip as-path-access-list**

Displays the configured AS path access lists.

**Syntax**

```
show ip as-path-access-list [name]
```

**Parameters**

- `name` — (Optional) Specify the name of the AS path access list.

**Defaults** None

**Command Mode** EXEC

**Usage Information** None

**Example**

```
OS10# show ip as-path-access-list
ip as-path access-list hello
 permit 123
 deny 35
```

Supported Releases  10.3.0E or later

**show ip community-list**

Displays the configured IP community lists in alphabetic order.

**Syntax**

```
show ip community-list [name]
```

**Parameters**

- `name` — (Optional) Enter the name of the standard IP community list. A maximum of 140 characters.

**Defaults** None

**Command Mode** EXEC

**Usage Information** None

**Example**

```
OS10# show ip community-list
Standard Community List hello
 deny local-AS
 permit no-export
 deny 1:1
```

Supported Releases  10.3.0E or later
**show ip extcommunity-list**

Displays the configured IP external community lists in alphabetic order.

**Syntax**

```
show ip extcommunity-list [name]
```

**Parameters**

- `name` — (Optional) Enter the name of the extended IP external community list. A maximum of 140 characters.

**Defaults**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show ip extcommunity-list
Standard Extended Community List hello
 permit RT:1:1
deny SOO:1:4
```

**Supported Releases**

10.3.0E or later

**show ip prefix-list**

Displays configured IPv4 or IPv6 prefix list information.

**Syntax**

```
show {ip | ipv6} prefix-list [prefix-name]
```

**Parameters**

- `ip | ipv6` — (Optional) Displays information related to IPv4 or IPv6.
- `prefix-name` — Enter a text string for the prefix list name. A maximum of 140 characters.

**Defaults**

None

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show ip prefix-list
ip prefix-list hello:
 seq 10 deny 1.2.3.4/24
 seq 20 permit 3.4.4.5/32
```

**Example (IPv6)**

```
OS10# show ipv6 prefix-list
ipv6 prefix-list hello:
 seq 10 permit 1::1/64
 seq 20 deny 2::2/64
```

**Supported Releases**

10.3.0E or later

**Route-map commands**
continue

Configures the next sequence of the route map.

**Syntax**
```
continue seq-number
```

**Parameters**
- `seq-number` — Enter the next sequence number, from 1 to 65535.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The no version of this command deletes a match.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# continue 65535
```

**Supported Releases**
10.3.0E or later

match as-path

Configures a filter to match routes that have a certain AS path in their BGP paths.

**Syntax**
```
match as-path as-path-name
```

**Parameters**
- `as-path-name` — Enter the name of an established AS-PATH ACL. A maximum of 140 characters.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The no version of this command deletes a match AS path filter.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match as-path pathtest1
```

**Supported Releases**
10.3.0E or later

match community

Configures a filter to match routes that have a certain COMMUNITY attribute in their BGP path.

**Syntax**
```
match community community-list-name [exact-match]
```

**Parameters**
- `community-list-name` — Enter the name of a configured community list.
- `exact-match` — (Optional) Select only those routes with the specified community list name.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The no version of this command deletes the community match filter.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match community commlist1 exact-match
```

**Supported Releases**
10.3.0E or later
**match extcommunity**

Configures a filter to match routes that have a certain EXTCOMMUNITY attribute in their BGP path.

**Syntax**
```
match extcommunity extcommunity-list-name [exact-match]
```

**Parameters**
- `extcommunity-list-name` — Enter the name of a configured extcommunity list.
- `exact-match` — (Optional) Select only those routes with the specified extcommunity list name.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The `no` version of this command deletes the extcommunity match filter.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match extcommunity extcommlist1 exact-match
```

**Supported Releases**
10.3.0E or later

**match interface**

Configures a filter to match routes whose next-hop is the configured interface.

**Syntax**
```
match interface interface
```

**Parameters**
- `interface` — Interface type:
  - `ethernet node/slot/port[:subport]` — Enter the Ethernet interface information as the next-hop interface.
  - `port-channel id-number` — Enter the port-channel number as the next-hop interface, from 1 to 128.
  - `vlan vlan-id` — Enter the VLAN number as the next-hop interface, from 1 to 4093.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The `no` version of this command deletes the match.

**Example**
```
OS10(conf-route-map)# match interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)#
```

**Supported Releases**
10.2.0E or later

**match ip address**

Configures a filter to match routes based on IP addresses specified in IP prefix lists.

**Syntax**
```
match ip address {prefix-list prefix-list-name | access-list-name}
```

**Parameters**
- `prefix-list-name` — Enter the name of the configured prefix list. A maximum of 140 characters.
• **access-list-name** — Enter the name of the configured access list.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The `no` version of this command deletes a match.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match ip address prefix-list test10
```

**Supported Releases**
10.3.0E or later

---

**match ip next-hop**

Configures a filter to match based on the next-hop IP addresses specified in IP prefix lists.

**Syntax**
```
match ip next-hop prefix-list prefix-list
```

**Parameters**
- `prefix-list` — Enter the name of the configured prefix list. A maximum of 140 characters.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The `no` version of this command deletes the match.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match ip next-hop prefix-list test100
```

**Supported Releases**
10.3.0E or later

---

**match ipv6 address**

Configures a filter to match routes based on IPv6 addresses specified in IP prefix lists.

**Syntax**
```
match ipv6 address {prefix-list prefix-list | access-list}
```

**Parameters**
- `prefix-list` — Enter the name of the configured prefix list. A maximum of 140 characters.
- `access-list` — Enter the name of the access group or list.

**Default**
Not configured

**Command Mode**
ROUTE-MAP

**Usage Information**
The `no` version of this command deletes the match.

**Example**
```
OS10(config)# route-map bgp
OS10(conf-route-map)# match ipv6 address test100
```

**Supported Releases**
10.3.0E or later
**match ipv6 next-hop**

Configures a filter to match based on the next-hop IPv6 addresses specified in IP prefix lists.

**Syntax**

```
match ipv6 next-hop prefix-list prefix-list
```

**Parameters**

- `prefix-list` — Enter the name of the configured prefix list. A maximum of 140 characters.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The `no` version of this command deletes the match.

**Example**

```
OS10(config)# route-map bgp
OS10(conf-route-map)# match ipv6 next-hop prefix-list test100
```

**Supported Releases**

10.3.0E or later

---

**match metric**

Configures a filter to match on a specific value.

**Syntax**

```
match metric metric-value
```

**Parameters**

- `metric-value` — Enter a value to match the route metric against, from 0 to 4294967295.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The `no` version of this command deletes the match.

**Example**

```
OS10(conf-route-map)# match metric 429132
```

**Supported Releases**

10.2.0E or later

---

**match origin**

Configures a filter to match routes based on the origin attribute of BGP.

**Syntax**

```
match origin {egp | igp | incomplete}
```

**Parameters**

- `egp` — Match only remote EGP routes.
- `igp` — Match only on local IGP routes.
- `incomplete` — Match on unknown routes that are learned through some other means.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The `no` version of this command deletes the match.

**Example**

```
OS10(config)# route-map bgp
OS10(conf-route-map)# match origin egp
```

---
match route-type

Configures a filter to match routes based on how the route is defined.

**Syntax**

```
match route-type {external {type-1 | type-2} | internal | local }
```

**Parameters**

- **external** — Match only on external OSPF routes. Enter the keyword then one of the following:
  - **type-1** — Match only on OSPF Type 1 routes.
  - **type-2** — Match only on OSPF Type 2 routes.
- **internal** — Match only on routes generated within OSPF areas.
- **local** — Match only on routes generated locally.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The `no` version of this command deletes the match.

**Example**

```
OS10(config)# route-map bgp
OS10(conf-route-map)# match route-type external type-1
```

**Supported Releases**

10.3.0E or later

match tag

Configures a filter to redistribute only routes that match a specific tag value.

**Syntax**

```
match tag tag-value
```

**Parameters**

- **tag-value** — Enter the tag value to match with the tag number, from 0 to 4294967295.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The `no` version of this command deletes the match.

**Example**

```
OS10(conf-route-map)# match tag 656442
```

**Supported Releases**

10.2.0E or later

route-map

Enables a route-map statement and configures its action and sequence number.

**Syntax**

```
route-map map-name [permit | deny | sequence-number]
```

**Parameters**

- **map-name** — Enter the name of the route-map. A maximum of 140 characters.
- **sequence-number** — (Optional) Enter the number to identify the route-map for editing and sequencing number from 1 to 65535. The default is 10.
- **permit** — (Optional) Set the route-map default as permit.
- **deny** — (Optional) Set the route default as deny.

**Default**: Not configured  
**Command Mode**: CONFIGURATION  
**Usage Information**: 

**NOTE**: Exercise caution when you delete route-maps — if you do not enter a sequence number, all route-maps with the same map-name are deleted.

The **no** version of this command removes a route-map.

**Example**

```
OS10(config)# route-map route1 permit 100
OS10(config-route-map)#
```

**Supported Releases**: 10.2.0E or later

### set comm-list add

Add communities in the specified list to the COMMUNITY attribute in a matching inbound or outbound BGP route.

**Syntax**: `set comm-list {community-list-name} add`

**Parameters**: `community-list-name` — Enter the name of an established community list. A maximum of 140 characters.

**Defaults**: None  
**Command Mode**: ROUTE-MAP  
**Usage Information**: In a route map, use this `set` command to add a list of communities that pass a permit statement to the COMMUNITY attribute of a BGP route sent or received from a BGP peer. Use the `set comm-list delete` command to delete a community list from a matching route.

**Example**

```
OS10(config)# route-map bgp
OS10(conf-route-map)# set comm-list comlist1 add
```

**Supported Releases**: 10.4.0E(R1) or later

### set comm-list delete

Remove communities in the specified list from the COMMUNITY attribute in a matching inbound or outbound BGP route.

**Syntax**: `set comm-list {community-list-name} delete`

**Parameters**: `community-list-name` — Enter the name of an established community list. A maximum of 140 characters.

**Defaults**: None  
**Command Mode**: ROUTE-MAP  
**Usage Information**: Configure the community list you use in the `set comm-list delete` command so that each filter contains only one community. For example, the filter `deny 100:12` is acceptable, but the filter `deny 120:13 140:33` results in an error. If you configure the `set comm-list delete` command and the `set community` command in the same route map sequence, the deletion `set comm-list delete` command processes before
the insertion set community command. To add communities in a community list to the COMMUNITY attribute in a BGP route, use the set comm-list add command.

Example

OS10(config)# route-map bgp
OS10(conf-route-map)# set comm-list comlist1 delete

Supported Releases 10.3.0E or later

**set community**

Sets the community attribute in BGP updates.

**Syntax**

set community {none | community-number}

**Parameters**

- none — Enter to remove the community attribute from routes meeting the route map criteria.
- community-number — Enter the community number in aa:nn format, where aa is the AS number, 2 bytes, and nn is a value specific to that AS.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

The no version of this command deletes a BGP COMMUNITY attribute assignment.

Example

OS10(config)# route-map bgp
OS10(conf-route-map)# set community none

Supported Releases 10.3.0E or later

**set extcomm-list add**

Add communities in the specified list to the EXTCOMMUNITY attribute in a matching inbound or outbound BGP route.

**Syntax**

set extcomm-list extcommunity-list-name add

**Parameter**

extcommunity-list-name — Enter the name of an established extcommunity list. A maximum of 140 characters.

**Defaults**

None

**Command Mode**

ROUTE-MAP

**Usage Information**

In a route map, use this set command to add an extended list of communities that pass a permit statement to the EXTCOMMUNITY attribute of a BGP route sent or received from a BGP peer. Use the set extcomm-list delete command to delete an extended community list from a matching route.

Example

OS10(config)# route-map bgp
OS10(conf-route-map)# set extcomm-list TestList add

Supported Releases 10.4.0E(R1) or later
set extcomm-list delete

Remove communities in the specified list from the EXTCOMMUNITY attribute in a matching inbound or outbound BGP route.

Syntax

`set extcomm-list extcommunity-list-name delete`

Parameter

`extcommunity-list-name` — Enter the name of an established extcommunity list. A maximum of 140 characters.

Defaults

None

Command Mode

ROUTE-MAP

Usage Information

To add communities in an extcommunity list to the EXTCOMMUNITY attribute in a BGP route, use the `set extcomm-list add` command.

Example

```bash
OS10(config)# route-map bgp
OS10(conf-route-map)# set extcomm-list TestList delete
```

Supported Releases

10.3.0E or later

set extcommunity

Sets the extended community attributes in a route map for BGP updates.

Syntax

`set extcommunity rt {asn2:nn | asn4:nnnn | ip-addr:nn}`

Parameters

- `asn2:nn` — Enter an AS number in 2-byte format; for example, 1–65535:1–4294967295.
- `asn4:nnnn` — Enter an AS number in 4-byte format; for example, 1–4294967295:1–65535 or 1–65535.1–65535.
- `ip-addr:nn` — Enter an AS number in dotted format, from 1 to 65535.

Default

Not configured

Command Mode

ROUTE-MAP

Usage Information

The `no` version of this command deletes the set clause from a route map.

Example

```bash
OS10(config)# route-map bgp
OS10(conf-route-map)# set extcommunity rt 10.10.10.2:325
```

Supported Releases

10.3.0E or later

set local-preference

Sets the preference value for the AS path.

Syntax

`set local-preference value`

Parameters

`value` — Enter a number as the LOCAL_PREF attribute value, from 0 to 4294967295.

Default

Not configured
set metric

Set a metric value for a routing protocol.

Syntax

```
set metric [+ | -] metric-value
```

Parameters

- `+` (Optional) Add a metric value to the redistributed routes.
- `-` (Optional) Subtract a metric value from the redistributed routes.
- `metric-value` — Enter a new metric value, from 0 to 4294967295.

Default

Not configured

Command Mode

ROUTE-MAP

Usage Information

To establish an absolute metric, do not enter a plus or minus sign before the metric value. To establish a relative metric, enter a plus or minus sign immediately preceding the metric value. The value is added to or subtracted from the metric of any routes matching the route map. You cannot use both an absolute metric and a relative metric within the same route map sequence. Setting either metric overrides any previously configured value. The no version of this command removes the filter.

Example (Absolute)

```
OS10(conf-route-map)# set metric 10
```

Example (Relative)

```
OS10(conf-route-map)# set metric -25
```

Supported Releases

10.2.0E or later

set metric-type

Set the metric type for a redistributed route.

Syntax

```
set metric-type {type-1 | type-2 | external}
```

Parameters

- `type-1` — Adds a route to an existing community.
- `type-2` — Sends a route in the local AS.
- `external` — Disables advertisement to peers.

Default

Not configured

Command Mode

ROUTE-MAP

Usage Information

- BGP
Affects BGP behavior only in outbound route maps and has no effect on other types of route maps. If the route map contains both a set metric-type and a set metric clause, the set metric clause takes precedence. If you enter the internal metric type in a BGP outbound route map, BGP sets the MED of the advertised routes to the IGP cost of the next hop of the advertised route. If the cost of the next hop changes, BGP is not forced to readvertise the route.

- **external** — Reverts to the normal BGP rules for propagating the MED, the default.
- **internal** — Sets the MED of a received route that is being propagated to an external peer equal to the IGP costs of the indirect next hop.

**OSPF**

- **external** — Sets the cost of the external routes so that it is equal to the sum of all internal costs and the external cost.
- **internal** — Sets the cost of the external routes so that it is equal to the external cost alone, the default.

The no version of this command removes the set clause from a route map.

**Example**

```
OS10(conf-route-map)# set metric-type internal
```

**Supported Releases**

10.2.0E or later

---

**set next-hop**

Sets an IPv4 or IPv6 address as the next-hop.

**Syntax**

```
set {ip | ipv6} next-hop ip-address
```

**Parameters**

- **ip-address** — Enter the IPv4 or IPv6 address for the next-hop.

**Default**

Not configured

**Command Mode**

ROUTE-MAP

**Usage Information**

If you apply a route-map with the set next-hop command in ROUTER-BGP mode, it takes precedence over the next-hop-self command used in ROUTER-NEIGHBOR mode. In a route-map configuration, to configure more than one next-hop entry, use multiple set {ip | ipv6} next-hop commands. When you apply a route-map for redistribution or route updates in ROUTER-BGP mode, configure only one next-hop. Configure multiple next-hop entries only in a route-map used for other features. The no version of this command deletes the setting.

**Example**

```
OS10(conf-route-map)# set ip next-hop 10.10.10.2
```

**Example (IPv6)**

```
OS10(conf-route-map)# set ipv6 next-hop 11AA:22CC::9
```

**Supported Releases**

10.2.0E or later

---

**set origin**

Set the origin of the advertised route.

**Syntax**

```
set origin {egp | igp | incomplete}
```

**Parameters**

- **egp** — Enter to add to existing community.
- **igp** — Enter to send inside the local-AS.
• incomplete — Enter to not advertise to peers.

Default          Not configured
Command Mode     ROUTE-MAP
Usage Information The no version of this command deletes the set clause from a route map.
Example          OS10(conf-route-map)# set origin egp
Supported Releases 10.2.0E or later

**set tag**

Sets a tag for redistributed routes.

Syntax           set tag tag-value
Parameters        tag-value — Enter a tag number for the route to redistribute, from 0 to 4294967295.
Default           Not configured
Command Mode     CONFIGURATION
Usage Information The no version of this command deletes the set clause from a route map.
Example          OS10(conf-route-map)# set tag 23
Supported Releases 10.2.0E or later

**set weight**

Set the BGP weight for the routing table.

Syntax           set weight weight
Parameters        weight — Enter a number as the weight the route uses to meet the route map specification, from 0 to 65535.
Default           Default router-originated is 32768 — all other routes are 0.
Command Mode     ROUTE-MAP
Usage Information The no version of the command deletes the set clause from the route map.
Example          OS10(conf-route-map)# set weight 200
Supported Releases 10.2.0E or later

**show route-map**

Displays the current route map configurations.

Syntax           show route-map [map-name]
Parameters        map-name — (Optional) Specify the name of a configured route map. A maximum of 140 characters.
Defaults          None
Command Mode
EXEC

Usage Information
None

Example
OS10# show route-map
route-map abc, permit, sequence 10
  Match clauses:
    ip address (access-lists): hello
    as-path abc
    community hello
    metric 2
    origin egp
    route-type external type-1
    tag 10
  Set clauses:
    metric-type type-1
    origin igp
    tag 100

Supported Releases
10.3.0E or later
Quality of service

Quality of service (QoS) reserves network resources for highly critical application traffic with precedence over less critical application traffic. QoS prioritizes different types of traffic and ensures quality of service.

You can control the following traffic flow parameters: Delay, Bandwidth, Jitter, and Drop.

Different QoS features control the traffic flow parameters, as the traffic traverses a network device from ingress to egress interfaces.

Configure quality of service

Network traffic processes based on classification and policies that apply to the traffic.
Configuring QoS is a three-step process:

1. Create class-maps to classify the traffic flows. The following are the different types of class-maps:
   - qos (default)—Classifies ingress data traffic.
   - queuing—Classifies egress queues.
   - control-plane—Classifies control-plane traffic.
   - network-qos—Classifies traffic-class IDs for ingress buffer configurations.
   - application—Classifies application-type traffic. The reserved policy-map `policy-iscsi` defines the actions for `class-iscsi` traffic.

2. Create policy-maps to define the policies for the classified traffic flows. The following are the different types of policy-maps:
   - qos (default)—Defines the following actions on the traffic classified based on `qos` class-map:
     - Policing
     - Marking with a traffic class ID
     - Modifying packet fields such as CoS and DSCP
     - Enabling trust based classification
   - queuing—Defines the following actions on the egress queues classified based on `queuing` class-map:
     - Shaping
     - Assigning bandwidth for queues
     - Assigning strict priority for queues
     - Buffering configuration for queues
     - WRED configuration on queues
   - control-plane—Defines the policing of control queues for rate-limiting the `control-plane` traffic on CPU queues.
   - network-qos—Defines the Ingress buffer configuration for selected traffic-classes matched based on `network-qos` class-map.
   - application—Defines the following actions for the `application` classified traffic:
     - Modifying packet fields such as CoS and DSCP.
     - Marking traffic class IDs.

3. Apply the policy-maps to the port interface, system for all interfaces, or control-plane traffic as follows:
   - Apply control-plane polices in Control-Plane mode.
   - Apply QoS and network-QoS policies in the input direction on physical interfaces or in System-QoS mode.
- Apply queuing policies in the output direction on physical interfaces or in System-QoS mode.
- Apply a application type policy-map in System-QoS mode.

When you apply a policy on a system, the policy is effective on all the ports in the system. However, the interface-level policy takes precedence over the system-level policy.

**Ingress traffic classification**

Ingress traffic can either be data or control traffic.

By default, OS10 does not classify data traffic and assigns the default traffic class ID 0 to all data traffic.

OS10 implicitly classifies all control traffic such as STP, OSPF, ICMP, and so on, and forwards the traffic to control plane applications.

**Data traffic classification**

You can classify the data traffic based on ACL or trust.

ACL-based classification consumes significant amount of network processor resources. Trust-based classification classifies traffic in a predefined way without using network processor resources.

**Trust based classification**

OS10 supports classification based on the 802.1p CoS field (L2) or DSCP field (L3).

**802.1p CoS trust map:**

Trust the 802.1p CoS field to mark with a traffic-class ID and color for the CoS flow.

<table>
<thead>
<tr>
<th>CoS</th>
<th>Traffic class ID</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>G</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>G</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>G</td>
</tr>
</tbody>
</table>

**User-defined 802.1p CoS trust map**

You can override the default mapping by creating a dot1p trust map. All the unspecified dot1p entries map to the default traffic class ID 0.

**Configure user-defined 802.1p CoS trust map**

1. Create a dot1p trust map.

   ```
 OS10(config)# trust dot1p-map dot1p-trust-map
 OS10(config-tmap-dot1p-map)#
   ```
Define the set of dot1p values mapped to traffic-class, the qos-group ID.

OS10(config-map-dot1p-map)# qos-group 3 dot1p 0-4
OS10(config-map-dot1p-map)# qos-group 5 dot1p 5-7

3 Verify the map entries.

OS10# show qos maps type trust-map-dot1p dot1p-trust-map

DOT1P Priority to Traffic-Class Map : dot1p-trust-map

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DOT1P Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0-4</td>
</tr>
<tr>
<td>5</td>
<td>5-7</td>
</tr>
</tbody>
</table>

4 Apply the map on a specific interface or on system-qos, global level.
   • Interface level
     OS10(conf-if-eth1/1/1)# trust-map dot1p dot1p-trust-map

   │ NOTE: In the interface level, the no version of the command returns the configuration to the system-qos level. If there is no configuration available at the system-qos level, the configuration returns to default mapping.

   • System-qos level
     OS10(config-sys-qos)# trust-map dot1p dot1p-trust-map

Configure default CoS trust map

1 Create a default dot1p trust map.

OS10(config)# trust dot1p-map default
OS10(config-map-dot1p-map)#

2 Apply the map on a specific interface or on system-qos (global) level.
   • Interface level
     OS10(conf-if-eth1/1/1)# trust-map dot1p default

   │ NOTE: In the interface level, the no version of the command returns the configuration to system-qos level. If there is no configuration available at the system-qos level, then the configuration returns to default mapping.

   • System-qos level
     OS10(config-sys-qos)# trust-map dot1p default

DSCP trust map:

Assign a predefined and reserved trust classification in the policy map for the DSCP flow.

Table 45. Default DSCP trust map

<table>
<thead>
<tr>
<th>DSCP values</th>
<th>TC id</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>0</td>
<td>G</td>
</tr>
<tr>
<td>4-7</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>8-11</td>
<td>1</td>
<td>G</td>
</tr>
<tr>
<td>12-15</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>16-19</td>
<td>2</td>
<td>G</td>
</tr>
<tr>
<td>20-23</td>
<td>2</td>
<td>Y</td>
</tr>
</tbody>
</table>
### DSCP values

<table>
<thead>
<tr>
<th>DSCP values</th>
<th>TC id</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-27</td>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>28-31</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>32-35</td>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>36-39</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>40-43</td>
<td>5</td>
<td>G</td>
</tr>
<tr>
<td>44-47</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>48-51</td>
<td>6</td>
<td>G</td>
</tr>
<tr>
<td>52-55</td>
<td>6</td>
<td>Y</td>
</tr>
<tr>
<td>56-59</td>
<td>7</td>
<td>G</td>
</tr>
<tr>
<td>60-62</td>
<td>7</td>
<td>Y</td>
</tr>
<tr>
<td>63</td>
<td>7</td>
<td>R</td>
</tr>
</tbody>
</table>

#### User-defined DCSP trust map

Override the default mapping by creating a user-defined DSCP trust map. All the unspecified DSCP entries map to the default traffic class ID 0.

#### Configure user-defined DSCP trust map

1. Create a DSCP trust map.
   
   ```
 OS10(config)# trust dscp-map dscp-trust-map
   ```

2. Define the set of dscp values mapped to traffic-class, the qos-group ID.
   
   ```
 OS10(config-tmap-dscp-map)# qos-group 3 dscp 0-15
 OS10(config-tmap-dscp-map)# qos-group 5 dscp 16-30
   ```

3. Verify the map entries.
   
   ```
 OS10# show qos maps type trust-map-dscp dscp-trust-map
   ```

   **DSCP Priority to Traffic-Class Map : dscp-trust-map**

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DSCP Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0-15</td>
</tr>
<tr>
<td>5</td>
<td>16-30</td>
</tr>
</tbody>
</table>

4. Apply the map on a specific interface or on system-qos global level.
   - Interface level
     
     ```
 OS10(config-if-eth1/1/1)# trust-map dscp dscp-trust-map
     ```
   - System-qos level
     
     ```
 OS10(config-sys-qos)# trust-map dscp dscp-trust-map
     ```

#### Configure default DSCP trust map
1. Create a default DSCP trust map.
   ```
 OS10(config)# trust dscp-map default
 OS10(config-tmap-dscp-map)#
   ```

2. Apply the map on a specific interface or on system-qos global level.
   - Interface level
     ```
 OS10(conf-if-eth1/1/1)# trust-map dscp default
     ```
   - System-qos level
     ```
 OS10(config-sys-qos)# trust-map dscp default
     ```

### ACL based classification

Classify the ingress traffic by matching the packet fields using ACL entries.

Classify the traffic flows based on QoS-specific fields or generic fields, using IP or MAC ACLs. Create a class-map template to match the fields.

OS10 allows matching any of the fields or all the fields based on the match type you configure in the class-map.

Use the access-group match filter to match MAC or IP ACLs. You can configure a maximum of four access-group filters in a class-map:

- 802.1p CoS
- VLAN ID (802.1Q)
- DSCP + ECN
- IP precedence

OS10 supports configuring a range of or comma-separated values of match filters. When you apply the same match filter with new values, the system overwrites the previous values with the new values.

### Configure ACL based classification

1. Create a class-map of type qos.
   ```
 OS10(config)# class-map cmap
   ```

2. Define the fields to match, based on:
   - 802.1p CoS
     ```
 OS10(config-cmap-qos)# match cos 0,4-7
     ```
   - all the 802.1p CoS values excluding a few
     ```
 OS10(config-cmap-qos)# match not cos 3,4
     ```
   - VLAN ID (range of or comma separated VLAN match is not supported)
     ```
 OS10(config-cmap-qos)# match vlan 100
     ```
   - IP DSCP
     ```
 OS10(config-cmap-qos)# match ip dscp 3,5,20-30
     ```
   - IP DSCP + ECN
     ```
 OS10(config-cmap-qos)# match ip dscp 3,5,20-30 ecn 2
     ```
   - IP precedence
     ```
 OS10(config-cmap-qos)# match ip precedence 2
     ```
   - IPv6 DSCP
     ```
 OS10(config-cmap-qos)# match ipv6 dscp 3,5,20-30
     ```
   - IPv6 DSCP + ECN
     ```
 OS10(config-cmap-qos)# match ipv6 dscp 3,5,20-30 ecn 2
     ```
   - IPv6 precedence
     ```
 OS10(config-cmap-qos)# match ipv6 precedence 2
     ```
   - any IP (IPv4 or IPv6) precedence
     ```
 OS10(config-cmap-qos)# match ip-any precedence 2
     ```
3 Create a qos-type policy-map to refer the classes to.
OS10(config)# policy-map cos-policy

4 Refer the class-maps in the policy-map and define the required action for the flows.
OS10(config-pmap-qos)# class cmap
OS10(config-pmap-c-qos)#?

end  Exit to the exec Mode
exit  Exit from current mode
no    Negate a command or set its defaults
police Rate police input traffic
set    Mark input traffic
show   show configuration
trust  Specify dynamic classification to trust[dscp/dot1p]

ACL based classification with trust

This section describes how to configure ACL based classification when you configure trust-based classification.
You can configure ACL based classification when trust-based classification is configured.

1 Create a user defined dscp or dot1p trust-map.
OS10(config)# trust dscp-map userdef-dscp
OS10(config-tmap-dscp-map)# qos-group 3 dscp 15
OS10(config-tmap-dscp-map)# qos-group 5 dscp 30

2 Apply user-defined trust map to an interface or in system QoS.
OS10(config-if-eth1/1/1)# trust-map dscp userdef-dscp

or
OS10(config)# system qos
OS10(config-sys-qos)# trust-map dscp userdef-dscp

3 Create a class-map and attach it to a policy where fallback trust is configured.
OS10(config)# class-map cl
OS10(config-cmap-qos)# match cos 1
OS10(config-cmap-qos)# exit
OS10(config)# policy-map p1
OS10(config-pmap-qos)# class cl
OS10(config-pmap-c-qos)# set qos-group 1

4 Attach the policy map to an interface or in system QoS mode.
OS10(config)# interface ethernet 1/1/1
OS10(config-if-eth1/1/1)# service-policy input type qos p1

or
OS10(config)# system qos
OS10(config-sys-qos)# service-policy input type qos p1
Control-plane policing

Control-plane policing (CoPP) increases security on the system by protecting the route processor from unnecessary traffic and giving priority to important control plane and management traffic. CoPP uses a dedicated control plane configuration through the QoS CLIs to set rate-limiting capabilities for control plane packets.

If the rate of control packets towards the CPU is higher than the packet rate that the CPU can handle, CoPP provides a method to selectively drop some of the control traffic so that the CPU can process high-priority control traffic. You can use CoPP to rate-limit traffic through each CPU port queue of the network processor (NPU).

CoPP applies policy actions on all control-plane traffic. The control-plane class map does not use any match criteria. To enforce rate-limiting or rate policing on control-plane traffic, create policy maps. You can use the `control-plane` command to attach the CoPP service policies directly to the control-plane.

Starting from release 10.4.2, the default rate limits change from 12 to 21 CPU queues and the protocols mapped to each CPU queue.

**NOTE:** When you upgrade from a previous release to release 10.4.2 and you have CoPP policy with rate limits configured in the previous release, the CoPP policies are automatically remapped based on the new CoPP protocol mappings to queues. For example:

- You have a CoPP policy configured for queue 5 in release 10.4.1, which is for ARP Request, ICMPv6-RS-NS, iSCSI snooping, and iSCSI-COS.
- After upgrade to release 10.4.2, the CoPP policy for queue 5 is remapped based on the new CoPP protocol mappings to queues as follows:
  - ARP Request is mapped to queue 6
  - ICMPv6-RS-NS is mapped to queue 5
  - iSCSI is mapped to queue 0
  
  The rate limit configuration in CoPP policy before upgrade is automatically remapped to queues 6, 5, and 0 respectively after upgrade.

For example, in release 10.4.1, the following policy configuration is applied on queue 5, which in 10.4.1 is mapped to ARP_REQ, ICMPV6_RS, ICMPV6_NS, and ISCSI protocols:

```plaintext
policy-map type control-plane test
 class test
 set qos-group 5
 police cir 300 pir 300
```

After upgrade to release 10.4.2, the policy configuration appears as follows:

```plaintext
policy-map type control-plane test
 class test_Remapped_0
 set qos-group 0
 police cir 300 pir 300

 class test_Remapped_5
 set qos-group 5
 police cir 300 pir 300

 class test_Remapped_6
 set qos-group 6
 police cir 300 pir 300
```

In release 10.4.2, ARP_REQ is mapped to queue 6, ICMPV6_RS and ICMPV6_NS are mapped to queue 5, and ISCSI is mapped to queue 0.

Quality of service
By default, CoPP traffic towards the CPU is classified into different queues as shown below.

**Table 46. CoPP: Protocol mappings to queues - prior to release 10.4.2**

<table>
<thead>
<tr>
<th>Queue</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IPv6</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>IGMP</td>
</tr>
<tr>
<td>3</td>
<td>VLT, NDS</td>
</tr>
<tr>
<td>4</td>
<td>ICMPv6, ICMPv4</td>
</tr>
<tr>
<td>5</td>
<td>ARP Request, ICMPv6-RS-NS, ISCSI snooping, ISCSI-COS</td>
</tr>
<tr>
<td>6</td>
<td>ICMPv6-RA-NA, SSH, TELNET, TACACS, NTP, FTP</td>
</tr>
<tr>
<td>7</td>
<td>RSTP, PVST, MSTP, LACP</td>
</tr>
<tr>
<td>8</td>
<td>Dot1X, LLDP, FCOE-FPORT</td>
</tr>
<tr>
<td>9</td>
<td>BGPv4, OSPFv6</td>
</tr>
<tr>
<td>10</td>
<td>DHCPv6, DHCPv4, VRRP</td>
</tr>
<tr>
<td>11</td>
<td>OSPF Hello, OpenFlow</td>
</tr>
</tbody>
</table>

**Table 47. CoPP: Protocol mappings to queues, and default rate limits and buffer sizes - from release 10.4.2 and later**

<table>
<thead>
<tr>
<th>Queue</th>
<th>Protocols</th>
<th>Minimum rate limit (in pps)</th>
<th>Maximum rate limit (in pps)</th>
<th>Minimum guaranteed buffer (in bytes)</th>
<th>Static shared limit (in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unresolved, iSCSI, IPv6</td>
<td>600</td>
<td>600</td>
<td>1664</td>
<td>20800</td>
</tr>
<tr>
<td>1</td>
<td>SFlow</td>
<td>1000</td>
<td>1000</td>
<td>1664</td>
<td>20800</td>
</tr>
<tr>
<td>2</td>
<td>IGMP, MLD, PIM control</td>
<td>400</td>
<td>400</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>3</td>
<td>VLT, NDS</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>4</td>
<td>IPv6 ICMP, IPv4 ICMP</td>
<td>500</td>
<td>500</td>
<td>1664</td>
<td>20800</td>
</tr>
<tr>
<td>5</td>
<td>ICMPv6 RS, RA, NS, NA</td>
<td>500</td>
<td>500</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>6</td>
<td>ARP request</td>
<td>500</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>7</td>
<td>ARP response</td>
<td>500</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>8</td>
<td>SSH, TELNET, NTP, FTP, TACACS</td>
<td>500</td>
<td>500</td>
<td>1664</td>
<td>20800</td>
</tr>
<tr>
<td>9</td>
<td>FCoE</td>
<td>600</td>
<td>600</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>Queue</td>
<td>Protocols</td>
<td>Minimum rate limit (in pps)</td>
<td>Maximum rate limit (in pps)</td>
<td>Minimum guaranteed buffer (in bytes)</td>
<td>Static shared limit (in bytes)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>10</td>
<td>LACP</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>11</td>
<td>STP, RSTP, MSTP</td>
<td>400</td>
<td>400</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>12</td>
<td>DOT1X, LLDP</td>
<td>500</td>
<td>500</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>13</td>
<td>IPv6 OSPF</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>14</td>
<td>IPv4 OSPF</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>15</td>
<td>BGP</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>16</td>
<td>IPv4 DHCP, IPv6 DHCP</td>
<td>500</td>
<td>500</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>17</td>
<td>VRRP</td>
<td>600</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>18</td>
<td>BFD</td>
<td>700</td>
<td>700</td>
<td>1664</td>
<td>48880</td>
</tr>
<tr>
<td>19</td>
<td>Remote CPS</td>
<td>700</td>
<td>1000</td>
<td>1664</td>
<td>48880</td>
</tr>
</tbody>
</table>

For information about the current protocol to queue mapping and the rate-limit configured per queue, see `show control-plane info`.

## Configure control-plane policing

Rate-limiting the protocol CPU queues requires configuring control-plane type QoS policies.

- Create QoS policies, class maps and policy maps, for the desired CPU-bound queue.
- Associate the QoS policy with a particular rate-limit.
- Assign the QoS service policy to control plane queues.

By default, the peak information rate (pir) and committed information rate (cir) values are in packets per second (pps) for control plane. CoPP for CPU queues converts the input rate from kilobits per second (kbps) to packets per second (pps), assuming 64 bytes is the average packet size, and applies that rate to the corresponding queue – One kbps is roughly equivalent to two pps.

1. Create a control-plane type class-map and configure a name for the class-map in CONFIGURATION mode.
   ```
 class-map type control-plane class-map-name
   ```

2. Return to CONFIGURATION mode.
   ```
 exit
   ```

3. Create an input policy-map to assign the QoS policy to the desired service queues in CONFIGURATION mode.
   ```
 policy-map type control-plane policy-map-name
   ```

4. Associate a policy-map with a class-map in POLICY-MAP mode.
   ```
 class class-name
   ```

5. Configure marking for a specific queue number in POLICY-MAP-CLASS-MAP mode, from 0 to 20.
   ```
 set qos-group queue-number
   ```

6. Configure rate policing on incoming traffic in POLICY-MAP-CLASS-MAP mode.
   ```
 police [cir committed-rate | pir peak-rate]
   ```
   - cir committed-rate — Enter a committed rate value in pps, from 0 to 4000000.
   - pir peak rate — Enter a peak-rate value in pps, from 0 to 40000000.
Create QoS policy for CoPP

OS10(config)# class-map type control-plane copp
OS10(config-cmap-control-plane)# exit
OS10(config)# policy-map type control-plane coppl
OS10(config-pmap-control-plane)# class copp
OS10(config-pmap-c)# set qos-group 2
OS10(config-pmap-c)# police cir 100 pir 100

View policy-map
OS10(config-pmap-c)# do show policy-map
Service-policy(control-plane) input: coppl
  Class-map (control-plane): copp
    set qos-group 2
    police cir 100 bc 100 pir 100 be 100

Assign service-policy

Rate controlling the traffic towards CPU requires configuring the control-plane type policy. To enable CoPP, apply the defined policy-map to CONTROL-PLANE mode.

1. Enter CONTROL-PLANE mode from CONFIGURATION mode.
   control-plane

2. Define an input type service-policy and configure a name for the service policy in CONTROL-PLANE mode.
   service-policy input service-policy-name

Assign control-plane service-policy
OS10(config)# control-plane
OS10(config-control-plane)# service-policy input coppl

View control-plane service-policy
OS10(config-control-plane)# do show qos control-plane
  Service-policy (input): coppl

View configuration

Use show commands to display the protocol traffic assigned to each control-plane queue and the current rate-limit applied to each queue. Use the show command output to verify the CoPP configuration.

View CoPP configuration
OS10# show qos control-plane
  Service-policy (input): pmap1

View CMAP1 configuration
OS10# show class-map type control-plane cmap1
  Class-map (control-plane): cmap1 (match-any)

View CoPP service-policy
OS10# show policy-map type control-plane
  Service-policy(control-plane) input: pmap1
    Class-map (control-plane): cmap1
      set qos-group 6
      police cir 200 bc 100 pir 200 be 100

View CoPP information
OS10# show control-plane info
  Queue | Rate Limit (in pps)
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Count</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISCSI</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>IGMP MLD</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>VLT NDS</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>IPV6_ICMP IPV4_ICMP</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>ICMPV6_RS ICMPV6_NS IPV6_RA</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>ARP_REQ SERVICEABILITY</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>SSH TELNET TACACS NTP FTP</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>FCOE</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LACP</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>RSTP PVST MSTP</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>DOT1X LLDP</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>IPV6_OSPF IPV4_OSPF</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>OSPF_HELLO</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BGP</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>IPV6_DHCP IPV4_DHCP</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>VRRP</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BFD</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>OPEN_FLOW REMOTE CPS</td>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

**View CoPP statistics**

```
OS10# show control-plane statistics
Queue | Packets | Bytes | Dropped Packets | Dropped Bytes |
0 | 26 | 1768 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 |
4 | 36 | 3816 | 0 | 0 |
5 | 36 | 3096 | 0 | 0 |
6 | 919 | 58816 | 0 | 0 |
7 | 67 | 4288 | 0 | 0 |
8 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 |
11 | 80662 | 5539376 | 0 | 0 |
12 | 2779 | 462189 | 0 | 0 |
13 | 0 | 0 | 0 | 0 |
14 | 1265 | 108790 | 0 | 0 |
15 | 422 | 36075 | 0 | 0 |
16 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 |
```

**Egress traffic classification**

Egress traffic is classified into different queues based on the traffic-class ID marked on the traffic flow.

Set the traffic class ID for a flow by enabling trust or by classifying ingress traffic and mark it with a traffic class ID using a policy map. By default, the value of traffic class ID for all the traffic is 0.

The order of precedence for a qos-map is:

1. Interface-level map
2. System-qos-level map
3. Default map
Table 48. Default mapping of traffic class ID to queue

<table>
<thead>
<tr>
<th>Traffic class ID</th>
<th>Queue ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

User-defined QoS map

You can override the default mapping by creating a QoS map.

Configure user-defined QoS map

1. Create a QoS map.
   OS10(config)# qos-map traffic-class tc-q-map

2. Define the set of traffic class values mapped to a queue.
   OS10(config-qos-map)# queue 3 qos-group 0-3

3. Verify the map entries.
   OS10# show qos maps type tc-queue
   Traffic-Class to Queue Map: tc-q-map
   Queue     Traffic-Class
              --------------------------
              3              0-3

4. Apply the map on a specific interface or on a system-QoS global level.
   - Interface level
     OS10(conf-if-eth1/1/1)# qos-map traffic-class tc-q-map
   - System-qos level
     OS10(config-sys-qos)# qos-map traffic-class tc-q-map

Choose all traffic classified for a queue

1. Create a queuing type class-map to match queue 5.
   OS10(config)# class-map type queuing q5

2. Define the queue to match.
   OS10(config-cmap-queuing)# match queue 5

Policing traffic

Use policing to limit the rate of ingress traffic flow. The flow can be all the ingress traffic on a port or a particular flow assigned with a traffic class ID.

In addition, use policing to color the traffic:
• When traffic arrives at a rate less than the committed rate, the color is green.
• When traffic propagates at an average rate greater than or equal to the committed rate and less than peak-rate, the color is yellow.
• When the traffic rate is above the configured peak-rate, the traffic drops to guarantee a bandwidth limit for an ingress traffic flow.

Peak rate is the maximum rate for traffic arriving or leaving an interface under normal traffic conditions. Peak burst size indicates the maximum size of unused peak bandwidth that is aggregated. This aggregated bandwidth enables brief durations of burst traffic that exceeds the peak rate.

**Configure Interface rate policing**

1. Create a QoS type empty class-map to match all the traffic.
   ```
 OS10(config)# class-map cmap-all-traffic
   ```

2. Create a QoS type policy-map to define a policer.
   ```
 OS10(config)# policy-map interface-policer
 OS10(config-pmap-qos)# class cmap-all-traffic
 OS10(config-pmap-c-qos)#police cir 4000 pir 6000
   ```

**Configure flow rate policing**

1. Create a QoS type class-map to match the traffic flow.
   ```
 OS10(config)# class-map cmap-cos3
 OS10(config-cmap-qos)# match cos 3
   ```

2. Create a QoS type policy-map to define a policer and assign a traffic class ID for the CoS flow.
   ```
 OS10(config)# policy-map flow-policer
 OS10(config-pmap-qos)# class cmap-cos3
 OS10(config-pmap-c-qos)# set qos-group 3
 OS10(config-pmap-c-qos)#police cir 4000 pir 6000
   ```

**Mark Traffic**

You can select a flow and mark it with a traffic class ID. Traffic class IDs identify the traffic flow when the traffic reaches egress for queue scheduling.

**Mark traffic**

1. Create a QoS type class-map to match the traffic flow.
   ```
 OS10(config)# class-map cmap3
 OS10(config-cmap-qos)# match cos 3
   ```

2. Create a QoS type policy-map to mark it with a traffic class ID and assign it to the CoS flow.
   ```
 OS10(config)# policy-map cos3-TC3
 OS10(config-pmap-qos)# class cmap3
 OS10(config-pmap-c-qos)# set qos-group 3
   ```

**Color traffic**

You can select a traffic flow and mark it with a color. Color the traffic flow based on:

• Metering. See **Policing traffic**.
• Default trust. See **Trust-based classification**.
• DSCP, ECN capable traffic (ECT), or non-ECT capable traffic.

**Color traffic based on DSCP, ECT, or non-ECT**

1. Create a QoS type class-map to match the traffic flow.
   ```
 OS10(config)# class-map cmap-dscp-3-ect
 OS10(config-cmap-qos)# match ip dscp 3 ecn 1
   ```
Create a QoS type policy-map to color the traffic flow.

```
OS10(config)# policy-map ect-color
OS10(config-pmap-qos)# class cmap-dscp-3-ect
OS10(config-pmap-c-qos)# set qos-group 3
OS10(config-pmap-c-qos)# set color yellow
```

Modify packet fields

You can modify the value of CoS or DSCP fields.

1. Create a QoS type class-map to match a traffic flow.
   
   ```
 OS10(config)# class-map cmap-dscp-3
 OS10(config-cmap-qos)# match ip dscp 3
   ```

2. Modify the policy-map to update the DSCP field.
   
   ```
 OS10(config)# policy-map modify-dscp
 OS10(config-pmap-qos)# class cmap-dscp-3
 OS10(config-pmap-c-qos)# set qos-group 3
 OS10(config-pmap-c-qos)# set dscp 10
   ```

Shaping traffic

You can shape the rate of egress traffic. When you enable rate shaping, the system buffers all traffic exceeding the specified rate until the buffer memory is exhausted. Rate shaping uses all buffers reserved for an interface or queue and shares buffer memory, until it reaches the configured threshold.

Configure traffic shaping

1. Enter the queuing type policy-map and configure a policy-map name in CONFIGURATION mode.
   
   ```
 policy-map type queuing policy-map-name
   ```

2. Enter a class name to apply to the shape rate in POLICY-MAP-QUEUEING mode. A maximum of 32 characters.
   
   ```
 class class-name
   ```

3. (Optional) Configure rate shaping on a specific queue by matching the corresponding qos-group in the class-map. If you do not configure the match qos-group command, rate shaping applies to all queues.
   
   ```
 match qos-group queue-number
   ```

4. Enter a minimum and maximum shape rate value in POLICY-MAP-QUEUEING-CLASS mode.
   
   ```
 shape {min {kbps | mbps}min-value} {max {kbps | mbps}max-value} |
 | 0 to 40000000—kilobits per second kilobits per second—kbps |
 | 0 to 40000 — megabits per second—mbps |
   ```

Bandwidth allocation

You can allocate relative bandwidth to limit large flows and prioritize smaller flows. Allocate the relative amount of bandwidth to nonpriority queues when priorities queues are consuming maximum link bandwidth.

Schedule each egress queue of an interface per Weighted Deficit Round Robin (WDRR) or by strict-priority (SP), which are mutually exclusive. If the bandwidth percent command is present, you cannot configure the priority command.

In S5148F-ON, bandwidth weight is equally applied to UC and MC.

1. Create a queuing type class-map and configure a name for the class-map in CONFIGURATION mode.
   
   ```
 class-map type queuing class-map-name
   ```

2. Apply the match criteria for the QoS group in CLASS-MAP mode.
   
   ```
 qos-group queue-number
   ```

3. Return to CONFIGURATION mode.
   
   ```
 exit
   ```
Create a queuing type policy-map and configure a policy-map name in CONFIGURATION mode.

```plaintext
policy-map type queuing policy-map-name
```

Configure a queuing class in POLICY-MAP mode.

```plaintext
class class-name
```

Assign a bandwidth percent, from 1 to 100 to nonpriority queues in POLICY-MAP-CLASS-MAP mode.

```plaintext
bandwidth percent value
```

**Configure bandwidth allocation**

```plaintext
OS10(config)# class-map type queuing solar
OS10(conf-cmap-queuing)# match qos-group 5
OS10(conf-cmap-queuing)# exit
OS10(config)# policy-map lunar
OS10(config)# policy-map type queuing lunar
OS10(config)# policy-map type queuing solar
OS10(conf-pmap-queuing)# class solar
OS10(conf-pmap-c-que)# bandwidth percent 80
```

**View class-map**

```plaintext
OS10(conf-cmap-queuing)# do show class-map
Class-map (queuing): solar (match-any)

Match: qos-group 5
```

**View policy-map**

```plaintext
OS10(conf-pmap-c-que)# do show policy-map
Service-policy (queuing) output: solar

Class-map (queuing): lunar

bandwidth percent 80
```

**Strict priority queuing**

OS10 uses queues for egress QoS policy types. Enable priorities to dequeue all packets from the assigned queue before servicing any other queues. When you assign more than one queue strict priority, the highest number queue receives the highest priority. You can configure strict priority to any number of queues. By default, all queues schedule traffic per WDRR.

Use the `priority` command to assign the priority to a single unicast queue—this configuration supersedes the `bandwidth percent` configuration. A queue with priority enabled can starve other queues for the same egress interface.

Consider the following when enabling priority queuing in S5148F-ON:

- In a port, one H2 node and three H1 nodes are supported. The H1 node holds 8 unicast queues for data traffic, 8 unicast queues for control traffic, and 8 multicast queues for data traffic.
- The H1 nodes mapped to data traffic are scheduled with DRRR and weight of 50 each. The H1 node mapped to control traffic is scheduled with strict priority.
- The weights corresponding to each traffic class are applied at queue levels for both unicast and multicast queues.
- The bandwidth distribution might go to a minimum of 50, based on the traffic flow in a port. This is determined by the weight of a particular traffic class and traffic type.
- The bandwidth sharing based on ETS happens only between same type of queues.
- You can enable strict priority queuing only for the same type of traffic.

**Create class-map**

1. Create a class-map and configure a name for the class-map in CONFIGURATION mode.

```plaintext
class-map type queuing class-map-name
```

2. Configure a match criteria in CLASS-MAP mode.

```plaintext
match queue queue-id
```

**Define a policy-map**
1. Define a policy-map and create a policy-map name CONFIGURATION mode.
   ```conf
policy-map type queuing policy-map-name
   ```

2. Create a QoS class and configure a name for the policy-map in POLICY-MAP mode.
   ```conf
class class-map-name
   ```

3. Set the scheduler as strict priority in POLICY-MAP-CLASS-MAP mode.
   ```conf
priority
   ```

Apply policy-map

1. Apply the policy-map to the interface in INTERFACE mode or all interfaces in SYSTEM-QOS mode.
   ```conf
system qos
 OR
interface ethernet node/slot/port[:subport]
   ```

2. Enter the output service-policy in SYSTEM-QOS mode or INTERFACE mode.
   ```conf
service-policy {output} type {queuing} policy-map-name
   ```

Enable strict priority on class-map

```conf
OS10(config)# class-map type queuing magnum
OS10(conf-cmap-queuing)# match queue 7
OS10(conf-cmap-queuing)# exit
OS10(config)# policy-map type queuing solar
OS10(conf-pmap-queuing)# class magnum
OS10(conf-pmap-c-que)# priority
OS10(conf-pmap-c-que)# exit
OS10(conf-pmap-queuing)# exit
OS10(config)# system qos
OS10(conf-sys-qos)# service-policy output solar
```

View QoS system

```conf
OS10(conf-sys-qos)# do show qos system
Service-policy (output)(queuing): solar
```

Enable strict priority on interface

```conf
OS10(config)# interface ethernet 1/1/5
OS10(conf-if-eth1/1/5)# service-policy output type queuing solar
```

View policy-map

```conf
OS10(conf-if-eth1/1/5)# do show policy-map
Service-policy(queuing) output: solar
 Class-map (queuing): magnum
 priority
```

## Buffer management

OS10 devices distribute the total available buffer resources into two buffer pools at ingress direction and three buffer pools at egress direction of all physical ports.

All ports in a system are allocated a certain amount of buffers from corresponding pools based on the configuration state of each priority-group or queue. The remaining buffers in the pool are shared across all similarly configured ports.

The following buffer pools are available:

- Ingress buffer pools:
  - Lossy pool (default)
– Lossless pool (PFC)
• Egress buffer pools:
  – Lossy pool (default)
  – Lossless pool (PFC)
  – CPU pool (CPU control traffic)

For example, when all ports are allocated as reserved buffers from the lossy (default) pool, the remaining buffers in the lossy pool are shared across all ports, except the CPU port.

When you enable priority flow control (PFC) on the ports, all the PFC-enabled queues and priority-groups use the buffers from the lossless pool.

OS10 dedicates a separate buffer pool for CPU traffic. All default reserved buffers for the CPU port queues are from the CPU pool. The remaining buffers are shared across all CPU queues. You can modify the buffer settings of CPU queues.

You can configure the size of the CPU pool using the `control-plane-buffer-size` command.

OS10 allows configuration of buffers per priority-group and queue for each port.

Buffer-usage accounting happens for ingress packets on ingress pools and egress packets on egress pool. You can configure ingress-packet buffer accounting per priority-group and egress-packet buffer accounting per queue level.

## Configure ingress buffer

In default ingress buffers, all traffic classes map to the default priority group. The buffers are reserved per default priority group ID 7. All buffers are part of the default pool and all ports share buffers from the default pool.

The reserved buffer size is 9360 bytes for the speed of 10G, 25G, 40G, 50G, and 100G. The supported speed varies for different platforms.

### Table 49. Maximum buffer size

<table>
<thead>
<tr>
<th>Platforms</th>
<th>Max buffer size</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4000</td>
<td>12 MB</td>
</tr>
<tr>
<td>S6010–ON, S4048–ON</td>
<td>16 MB</td>
</tr>
<tr>
<td>S41xx</td>
<td>12 MB</td>
</tr>
<tr>
<td>Z9100–ON</td>
<td>16 MB</td>
</tr>
</tbody>
</table>

The following lists the link-level flow control (LLFC) buffer settings for default priority group 7.

### Table 50. Default setting for LLFC

<table>
<thead>
<tr>
<th>Speed</th>
<th>10G</th>
<th>25G</th>
<th>40G</th>
<th>50G</th>
<th>100G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default reserved buffer</td>
<td>45KB</td>
<td>45KB</td>
<td>111KB</td>
<td>111KB</td>
<td>111KB</td>
</tr>
<tr>
<td>Default Xoff threshold</td>
<td>36KB</td>
<td>36KB</td>
<td>75KB</td>
<td>75KB</td>
<td>75KB</td>
</tr>
<tr>
<td>Default Xon threshold</td>
<td>9KB</td>
<td>9KB</td>
<td>36KB</td>
<td>36KB</td>
<td>36KB</td>
</tr>
</tbody>
</table>

The following table lists the priority flow control (PFC) buffer settings per PFC priority group.
Table 51. Default settings for PFC

<table>
<thead>
<tr>
<th>Speed</th>
<th>10G</th>
<th>25G</th>
<th>40G</th>
<th>50G</th>
<th>100G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default reserved buffer for S4000, S4048-ON, S6010-ON</td>
<td>9KB</td>
<td>NA</td>
<td>9KB</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Default reserved buffer for S41xx, Z9100-ON</td>
<td>9KB</td>
<td>9KB</td>
<td>18KB</td>
<td>18KB</td>
<td>36KB</td>
</tr>
<tr>
<td>Default Xoff threshold</td>
<td>36KB</td>
<td>45KB</td>
<td>75KB</td>
<td>91KB</td>
<td>142KB</td>
</tr>
<tr>
<td>Default Xon threshold</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
</tr>
<tr>
<td>Default dynamic share buffer threshold (alpha value)</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
<td>9KB</td>
</tr>
</tbody>
</table>

**NOTE:** The supported speed varies for different platforms. After the reserved buffers are used, each PFC starts consuming shared buffers from the lossless pool with the alpha value determining the threshold.

You can override the default priority group settings when you enable LLFC or PFC.

1. Create a network-qos type class-map to match the traffic classes. For LLFC, match all the traffic classes from 0 to 7. For PFC, match the required traffic class.
   ```
 OS10(config)# class-map type network-qos tc
 OS10 (config-cmap-nqos)# match qos-group 0-7
   ```

2. Create network-qos type policy-map to define the actions for traffic classes, such as a buffer configuration and threshold.
   ```
 OS10(config)# policy-map type network-qos buffer
 OS10(config-pmap-network-qos)# class tc
 OS10 (config-pmap-c-nqos)# pause buffer-size 300 pause-threshold 200 resume-threshold 100
 OS10 (config-pmap-c-nqos)# queue-limit thresh-mode dynamic 5
   ```

Configure egress buffer

All port queues are allocated with reserved buffers. When the reserved buffers are consumed, each queue starts using the shared buffers from the default pool.

The reserved buffer per queue is 1664 bytes for the speed of 10G, 25G, 40G, 50G, and 100G. The default dynamic shared buffer threshold is 8.

1. Create a queuing type class-map to match the queue.
   ```
 OS10(config)# class-map type queuing q1
 OS10(config-cmap-queuing)# match queue 1
   ```

2. Create a queuing type policy-map to define the actions for queues, such as a buffer configuration and threshold.
   ```
 OS10(config)# policy-map type queuing q-buffer
 OS10(config-pmap-queuing)# class q1
 OS10(config-pmap-c-que)# queue-limit queue-len 200 thresh-mode dynamic 5
   ```

Congestion avoidance

Congestion avoidance anticipates and takes necessary actions to avoid congestion. The following mechanisms avoid congestion:

- **Tail drop**—Packets are buffered at traffic queues. When the buffers are exhausted or reach the configured threshold, excess packets drop. By default, OS10 uses tail drop for congestion avoidance.

- **Random early detection (RED)**—In tail drop, different flows are not considered in buffer utilization. When multiple hosts start retransmission, tail drop causes TCP global re-synchronization. Instead of waiting for the queue to get filled up completely, RED starts dropping excess packets with a certain drop-probability when the average queue length exceeds the configured minimum threshold. The early drop ensures that only some of TCP sources slow down, which avoids global TCP re-synchronization.

- **Weighted random early detection (WRED)**—This allows different drop-probabilities and thresholds for each color — red, yellow, green — of traffic. You can configure the drop characteristics for three different flows by assigning the colors to the flow. Assign colors to a particular flow or traffic using various methods, such as ingress policing, qos input policy-maps, and so on.
Explicit congestion notification (ECN) — This is an extension of WRED. Instead of dropping the packets when the average queue length crosses the minimum threshold values, ECN marks the Congestion Experienced (CE) bit of the ECN field in a packet as ECN-capable traffic (ECT).

1. Configure a WRED profile in CONFIGURATION mode.
   ```
 OS10(config)# wred wred_prof_1
   ```
2. Configure WRED threshold parameters for different colors in WRED CONFIGURATION mode.
   ```
 OS10(config-wred)# random-detect color yellow minimum-threshold 100 maximum-threshold 300 drop-probability 40
   ```
3. Configure the exponential weight value for the WRED profile in WRED CONFIGURATION mode.
   ```
 OS10(config-wred)# random-detect weight 4
   ```
4. Enable ECN.
   ```
 OS10(config-wred)# random-detect ecn
   ```
5. Enable WRED/ECN on a queue.
   ```
 OS10(config)# class-map type queuing c1
 OS10(config-cmap-queuing)# match queue 2
 OS10(config-cmap-queuing)# exit
 OS10(config)# policy-map type queuing p1
 OS10(config-pmap-queuing)# class c1
 OS10(config-pmap-c-que)# random-detect wred_prof_1
   ```
6. Enable WRED/ECN on a port.
   ```
 OS10(config)# interface ethernet 1/1/1
 OS10(conf-if-eth1/1/1)# random-detect wred_prof_1
   ```
7. Enable WRED/ECN on a service-pool.
   ```
 OS10(config)# system qos
 OS10(config-sys-qos)# random-detect pool 0 wred_prof_1
   ```

**NOTE:** On the S4200-ON Series platform, enable ECN globally only. Also, apply ECN configurations only at the queue level. You cannot configure ECN at the interface or service-pool levels. If you try to apply the ECN configuration at the interface or service-pool levels, the configuration is not accepted.
Enable ECN globally.

```
OS10(config-sys-qos)#random-detect ecn
```

After you enable ECN globally, ECN marks the CE bit of the ECN field in a packet as ECT.

In the S4200–ON Series platform, configure separate thresholds for ECN capable traffic (ECT). If you enable ECN, ECT is marked based on the configured ECN threshold and non-ECT drops based on the WRED thresholds.

## Storm control

Traffic storms created by packet flooding or other reasons may degrade the performance of the network. The storm control feature allows you to control unknown unicast, multicast, and broadcast traffic on L2 and L3 physical interfaces.

In the storm control unknown unicast configuration, both the unknown unicast and unknown multicast traffic are rate-limited.

OS10 devices monitor the current level of the traffic rate at fixed intervals, compares the traffic rate with the configured levels, and drops excess traffic.

By default, storm control is disabled on all interfaces. Enable storm control using the `storm-control { broadcast | multicast | unknown-unicast } rate-in-pps` command in INTERFACE mode.

**NOTE:** On the S5148F-ON platform, there is a 2% of deviation in storm control configuration.

- Enable broadcast storm control with a rate of 1000 packets per second (pps) on Ethernet 1/1/1.

```
OS10(conf-if-eth1/1/1)# storm-control broadcast 1000
```

## RoCE for faster access and lossless connectivity

Remote Direct Memory Access (RDMA) enables memory transfers between two computers in a network without involving the CPU of either computer.

RDMA networks provide high bandwidth and low latency without any appreciable CPU overhead for improved application performance, storage and data center utilization, and simplified network management. RDMA was traditionally supported only in an InfiniBand environment. Currently, RDMA over Converged Ethernet (RoCE) is also implemented in data centers that use Ethernet or a mixed-protocol environment.

OS10 devices support RoCE v1 and RoCE v2 protocols.

- RoCE v1 – An Ethernet layer protocol that allows for communication between two hosts that are in the same Ethernet broadcast domain.
- RoCE v2 – An Internet layer protocol that allows RoCE v2 packets to be routed, called Routable RoCE (RRoCE).

To enable RRoCE, configure the QoS service policy on the switch in ingress and egress directions on all the interfaces. For more information about this configuration, see Configure RoCE on the switch.

## Configure RoCE on the switch

The following example describes the steps that you need to perform to configure RoCE on the switch. This configuration example uses priority 3 for RoCE.

1. Enter in to the CONFIGURATION mode.

```
OS10# configure terminal
OS10 (config)#
```

2. Enable the Data Center Bridging Exchange protocol (DCBX).

```
OS10 (config)# dcbx enable
```

794  Quality of service
Create a VLAN. In this example, we use VLAN 55 to switch the RoCE traffic. You can configure any value from 1 to 4093.

```
OS10 (config)# interface vlan 55
```

Create a network-qos type class-map for priority flow control (PFC).

```
OS10 (config)# class-map type network-qos pfcdot1p3
OS10 (config)# match qos-group 3
```

Create queuing-type class-maps for enhanced transmission selection (ETS).

```
OS10 (config)# class-map type queuing Q0
OS10 (config)# match queue 0
OS10 (config)# class-map type queuing Q3
OS10 (config)# match queue 3
```

Create a QoS map for ETS.

```
OS10 (config)# qos-map traffic-class 2Q
OS10 (config)# queue 0 qos-group 0-2, 4-7
OS10 (config)# queue 3 qos-group 3
```

Create a policy-map for PFC.

```
OS10 (config)# policy-map type network-qos pfcdot1p3
OS10 (config)# class pfcdot1p3
OS10 (config)# pause
```

Create an egress policy-map.

```
OS10 (config)# policy-map type queuing 2Q
OS10 (config)# class Q0 bandwidth percent 30
OS10 (config)# class Q3 bandwidth percent 70
```

Apply the dot1p trust globally or at the interface level. In this example, the dot1p trust is applied globally.

```
OS10 (config)# system qos
OS10 (config)# trust-map dot1p default
```

Perform the following configurations on all switch interfaces where you want to support RoCE.

```
a Enter in to the INTERFACE mode and enter the no shutdown command.
OS10# configure terminal
OS10 (config)# interface ethernet 1/1/1
OS10 (conf-if-eth1/1/1)# no shutdown

b Change the switch port mode to trunk mode.
OS10 (conf-if-eth1/1/1)# switchport mode trunk

c Specify the allowed VLANs on the trunk port.
OS10 (conf-if-eth1/1/1)# switchport trunk allowed vlan 55

d Apply the network-qos type policy-map to the interface.
OS10 (conf-if-eth1/1/1)# service-policy input type network-qos pfcdot1p3

e Apply the queuing policy to egress traffic on the interface.
OS10 (conf-if-eth1/1/1)# service-policy output type queuing 2Q

f Enable enhanced transmission selection (ETS) on the interface.
OS10 (conf-if-eth1/1/1)# ets mode on

g Apply the qos-map for ETS configurations on the interface.
OS10 (conf-if-eth1/1/1)# qos-map traffic-class 2Q

h Enable PFC on the interface.
OS10 (conf-if-eth1/1/1)# priority-flow-control mode on
```

**QoS commands**
**bandwidth**

Assigns a percentage of weight to the queue.

**Syntax**

```
bandwidth percent value
```

**Parameters**

- `percent value` — Enter the percentage assignment of bandwidth to the queue, from 1 to 100.

**Default**

Not configured

**Command Mode**

POLICY-MAP QUEUE

**Usage Information**

If you configure this command, you cannot use the `priority` command for the class.

**Example**

```
OS10(conf-pmap-que)# bandwidth percent 70
```

**Supported Releases**

10.2.0E or later

**class**

Creates a QoS class for a type of policy-map.

**Syntax**

```
class class-name
```

**Parameters**

- `class-name` — Enter a name for the class-map. A maximum of 32 characters.

**Default**

Not configured

**Command Mode**

POLICY-MAP-QUEUEING

POLICY-MAP-QOS

POLICY-MAP-NQOS

POLICY-MAP-CP

POLICY-MAP-APPLICATION

**Usage Information**

If you define a class-map under a policy-map, the `qos`, `queuing`, or `control-plane` type is the same as the policy-map. You must create this map in advance. The only exception to this rule is when the policy-map type is `trust`, where the class type must be `qos`.

**Example**

```
OS10(conf-pmap-qos)# class c1
```

**Supported Releases**

10.2.0E or later

**class-map**

Creates a QoS class-map that filters traffic to match packets to the corresponding policy created for your network.

**Syntax**

```
class-map [type {qos | queuing | control-plane}] [[match-any | match-all]] class-map-name
```

**Parameters**

- `type` — Enter a class-map type.
• qos — Enter a qos type class-map.
• queuing — Enter a queueing type class-map.
• control-plane — Enter a control-plane type class-map.
• match-all — Determines how packets are evaluated when multiple match criteria exist. Enter the keyword 
to determine that all packets must meet the match criteria to be assigned to a class.
• match-any — Determines how packets are evaluated when multiple match criteria exist. Enter the keyword 
to determine that packets must meet at least one of the match criteria to be assigned to a class.
• class-map-name — Enter a class-map name. A maximum of 32 characters.

Defaults
• qos — class-map type
• match-any — class-map filter

Command Mode CLASS-MAP-QOS
Usage Information Apply match-any or match-all class-map filters to control-plane, qos, and queuing type class-maps.
Example
OS10(config)# class-map type qos match-all c1
OS10(conf-cmap-qos)#

Command History 10.2.0E or later

clear interface
Clears the statistics per-port or for all ports.
Syntax clear interface [interface node/slot/port[:subport]]
Parameters
• interface — (Optional) Enter the interface type.
• node/slot/port[:subport] — (Optional) Enter the port information.
Default Not configured
Command Mode EXEC
Usage Information None
Example OS10# clear interface ethernet 1/1/1
Supported Releases 10.3.0E or later

clear qos statistics
Clears all QoS-related statistics in the system.
Syntax clear qos statistics
Parameters None
Default Not configured
Command Mode EXEC
Usage Information None
clear qos statistics type

Clears all queue counters for control-plane, qos, and queueing.

Syntax:  
clear qos statistics type {{qos | queuing | control-plane} [interface ethernet node/slot/port[:subport]]}

Parameters:
- qos — Clears qos type statistics.
- queuing — Clears queueing type statistics.
- control-plane — Clears control-plane type statistics.
- interface ethernet node-id/slot/port-id [:subport] — Clears GoS statistics for an Ethernet interface configured for qos, queuing, or control-plane.

Default: Not configured

Command Mode: EXEC

Usage Information:

Example:
OS10# clear qos statistics type qos interface ethernet 1/1/5

Example (control-plane):
OS10# clear qos statistics type control-plane interface ethernet 1/1/7

Example (queuing):
OS10# clear qos statistics type queuing interface ethernet 1/1/2

Supported Releases: 10.2.0E or later

control-plane

Enters CONTROL-PLANE mode.

Syntax:  
control-plane

Parameters:  
None

Default: Not configured

Command Mode: CONTROL-PLANE

Usage Information:

Example (class-map):
OS10(config)# class-map type control-plane match-any c1
OS10(conf-cmap-control-plane)#

Example (policy-map):
OS10(config)# policy-map type control-plane p1
OS10(conf-pmap-control-plane)#

Supported Releases: 10.2.0E or later
control-plane-buffer-size

Configures the buffer size for the CPU pool.

Syntax
control-plane-buffer-size size-of-buffer-pool

Parameters
- size-of-buffer-pool — Enter the buffer size in KB, from 620 KB to 900 KB.

Default
None

Command Mode
SYSTEM-QOS

Usage Information
This command configures the buffer size of the CPU pool. The system allocates a buffer size for CPU pool from the total system buffer. A minimum guaranteed buffer is allocated for each of the CPU queues and the rest is available for shared usage. The size of the buffer pool varies based on the number of CPU queues and buffer usage by each queue, but it cannot be less than the aggregate of the minimum guaranteed buffer allocated for each of the CPU queues. The no version of this command removes the buffer size configured for the CPU pool and returns the buffer size to the default value, 620 KB.

Example
OS10(config-sys-qos)# control-plane-buffer-size 900

Supported Releases
10.4.2.0 and later

flowcontrol

Enables or disables link-level flow control on an interface.

Syntax
flowcontrol [receive | transmit] [on | off]

Parameters
- receive — (Optional) Indicates the port can receive flow control packets from a remote device.

| NOTE: In S5148F-ON, when receive is turned on, it enables decoding of both LLFC and PFC frames on that port. |

- transmit — (Optional) Indicates the local port can send flow control packets to a remote device.
- on — (Optional) When used with receive, allows the local port to receive flow control traffic. When used with transmit, allows the local port to send flow control traffic to the remote device.
- off — (Optional) When used with receive, disables the remote device from sending flow control traffic to the local port. When used with transmit, disables the local port from sending flow control traffic to the remote device.

Default
Disabled (off)

Command Mode
INTERFACE

Usage Information
The no version of this command returns the value to the default.

Example
OS10(conf-if-eth1/1/2)# flowcontrol transmit on

Supported Releases
10.3.0E or later
match

Configures match criteria for the QoS policy.

Syntax

match {cos cos-number | ip [access-group name name | dscp dscp-value | precedence value] | ipv6 [access-group name name [set dscp dscp-value]] | mac access-group acl-name | not [ip | cos] vlan vlan-id} [set dscp dscp-value]

Parameters

- cos cos-number — Enter a queue number for the CoS match criteria, from 0 to 7.
- ip — Enter the IPv4 match criteria.
- access-group name name — (Optional) Enter the IPv4 access-group name.
- dscp dscp-value — (Optional) Enter a DSCP value for L3 DSCP match criteria, from 0 to 63.
- precedence value — (Optional) Enter a precedence value for L3 precedence match criteria, from 0 to 7.
- ipv6 — Enter the IPv6 match criteria.
- access-group name name — (Optional) Enter the IPv6 access-group name.
- set dscp dscp-value — (Optional) Configure a DSCP value for L3 DSCP match criteria, from 0 to 63.
- mac access-group name name — Enter an access-group name for the MAC access-list match criteria. A maximum of 140 characters.
- set dscp dscp-value — Enter a DSCP value for marking the DSCP packets, from 0 to 63.
- not — Enter the IP or CoS to negate the match criteria.
- vlan vlan-id — Enter a VLAN number for VLAN match criteria, from 1 to 4093.

Default
Not configured

Command Mode
CLASS-MAP

Usage Information
In a match-any class, you can enter multiple match criteria. In a match-all class, if the match case is access-group, no other match criteria is allowed. If you attach the access-list to class-map type control-plane, the access-list ignores the permit and deny keywords.

Example
OS10(conf-cmap-qos)# match ip access-group name ag1
OS10(config-cmap-qos)# match ipv6 access-group name ACLv6 set dscp 40

Supported Releases
10.2.0E or later

match cos

Matches a cost of service (CoS) value to L2 dot1p packets.

Syntax

match [not] cos cos-value

Parameters

- cos-value — Enter a CoS value, from 0 to 7.
- not — Enter not to cancel the match criteria.

Default
Not configured

Command Modes
CLASS-MAP

Usage Information
You cannot have two match statements with the same filter-type. If you enter two match statements with the same filter-type, the second statement overwrites the first statement.
Example

OS10(conf-cmap-qos)# match cos 3

Supported Releases
10.2.0E or later

**match dscp**

Configures a DSCP value as a match criteria for a class-map.

**Syntax**

```
match [not] {ip | ipv6 | ip-any } dscp [dscp-list | dscp-list]
```

**Parameters**
- **not** — (Optional) Enter to cancel a previously applied match criteria.
- **ip** — Enter to use IPv4 as the match protocol.
- **ipv6** — Enter to use IPv6 as the match protocol.
- **ip-any** — Enter to use both IPv4 and IPv6 as the match protocol.
- **dscp dscp-list | dscp-list** — Enter a DSCP value in single numbers, comma separated, or a hyphenated range, from 0 to 63.

**Default**
Not configured

**Command Mode**
CLASS-MAP

**Usage Information**
You cannot enter two match statements with the same filter-type. If you enter two match statements with the same filter-type, the second statement overwrites the first statement. The `match-all` option in a class-map does not support `ip-any`. Select either `ip` or `IPv6` for the `match-all` criteria. If you select `ip-any`, you cannot select `ip` or `ipv6` for the same filter type.

**Example**

OS10(conf-cmap-qos)# match ip-any dscp 17-20

**Supported Releases**
10.2.0E or later

**match precedence**

Configures IP precedence values as a match criteria.

**Syntax**

```
match [not] {ip | ipv6 | ip-any} precedence precedence-list
```

**Parameters**
- **not** — Enter to cancel a previously applied match precedence rule.
- **ip** — Enter to use IPv4 as the match precedence rule.
- **ipv6** — Enter to use IPv6 as the match precedence rule.
- **ip-any** — Enter to use both IPv4 and IPv6 as the match precedence rule.
- **precedence precedence-list** — Enter a precedence-list value, from 0 to 7.

**Default**
Not configured

**Command Mode**
CLASS-MAP

**Usage Information**
You cannot enter two match statements with the same filter-type. If you enter two match statements with the same filter-type, the second statement overwrites the first statement.

**Example**

OS10(conf-cmap-qos)# match not ipv6 precedence 3

**Supported Releases**
10.2.0E or later
## match queue

Configures a match criteria for a queue.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>match queue queue-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>queue-number — Enter a queue number, from 0 to 7.</td>
</tr>
<tr>
<td>Default</td>
<td>Not configured</td>
</tr>
<tr>
<td>Command Mode</td>
<td>CLASS-MAP</td>
</tr>
<tr>
<td>Usage Information</td>
<td>You can configure this command only when the class-map type is queuing. You cannot enter two match statements with the same filter-type. If you enter two match statements with the same filter-type, the second statement overwrites the first statement.</td>
</tr>
<tr>
<td>Example</td>
<td>OS10(conf-cmap-queuing)# match queue 1</td>
</tr>
<tr>
<td>Supported Releases</td>
<td>10.2.0E or later</td>
</tr>
</tbody>
</table>

## match vlan

Configures a match criteria based on the VLAN ID number.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>match vlan vlan-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>vlan-id — Enter a VLAN ID number, from 1 to 4093.</td>
</tr>
<tr>
<td>Default</td>
<td>Not configured</td>
</tr>
<tr>
<td>Command Mode</td>
<td>CLASS-MAP</td>
</tr>
<tr>
<td>Usage Information</td>
<td>You cannot enter two match statements with the same filter-type. If you enter two match statements with the same filter-type, the second statement overwrites the first statement.</td>
</tr>
<tr>
<td>Example</td>
<td>OS10(conf-cmap-qos)# match vlan 100</td>
</tr>
<tr>
<td>Supported Releases</td>
<td>10.2.0E or later</td>
</tr>
</tbody>
</table>

## mtu

Calculates the buffer size allocation for matched flows.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>mtu size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>size — Enter the size of the buffer (1500 to 9216).</td>
</tr>
<tr>
<td>Default</td>
<td>9216</td>
</tr>
<tr>
<td>Command Mode</td>
<td>POLICY-MAP-CLASS-MAP</td>
</tr>
<tr>
<td>Usage Information</td>
<td>The no version of this command returns the value to the default.</td>
</tr>
<tr>
<td>Example</td>
<td>OS10(conf-pmap-nqos-c)# mtu 2500</td>
</tr>
<tr>
<td>Supported Releases</td>
<td>10.3.0E or later</td>
</tr>
</tbody>
</table>
**pause**

Enables a pause based on buffer limits for the port to start or stop communication to the peer.

**Syntax**

```
pause [buffer-size size pause-threshold xoff-size resume-threshold xon-size]
```

**Parameters**

- `buffer-size size` — (Optional) Enter the ingress buffer size used as a guaranteed buffer in KB.
  - Default values for PFC: 10G, 25G–183KB, 40G–375KB, 100G–446KB
  - Default values for LLFC: 10G, 25G–207.5KB, 40G, 100G–300.5KB
- `pause-threshold xoff-size` — (Optional) Enter the buffer limit for the port to start or initiate a pause to the peer in KB.
  - Default values for PFC: 10G, 25G–96KB, 40G–192KB, 100G–232KB
  - Default values for LLFC: 10G, 25G–198.5KB, 40G, 100G–264.5KB
- `resume-threshold xon-size` — (Optional) Enter the buffer limit for the port to stop or cancel sending a pause to the peer in KB.
  - Default values for PFC: 10G, 25G–87KB, 40G–183KB, 100G–214KB
  - Default values for LLFC: 10G, 25G–9KB, 40G, 100G–36KB

**Default**

See parameter values

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

Only use this command under the network-qos policy type. Buffer-size, pause-thresholds, and resume-thresholds vary based on platform. Add the policy-map with `pause` to system-qos to service an input to enable pause on all ports, based on a per-port link-level Flow-Control mode. The `xoff` and `xon` threshold settings for link-level flow-control are applied on ports where all traffic classes must be mapped to a single PG. Platform-specific default values are based on MTU sizes of 9216 and cable length of 100 meters. The no version of this command returns the value to the default.

**Example**

```
OS10(config-pmap-c-nqos)# pause buffer-size 45 pause-threshold 25 resume-threshold 10
```

**Example (global and shared buffer)**

```
OS10(config)# policy-map type network-qos nqGlobalPolicy1
OS10(config-cmap-nqos)# class CLASS-NAME
OS10(config-cmap-nqos-c)# pause buffer-size 45 pause-threshold 30 resume-threshold 30
```

**Supported Releases**

10.3.0E or later

---

**pfc-cos**

Configures priority flow-control for cost of service (CoS).

**Syntax**

```
pfc-cos cos-value
```

**Parameters**

- `cos-value` — Enter a single, comma-delimited, or hyphenated range of CoS values for priority flow-control to enable, from 0 to 7.
NOTE: The range 0-7 is invalid. All other ranges, including 0-6 and 1-7 are valid.

Default
Not configured

Command Mode
POLICY-MAP-CLASS-MAP

Usage Information
To configure link-level flow-control, do not configure pfc-cos for the matched class for this policy. Add the policy-map with the pfc-cos configuration to system-qos to service an input to enable priority flow-control behavior on all ports, based on a per-port Priority Flow-Control Enable mode. Add the policy-map with the pfc-cos configuration to interface configurations to service at input and enable Priority Flow-Control on that particular port, based on the port’s Priority Flow-Control Enable mode. If you configure 40G to 10G mode on interfaces and pause (no drop) is enabled on system-qos, all queues may or may not drop traffic based on the availability of buffers. The no version of this command returns the value to the default.

Example
OS10(conf-pmap-c-nqos)# pfc-cos 0-2

Example (global buffer/shared buffer)
OS10(config)# policy-map type network-qos nqGlobalPolicy1
OS10(conf-cmap-nqos)# class CLASS-NAME
OS10(conf-cmap-nqos-c)# pause buffer-size 45 pause-threshold 25 resume-threshold 10
OS10(conf-cmap-nqos-c)# pfc-cos 0-2
OS10(conf-cmap-nqos-c)# queue-limit 140

Supported Releases
10.3.0E or later

pfc-max-buffer-size

Configures the maximum buffer size for priority flow-control enabled flows.

Syntax
pfc-max-buffer-size max-buffer-size

Parameters
max-buffer-size — Enter the maximum buffer size in KB.

Default
None

Command Mode
SYSTEM-QOS

Usage Information
This command configures the maximum size of the lossless buffer pool. The no version of this command removes the maximum buffer size limit.

Example
OS10(config-sys-qos)# pfc-max-buffer-size 2000

Supported Releases
10.4.0E(R1) or later

pfc-shared-buffer-size

Changes the shared buffers size limit for priority flow-control enabled flows.

Syntax
pfc-shared-buffer-size buffer-size

Parameters
buffer-size — Enter the size of the priority flow-control buffer in KB, from 0 to 8911.

Default
832 KB

Command Mode
SYSTEM-QOS

Usage Information
The no version of this command returns the value to the default.
**pfc-shared-headroom-buffer-size**

Configures the shared headroom size for absorbing the packets after pause frames generate.

**Syntax**

```
pfc-shared-headroom-buffer-size headroom-buffer-size
```

**Parameters**

- `headroom-buffer-size` — Enter the size of the priority flow-control headroom buffer in KB, from 1 to 3399.

**Default**

1024 KB

**Command Mode**

SYSTEM-QOS

**Usage Information**

All PFC-enabled priority groups can use the shared headroom space. Headroom is the buffer space that absorbs the incoming packets after the PFC frames reach the sender. After the threshold is reached, PFC frames generate towards the sender. The packets sent by the sender after the PFC frames generate are absorbed into the Headroom buffer. The no version of this command returns the value to the default.

**Example**

```
OS10(conf-sys-qos)# pfc-shared-headroom-buffer-size 2000
```

**Supported Releases**

10.4.0E(R1) or later

---

**police**

Configures traffic policing on incoming traffic.

**Syntax**

```
police {cir committed-rate [bc committed-burst-size]} {pir peak-rate [be peak-burst-size]}
```

**Parameters**

- `cir committed-rate` — Enter a committed rate value in kilo bits per second, from 0 to 4000000.
- `bc committed-burst-size` — (Optional) Enter the committed burst size in packets for control plane policing and in KB for data packets, from 16 to 200000.
- `pir peak-rate` — Enter a peak-rate value in kilo bits per second, from 0 to 40000000.
- `be peak-burst-size` — (Optional) Enter a peak burst size in kilo bytes, from 16 to 200000.

**Defaults**

- `bc committed-burst-size` value is 200 KB for control plane and 100 KB for all other class-map types
- `be peak-burst-size` value is 200 KB for control plane and 100 KB for all other class-map types

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

If you do not provide the peak-rate pir values, the committed-rate cir values are taken as the pir values. Only the ingress QoS policy type supports this command. For control-plane policing, the rate values are in pps.
**Example**

OS10(conf-pmap-c-qos)# police cir 5 bc 30 pir 20 be 40

**Supported Releases**

10.2.0E or later

---

**policy-map**

Enters QoS POLICY-MAP mode and creates or modifies a QoS policy-map.

**Syntax**

```
policy-map policy-map-name [type {qos | queuing | control-plane | application | network-qos }]
```

**Parameters**

- `policy-map-name` — Enter a class name for the policy-map. A maximum of 32 characters.
- `type` — Enter the policy-map type.
  - `qos` — Create a qos policy-map type.
  - `queuing` — Create a queuing policy-map type.
  - `control-plane` — Create a control-plane policy-map type.
  - `application` — Create an application policy-map type.
  - `network-qos` — Create a network-qos policy-map type.

**Defaults**

- `qos = class-map type and match-any = class-map filter`

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command deletes a policy-map.

**Example**

OS10(config)# policy-map p1

**Example (Queuing)**

OS10(config)# policy-map type queuing p1

**Supported Releases**

10.2.0E or later

---

**priority**

Sets the scheduler as a strict priority.

**Syntax**

```
priority
```

**Parameters**

None

**Default**

WDRR — when priority is mentioned, it moves to SP with default level 1.

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

If you use this command, bandwidth is not allowed. Only the egress QoS policy type supports this command.

**Example**

OS10(conf-pmap-que)# priority

**Supported Releases**

10.2.0E or later
priority-flow-control mode

Enables or disables Priority Flow-Control mode on an interface.

Syntax

priority-flow-control mode [on]

Parameters

- on — (Optional) Enables Priority Flow-Control mode.

Default

Disabled

Command Mode

INTERFACE

Usage Information

Before enabling priority flow-control on a interface, verify a matching network-qos type policy is configured with the pfc-cos value for an interface. Use this command to disable priority flow-control if you are not using a network-qos type policy for an interface. The no version of this command returns the value to the default.

Example

OS10(conf-if-eth1/1/2)# priority-flow-control mode on

Supported Releases

10.3.0E or later

qos-group dot1p

Configures a dot1p trust map to the traffic class.

Syntax

qos-group tc-list [dot1p values]

Parameters

- qos-group tc-list — Enter the traffic single value class ID, from 0 to 7.
- dot1p values — (Optional) Enter either single, comma-delimited, or a hyphenated range of dot1p values, from 0 to 7.

Default

0

Command Mode

TRUST-MAP

Usage Information

If the trust map does not define dot1p values to any traffic class, those flows map to the default traffic class 0. If some of the dot1p values are already mapped to an existing traffic class, you see an error. You must have a 1:1 dot1p-to-traffic class mapping for PFC-enabled CoS values. You must also have a common dot1p trust map for all interfaces using DCB. The no version of this command returns the value to the default.

Example

OS10(conf-tmap-dot1p-qos)# qos-group 5 dot1p 5

Supported Releases

10.3.0E or later

qos-group dscp

Configures a DSCP trust map to the traffic class.

Syntax

qos-group tc-list [dscp values]

Parameters

- qos-group tc-list — Enter the traffic single value class ID, from 0 to 7.
• **dscp values** — (Optional) Enter either single, comma-delimited, or a hyphenated range of DSCP values, from 0 to 63.

**Default**
0

**Command Mode**
TRUST-MAP

**Usage Information**
If the trust map does not define DSCP values to any traffic class, those flows map to the default traffic class 0. If some of the DSCP values are already mapped to an existing traffic class, you will see an error. The no version of this command returns the value to the default.

**Example**
OS10(conf-tmap-dscp-qos)# qos-group 5 dscp 42

**Supported Releases**
10.3.0E or later

---

**queue-limit**

Configures static or dynamic shared buffer thresholds.

**Syntax**

```
queue-limit {queue-len value | thresh-mode [dynamic threshold-alpha-value | static threshold-value]}
```

**Parameters**

- **queue-len value** — Enter the guaranteed size for the queue, from 0 to 8911.
  - 45 KB (10G)/111 KB (40G) if the queue is priority flow control enabled
  - 2 KB (10G)/8 KB (40G) if the queue is lossy/link-level flow control
  - If this is a priority flow-control queue, this configuration is invalid
  - Only supported for POLICY-MAP-CLASS-MAP (pmap-c-queue) mode

- **thresh-mode** — (Optional) Buffer threshold mode.
  - **dynamic threshold-alpha-value** — (Optional) Enter the value indexes to calculate the shared threshold to the enabled dynamic shared buffer threshold, from 0 to 10. Defaults:
    - 0 = 1/128
    - 1 = 1/64
    - 2 = 1/32
    - 3 = 1/16
    - 4 = 1/8
    - 5 = 1/4
    - 6 = 1/2
    - 7 = 1
    - 8 = 2
    - 9 = 4
    - 10 = 8

- **static threshold-value** — (Optional) Enter the static shared buffer threshold value in Bytes, from 1 to 65535.

**Default**
Not configured

**Command Mode**
POLICY-MAP-CLASS-MAP

**Usage Information**
Use the **queue-len value** parameter to set the minimum guaranteed queue length for a queue. The no version of this command returns the value to the default.

**Example**
OS10(config)# policy-map type network-qos nqGlobalpolicy1
OS10(conf-cmap-nqos)# class type network-qos nqclass1
Example (queue)

```
OS10(config)# policy-map type queuing pmap1
OS10(config-pmap-queuing)# class cmap1
OS10(config-pmap-c-que)# queue-limit queue-len 100
OS10(config-pmap-c-que)# queue-limit thresh-mode static 50
```

Supported Releases 10.3.0E or later

### queue bandwidth

Configures a bandwidth for a given queue on interface.

**Syntax**

```
queue queue-number bandwidth bandwidth-percentage
```

**Parameters**

- `queue-number` — Enter the queue number.
- `bandwidth-percentage` — Enter the percentage of bandwidth.

**Default**

Not configured

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

The `no` version of this command removes the bandwidth from the queue.

**Example**

None

**Supported Releases**

10.4.0E(R1) or later

### queue qos-group

Configures a dot1p traffic class to a queue.

**Syntax**

```
queue number [qos-group dot1p-values]
```

**Parameters**

- `queue number` — Enter the traffic single value queue ID, from 0 to 7.
- `qos-group dot1p-values` — (Optional) Enter either single, comma-delimited, or a hyphenated range of dot1p values, from 0 to 7.

**Default**

0

**Command Mode**

TRUST-MAP

**Usage Information**

If the trust map does not define traffic class values to a queue, those flows map to the default queue 0. If some of the traffic class values are already mapped to an existing queue, you see an error. The `no` version of this command returns the value to the default.

**Example**

```
OS10(conf-tmap-tc-queue-qos)# queue 2 qos-group 5
```

**Supported Releases**

10.3.0E or later
random-detect (interface)

Assigns a WRED profile to the specified interface.

Syntax

```plaintext
random-detect wred-profile
```

Parameters

- `wred-profile` — Enter the name of an existing WRED profile.

Default

Not configured

Command Mode

INTERFACE

Usage Information

The `no` version of this command removes the WRED profile from the interface.

Example

```plaintext
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# random-detect test_wred
```

Supported Releases

10.4.0E(R1) or later

random-detect (queue)

Assigns a WRED profile to the specified queue.

Syntax

```plaintext
random-detect wred-profile-name
```

Parameters

- `wred-profile-name` — Enter the name of an existing WRED profile.

Default

Not configured

Command Mode

PMAP-C-QUE

Usage Information

The `no` version of this command removes the WRED profile from the queue.

Example

```plaintext
OS10(config)# policy-map type queuing p1
OS10(config-pmap-queuing)# class c1
OS10(config-pmap-c-que)# random-detect test_wred
```

Supported Releases

10.4.0E(R1) or later

random-detect color

Configures the threshold of WRED profile for available colors.

Syntax

```plaintext
random-detect color color-name minimum-threshold minimum-value maximum-threshold maximum-value drop-probability drop-rate
```

Parameters

- `color-name` — Enter the color of drop precedence for the WRED profile. The available options are green, yellow, and red.
- `minimum-value` — Enter the minimum threshold value for the specified color, from 1 to 12480.
- `maximum-value` — Enter the maximum threshold value for the specified color, from 1 to 12480.
- `drop-rate` — Enter the rate of drop precedence in percentage, from 0 to 100.

Default

Not configured
random-detect ecn

Enables explicit congestion notification (ECN) for the WRED profile.

Syntax
random-detect ecn

Parameters
None

Default
Not configured

Command Mode
WRED CONFIGURATION

Usage Information
The no version of this command disables ECN.

Example
OS10(config)# wred test_wred
OS10(config-wred)# random-detect color green minimum-threshold 100 maximum-threshold 300 drop-probability 40

Supported Releases
10.4.0E(R1) or later

random-detect ecn

Enables ECN for the system globally.

Syntax
random-detect ecn

Default
Not configured

Command Mode
SYSTEM QOS

Usage Information
The no version of this command disables ECN globally.

NOTE: This command enables ECN globally and is supported only on the S4200–ON Series platform. In the SYSTEM QOS mode, this command is not available on other platforms. Also, you can configure ECN only per queue; you cannot configure ECN on an interface or service pool on the S4200–ON Series platform.

Example
applicableOS10(config)# system-qos
OS10(config-sys-qos)# random-detect ecn

Supported Releases
10.4.1.0 or later

random-detect pool

Assigns a WRED profile to the specified global buffer pool.

Syntax
random-detect pool pool-value wred-profile-name
Parameters

- pool-value — Enter the pool value, from 0 to 1.
- wred-profile-name — Enter the name of an existing WRED profile.

Default
Not configured

Command Mode
SYSTEM-QOS

Usage Information
The no version of this command removes the WRED profile from the interface.

Example
OS10(config)# system qos
OS10(config-sys-qos)# random-detect pool 0 test_wred

Supported Releases
10.4.0E(R1) or later

random-detect weight

Configures the exponential weight value used to calculate the average queue depth for the WRED profile.

Syntax
random-detect weight weight-value

Parameters
weight-value — Enter a value for the weight, from 1 to 15.

Default
Not configured

Command Mode
WRED CONFIGURATION

Usage Information
The no version of this command removes the weight factor from the WRED profile.

Example
OS10(config)# wred test_wred
OS10(config-wred)# random-detect weight 10

Supported Releases
10.4.0E(R1) or later

service-policy

Configures the input and output service policies.

Syntax
service-policy {input | output} {type {qos | queuing | network-qos}} policy-map-name

Parameters
- input — Enter to assign a QoS policy to the interface input.
- output — Enter to assign a QoS policy to the interface output.
- qos — Enter to assign a qos type policy-map.
- queuing — Enter to assign the queuing type policy-map.
- network-qos — Enter to assign the network-qos type policy-map.
- policy-map-name — Enter the policy-map name. A maximum of 32 characters.

Default
Not configured

Command Mode
INTERFACE

Usage Information
Attach only one policy-map to the interface input and output for each qos and queuing policy-map type. You can attach four service-policies to the system QoS — one each for qos, queuing, and network-qos type policy-
When you configure interface-level policies and system-level policies, the interface-level policy takes precedence over the system-level policy.

Example

```
OS10(conf-if-eth1/1/7)# service-policy input type qos pl
```

Supported Releases

10.2.0E or later

### set cos

Sets a cost of service (CoS) value to mark L2 802.1p (dot1p) packets.

**Syntax**

```
set cos cos-value
```

**Parameters**

- `cos-value`: Enter a CoS value, from 0 to 7.

**Default**

Not configured

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

You cannot enter two set statements with the same action-type. If you enter two set statements with the same action-type, the second statement overwrites the first. When class-map type is `qos`, the qos-group corresponds to data queues 0 to 7.

Example

```
OS10(conf-pmap-c-qos)# set cos 6
```

Supported Releases

10.2.0E or later

### set dscp

Sets the drop precedence for incoming packets based on their DSCP value and color map profile.

**Syntax**

```
set dscp dscp-value
```

**Parameters**

- `dscp-value`: Enter a DSCP value, from 0 to 63.

**Default**

Not configured

**Command Mode**

POLICY-MAP-CLASS-MAP

**Usage Information**

When class-map type is `qos`, the qos-group corresponds to data queues 0 to 7.

Example

```
OS10(conf-pmap-c-qos)# set dscp 10
```

Supported Releases

10.2.0E or later

### set qos-group

Configures marking for the QoS-group queues.

**Syntax**

```
set qos-group queue-number
```

**Parameters**

- `queue-number`: Enter a queue number, from 0 to 7.

**Default**

Not configured

**Command Mode**

POLICY-MAP-CLASS-MAP
Usage Information

This command supports only the qos or control-plane ingress policy type. When the class-map type is control-plane, the qos-group corresponds to CPU queues 0 to 11. When the class-map type is qos, the qos-group corresponds to data queues 0 to 7.

Example

OS10(conf-pmap-c-qos)# set qos-group 7

Supported Releases

10.2.0E or later

shape

Shapes the outgoing traffic rate.

Syntax

shape {min {kbps | mbps} min-value [burst-size]} {max {kbps | mbps} max-value [max-burst-size]}

Parameters

- min — Enter the minimum committed rate in unit in kbps, mbps.
- kbps — Enter the committed rate unit in kilobits per second, from 0 to 40000000.
- mbps — Enter the committed rate unit in megabits per second, from 0 to 40000.
- burst-size — Enter the burst size in kilobytes per packet, from 0 to 10000 or 1 to 1073000.
- max — Enter the maximum peak rate in kbps, mbps.
- max-burst-size — Enter the burst size in kilobytes per packets, from 0 to 10000 or 1 to 1073000.

Default

Maximum burst size is 50 kb

Command Mode

POLICY-MAP-CLASS-MAP

Usage Information

This command only supports the ingress QoS policy type. You must enter both the minimum and maximum values. If you enter the rate value in pps, the burst provided is in packets. If you enter the rate in kbps or mbps, the burst is provided in kb.

Example

OS10(conf-pmap-c-que)# shape min kbps 11 max kbps 44

Supported Releases

10.2.0E or later

show class-map

Displays configuration details of all existing class-maps.

Syntax

show class-map [type {control-plane | qos | queuing | network-qos} class-map-name]

Parameters

- type — Enter the policy-map type — qos, queuing, or control-plane.
- qos — Displays all policy-maps of qos type.
- queuing — Displays all policy-maps of queuing type.
- network-qos — Displays all policy-maps of network-qos type.
- control-plane — Displays all policy-maps of control-plane type.
- class-map-name — Displays the GoS class-map name.

Default

Not configured

Command Mode

EXEC
Usage Information

This command displays all class-maps of qos, queuing, network-qos, or control-plane type. The class-map-name parameter displays all details of a configured class-map name.

Example

OS10# show class-map type qos cl
Class-map (qos):  cl (match-all)
Match(not): ip-any dscp 10

Supported Releases

10.2.0E or later

show control-plane buffers

Displays the pool type, reserved buffer size, and the maximum threshold value for each of the CPU queues.

Syntax

show control-plane buffers

Parameters

None

Default

None

Command Mode

EXEC

Usage Information

None

Example

OS10# show control-plane buffers
queue-number     pool-type     rsvd-buf-size     threshold-mode     threshold-value
-------------------------------------------------------------------------------------
 0            lossy          1664             static           20800
 1            lossy          1664             static           20800
 2            lossy          1664             static           48880
 3            lossy          9216             static           48880
 4            lossy          1664             static           20800
 5            lossy          1664             static           48880
 6            lossy          1664             static           48880
 7            lossy          1664             static           48880
 8            lossy          1664             static           48880
 9            lossy          9216             static           48880
10           lossy          1664             static           48880
11           lossy          1664             static           48880
12           lossy          1664             static           48880
13           lossy          9216             static           48880
14           lossy          1664             static           48880
15           lossy          9216             static           48880
16           lossy          1664             static           48880
17           lossy          1664             static           48880
18           lossy          1664             static           48880
19           lossy          1664             static           48880

Supported Releases

10.4.2 and later

show control-plane buffer-stats

Displays the control plane buffer statistics for each of the CPU queues.

Syntax

show control-plane buffer-stats

Parameters

None

Default

A predefined default profile exists.

Command Mode

EXEC
Usage Information

Example

OS10# show control-plane buffer-stats
<table>
<thead>
<tr>
<th>Queue</th>
<th>TX pckts</th>
<th>TX bytes</th>
<th>Used reserved buffers</th>
<th>Used shared buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
<td>2312</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>6084</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Supported Releases
10.4.2 and later

show control-plane info

Displays control-plane queue mapping and rate limits.

Syntax
show control-plane info

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Monitors statistics for the control-plane and to troubleshoot CoPP.

Example
OS10# show control-plane info
<table>
<thead>
<tr>
<th>Queue</th>
<th>Rate Limit (in pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
</tr>
<tr>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>11</td>
<td>400</td>
</tr>
<tr>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td>13</td>
<td>600</td>
</tr>
<tr>
<td>14</td>
<td>600</td>
</tr>
<tr>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>16</td>
<td>500</td>
</tr>
<tr>
<td>17</td>
<td>600</td>
</tr>
</tbody>
</table>

Quality of service
show control-plane statistics

Displays counters of all the CPU queue statistics.

Syntax

```
show control-plane info
```

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show control-plane statistics
Queue Packets Bytes Dropped Packets Dropped Bytes
0 26 1768 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 36 3816 0 0
5 36 3096 0 0
6 919 58816 0 0
7 67 4288 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 80662 5539376 0 0
12 2779 462189 0 0
13 0 0 0 0
14 1265 108790 0 0
15 422 36075 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
```

Supported Releases 10.2.0E or later

show interface priority-flow-control

Displays the priority flow-control, operational status, CoS bitmap, and statistics per port.

Syntax

```
show interface ethernet 1/1/1 priority-flow-control [details]
```

Parameters

```
details — (Optional) Displays all priority flow control information for an interface.
```

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example (Details)

```
OS10# show interface priority-flow-control details
TenGig 1/1:
Admin Mode: On
```
OperStatus: On
PFC Priorities: 0,4,7
Total Rx PFC Frames: 300
Total Tx PFC Frames: 200
Cos      Rx      Tx
-----------------------
0        0        0
1        0        0
2        0        0
3        300      200
4        0        0
5        0        0
6        0        0
7        0        0

Supported Releases  10.3.0E or later

show qos interface

Displays the QoS configuration applied to a specific interface.

Syntax
show qos interface ethernet node/slot/port[:subport]

Parameters
node/slot/port[:subport] — Enter the Ethernet interface information.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show qos interface ethernet 1/1/10
Ethernet 1/1/10
  unknown-unicast-storm-control : 100 pps
  multicast-storm-control : 200 pps
  broadcast-storm-control : Disabled
  flow-control-rx: Enabled
  flow-control-tx: Disabled
  Service-policy (Input)(qos): pl

Supported Releases  10.2.0E or later

show policy-map

Displays information on all existing policy-maps.

Syntax
show policy-map type {control-plane | qos | queuing | network-qos} [policy-map-name]

Parameters
- type — Enter the policy-map type — qos, queuing, or control-plane.
- qos — Displays all policy-maps of qos type.
- queuing — Displays all policy-maps configured of queuing type.
- network-qos — Displays all policy-maps configured of network-qos type.
- control-plane — Displays all policy-maps of control-plane type.
- policy-map-name — Displays the QoS policy-map name details.

Default
Not configured
show qos control-plane

Displays the QoS configuration applied to the control-plane.

Syntax
show qos control-plane

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Monitors statistics for the control-plane and troubleshoots CoPP.

Example
OS10# show qos control-plane
  Service-policy (Input): p1

Supported Releases
10.2.0E or later

show qos egress buffers interface

Displays egress buffer configurations.

Syntax
show qos egress buffers interface [interface node/slot/port[:subport]]

Parameters
- interface — (Optional) Enter the interface type.
- node/slot/port[:subport] — (Optional) Enter the port information.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show qos egress buffers interface ethernet 1/1/1
  Interface : ethernet1/1/1
  Speed : 0
  queue-number     pool-type     rsvd-buf-size     threshold-mode     threshold-value
  ---------     ----------     ---------     -------------     -------------
  0             lossy         1792         dynamic         8
  1             lossy         1792         dynamic         8
  2             lossy         1792         dynamic         8
  3             lossy         1792         dynamic         8
  4             lossless        0         dynamic         10
  5             lossy         1792         dynamic         8
  6             lossy         1792         dynamic         8
show egress buffer-stats interface

Displays the buffers statistics for the egress interface.

Syntax

```
show egress buffer-stats interface [interface node/slot/port[:subport]]
```

Parameters

- `interface` — (Optional) Enter the interface type.
- `node/slot/port[:subport]` — (Optional) Enter the port information.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show qos egress buffer-stats interface ethernet 1/1/1
Interface : ethernet1/1/1
Speed : 0
Queue | TX pkts | TX bytes | Used Total | Used shared
---------|---------|---------|------------|------------
0 | 0 | 0 | 0 | 0
1 | 0 | 0 | 0 | 0
2 | 0 | 0 | 0 | 0
3 | 0 | 0 | 0 | 0
4 | 0 | 0 | 0 | 0
5 | 0 | 0 | 0 | 0
6 | 0 | 0 | 0 | 0
7 | 0 | 0 | 0 | 0
```

show qos ingress buffers interface

Displays interface buffer configurations.

Syntax

```
show qos ingress buffers interface [interface node/slot/port[:subport]]
```

Parameters

- `interface` — (Optional) Enter the interface type.
- `node/slot/port[:subport]` — (Optional) Enter the port information.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show qos ingress buffers interface
Interface : ethernet1/1/1
Speed : 0
Priority-grp | Reserved buffer-size | Shared-buffer mode | Shared-buffer threshold | XOFF threshold | XON threshold
--------------|----------------------|--------------------|-------------------------|----------------|----------------
no | | | | |
```
show ingress buffer-stats interface

Displays the buffers statistics for the ingress interface.

Syntax

```
show ingress buffer-stats interface [interface node/slot/port[:subport]]
```

Parameters

- `interface` — (Optional) Enter the interface type.
- `node/slot/port[:subport]` — (Optional) Enter the port information.

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example

```
OS10# show qos ingress buffer-stats interface ethernet 1/1/1
Interface : ethernet1/1/1
Speed : 0
Priority Used Total Used HDRM
Group buffers buffers
--
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
```

show queuing statistics

Displays GoS queuing statistics information.

Syntax

```
show queuing statistics interface ethernet node/slot/port[:subport] [queue number]
```

Parameters

- `node/slot/port[:subport]` — Enter the Ethernet interface information.
- `queue number` — Enter the GoS queue number, from 0 to 7.

Default
Not configured

Command Mode
EXEC
Usage Information
Use this command to view all queuing counters. WRED counters are available only at the port level.

Example
OS10# show queuing statistics interface ethernet 1/1/1
Interface ethernet1/1/1 (All queues)
Description Packets Bytes
Output 0 0
Dropped 0 0
Green Drop 0 0
Yellow Drop 0 0
Red drop 0 0

Example (Queue)
OS10# show queuing statistics interface ethernet 1/1/1 queue 3
Interface ethernet1/1/1 Queue 3
Description Packets Bytes
Output 0 0
Dropped 0 0

Supported Releases
10.2.0E or later

show qos system
Displays the QoS configuration applied to the system.

Syntax
show qos system

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
View and verify system-level service-policy configuration information.

Example
OS10# show qos system
ETS Mode : off
ECN Mode : off ✗ shows whether the ECN is enabled globally or not
Service-policy (Input) (qos) : policy1
Service-policy (Output)(queuing) : policy2

Supported Releases
10.4.1.0 or later

show qos system buffers
Displays the system buffer configurations and utilization.

Syntax
show qos system {ingress | egress} buffers

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show qos system ingress buffer
All values are in kb
Total buffers - 12187
  Total lossless buffers - 0
  Maximum lossless buffers - 5512
Total shared lossless buffers        - 0
Total used shared lossless buffers   -
Total lossy buffers                 - 11567
Total shared lossy buffers          - 11192
Total used shared lossy buffers     - 0

The following command is supported on Z9100-ON and Z9264F-ON platforms.

OS10# show qos system ingress buffer detail
All values are in kb
Total buffers                              - 43008
  Total lossless buffers                   - 0
  Maximum lossless buffers                 - 23312
  Total shared lossless buffers           - 0
  Total used shared lossless buffers      -
  Total lossy buffers                     - 42388
  Total shared lossy buffers              - 39974
  Total used shared lossy buffers         - 0
MMU 0
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 10012
    Total used shared lossy buffers       - 0
MMU 1
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 10012
    Total used shared lossy buffers       - 0
MMU 2
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 9993
    Total used shared lossy buffers       - 0
MMU 3
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 9993
    Total used shared lossy buffers       - 0

OS10# show qos system egress buffer
All values are in kb
Total buffers                              - 12187
  Total lossless buffers                   - 0
  Total shared lossless buffers           - 0
  Total used shared lossless buffers      -
  Total lossy buffers                     - 11567
  Total shared lossy buffers              - 9812
  Total used shared lossy buffers         - 0
  Total CPU buffers                       - 620
    Total shared CPU buffers              - 558
    Total used shared CPU buffers         - 0

The following command is supported on Z9100-ON and Z9264F-ON platforms.

MAA-Z9364-8621# show qos system egress buffer detail
All values are in kb
Total buffers                              - 43008
  Total lossless buffers                   - 0
  Total shared lossless buffers           - 0
  Total used shared lossless buffers      -
  Total lossy buffers                     - 42388
  Total shared lossy buffers              - 33938
  Total used shared lossy buffers         - 0
MMU 0
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 8484
    Total used shared lossy buffers       - 0
MMU 1
  Total lossy buffers                     - 10597
    Total shared lossy buffers            - 8484
    Total used shared lossy buffers       - 0
MMU 2
  Total lossy buffers                     - 10597

show qos maps

Displays the active system trust map.

**Syntax**

```
show qos maps type {tc-queue | trust-map-dot1p | trust-map dscp} trust-map-name
```

**Parameters**

- `dot1p` — Enter to view the dot1p trust map.
- `dscp` — Enter to view the DSCP trust map.
- `tc-queue` — Enter to view the traffic class to queue map.
- `trust-map` — Enter the name of the trust map.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example (dot1p)**

```
OS10# show qos maps type tc-queue queue-map1
Traffic-Class to Queue Map: queue-map1
Queue Traffic-Class

1 5
2 6
3 7

OS10# show qos maps type trust-map-dot1p dot1p-trustmap1
DOT1P Priority to Traffic-Class Map : dot1p-trustmap1
Traffic-Class DOT1P Priority

0 2
1 3
2 4
3 5
4 6
5 7
6 1
OS10# show qos maps type trust-map-dscp dscp-trustmap1
DSCP Priority to Traffic-Class Map : dscp-trustmap1
Traffic-Class DSCP Priority

0 8-15
2 16-23
1 0-7

OS10# show qos maps
Traffic-Class to Queue Map: queue-map1
Queue Traffic-Class

1 5
2 6
3 7

OS10# show qos maps
DOT1P Priority to Traffic-Class Map : map1
Traffic-Class DOT1P Priority

DOT1P Priority to Traffic-Class Map : dot1p-trustmap1
```

**Supported Releases**

10.3.0E or later
<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DOT1P Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

DSCP Priority to Traffic-Class Map: dscp-trustmap1

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DSCP Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8-15</td>
</tr>
<tr>
<td>2</td>
<td>16-23</td>
</tr>
<tr>
<td>1</td>
<td>0-7</td>
</tr>
</tbody>
</table>

Default Dot1p Priority to Traffic-Class Map

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DOT1P Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Default Dscp Priority to Traffic-Class Map

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>DSCP Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-7</td>
</tr>
<tr>
<td>1</td>
<td>8-15</td>
</tr>
<tr>
<td>2</td>
<td>16-23</td>
</tr>
<tr>
<td>3</td>
<td>24-31</td>
</tr>
<tr>
<td>4</td>
<td>32-39</td>
</tr>
<tr>
<td>5</td>
<td>40-47</td>
</tr>
<tr>
<td>6</td>
<td>48-55</td>
</tr>
<tr>
<td>7</td>
<td>56-63</td>
</tr>
</tbody>
</table>

Default Traffic-Class to Queue Map

<table>
<thead>
<tr>
<th>Traffic-Class</th>
<th>Queue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Example (dscp)

```
OS10# show qos trust-map dscp new-dscp-map
new-dscp-map
qos-group | Dscp
--------- |-----
0 | 0-7 |
1 | 8-15|
2 | 16-23|
3 | 24-31|
4 | 32-39|
5 | 40-47|
6 | 48-55|
7 | 56-63|
```

Supported Releases

10.3.0E or later
**show qos wred-profile**

Displays the details of WRED profile configuration.

**Syntax**

```
show qos wred-profile [wred-profile-name]
```

**Parameters**

- `wred-profile-name` — (Optional) Enter the Ethernet interface information.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

OS10# show qos wred-profile

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>DROP-RATE</td>
</tr>
<tr>
<td></td>
<td>KB</td>
<td>KB</td>
<td>%</td>
</tr>
</tbody>
</table>

**Example (S4200) — When ECN is enabled globally.**

```
OS10# show qos wred-profile wred_prof1
wred-profile-name gmin-thd gmax-thd gmax-drop-rate ymin-thd ymax-thd ymax-drop-rate rmin-thd rmax-thd rmax-drop-rate
wred_prof1 0 0 0 1 10 40 0 0 0
```

S4200 o/p

```
OS10# show qos wred-profile

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>DROP-RATE</td>
</tr>
<tr>
<td></td>
<td>KB</td>
<td>KB</td>
<td>%</td>
</tr>
</tbody>
</table>

profile1 | 10 | 100 | 100 |
profile2 | |
Color Blind ECN Thd | 100 | 1000 | 100 |
```

**Supported Releases**

**system qos**

Enters SYSTEM-QOS mode to configure system-level service policies.

**Syntax**

```
system qos
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

CONFIGURATION
Usage Information
None

Example
OS10(config)# system qos
OS10(config-sys-qos)#

Supported Releases 10.2.0E or later

trust-map

Configures trust map on an interface or on system QoS.

Syntax
trust-map {dot1p | dscp} {default | trust-map-name}

Parameters
• dot1p — Apply dot1p trust map.
• dscp — Apply dscp trust map.
• default — Apply default dot1p or dscp trust map.
• trust-map-name — Enter the name of trust map.

Default Disabled

Command Mode INTERFACE
SYSTEM-QoS

Usage Information Use this command to apply the trust map on interface or System QoS. The no version of this command removes the applied trust map from the interface or System QoS.

Example
OS10(config)# interface ethernet 1/1/10
OS10(conf-if-eth1/1/10)# trust-map dot1p default
OS10(conf-if-eth1/1/10)# trust-map dot1p d1
OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# trust-map dscp default
OS10(conf-if-eth1/1/2)# trust-map dscp d2

Supported Releases 10.4.1.0 or later

trust dot1p-map

Creates a user-defined trust map for dot1p flows.

Syntax
trust dot1p-map map-name

Parameters
map-name — Enter the name of the dot1p trust map. A maximum of 32 characters.

Default Not configured

Command Mode CONFIGURATION

Usage Information If you enable trust, traffic obeys the dot1p map. default-dot1p-trust is a reserved trust-map name. The no version of this command returns the value to the default.
trust dscp-map

Creates user-defined trust map for DSCP flows.

Syntax

trust dscp-map map-name

Parameters

map-name — Enter the name of the DSCP trust map. A maximum of 32 characters.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

default-dscp-trust is a reserved trust-map name. If you enable trust, traffic obeys this trust map. The no version of this command returns the value to the default.

Example

OS10(config)# trust dscp-map dscp-trust1

Supported Releases

10.3.0E or later

qos-map traffic-class

Creates a user-defined trust map for queue mapping. In S5148F-ON, apply the traffic class only on the egress traffic.

Syntax

qos-map traffic-class map-name

Parameters

map-name — Enter the name of the queue trust map. A maximum of 32 characters.

Default

Not configured

Command Mode

CONFIGURATION

Usage Information

The traffic class routes all traffic to the mapped queue if applied on the interface or system level. The no version of this command returns the value to the default.

Example

OS10(config)# qos-map traffic-class queue-map1
OS10(config-qos-map)# queue 1 qos-group 5
OS10(config-qos-map)# queue 2 qos-group 6
OS10(config-qos-map)# queue 3 qos-group 7
OS10(config-qos-map)#

Supported Releases

10.3.0E or later

trust-map

Applies a dot1p or DSCP traffic class to a queue trust map.

Syntax

trust {dot1p | dscp} {default | trust-map-name}

Parameters

- dot1p—Applies a dot1p trust map.
- dscp—Applies a dscp trust map.
• default—Applies a default trust map.

**Default**

Disabled

**Command Mode**

SYSTEM-QOS

INTERFACE

**Usage Information**

Use the `show qos maps type [tc-queue | trust-map-dot1p | trust-map-dscp] [string]` command to view the current trust mapping. You must change the trust map only during no traffic flow. Verify the correct policy maps are applied. The `no` version of this command returns the value to the default.

**Example**

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# trust-map dscp dscp-trustmap1
```

**Supported Releases**

10.4.1.0 or later

## wred

Configures a weighted random early detection (WRED) profile.

**Syntax**

```
wred wred-profile-name
```

**Parameters**

- `wred-profile-name`—Enter a name for the WRED profile.

**Default**

Not configured

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the WRED profile.

**Example**

```
OS10(config)# wred test_wred
OS10(config-wred)#
```

**Supported Releases**

10.4.0E(R1) or later
Virtual Link Trunking (VLT) is a Layer 2 (L2) aggregate protocol between end devices such as servers connected to different network devices. VLT reduces the role of Spanning Tree Protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distributions or core switches.

VLT:

- Allows a single device to use a LAG across two upstream devices
- Provides a loop-free topology
- Eliminates STP-blocked ports
- Optimizes using all available uplink bandwidth
- Guarantees fast convergence if either a link or device fails
- Enhances optimized forwarding with Virtual Router Redundancy Protocol (VRRP)
- Provides link-level resiliency
- Assures high availability

VLT provides L2 multipathing, creating redundancy through increased bandwidth, enabling multiple parallel paths between nodes and load-balancing traffic where alternative paths exist.

VLT presents a single logical L2 domain from the perspective of attached devices that have a virtual link trunk terminating on separate nodes in the VLT domain. The two VLT nodes are independent Layer2/ Layer3 (L2/L3) switches for devices in the upstream network. L2/L3 control plane protocols and system management features function normally in VLT mode.

VLT configurations must be identical on both sides of a trunk. External switches or servers with LACP see the VLT switches as a single virtual switch.

**VLT physical ports**

- 802.1p, 802.1q, LLDP, flow control, port monitoring, and jumbo frames are supported on VLT physical ports.

**System management protocols**

- All system management protocols are supported on VLT ports — SNMP, RMON, AAA, ACL, DNS, FTP, SSH, syslog, NTP, RADIUS, SCP, and LLDP.
L3 VLAN connectivity
Enable L3 VLAN connectivity, VLANs assigned with an IP address, on VLT peers by configuring a VLAN interface for the same VLAN on both devices.

Optimized forwarding with VRRP
To ensure the same behavior on both sides of the VLT nodes, VRRP requires state information coordination. VRRP Active-Active mode optimizes L3 forwarding over VLT. By default, VRRP Active-Active mode is enabled on all the VLAN interfaces. VRRP Active-Active mode enables each peer to locally forward L3 packets, resulting in reduced traffic flow between peers over the VLTi link.

Spanning-Tree Protocol
VLT ports support RSTP and RPVST+.

Multicast
IGMP snooping and MLD snooping are supported on VLT ports.

NOTE: 802.1x, DHCP snooping, and MSTP are not supported on VLT ports.

Terminology

VLT domain
The domain includes VLT peer devices, VLT interconnect, and all port-channels in the VLT connected to the attached devices. It is also the configuration mode that you must use to assign VLT global parameters.

VLT interconnect (VLTi)
The link between VLT peer switches used to synchronize operating states.

VLT peer device
A pair of devices connected using a dedicated port-channel — the VLTi. You must configure VLT peers separately.

Discovery interface
Port interfaces on VLT peers in the VLT interconnect (VLTi) link.

VLT MAC address
(Optional) Unique MAC address that you assign to the VLT domain. A VLT MAC address is the common address all VLT peers use. If you do not configure a VLT MAC address, the MAC address of the primary peer is used as the VLT MAC address across all peers.

VLT node priority
The priority based on which the primary and secondary VLT nodes are determined. If priority is not configured, the VLT node with the lowest MAC address is elected as the primary VLT node.

VLT port-channel
A combined port-channel between an attached device and VLT peer switches.

VLT port-channel ID
Groups port-channel interfaces on VLT peers into a single virtual-link trunk connected to an attached device. Assign the same port-channel ID to interfaces on different peers that you bundle together.

Orphan ports
Ports that are connected to VLT domain, but not part of the VLT-LAG.

VLT domain

A VLT domain includes the VLT peer devices, VLTi, and all VLT port-channels that connect to the attached devices. It is also the configuration mode that you must use to assign VLT global parameters.

• Each VLT domain must have a unique MAC address that you create or that VLT creates automatically.
• VLAN ID 4094 is reserved as an internal control VLAN for the VLT domain.
• ARP, IPv6 neighbors, and MAC tables synchronize between the VLT peer nodes.
• VLT peer devices operate as a separate node with independent control and data planes for devices that attach to non-VLT ports.
• One node in the VLT domain takes a primary role and the other node takes the secondary role. In a VLT domain with two nodes, the VLT assigns the primary node role to the node with the lowest MAC address by default. You can override the default primary election mechanism by assigning priorities to each node using the primary-priority command.
• If the primary peer fails, the secondary peer (with the higher priority) takes the primary role. If the primary peer (with the lower priority) later comes back online, it is assigned the secondary role (there is no preemption).
• In a VLT domain, the peer network devices must run the same OS10 software version.
• Configure the same VLT domain ID on peer devices. If a VLT domain ID mismatch occurs on VLT peers, the VLTi does not activate.
• In a VLT domain, VLT peers support connections to network devices that connect to only one peer.
**VLT interconnect**

A VLT interconnect (VLTi) synchronizes states between VLT peers. OS10 automatically adds VLTi ports to VLANs spanned across VLT peers and does not add VLTi ports to VLANs configured on only one peer.

- VLAN ID 4094 is reserved as an internal control VLAN for the VLT domain, and it is not user configurable.
- The VLTi synchronizes L2 and L3 control-plane information across the two nodes. The VLTi is used for data traffic only when there is a link failure that requires VLTi to reach the final destination.
- Traffic with an unknown destination MAC address, multicast, or broadcast traffic can cause flooding across the VLTi.
- MAC, ARP, IPv6 neighbors that are learned over VLANs on VLT peer nodes synchronize using VLTi.
- LLDP, flow control, port monitoring, and jumbo frame features are supported on a VLTi.

**Configure VLT**

Verify that both VLT peer devices are running the same OS version. For VRRP operation, configure VRRP groups and L3 routing on each VLT peer.

Configure the following settings on each VLT peer device separately.

1. (Optional) To prevent loops in VLT domain, enable the STP globally using the `spanning-tree mode {rstp | rapid-pvst}` command.
2. Create a VLT domain by configuring the same domain ID on each peer using the `vlt-domain` command.
3. (Optional) To override the default VLT primary election mechanism based on the system MAC addresses of the VLT nodes, configure a VLT node priority for each of the VLT nodes using the `primary-priority` command. Enter a lower priority value for the desired primary VLT peer and a higher priority value for the desired secondary VLT peer.
4. Configure the VLTi interfaces on each peer using the `discovery-interface` command. After you configure both sides of the VLTi, the primary and secondary roles in the VLT domain are automatically assigned if primary priority is not configured.
5. (Optional) Manually reconfigure the default VLT MAC address. Configure the VLT MAC address in both VLT peers.
6. (Optional) Configure a time interval to delay bringing up VLT ports after reload or when VLTi come up after failure.
7. Configure the VLT backup link the heartbeat use with the `backup destination {ip-address | ipv6 ipv6-address} [vrf management] [interval interval-time]` command.
8. Configure VLT port-channels between VLT peers and an attached device using the `vlt-port-channel` command. Assign the same VLT port-channel ID from 1 to 1024 to interfaces on different peers that you bundle together. The peer interfaces appear as a single VLT LAG to downstream devices.
9. Connect peer devices in a VLT domain to an attached access device or server.
RSTP configuration

RSTP prevents loops during the VLT startup phase. If required, configure RSTP in the network, before you configure VLT on peer switches.

- Enable RSTP on each peer node in CONFIGURATION mode.

  ```
 spanning-tree mode rstp
  ```

Configure RSTP — peer 1

```
OS10(config)# spanning-tree mode rstp
```  

Configure RSTP — peer 2

```
OS10(config)# spanning-tree mode rstp
```  

View VLT-specific STP information

```
OS10# show spanning-tree virtual-interface
VFP(VirtualFabricPort) of RSTP 1 is Designated Forwarding
Edge port: No (default)
Link type: point-to-point (auto)
Boundary: No, Bpdu-filter: Disable, Bpdu-Guard: Disable, Shutdown-on-Bpdu-Guard-violation: No
Root-Guard: Disable, Loop-Guard: Disable
Bpdus (MRecords) Sent: 11, Received: 7
Interface Name PortID Prio Cost Sts Cost Bridge ID PortID

VFP(VirtualFabricPort) 0.1 0 1 FWD 0 32768 0078.7614.6062 0.1
```

View STP virtual interface detail

```
OS10# show spanning-tree virtual-interface detail
Port 1 (VFP(VirtualFabricPort)) of RSTP 1 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 32768, address: 00:78:76:14:60:62
Designated bridge priority: 32768, address: 00:78:76:14:60:62
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
Edge port: No (default)
Link Type: Point-to-Point
BPDU Sent: 15, Received: 5
```

RPVST+ configuration

Use RPVST+ for initial loop prevention during the VLT startup phase. If required, configure RPVST+ in the network before you configure VLT on peer switches.

Configure RPVST+ on both the VLT peers. This creates an RPVST+ instance for every VLAN configured in the system. The RPVST+ instances in the primary VLT peer control the VLT LAGs on both the primary and secondary peers.

- Enable RPVST+ on each peer node in CONFIGURATION mode.

  ```
 spanning-tree mode rapid-pvst
  ```

Configure RPVST+ — peer 1

```
OS10(config)# spanning-tree mode rapid-pvst
```  

Configure RPVST+ — peer 2

```
OS10(config)# spanning-tree mode rapid-pvst
```
View RPVST+ information on VLT

OS10# show spanning-tree virtual-interface

VFP(VirtualFabricPort) of vlan 100 is Designated Blocking
Edge port: No (default)
Link type: point-to-point (auto)
Boundary: No, Bpdu-filter: Disable, Bpdu-Guard: Disable, Shutdown-on-Bpdu-Guard-violation: No
Root-Guard: Disable, Loop-Guard: Disable
Bpdus (MRecords) Sent: 7, Received: 9

Interface Name PortID Prio Cost Sts Cost Bridge
ID PortID
-----------------------------------------------------------------------------------------------
VFP(VirtualFabricPort)  0.1       0         1         BLK         0         4196
90b1.1cf4.a602  0.1

View RPVST+ information on VLT in detail

OS10# show spanning-tree virtual-interface detail

Port 1 (VFP(VirtualFabricPort)) of vlan1 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 4097, address: 90:b1:1c:f4:a6:02
Designated bridge priority: 4097, address: 90:b1:1c:f4:a6:02
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
Edge port: No (default)
Link Type: Point-to-Point
BPDU Sent: 202, Received: 42

Port 1 (VFP(VirtualFabricPort)) of vlan100 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 4196, address: 90:b1:1c:f4:a6:02
Designated bridge priority: 4196, address: 90:b1:1c:f4:a6:02
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
Edge port: No (default)
Link Type: Point-to-Point
BPDU Sent: 101, Received: 21

Create VLT domain

A VLT domain requires an ID number. Configure the same VLT domain ID on both peers. For more information, see VLT domain. The no vlt-domain command disables VLT.

1 Configure a VLT domain and enter VLT-DOMAIN mode. Configure the same VLT domain ID on each peer, from 1 to 255.
   vlt-domain domain-id

2 Repeat the steps on the VLT peer to create the VLT domain.

Peer 1

OS10(config)# vlt-domain 1
OS10(conf-vlt-1)#

Peer 2

OS10(config)# vlt-domain 1
OS10(conf-vlt-1)#
VLTi configuration

Before you configure VLTi on peer interfaces, remove each interface from L2 mode with the `no switchport` command. For more information, see VLT interconnect.

1. Enter the VLT domain ID to enter from CONFIGURATION mode.
   ```
vlt-domain domain-id
   ```

2. Configure one or a hyphen-separated range of VLT peer interfaces to become a member of the VLTi in INTERFACE mode.
   ```
discovery-interface {ethernet node/slot/port[:subport] | ethernet node/slot/port[:subport] - node/slot/port[:subport]}
   ```

3. Repeat the steps on the VLT peer.

**Peer 1**

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# exit
OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# exit
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# discovery-interface ethernet1/1/1
OS10(conf-vlt-1)# discovery-interface ethernet1/1/2
```

**Peer 2**

```
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# no switchport
OS10(conf-if-eth1/1/1)# exit
OS10(config)# interface ethernet 1/1/2
OS10(conf-if-eth1/1/2)# no switchport
OS10(conf-if-eth1/1/2)# exit
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# discovery-interface ethernet1/1/1
OS10(conf-vlt-1)# discovery-interface ethernet1/1/2
```

**Configure VLT MAC address**

You can manually configure the VLT MAC address.

Configure the VLT MAC address symmetrical in both the VLT peer switches to avoid any unpredictable behavior when any unit is down or when VLTi is reset. If you do not configure a VLT MAC address, the MAC address of the primary peer is used as the VLT MAC address across all peers. Configuring the MAC address manually enables to minimize the time required to synchronize the default MAC address of the VLT domain on both peer devices when one peer switch reboots.

Use the `vlt-mac mac-address` to configure the MAC address in both the VLT peers.

**Example configuration:**

```
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# vlt-mac 00:00:00:00:00:02
```

**NOTE:** It is recommended to configure the same VLT MAC address manually on both the VLT peer switches.
**Delay restore timer**

When a VLT node boots up, restoration of VLT port status is deferred for a certain amount of time to enable VLT peers to complete the control data information exchange.

If the peer VLT device was up at the time the VLTi link failed, the system allows a delay in bringing up of VLT ports after reload or peer-link restoration between the VLT peer switches.

When both the VLT peers are up and running, and if VLTi fails, the secondary peer brings down the VLT ports. When the VLTi port comes up, secondary peer does not bring up VLT ports immediately. The VLT ports are brought up only after the VLT port restoration timer, to allow both the VLT peers to sync up the control information with each other.

By default, the system allows 90 seconds. You can use the `delay-restore timer` command to modify the duration of the timer.

**Example:**

```
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# delay-restore 100
```

**VLT backup**

VLT backup link is an additional link used to check the availability of the peer nodes in the VLT domain.

When VLTi interface goes down, the backup link helps to differentiate the VLTi link failure from peer node failure. If the VLTi link fails, all the VLT nodes exchange node liveliness information through the backup link.

Based on the node liveliness information, the VLT LAG/port is in up state in the primary VLT peer and in down state in the secondary VLT peer. When only the VLTi link fails, but the peer is alive, the secondary VLT peer shuts down the VLT ports. When the node in primary peer fails, the secondary becomes the primary peer.

Configure the VLT backup link using the `backup destination {ip-address | ipv6 ipv6-address} [vrf management] [interval interval-time]`

**Example configuration:**

```
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination 10.16.151.110 vrf management interval 30
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination ipv6 1::1 vrf management interval 30
```

The following examples describe different cases where VLT backup link can be used:

**Support for new streams during VLTi failure**

When VLTi fails, MAC address learnt after the failure is not synchronized with VLT peers. This leads to continuous flooding of traffic instead of unicast.

Due to wrong hashing, ARP learning might fail leading to traffic being dropped.

In the following illustration, after VLTi is down VLT peer1 learns MAC address of Host2.

As VLTi link fails, the VLT peer2 is not synched up with the MAC address of Host2. Due to this, if the traffic from Host1 is hashed to VLT peer2, then the VLT peer2 floods the traffic. Yet, the traffic would not reach Host2 as the VLT port between VLT peer 2 and Switch 3 is down.
When VLT backup link is enabled, the secondary VLT peer 2 identifies the node liveness through the backup link. If the primary is up, the secondary peer brings down the VLT LAG ports. Now the traffic from Host1 reaches VLT peer 1 and then reaches the destination, that is Host2. In this case the traffic is unicasted instead of flooding, as shown in the following illustration.
Prevention of loops during VLTi failure

When VLTi is down, STP may fail to detect any loops in the system, which creates data loop in an L2 network.

In the following illustration, STP is running in all the three switches. In the steady state, VLT peer 1 is elected as the root bridge.

When VLTi is down, both the VLT nodes become primary. In this state, VLT peer 2 sends STP BPDU to TOR assuming that TOR sends BPDU to VLT peer 1. Due to this, VLT peer 2 does not receive BPDU on the VLT port, but receives TOR BPDU from orphan port. The STP in VLT peer 2 assumes that there is no loop in the system and opens up both the VLT and the orphan ports. This creates a data loop in the system which brings down the system.
When VLT backup link is enabled, the secondary VLT peer identifies the node liveliness of primary through the backup link. If the primary VLT peer is alive, the secondary VLT peer brings down the VLT LAG ports. In this scenario, the STP opens up the orphan port and there is no loop in the system as shown in the following illustration.

Configure VLT port-channel

A VLT port-channel links an attached device and VLT peer switches, also known as a virtual link trunk. OS10 supports a maximum of 128 VLT LAG port-channels per node.

1. Enter the port-channel ID number on the VLT peer in INTERFACE mode, from 1 to 1024.
   ```bash
 interface port-channel id-number
   ```

2. Assign the same ID to a VLT port-channel on each VLT peer. The peers are seen as a single VLT LAG to downstream devices.
   ```bash
 vlt-port-channel vlt-lag-id
   ```
Repeat the steps on the VLT peer.

**Configure VLT LAG — peer 1**

```bash
OS10(config)# interface port-channel 10
OS10(conf-if-po-10)# vlt-port-channel 1
```

**Configure VLT LAG — peer 2**

```bash
OS10(config)# interface port-channel 20
OS10(conf-if-po-20)# vlt-port-channel 1
```

## VLT unicast routing

VLT unicast routing enables optimized routing where packets destined for the L3 endpoint of the VLT peer are locally routed. IPv4 and IPv6 support VLT unicast routing.

To enable VLT unicast routing, both VLT peers must be in L3 mode. The VLAN configuration must be symmetrical on both peers. You cannot configure the same VLAN as L2 on one node and as L3 on the other node.

1. Enter the VLT domain ID in CONFIGURATION mode, from 1 to 1024.
   ```bash
 vlt-domain domain-id
   ```
2. Enable peer-routing in VLT-DOMAIN mode.
   ```bash
 peer-routing
   ```
3. Repeat the steps on the VLT peer.

**Configure unicast routing — peer 1**

```bash
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# peer-routing
```

**View unicast routing — peer 1**

```bash
do show running-configuration vlt
!
 vlt-domain 1
discovery-interface ethernet1/1/3-1/1/6,1/1/53:1-1/1/53:4,1/1/54:1-1/1/54:4
peer-routing
```

**Configure unicast routing — peer 2**

```bash
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# peer-routing
```

**View unicast routing — peer 2**

```bash
do show running-configuration vlt
!
 vlt-domain 1
discovery-interface ethernet1/1/3-1/1/6,1/1/53:1-1/1/53:4,1/1/54:1-1/1/54:4
peer-routing
```

## VRRP Optimized Forwarding

To enable optimized L3 forwarding over VLT, use VRRP Active-Active mode. By default, VRRP Active-Active mode is enabled on the VLAN interfaces. In this mode, each peer locally forwards L3 traffic, resulting in reduced traffic flow over the VLTi. Configure the same static and dynamic L3 routing on each peer to ensure that L3 reachability and routing tables are the same on both peers.

1. Enable VRRP Active-Active mode in VLAN-INTERFACE mode.
   ```bash
 vrrp mode active-active
   ```
2. Configure VRRP on the L3 VLAN that spans both peers.
3 Repeat the steps on the VLT peer.

**Configure VRRP active-active mode — peer 1**

OS10(conf-if-vl-10)# vrrp mode active-active

**Configure VRRP active-active mode — peer 2**

OS10(conf-if-vl-10)# vrrp mode active-active

**View VRRP configuration**

OS10# show running-configuration interface vlan 10

```
! interface vlan10
 no shutdown
 vrrp mode active-active
OS10#
```

**Migrate VMs across data centers**

OS10 switches support movement of virtual machines (VMs) across data centers using VRRP Active-Active mode.

Configure symmetric VRRP with same VRRP group ID and virtual IP in VLANs stretched or spanned across data centers. VMs use the VRRP Virtual IP address of the VLAN as Gateway IP. As the VLAN configurations are symmetric across data centers, you can move the VMs from one data center to another.

You must assign the same VRRP group IDs to the VLANs in L3 mode, with VRRP in Active-Active mode.

The following illustration shows a sample configuration with two data centers:
• Server racks, Rack 1 and Rack 2, are part of data centers DC1 and DC2, respectively.
• Rack 1 is connected to devices A1 and B1 in L2 network segment.
• Rack 2 is connected to devices A2 and B2 in L2 network segment.
• A VLT LAG is present between A1 and B1 as well as A2 and B2.
• A1 and B1 connect to core routers, C1 and D1 with VLT routing enabled.
• A2 and B2 connect to core routers, C2 and D2, with VLT routing enabled.
• The data centers are connected through a direct link or eVLT.
• The core routers C1 and D1 in the local VLT domain connect to the core routers C2 and D2 in the remote VLT domain using VLT links.
• The core routers C1 and D1 in local VLT domain along with C2 and D2 in the remote VLT domain are part of an L3 cloud.
• The core routers C1, D1, C2, D2 are in a VRRP group with the same vrrp-group ID.

When a virtual machine running in Server Rack 1 migrates to Server Rack 2, L3 packets for that VM are routed without interruption.

**Sample configuration of C1:**

- **Configure VRRP on L2 links between core routers:**
  ```
 C1(config)# interface vlan 100
 C1(conf-if-vl-100)# ip address 10.10.100.1/24
 C1(conf-if-vl-100)# vrrp-group 10
 C1(conf-vlan100-vrid-10)# priority 250
 C1(conf-vlan100-vrid-10)# virtual-address 10.10.100.5
  ```
- Configure VLT port channel for VLAN 100:
  C1(config)# interface port-channel 10
  C1(conf-if-po-10)# vlt-port-channel 10
  C1(conf-if-po-10)# switchport mode trunk
  C1(conf-if-po-10)# switchport trunk allowed vlan 100
  C1(conf-if-po-10)# exit

- Add members to port channel 10:
  C1(config)# interface ethernet 1/1/3
  C1(conf-if-eth1/1/3)# channel-group 10
  C1(conf-if-eth1/1/3)# exit
  C1(config)# interface ethernet 1/1/4
  C1(conf-if-eth1/1/4)# channel-group 10
  C1(conf-if-eth1/1/4)# exit

- Configure OSPF on L3 side of core router:
  C1(config)# router ospf 100
  C1(conf-router-ospf-100)# exit
  C1(config)# interface vlan 200
  C1(conf-if-vl-200)# ip ospf 100 area 0.0.0.0

- Configure VLT port channel for VLAN 200:
  C1(config)# interface port-channel 20
  C1(conf-if-po-20)# vlt-port-channel 20
  C1(conf-if-po-20)# switchport mode trunk
  C1(conf-if-po-20)# switchport trunk allowed vlan 200
  C1(conf-if-po-20)# exit

- Add members to port channel 20:
  C1(config)# interface ethernet 1/1/5
  C1(conf-if-eth1/1/5)# channel-group 20
  C1(conf-if-eth1/1/5)# exit
  C1(config)# interface ethernet 1/1/6
  C1(conf-if-eth1/1/6)# channel-group 20
  C1(conf-if-eth1/1/6)# exit

Sample configuration of D1:

- Configure VRPP on L2 links between core routers:
  D1(config)# interface vlan 100
  D1(conf-if-vl-100)# ip address 10.10.100.2/24
  D1(conf-if-vl-100)# vrrp-group 10
  D1(conf-vlan100-vrid-10)# virtual-address 10.10.100.5

- Configure VLT port channel for VLAN 100:
  D1(config)# interface port-channel 10
  D1(conf-if-po-10)# vlt-port-channel 10
  D1(conf-if-po-10)# switchport mode trunk
  D1(conf-if-po-10)# switchport trunk allowed vlan 100
  D1(conf-if-po-10)# exit

- Add members to port channel 10:
  D1(config)# interface ethernet 1/1/3
  D1(conf-if-eth1/1/3)# channel-group 10
  D1(conf-if-eth1/1/3)# exit
  D1(config)# interface ethernet 1/1/4
  D1(conf-if-eth1/1/4)# channel-group 10
  D1(conf-if-eth1/1/4)# exit

- Configure OSPF on L3 side of core router:
  D1(config)# router ospf 100
  D1(conf-router-ospf-100)# exit
  D1(config)# interface vlan 200
  D1(conf-if-vl-200)# ip ospf 100 area 0.0.0.0

- Configure VLT port channel for VLAN 200:
  D1(config)# interface port-channel 20
  D1(conf-if-po-20)# vlt-port-channel 20
  D1(conf-if-po-20)# switchport mode trunk
Sample configuration of C2:

- Configure VRRP on L2 links between core routers:
  C2(config)# interface vlan 100
  C2(conf-if-vl-100)# ip address 10.10.100.3/24
  C2(conf-if-vl-100)# vrrp-group 10
  C2(conf-vlan100-vrid-10)# virtual-address 10.10.100.5

- Configure VLT port channel for VLAN 100:
  C2(config)# interface port-channel 10
  C2(conf-if-po-10)# vlt-port-channel 10
  C2(conf-if-po-10)# switchport mode trunk
  C2(conf-if-po-10)# switchport trunk allowed vlan 100
  C2(conf-if-po-10)# exit

- Add members to port channel 10:
  C2(config)# interface ethernet 1/1/3
  C2(conf-if-eth1/1/3)# channel-group 10
  C2(conf-if-eth1/1/3)# exit
  C2(config)# interface ethernet 1/1/4
  C2(conf-if-eth1/1/4)# channel-group 10
  C2(conf-if-eth1/1/4)# exit

- Configure OSPF on L3 side of core router:
  C2(config)# router ospf 100
  C2(conf-router-ospf-100)# exit
  C2(config)# interface vlan 200
  C2(conf-if-vl-200)# ip ospf 100 area 0.0.0.0

- Configure VLT port channel for VLAN 200:
  C2(config)# interface port-channel 20
  C2(conf-if-po-20)# vlt-port-channel 20
  C2(conf-if-po-20)# switchport mode trunk
  C2(conf-if-po-20)# switchport trunk allowed vlan 200
  C2(conf-if-po-20)# exit

- Add members to port channel 20:
  C2(config)# interface ethernet 1/1/5
  C2(conf-if-eth1/1/5)# channel-group 20
  C2(conf-if-eth1/1/5)# exit
  C2(config)# interface ethernet 1/1/6
  C2(conf-if-eth1/1/6)# channel-group 20
  C2(conf-if-eth1/1/6)# exit

Sample configuration of D2:

- Configure VRRP on L2 links between core routers:
  D2(config)# interface vlan 100
  D2(conf-if-vl-100)# ip address 10.10.100.4/24
  D2(conf-if-vl-100)# vrrp-group 10
  D2(conf-vlan100-vrid-10)# virtual-address 10.10.100.5

- Configure VLT port channel for VLAN 100:
  D2(config)# interface port-channel 10
  D2(conf-if-po-10)# vlt-port-channel 10
  D2(conf-if-po-10)# switchport mode trunk
  D2(conf-if-po-10)# switchport trunk allowed vlan 100
  D2(conf-if-po-10)# exit
- Add members to port channel 10:
  ```
 D2(config)# interface ethernet 1/1/3
 D2(conf-if-eth1/1/3)# channel-group 10
 D2(conf-if-eth1/1/3)# exit
 D2(config)# interface ethernet 1/1/4
 D2(conf-if-eth1/1/4)# channel-group 10
 D2(conf-if-eth1/1/4)# exit
  ```

- Configure OSPF on L3 side of core router:
  ```
 D2(config)# router ospf 100
 D2(conf-router-ospf-100)# exit
 D2(config)# interface vlan 200
 D2(conf-if-vl-200)# ip ospf 100 area 0.0.0.0
  ```

- Configure VLT port channel for VLAN 200:
  ```
 D2(config)# interface port-channel 20
 D2(conf-if-po-20)# vlt-port-channel 20
 D2(conf-if-po-20)# switchport mode trunk
 D2(conf-if-po-20)# switchport trunk allowed vlan 200
 D2(conf-if-po-20)# exit
  ```

- Add members to port channel 20:
  ```
 D2(config)# interface ethernet 1/1/5
 D2(conf-if-eth1/1/5)# channel-group 20
 D2(conf-if-eth1/1/5)# exit
 D2(config)# interface ethernet 1/1/6
 D2(conf-if-eth1/1/6)# channel-group 20
 D2(conf-if-eth1/1/6)# exit
  ```

View VLT information

To monitor the operation or verify the configuration of a VLT domain, use a VLT `show` command on primary and secondary peers.

- View detailed information about the VLT domain configuration in EXEC mode, including VLTi status, local and peer MAC addresses, peer-routing status, and VLT peer parameters.
  ```
 show vlt domain-id
  ```

- View the role of the local and remote VLT peer in EXEC mode.
  ```
 show vlt domain-id role
  ```

- View any mismatches in the VLT configuration in EXEC mode.
  ```
 show vlt domain-id mismatch
  ```

- View detailed information about VLT ports in EXEC mode.
  ```
 show vlt domain-id vlt-port-detail
  ```

- View the current configuration of all VLT domains in EXEC mode.
  ```
 show running-configuration vlt
  ```

View peer-routing information

```
OS10# show vlt 255
Domain ID : 255
Unit ID : 1
Role : primary
Version : 2.0
Local System MAC address : 34:17:eb:3a:bd:80
Role priority : 1
VLT MAC address : aa:bb:cc:dd:ee:ff
IP address : fda5:74c8:b79e:1::1
Delay-Restore timer : 100 seconds
Peer-Routing : Enabled
Peer-Routing-Timeout timer : 9999 seconds
VLTi Link Status
 port-channel1000 : up

VLT Peer Unit ID System MAC Address Status IP Address Version
```

Virtual Link Trunking 845
View VLT role

* indicates the local peer

```
OS10# show vlt 1 role
VLT Unit ID Role

* 1 primary
 2 secondary
```

View VLT mismatch — no mismatch

```
OS10# show vlt 1 mismatch
Peer-routing mismatch:
 No mismatch

VLAN mismatch:
 No mismatch

VLT VLAN mismatch:
 No mismatch
```

View VLT mismatch — mismatch in VLT configuration

```
OS10# show vlt 1 mismatch peer-routing
Peer-routing mismatch:
 VLT Unit ID Peer-routing

* 1 Enabled
 2 Disabled

OS10# show vlt 1 mismatch
Peer-routing mismatch:
 VLT Unit ID Peer-routing

* 1 Enabled
 2 Disabled

VLAN mismatch:
 VLT Unit ID Mismatch VLAN List

* 1 -
 2 4

VLT VLAN mismatch:
 VLT ID : 1
 VLT Unit ID Mismatch VLAN List

* 1 1
 2 2

 VLT ID : 2
 VLT Unit ID Mismatch VLAN List

* 1 1
 2 2
```

View VLT port details

* indicates the local peer

```
OS10# show vlt 1 vlt-port-detail
VLT port channel ID : 1
VLT Unit ID Port-Channel Status Configured ports Active ports

```
VLT commands

backup destination

Configures the VLT backup link for heartbeat timers.

Syntax

```
backup destination {ip-address | ipv6 ipv6-address} [vrf management] [interval interval-time]
```

Parameters

- `ip-address` — Enter the IPv4 address of the backup link.
- `ipv6-address` — Enter the IPv6 address of the backup link.
- `vrf management` — (Optional) Configure the management VRF instance for the backup IPv4 or IPv6 address.
- `interval interval-time` — (Optional) Enter the time in seconds to configure the heartbeat interval.

Default

Not configured

Command Mode

VLT-DOMAIN

Usage Information

The no version of this command removes the IP address from the backup link.

Example

```
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination 10.16.151.110 vrf management interval 30

OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# backup destination ipv6 1::1 vrf management interval 30
```

Supported Releases

10.3.1E or later
delay-restore

Configures a time interval to delay VLT ports bring up after reload or peer-link restoration between the VLT peer switches.

**Syntax**

delay-restore seconds

**Parameters**

*seconds* — Enter a delay time, in seconds, to delay bringing up VLT ports after the VLTi device is reloaded, from 1 to 1200.

**Default**

90 seconds

**Command Mode**

VLT-DOMAIN

**Usage Information**

Use this command to delay the system from bringing up the VLT port for a brief period to allow L3 routing protocols to converge. If the peer VLT device was up at the time the VLTi link failed, use this command after you reload a VLT device. The `no` version of this command resets the delay time to the default value.

**Example**

```
OS10(conf-vlt-1)# delay-restore 100
```

**Supported Releases**

10.3.0E or later

discovery-interface

Configures the interface to discover and connect to a VLT peer in the VLT interconnect (VLTi) link between peers.

**Syntax**


discovery-interface {ethernet node/slot/port[:subport]}

**Parameters**

*ethernet* — Enter the Ethernet interface information for the port on a VLT peer. You can also enter a range of interfaces separated by hyphens.

**Default**

None

**Command Mode**

VLT-DOMAIN

**Usage Information**

The VLT node discovery service auto-LAGs the discovery ports and creates VLTi interfaces. The `no` version of this command disables the discovery-interface configuration.

**Example**

```
OS10(config)# vlt-domain 1
OS10(conf-vlt-1)# discovery-interface ethernet 1/1/15
```

**Example (range)**

```
OS10(config)# vlt-domain 2
OS10(conf-vlt-2)# discovery-interface ethernet 1/1/1-1/1/12
```

**Supported Releases**

10.2.0E or later

derector-routing

Enables or disables L3 routing to peers.

**Syntax**

peer-routing

**Parameters**

None

**Default**

Disabled

**Command Mode**

VLT-DOMAIN
Usage Information
The no version of this command disables L3 routing.

Example
OS10(conf-vlt-1)# peer-routing

Supported Releases
10.2.0E or later

peer-routing-timeout

Configures the delay after which peer routing disables when the peer is not available. This command supports both IPv6 and IPv4.

Syntax
peer-routing-timeout value

Parameters
value — Enter the timeout value in seconds, from 0 to 65535.

Default
0

Command Mode
VLT-DOMAIN

Usage Information
When the timer expires, the software checks to see if the VLT peer is available. If the VLT peer is not available, peer-routing disables on the peer. If you do not configure the timer, peer-routing does not disable even when the peer is unavailable.

Example
OS10(conf-vlt-1)# peer-routing-timeout 120

Supported Releases
10.3.0E or later

primary-priority

Configures the priority when selecting the primary and secondary VLT peers during election.

Syntax
primary-priority value

Parameters
value — Enter a lower value than the priority value of the remote peer. The range is from 1 to 65535. The default value is 32768.

Default
32768.

Command Mode
VLT-DOMAIN

Usage Information
- After you configure a VLT domain on each peer switch and connect the two VLT peers on each side of the VLT interconnect, the system elects a primary and secondary VLT peer device. To configure the primary and secondary roles before the election process, use the primary-priority command. Enter a lower value on the primary peer and a higher value on the secondary peer. If the primary peer fails, the secondary peer (with the higher priority) takes the primary role. If the primary peer (with the lower priority) later comes back online, it is assigned the secondary role; there is no preemption.
- If the priority values configured on the two VLT peers are equal, VLT uses the default primary election mechanism based on the values of the system MAC addresses of the two nodes. The VLT peer with the lowest system MAC address assumes the primary role.
- If the heartbeat is up and the VLTi link goes down between the VLT peers, both the VLT peers retain their primary and secondary roles. However, the VLT LAG on the secondary VLT peer shuts down.

**NOTE:** When you configure a priority for VLT peers using this command, the configuration is not effective immediately. The primary priority configuration comes into effect the next time election is triggered.
### show spanning-tree virtual-interface

Displays STP and RPVST+ information specific to VLT.

**Syntax**

```
show spanning-tree virtual-interface [detail]
```

**Parameters**
- **detail**—(Optional) Displays detailed output.

**Default**
- Not configured

**Command Mode**
- EXEC

**Usage Information**
- None

**Example**

```
OS10# show spanning-tree virtual-interface
VFP(VirtualFabricPort) of RSTP 1 is Designated Forwarding
Edge port: No (default)
Link type: point-to-point (auto)
Boundary: No, Bpdu-filter: Disable, Bpdu-Guard: Disable, Shutdown-on-Bpdu-Guard-violation: No
Root-Guard: Disable, Loop-Guard: Disable
Bpdus (MRecords) Sent: 11, Received: 7
Interface Name PortID Prio Cost Sts Cost Bridge ID Designated PortID

VFP(VirtualFabricPort) 0.1 0 1 FWD 0 32768 0078.7614.6062 0.1
```

```
OS10# show spanning-tree virtual-interface
VFP(VirtualFabricPort) of vlan 100 is Designated Blocking
Edge port: No (default)
Link type: point-to-point (auto)
Boundary: No, Bpdu-filter: Disable, Bpdu-Guard: Disable, Shutdown-on-Bpdu-Guard-violation: No
Root-Guard: Disable, Loop-Guard: Disable
Bpdus (MRecords) Sent: 7, Received: 9
Interface Name PortID Prio Cost Sts Cost Bridge ID Designated PortID

VFP(VirtualFabricPort) 0.1 0 1 BLK 0 4196 90b1.1cf4.a602 0.1
```

**Example (detail)**

```
OS10# show spanning-tree virtual-interface detail
Port 1 (VFP(VirtualFabricPort)) of RSTP 1 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 32768, address: 00:78:76:14:60:62
Designated bridge priority: 32768, address: 00:78:76:14:60:62
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
Edge port: No (default)
Link Type: Point-to-Point
BPDU Sent: 15, Received: 5
```

```
OS10# show spanning-tree virtual-interface detail
Port 1 (VFP(VirtualFabricPort)) of vlan1 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 4097, address: 90:b1:1c:f4:a6:02
Designated bridge priority: 4097, address: 90:b1:1c:f4:a6:02
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
Edge port: No (default)
Link Type: Point-to-Point
BPDU Sent: 202, Received: 42
```

```
OS10# show spanning-tree virtual-interface detail
Port 1 (VFP(VirtualFabricPort)) of vlan100 is designated Forwarding
Port path cost 1, Port priority 0, Port Identifier 0.1
Designated root priority: 4196, address: 90:b1:1c:f4:a6:02
Designated bridge priority: 4196, address: 90:b1:1c:f4:a6:02
Designated port ID: 0.1, designated path cost: 0
Number of transitions to forwarding state: 1
```

---

850  Virtual Link Trunking
show vlt

Displays information on a VLT domain.

**Syntx**

```
show vlt id
```

**Parameter**

- **id** — Enter a VLT domain ID, from 1 to 255.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show vlt 255
Domain ID : 255
Unit ID : 1
Role : primary
Version : 2.0
Local System MAC address : 34:17:eb:3a:bd:80
Role priority : 1
VLT MAC address : aa:bb:cc:dd:ee:ff
IP address : fda5:74c8:b79e:1::1
Delay-Restore timer : 100 seconds
Peer-Routing : Enabled
Peer-Routing-Timeout timer : 9999 seconds
VLT1 Link Status
 port-channel1000 : up
```

**Supported Releases**

10.2.0E or later

show vlt backup-link

Displays the details of heartbeat status.

**Syntax**

```
show vlt domain-id backup-link
```

**Parameters**

- **domain-id** — Enter the VLT domain ID.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show vlt 255 backup-link
VLT Backup Link

Destination : 10.16.208.164
Peer Heartbeat status : Up
```

**Supported Releases**

10.2.0E or later
Heartbeat interval : 1
Heartbeat timeout : 3

Supported Releases

10.3.1E or later

show vlt mac-inconsistency

Displays inconsistencies in dynamic MAC addresses learnt between VLT peers across spanned-vlans.

Syntax

show vlt mac-inconsistency

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

Use this command to check for a mismatch of MAC address table entries between VLT peers. To verify VLT configuration mismatch issues on peer switches, use the show vlt domain-name mismatch command.

Example

OS10# show vlt-mac-inconsistency
Checking Vlan 228 .. Found 7 inconsistencies .. Progress 100%
VLAN 128  
----------
MAC 00:00:00:00:00:02 is missing from Node(s) 2
VLAN 1  
----------
MAC 00:a0:c9:00:00:18 is missing from Node(s) 2
MAC 00:a0:c9:00:00:20 is missing from Node(s) 2
VLAN 131  
----------
MAC 00:00:00:00:00:02 is missing from Node(s) 2
VLAN 132  
----------
MAC 00:00:00:00:00:02 is missing from Node(s) 2
VLAN 135  
----------
MAC 00:00:00:00:00:02 is missing from Node(s) 2
VLAN 137  
----------
MAC 00:00:00:00:00:02 is missing from Node(s) 2

Run "show vlt d1 mismatch ..." commands to identify configuration issues

Supported Releases

10.2.0E or later

show vlt mismatch

Displays mismatches in a VLT domain configuration.

Syntax

show vlt id mismatch [peer-routing | vlan | vlt-vlan vlt-port-id | virtual-network]

Parameters

- **id** — Enter the VLT domain ID, from 1 to 255.
- **peer-routing** — Display mismatches in peer-routing configuration.
- **vlan** — Display mismatches in a VLAN configuration in the VLT domain.
- **vlt-vlan vlt-port-id** — Display mismatches in VLT port configuration, from 1 to 4095.
virtual-network — Display mismatches in virtual network configurations between VLT peers.

<table>
<thead>
<tr>
<th>Default</th>
<th>Not configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Mode</td>
<td>EXEC</td>
</tr>
<tr>
<td>Usage Information</td>
<td>The * in the mismatch output indicates a local node entry.</td>
</tr>
</tbody>
</table>

**Example (no mismatch)**

```bash
OS10# show vlt 1 mismatch
Peer-routing mismatch:
No mismatch
VLAN mismatch:
No mismatch
VLT VLAN mismatch:
No mismatch
```

**Example (mismatch)**

```bash
OS10# show vlt 1 mismatch
Peer-routing mismatch:
VLT Unit ID Peer-routing

* 1 Enabled
 2 Disabled
VLAN mismatch:
No mismatch
VLT VLAN mismatch:
VLT ID : 1
VLT Unit ID Mismatch VLAN List

* 1 1
 2 2
VLT ID : 2
VLT Unit ID Mismatch VLAN List

* 1 1
 2 2
```

**Example (mismatch peer routing)**

```bash
OS10# show vlt 1 mismatch peer-routing
Peer-routing mismatch:
VLT Unit ID Peer-routing

* 1 Enabled
 2 Disabled
```

**Example (mismatch VLAN)**

```bash
OS10# show vlt 1 mismatch vlan
VLT Unit ID Mismatch VLAN List

* 1 -
 2 4
```

**Example (mismatch VLT VLAN)**

```bash
OS10# show vlt 1 mismatch vlt-vlan
VLT ID : 1
VLT Unit ID Mismatch VLAN List

* 1 1
 2 2
VLT ID : 2
VLT Unit ID Mismatch VLAN List

```
Example (mismatch — Virtual Network (VN) name not available in the peer)

OS10# show vlt all mismatch virtual-network
Virtual Network Name Mismatch:
VLT Unit ID  Mismatch Virtual Network List
----------------------------------------------------------------------------
1              10,104
* 2              -

Example (mismatch of VLTi and VLAN)

OS10# show vlt all mismatch virtual-network
Virtual Network: 100
VLT Unit ID  Configured VLTi-Vlans
----------------------------------------------------------------------------
1              101
* 2              100

Example (mismatch of VN mode)

OS10# show vlt all mismatch virtual-network
Virtual Network: 102
VLT Unit ID  Configured Virtual Network Mode
----------------------------------------------------------------------------
1              PV
* 2              Attached

Example (mismatch of port and VLAN list)

OS10# show vlt all mismatch virtual-network
Virtual Network: 102
VLT Unit ID  Mismatch (VLT Port,Vlan) List
----------------------------------------------------------------------------
1              -
* 2              (vlt-port-channel10,vlan99)

Virtual Network: 103
VLT Unit ID  Mismatch (VLT Port,Vlan) List
----------------------------------------------------------------------------
1              (vlt-port-channel10,vlan103)
* 2              (vlt-port-channel10,vlan104)

Example (mismatch of untagged interfaces)

OS10# show vlt all mismatch virtual-network
Virtual Network: 104
VLT Unit ID  Mismatch Untagged VLT Port-channel List
----------------------------------------------------------------------------
1              10
* 2              -

Supported Releases
10.2.0E or later

**show vlt role**

Displays the VLT role of the local peer.

Syntax

```
show vlt id role
```

Parameters

id — Enter the VLT domain ID, from 1 to 255.

Default
Not configured

Command Mode
EXEC

Usage Information
The * in the mismatch output indicates a local node entry.

Example

```
OS10# show vlt 1 role
VLT Unit ID Role
```
show vlt vlt-port-detail

Displays detailed status information about VLT ports.

**Syntax**

```
show vlt id vlt-port-detail
```

**Parameters**

- `id` — Enter a VLT domain ID, from 1 to 255.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

The * in the mismatch output indicates a local node entry.

**Example**

```
OS10# show vlt 1 vlt-port-detail
Vlt-port-channel ID : 1
VLT Unit ID Port-Channel Status Configured ports Active ports

* 1 port-channel1 down 2 0
2 port-channel1 down 2 0

VLT ID : 2
VLT Unit ID Port-Channel Status Configured ports Active ports

* 1 port-channel2 down 1 0
2 port-channel2 down 1 0

VLT ID : 3
VLT Unit ID Port-Channel Status Configured ports Active ports

 2 port-channel3 down 1 0
```

**Supported Releases**

10.2.0E or later

---

vlt-domain

Creates a VLT domain.

**Syntax**

```
vlt-domain domain-id
```

**Parameter**

- `domain-id` — Enter a VLT domain ID on each peer, from 1 to 255.

**Default**

None

**Command Mode**

CONFIGURATION

**Usage Information**

Configure the same VLT domain ID on each peer. If a VLT domain ID mismatch occurs on VLT peers, the VLTi link between peers does not activate. The no version of this command disables VLT.

**Example**

```
OS10(config)# vlt-domain 1
```

**Supported Releases**

10.2.0E or later
**vlt-port-channel**

Configures the ID used to map interfaces on VLT peers into a single VLT port-channel.

**Syntax**

```
vlt-port-channel vlt-lag-id
```

**Parameters**

- **vlt-lag-id** — Enter a VLT port-channel ID, from 1 to 1024.

**Default**

Not configured

**Command Mode**

PORT-CHANNEL INTERFACE

**Usage Information**

Assign the same VLT port-channel ID to interfaces on VLT peers to create a VLT port-channel. The `no` version of this command removes the VLT port-channel ID configuration.

**Example (peer 1)**

```
OS10(conf-if-po-10)# vlt-port-channel 1
```

**Example (peer 2)**

```
OS10(conf-if-po-20)# vlt-port-channel 1
```

**Supported Releases**

10.2.0E or later

---

**vlt-mac**

Configures a MAC address for all peer switches in a VLT domain.

**Syntax**

```
vlt-mac mac-address
```

**Parameters**

- **mac-address** — Enter a MAC address for the topology in nn:nn:nn:nn:nn:nn format.

**Default**

Not configured

**Command Mode**

VLT-DOMAIN

**Usage Information**

Use this command to minimize the time required to synchronize the default MAC address of the VLT domain on both peer devices when one peer switch reboots. If you do not configure a VLT MAC address, the MAC address of the primary peer is used as the VLT MAC address across all peers. This configuration must be symmetrical in all the peer switches to avoid any unpredictable behavior. For example, unit down or VLTI reset. The `no` version of this command disables the VLT MAC address configuration.

**NOTE:** Configure the VLT MAC address as symmetrical in all the VLT peer switches to avoid any unpredictable behavior when any unit is down or when VLTI is reset.

**Example**

```
OS10(conf-vlt-1)# vlt-mac 00:00:00:00:00:02
```

**Supported Releases**

10.2.0E or later

---

**vrrp mode active-active**

Enables the VRRP peers to locally forward L3 traffic in a VLAN interface.

**Syntax**

```
vrrp mode active-active
```

**Parameters**

None

**Default**

Enabled
<table>
<thead>
<tr>
<th><strong>Command Mode</strong></th>
<th>VLAN INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Usage Information</strong></td>
<td>This command is applicable only for VLAN interfaces. In a non-VLT network, the backup VRRP gateway forwards L3 traffic. If you want to use VRRP groups on VLANs without VLT topology, disable the Active-Active functionality, to ensure that only the active VRRP gateway forwards L3 traffic. The no version of this command disables the configuration.</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>OS10(conf-if-vl-10)# vrrp mode active-active</td>
</tr>
<tr>
<td><strong>Supported Releases</strong></td>
<td>10.2.0E or later</td>
</tr>
</tbody>
</table>
Uplink Failure Detection

Uplink failure detection (UFD) indicates the loss of upstream connectivity to servers connected to the switch. A switch provides upstream connectivity for devices, such as servers. If the switch loses upstream connectivity, the downstream devices also lose connectivity. However, the downstream devices do not generally receive an indication that the upstream connectivity was lost because connectivity to the switch is still operational. To solve this issue, use UFD.

UFD associates downstream interfaces with upstream interfaces. When upstream connectivity fails, the switch operationally disables its downstream links. Failures on the downstream links allow downstream devices to recognize the loss of upstream connectivity. This allows the downstream servers to select alternate paths, if available, to send traffic to upstream devices.

UFD creates an association between upstream and downstream interfaces known as uplink-state group. An interface in an uplink-state group can be a physical Ethernet or fibre channel interface or a port-channel.

An enabled uplink-state group tracks the state of all assigned upstream interfaces. The failure of upstream interfaces results in automatic disabling of downstream interfaces in the uplink-state group, as shown in the following illustration. If only one of the upstream interfaces in an uplink-state group goes down, a specific number of downstream interfaces in the same uplink-state group go down. You can configure the number of downstream interfaces that go down based on the traffic conditions from the server to the upstream interfaces. This avoids overloading traffic on upstream ports.

By default, if all the upstream interfaces in an uplink-state group go down, all the downstream interfaces in the same uplink-state group are set into a link-down state.

In addition, in an uplink-state group, you can configure automatic recovery of downstream ports when there is a change in the link status of uplink interfaces.

You can also bring up downstream interfaces that are in an UFD-disabled error state manually.

UFD Topology
Configure uplink failure detection

Consider the following before configuring an uplink-state group:

- You can assign a physical port or a port channel to an uplink-state group.
- You can assign an interface to only one uplink-state group at a time.
- You can designate the uplink-state group as either an upstream or downstream interface, but not both.
- You can configure multiple uplink-state groups and operate them concurrently.
- You cannot assign both a port channel and its members to an uplink-state group, which would make the group inactive. The port channels and individual ports that are not part of any port channel can coexist as members of an uplink-state group.
- If one of the upstream interfaces in an uplink-state group goes down, you can set the downstream ports in an operationally down state with an **UFD Disabled error** status. You can configure the system to disable either a user-configurable set of downstream ports or all the downstream ports in the group.
- The downstream ports are disabled in order starting from the lowest numbered port to the highest numbered port.
- When an upstream interface in an uplink-state group that was down comes up, the set of UFD-disabled downstream ports that were down due to that particular upstream interface are brought up, and the **UFD Disabled error** clears in those downstream ports.
- If you disable an uplink-state group, the downstream interfaces are not disabled, regardless of the state of the upstream interfaces.
If you do not assign upstream interfaces to an uplink-state group, the downstream interfaces are not disabled.

**Configuration:**

1. Create an uplink-state group in CONFIGURATION mode.
   
   ```
 uplink-state-group group-id
   ```

2. Configure the upstream and downstream interfaces in UPLINK-STATE-GROUP mode.
   
   ```
 upstream [interface-type | interface-range [track-vlt-status] | VLTi]
 downstream [interface-type | interface-range]
   ```

3. (Optional) Disable uplink-state group tracking in UPLINK-STATE-GROUP mode.
   
   ```
 no enable
   ```

4. (Optional) Provide a descriptive name for the uplink-state group in UPLINK-STATE-GROUP mode.
   
   ```
 name string
   ```

5. Configure the number of downstream interfaces to disable, when an upstream interface goes down in UPLINK-STATE-GROUP mode.
   
   ```
 downstream disable links {number | all}
   ```

6. (Optional) Enable auto-recovery of downstream interfaces that are disabled in UPLINK-STATE-GROUP mode.
   
   ```
 downstream auto-recover
   ```

7. (Optional) Configure the timer to defer the UFD actions on downstream ports in UPLINK-STATE-GROUP mode. When you have configured to track the VLT status in a VLT network, if VLT port-channel is an upstream member of uplink-state group, then the defer timer triggers when the VLT status goes operationally down instead of the operational status of the peer port-channel.
   
   ```
 defer-time timer
   ```

8. (Optional) Clear the UFD error disabled state of downstream interfaces in EXEC mode.
   
   ```
 clear ufd-disable
   ```

**Configure uplink state group**

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# upstream ethernet 1/1/7:1
OS10(conf-uplink-state-group-1)# downstream ethernet 1/1/1-1/1/5
OS10(conf-uplink-state-group-1)# downstream ethernet 1/1/9:2-1/1/9:3
OS10(conf-uplink-state-group-1)# enable
OS10(conf-uplink-state-group-1)# name UFDGROUP1
OS10(conf-uplink-state-group-1)# defer-time 10
OS10(conf-uplink-state-group-1)# no downstream auto-recover
OS10(conf-uplink-state-group-1)# downstream disable links 2
```  

**View uplink state group configuration**

```
OS10#show uplink-state-group 1

Uplink State Group: 1 Status: Enabled,down

OS10# show uplink-state-group 1 detail

(Up): Interface up (Dwn): Interface down (Dis): Interface disabled

Uplink State Group: 1 Status: Enabled,up Name: UFDGROUP1
Defer Time: 10 second(s)
Upstream Interfaces: Eth 1/1/7:1(Up)
Downstream Interfaces: Eth 1/1/1(Dwn) Eth 1/1/2(Dwn) Eth 1/1/3(Dwn) Eth 1/1/4(Dwn) Eth 1/1/5(Dwn) Eth 1/1/9:2(Dwn) Eth 1/1/9:3(Dwn)

OS10#show uplink-state-group 1 detail

(Up): Interface up (Dwn): Interface down (Dis): Interface disabled (NA): Not Available
*: VLT port-channel, V: VLT status, P: Peer Operational status ^: Tracking status

Uplink State Group: 1 Name: iscsi_group, Status: Enabled, Up
```
Upstream Interfaces : eth1/1/35(Up) *po10(V:Up, ^P:Dwn) VLTi(NA)
Downstream Interfaces : eth1/1/2(Up) *po20(V: Up,P: Up)

OS10#show uplink-state-group 2 detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled (NA): Not Available
*: VLT port-channel, V: VLT status, P: Peer Operational status ^: Tracking status

Uplink State Group : 1 Name: iscsi_group, Status: Enabled, Up
Upstream Interfaces : eth1/1/36(Up) *po30(^V:Up, P:Dwn) VLTi(Up)
Downstream Interfaces : eth1/1/4(Up) *po20(V: Up,P: Up)

OS10(conf-uplink-state-group-1)# show configuration
!
uplink-state-group 1
  downstream ethernet1/1/1-1/1/5
  downstream ethernet1/1/9:2-1/1/9:3
  upstream ethernet1/1/7:1

**Uplink failure detection on VLT**

When you create uplink-state group in a switch operating in VLT mode, ensure that all the nodes in the VLT setup have same configuration for uplink state groups with VLT port-channel as member. If both the VLT peers do not have the same UFD configuration, the UFD does not work properly.

When you configure VLT port-channel as upstream member in the uplink state group and configure to track the VLT status, the system tracks the fabric Status of VLT. When the fabric status goes down, the uplink state group in each VLT node disables the downstream VLT port-channel local to the node.

When you configure to track the VLT status, the system places the downstream members of the Uplink State Group in error disabled state or clears them from the error disabled state based on the operational status of the VLT port-channel.

When you do not track the VLT status, the system tracks the operational status of port-channel.

Track the VLT status using the `upstream interface-type track-vlt-status` command in UPLINK-STATE-GROUP mode.

To configure VLTi link as member of Uplink State Group, use the `upstream VLTi` command in UPLINK-STATE-GROUP mode. You cannot configure VLTi Link as downstream member in an uplink-state group as UFD may disable the VLTi Link when the upstream members are operationally down. You cannot track the VLT status for an upstream VLTi member.

The following table describes various scenarios when you apply UFD on a VLT network:

<table>
<thead>
<tr>
<th>Event</th>
<th>VLT action on primary node</th>
<th>VLT action on secondary node</th>
<th>UFD action</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLTi Link is operationally down with heartbeat up</td>
<td>No action</td>
<td>VLT module sends VLT port-channel enable request to Interface Manager (IFM) for both uplink and downlink.</td>
<td>UFD receives operationally up of upstream VLT port-channel and sends error-disable of downstream VLT port-channel to IFM.</td>
</tr>
<tr>
<td>VLTi Link is operationally up with heartbeat up</td>
<td>No action</td>
<td>VLT module sends VLT port-channel enable request to Interface Manager (IFM) for both uplink and downlink.</td>
<td>UFD receives operationally up of upstream VLT port-channel and sends clear error-disable of downstream VLT port-channel to IFM.</td>
</tr>
<tr>
<td>Event</td>
<td>VLT action on primary node</td>
<td>VLT action on secondary node</td>
<td>UFD action</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Reboot of VLT secondary peer</td>
<td>No action</td>
<td>After reboot, runs the delay restore timer. Both the upstream and downstream VLT port-channel remains disabled until the timer expires.</td>
<td>UFD error-disables the downstream VLT port-channel as the upstream VLT port-channel is operationally down. After the timer expires, UFD receives operationally up of upstream VLT port-channel and sends clear error-disable of downstream VLT port-channel to IFM.</td>
</tr>
<tr>
<td>Reboot of VLT primary peer</td>
<td>Primary becomes secondary peer and runs delay restore timer</td>
<td>Secondary becomes primary</td>
<td>UFD error-disables the downstream VLT port-channel as the upstream VLT port-channel is operationally down. After the timer expires, UFD receives operationally up of upstream VLT port-channel and sends clear error-disable of downstream VLT port-channel to IFM.</td>
</tr>
<tr>
<td>Discovery interface added to UFD group</td>
<td>Invalid configuration</td>
<td>Invalid configuration</td>
<td>Invalid configuration</td>
</tr>
<tr>
<td>UFD group member configured as discovery interface</td>
<td>Invalid configuration</td>
<td>Invalid configuration</td>
<td>Invalid configuration</td>
</tr>
<tr>
<td>UFD group member made as VLT port-channel</td>
<td>No action</td>
<td>No action</td>
<td>UFD uses fabric status to track the UFD group status.</td>
</tr>
<tr>
<td>VLT port-channel added as member of UFD group</td>
<td>No action</td>
<td>No action</td>
<td>UFD uses fabric status to track the UFD group status.</td>
</tr>
<tr>
<td>VLT port-channel configuration removed from the port-channel interface which is upstream member of UFD group</td>
<td>No action</td>
<td>No action</td>
<td>Stops tracking the fabric status for the UFD group. Starts tracking the local port-channel operational status, which is upstream member of the UFD group.</td>
</tr>
<tr>
<td>Fabric Status is operationally up</td>
<td>No action</td>
<td>No action</td>
<td>Enables the downstream members, that is clears the error-disabled state.</td>
</tr>
<tr>
<td>Fabric Status is operationally down</td>
<td>No action</td>
<td>No action</td>
<td>Disables the downstream members, that is sets the error-disabled state.</td>
</tr>
</tbody>
</table>

**Sample configurations of UFD on VLT**

The following examples show some of the uplink-state groups on VLT.

In the following illustration, both the upstream and downstream members are part of VLT port-channels. The uplink-state group includes both the VLT port-channels as members.
In the following example, the upstream member is part of VLT port-channel and the downstream member is an orphan port. The uplink-state group includes the VLT port-channel, VLT node, and the downstream port. The configuration is symmetric on both the VLT nodes.

In the following example, the downstream member is part of VLT port-channel and the upstream member is an orphan port. The uplink-state group includes the VLT port-channel, VLT node, and the upstream port. The configuration is symmetric on both the VLT nodes.
OS10 does not support adding a VLTi link member to the uplink-state group. You can add the VLTi link as upstream member to an uplink-state group using the `upstream VLTi` command. If the VLTi link is not available in the system, OS10 allows adding the VLTi link as an upstream member. In this case, UFD starts tracking the operational status of the VLTi link when the link is available. Until the VLTi link is available, the `show uplink-state-group details` command displays the status of the link as `NA`.

In the following example, both the VLT port-channel connected to the switch and the VLTi Link are upstream members. The VLT port-channel connected to the server is a downstream member. The UFD tracks the operational status of the peer port-channel.

**NOTE:** You cannot configure a VLTi link as a downstream member in an uplink-state group. If you configure, UFD disables the VLTi link when the upstream members are operationally down, which affects the VLT functionality.

### UFD commands
clear ufd-disable

Overrides the uplink-state group configuration and brings up the downstream interfaces.

**Syntax**

```
clear ufd-disable {interface interface-type | uplink-state-group group-id}
```

**Parameters**

- `interface-type` — Enter the interface type.
- `group-id` — Enter the uplink state group ID, from 1 to 32.

**Default**

None

**Command Mode**

EXEC

**Usage Information**

This command manually brings up a disabled downstream interface that is in an UFD-disabled error state. After the downstream interface is up, it is not disabled until there are changes in the upstream interfaces. This command does not affect downstream interfaces that are already up or interfaces that are not part of the UFD group.

**Example**

```
OS10# clear ufd-disable interface ethernet 1/1/2
OS10# clear ufd-disable uplink-state-group 1
```

**Supported Releases**

10.4.0E(R3) or later

---

defer-time

Configures the timer to defer UFD actions on downstream ports.

**Syntax**

```
defer-time timer
```

**Parameters**

- `timer` — Enter the timer value in seconds, ranging from 1 to 120.

**Default**

Disabled

**Command Mode**

UPLINK-STATE-GROUP

**Usage Information**

You can view configured timer details using the `show uplink-state-group [group-id] detail` command. The no version of this command disables the timer.

**Example**

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# defer-time 120
```

**Supported Releases**

10.4.1.0 or later

---

downstream

Adds an interface or a range of interfaces as a downstream interface to the uplink-state group.

**Syntax**

```
downstream {interface-type | interface-range}
```

**Parameters**

- `interface-type` — Enter the interface type as Ethernet or port-channel.
- `interface-range` — Enter the range of interfaces.

**Default**

None
**Command Mode**

**UPLINK-STATE-GROUP**

**Usage Information**

You cannot assign an interface that is already a member of an uplink-state group to another group. The `no` version of this command removes the interface from the uplink-state group.

**Example**

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# downstream ethernet 1/1/1
```

**Supported Releases**

10.4.0E(R3) or later

---

**downstream auto-recover**

Enables auto-recovery of the disabled downstream interfaces.

**Syntax**

downstream auto-recover

**Parameters**

None

**Default**

Enabled

**Command Mode**

**UPLINK-STATE-GROUP**

**Usage Information**

The `no` version of this command disables the auto-recovery of downstream interfaces.

**Example**

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# no downstream auto-recover
```

**Supported Releases**

10.4.1.0 or later

---

**downstream disable links**

Configures the number of downstream interfaces to disable when an upstream interface in the uplink-state group goes down.

**Syntax**

downstream disable links{number | all}

**Parameters**

- `number`—Enter the number of downstream interfaces to disable, from 1 to 1024.
- `all`—Enter all to disable all the downstream interfaces.

**Default**

Not configured

**Command Mode**

**UPLINK-STATE-GROUP**

**Usage Information**

The `no` version of this command reverts the settings to the default state.

**Example**

```
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# downstream disable links 2
```

**Supported Releases**

10.4.1.0 or later

---

**enable**

Enables tracking of an uplink-state group.

**Syntax**

`enable`
Parameters
None
Default
Disabled
Command Mode
UPLINK-STATE-GROUP
Usage Information
The no version of this command disables tracking of an uplink-state group.
Example
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# enable
Supported Releases
10.4.0E(R3) or later

name
Confuges a descriptive name for the uplink-state group.
Syntax
name string
Parameters
string — Enter a description for the uplink-state group. A maximum of 32 characters.
Default
Not configured
Command Mode
UPLINK-STATE-GROUP
Usage Information
The no version of this command removes the descriptive name.
Example
OS10(config)# uplink-state-group 1
OS10(conf-uplink-state-group-1)# name test_ufd_group
Supported Releases
10.4.0E(R3) or later

show running-configuration uplink-state-group
Displays the running configuration specific to uplink-state groups.
Syntax
show running-configuration uplink-state-group [group-id]
Parameters
group-id — Enter the uplink group ID. The running configuration of the specified group ID displays.
Default
Not configured
Command Mode
EXEC
Usage Information
None
Example
OS10# show running-configuration uplink-state-group
! uplink-state-group 1
downstream ethernet1/1/8:1-1/1/8:4
upstream ethernet1/1/9:1-1/1/9:4
upstream port-channel1-3
Supported Releases
10.4.0E(R3) or later
**show uplink-state-group**

Displays the configured uplink-state status.

**Syntax**

```
show uplink-state-group [group-id] [detail]
```

**Parameters**

- `group-id` — Enter the uplink group ID. The status of the specified group ID displays.
- `detail` — Displays detailed information on the status of the uplink-state groups.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show uplink-state-group
Uplink State Group: 9, Status: Enabled, down

OS10# show uplink-state-group 9
Uplink State Group: 9, Status: Enabled, down

OS10# show uplink-state-group detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled
Uplink State Group : 1 Status : Enabled,up Name : UFDGROUP1
Defer Time : 10 second(s)
Upstream Interfaces: Eth 1/1/7:1(Up)
Downstream Interfaces: Eth 1/1/1(Dwn) Eth 1/1/2(Dwn) Eth 1/1/3(Dwn) Eth 1/1/4(Dwn)
 Eth 1/1/5(Dwn) Eth 1/1/9:2(Dwn) Eth 1/1/9:3(Dwn)

OS10# show uplink-state-group 2 detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled
Uplink State Group : 2 Status : Enabled,down Name: UFDGROUP
Upstream Interfaces: Eth 1/1/6(Dwn) Eth 1/1/10(Dwn) Eth 1/1/11(Dwn) Eth 1/1/12(Dwn)
 Eth 1/1/13(Dwn) Eth 1/1/14(Dwn) Eth 1/1/15(Dwn) Eth 1/1/16(Dwn)
 Eth 1/1/17(Dwn) Eth 1/1/18(Dwn) Eth 1/1/19(Dwn) Eth 1/1/20(Dwn)

OS10# show uplink-state-group 1 detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled (NA): Not Available
*: VLT port-channel, V: VLT status, P: Peer Operational status ^: Tracking status
Uplink State Group : 1 Name: iscsi_group, Status: Enabled, Up
Upstream Interfaces : eth1/1/35(Up) *po10(V:Up, ^P:Dwn) VLTi(NA)
Downstream Interfaces : eth1/1/2(Up) *po20(V: Up,P: Up)

OS10# show uplink-state-group 2 detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled (NA): Not Available
*:
```

---

**Example (detail with VLT and VLT status tracked)**

```
OS10# show uplink-state-group 1 detail
(Up): Interface up (Dwn): Interface down (Dis): Interface disabled (NA): Not Available
*: VLT port-channel, V: VLT status, P: Peer Operational status ^: Tracking status
Uplink State Group : 1 Name: iscsi_group, Status: Enabled, Up
Upstream Interfaces : eth1/1/35(Up) *po10(V:Up, ^P:Dwn) VLTi(NA)
Downstream Interfaces : eth1/1/2(Up) *po20(V: Up,P: Up)
```
Available
*: VLT port-channel, V: VLT status, P: Peer Operational status ^: Tracking status

Uplink State Group : 1 Name: iscsi_group, Status: Enabled, Up
Upstream Interfaces : eth1/1/36(Up) *po30(^V:Up, P:Dwn) VLTi(Up)
Downstream Interfaces : eth1/1/4(Up) *po20(V: Up, P: Up)

Supported Releases 10.4.0E(R3) or later

uplink-state-group

Creates an uplink-state group and enables upstream link tracking.

Syntax
uplink-state-group group-id

Parameters
- group-id — Enter a unique ID for the uplink-state group, from 1 to 32.

Default
None

Command Mode CONFIGURATION

Usage Information
The no version of this command removes the uplink-state group.

Example
OS10(config)# uplink-state-group 1

Supported Releases 10.4.0E(R3) or later

upstream

 Adds an interface or a range of interfaces as an upstream interface to the uplink-state group.

Syntax
upstream {interface-type | interface-range [ track-vlt-status ] | VLTi}

Parameters
- interface-type — Enter the interface type as Ethernet or port-channel.
- interface-range — Enter the range of interfaces.
- VLTi — Configures VLT Link as member of uplink state group.
- track-vlt-status — (Optional) Tracks the VLT status for the upstream member. This option applies only for port-channel interfaces.

Default
When you add an upstream member without the track-vlt-status option, the operational status is tracked by default.

Command Mode UPLINK-STATE-GROUP

Usage Information
You cannot assign an interface that is already a member of an uplink-state group to another group. The no version of this command removes the interface from the uplink-state group.

Example
OS10(config)# uplink-state-group 1
OS10(config-uplink-state-group-1)# upstream ethernet 1/1/45-1/1/48
OS10(config-uplink-state-group-1)# upstream VLTi
OS10(config-uplink-state-group-1)# upstream port-channel 10 track-vlt-status
Supported Releases  10.4.0E(R3) or later
Converged data center services

OS10 supports converged data center services, including IEEE 802.1 data center bridging (DCB) extensions to classic Ethernet. DCB provides I/O consolidation in a data center network. Each network device carries multiple traffic classes while ensuring lossless delivery of storage traffic with best-effort for local area network (LAN) traffic and latency-sensitive scheduling of service traffic.

- 802.1Qbb — Priority flow control
- 802.1Qaz — Enhanced transmission selection
- Data Center Bridging Exchange (DCBX) protocol

DCB enables the convergence of LAN and storage area network (SAN) traffic over a shared physical network in end-to-end links from servers to storage devices. In a converged network, all server, storage, and networking devices are DCB-enabled. DCB supports fibre channel over Ethernet (FCoE) and iSCSI transmission of storage data. DCB is not supported on interfaces with link-level flow control (LLFC) enabled.

**Priority flow control (PFC)**
Use priority-based flow control to ensure lossless transmission of storage traffic, while transmitting other traffic classes that perform better without flow control, see Priority flow control.

**Enhanced transmission selection (ETS)**
Assign bandwidth to 802.1p class of service (CoS)-based traffic classes. Use ETS to increase preferred traffic-class throughput during network congestion, see Enhanced transmission selection.

**Data Center Bridging Exchange protocol (DCBX)**
Configure the DCBX protocol DCB neighbors use to discover and exchange configuration information for plug-and-play capability, see Data center bridging eXchange.

**Internet small computer system interface (iSCSI)**
Use iSCSI auto-configuration and detection of storage devices, monitor iSCSI sessions, and apply QoS policies on iSCSI traffic, see Internet small computer system interface.

**Priority flow control**

In a converged data-center network, to ensure that no frames are lost due to congestion, use PFC. PFC uses the 802.1p priority in the Ethernet header to pause priority-specific traffic sent from a transmitting device. The 802.1p priority is also known as the class of service (CoS) or dot1p priority value.

When PFC detects congestion of a dot1p traffic class, it sends a pause frame for the priority traffic to the transmitting device. In this way, PFC ensures that the switch does not drop specified priority traffic.

PFC enhances the existing 802.3x pause capability to enable flow control based on 802.1p priorities. Instead of stopping all traffic on a link, as performed by the 802.3x pause mechanism, PFC pauses traffic for 802.1p traffic types. For example, when LAN traffic congestion occurs on an interface, PFC ensures lossless flows of storage and server traffic while allowing for lossy best-effort transmission of other traffic.

PFC handles traffic congestion by pausing prioritized dot1p traffic on an ingress interface and allowing other dot1p traffic best-effort, also known as lossy data transmission.
PFC configuration notes

- PFC is supported for 802.1p, dot1p priority traffic, from 0 to 7. FCoE traffic traditionally uses dot1p priority 3 — iSCSI storage traffic uses dot1p priority 4.
- Configure PFC for ingress traffic by using network-qos class and policy maps, see Quality of Service. PFC-enabled traffic queues are treated as lossless queues. Configure the same network-qos policy map on all PFC-enabled ports. Configure required bandwidth for lossless traffic using ETS queuing (output) policies on egress interfaces.
- In a network-qos policy-class map, use commands to generate PFC pause frames for matching class-map priorities:
  - Send pause frames for matching class-map traffic during congestion using the pause command.
  - (Optional) Enter user-defined values for the reserved ingress buffer-size of PFC class-map traffic, and the thresholds used to send XOFF and XON pause frames using the pause [buffer-size kilobytes pause-threshold kilobytes resume-threshold kilobytes] command.
  - Configure the matching dot1p values used to send pause frames using the pfc-cos command.
  - (Optional) Set the static and dynamic thresholds that determine the shared buffers available for PFC class-map traffic queues using the queue-limit thresh-mode command.
- By default, all ingress traffic is handled by the lossy ingress buffer. When you enable PFC, dot1p ingress traffic competes for shared buffers in the lossless pool instead of the shared lossy pool. The number of lossless queues supported on an interface depends on the amount of available free memory in the lossy pool.
- Use the priority-flow-control mode on command to enable PFC for FCoE and iSCSI traffic; for example, priority 3 and 4.
- Enable DCBX on interfaces to detect and auto-configure PFC/ETS parameters from peers.
- PFC and 802.3x LLFC are disabled by default on an interface. You cannot enable PFC and LLFC at the same time. LLFC ensures lossy traffic in best-effort transmission. Enable PFC to enable guarantee lossless FCoE and iSCSI traffic. PFC manages buffer congestion by pausing specified ingress dot1p traffic; LLFC pauses all data transmission on an interface. To enable LLFC, use the flowcontrol [receive | transmit] [on | off] command.
- SYSTEM-QOS mode applies a service policy globally on all interfaces:
  - Create and apply a 1-to-1 802.1p-priority-to-traffic-class mapping on an interface or all interfaces in INTERFACE or SYSTEM-QOS mode
  - Create and apply a 1-to-1 traffic-class-to-queue mapping on an interface or all interfaces in INTERFACE or SYSTEM-QOS mode

The S5148F-ON platform has the following limitations:

- You cannot configure PFC priority 0 as a lossless priority.
- You cannot map multiple priorities to the same queue.
- Whenever you enable LLFC on an interface, Rx PFC frames are honored. Also, whenever you enable PFC on an interface, Rx Pause frames are honored. Rx Pause statistics in the hardware also includes the Rx PFC frames.

Configure dot1p priority to traffic class mapping
Decide if you want to use the default 802.1p priority-to-traffic class (qos-group) mapping or configure a new map. By default, the qos class-trust class map is applied to ingress traffic. The class-trust class instructs OS10 interfaces to honor dot1p or differentiated services code point (DSCP) traffic.

<table>
<thead>
<tr>
<th>Dot1p Priority : 0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Class : 1 0 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

- Apply the default trust map specifying that dot1p values are trusted in SYSTEM-QOS or INTERFACE mode.
  trust-map dot1p default

### Configure a non-default dot1p-priority-to-traffic class mapping

1. Configure a trust map of dot1p traffic classes in CONFIGURATION mode. A trust map does not modify ingress dot1p values in output flows.
   
   Assign a qos-group to trusted dot1p values in TRUST mode using 1-to-1 mappings. Dot1p priorities are 0 to 7. For a PFC traffic class, map only one dot1p value to a qos-group number; for Broadcom-based NPU platforms, the qos-group number and the dot1p value must be the same. A qos-group number is used only internally to classify ingress traffic classes.

   ```
 trust dot1p-map dot1p-map-name
 qos-group {0-7} dot1p {0-7}
 exit
   ```

2. Apply the trust dot1p-map policy to ingress traffic in SYSTEM-QOS or INTERFACE mode.
   trust-map dot1p trust-policy-map-name

### Configure traffic-class-queue mapping

Decide if you want to use the default traffic-class-to-queue mapping or configure a non-default traffic-class-to-queue mapping.

<table>
<thead>
<tr>
<th>Traffic Class : 0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue : 0 1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

If you are using the default traffic-class-to-queue map, no further configuration steps are necessary.

1. Create a traffic-class-to-queue map in CONFIGURATION mode. Assign a traffic class (qos-group) to a queue in QOS-MAP mode using 1-to-1 mappings. For a PFC traffic class, map only one qos-group value to a queue number. A qos-group number is used only internally to classify ingress traffic.

   ```
 qos-map traffic-class tc-queue-map-name
 queue {0-7} qos-group {0-7}
 exit
   ```

2. Apply the traffic-class-queue map in SYSTEM-QOS or INTERFACE mode.
   ```
 qos-map traffic-class tc-queue-map-name
   ```

### View interface PFC configuration

OS10# show interface ethernet 1/1/1 priority-flow-control details
ethernet1/1/1
  Admin Mode : true
  Operstatus: true
  PFC Priorities: 4
  Total Rx PFC Frames: 0
  Total Tx PFC frames: 0
  Cos Rx Tx
  ------------------------------------------
  0 0 0
  1 0 0
  2 0 0
  3 0 0
  4 0 0
  5 0 0
  6 0 0
  7 0 0
Configure PFC

PFC provides a pause mechanism based on the 802.1p priorities in ingress traffic. PFC prevents frame loss due to network congestion. Configure PFC lossless buffers, and enable pause frames for dot1p traffic on a per-interface basis. Repeat the PFC configuration on each PFC-enabled interface. PFC is disabled by default.

Decide if you want to use the default dot1p-priority-to-traffic class mapping and the default traffic-class-to-queue mapping. To change the default settings, see PFC configuration notes.

Configuration steps:

1. Create PFC dot1p traffic classes.
2. Configure ingress buffers for PFC traffic.
3. Apply a service policy and enable PFC.
4. (Optional) Configure the PFC shared buffer for lossless traffic.

Create PFC dot1p traffic classes

1. Create a network-qos class map to classify PFC traffic classes in CONFIGURATION mode, from 1 to 7. Specify the traffic classes using the match qos-group command. QoS-groups map 1:1 to traffic classes 1 to 7; for example, qos-group 1 corresponds to traffic class 1. Enter a single value, a hyphen-separated range, or multiple qos-group values separated by commas in CLASS-MAP mode.

   class-map type network-qos class-map-name
   match qos-group {1-7}
   exit

2. (Optional) Repeat Step 1 to configure additional PFC traffic-class class-maps.

   NOTE: In the S5148F-ON, PFC is not supported on priority 0.

Configure pause and ingress buffers for PFC traffic

For the default ingress queue settings and the default dot1p priority-queue mapping, see PFC configuration notes.

1. Create a network-qos policy map in CONFIGURATION mode.

   policy-map type network-qos policy-map-name

2. Associate the policy-map with a network-qos class map in POLICY-MAP mode.

   class class-map-name

3. Configure default values for ingress buffers used for the network-qos class maps in POLICY-CLASS-MAP mode.

   pause

   (Optional) Change the default values for the ingress-buffer size reserved for the network-qos class-map traffic and the thresholds used to send XOFF and XON pause frames in kilobytes.

   pause [buffer-size kilobytes [pause-threshold kilobytes | resume-threshold kilobytes]]

4. Enable the PFC pause function for dot1p traffic in POLICY-CLASS-MAP mode. The dot1p values must be the same as the qos-group traffic class numbers in the class map in Step 2. Enter a single dot1p value, from 1 to 7, a hyphen-separated range, or multiple dot1p values separated by commas.

   pfc-cos dot1p-priority

5. (Optional) Set the static and dynamic thresholds used to limit the shared buffers allocated to PFC traffic-class queues. Configure a static, fixed queue-limit (in kilobytes) or a dynamic threshold (weight 1:10; default 9) based on the available PFC shared buffers. This option is not available in S5148F-ON.

   queue-limit thresh-mode {static kilobytes | dynamic weight}

6. (Optional) Repeat Steps 2–4 to configure PFC on additional traffic classes.

Apply service policy and enable PFC
Apply the PFC service policy on an ingress interface or interface range in INTERFACE mode.

```
interface ethernet node/slot/port:[subport]
 service-policy input type network-qos policy-map-name

interface range ethernet node/slot/port:[subport]-node/slot/port[:subport]
 service-policy input type network-qos policy-map-name
```

Enable PFC without DCBX for FCoE and iSCSI traffic in INTERFACE mode.

```
priority-flow-control mode on
```

Configure PFC

PFC is enabled on traffic classes with dot1p 3 and 4 traffic. The two traffic classes require different ingress queue processing. In the network-qos ppl policy map, class cc1 uses customized PFC buffer size and pause frame settings; class cc2 uses the default settings.

```
OS10(config)# system qos
OS10(config-sys-qos)# trust-map dot1p default

OS10(config)# system qos
OS10(config-sys-qos)# service-policy input type qos pclass1
OS10(config-sys-qos)# exit

OS10(config)# class-map type network-qos cc1
OS10(config-cmap-nqos)# match qos-group 3
OS10(config-cmap-nqos)# exit

OS10(config)# class-map type network-qos cc2
OS10(config-cmap-nqos)# match qos-group 4
OS10(config-cmap-nqos)# exit

OS10(config)# policy-map type network-qos ppl
OS10(config-pmap-network-qos)# class cc1
OS10(config-pmap-c-nqos)# pause buffer-size 30 pause-threshold 20 resume-threshold 10
OS10(config-pmap-c-nqos)#pfc-cos 3
OS10(config-pmap-c-nqos)#exit
OS10(config-pmap-network-qos)# class cc2
OS10(config-pmap-c-nqos)# pause
OS10(config-pmap-c-nqos)#pfc-cos 4
OS10(config-pmap-c-nqos)#exit

OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# service-policy input type network-qos ppl

OS10(conf-if-eth1/1/1)# priority-flow-control mode on
OS10(conf-if-eth1/1/1)# no shutdown
```

View PFC configuration and operational status

```
OS10(conf-if-eth1/1/1)# do show interface ethernet 1/1/1 priority-flow-control details
ethernet1/1/1
Admin Mode : true
Operstatus: true
PFC Priorities: 3,4
Total Rx PFC Frames: 300
Total Tx PFC frames: 200
Cos Rx Tx

0 0 0
1 0 0
2 0 0
3 300 200
4 0 0
5 0 0
6 0 0
7 0 0
```
### View PFC ingress buffer configuration

```
OS10# show qos ingress buffers interface ethernet 1/1/1
Interface : ethernet1/1/1
Speed : 0
Priority-grp Reserved Shared-buffer Shared-buffer XON
 XOFF no buffer-size mode threshold thres
threshold
--
 0 - - - -
 1 - - - -
 2 - - - -
 3 - - - -
 4 - - - -
 5 - - - -
 6 - - - -
 7 9360 static 12779520 -

View PFC system buffer configuration

OS10# show qos system ingress buffer
All values are in kb
Total buffers - 12187
 Total lossless buffers - 0
 Maximum lossless buffers - 5512
 Total shared lossless buffers - 0
 Total used shared lossless buffers -
 Total lossy buffers - 11567
 Total shared lossy buffers - 11192
 Total used shared lossy buffers -
OS10# show qos system egress buffer
All values are in kb
Total buffers - 12187
 Total lossless buffers - 0
 Total shared lossless buffers - 0
 Total used shared lossless buffers -
 Total lossy buffers - 11567
 Total shared lossy buffers - 9812
 Total used shared lossy buffers -
 Total CPU buffers - 620
 Total shared CPU buffers - 558
 Total used shared CPU buffers -
View PFC ingress buffer statistics

OS10(config)# show qos ingress buffer-stats interface ethernet 1/1/15
Interface : ethernet1/1/15
Speed : 10G
Priority Used reserved Used shared used HDRM
 Group buffers buffers buffers
--
 0 9360 681824 35984
 1 0 0 0
 2 0 0 0
 3 0 0 0
```

Converged data center services
**PFC commands**

**pause**

Configures the ingress buffer and pause frame settings used for PFC traffic classes.

**Syntax**

```
pause [buffer-size kilobytes pause-threshold kilobytes resume-threshold kilobytes]
```

**Parameters**

- `buffer-size kilobytes` — Enter the reserved (guaranteed) ingress-buffer size in kilobytes for PFC dot1p traffic, from 0 to 7787.
- `pause-threshold kilobytes` — Enter the threshold used to send pause frames in kilobytes to a transmitting device, from 0 to 7787.
- `resume-threshold kilobytes` — Enter the threshold used to request a transmitting device in kilobytes to resume sending traffic, from 0 to 7787.

**Defaults**

The default ingress-buffer size reserved for PFC traffic classes, and the pause and resume thresholds, vary according to the interface type. The default egress buffer reserved for PFC traffic classes is 0 on all interface types.

**Table 53. Port defaults**

<table>
<thead>
<tr>
<th>Port Speed</th>
<th>10G Port</th>
<th>25G Port</th>
<th>40G Port</th>
<th>100G Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC reserved ingress buffer</td>
<td>166 KB</td>
<td>195 KB</td>
<td>315.5 KB</td>
<td>512 KB</td>
</tr>
<tr>
<td>PFC pause threshold</td>
<td>96 KB</td>
<td>96 KB</td>
<td>192 KB</td>
<td>232 KB</td>
</tr>
<tr>
<td>PFC resume threshold</td>
<td>87 KB</td>
<td>87 KB</td>
<td>183 KB</td>
<td>223 KB</td>
</tr>
</tbody>
</table>

**Command Mode**

POLICY-CLASS NETWORK-QOS

**Usage Information**

Use the `pause` command without optional parameters to apply the default ingress-buffer size, and pause (XON) and resume (XOFF) thresholds. Default values for the `buffer-size`, `pause-threshold` and `resume-threshold` parameters vary across interface types and port speeds. The default values are based on the default MTU size of 9216 bytes.

**Example**

```
OS10(config)# policy-map type network-qos pp1
OS10(conf-pmap-network-qos)# class ccl
OS10(conf-pmap-c-nqos)# pause buffer-size 30 pause-threshold 20 resume-threshold 10
```

**Supported Releases**

10.3.0E or later

Converged data center services 877
**pfc-cos**

Configures the matching dot1p values used to send PFC pause frames.

**Syntax**

```
pfc-cos dot1p-priority
```

**Parameters**

dot1p-priority — Enter a single dot1p priority value for a PFC traffic class, from 1 to 7, a hyphen-separated range, or multiple dot1p values separated by commas.

**Default**

Not configured

**Command Mode**

POLICY-CLASS NETWORK-QOS

**Usage Information**

When you enter PFC-enabled dot1p priorities with pfc-cos, the dot1p values must be the same as the match qos-group (traffic class) numbers in the network-qos class map used to define the PFC traffic class, see Configure PFC Example. A qos-group number is used only internally to classify ingress traffic classes. For the default dot1p-priority-to-traffic-class mapping and how to configure a non-default mapping, see PFC configuration notes. A PFC traffic class requires a 1-to-1 mapping — only one dot1p value is mapped to a qos-group number.

**Example**

```
OS10(config)# class-map type network-qos cc1
OS10(conf-cmap-nqos)# match qos-group 3
OS10(conf-cmap-nqos)# exit
```

**Example (policy-map)**

```
OS10(config)# policy-map type network-qos pp1
OS10(conf-pmap-network-qos)# class cc1
OS10(conf-pmap-c-nqos)# pfc-cos 3
```

**Supported Releases**

10.3.0E or later

---

**pfc-shared-buffer-size**

Configures the amount of shared buffers available for PFC-enabled traffic on the switch.

**Syntax**

```
pfc-shared-buffer-size kilobytes
```

**Parameter**

kilobytes — Enter the total amount of shared buffers available to PFC-enabled dot1p traffic in kilobytes, from 0 to 7787.

**Default**

832KB

**Command Mode**

SYSTEM-QOS

**Usage Information**

By default, the lossy ingress buffer handles all ingress traffic. When you enable PFC, dot1p ingress traffic competes for shared buffers in the lossless pool instead of the shared lossy pool. Use this command to increase or decrease the shared buffer allowed for PFC-enabled flows. The configured amount of shared buffers is reserved for PFC flows only after you enable PFC on an interface using the priority-flow-control mode on command.

**Example**

```
OS10(config)# system qos
OS10(conf-sys-qos)# pause-shared-buffer-size 1024
```

**Supported Releases**

10.3.0E or later
**priority-flow-control**

Enables PFC on ingress interfaces.

**Syntax**

```
priority-flow-control {mode on}
```

**Parameter**

mode on — Enable PFC for FCoE and iSCSI traffic on an interface without enabling DCBX.

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

Before you enable PFC, apply a network-qos policy-class map with the specific PFC dot1p priority values to the interface. In the PFC network-qos policy-class map, use the default buffer-size values if you are not sure about the pause-threshold and resume-threshold settings that you want to use. You cannot enable PFC and LLFC at the same time on an interface. The no version of this command disables PFC on an interface. When you disable PFC, remove the PFC network-qos policy-class map applied to the interface.

**Example**

```
OS10(config-if-eth1/1/1)# priority-flow-control mode on
```

**Supported Releases**

10.3.0E or later

---

**queue-limit**

Sets the static and dynamic thresholds used to limit the shared-buffer size of PFC traffic-class queues.

**Syntax**

```
queue-limit {thresh-mode [static kilobytes | dynamic weight]}
```

**Parameters**

- `thresh-mode` — Buffer threshold mode.
- `static kilobytes` — Enter the fixed shared-buffer limit available for PFC traffic-class queues in kilobytes, from 0 to 7787; maximum amount tuned by the `pfc-shared-buffer-size` command.
- `dynamic weight` — Enter the weight value used to dynamically determine the shared-buffer limit available for PFC traffic-class queuesm from 1 to 10.

**Default**

Dynamic weight of 9 and static shared-buffer limit of 12479488 kilobytes

**Command Mode**

POLICY-CLASS NETWORK-QOS

**Usage Information**

To tune the amount of shared buffers available for the static limit of PFC traffic-class queues on the switch, use the `pfc-shared-buffer-size` command. The current amount of available shared buffers determines the dynamic queue-limit.

**Example**

```
OS10(config)# policy-map type network-qos ppl
OS10(config-pmap-network-qos)# class ccl
OS10(config-pmap-c-nqos)# queue-limit thresh-mode static 1024
```

**Supported Releases**

10.3.0E or later

---

**show interface priority-flow-control**

Displays PFC operational status, configuration, and statistics on an interface.

**Syntax**

```
show interface [ethernet node/slot/port[:subport]] priority-flow-control [details]
```
Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
Use the details option to display PFC statistics on received/transmitted frames for each dot1p CoS value. Use the clear qos statistics interface ethernet 1/1/1 command to delete PFC statistics and restart the counter.

Example (details)
OS10(config)# show interface ethernet 1/1/15 priority-flow-control details
ethernet1/1/15
  Admin Mode : true
  Operstatus: true
  PFC Priorities: 3
  Total Rx PFC Frames: 0
  Total Tx PFC frames: 587236
  CoS   Rx   Tx
  -----------------------
  0    0    0
  1    0    0
  2    0    0
  3    0    587236
  4    0    0
  5    0    0
  6    0    0
  7    0    0

Supported Releases 10.3.0E or later

Enhanced transmission selection

ETS provides customized bandwidth allocation to 802.1p classes of traffic. Assign different amounts of bandwidth to Ethernet, FCoE, or iSCSI traffic classes that require different bandwidth, latency, and best-effort treatment during network congestion.

ETS divides traffic into different priority groups using their 802.1p priority value. To ensure that each traffic class is correctly prioritized and receives the required bandwidth, configure bandwidth and queue scheduling for each priority group. To prioritize low-latency storage and server-cluster traffic, allocate more bandwidth to a priority group. To rate-limit best-effort LAN traffic, allocate less bandwidth to a different priority group.
ETS configuration notes

- ETS is supported on Layer2 (L2) 802.1p priority (dot1p 0 to 7) and Layer 3 (L3) DSCP (0 to 63) traffic. FCoE traffic uses dot1p priority 3 — iSCSI storage traffic uses dot1p priority 4.
- Apply these maps and policies on interfaces:
  - Trust maps — OS10 interfaces do not honor the L2 and L3 priority fields in ingress traffic by default. Create a trust map to honor dot1p and DSCP classes of lossless traffic. A trust map does not change ingress dot1p and DSCP values in egress flows. In a trust map, assign a qos-group traffic class to trusted dot1p/DSCP values. A qos-group number is used only internally to schedule classes of ingress traffic.
  - GoS map — Create a GoS map to assign trusted dot1p and DSCP traffic classes to lossless queues.
  - Ingress trust policy — Configure a service policy to trust dot1p values in ingress traffic.
  - Egress queuing policy — Configure ETS for egress traffic by assigning bandwidth to matching lossless queues in queuing class and policy maps.
- Apply both PFC network-qos (input) and ETS queuing (output) policies on an interface to ensure lossless transmission.
- An ETS-enabled interface operates with dynamic weighted round robin (DWRR) or strict priority scheduling.
- OS10 control traffic is sent to control queues, which have a strict priority that is higher than data traffic queues. ETS-allocated bandwidth is not supported on a strict priority queue. A strict priority queue receives bandwidth only from DCBX type, length, values (TLVs).
- The CEE/IEEE2.5 versions of ETS TLVs are supported. ETS configurations are received in a TLV from a peer.

Configure ETS

ETS provides traffic prioritization for lossless storage, latency-sensitive, and best-effort data traffic on the same link.

- Configure classes of dot1p and DSCP traffic and assign them to lossless queues. Use the class-trust class map to honor ingress dot1p and DSCP traffic.
- Allocate guaranteed bandwidth to each lossless queue. An ETS queue can exceed the amount of allocated bandwidth if another queue does not use its share.

ETS is disabled by default on all interfaces.

1 Configure trust maps of dot1p and DSCP values in CONFIGURATION mode. A trust map does not modify ingress values in output flows. Assign a qos-group, traffic class from 0 to 7, to trusted dot1p/DSCP values in TRUST mode. A qos-group number is used only internally to schedule classes of ingress traffic. Enter multiple dot1p and dscp values in a hyphenated range or separated by commas.

```
trust dot1p-map dot1p-map-name
 qos-group {0-7} dot1p {0-7}
exit
trust dscp-map dscp-map-name
 qos-group {0-7} dscp {0-63}
exit
```

2 Configure a GoS map with trusted traffic-class (qos-group) to lossless-queue mapping in CONFIGURATION mode. Assign one or more qos-groups, from 0 to 7, to a specified queue in QOS-MAP mode. Enter multiple qos-group values in a hyphenated range or separated by commas. Enter multiple queue qos-group entries, if necessary.

```
qos-map traffic-class queue-map-name
 queue {0-7} qos-group {0-7}
exit
```

3 Apply the default trust map specifying that dot1p and dscp values are trusted in SYSTEM-QOS or INTERFACE mode.

```
trust-map {dot1p | dscp} default
```

4 Create a queuing class map for each ETS queue in CONFIGURATION mode. Enter match queue criteria in CLASS-MAP mode.

```
class-map type queuing class-map-name
 match queue {0-7}
exit
```
Create a queuing policy map in CONFIGURATION mode. Enter POLICY-CLASS-MAP mode and configure the percentage of bandwidth allocated to each traffic class-queue mapping. The sum of all DWRR-allocated bandwidth across ETS queues must be 100%, not including the strict priority queue. Otherwise, QoS automatically adjusts bandwidth percentages so that ETS queues always receive 100% bandwidth. The remaining non-ETS queues receive 1% bandwidth each.

```
policy-map type queuing policy-map-name
 class class-map-name
 bandwidth percent {1-100}
```

(Optional) To configure a queue as strict priority, use the `priority` command. Packets scheduled to a strict priority queue are transmitted before packets in non-priority queues.

```
policy-map type queuing policy-map-name
 class class-map-name
 priority
```

Apply the trust maps for dot1p and DSCP values, and the traffic class-queue mapping globally on the switch in SYSTEM-QOS mode or on an interface or interface range in INTERFACE mode.

```
system qos
 trust-map dot1p dot1p-map-name
 trust-map dscp dscp-map-name
 qos-map traffic-class queue-map-name

Or

interface {ethernet node/slot/port[:subport] | range ethernet node/slot/port[:subport]-node/slot/port[:subport]}
 trust-map dot1p dot1p-map-name
 trust-map dscp dscp-map-name
 qos-map traffic-class queue-map-name
```

Apply the qos trust policy to ingress traffic in SYSTEM-QOS or INTERFACE mode.

```
service-policy input type qos trust-policy-map-name
```

Apply the queuing policy to egress traffic in SYSTEM-QOS or INTERFACE mode.

```
service-policy output type queuing policy-map-name
```

Enable ETS globally in SYSTEM-QOS mode or on an interface/Interface range in INTERFACE mode.

```
ets mode on
```

**Configure ETS**

```
OS10(config)# trust dot1p-map dot1p_map1
OS10(config-trust-dot1pmap)# qos-group 0 dot1p 0-3
OS10(config-trust-dot1pmap)# qos-group 1 dot1p 4-7
OS10(config-trust-dot1pmap)# exit

OS10(config)# trust dscp-map dscp_map1
OS10(config-trust-dscpmap)# qos-group 0 dscp 0-31
OS10(config-trust-dscpmap)# qos-group 1 dscp 32-63
OS10(config-trust-dscpmap)# exit

OS10(config)# qos-map traffic-class tc-q-map1
OS10(config-qos-tcmap)# queue 0 qos-group 0
OS10(config-qos-tcmap)# queue 1 qos-group 1
OS10(config-qos-tcmap)# exit

OS10(config)# system qos
OS10(config-sys-qos)# trust-map dot1p default

OS10(config)# class-map type queuing cl
OS10(config-cmap-queuing)# match queue 0
OS10(config-cmap-queuing)# exit
OS10(config)# class-map type queuing c2
OS10(config-cmap-queuing)# match queue 1
OS10(config-cmap-queuing)# exit

OS10(config)# policy-map type queuing p1
OS10(config-pmap-queuing)# class cl
```
OS10(config-pmap-queuing)# bandwidth percent 30
OS10(config-pmap-queuing)# exit
OS10(config)# policy-map type queuing p2
OS10(config-pmap-queuing)# class c2
OS10(config-pmap-queuing)# bandwidth percent 70
OS10(config-pmap-queuing)# exit

OS10(config)# system qos
OS10(config-sys-qos)# trust-map dot1p dot1p_map1
OS10(config-sys-qos)# trust-map dscp dscp_map1
OS10(config-sys-qos)# qos-map traffic-class tc-q-map1
OS10(config-sys-qos)# ets mode on
OS10(config-sys-qos)# service-policy input type qos pclass1
OS10(config-sys-qos)# service-policy output type queuing p1

**View ETS configuration**

OS10# show qos interface ethernet 1/1/1
Interface
unknown-unicast-storm-control : Disabled
multicast-storm-control : Disabled
broadcast-storm-control : Disabled
flow-control-rx : Disabled
flow-control-tx : Disabled
ets mode : Disabled
Dot1p-tc-mapping : dot1p_map1
Dscp-tc-mapping : dscp_map1
tc-queue-mapping : tc-q-map1

**View QoS maps: traffic-class to queue mapping**

OS10# show qos maps
Traffic-Class to Queue Map: tc-q-map1
  queue 0 qos-group 0
  queue 1 qos-group 1
Traffic-Class to Queue Map: dot1p_map1
  qos-group 0 dot1p 0-3
  qos-group 1 dot1p 4-7
DSCP Priority to Traffic-Class Map : dscp_map1
  qos-group 0 dscp 0-31
  qos-group 1 dscp 32-63

**ETS commands**

**ets mode on**

Enables ETS on an interface.

**Syntax**

    ets mode on

**Parameter**

None

**Default**

Disabled

**Command Mode**

INTERFACE

**Usage Information**

Enable ETS on all switch interfaces in SYSTEM-QOS mode or on an interface or interface range in INTERFACE mode. The no version of this command disables ETS.

**Example**

    OS10(config-sys-qos)# ets mode on

**Supported Releases**

10.3.0E or later
Data center bridging eXchange

DCBX allows a switch to automatically discover and set up DCBX-enabled peers configured with compatible settings. In a converged data center network, DCBX provides plug-and-play capability for server, storage, and networking devices in an end-to-end solution.

DCBX uses link layer discovery protocol (LLDP) to mediate automatic negotiation and device settings exchange, such as PFC and ETS. DCBX uses LLDP TLVs to perform DCB parameter exchange:

- PFC configuration and application-priority configuration
- ETS configuration and ETS recommendation

This sample DCBX topology shows two 40GbE ports on a switch that are configured as DCBX auto-upstream ports and used as uplinks to top-of-rack (ToR) switches. The ToR switches are part of a fibre channel storage network.

DCBX configuration notes

- To exchange link-level configurations in a converged network, DCBX is a prerequisite for using DCB features, such as PFC and ETS. DCBX is also deployed in topologies that support lossless operation for FCoE or iSCSI traffic. In these scenarios, all network devices must be DCBX-enabled so that DCBX is enabled end-to-end.
- DCBX uses LLDP to advertise and automatically negotiate the administrative state and PFC/ETS configuration with directly connected DCB peers. If you disable LLDP on an interface, DCBX cannot run. Enable LLDP on all DCBX ports.
- DCBX is disabled at a global level by default. Enable DCBX globally on a switch to activate the exchange of DCBX TLV messages with PFC, ETS, and iSCSI configurations.
- DCBX is enabled by default on OS10 interfaces. You can manually reconfigure DCBX settings on a per-interface basis. For example, you can disable DCBX on an interface using the `no lldp tlv-select dcbxp` command or change the DCBX version using the `dcbx version` command.
- For DCBX to be operational, DCBX must be enabled at both the global and interface levels. If the `show lldp dcbx interface` command returns the message `DCBX feature not enabled`, DCBX is not enabled at both levels.
- OS10 supports DCBX versions CEE and IEEE2.5.
- By default, DCBX advertises all TLVs—PFC, ETS Recommendation, ETS Configuration, DCBXP, and basic TLVs.
- A DCBX-enabled port operates in a manual role by default. The port operates only with user-configured settings and does not auto-configure with DCB settings received from a DCBX peer. When you enable DCBX, the port advertises its PFC and ETS configurations to peer devices but does not accept external, or propagate internal, DCB configurations.

- DCBX detects misconfiguration on a peer device when DCB features are not compatibly configured with the local switch. Misconfiguration detection is feature-specific because some DCB features support asymmetric (non-identical) configurations.

**Configure DCBX**

DCBX allows data center devices to advertise and exchange configuration settings with directly connected peers using LLDP. LLDP is enabled by default.

To ensure the consistent and efficient operation of a converged data center network, DCBX detects peer misconfiguration.

DCBX is disabled at a global level and enabled at an interface level by default. For DCBX to be operational, DCBX must be enabled at both the global and interface levels. You can manually reconfigure DCBX settings or disable DCBX on a per-interface basis.

1. Configure the DCBX version used on a port in INTERFACE mode.

   ```
 dcbx version {auto | cee | ieee}
   ```

   - **auto** — Automatically selects the DCBX version based on the peer response, the default.
   - **cee** — Sets the DCBX version to CEE.
   - **ieee** — Sets the DCBX version to IEEE 802.1Qaz.

2. (Optional) A DCBX-enabled port advertises all TLVs by default. If PFC or ETS TLVs are disabled, enter the command in INTERFACE mode to re-enable PFC or ETS TLV advertisements.

   ```
 dcbx tlv-select {ets-conf | ets-reco | pfc}
   ```

   - **ets-conf** — Enables ETS configuration TLVs.
   - **ets-reco** — Enables ETS recommendation TLVs.
   - **pfc** — Enables PFC TLVs.

3. (Optional) DCBX is enabled on a port by default. If DCBX is disabled, enable it in INTERFACE mode.

   ```
 lldp tlv-select dcbxp
   ```

4. Return to CONFIGURATION mode.

   ```
 exit
   ```

5. Enable DCBX on all switch ports in CONFIGURATION mode to activate the exchange of DCBX TLV messages with PFC, ETS, and iSCSI configurations.

   ```
 dcbx enable
   ```

Configure DCBX

**View DCBX configuration**

```
OS10# show lldp dcbx interface ethernet 1/1/15

E-ETS Configuration TLV enabled e-ETS Configuration TLV disabled
R-ETS Recommendation TLV enabled r-ETS Recommendation TLV disabled
P-PFC Configuration TLV enabled p-PFC Configuration TLV disabled
F-Application priority for FCOE enabled f-Application Priority for FCOE disabled
I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled

Interface ethernet1/1/15
 Port Role is Manual
 DCBX Operational Status is Enabled
 Is Configuration Source? FALSE
 Local DCBX Compatibility mode is CEE
 Local DCBX Configured mode is CEE
 Peer Operating version is CEE
 Local DCBX TLVs Transmitted: ErPfI

Local DCBX Status
```
DCBX Operational Version is 0
DCBX Max Version Supported is 0
Sequence Number: 14
Acknowledgment Number: 5
Protocol State: In-Sync

Peer DCBX Status

DCBX Operational Version is 0
DCBX Max Version Supported is 255
Sequence Number: 5
Acknowledgment Number: 14

220 Input PFC TLV pkts, 350 Output PFC TLV pkts, 0 Error PFC pkts
220 Input PG TLV Pkts, 396 Output PG TLV Pkts, 0 Error PG TLV Pkts
71 Input Appln Priority TLV pkts, 80 Output Appln Priority TLV pkts, 0 Error Appln Priority
TLV Pkts

View DCBX PFC TLV status

OS10# show lldp dcbx interface ethernet 1/1/15 pfc detail

Interface ethernet1/1/15
Admin mode is on
Admin is enabled, Priority list is 4,5,6,7
Remote is enabled, Priority list is 4,5,6,7
Remote Willing Status is disabled
Local is enabled, Priority list is 4,5,6,7
Oper status is init
PFC DCBX Oper status is Up
State Machine Type is Feature
PFC TLV Tx Status is enabled
Application Priority TLV Parameters :

ISCSI TLV Tx Status is enabled
Local ISCSI PriorityMap is 0x10
Remote ISCSI PriorityMap is 0x10

220 Input TLV pkts, 350 Output TLV pkts, 0 Error pkts
71 Input Appln Priority TLV pkts, 80 Output Appln Priority TLV pkts, 0 Error Appln Priority
TLV Pkts

View DCBX ETS TLV status

OS10# show lldp dcbx interface ethernet 1/1/15 ets detail

Interface ethernet1/1/15
Max Supported PG is 8
Number of Traffic Classes is 8
Admin mode is on
Admin Parameters :

Admin is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>
Remote Parameters:
-------------------
Remote is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>15</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
</tbody>
</table>

Remote Willing Status is disabled

Local Parameters:
-------------------
Local is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>15</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
</tbody>
</table>

Oper status is init
ETS DCBX Oper status is Up
State Machine Type is Feature
Conf TLV Tx Status is enabled
Reco TLV Tx Status is disabled

220 Input Conf TLV Pkts, 396 Output Conf TLV Pkts, 0 Error Conf TLV Pkts

**DCBX commands**

**dcbx enable**

Enables DCBX globally on all port interfaces.

**Syntax**

dcbx enable

**Parameters**

None

**Default**

Disabled

**Command Mode**

CONFIGURATION

**Usage Information**

DCBX is disabled at a global level and enabled at an interface level by default. For DCBX to be operational, DCBX must be enabled at both the global and interface levels. Enable DCBX globally using the `dcbx enable` command to activate the exchange of DCBX TLV messages with PFC, ETS, and iSCSI configurations. To configure the TLVs advertised by a DCBX-enabled port, change the DCBX version, or disable DCBX on an interface, use DCBX interface-level commands. DCBX allows peers to advertise a DCB configuration using LLDP and self-configure with
compatible settings. If you disable DCBX globally on a switch, you can re-enable it to ensure consistent operation of peers in a converged data center network.

Example

```
OS10(config)# dcbx enable
```

Supported Releases 10.3.0E or later

### dcbx tlv-select

Configures the DCB TLVs advertised by a DCBX-enabled port.

**Syntax**

```
dcbx tlv-select {ets-conf} {ets-reco} {pfc}
```

**Parameters**

- **ets-conf** — Advertise ETS configuration TLVs.
- **ets-reco** — Advertise ETS recommendation TLVs.
- **pfc** — Advertise PFC TLVs.

**Default**

DCBX advertises PFC, ETS Recommendation, and ETS Configuration TLVs.

**Command Mode**

```
INTERFACE
```

**Usage Information**

A DCBX-enabled port advertises all TLVs to DCBX peers by default. If PFC or ETS TLVs are disabled, enter the command to re-enable PFC or ETS TLV advertisements. You can enable multiple TLV options, such as ets-conf, ets-reco, and pfc with the same command.

**Example**

```
OS10(conf-if-eth1/1/2)# dcbx tlv-select ets-conf pfc
```

**Supported Releases**

10.3.0E or later

### dcbx version

Configures the DCBX version used on a port interface.

**Syntax**

```
dcbx version {auto | cee | ieee}
```

**Parameters**

- **auto** — Automatically select the DCBX version based on the peer response.
- **cee** — Set the DCBX version to CEE.
- **ieee** — Set the DCBX version to IEEE 802.1Qaz.

**Default**

Auto

**Command Mode**

```
INTERFACE
```

**Usage Information**

In Auto mode, a DCBX-enabled port detects an incompatible DCBX version on a peer device port and automatically reconfigures a compatible version on the local port. The no version of this command disables the DCBX version.

**Example**

```
OS10(conf-if-eth1/1/2)# dcbx version cee
```

**Supported Releases**

10.3.0E or later
lldp tlv-select dcbxp

Enables and disables DCBX on a port interface.

Syntax

```
lldp tlv-select dcbxp
```

Parameters

None

Default

Enabled interface level; disabled global level

Command Mode

INTERFACE

Usage Information

DCBX must be enabled at both the global and interface levels. Enable DCBX globally using the `dcbx enable` command to activate the exchange of DCBX TLV messages with PFC, ETS, and iSCSI configurations. To configure the TLVs advertised by a DCBX-enabled port, change the DCBX version, or disable DCBX on an interface, use DCBX interface-level commands. The `no` version of this command disables DCBX on an interface.

Example

```
OS10(conf-if-eth1/1/1)# lldp tlv-select dcbxp
```

Supported Releases

10.3.0E or later

show lldp dcbx interface

Displays the DCBX configuration and PFC or ETS TLV status on an interface.

Syntax

```
show lldp dcbx interface ethernet node/slot/port[:subport] [ets detail | pfc detail]
```

Parameters

- `interface ethernet node/slot/port[:subport]` — Enter interface information.
- `ets detail` — Display the ETS TLV status and operation with DCBX peers.
- `pfc detail` — Display the PFC TLV status and operation with DCBX peers.

Default

Not configured

Command Mode

EXEC

Usage Information

You must enable DCBX before using this command. DCBX advertises all TLVs — PFC, ETS Recommendation, ETS Configuration, DCBXP, and basic TLVs by default. Enter a port range to display DCBX configuration and TLV operation on multiple ports.

NOTE: In the command output, the `Is configuration source parameter always displays False. Configuration source is type of port role that is not supported.`

Example (interface)

```
OS10# show lldp dcbx interface ethernet 1/1/15
E-ETS Configuration TLV enabled e-ETS Configuration TLV disabled
R-ETS Recommendation TLV enabled r-ETS Recommendation TLV disabled
P-PFC Configuration TLV enabled p-PFC Configuration TLV disabled
F-Application priority for FCOE enabled f-Application Priority for FCOE disabled
I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled

Interface ethernet1/1/15
Port Role is Manual
DCBX Operational Status is Enabled
Is Configuration Source? FALSE
Local DCBX Compatibility mode is IEEEv2.5
Local DCBX Configured mode is IEEEv2.5
```
Peer Operating version is IEEEv2.5
Local DCBX TLVs Transmitted: ERPfI
5 Input PFC TLV pkts, 2 Output PFC TLV pkts, 0 Error PFC pkts
5 Input ETS Conf TLV Pkts, 2 Output ETS Conf TLV Pkts, 0 Error ETS Conf TLV Pkts
5 Input ETS Reco TLV pkts, 2 Output ETS Reco TLV pkts, 0 Error ETS Reco TLV Pkts
5 Input Appln Priority TLV pkts, 2 Output Appln Priority TLV pkts, 0 Error Appln Priority TLV Pkts
Total DCBX Frames transmitted 8
Total DCBX Frames received 20
Total DCBX Frame errors 0
Total DCBX Frames unrecognized 0

Example (ETS detail)
OS10# show lldp dc bx interface ethernet 1/1/15 ets  detail
Interface ethernet1/1/15
Max Supported PG is 8
Number of Traffic Classes is 8
Admin mode is on

Admin Parameters :
------------------
Admin is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Remote Parameters :
-------------------
Remote is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Remote Willing Status is disabled
Local Parameters :
--------------------
Local is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Oper status is init
ETS DCBX Oper status is Up
Internet small computer system interface

iSCSI is a TCP/IP-based protocol that establishes and manages connections between servers and storage devices in a data center network. After you enable iSCSI, iSCSI optimization automatically detects Dell EMC EqualLogic storage arrays directly attached to switch ports. To support storage arrays where auto-detection is not supported, manually configure iSCSI optimization using the `iscsi profile-storage name` command.

iSCSI optimization enables a switch to auto-detect Dell EMC’s iSCSI storage arrays and auto-configure switch ports to improve storage traffic throughput. The switch monitors iSCSI sessions and applies QoS policies on iSCSI traffic. iSCSI optimization operates with or without DCBX over an Ethernet network.

- iSCSI uses the current flow-control configuration by default. If you do not configure flow-control, iSCSI auto-configures flow control settings so that receive-only is enabled and transmit-only is disabled.
- The switch monitors and tracks active iSCSI sessions, including port information and iSCSI session information.
- A user-configured iSCSI CoS profile applies to all iSCSI traffic. Use classifier rules to direct the iSCSI data traffic to queues with preferential QoS treatment over other data passing through the switch. Preferential treatment helps to avoid session interruptions during times of congestion that would otherwise cause dropped iSCSI packets.
In an iSCSI session, a switch connects CNA servers (iSCSI initiators) to a storage array (iSCSI targets) in a SAN or TCP/IP network. iSCSI optimization running on the switch uses dot1p priority-queue assignments to ensure that iSCSI traffic receives priority treatment.

**iSCSI configuration notes**

- Enable iSCSI optimization so the switch auto-detects and auto-configures Dell EMC EqualLogic storage arrays directly connected to an interface. iSCSI automatically configures switch parameters after connection to a storage device is verified. You must manually enable an interface to support a storage device that is directly connected to a port, but not automatically detected by iSCSI.
- Enable iSCSI session monitoring and the aging time for iSCSI sessions. iSCSI monitoring sessions listen on TCP ports 860 and 3260 by default.
- Configure the CoS/DSCP values applied to ingress iSCSI flows — create a class-iscsi class map in POLICY-CLASS-MAP mode.
- Enable LLDP to use iSCSI. The DCBX application TLV carries information about the dot1p priorities to use when sending iSCSI traffic. This informational TLV is packaged in LLDP PDUs. You can reconfigure the 802.1p priority bits advertised in the TLVs.

**Configure iSCSI optimization**

The iSCSI protocol provides storage traffic TCP/IP transport between servers and storage arrays in a network using iSCSI commands.
Configure an interface or interface range to detect a connected storage device.

```plaintext
interface ethernet node/slot/port:[subport]
interface range ethernet node/slot/port:[subport]-node/slot/port:[subport]
```

Enable the interface to support a storage device that is directly connected to the port and not automatically detected by iSCSI. Use this command for storage devices that do not support LLDP. The switch auto-detects and auto-configures Dell EMC EqualLogic storage arrays directly connected to an interface when you enable iSCSI optimization.

```plaintext
iscsi profile-storage storage-device-name
```

Configure DCBX to use LLDP to send iSCSI application TLVs with dot1p priorities for iSCSI traffic in INTERFACE mode.

```plaintext
lldp tlv-select dcbxp-appln iscsi
```

Return to CONFIGURATION mode.

```plaintext
exit
```

(Optional) If necessary, re-configure the iSCSI TCP ports and IP addresses of target storage devices in CONFIGURATION mode. Separate TCP port numbers with a comma, from 0 to 65535; default 860 and 3260.

```plaintext
iscsi target port tcp-port1 [tcp-port2, ..., tcp-port16] [ip-address |ip-address]
```

Configure the QoS policy applied to ingress iSCSI flows. Apply the service policy to ingress interfaces in CONFIGURATION mode.

(Optional) Reset the default CoS dot1p priority, the default is 4 and/or the trusted DCSP value used for iSCSI traffic. Assign an internal qos-group queue, from 0 to 7, to dot1p, from 0 to 7, and DSCP, from 0 to 63, values in POLICY-CLASS-MAP mode.

```plaintext
class-map type application class-iscsi
policy-map type application policy-iscsi
 class class-iscsi
 set qos-group traffic-class-number
 set cos dot1p-priority
 set dscp dscp-value
 end
service-policy type application policy-iscsi
```

Enable iSCSI monitoring sessions on TCP ports in CONFIGURATION mode.

```plaintext
iscsi session-monitoring enable
```

(Optional) Set the aging time for the length of iSCSI monitoring sessions in CONFIGURATION mode, 5 to 43,200 minutes; default 10.

```plaintext
iscsi aging time [minutes]
```

(Optional) Reconfigure the dot1p priority bits advertised in iSCSI application TLVs in CONFIGURATION mode. The default bitmap is 0x10 (dot1p 4). The default dot1p 4 value is sent in iSCSI application TLVs only if you enabled the PFC pause for dot1p 4 traffic using the pfc-cos dot1p-priority command.

If you do not configure an iscsi priority-bits dot1p value and you configure a set cos value in Step 6, the set cos value is sent in iSCSI application TLVs. If you configure neither the iscsi priority-bits nor the set cos value, the default dot1p 4 advertises.

```plaintext
iscsi priority-bits dot1p-bitmap
```

Enable iSCSI auto-detection and auto-configuration on the switch in CONFIGURATION mode.

```plaintext
iscsi enable
```

Configure iSCSI optimization

```plaintext
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# iscsi profile-storage compellent
OS10(conf-if-eth1/1/1)# lldp tlv-select dcbxp-appln iscsi
OS10(conf-if-eth1/1/1)# exit

OS10(config)# iscsi target port 3261 ip-address 10.1.1.1
OS10(config)# policy-map type application policy-iscsi
OS10(config-pmap-application)# class class-iscsi
OS10 (config-pmap-c-app)# set qos-group 4
OS10 (config-pmap-c-app)# set cos 4
OS10 (config-pmap-c-app)# exit
OS10(config-pmap-application)# exit

OS10(config)# system qos
OS10(config-sys-qos)# service-policy type application policy-iscsi
OS10(config-sys-qos)# exit
```
**View iSCSI optimization**

OS10# show iscsi
iSCSI Auto configuration is Enabled
iSCSI session monitoring is Enabled
iSCSI COS qos-group 4 remark dot1p 4
Session aging time 15
Maximum number of connections is 100
Port IP Address
------------------------
3260
860
3261 10.1.1.1

OS10# show iscsi session detailed
Session 1
------------------------------------------------
Target: iqn.2001-05.com.equallogic:0-8a0906-00851a00c-98326939fba510a1-517
Up Time: 00:00:18:12 (DD:HH:MM:SS)
ISID: 400001370000
Initiator IP Address TCP Port Target IP Address TCP Port ID
-----------------------------------------------
10.10.10.210 54748 10.10.10.40 3260 1

Session 2
------------------------------------------------
Target: iqn.2001-05.com.equallogic:0-8a0906-01251a00c-8ab26939fbd510a1-518
Up Time: 00:00:16:02 (DD:HH:MM:SS)
ISID: 400001370000
Initiator IP Address TCP Port Target IP Address TCP Port ID
-----------------------------------------------
10.10.10.210 54835 10.10.10.40 3260 1

OS10# show iscsi storage-devices
Interface Name Storage Device Name Auto Detected Status
------------------------------------------------------------
ethernet1/1/23 EQL-MEM true

**iSCSI synchronization on VLT**

An iSCSI session is learnt on a VLT LAG during the following scenarios:

- If the iSCSI session receives control packets, as login-request or login-response, on the VLT LAG.
- If the iSCSI session does not receive control packets, but receives data packets on the VLT LAG. This happens when you enable iSCSI session monitoring after the iSCSI session starts.

The information learnt about iSCSI sessions on VLT LAGs synchronizes with the VLT peers.

iSCSI session synchronization happens based on various scenarios:

- If the iSCSI login request is received on an interface that belongs to a VLT LAG, the information synchronizes with the VLT peer and the connection associates with the interface.
- Any updates to connections, including aging updates, that are learnt on VLT LAG members synchronizes with the VLT peer.
• If the iSCSI login request is received on a non-VLT interface, followed by a response from a VLT interface, the connection is associated with the VLT LAG interface and the information about the session synchronizes with the VLT peer.
• When a VLT interconnect comes up, information about iSCSI sessions learnt on the VLT LAG exchanges between the VLT-peers.

**iSCSI commands**

**iscsi aging**

Sets the aging time for monitored iSCSI sessions.

**Syntax**

```
iscsi aging [time minutes]
```

**Parameters**

`time minutes` — Enter the aging time in minutes allowed for monitoring iSCSI sessions, from 5 to 43,200.

**Default**

10 minutes

**Command Mode**

CONFIGURATION

**Usage Information**

Configure the aging time allowed for monitored iSCSI sessions on TCP ports before the session closes. The `no` version of this command disables the aging time.

**Example**

```
OS10(config)# iscsi aging time 30
```

**Supported Releases**

10.3.0E or later

**iscsi enable**

Enables iSCSI auto-detection of attached storage arrays and switch auto-configuration.

**Syntax**

```
iscsi enable
```

**Parameter**

None

**Default**

None

**Command Mode**

CONFIGURATION

**Usage Information**

iSCSI optimization automatically detects storage arrays and auto-configures switch ports with the iSCSI parameters received from a connected device. The `no` version of this command disables iSCSI auto-detection.

Starting from release 10.4.1.1, when you perform a fresh installation of OS10, iSCSI autoconfig is enabled and flowcontrol receive is set to on. However, when you upgrade from an earlier release to release 10.4.1.1 or later, the existing iSCSI configuration is retained and the flowcontrol receive could be set to on or off, depending on the iSCSI configuration before upgrade.

**Example**

```
OS10(config)# iscsi enable
```

**Supported Releases**

10.3.0E or later
**iscsi priority-bits**

Resets the priority bitmap advertised in iSCSI application TLVs.

**Syntax**

```
iscsi priority-bits {priority-bitmap}
```

**Parameter**

`priority-bitmap` — Enter a bitmap value for the dot1p priority advertised for iSCSI traffic in iSCSI application TLVs (0x1 to 0xff).

**Default**

0x10 (dot1p 4)

**Command Mode**

CONFIGURATION

**Usage Information**

iSCSI traffic uses dot1p priority 4 in frame headers by default. Use this command to reconfigure the dot1p-priority bits advertised in iSCSI application TLVs. Enter only one dot1p-bitmap value — setting more than one bitmap value with this command is not supported. The default dot1p 4 value advertises only if you enabled PFC pause frames for dot1p 4 traffic using the `pfc-cos dot1p-priority` command. The `no` version of this command resets to the default value.

**Example**

```
OS10(config)# iscsi priority-bits 0x20
```

**Supported Releases**

10.3.0E or later

---

**iscsi profile-storage**

Configures a port for direct connection to a storage device that is not automatically detected by iSCSI.

**Syntax**

```
iscsi profile-storage storage-device-name
```

**Parameter**

`storage-device-name` — Enter a user-defined name of a storage array that iSCSI does not automatically detect.

**Default**

Not configured

**Command Mode**

INTERFACE

**Usage Information**

Configure directly attached storage arrays that iSCSI supports if they are not automatically detected. This command is required for storage devices that do not support LLDP. The `no` version of this command disables the connection.

**Example**

```
OS10(conf-if-eth1/1/2)# iscsi profile-storage compellant
```

**Supported Releases**

10.3.0E or later

---

**iscsi session-monitoring enable**

Enables iSCSI session monitoring.

**Syntax**

```
iscsi session-monitoring enable
```

**Parameter**

None

**Default**

Disabled

**Command Mode**

CONFIGURATION
Usage Information

To configure the aging timeout in iSCSI monitoring sessions use the `iscsi aging time` command. To configure the TCP ports that listen for connected storage devices in iSCSI monitoring sessions use the `iscsi target port` command. The no version of this command disables iSCSI session monitoring.

**NOTE:** When you enable iSCSI session monitoring, you can monitor a maximum of 100 connections.

Example

```
OS10(config)# iscsi session-monitoring enable
```

Supported Releases 10.3.0E or later

### iscsi target port

Configures the TCP ports used to monitor iSCSI sessions with target storage devices.

**Syntax**

```plaintext
iscsi target port tcp-port1 [tcp-port2, ..., tcp-port16] [ip-address ip-address]
```

**Parameters**

- `tcp-port` — Enter one or more TCP port numbers, from 0 to 65535. Separate TCP port numbers with a comma.
- `ip-address ip-address` — (Optional) Enter the IP address in A.B.C.D format of a storage array whose iSCSI traffic is monitored on the TCP port.

**Default**

3260,860

**Command Mode** CONFIGURATION

**Usage Information**

You can configure a maximum of 16 TCP ports to monitor iSCSI traffic from target storage devices. The no version of this command including the IP address removes a TCP port from iSCSI monitoring.

**Example**

```
OS10(config)# iscsi target port 26,40
```

**Supported Releases** 10.3.0E or later

### lldp tlv-select dcbxp-appln iscsi

Enables a port to advertise iSCSI application TLVs to DCBX peers.

**Syntax**

```plaintext
lldp tlv-select dcbxp-appln iscsi
```

**Parameter** None

**Default** iSCSI application TLVs are advertised to DCBX peers.

**Command Mode** INTERFACE

**Usage Information** DCB devices use DCBX to exchange iSCSI configuration information with peers and self-configure. iSCSI parameters exchange in time, length, and value (TLV) messages. DCBX requires LLDP enabled to advertise iSCSI application TLVs. iSCSI application TLVs advertise the PFC dot1p priority-bitmap configured using the `iscsi priority-bits` command to DCBX peers. If you do not configure an iSCSI dot1p-bitmap value, iSCSI application TLVs advertise dot1p 4 by default only if you configure dot1p 4 as a PFC priority using the `pfc-cos` command. The no version of this command disables iSCSI TLV transmission.

**Example**

```
OS10(conf-if-eth1/1/1)# lldp tlv-select dcbxp-appln iscsi
```

**Supported Releases** 10.3.0E or later
show iscsi

Displays currently configured iSCSI settings.

Syntax
show iscsi

Parameters
None

Command Mode
EXEC

Usage Information
This command output displays global iSCSI configuration settings. To view target and initiator information use the show iscsi session command.

Example
OS10# show iscsi
iSCSI Auto configuration is Enabled
iSCSI session monitoring is Enabled
iSCSI COS qos-group 4 remark dot1p 4
Session aging time 15
Maximum number of connections is 100
Port IP Address
------------------------
3260
860
3261 10.1.1.1

Supported Releases
10.3.0E or later

show iscsi session

Displays information about active iSCSI sessions.

Syntax
show iscsi session [detailed]

Parameter
detailed — Displays a detailed version of the active iSCSI sessions.

Command Mode
EXEC

Usage Information
In an iSCSI session, Target is the storage device, and Initiator is the server connected to the storage device.

Example
OS10# show iscsi session

Example (detailed)
OS10# show iscsi session detailed
Session 1
-----------------------------------------
Target:iqn.2001-05.com.equallogic:0-8a0906-00851a00c-98326939fba510a1-517
Up Time:00:00:18:12(DD:HH:MM:SS)
ISID:400001370000
Initiator Initiator Target Target Connection
IP Address TCP Port IP Address TCP Port ID
-----------------------------------------
10.10.10.210 54748 10.10.10.40 3260 1

Session 2
-----------------------------------------
Target:iqn.2001-05.com.equallogic:0-8a0906-01251a00c-8ab26939fbd510a1-518
Up Time:00:00:16:02(DD:HH:MM:SS)
ISID:400001370000
Initiator Initiator Target Target Connection
IP Address TCP Port IP Address TCP Port ID
-----------------------------------------
show iscsi storage-devices

Displays information about the storage arrays directly attached to OS10 ports.

Syntax
show iscsi storage-devices

Parameters
None

Command Mode
EXEC

Usage Information
The command output displays the storage device connected to each switch port and whether iSCSI automatically detects it.

Example
OS10# show iscsi storage-devices
Interface Name	Storage Device Name	Auto Detected Status
ethernet1/1/23 | EQL-MEM             | true

Converged network DCB example

A converged data center network carries multiple SAN, server, and LAN traffic types that are sensitive to different aspects of data transmission. For example, storage traffic is sensitive to packet loss, while server traffic is latency-sensitive. In a single converged link, all traffic types coexist without imposing serious restrictions on others' performance. DCB allows iSCSI and FCoE SAN traffic to co-exist with server and LAN traffic on the same network. DCB features reduce or avoid dropped frames, retransmission, and network congestion.

DCB provides lossless transmission of FCoE and iSCSI storage traffic using:

- Separate traffic classes for the different service needs of network applications.
- PFC flow control to pause data transmission and avoid dropping packets during congestion.
- ETS bandwidth allocation to guarantee a percentage of shared bandwidth to bursty traffic, while allowing each traffic class to exceed its allocated bandwidth if another traffic class is not using its share.
- DCBX discovery of peers, including PFC, ETS, and other DCB settings parameter exchange, mismatch detection, and remote configuration of DCB parameters.
- iSCSI application protocol TLV information in DCBX advertisements to communicate iSCSI support to peer ports.

This example shows how to configure a DCB converged network in which:

- DCBx is enabled globally to ensure the exchange of DCBX, PFC, ETS, and iSCSI configurations between DCBx-enabled devices.
- PFC is configured to ensure loseless traffic for dot1p priority 4, 5, 6, and 7 traffic.
- ETS allocates 30% bandwidth for dot1p priority 0, 1, 2, and 3 traffic and 70% bandwidth for priority 4, 5, 6, and 7 traffic.
- iSCSI is configured to use dot1p priority 6 for iSCSI traffic, and advertise priority 6 in iSCSI application TLVs.
- The default class-trust class map honors dot1p priorities in ingress flows and applies a 1-to-1 dot1p-to-qos-group and a 1-to-1 qos-group-to-queue mapping. In OS10, qos-group represents a traffic class used only for internal processing.

1. DCBx configuration (global)

Configure DCBX globally on a switch to enable the exchange of DCBX TLV messages with PFC, ETS, and iSCSI configurations.

OS10# configure terminal
OS10(config)# dcbx enable
2. PFC configuration (global)

PFC is enabled on traffic classes with dot1p 4, 5, 6, and 7 traffic. All the traffic classes use the default PFC pause settings for shared buffer size and pause frames in ingress queue processing in the network-qos policy map. The pclass policy map honors (trusts) all dot1p ingress traffic. The reserved class-trust class map is configured by default. Trust does not modify ingress values in output flows.

```
OS10(config)# class-map type network-qos test4
OS10(config-cmap-nqos)# match qos-group 4
OS10(config-cmap-nqos)# exit
OS10(config)# class-map type network-qos test5
OS10(config-cmap-nqos)# match qos-group 5
OS10(config-cmap-nqos)# exit
OS10(config)# class-map type network-qos test6
OS10(config-cmap-nqos)# match qos-group 6
OS10(config-cmap-nqos)# exit
OS10(config)# class-map type network-qos test7
OS10(config-cmap-nqos)# match qos-group 7
OS10(config-cmap-nqos)# exit
```

```
OS10(config)# policy-map type network-qos test
OS10(config-pmap-network-qos)# class test4
OS10(config-pmap-c-nqos)# pause
OS10(config-pmap-c-nqos)# pfc-cos 4
OS10(config-pmap-c-nqos)# exit
OS10(config-pmap-network-qos)# class test5
OS10(config-pmap-c-nqos)# pause
OS10(config-pmap-c-nqos)# pfc-cos 5
OS10(config-pmap-c-nqos)# exit
OS10(config-pmap-network-qos)# class test6
OS10(config-pmap-c-nqos)# pause
OS10(config-pmap-c-nqos)# pfc-cos 6
OS10(config-pmap-c-nqos)# exit
OS10(config-pmap-network-qos)# class test7
OS10(config-pmap-c-nqos)# pause
OS10(config-pmap-c-nqos)# pfc-cos 7
OS10(config-pmap-c-nqos)# exit
OS10(config-pmap-network-qos)# exit
```

```
OS10(config)# system qos
OS10(config-sys-qos)# trust-map dscp default
```

3. PFC configuration (interface)

Apply the service policies with dot1p trust and PFC configurations to an interface.

```
OS10(config)# interface ethernet 1/1/53
OS10(config-if-eth1/1/53)# no shutdown
OS10(config-if-eth1/1/53)# service-policy input type network-qos test
OS10(config-if-eth1/1/53)# service-policy input type qos pclass
OS10(config-if-eth1/1/53)# priority-flow-control mode on
OS10(config-if-eth1/1/53)# end
```

4. ETS configuration (global)

A trust dot1p-map assigns dot1p 0, 1, 2, and 3 traffic to qos-group 0, and dot1p 4, 5, 6, and 7 traffic to qos-group 1. A qos-map traffic-class map assigns the traffic class in qos-group 0 to queue 0, and qos-group 1 traffic to queue 1. A queuing policy map assigns 30% of interface bandwidth to queue 0, and 70% of bandwidth to queue 1.

The pclass policy map applies trust to all dot1p ingress traffic. Trust does not modify ingress dot1p values in output flows. The reserved class-trust class map is configured by default.

```
OS10(config)# trust dot1p-map tmap1
OS10(config-tmap-dot1p-map)# qos-group 0 dot1p 0-3
OS10(config-tmap-dot1p-map)# qos-group 1 dot1p 4-7
OS10(config-tmap-dot1p-map)# exit
```
5. ETS configuration (Interface and Global)

Apply the service policies with dot1p trust and ETS configurations to an interface or on all switch interfaces. Only one qos-map traffic-class map is supported on a switch.

OS10(config)# qos-map traffic-class tmap2
OS10(config-qos-map)# queue 0 qos-group 0
OS10(config-qos-map)# queue 1 qos-group 1
OS10(config-qos-map)# exit

OS10(config)# class-map type queuing cmap1
OS10(config-cmap-queuing)# match queue 0
OS10(config-cmap-queuing)# exit
OS10(config)# class-map type queuing cmap2
OS10(config-cmap-queuing)# match queue 1
OS10(config-cmap-queuing)# exit

OS10(config)# policy-map type queuing pmap1
OS10(config-pmap-queuing)# class cmap1
OS10(config-pmap-c-que)# bandwidth percent 30
OS10(config-pmap-c-que)# exit
OS10(config)# policy-map type queuing pmap2
OS10(config-pmap-queuing)# class cmap2
OS10(config-pmap-c-que)# bandwidth percent 70
OS10(config-pmap-c-que)# end

OS10(config)# system qos
OS10(config-sys-qos)# trust-map dot1p default

6. Verify DCB configuration

OS10(config)# interface ethernet 1/1/53
OS10(conf-if-eth1/1/53)# trust-map dot1p tmap1
OS10(conf-if-eth1/1/53)# qos-map traffic-class tmap2
OS10(conf-if-eth1/1/53)# service-policy input type qos pclass
OS10(conf-if-eth1/1/53)# service-policy output type queuing pmap1
OS10(conf-if-eth1/1/53)# ets mode on
OS10(conf-if-eth1/1/53)# end

OS10(config)# system qos
OS10(config-sys-qos)# trust-map dot1p tmap1
OS10(config-sys-qos)# qos-map traffic-class tmap2
OS10(config-sys-qos)# service-policy input type qos pclass
OS10(config-sys-qos)# service-policy output type queuing pmap1
OS10(config-sys-qos)# ets mode on

7. Verify DCBX operational status

OS10(config)# do show lldp dcbx interface ethernet 1/1/53
E-ETS Configuration TLV enabled          e-ETS Configuration TLV disabled
R-ETS Recommendation TLV enabled        r-ETS Recommendation TLV disabled
P-PFC Configuration TLV enabled          p-PFC Configuration TLV disabled
F-Application priority for FCOE enabled   f-Application Priority for FCOE disabled
I-Application priority for iSCSI enabled  i-Application Priority for iSCSI disabled

Interface ethernet1/1/53
Port Role is Manual  
DCBX Operational Status is Enabled  
Is Configuration Source? FALSE  
Local DCBX Compatibility mode is IEEEv2.5  
Local DCBX Configured mode is AUTO  
Peer Operating version is IEEEv2.5  
Local DCBX TLVs Transmitted: ERPfI  
4 Input PFC TLV pkts, 3 Output PFC TLV pkts, 0 Error PFC pkts  
2 Input ETS Conf TLV Pkts, 27 Output ETS Conf TLV Pkts, 0 Error ETS Conf TLV Pkts  
2 Input ETS Reco TLV pkts, 27 Output ETS Reco TLV pkts, 0 Error ETS Reco TLV Pkts  

Total DCBX Frames transmitted 0  
Total DCBX Frames received 0  
Total DCBX Frame errors 0  
Total DCBX Frames unrecognized 0  

8. Verify PFC configuration and operation  

OS10(conf-if-eth1/1/53)# do show lldp dcbx interface ethernet 1/1/53 pfc detail  

Interface ethernet1/1/53  
Admin mode is on  
Admin is enabled, Priority list is 4,5,6,7  
Remote is enabled, Priority list is 4,5,6,7  
Remote Willing Status is disabled  
Local is enabled, Priority list is 4,5,6,7  
Oper status is init  
PFC DCBX Oper status is Up  
State Machine Type is Symmetric  
PFC TLV Tx Status is enabled  
Application Priority TLV Parameters:  
--------------------------------------  
ISCSI TLV Tx Status is enabled  
Local ISCSI PriorityMap is 0x10  
Remote ISCSI PriorityMap is 0x10  
4 Input TLV pkts, 3 Output TLV pkts, 0 Error pkts  
4 Input Appln Priority TLV pkts, 3 Output Appln Priority TLV pkts,  
0 Error Appln Priority TLV Pkts  

9. Verify ETS configuration and operation  

OS10(conf-if-eth1/1/53)# do show lldp dcbx interface ethernet 1/1/53 ets detail  

Interface ethernet1/1/53  
Max Supported PG is 8  
Number of Traffic Classes is 8  
Admin mode is on  
Admin Parameters:  
-----------------  
Admin is enabled  

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3,</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>ETS</td>
<td></td>
</tr>
</tbody>
</table>

Remote Parameters:  
-------------------  
Remote is enabled  

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remote Willing Status is disabled
Local Parameters :
----------------------
Local is enabled

<table>
<thead>
<tr>
<th>PG-grp</th>
<th>Priority#</th>
<th>Bandwidth</th>
<th>TSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,2,3,</td>
<td>30%</td>
<td>ETS</td>
</tr>
<tr>
<td>1</td>
<td>4,5,6,7</td>
<td>70%</td>
<td>ETS</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
<tr>
<td>7</td>
<td>0%</td>
<td>0%</td>
<td>SP</td>
</tr>
</tbody>
</table>

Oper status is init
ETS DCBX Oper status is Up
State Machine Type is Asymmetric
Conf TLV Tx Status is enabled
Reco TLV Tx Status is enabled

2 Input Conf TLV Pkts, 27 Output Conf TLV Pkts, 0 Error Conf TLV Pkts
2 Input Reco TLV Pkts, 27 Output Reco TLV Pkts, 0 Error Reco TLV Pkts

10. ISCSI optimization configuration (global)

This example accepts the default settings for aging time and TCP ports used in monitored iSCSI sessions. A Compellant storage array is connected to the port. The policy-iscsi policy map sets the CoS dot1p priority used for iSCSI traffic to 6 globally on the switch. By default, iSCSI traffic uses priority 4. The `iscsi priority-bits 0x40` command sets the advertised dot1p priority used by iSCSI traffic in application TLVs to 6. Hexadecimal 0x40 is binary 0 1 0 0 0 0 0 0.

```
OS10(conf-if-eth1/1/53)# iscsi profile-storage compellent
OS10(conf-if-eth1/1/53)# lldp tlv-select dcbxp-appln iscsi
OS10(conf-if-eth1/1/53)# exit

OS10(config)# iscsi target port 3261 ip-address 10.1.1.1
OS10(config)# policy-map type application policy-iscsi
OS10(config-pmap-application)# class class-iscsi
OS10(config-pmap-c-app)# set qos-group 6
OS10(config-pmap-c-app)# set cos 6
OS10(config-pmap-c-app)# exit
OS10(config-pmap-application)# exit

OS10(config)# system qos
OS10(config-sys-qos)# service-policy type application policy-iscsi
OS10(config-sys-qos)# exit

OS10(config)# iscsi session-monitoring enable
OS10(config)# iscsi priority-bits 0x40
OS10(config)# iscsi enable
```

11. Verify ISCSI optimization (global)
After you enable iSCSI optimization, the iSCSI application priority TLV parameters are added in the show command output to verify a PFC configuration.

```
OS10(conf-if-eth1/1/53)# do show lldp dcbx interface ethernet 1/1/53 pfc detail
```

### Interface ethernet1/1/53
- **Admin mode is on**
  - Admin is enabled, Priority list is 4,5,6,7
  - Remote is enabled, Priority list is 4,5,6,7
  - Remote Willing Status is disabled
  - Local is enabled, Priority list is 4,5,6,7
- **Oper status is init**
- **PFC DCBX Oper status is Up**
- **State Machine Type is Symmetric**
- **PFC TLV Tx Status is enabled**
- **Application Priority TLV Parameters:**
  - **ISCSI TLV Tx Status is enabled**
  - Local ISCSI PriorityMap is 0x40
  - Remote ISCSI PriorityMap is 0x10
- 4 Input TLV pkts, 3 Output TLV pkts, 0 Error pkts
- 4 Input Appln Priority TLV pkts, 3 Output Appln Priority TLV pkts, 0 Error Appln Priority TLV Pkts

#### 12. DCBX configuration (interface)

This example shows how to configure and verify different DCBX versions.

```
OS10(conf-if-eth1/1/53)# dcbx version cee
OS10(conf-if-eth1/1/53)# show configuration
!
interface ethernet1/1/53
 switchport access vlan 1
 no shutdown
dcbx version cee
 service-policy input type network-qos test
 service-policy input type qos pclass
 service-policy output type queuing pmap1
 ets mode on
 qos-map traffic-class tmap2
 trust-map dot1p tmap1
 priority-flow-control mode on
```

```
OS10(conf-if-eth1/1/53)# do show lldp dcbx interface ethernet 1/1/53
```

### Interface ethernet1/1/53
- **Port Role is Manual**
- **DCBX Operational Status is Enabled**
- Is Configuration Source? FALSE
- Local DCBX Compatibility mode is CEE
- Local DCBX Configured mode is CEE
- Peer Operating version is CEE
- Local DCBX TLVs Transmitted: ErPfi

#### DCBX Status
- **DCBX Operational Version is 0**
- **DCBX Max Version Supported is 0**
- **Sequence Number:** 2
- **Acknowledgment Number:** 1
- **Protocol State:** In-Sync

904 Converged data center services
Peer DCBX Status
-----------------
DCBX Operational Version is 0
DCBX Max Version Supported is 0
Sequence Number: 1
Acknowledgment Number: 2
  3 Input PFC TLV pkts, 3 Output PFC TLV pkts, 0 Error PFC pkts
  3 Input PG TLV Pkts, 3 Output PG TLV Pkts, 0 Error PG TLV Pkts
  3 Input Appln Priority TLV pkts, 3 Output Appln Priority TLV pkts,
  0 Error Appln Priority TLV Pkts
Total DCBX Frames transmitted 3
Total DCBX Frames received 3
Total DCBX Frame errors 0
Total DCBX Frames unrecognized 0

OS10(conf-if-eth1/1/53)# dcbx version cee
OS10(conf-if-eth1/1/53)# show configuration
!
interface ethernet1/1/53
  switchport access vlan 1
  no shutdown
dcbx version ieee
  service-policy input type network-qos test
  service-policy input type qos pclass
  service-policy output type queuing pmap1
  ets mode on
  qos-map traffic-class tmap2
  trust-map dotlp tmap1
  priority-flow-control mode on

OS10(conf-if-eth1/1/53)# do show lldp dcbx interface ethernet 1/1/53
E-ETS Configuration TLV enabled   e-ETS Configuration TLV disabled
R-ETS Recommendation TLV enabled  r-ETS Recommendation TLV disabled
P-PFC Configuration TLV enabled   p-PFC Configuration TLV disabled
F-Application priority for FCOE enabled f-Application Priority for FCOE disabled
I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled
---------------------------------------------------------------------
Interface ethernet1/1/53
Port Role is Manual
DCBX Operational Status is Enabled
Is Configuration Source? FALSE
Local DCBX Compatibility mode is IEEEv2.5
Local DCBX Configured mode is IEEEv2.5
Peer Operating version is IEEEv2.5
Local DCBX TLVs Transmitted: ERFPI
  13 Input PFC TLV pkts, 4 Output PFC TLV pkts, 0 Error PFC pkts
  3 Input ETS Conf TLV Pkts, 26 Output ETS Conf TLV Pkts, 0 Error ETS Conf TLV Pkts
  3 Input ETS Reco TLV pkts, 26 Output ETS Reco TLV pkts, 0 Error ETS Reco TLV Pkts
Total DCBX Frames transmitted 0
Total DCBX Frames received 0
Total DCBX Frame errors 0
Total DCBX Frames unrecognized 0
sFlow is a standard-based sampling technology embedded within switches and routers that monitors network traffic. It provides traffic monitoring for high-speed networks with many switches and routers.

- OS10 supports sFlow version 5
- Only data ports support sFlow collector
- OS10 supports a maximum of two sFlow collectors
- OS10 does not support sFlow on SNMP, VLAN, VRF, tunnel interfaces, extended sFlow, backoff mechanism, and egress sampling

sFlow uses two types of sampling:

- Statistical packet-based sampling of switched or routed packet flows
- Time-based sampling of interface counters

sFlow monitoring consists of an sFlow agent embedded in the device and an sFlow collector:

- The sFlow agent resides anywhere within the path of the packet. The agent combines the flow samples and interface counters into sFlow datagrams and forwards them to the sFlow collector at regular intervals. The datagrams consist of information on, but not limited to, the packet header, ingress and egress interfaces, sampling parameters, and interface counters. Application-specific integrated circuits (ASICs) handle packet sampling.
- The sFlow collector analyses the datagrams received from different devices and produces a network-wide view of traffic flows.

**Enable sFlow**

You can enable sFlow either on all interfaces globally or on a specific set of interfaces. The system displays an error message if you try to enable sFlow on both modes at one time.

If you configure sFlow only on a set of interfaces, any further change to the sFlow-enabled ports triggers the sFlow agent to restart. This results in a gap in the polling counter statistics of 30 seconds and the sFlow counters are reset on all sFlow-enabled ports.

When you enable sFlow on a port-channel:

- When in Per-Interface mode, the counter statistics of sFlow-enabled ports reset to zero when you add a new member port or remove an existing member port from any sflow enabled port-channel group.
- sFlow counter statistics that are individually reported for the port members of a port-channel data source are accurate. Counter statistics reported for the port-channel may not be accurate. To calculate the correct counters for a port-channel data source, add together the counter statistics of the individual port members.

**Enable or disable sFlow globally**

sFlow is disabled globally by default.

- Enable sFlow globally on all interfaces in CONFIGURATION mode.
  ```
 sflow enable all-interfaces
  ```
- Disable sFlow in CONFIGURATION mode.
  ```
 no sflow
  ```

**Enable or disable sFlow on a specific interface**

- Enable sFlow in CONFIGURATION mode.
  ```
 sflow enable
  ```
• Disable sFlow in CONFIGURATION mode.
  
  no sflow enable

Enable sFlow on a specific interface

OS10(config)# sflow enable
OS10(config)# interface ethernet 1/1/1
OS10(conf-if-eth1/1/1)# sflow enable

Enable sFlow on a range of interfaces

OS10(config)# sflow enable
OS10(config)# interface range ethernet 1/1/1-1/1/10
OS10(conf-range-eth1/1/1-1/1/10)# sflow enable

Enable sFlow on a port-channel

OS10(config)# sflow enable
OS10(config)# interface range port-channel 1-10
OS10(conf-range-po-1-10)# sflow enable

Max-header size configuration

• Set the packet maximum size in CONFIGURATION mode, from 64 to 256. The default is 128 bytes.
  
  max-header-size header-size

• Disable the header size in CONFIGURATION mode.
  
  no sflow max-header-size

• View the maximum packet header size in EXEC mode.
  
  show sflow

Configure sFlow maximum header size

OS10(config)# sflow max-header-size 80

View sFlow information

OS10# show sflow
sFlow services are enabled
Management Interface sFlow services are disabled
Global default sampling rate: 32768
Global default counter polling interval: 20
Global default extended maximum header size: 128 bytes
Global extended information enabled: none
1 collector(s) configured
Collector IP addr:10.16.151.245 Agent IP addr:10.16.132.181 UDP port:6343 VRF:Default
31722 UDP packets exported
0 UDP packets dropped
34026 sFlow samples collected

View sFlow running configuration

OS10# show running-configuration sflow
sflow enable
sflow max-header-size 80
sflow polling-interval 30
sflow sample-rate 4096
sflow collector 10.16.150.1 agent-addr 10.16.132.67 6767 max-datagram-size 800
sflow collector 10.16.153.176 agent-addr 3.3.3.3 6666
!
interface ethernet1/1/1
sflow enable
!
Collector configuration

Configure the IPv4 or IPv6 address for the sFlow collector. You must enter a valid and reachable IPv4 or IPv6 address. You can configure a maximum of two sFlow collectors. If you specify two collectors, the samples are sent to both. The agent IP address must be the same for both the collectors.

- Enter an IPv4 or IPv6 address for the sFlow collector, IPv4 or IPv6 address for the agent, UDP collector port number, maximum datagram size, and the VRF instance number in CONFIGURATION mode.

  `sflow collector {ip-address | ipv6-address} agent-addr {ip-address | ipv6-address} [collector-port-number] [vrf default]`

The no form of the command disables sFlow collectors in CONFIGURATION mode.

**sFlow collector**

```
OS10(config)# sflow collector 10.1.1.1 agent-addr 2.2.2.2 6443 vrf default
```

Polling-interval configuration

The polling interval for an interface is the number of seconds between successive samples of counters sent to the collector. You can configure the duration for polled interface statistics. Unless there is a specific deployment need to configure a lower polling interval value, configure the polling interval to the maximum value.

- Change the default counter polling interval in CONFIGURATION mode, from 10 to 300. The default is 20.

  `sflow polling-interval interval-size`

- Disable the polling interval in CONFIGURATION mode.

  `no sflow polling-interval`

- View the polling interval in EXEC mode.

  `show sflow`

**Configure sFlow polling interval**

```
OS10(config)# sflow polling-interval 200
```

**View sFlow information**

```
OS10# show sflow
sFlow services are enabled
Management Interface sFlow services are disabled
Global default sampling rate: 32768
Global default counter polling interval: 200
Global default extended maximum header size: 128 bytes
Global extended information enabled: none
1 collector(s) configured
Collector IP addr:10.16.151.245 Agent IP addr:10.16.132.181 UDP port:6343 VRF:Default
31722 UDP packets exported
0 UDP packets dropped
34026 sFlow samples collected
```

**View sFlow running configuration**

```
OS10# show running-configuration sflow
sflow enable
sflow max-header-size 80
sflow polling-interval 200
sflow sample-rate 4096
sflow collector 10.16.150.1 agent-addr 10.16.132.67 6767 max-datagram-size 800
sflow collector 10.16.153.176 agent-addr 3.3.3.3 6666

! interface ethernet1/1/1
```
sflow enable

**Sample-rate configuration**

Sampling rate is the number of packets skipped before the sample is taken. If the sampling rate is 4096, one sample generates for every 4096 packets observed.

- Set the sampling rate in CONFIGURATION mode, from 4096 to 65535. The default is 32768.
  ```
 sflow sample-rate sampling-size
  ```
- Disable packet sampling in CONFIGURATION mode.
  ```
 no sflow sample-rate
  ```
- View the sampling rate in EXEC mode.
  ```
 show sflow
  ```

Configure sFlow sampling rate

OS10(config)# sflow sample-rate 4096

View sFlow packet header size

OS10# show sflow
sFlow services are enabled
Management Interface SFlow services are disabled
Global default sampling rate: 4096
Global default counter polling interval: 20
Global default extended maximum header size: 128 bytes
Global extended information enabled: none
1 collector(s) configured
Collector IP addr:10.16.151.245 Agent IP addr:10.16.132.181 UDP port:6343 VRF:Default
31722 UDP packets exported
0 UDP packets dropped
34026 sFlow samples collected

View sFlow running configuration

OS10# show running-configuration sflow
sflow enable
sflow max-header-size 80
sflow polling-interval 20
sflow sample-rate 4096
sflow collector 10.16.150.1 agent-addr 10.16.132.67 6767 max-datagram-size 800
sflow collector 10.16.153.176 agent-addr 3.3.3.3 6666
!
interface ethernet1/1/1
sflow enable
!

**Source interface configuration**

You can configure an interface as a source for sFlow. The sFlow agent uses the IP address of the configured source interface as the agent IP address.

- Configure the source interface in CONFIGURATION mode.
  ```
 sflow source-interface {ethernet node слот/порт[|subport] | loopback loopback-ID| port-channel port-channel-ID| vlan vlan-ID}
  ```
- View the interface details.
  ```
 show running-configuration sflow
  ```

Configure sFlow source interface

OS10(config)# sflow source-interface ethernet 1/1/1
View sFlow configuration

OS10# show running-configuration sflow
sflow enable all-interfaces
sflow source-interface vlan10
sflow collector 5.1.1.1 agent-addr 4.1.1.1 6343
sflow collector 6.1.1.1 agent-addr 4.1.1.1 6343

OS10(config)#show running-configuration interface vlan
! interface vlan1
  no shutdown
! interface vlan10
  no shutdown
  ip address 10.1.1.1/24

View sFlow details

OS10# show sflow
sFlow services are enabled
Management Interface sFlow services are disabled
Global default sampling rate: 32768
Global default counter polling interval: 30
Global default extended maximum header size: 128 bytes
Global extended information enabled: none
2 collector(s) configured
  Collector IP addr:5.1.1.1 Agent IP addr:10.1.1.1 UDP port:6343 VRF:Default → It shows active agent-ip
  Collector IP addr:6.1.1.1 Agent IP addr:10.1.1.1 UDP port:6343 VRF:Default → It shows active agent-ip
2 UDP packets exported
0 UDP packets dropped
34026 sFlow samples collected

View sFlow information

OS10 does not support statistics for UDP packets dropped and samples received from the hardware.

- View sFlow configuration details and statistics in EXEC mode.
  OS10# show sflow
  sFlow services are enabled
  Management Interface sFlow services are disabled
  Global default sampling rate: 32768
  Global default counter polling interval: 30
  Global default extended maximum header size: 128 bytes
  Global extended information enabled: none
  1 collector(s) configured
  Collector IP addr:10.16.151.245 Agent IP addr:10.16.132.181 UDP port:6343 VRF:Default
  31722 UDP packets exported
  0 UDP packets dropped
  34026 sFlow samples collected
- View sFlow configuration details on a specific interface in EXEC mode.
  OS10# show sflow interface port-channel 1
  port-channel1
  sFlow is enabled on port-channel1
  Samples rcvd from h/w: 0
View the sFlow running configuration in EXEC mode.

```
OS10# show running-configuration sflow
sflow enable
sflow max-header-size 80
sflow polling-interval 30
sflow sample-rate 4096
sflow collector 10.16.150.1 agent-addr 10.16.132.67 6767
sflow collector 10.16.153.176 agent-addr 3.3.3.3 6666
!
interface ethernet1/1/1
sflow enable
!
```

### sFlow commands

#### sflow collector

Configures an sFlow collector IP address where sFlow datagrams forward. You can configure a maximum of two collectors.

**Syntax**

```
sflow collector {ipv4-address | ipv6-address} agent-addr {ipv4-address | ipv6-address} [collector-port-number] [vrf default]
```

**Parameters**

- `ipv4-address | ipv6-address` — Enter an IPv4 or IPv6 address in A.B.C.D/A::B format.
- `agent-addr ipv4-address | ipv6-address` — Enter the sFlow agent IP address. If you configure two collectors, the agent IP address must be the same for both the collectors.
- `collector-port-number` — (Optional) Enter the UDP port number, from 1 to 65535. The default is 6343.
- `vrf` — (Optional) Enter default to configure the sFlow collector corresponding to the front panel ports.

**Defaults**

Not configured

**Command Modes**

CONFIGURATION

**Usage Information**

You must enter a valid and reachable IPv4 or IPv6 address. If you configure two collectors, traffic samples are sent to both. The sFlow agent address is the IPv4 or IPv6 address used to identify the agent to the collector. The no version of this command removes the configured sFlow collector.

**Example**

```
OS10(conf)# sflow collector 10.1.1.1 agent-addr 2.2.2.2 6343vrf default
```

**Supported Releases**

10.3.0E or later

#### sflow enable

Enables sFlow on a specific interface or globally on all interfaces.

**Syntax**

```
sflow enable [all-interfaces]
```

**Parameters**

- `all-interfaces` — (Optional) Enter to enable sFlow globally.

**Defaults**

Disabled

**Command Mode**

CONFIGURATION
sflow max-header-size

Sets the maximum header size of a packet.

**Syntax**
sflow max-header-size header-size

**Parameter**
header-size — Enter the header size in bytes, from 64 to 256. The default is 128.

**Default**
128 bytes

**Command Mode**
CONFIGURATION

**Usage Information**
Use the no version of the command to reset the header size to the default value.

**Example**
OS10(conf)# sflow max-header-size 256

**Supported Releases**
10.3.0E or later

sflow polling-interval

Sets the sFlow polling interval.

**Syntax**
sflow polling-interval interval-value

**Parameter**
interval-value — Enter the interval value in sections, from 10 to 300. The default is 30.

**Defaults**
30

**Command Mode**
CONFIGURATION

**Usage Information**
The polling interval for an interface is the number of seconds between successive samples of counters sent to the collector. You can configure the duration for polled interface statistics. The no version of the command resets the interval time to the default value.

**Example**
OS10(conf)# sflow polling-interval 200

**Supported Releases**
10.3.0E or later
**sflow sample-rate**

Configures the sampling rate.

**Syntax**

`sflow sample-rate value`

**Parameter**

`value` — Enter the packet sample rate, from 4096 to 65535. The default is 32768.

**Default**

32768

**Command Mode**

CONFIGURATION

**Usage Information**

Sampling rate is the number of packets skipped before the sample is taken. For example, if the sampling rate is 4096, one sample generates for every 4096 packets observed. The `no` version of the command resets the sampling rate to the default value.

**Example**

```
OS10(conf)# sflow sample-rate 4096
```

**Supported Releases**

10.3.0E or later

---

**sflow source-interface**

Configures an interface as source for sFlow. The sFlow agent uses the IP address of the configured source interface as the agent IP address.

**Syntax**

`sflow source-interface {ethernet node/slot/port[:subport] | loopback loopback-ID | port-channel port-channel-ID | vlan vlan-ID}`

**Parameters**

- `ethernet node/slot/port[:subport]` — Enter the physical interface type details.
- `loopback loopback-ID` — Enter the Loopback interface details. The Loopback ID range is from 0 to 16383.
- `port-channel port-channel-ID` — Enter the port channel details. The port channel ID range is from 1 to 128.
- `vlan vlan-ID` — Enter the VLAN details. The VLAN ID range is from 1 to 4093.

**Default**

Disabled

**Command Mode**

CONFIGURATION

**Usage Information**

The `no` version of this command removes the configuration from the interface.

**Example (Ethernet)**

```
OS10(config)# sflow source-interface ethernet 1/1/1
```

**Example (Loopback)**

```
OS10(config)# sflow source-interface loopback 1
```

**Example (Port-channel)**

```
OS10(config)# sflow source-interface port-channel 1
```

**Example (VLAN)**

```
OS10(config)# sflow source-interface vlan 10
```

**Supported Releases**

10.4.1.0 or later

---
**show sflow**

Displays the current sFlow configuration for all interfaces or by a specific interface type.

**Syntax**

```
show sflow [interface type]
```

**Parameter**

interface type — (Optional) Enter either ethernet or port-channel for the interface type.

**Command Mode**

EXEC

**Usage Information**

OS10 does not support statistics for UDP packets dropped and samples received from the hardware.

**Example**

```
OS10# show sflow
sFlow services are enabled
Management Interface sFlow services are disabled
Global default sampling rate: 32768
Global default counter polling interval: 30
Global default extended maximum header size: 128 bytes
Global extended information enabled: none
1 collector(s) configured
Collector IP addr:10.16.151.245 Agent IP addr:10.16.132.181 UDP port:6343
VRF:Default
31722 UDP packets exported
0 UDP packets dropped
34026 sFlow samples collected
```

**Example (port-channel)**

```
OS10# show sflow interface port-channel 1
port-channel1
sFlow is enabled on port-channel1
Samples rcvd from h/w: 0
```

**Supported Releases**

10.3.0E or later
RESTCONF is a representational state transfer (REST)-like protocol that uses HTTPS connections. Use the OS10 RESTCONF API to set up the configuration parameters on OS10 switches using JavaScript Object Notation (JSON)-structured messages. Use any programming language to create and send JSON messages. The examples in this chapter use curl.

The OS10 RESTCONF implementation complies with RFC 8040. You can use the RESTCONF API to configure and monitor an OS10 switch.

The OS10 RESTCONF API uses HTTP with the Transport Layer Security (TLS) protocol over port 443. OS10 supports HTTP/1.1 transport as defined in RFC 7230. The RESTCONF API uses pluggable authentication modules (PAM)-based authentication.

On supported platforms, the OS10 RESTCONF API is disabled by default. To configure and enable the RESTCONF API, see the Configure the RESTCONF API section.

To configure and monitor an OS10 switch, use REST API client tools, such as Postman or Swagger, to execute web requests. REST API requests, such as GET, PUT, POST, DELETE, and PATCH, operate on OS10 RESTCONF resources, such as:

<table>
<thead>
<tr>
<th>Table 54. OS10 RESTCONF resources</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resource</strong></td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>Operations</td>
</tr>
</tbody>
</table>

To browse OS10 RESTCONF API end-points and operations, see the OpenAPI JSON files available on the OS10 Enterprise Edition Software page at the Dell EMC Support site. Download the JSON files and import them to REST API client tools; for example, Swagger or Postman, to generate code, documentation, and test cases. For information about the OpenAPI specification, go to https://swagger.io/docs/specification/about/.

**Configure RESTCONF API**

To use the RESTCONF API on an OS10 interface, you must enable the RESTCONF API service using the `rest api restconf` command. You can also configure HTTPS access, including:

- Hostname required in a Secure Sockets Layer (SSL) self-signed server certificate
- Timeout for the HTTPS connection
- Cipher suites for encrypting data in an HTTPS connection

After you enable the RESTCONF API, you can send HTTPS requests from a remote device.

1. (Optional) Configure the hostname required in the SSL self-signed server certificate in a RESTCONF HTTPS connection in CONFIGURATION mode, using a maximum of 30 alphanumeric characters. Enter the IP address or domain name of the OS10 switch. By default, the domain name of the OS10 switch is used as the hostname.

   ```
 rest https server-certificate name hostname
   ```

2. (Optional) Configure the timeout that a RESTCONF HTTPS session uses in CONFIGURATION mode, from 30 to 65535 seconds; default 30.

   ```
 rest https session timeout seconds
   ```
3 (Optional) Limit the ciphers that the switch uses in a RESTCONF HTTPS session to encrypt and decrypt data in CONFIGURATION mode. By default, all cipher suites installed on OS10 are supported. Separate multiple entries with a blank space. Valid cipher-suite values are:

- dhe-rsa-with-aes-128-gcm-SHA256
- dhe-rsa-with-aes-256-gcm-SHA384
- ecdhe-rsa-with-aes-128-gcm-SHA256
- ecdhe-rsa-with-aes-256-gcm-SHA384

```
rest https cipher-suite
```

4 Enable RESTCONF API in CONFIGURATION mode.

```
rest api restconf
```

### RESTCONF API configuration

```
OS10(config)# rest https server-certificate name OS10.dell.com
OS10(config)# rest https session timeout 60
OS10(config)# rest https cipher-suite dhe-rsa-with-aes-128-gcm-SHA256
dhe-rsa-with-aes-256-gcm-SHA384 ecdhe-rsa-with-aes-256-gcm-SHA384
OS10(config)# rest api restconf
```

### CLI commands for RESTCONF API

#### rest api restconf

Enables the RESTCONF API service on the switch.

**Syntax**

```
rest api restconf
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

**Default**

RESTCONF API is disabled.

**Command Mode**

CONFIGURATION

**Usage Information**

- After you enable the RESTCONF API, you can send curl commands in HTTPS requests from a remote device.
- The `no` version of the command disables the RESTCONF API.

**Example**

```
OS10(config)# rest api restconf
```

**Supported Releases**

10.4.1.0 or later

#### rest https cipher-suite

Limits the ciphers to encrypt and decrypt REST HTTPS data.

**Syntax**

```
rest https cipher-suite cipher-list
```

**Parameters**

- `cipher-list` — Enter the ciphers supported in a REST API HTTPS session. Separate multiple entries with a blank space. Valid cipher suites are:
  - dhe-rsa-with-aes-128-gcm-SHA256
  - dhe-rsa-with-aes-256-gcm-SHA384
  - ecdhe-rsa-with-aes-128-gcm-SHA256
Default All cipher suites installed with OS10 are supported.

Command Mode CONFIGURATION

Usage Information
- Use the `rest https cipher-suite` command to restrict the ciphers that a RESTCONF HTTPS session uses.
- The `no` version of the command removes the cipher list and restores the default value.

Example
```
OS10(config)# rest https cipher-suite dhe-rsa-with-aes-128-gcm-SHA256
dhe-rsa-with-aes-256-gcm-SHA384 ecdhe-rsa-with-aes-256-gcm-SHA384
```

Supported Releases 10.4.1.0 or later

**rest https server-certificate**

Creates the SSL self-signed server certificate a RESTCONF HTTPS connection uses.

**Syntax**
```
rest https server-certificate name hostname
```

**Parameters**
- `name hostname` — Enter the IP address or domain name of the OS10 switch.

**Default**
The OS10 switch domain name is used as the `hostname`.

**Command Mode** CONFIGURATION

**Usage Information** The `no` version of the command removes the host name from the SSL server certificate.

**Example**
```
OS10(config)# rest https server-certificate name 10.10.10.10
```

**Supported Releases** 10.4.1.0 or later

**rest https session timeout**

Configures the timeout a RESTCONF HTTPS connection uses.

**Syntax**
```
rest https session timeout seconds
```

**Parameters**
- `seconds` — Enter the switch timeout for an HTTPS request from a RESTCONF client, from 30 to 65535 seconds.

**Default**
30 seconds

**Command Mode** CONFIGURATION

**Usage Information**
- If no HTTPS request is received within the configured time, the switch closes the RESTCONF HTTPS session.
- The `no` version of the command removes the configured RESTCONF HTTPS session timeout.

**Example**
```
OS10# rest https session timeout 60
```

**Supported Releases** 10.4.1.0 or later
RESTCONF API tasks

Using the RESTCONF API, you can provision OS10 switches using HTTPS requests. The examples in this section show how to access the OS10 RESTCONF API using curl commands. curl is a Linux shell command that generates HTTPS requests and is executed on an external server.

**curl Commands**

*curl command options include:*

- `-X` specifies the HTTPS request type; for example, `POST`, `PATCH`, or `GET`.
- `-u` specifies the user name and password to use for server authentication.
- `-k` specifies a text file to read curl arguments from. The command line arguments found in the text file will be used as if they were provided on the command line. Use the IP address or URL of the OS10 switch when you access the OS10 RESTCONF API from a remote orchestration system.
- `-H` specifies an extra header to include in the request when sending HTTPS to a server. You can enter multiple extra headers.
- `-d` sends the specified data in an HTTPS request.

In curl commands, use `%2F` to represent a backslash (`/`); for example, enter `ethernet1/2/3` as `ethernet1%2F1%2F3`.

For more information, see the curl Man page.

**View XML structure of CLI commands**

To use the RESTCONF API to configure and monitor an OS10 switch, create an HTTPS request with data parameters in JSON format. The JSON data parameters correspond to the same parameters in the XML structure of an OS10 command.

To display the parameter values in the XML code of an OS10 command as reference, use the `debug cli netconf` command in EXEC mode. In CONFIGURATION mode, use the `do debug cli netconf` command.

This command enables a CLI-to-XML display. At the prompt, enter the OS10 command of the XML request and the reply you need. To exit the CLI-to-XML display, use the `no debug cli netconf` command.

Locate the XML parameters values for the same JSON data arguments. For example, to configure VLAN 20 on an OS10 switch, enter the RESTCONF endpoint and JSON contents in the curl command. Note how the JSON `type` and `name` parameters are displayed in the XML structure of the `interface vlan` command.

- **RESTCONF endpoint:** `/restconf/data/interfaces`
- **JSON data content:**

```json
{
 "interface": [{
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "description": "vlan20",
 "name": "vlan20"
 }]
}
```

- **curl command:**

```
curl -X POST -u admin:admin -k "https://10.11.86.113/restconf/data/interfaces" -H "accept: application/json" -H "Content-Type: application/json" -d "{"interface": [{"type": "iana-if-type:l2vlan", "enabled": true, "description": "vlan20", "name": "vlan20"}]}
```
To display values for the type and name parameters in the curl command, display the XML structure of the interface vlan 20 configuration command:

```
OS10(config)# do debug cli netconf
OS10(config)# interface vlan 10

Request:
<?xml version="1.0" encoding="UTF-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>merge</default-operation>
 <error-option>stop-on-error</error-option>
 <test-option>set</test-option>
 <config>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:dell-if="http://www.dellemc.com/networking/os10/dell-interface"
 xmlns:dell-eth="http://www.dellemc.com/networking/os10/dell-ethernet"
 xmlns:dell-lag="http://www.dellemc.com/networking/os10/dell-lag">
 <interface>
 <type>ianaift:l2vlan</type>
 <name>vlan10</name>
 </interface>
 </interfaces>
 </config>
 </edit-config>
</rpc>

Reply:
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10">
 <ok/>
</rpc-reply>
OS10(config)# do no debug cli netconf
```

RESTCONF API L2 configuration

Some common RESTCONF API L2 operations include provisioning and displaying VLAN, port channel, VLT, LLDP, and LACP configuration. The examples in this section use curl commands to send the HTTPS request.

**LACP**

Configure system priority

**RESTCONF endpoint**
/restconf/data/sys-config/system-priority

**JSON content**
```
{
 "system-priority": 65535
}
```

**Parameters**
- **system-priority int** — Enter the LACP system priority used during negotiation with other devices, from 1 to 65535; the higher the number, the lower the priority. The default is 32768.

**Example**
```
curl -X PATCH -k -u admin:admin -H "accept:application/json" -H "Content-Type:application/json"
```
Configure port priority

RESTCONF endpoint
/restconf/data/interfaces/interface/ethernet1/1/1

JSON content
```json
{
 "interface": [{
 "name": "ethernet1/1/1",
 "lacp-config": {
 "actor-port-priority": 4096
 }
 }]
}
```

Parameters
- **ethernet-interface** — Enter the physical Ethernet interface in the format ethernetnode/slot/port.
- **name string** — Enter ethernetnode/slot/port to configure the port interface for LACP. Specify the same node/slot/port value in the name string and ethernet-interface parameters.
- **actor-port-priority int** — Enter the priority for the port interface, from 0 to 65535; the higher the number, the lower the priority. The default is 32768.

Example
```
curl -X PATCH -k -u admin:admin -H "accept:application/json" -H "Content-Type:application/json" "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1" -d '{"interface": [{"name":"ethernet1/1/1", "lacp-config": {"actor-port-priority":4096}}]}'
```

Configure rate priority

RESTCONF endpoint
/restconf/data/interfaces/interface/ethernet1/1/1

JSON content
```json
{
 "interface": [{
 "name": "ethernet1/1/1",
 "lacp-config": {
 "rate": "fast"
 }
 }]
}
```

Parameters
- **ethernet-interface** — Enter the physical Ethernet interface in the format ethernetnode/slot/port.
- **name string** — Enter ethernetnode/slot/port to configure the LACP rate for sending control packets on the port interface.
- **rate string** — Enter fast to send LACP packets at one-second intervals; enter normal to send LACP packets at thirty-second intervals. The default is normal.

Example
```
curl -X PATCH -k -u admin:admin -H "accept:application/json" -H "Content-Type:application/json" "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1" -d '{"interface": [{"name":"ethernet1/1/1", "lacp-config": {"rate":"fast"}}]}'
```
Display configuration

RESTCONF endpoint
/restconf/data/sys-config

JSON content
None

Example
curl -X GET -k -u admin:admin -H "accept:application/json" "https://10.11.86.113/restconf/data/sys-config"

LLDP

Create link layer discovery protocol-media endpoint discovery (LLDP-MED) network policy for voice applications

RESTCONF endpoint
/restconf/data/dell-lldp-med:sys-config

JSON content
{
    "media-policy": [{
        "policy-id": 10,
        "app-type": "voice",
        "vlan-id": 10,
        "tagged": "true",
        "priority": 2,
        "dscp": 1
    }
}

Parameters

- policy-id int — Enter the LLDP-MED network policy number, from 1 to 32.
- app-type string — Enter the application type the policy defines: voice for a voice application or guest-voice for a guest-voice application.
- vlan-id int — Enter the VLAN ID number, from 1 to 4093.
- tagged bool — Enter true for a tagged VLAN; enter false for an untagged VLAN.
- priority int — Enter the L2 class-of-service (CoS) priority value for the VLAN, from 0 to 7; default 0.
- dscp int — Enter the differentiated services code point (DSCP) value for the VLAN, from 0 to 63; default 0.

Example

Configure LLDP packet timer

RESTCONF endpoint
/restconf/data/global-params

JSON content
{
    "tx-interval": 60
}

Parameters

- tx-interval int — Enter the rate LLDPDU packets are sent to peers, from 5 to 254 seconds; default 30.
Configure LLDPDU hold time

RESTCONF endpoint
/restconf/data/global-params

JSON content
{
  "txhold-multiplier": 2
}

Parameters
- txhold-multiplier int — Enter the time that an LLDP peer device holds LLDP packets before discarding them, from 2 to 10 seconds; default 4.

Example
curl -X POST -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/global-params" -d '{"tx-interval":60}''

Configure basic TLV advertisement

RESTCONF endpoint
/restconf/data/interfaces/interface/ethernet1/1/1

JSON content
{
  "interface": [{
    "name": "ethernet1/1/1",
    "lldp": [{
      "basic-tlvs": [{
        "sys-name-enable": "true"
      }]
    }
  ]
}

Parameters
- ethernet-interface — Enter the physical Ethernet interface in the format ethernetnode/slot/port.
- name string — Enter ethernetnode/slot/port to configure the interface that sends LLDPDUs with specified TLVs.
- sys-name-enable bool — Enter true to enable system TLV advertisement; enter false to disable system TLV advertisement.

Example
curl -X PATCH -u admin:admin -k "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1" -H "accept:application/json" -H "Content-Type:application/json" -d '{"interface": [{"name":"ethernet1/1/1", "lldp": [{"basic-tlvs": [{"sys-name-enable":"true"}]}}]}'

Configure dot3 TLV advertisement

RESTCONF endpoint
/restconf/data/interfaces/interface/ethernet1/1/1

JSON content
{
  "interface": [{

```
```
"name": "ethernet1/1/1",
"lldp": [
  {
    "dot3-tlvs": [
      {
        "mac-phy-config-enable": "true",
        "max-frame-size-enable": "true"
      }
    ]
  }
],
}

Parameters

- **ethernet-interface** — Enter the physical Ethernet interface in the format `ethernetnode/slot/port`.
- **name** string — Enter `ethernetnode/slot/port` to identify the interface that sends LLDPDUs with specified TLVs.
- **mac-phy-config-enable** bool — Enter `true` to enable MACPHY configuration/status TLV advertisement on the interface; enter `false` to disable VLAN ID TLV advertisement.
- **max-frame-size-enable** bool — Enter `true` to enable maximum-frame-size TLV advertisement on the interface; enter `false` to disable maximum-frame-size TLV advertisement.
- **linkagg-enable** bool — Enter `true` to enable link-aggregation TLV advertisement on the interface; enter `false` to disable link-aggregation TLV advertisement.

Example

```
curl -X PATCH -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1"
-H "accept: application/json"
-H "Content-Type: application/json"
-d '{"interface": [{"name":"ethernet1/1/1", "lldp":[{"dot3-tlvs": [{"mac-phy-config-enable":"true","max-frame-size-enable":"true"}]}]}}'}
```

Enable LLDP-MED network policy advertisement

RESTCONF endpoint

```
/restconf/data/interfaces/interface/ethernet1/1/1
```

JSON content

```
{
 "interface": [{
 "name": "ethernet1/1/1",
 "lldp-med-cfg": [{
 "policy-id": 1
 }]
 }]
}
```

Parameters

- **ethernet-interface** — Enter the physical Ethernet interface in the format `ethernetnode/slot/port`.
- **name** string — Enter `ethernetnode/slot/port` to configure the interface that sends LLDP-MED policy TLVs.
- **policy-id** int — Enter the LLDP-MED network policy number, from 1 to 32.

Example

```
curl -X PATCH -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1"
-H "accept:application/json" -H "Content-Type:application/json"
```
Disable TLV advertisement

RESTCONF endpoint
/restconf/data/interfaces/interface/ethernet1/1/1

JSON content
{
    "interface": {
        "name": "ethernet1/1/1",
        "lldp": {
            "basic-tlvs": {
                "sys-name-enable": "false"
            },
            "dot3-tlvs": {
                "mac-phy-config-enable": "false",
                "max-frame-size-enable": "false",
                "linkagg-enable": "false"
            }
        }
    }
}

Parameters
- ethernet-interface — Enter the physical Ethernet interface in the format ethernet
  node/slot/port.
- name string — Enter ethernetnode/slot/port to identify the interface that sends LLDPDUs
  with the specified TLVs.
- sys-name-enable bool — Enter false to disable system TLV advertisement on the interface; enter
  true to re-enable system TLV advertisement.
- mac-phy-config-enable bool — Enter false to disable MAC/PHY configuration/status TLV
  advertisement on the interface; enter true to re-enable VLAN ID TLV advertisement.
- max-frame-size-enable bool — Enter false to disable maximum-frame-size TLV advertisement on
  the interface; enter true to re-enable maximum-frame-size TLV advertisement.
- linkagg-enable bool — Enter false to disable link-aggregation TLV advertisement on the interface;
  enter true to re-enable link-aggregation TLV advertisement.

Example
curl -X PATCH -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F1"
-H "accept: application/json"  -H "Content-Type: application/json"
-d '{"interface":{"name":"ethernet1/1/1", "lldp":{"basic-tlvs":{"sys-name-enable":"false"},
    "dot3-tlvs":{"mac-phy-config-enable":"false",
    "max-frame-size-enable":"false",
    "linkagg-enable":"false"}}}}']

Disable LLDP-MED network policy advertisement

RESTCONF endpoint
/restconf/data/dell-lldp-med/sys-config/media-policy/10

Parameters
- ethernet-interface — Enter the physical Ethernet interface in the format ethernet
  node/slot/port.
- name string — Enter ethernetnode/slot/port to configure the interface that sends LLDP-MED
  policy TLVs.
- policy-id int — Enter the LLDP-MED network policy number, from 1 to 32.
Remove configured LLDP packet timer — Reset to default

RESTCONF endpoint
/restconf/data/global-params/tx-interval

JSON content
None

Example

Remove configured LLDPDU hold time — Reset to default

RESTCONF endpoint
/restconf/data/global-params/txhold-multiplier

JSON content
None

Example

Port-channel

Create port channel

RESTCONF endpoint
/restconf/data/interfaces

JSON content
```json
{
 "interface": [{
 "type": "iana-if-type:ieee8023adLag",
 "name": "port-channel10"
 }]
}
```

Parameters

- type string — Enter iana-if-type:ieee8023adLag for a port-channel interface.
- name string — Enter port-channelid-number, where id-number is from 1 to 128.

Example
curl -X POST -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces" -d '{"interface": [{"type":"iana-if-type:ieee8023adLag","name":"port-channel10"}]}'

Enable port channel

RESTCONF endpoint
/restconf/data/interfaces/interface/port-channel10

JSON content
```json
{
 "interface": []
}
```


```json
{
 "interface": [{
 "type": "iana-if-type:ieee8023adLag",
 "name": "port-channel10",
 "enabled": "true"
 }]
}
```

**Parameters**

- **port-channelid-number** — Enter port-channelid-number, where port-channel id-number is from 1 to 128.
- **type** string — Enter iana-if-type:ieee8023adLag for a port-channel interface.
- **name** string — Enter port-channelid-number.
- **enabled** bool — Enter true(no shutdown) to enable the port channel; enter false (shutdown) to disable the port channel.

**Example**

curl -X PATCH -k -u admin:admin -H "accept: application/json"
-H "Content-Type: application/json"
"https://10.11.86.113/restconf/data/interfaces/interface/port-channel10"
-d '{"interface": [{"type": "iana-if-type:ieee8023adLag", "name": "port-channel10", "enabled": "true"}]}'

**Add member interface to static port channel**

**RESTCONF endpoint**
/restconf/data/interfaces/interface/port-channel10

**JSON content**

```json
{
 "interface": [{
 "name": "port-channel10",
 "lag-mode": "STATIC",
 "member-ports": [{
 "name": "ethernet1/1/2"
 }]
 }]
}
```

**Parameters**

- **port-channelid-number** — Enter port-channelid-number, where port-channel id-number is from 1 to 128.
- **name** string — Enter port-channelid-number.
- **lag-mode** bool — Enter STATIC for a statically configured port channel; enter DYNAMIC for a dynamically configured port channel.
- **ethernet-interface** — Enter the physical Ethernet interface in the format ethernetnode/slot/port.

**Example**

curl -X PATCH -k -u admin:admin -H "accept: application/json"
-H "Content-Type: application/json"
"https://10.11.86.113/restconf/data/interfaces/interface/port-channel20"
-d '{"interface": [{"name": "port-channel20", "lag-mode": "STATIC", "member-ports": [{"name": "ethernet1/1/2"}]}]}'

**Add member interface to dynamic port channel**

**RESTCONF endpoint**
/restconf/data/interfaces/interface/port-channel20

**JSON content**

```json
{
 "interface": [{
 "name": "port-channel20",
 "lag-mode": "DYNAMIC",
 }]
}
```
Parameters

- **port-channel id-number** — Enter port-channel id-number, where id-number is from 1 to 128.
- **name string** — Enter port-channel id-number.
- **lag-mode bool** — Enter DYNAMIC for a dynamically configured port channel; enter STATIC for a statically configured port channel.
- **ethernet-interface** — Enter the physical Ethernet interface in the format ethernet node/slot/port.
- **lacp-mode mode** — Enter LACP actor mode. Valid values are active, on, and passive.

Example

```bash
curl -X PATCH -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel20" -d '{"interface": [{"name": "port-channel20", "lag-mode": "DYNAMIC", "member-ports": [{"name": "ethernet1/1/5", "lacp-mode": "ACTIVE"}]}]}'
```

Configure minimum links in port channel

RESTCONF endpoint

```
/restconf/data/interfaces/interface/port-channel10
```

JSON content

```json
{
 "interface": [{
 "name": "port-channel10",
 "min-links": 5
 }]
}
```

Parameters

- **port-channel id-number** — Enter port-channel id-number, where port-channel id-number is from 1 to 128.
- **name string** — Enter port-channel id-number.
- **min-links number** — Enter the minimum number of port channel links that must be in an operational UP status for the port channel to be operationally up.

Example

```bash
curl -X PATCH -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10" -d '{"interface": [{"name": "port-channel10", "min-links": 5}]}'
```

Assign IP address to port channel

RESTCONF endpoint

```
/restconf/data/interfaces/interface/port-channel10
```

JSON content

```json
{
 "interface": [{
 "name": "port-channel10",
 "dell-ip:ipv4": {
 "address": {
 "primary-addr": "1.1.1.1/24"
 }
 }
 }]
}
```
Parameters

- **port-channelid-number** — Enter port-channelid-number, where id-number is from 1 to 128.
- **name string** — Enter port-channelid-number.
- **primary-addr A.B.C.D/prefix-length** — Enter the port-channel IP address and mask.

Example

```bash
curl -X PATCH -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10" -d '{"interface": [{"name":"port-channel10", "dell-ip:ipv4": {"address":{"primary-addr":"1.1.1.1/24"}}}]}'
```

**Configure load balancing**

RESTCONF endpoint

```
/restconf/data/load-balancing/ip-selection
```

JSON content

```
{
 "ip-selection": [{
 "destination-ip": "true",
 "source-ip": "true"
 }
}
```

Parameters

- **destination-ip bool** — In the hash calculation, enter true to use the destination IP address or the source IP address; enter false to not use the destination IP address or the source IP address.

Example

```bash
```

**Change the hash algorithm**

RESTCONF endpoint

```
/restconf/data/hash-algorithm/lag-algorithms
```

JSON content

```
{
 "lag-algorithms": "xor"
}
```

Parameters

- **lag-algorithms mode** — Enter the link aggregation group (LAG) algorithm. Values are crc, xor, and seed.

Example

```bash
curl -X PATCH -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/hash-algorithm/lag-algorithms" -d '{"lag-algorithms":"xor"}';
```

**Display port-channel configuration**

RESTCONF endpoint

```
/restconf/data/interfaces/interface/port-channel10
```
Parameters

- **port-channel id-number** — Enter port-channel id-number, where id-number is from 1 to 128.

Example

```
curl -X GET -k -u admin:admin -H "accept:application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10"
```

Delete a port-channel configuration

RESTCONF endpoint

```
/restconf/data/interfaces/interface/port-channel10
```

Parameters

- **port-channel id-number** — Enter port-channel id-number, where id-number is from 1 to 128.

Example

```
curl -X DELETE -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10"
```

Remove port-channel minimum link configuration

RESTCONF endpoint

```
/restconf/data/interfaces/interface/port-channel10/min-links
```

Parameters

- **port-channel id-number** — Enter port-channel id-number, where id-number is from 1 to 128.

Example

```
curl -X DELETE -k -u admin:admin -H "accept:application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10/min-links"
```

**VLAN**

Create VLAN interface

RESTCONF endpoint

```
/restconf/data/interfaces
```

Parameters

- **type** string — Enter iana-if-type:12vlan for a VLAN interface.
- **enabled** bool — Enter true to enable the VLAN; enter false to disable the VLAN.

```
{
 "interface": [
 {
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "description": "vlan20",
 "name": "vlan20"
 }
]
}
```
- **description** *string* — Enter a text string to describe the VLAN, using a maximum of 80 alphanumeric characters.
- **name** *string* — Enter `vlan vlan-id`, where `vlan-id` is from 1 to 4093.

**Example**

```bash
curl -X POST -u admin:admin -k "https://10.11.86.113/restconf/data/interfaces"
-H "accept: application/json" -H "Content-Type: application/json"
-d '{ "interface": [{ "type": "iana-if-type:l2vlan", "enabled": true,
 "description": "vlan20", "name": "vlan20" }]}'
```

### Configure VLAN IP address

**RESTCONF endpoint**

`/restconf/data/interfaces/interface/vlan20`

**JSON content**

```json

{
 "interface": [{
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "description": "vlan20",
 "name": "vlan20",
 "dell-ip:ipv4": {
 "address": {
 "primary-addr": "192.42.10.254/24"
 }
 }
 }
}]
```

**Parameters**

- **interface** *vlan-id* — Enter the VLAN ID, from 1 to 4093.
- **type** *string* — Enter `iana-if-type:l2vlan` for a VLAN interface.
- **enabled** *bool* — Enter `true` to enable the interface; enter `false` to disable the interface.
- **description** *string* — Enter a text string to describe the VLAN, using a maximum of 80 alphanumeric characters.
- **name** *string* — Enter `vlan vlan-id`, where `vlan-id` is from 1 to 4093.
- **primary-addr** *A.B.C.D/prefix-length* — Enter the VLAN IP address and mask.

**Example**

```bash
curl -X PATCH -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/vlan20"
-H "accept: application/json" -H "Content-Type: application/json"
-d '{"interface": [{"type":"iana-if-type:l2vlan","enabled":true,
 "description":"vlan20","name":"vlan20","dell-ip:ipv4":{"address":
 {"primary-addr": "192.42.10.254/24"}}}]}
```

### Change Ethernet port from Access to Trunk mode and enable port

**RESTCONF endpoint**

`/restconf/data/interfaces/interface/ethernet1/1/3`

**JSON content**

```json

{
 "interface": [{
 "name": "ethernet1/1/3",
 "enabled": "true",
 "dell-interface:mode": "MODE_L2HYBRID"
 }]
}
```

930   RESTCONF API
Parameters

- ethernet-interface — Enter the physical Ethernet interface in the format ethernet\node/slot/port.
- name string — Enter vlan vlan-id, where vlan-id is from 1 to 4093.
- enabled bool — Enter true to enable the VLAN; enter false to disable the VLAN.
- mode string — Enter a text value for the port mode. For Access mode, enter MODE_L2; for Trunk mode, enter MODE_L2HYBRID; for L3 mode, enter MODE_L2DISABLED.

Example

curl -X PATCH -u admin:admin -k "https://10.11.86.113/restconf/data/interfaces/interface/ethernet1%2F1%2F3" -H "accept: application/json" -H "Content-Type: application/json" -d '{ "interface": [{ "name":"ethernet1/1/3", "enabled": "true","dell-interface:mode":"MODE_L2HYBRID"}]}'

Add untagged port to VLAN

RESTCONF endpoint

/restconf/data/interfaces/interface/vlan20

JSON content

```json
{
 "interface": [{
 "name": "vlan20",
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "description": "vlan20",
 "dell-interface:untagged-ports": ["ethernet1/1/3"],
 "dell-ip:ipv4": {
 "address": {
 "primary-addr": "192.42.10.254/24"
 }
 }
 }]
}
```

Parameters

- type string — Enter iana-if-type:l2vlan for a VLAN interface.
- enabled bool — Enter true to enable the VLAN; enter false to disable the VLAN.
- description string — Enter a text string to describe the VLAN, using a maximum of 80 alphanumeric characters.
- name string — Enter vlan vlan-id, where vlan-id is from 1 to 4093.
- untagged-ports string — Enter the untagged port interface in the format ethernet\node/slot/port.
- primary-addr A.B.C.D/prefix-length — Enter the VLAN IP address and mask.

Example


Display VLAN configuration

RESTCONF endpoint

/restconf/data/interfaces/interface/vlan20

JSON content

None
Parameters

- interface vlan-id — Enter the VLAN ID, from 1 to 4093.

Example

curl -X GET -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/vlan20"
-H "accept: application/json"

Delete a VLAN configuration

RESTCONF endpoint
/restconf/data/interfaces/interface/vlan10

JSON content
None

Parameters

- interface vlan-id — Enter the VLAN ID, from 1 to 4093.

Example

curl -X DELETE -u admin:admin
-k "https://10.11.86.113/restconf/data/interfaces/interface/vlan10"
-H "accept: application/json"

VLT

Create VLT domain on each peer

RESTCONF endpoint
/restconf/data

JSON content

```
{
 "node-topology": [{
 "topology-id": 1,
 "topology-type": "VLT",
 "dell-vlt:vlt-domain": {}
 }
}
```

Parameters

- topology-id int — Configure the same VLT domain ID on each peer, from 1 to 255.
- topology-type value — Enter VLT for a VLT domain.

Example

curl -X POST -k -u admin:admin -H "accept: application/json"
-H "Content-Type: application/json" "https://10.11.86.113/restconf/data"
-d '{"node-topology": [{"topology-id":1, "topology-type":"VLT", "dell-vlt:vlt-domain":{}}]}'

Configure and enable virtual link trunking interconnect (VLI) ports in L2 Access mode

RESTCONF endpoint
/restconf/data/interfaces/interface=ethernet1/1/1

JSON content

```
{
 "interface": [{
 "name": "ethernet1/1/1",
 "enabled": "true",
 "dell-interface:mode": "MODE_L2DISABLED"
 }
}
```
Parameters

- **ethernet-interface** — Enter the physical Ethernet interface in the format `ethernet node/slot/port`.
- **name** `string` — Enter `ethernet node/slot/port` to identify the VLTi port on each peer.
- **enabled** `bool` — Enter `true (no shutdown)` to enable the VLTi port; enter `false (shutdown)` to disable the VLTi port.
- **dell-interface:mode** `string` — Enter `MODE_L2DISABLED` to disable L2 switching (`switchport mode`) on the VLTi port.

**Example**

```
curl -X PATCH -k -u admin:admin -H "accept: application/json" -H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface=ethernet1/1/1" -d '{"interface": [{"name":"ethernet1/1/1", "enabled": "true", "dell-interface:mode":"MODE_L2DISABLED"}]}'
```

Configure VLTi interfaces on each peer

**RESTCONF endpoint**

```
/restconf/data/node-topology/1
```

**JSON content**

```
{ "node-topology": [{ "topology-id": 1, "discovery-interface": ["ethernet1/1/1"], "topology-type": "VLT" , "dell-vlt:vlt-domain": {} }]
}
```

**Parameters**

- **topology-id** `int` — Enter the same VLT domain ID on each peer, from 1 to 255.
- **discovery-interface** `string` — Enter `ethernet node/slot/port` for the VLTi discovery interface on each peer.
- **topology-type** `value` — Enter VLT for a VLT domain.

**Example**

```
curl -X PATCH -k -u admin:admin "https://10.11.86.113/restconf/data/node-topology/1" -H "accept: application/json" -H "Content-Type: application/json" -d '{"node-topology": [{"topology-id":1, "discovery-interface": ["ethernet1/1/1"], "topology-type": "VLT", "dell-vlt:vlt-domain": {}}]}'
```

Configure VLT port channel between peers

**RESTCONF endpoint**

```
/restconf/data/interfaces
```

**JSON content**

```
{ "interface": [{ "type": "iana-if-type:ieee8023adLag", "name": "port-channel10" }]
}
```

**Parameters**

- **type** `string` — Enter `iana-if-type:ieee8023adLag` for a port-channel interface.
- **name** `string` — Enter `port-channel id-number`, where `id-number` is from 1 to 128.
Assign VLT port-channel ID to VLT port channel

RESTCONF endpoint
/restconf/data/interfaces/interface/port-channel10

JSON content

```
{
 "interface": [{
 "type": "iana-if-type:ieee8023adLag",
 "name": "port-channel10",
 "enabled": "true",
 "dell-vlt:vlt": {
 "vlt-id": "1"
 }
 }]
}
```

Parameters

- **port-channel-id-number** — Enter `port-channel-id-number`, where `id-number` is from 1 to 128.
- **type** `string` — Enter `iana-if-type:ieee8023adLag` for a port-channel interface.
- **name** `string` — Enter `port-channel-id-number`.
- **enabled** `bool` — Enter `true` (no shutdown) to enable the port channel; enter `false` (shutdown) to disable the port channel.
- **vlt-id** `int` — Enter the VLT port-channel ID, from 1 to 1024.

Example

```
curl -X PATCH -k -u admin:admin -H "accept: application/json"
-H "Content-Type: application/json" "https://10.11.86.113/restconf/data/interfaces/interface/port-channel10"
-d '{"interface": [{"type": "iana-if-type:ieee8023adLag", "name": "port-channel10", "enabled": "true", "dell-vlt:vlt": { "vlt-id": "1" }}]}'
```

Delete VLT domain

RESTCONF endpoint
/restconf/data/node-topology/1

JSON content

None

Parameters

- **topology-id** `int` — Specify the same VLT domain ID on each peer, from 1 to 255.

Example

```
curl -X DELETE -k -u admin:admin -H "accept: application/json"
-H "Content-Type: application/json" "https://10.11.86.113/restconf/data/node-topology/1"
```
Critical workloads and applications require constant availability. Dell EMC Networking offers tools to help you monitor and troubleshoot problems before they happen.

- **Packet and flow capture** Manages packet and traffic
- **Metrics measurement** Pings, round-trip times, jitter, response times, and so on
- **Analysis and reporting** Metrics and packet capturing
- **Alerting** Triggers problem reporting
- **Logging** Captures system history
- **Performance monitoring** Establishes baselines and defines triggers for detecting performance problems
- **Mapping and representation** Defines device locations and status

Dell EMC recommends the following best practices:

- View traffic end-to-end from the application’s viewpoint.
- Deploy network management infrastructure rapidly, where needed, when needed, and on-demand.
- Extend analysis beyond the network and watch traffic to and from your host.
- Focus on real-time assessment and use trend analysis to backup your conclusions.
- Emphasize effective over absolute — leverage management solutions that resolve your most common, most expensive problem quickly.
- Address networking performance issues before you focus on the application performance.
- Use methodologies and technologies that fit your network and needs.
- Continuously monitor performance and availability as a baseline for system performance and system uptime to quickly separate network issues from application issues.

## Diagnostic tools

This section contains information about advanced software and hardware commands to debug, monitor, and troubleshoot network devices.

**NOTE:** Output examples are for reference purposes only and may not apply to your specific system.

### View inventory

Use the `show inventory` command to view the module IDs of the device.

```plaintext
OS10# show inventory
Product : S6010-ON
Description : S6010-ON 32x40GbE QSFP+ Interface Module
Software version : 10.4.2.0

<table>
<thead>
<tr>
<th>Unit Type Code</th>
<th>Part Number</th>
<th>Rev</th>
<th>Piece Part ID</th>
<th>Svc Tag</th>
<th>Exprs Svc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Boot partition and image

Display system boot partition and image information.

- View all boot information in EXEC mode.
  - `show boot`
- View boot details in EXEC mode.
  - `show boot detail`

View boot information

OS10# show boot
Current system image information:
========================================================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Boot Type</th>
<th>Active</th>
<th>Standby</th>
<th>Next-Boot</th>
</tr>
</thead>
</table>

View boot detail

OS10# show boot detail
Current system image information detail:
==========================================
Type:	Node-id 1
Boot Type:	Flash Boot
Active Partition:	A
Active SW Version:	10.1.9999P.2182
Active Kernel Version:	Linux 3.16.7-ckt20
Active Build Date/Time:	2016-07-12T20:47:17Z
Standby Partition:	B
Standby SW Version:	10.1.9999P.2182
Standby Build Date/Time:	2016-07-12T20:47:17Z
Next-Boot:	active[A]

Monitor processes

Display CPU process information.

- View process CPU utilization information in EXEC mode.
  - `show processes node-id node-id-number [pid process-id]`

View CPU utilization

OS10# show processes node-id 1
```
top - 09:19:32 up 5 days, 6 min, 2 users, load average: 0.45, 0.39, 0.34
Tasks: 208 total, 2 running, 204 sleeping, 0 stopped, 2 zombie
%Cpu(s): 9.7 us, 3.9 sy, 0.3 ni, 85.8 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem: 399858 total, 2089416 used, 1909172 free, 143772 buffers
KiB Swap: 399856 total, 0 used, 399856 free. 483276 cached Mem
```

936 Troubleshoot OS10
LED settings

Beacon LEDs identify the location of ports and system status with blinking or solid LEDs.

Change current state of the location LED of the system or interface using the following commands:

```
location-led system {node-id | node-id/unit-id} {on | off}
location-led interface ethernet {chassis/slot/port{:subport}} {on | off}
```

**Change the state of system location LED**

OS10# location-led system 1 on
OS10# location-led system 1 off

**Change the state of interface location LED**

OS10# location-led interface ethernet 1/1/1 on
OS10# location-led interface ethernet 1/1/1 off

Packet analysis

Use the Linux `tcpdump` command to analyze network packets. Use filters to limit packet collection and output. You must be logged into the Linux shell to use this command. For more information, see [Log into OS10 Device](#).

Use the Linux `tcpdump` command without parameters to view packets that flow through all interfaces. To write captured packets to a file, use the `-w` parameter. To read the captured file output offline, you can use open source software packages such as Wireshark.
Capture packets from Ethernet interface

```bash
$ tcpdump -i e101-003-0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on e101-003-0, link-type EN10MB (Ethernet), capture size 262144 bytes
01:39:22.457185 IP 3.3.3.1 > 3.3.3.4: ICMP echo request, id 5320, seq 26, length 64
01:39:22.457281 IP 3.3.3.1 > 3.3.3.4: ICMP echo reply, id 5320, seq 26, length 64
```

Capture two packets from interface

```bash
$ tcpdump -c 2 -i e101-003-0
listening on e101-003-0, link-type EN10MB (Ethernet), capture size 96 bytes
01:39:22.457185 IP 3.3.3.1 > 3.3.3.4: ICMP echo request, id 5320, seq 26, length 64
01:39:22.457281 IP 3.3.3.1 > 3.3.3.4: ICMP echo reply, id 5320, seq 26, length 64
2 packets captured
13 packets received by filter
0 packets dropped by kernel
```

Capture packets and write to file

```bash
$ tcpdump -w 06102016.pcap -i e101-003-0
listening on e101-003-0, link-type EN10MB (Ethernet), capture size 96 bytes
32 packets captured
32 packets received by filter
0 packets dropped by kernel
```

Port adapters and modules

Use the `show diag` command to view diagnostics information for OS10 port adapters and hardware modules.

View diagnostic hardware information

```
OS10# show diag
00:00.0 Host bridge: Intel Corporation Atom Processor S1200 Internal (rev 02)
00:01.0 PCI bridge: Intel Corporation Atom Processor S1200 PCI Express Root Port 1 (rev 02)
00:02.0 PCI bridge: Intel Corporation Atom Processor S1200 PCI Express Root Port 2 (rev 02)
00:03.0 PCI bridge: Intel Corporation Atom Processor S1200 PCI Express Root Port 3 (rev 02)
00:04.0 PCI bridge: Intel Corporation Atom Processor S1200 PCI Express Root Port 4 (rev 02)
00:0e.0 IOMMU: Intel Corporation Atom Processor S1200 Internal (rev 02)
00:13.0 System peripheral: Intel Corporation Atom Processor S1200 SMBus 2.0 Controller 0 (rev 02)
00:13.1 System peripheral: Intel Corporation Atom Processor S1200 SMBus 2.0 Controller 1 (rev 02)
00:14.0 Serial controller: Intel Corporation Atom Processor S1200 UART (rev 02)
00:1f.0 ISA bridge: Intel Corporation Atom Processor S1200 Integrated Legacy Bus (rev 02)
01:00.0 Ethernet controller: Broadcom Corporation Device b850 (rev 03)
02:00.0 SATA controller: Marvell Technology Group Ltd. Device 8170 (rev 12)
03:00.0 PCI bridge: Pericom Semiconductor PI7C9X442SL PCI Express Bridge Port (rev 02)
04:01.0 PCI bridge: Pericom Semiconductor PI7C9X442SL PCI Express Bridge Port (rev 02)
04:02.0 PCI bridge: Pericom Semiconductor PI7C9X442SL PCI Express Bridge Port (rev 02)
04:03.0 PCI bridge: Pericom Semiconductor PI7C9X442SL PCI Express Bridge Port (rev 02)
07:00.0 USB controller: Pericom Semiconductor PI7C9X442SL USB OHCI Controller (rev 01)
07:00.1 USB controller: Pericom Semiconductor PI7C9X442SL USB OHCI Controller (rev 01)
07:00.2 USB controller: Pericom Semiconductor PI7C9X442SL USB EHCI Controller (rev 01)
08:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
```

Test network connectivity

Use the `ping` and `traceroute` commands to test network connectivity. When you ping an IP address, you send packets to a destination and wait for a response. If there is no response, the destination is not active. The `ping` command is useful during configuration if you have problems connecting to a hostname or IP address.
When you execute a traceroute, the output shows the path a packet takes from your device to the destination IP address. It also lists all intermediate hops (routers) that the packet traverses to reach its destination, including the total number of hops traversed.

**Check IPv4 connectivity**

```
OS10# ping 172.31.1.255
Type Ctrl-C to abort.
```
```
Sending 5, 100-byte ICMP Echos to 172.31.1.255, timeout is 2 seconds:
Reply to request 1 from 172.31.1.208 0 ms
Reply to request 1 from 172.31.1.216 0 ms
Reply to request 1 from 172.31.1.205 16 ms
::
Reply to request 5 from 172.31.1.209 0 ms
Reply to request 5 from 172.31.1.66 0 ms
Reply to request 5 from 172.31.1.87 0 ms
```

**Check IPv6 connectivity**

```
OS10# ping 100::1
Type Ctrl-C to abort.
```
```
Sending 5, 100-byte ICMP Echos to 100::1, timeout is 2 seconds:
!!!!!
Success rate is 100.0 percent (5/5), round-trip min/avg/max = 0/0/0 (ms)
```

**Trace IPv4 network route**

```
OS10# traceroute www.Dell Networking.com
```
```
Translating "www.Dell Networking.com"...domain server (10.11.0.1) [OK]
Type Ctrl-C to abort.
```
```

<table>
<thead>
<tr>
<th>TTL</th>
<th>Hostname</th>
<th>Probe1</th>
<th>Probe2</th>
<th>Probe3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.11.199.190</td>
<td>001.000 ms 001.000 ms 002.000 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>gwegress-sjc-02.Dell Networking.com (10.11.30.126)</td>
<td>005.000 ms 001.000 ms 001.000 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>fw-sjc-01.Dell Networking.com (10.11.127.254)</td>
<td>000.000 ms 000.000 ms 000.000 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>www.Dell Networking.com (10.11.84.18)</td>
<td>000.000 ms 000.000 ms 000.000 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Trace IPv6 network route**

```
OS10# traceroute 100::1
```
```
Type Ctrl-C to abort.
```
```

<table>
<thead>
<tr>
<th>Hops</th>
<th>Hostname</th>
<th>Probe1</th>
<th>Probe2</th>
<th>Probe3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100::1</td>
<td>000.000 ms 000.000 ms 000.000 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
OS10# traceroute 3ffe:501:ffff:100:201:e8ff:fe00:4c8b
```
```
Type Ctrl-C to abort.
```
```

<table>
<thead>
<tr>
<th>Hops</th>
<th>Hostname</th>
<th>Probe1</th>
<th>Probe2</th>
<th>Probe3</th>
</tr>
</thead>
</table>
```

Troubleshoot OS10
View diagnostics

View system diagnostic information using *show* commands. Use the *show hash-algorithm* command to view the current hash algorithms configured for link aggregation group (LAG) and electronic commerce messaging protocol (ECMP).

**View environment**

```
OS10# show environment

Unit State Temperature
-------- ------------------ ------------
1 up 43

Thermal sensors
Unit Sensor-Id Sensor-name Temperature
------- --------------- ------------------ -----------------------------
1 1 CPU On-Board temp sensor 32
1 2 Switch board temp sensor 28
1 3 System Inlet Ambient-1 temp sensor 27
1 4 System Inlet Ambient-2 temp sensor 25
1 5 System Inlet Ambient-3 temp sensor 26
1 6 Switch board 2 temp sensor 31
1 7 Switch board 3 temp sensor 41
1 8 NPU temp sensor 43
```

**View hash algorithm**

```
OS10# show hash-algorithm

LagAlgo - CRC EcmpAlgo - CRC
```

**View inventory**

```
OS10# show inventory

Product : S6010-ON
Description : S6010-ON 32x40GbE QSFP+ Interface Module
Software version : 10.4.2.0

Unit Type Part Number Rev Piece Part ID Svc Tag Exprs Svc Code
--- -------------- ------------------ -------------- ----------------------------------
- 1 S6010-ON 01YRKK X01 CN-01YRKK-28298-712-0068 3601XC2 689 323 392 2
 1 S6010-ON-PWR-2-AC 0AIBCD A00 TW-012345-DELTA-XXX-ABCD
 1 S6010-ON-FANTRAY-1 0N7MH8 X01 04-01---
 1 S6010-ON-FANTRAY-2 0N7MH8 X01 04-02---
 1 S6010-ON-FANTRAY-3 0N7MH8 X01 04-03---
 1 S6010-ON-FANTRAY-4 0N7MH8 X01 04-04---
 1 S6010-ON-FANTRAY-5 0N7MH8 X01 04-05---
```

**View system information**

```
OS10#show system

Node Id : 1
MAC : 34:17:18:19:20:21
Number of MACs : 0
Up Time : 1 week 4 days 08:08:17

-- Unit 1 --
Status : up
System Identifier : 1
Down Reason :
```
System Location LED : off
Required Type        : S4048
Current Type         : S4048
Hardware Revision    : 
Software Version     : 10.3.9999E(X)
Physical Ports       : 48x10GbE, 6x40GbE
BIOS                 : 3.21.0.4
System CPLD          : 15
Master CPLD          : 12
Slave CPLD           : 5

-- Power Supplies --
<table>
<thead>
<tr>
<th>PSU-ID</th>
<th>Status</th>
<th>Type</th>
<th>AirFlow</th>
<th>Fan</th>
<th>Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>AC</td>
<td>REVERSE</td>
<td>1</td>
<td>14720</td>
<td>up</td>
</tr>
</tbody>
</table>

-- Fan Status --
<table>
<thead>
<tr>
<th>FanTray</th>
<th>Status</th>
<th>AirFlow</th>
<th>Fan</th>
<th>Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>13063</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>13063</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>REVERSE</td>
<td>2</td>
<td>12977</td>
<td>up</td>
</tr>
<tr>
<td>3</td>
<td>up</td>
<td>NORMAL</td>
<td>1</td>
<td>13085</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td></td>
<td>2</td>
<td>13063</td>
<td>up</td>
</tr>
</tbody>
</table>

Diagnostic commands

location-led interface

Changes the location LED of the interface.

Syntax  
```
location-led interface ethernet {chassis/slot/port[:subport]} {on | off}
```

Parameters
- `chassis/slot/port[:subport]` — Enter the ethernet interface number.
- `on | off` — Set the interface LED to be on or off.

Default  
Not configured

Command Mode  
EXEC

Usage Information  
Use this command to change the location LED for the specified interface.

Example  
```
OS10# location-led interface ethernet 1/1/1 on
OS10# location-led interface ethernet 1/1/1 off
```

Supported Releases  
10.3.0E or later

location-led system

Changes the location LED of the system.

Syntax  
```
location-led system {node-id | node-id/unit-id} {on | off}
```
Parameters

- node-id | node-id/unit-id — Enter the system ID.
- on | off — Set the system LED to be on or off.

Default
Not configured

Command Mode
EXEC

Usage Information
Use this command to change the location LED for the specified system ID.

Example
OS10# location-led system 1 on
OS10# location-led system 1 off

Supported Releases
10.3.0E or later

ping

Tests network connectivity to an IPv4 device.

Syntax

Parameters

- vrf management — (Optional) Pings an IPv4 address in the management virtual routing and forwarding (VRF) instance.
- vrf vrf-name — (Optional) Ping an IP address in a specified VRF instance.
- -a — (Optional) Audible ping.
- -A — (Optional) Adaptive ping. An inter-packet interval adapts to the round-trip time so that one (or more, if you set the preload option) unanswered probe is present in the network. The minimum interval is 200 msec for a non-super user, which corresponds to Flood mode on a network with a low round-trip time.
- -b — (Optional) Pings a broadcast address.
- -B — (Optional) Does not allow ping to change the source address of probes. The source address is bound to the address used when the ping starts.
- -c count — (Optional) Stops the ping after sending the specified number of ECHO_REQUEST packets until the timeout expires.
- -d — (Optional) Sets the SO_DEBUG option on the socket being used.
- -D — (Optional) Prints the timestamp before each line.
- -h — (Optional) Displays help for this command.
- -i interval — (Optional) Enter the interval in seconds to wait between sending each packet, the default is 1 second.
- -i interval — (Optional) Enter the number of seconds to wait before sending the next packet, from 0 to 60, default 1.
- -I interface-address — (Optional) Enter the source interface address with no spaces:
  - For a physical Ethernet interface, enter ethernetnode/slot/port; for example, ethernet1/1/1.
  - For a VLAN interface, enter vlanvlan-id; for example, vlan10.
  - For a Loopback interface, enter loopbackid; for example, loopback1.
  - For a port-channel interface, enter port-channelchannel-id; for example, port-channel.
- -l preload — (Optional) Enter the number of packets that ping sends before waiting for a reply. Only a super user may preload more than three.
- -L — (Optional) Suppress the Loopback of multicast packets for a multicast target address.
- -m mark — (Optional) Tags the packets sent to ping a remote device. Use this option with policy routing.
-M pmtudisc_option — (Optional) Enter the path MTU (PMTU) discovery strategy:
  - do prevents fragmentation, including local.
  - want performs PMTU discovery and fragments large packets locally.
  - dont does not set the Don't Fragment (DF) flag.
-p pattern — (Optional) Enter a maximum of 16 pad bytes to fill out the packet you send to diagnose data-related problems in the network; for example, -p ff fills the sent packet with all 1's.
-Q tos — (Optional) Enter a maximum of 1500 bytes in decimal or hex datagrams to set quality of service (GoS)-related bits.
-s packetsize — (Optional) Enter the number of data bytes to send, from 1 to 65468, default 56.
-S sndbuf — (Optional) Set the sndbuf socket. By default, the sndbuf socket buffers one packet maximum.
-t ttl — (Optional) Enter the IPv4 time-to-live (TTL) value in seconds.
-T timestamp_option — (Optional) Set special IP timestamp options. Valid values for timestamp option — ts-only (only timestamps), ts-and-addr (timestamps and addresses), or ts-pre-spec host1 [host2 [host3 [host4]]] (timestamp pre-specified hops).
-v — (Optional) Verbose output.
-V — (Optional) Display the version and exit.
-w deadline — (Optional) Enter the time-out value in seconds before the ping exits regardless of how many packets send or receive.
-W timeout — (Optional) Enter the time to wait for a response in seconds. This setting affects the time-out only if there is no response, otherwise ping waits for two round-trip times (RTTs).
-hop1 ... (Optional) Enter the IPv4 addresses of the pre-specified hops for the ping packet to take.
-target — Enter the IP address you are testing connectivity on.

Default Not configured
Command Mode EXEC
Usage Information This command uses an ICMP ECHO_REQUEST datagram to receive an ICMP ECHO_RESPONSE from a network host or gateway. Each ping packet has an IPv4 and ICMP header, then a time value and a number of "pad" bytes used to fill out the packet. A ping operation sends a packet to a specified IP address and then measures the time it takes to get a response from the address or device.
If the destination IP address is active, replies are sent back from the server including the IP address, number of bytes sent, lapse time in milliseconds, and TTL, which is the number of hops back from the source to the destination.

Example
OS10# ping 20.1.1.1
PING 20.1.1.1 (20.1.1.1) 56(84) bytes of data.
64 bytes from 20.1.1.1: icmp_seq=1 ttl=64 time=0.079 ms
64 bytes from 20.1.1.1: icmp_seq=2 ttl=64 time=0.081 ms
64 bytes from 20.1.1.1: icmp_seq=3 ttl=64 time=0.133 ms
64 bytes from 20.1.1.1: icmp_seq=4 ttl=64 time=0.124 ms
^C
--- 20.1.1.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.079/0.104/0.133/0.025 ms

Supported Releases 10.2.0E or later

ping6
Tests network connectivity to an IPv6 device.

Syntax

ping6 [vrf {management | vrf-name}] [-aAbBdDfhLnOqrRUvV] [-c count] [-i interval] [-I interface] [-l preload] [-m mark] [-M pmtudisc_option] [-N

Parameters

• vrf management — (Optional) Pings an IPv6 address in the management VRF instance.
• vrf vrf-name — (Optional) Pings an IPv6 address in a specified VRF instance.
• -a — (Optional) Audible ping.
• -A — (Optional) Adaptive ping. An inter-packet interval adapts to the round-trip time so that one (or more, if you set the preload option) unanswered probe is present in the network. The minimum interval is 200 msec for a non-super user, which corresponds to Flood mode on a network with a low round-trip time.
• -b — (Optional) Pings a broadcast address.
• -B — (Optional) Does not allow ping to change the source address of probes. The source address is bound to the address used when the ping starts.
• -c count — (Optional) Stops the ping after sending the specified number of ECHO_REQUEST packets until the timeout expires.
• -d — (Optional) Sets the SO_DEBUG option on the socket being used.
• -D — (Optional) Prints the timestamp before each line.
• -F flowlabel — (Optional) Sets a 20-bit flow label on echo request packets. If value is zero, the kernel allocates a random flow label.
• -h — (Optional) Displays help for this command.
• -i interval— (Optional) Enter the number of seconds to wait before sending the next packet, from 0 to 60, default 1.
• -i interval — (Optional) Enter the interval in seconds to wait between sending each packet, the default is 1 second.
• -I interface-address — (Optional) Enter the source interface address with no spaces:
  - For a physical Ethernet interface, enter ethernetnode/slot/port; for example, ethernet1/1/1.
  - For a VLAN interface, enter vlanvlan-id; for example, vlan10.
  - For a Loopback interface, enter loopbackid; for example, loopback1.
  - For a port-channel interface, enter port-channelchannel-id; for example, port-channel.
• -l preload — (Optional) Enter the number of packets that ping sends before waiting for a reply. Only a super-user may preload more than three.
• -L — (Optional) Suppress the Loopback of multicast packets for a multicast target address.
• -m mark — (Optional) Tags the packets sent to ping a remote device. Use this option with policy routing.
• -M pmtudisc_option — (Optional) Enter the path MTU (PMTU) discovery strategy:
  - do prevents fragmentation, including local.
  - want performs PMTU discovery and fragments large packets locally.
  - dont does not set the Don’t Fragment (DF) flag.
• -p pattern — (Optional) Enter a maximum of 16 pad bytes to fill out the packet you send to diagnose data-related problems in the network; for example, -p ff fills the sent packet with all 1’s.
• -Q tos — (Optional) Enter a maximum of 1500 bytes in decimal or hex datagrams to set the quality of service (QoS)-related bits.
• -s packetsize — (Optional) Enter the number of data bytes to send, from 1 to 65468, default 56.
• -S sndbuf — (Optional) Set the sndbuf socket. By default, the sndbuf socket buffers one packet maximum.
• -t ttl — (Optional) Enter the IPv6 time-to-live (TTL) value in seconds.
• -T timestamp_option — (Optional) Set special IP timestamp options. Valid values for timestamp option— tsonly (only timestamps), tsandaddr (timestamps and addresses), or tsprespec host1 [host2 [host3 [host4]]] (timestamp pre-specified hops).
• -v — (Optional) Verbose output.
• -V — (Optional) Display the version and exit.
-w deadline — (Optional) Enter the time-out value in seconds before the ping exits regardless of how many packets are sent or received.

-W timeout — (Optional) Enter the time to wait for a response in seconds. This setting affects the time-out only if there is no response, otherwise ping waits for two round-trip times (RTTs).

hop1 ... (Optional) Enter the IPv6 addresses of the pre-specified hops for the ping packet to take.

target — Enter the IPv6 destination address in A:B::C:D format, where you are testing connectivity.

Default
Not configured

Command Mode EXEC

Usage Information
This command uses an ICMP ECHO_REQUEST datagram to receive an ICMP ECHO_RESPONSE from a network host or gateway. Each ping packet has an IPv6 and ICMP header, then a time value and a number of "pad" bytes used to fill out the packet. A pingv6 operation sends a packet to a specified IPv6 address and then measures the time it takes to get a response from the address or device.

Example
OS10# ping6 20::1
PING 20::1(20::1) 56 data bytes
64 bytes from 20::1: icmp_seq=1 ttl=64 time=2.07 ms
64 bytes from 20::1: icmp_seq=2 ttl=64 time=2.21 ms
64 bytes from 20::1: icmp_seq=3 ttl=64 time=2.37 ms
64 bytes from 20::1: icmp_seq=4 ttl=64 time=2.10 ms
^C
--- 20::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 2.078/2.194/2.379/0.127 ms

Supported Releases
10.2.0E or later

show boot
Displays boot partition-related information.

Syntax
show boot [detail]

Parameters
detail — (Optional) Enter to display detailed information.

Default
Not configured

Command Mode EXEC

Usage Information
Use the boot system command to set the boot partition for the next reboot.

Example
OS10# show boot
Current system image information:
===================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Boot Type</th>
<th>Active Partition</th>
<th>Standby Partition</th>
<th>Next-Boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-id 1</td>
<td>Flash Boot</td>
<td>B</td>
<td>A</td>
<td>10.2.0E</td>
</tr>
</tbody>
</table>

Example (Detail)
OS10# show boot detail
Current system image information detail:
=========================================
<table>
<thead>
<tr>
<th>Type</th>
<th>Node-id 1</th>
<th>Boot Type:</th>
<th>Flash Boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Partition:</td>
<td>B</td>
<td>Active SW Version:</td>
<td>10.2.0E</td>
</tr>
<tr>
<td>Active Kernel Version:</td>
<td>Linux 3.16.7-ckt25</td>
<td>Active Build Date/Time:</td>
<td>2016-10-03T23:11:14Z</td>
</tr>
<tr>
<td>Standby Partition:</td>
<td>A</td>
<td>Standby SW Version:</td>
<td>10.2.0E</td>
</tr>
</tbody>
</table>
show diag

Displays diagnostic information for port adapters and modules.

Syntax
show diag

Parameters
None

Default
Not configured

Command Mode
EXEC

Usage Information
None

Example
OS10# show diag
00:00.0 Host bridge: Intel Corporation Atom processor C2000 SoC Transaction Router (rev 02)
00:01.0 PCI bridge: Intel Corporation Atom processor C2000 PCIe Root Port 1 (rev 02)
00:02.0 PCI bridge: Intel Corporation Atom processor C2000 PCIe Root Port 2 (rev 02)
00:03.0 PCI bridge: Intel Corporation Atom processor C2000 PCIe Root Port 3 (rev 02)
00:04.0 PCI bridge: Intel Corporation Atom processor C2000 PCIe Root Port 4 (rev 02)
00:0e.0 Host bridge: Intel Corporation Atom processor C2000 RAS (rev 02)
00:0f.0 IOMMU: Intel Corporation Atom processor C2000 RCEC (rev 02)
00:13.0 System peripheral: Intel Corporation Atom processor C2000 SMBus 2.0 (rev 02)
00:14.0 Ethernet controller: Intel Corporation Ethernet Connection I354 (rev 03)
00:14.1 Ethernet controller: Intel Corporation Ethernet Connection I354 (rev 03)
00:16.0 USB controller: Intel Corporation Atom processor C2000 USB Enhanced Host Controller (rev 02)
00:17.0 SATA controller: Intel Corporation Atom processor C2000 AHCI SATA2 Controller (rev 02)
00:18.0 SATA controller: Intel Corporation Atom processor C2000 AHCI SATA3 Controller (rev 02)
00:1f.0 ISA bridge: Intel Corporation Atom processor C2000 PCU (rev 02)
00:1f.3 SMBus: Intel Corporation Atom processor C2000 PCU SMBus (rev 02)
01:00.0 Ethernet controller: Broadcom Corporation Device b340 (rev 01)
01:00.1 Ethernet controller: Broadcom Corporation Device b340 (rev 01)

show environment

Displays information about environmental system components, such as temperature, fan, and voltage.

Syntax
show environment

Parameters
None

Default
Not configured

Command Mode
EXEC
Usage Information
None

Example
OS10# show environment

<table>
<thead>
<tr>
<th>Unit</th>
<th>State</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>43</td>
</tr>
</tbody>
</table>

Thermal sensors

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sensor-Id</th>
<th>Sensor-name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>CPU On-Board temp sensor</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Switch board temp sensor</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>System Inlet Ambient-1 temp sensor</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>System Inlet Ambient-2 temp sensor</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>System Inlet Ambient-3 temp sensor</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Switch board 2 temp sensor</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Switch board 3 temp sensor</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>NFU temp sensor</td>
<td>43</td>
</tr>
</tbody>
</table>

Supported Releases
10.2.0E or later

**show hash-algorithm**

Displays hash algorithm information.

Syntax
show hash-algorithm

Parameters None

Default Not configured

Command Mode EXEC

Usage Information None

Example
OS10# show hash-algorithm
LagAlgo - CRC EcmpAlgo - CRC

Supported Releases
10.2.0E or later

**show inventory**

Displays system inventory information.

Syntax show inventory

Parameters None

Default Not configured

Command Mode EXEC

Usage Information None

Example
OS10# show inventory
Product : S6010-ON
Description : S6010-ON 32x40GbE QSFP+ Interface Module
Software version : 10.4.2.0

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type</th>
<th>Part Number</th>
<th>Rev</th>
<th>Piece Part ID</th>
<th>Svc Tag</th>
<th>Exprs Svc Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>S6010-ON</td>
<td>01YRKK</td>
<td>X01</td>
<td>CN-01YRKK-28298-712-0068</td>
<td>3601XC2</td>
<td>689</td>
</tr>
</tbody>
</table>

Troubleshoot OS10
Supported Releases 10.2.0E or later

**show processes**

View process CPU utilization information.

**Syntax**

```
show processes node-id node-id-number [pid process-id]
```

**Parameters**

- `node-id-number` — Enter the Node ID number as 1.
- `process-id` — (Optional) Enter the process ID number, from 1 to 2147483647.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

OS10# show processes node-id 1

```plaintext
top - 09:19:32 up 5 days, 6 min, 2 users, load average: 0.45, 0.39, 0.34
Tasks: 208 total, 0 running, 204 sleeping, 0 stopped, 2 zombie
%Cpu(s): 9.7 us, 3.9 sy, 0.3 ni, 85.8 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem: 399858 total, 2089416 used, 1909172 free, 143772 buffers
KiB Swap: 399856 total, 0 used, 399856 free. 483276 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9 root 20 0 0 0 0 S 6.1 0.0 5:22.41 rcuos/1
819 snmp 20 0 52736 6696 4132 S 6.1 0.2 2:44.18 snmpd
30452 admin 20 0 22076 2524 2100 R 6.1 0.1 0:00.02 top
1 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
2 root 20 0 112100 13560 3032 S 0.0 0.0 0:12.32 systemd
3 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
4 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
5 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
7 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
8 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
10 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
11 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
12 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
13 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
14 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
15 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
16 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
17 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
18 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
19 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
20 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
21 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
22 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
23 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
24 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
25 root 20 0 112100 5840 3032 S 0.0 0.0 0:12.32 systemd
```

OS10# show processes node-id 1 pid 1019

```plaintext
top - 09:21:58 up 5 days, 8 min, 2 users, load average: 0.18, 0.30, 0.31
Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 9.7 us, 3.9 sy, 0.3 ni, 85.8 id, 0.0 wa, 0.0 hi, 0.3 si, 0.0 st
KiB Mem: 399858 total, 2089040 used, 1909548 free, 143772 buffers
KiB Swap: 399856 total, 0 used, 399856 free. 483276 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kthreadd
8 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
10 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
11 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
12 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
13 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
14 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
15 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
16 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
17 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
18 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
19 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
20 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
21 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
22 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
23 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
24 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
25 root 20 0 0 0 0 S 6.1 0.0 0:00.00 kworker
```

--more--
show system

Displays system information.

Syntax

```
show system [brief | node-id]
```

Parameters

- `brief` — View an abbreviated list of the system information.
- `node-id` — View the node ID number.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# show system

Node Id : 1
MAC : 00:0c:29:00:a5:d2
Number of MACs : 256
Up Time : 07:44:26

-- Unit 1 --
Status : up
Down Reason : unknown
System Location LED : off
Required Type : S4048-ON
Current Type : S4048-ON
Hardware Revision :
Software Version : 10.4.9999EX
Physical Ports : 32x40GbE

-- Power Supplies --

<table>
<thead>
<tr>
<th>PSU-ID</th>
<th>Status</th>
<th>Type</th>
<th>AirFlow</th>
<th>Fan</th>
<th>Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>DC</td>
<td>REVERSE</td>
<td>1</td>
<td>7200</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>DC</td>
<td>REVERSE</td>
<td>1</td>
<td>7200</td>
<td>up</td>
</tr>
</tbody>
</table>

-- Fan Status --

<table>
<thead>
<tr>
<th>FanTray</th>
<th>Status</th>
<th>AirFlow</th>
<th>Fan</th>
<th>Speed(rpm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td>3</td>
<td>up</td>
<td>REVERSE</td>
<td>1</td>
<td>7000</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>7000</td>
<td>up</td>
</tr>
</tbody>
</table>

Example (node-id)

```
OS10# show system node-id 1 fanout-configured

<table>
<thead>
<tr>
<th>Interface</th>
<th>Breakout capable</th>
<th>Breakout state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1/1</td>
<td>Yes</td>
<td>BREAKOUT_1x1</td>
</tr>
</tbody>
</table>
```
Eth 1/1/2 Yes BREAKOUT_1x1
Eth 1/1/3 Yes BREAKOUT_1x1
Eth 1/1/4 Yes BREAKOUT_1x1
Eth 1/1/5 Yes BREAKOUT_1x1
Eth 1/1/6 Yes BREAKOUT_1x1
Eth 1/1/7 Yes BREAKOUT_1x1
Eth 1/1/8 Yes BREAKOUT_1x1
Eth 1/1/9 Yes BREAKOUT_1x1
Eth 1/1/10 Yes BREAKOUT_1x1
Eth 1/1/11 Yes BREAKOUT_1x1
Eth 1/1/12 Yes BREAKOUT_1x1
Eth 1/1/13 No BREAKOUT_1x1
Eth 1/1/14 No BREAKOUT_1x1
Eth 1/1/15 No BREAKOUT_1x1
Eth 1/1/16 No BREAKOUT_1x1
Eth 1/1/17 Yes BREAKOUT_1x1
Eth 1/1/18 Yes BREAKOUT_1x1
Eth 1/1/19 Yes BREAKOUT_1x1
Eth 1/1/20 Yes BREAKOUT_1x1
Eth 1/1/21 Yes BREAKOUT_1x1
Eth 1/1/22 Yes BREAKOUT_1x1
Eth 1/1/23 Yes BREAKOUT_1x1
Eth 1/1/24 Yes BREAKOUT_1x1
Eth 1/1/25 Yes BREAKOUT_1x1
Eth 1/1/26 Yes BREAKOUT_1x1
Eth 1/1/27 Yes BREAKOUT_1x1
Eth 1/1/28 Yes BREAKOUT_1x1
Eth 1/1/29 No BREAKOUT_1x1
Eth 1/1/30 No BREAKOUT_1x1
Eth 1/1/31 No BREAKOUT_1x1
Eth 1/1/32 No BREAKOUT_1x1

Example (brief)

OS10# show system brief

Node Id : 1
MAC : 34:17:18:19:20:21

-- Unit --
Unit Status ReqType CurType Version

1 up S4048 S4048 10.4.9999E(X)

-- Power Supplies --
PSU-ID Status Type AirFlow Fan Speed(rpm) Status

1 fail
2 up AC REVERSE 1 14688 up

-- Fan Status --
FanTray Status AirFlow Fan Speed(rpm) Status

1 up REVERSE 1 13063 up
 2 13020 up
2 up REVERSE 1 12956 up
 2 12977 up
3 up NORMAL 1 12956 up
 2 13063 up

Supported Releases 10.2.0E or later
traceroute

Displays the routes that packets take to travel to an IP address.

Syntax

```
traceroute [vrf {management | vrf-name}] host [-46dFITnreAUDV] [-f first_ttl]
[-g gate,...] [-i device] [-m max_ttl] [-N squeries] [-p port] [-t tos] [-l
flow_label] [-w waittime] [-q nqueries] [-s src_addr] [-z sendwait] [--
fwmark=num] host [packetlen]
```

Parameters

- `vrf management` — (Optional) Traces the route to an IP address in the management VRF instance.
- `vrf vrf-name` — (Optional) Traces the route to an IP address in the specified VRF instance.
- `host` — Enter the host to trace packets from.
- `-i interface` — (Optional) Enter the IP address of the interface through which traceroute sends packets. By default, the interface is selected according to the routing table.
- `-m max_ttl` — (Optional) Enter the maximum number of hops, the maximum time-to-live value, that traceroute probes. The default is 30.
- `-p port` — (Optional) Enter a destination port:
 - For UDP tracing, enter the destination port base that traceroute uses. The destination port number is incremented by each probe.
 - For Internet Control Message Protocol (ICMP) tracing, enter the initial ICMP sequence value, incremented by each probe.
 - For TCP tracing, enter the constant destination port to connect.
- `-P protocol` — (Optional) Use a raw packet of the specified protocol for traceroute. The default protocol is 253 (RFC 3692).
- `-s source_address` — (Optional) Enter an alternative source address of one of the interfaces. By default, the address of the outgoing interface is used.
- `-q nqueries` — (Optional) Enter the number of probe packets per hop. The default is 3.
- `-N squeries` — (Optional) Enter the number of probe packets sent out simultaneously to accelerate traceroute. The default is 16.
- `-t tos` — (Optional) For IPv4, enter the type of service (ToS) and precedence values to use. 16 sets a low delay; 8 sets a high throughput.
- `-UL` — (Optional) Use UDPLITE for tracerouting. The default port is 53.
- `-w waittime` — (Optional) Enter the time in seconds to wait for a response to a probe. The default is 5 seconds.
- `-z sendwait` — (Optional) Enter the minimal time interval to wait between probes. The default is 0. A value greater than 10 specifies a number in milliseconds, otherwise it specifies a number of seconds. This option is useful when routers rate-limit ICMP messages.
- `--mtu` — (Optional) Discovers the maximum transmission unit (MTU) from the path being traced.
- `--back` — (Optional) Prints the number of backward hops when different from the forward direction.
- `host` — (Required) Enter the name or IP address of the destination device.
- `packet_len` — (Optional) Enter the total size of the probing packet. The default is 60 bytes for IPv4 and 80 for IPv6.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

```
OS10# traceroute www.dell.com
traceroute to www.dell.com (23.73.112.54), 30 hops max, 60 byte packets
 1 10.11.97.254 (10.11.97.254)  4.298 ms  4.417 ms  4.398 ms
 2 10.11.3.254 (10.11.3.254)  2.121 ms  2.326 ms  2.550 ms
```
Example (IPv6)

```
OS10# traceroute 20::1
traceroute to 20::1 (20::1), 30 hops max, 80 byte packets
1  20::1 (20::1)  2.622 ms  2.649 ms  2.964 ms
```

Supported Releases

10.2.0E or later

Password recovery

You may need to recover a lost password.

1. Connect to the serial console port. The serial settings are 115200 baud, 8 data bits, and no parity.
2. Reboot or power up the system.
3. Press ESC at the Grub prompt to view the boot menu. The OS10-A partition is selected by default.
```
+-------------------------------------------+
|*OS10-A                                    |
| OS10-B                                    |
| ONIE                                      |
+-------------------------------------------+
```
4. Press e to open the OS10 GRUB editor.
5. Use the arrow keys to highlight the line that starts with linux. Add init=bin/bash at the end of the line.
```
+-------------------------------------------------------------------------------------------+
|setparams 'OS10-A'                                                                         |
| set root=(hd0,gpt7)                                                                     |
| echo  'Loading OS10 ...'                                                                |
| linux  (hd0,gpt7)/boot/os10.linux console=ttyS0,115200 root=/dev/sda7 \
w init=/bin/bash |
| initrd (hd0,gpt7)/os10.initrd                                                           |
+-------------------------------------------------------------------------------------------+
```
6. Press Ctrl + x to reboot your system. If Ctrl + x does not cause the system to reboot, press Alt + 0. The system boots up to a root shell without a password.
7. Enter linuxadmin for the username at the system prompt.
```
root@OS10: ~# linuxadmin
```
8. Enter your password at the system prompt, then enter the new password twice.
```
root@OS10: /# passwd linuxadmin
Enter new UNIX password: xxxxxxxxxx
Retype new UNIX password: xxxxxxxxxx
```
9. Enter the sync command to save the new password.
```
root@OS10: /# sync
```
10. Reboot the system, then enter your new password.
```
root@OS10:~# reboot -f
Rebooting ...
[ 3466.846967] reboot: Restarting system

BIOS Boot Selector for S5148F
Restore factory defaults

To restore your system factory defaults, reboot the system to ONIE: Uninstall OS mode.

⚠️ CAUTION: Restoring factory defaults erases any installed operating system and requires a long time to erase storage.

If it is not possible to restore your factory defaults with the installed OS, reboot the system from the Grub menu and select ONIE: Rescue. ONIE Rescue bypasses the installed operating system and boots the system into ONIE until you reboot the system. After ONIE Rescue completes, the system resets and boots to the ONIE console.

1. Restore the factory defaults on your system from the Grub menu using the ONIE: Uninstall OS command. To select which entry is highlighted, use the up and down arrow keys.

```
+--------------------------------------+
| ONIE: Install OS |
| ONIE: Rescue |
| *ONIE: Uninstall OS |
| ONIE: Update ONIE |
| ONIE: Embed ONIE |
| ONIE: Diag ONIE |
+--------------------------------------+
```

2. Press Enter to activate the console.

3. Return to the default ONIE settings using the onie-uninstaller command.

```
ONIE:/ # onie-uninstaller
uninstallerErasing internal mass storage device: /dev/sda4 (32MB)
 Percent complete: 100%
Erase complete.
Deleting partition 4 from /dev/sda
Erasing internal mass storage device: /dev/sda5 (300MB)
 Percent complete: 100%
Erase complete.
Deleting partition 5 from /dev/sda
Erasing internal mass storage device: /dev/sda6 (300MB)
 Percent complete: 100%
Erase complete.
Deleting partition 6 from /dev/sda
Erasing internal mass storage device: /dev/sda7 (12461MB)
 Percent complete: 100%
Erase complete.
Deleting partition 7 from /dev/sda
Installing for i386-pc platform.
Installation finished. No error reported.
Uninstall complete. Rebooting...
ONIE:/ # discover: Rescue mode detected. No discover stopped.
Stopping: dropbear ssh daemon... done.
Stopping: telnetd... done.
Stopping: syslogd... done.
Info: Unmounting kernel filesystems
The system is going down NOW!
Sent SIGTERM to all processes
Sent SIGKILL to
machine restart
```
SupportAssist

By default, SupportAssist is enabled. SupportAssist sends troubleshooting data securely to Dell EMC Technical Support. SupportAssist does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports.

To disable SupportAssist, use the `eula-consent support-assist reject` command.

**SupportAssist Process**

1. Enter SupportAssist mode from CONFIGURATION mode.
   ```command-line
 support-assist
   ```

2. (Optional) Configure the SupportAssist server URL or IP address in SUPPORT-ASSIST mode.
   ```command-line
 server-url
   ```

3. (Optional) Configure the interface used to connect to the SupportAssist server in SUPPORT-ASSIST mode.
   ```command-line
 source-interface
   ```

4. (Optional) Configure the contact information for your company in SUPPORT-ASSIST mode.
   ```command-line
 contact-company-name [company-name]
   ```

5. (Optional) Configure a proxy to reach the SupportAssist server in SUPPORT-ASSIST mode.
   ```command-line
 proxy-server ip {ipv4-address | ipv6-address} port port-number [username user-name password password]
   ```

6. Trigger an activity immediately or at a scheduled time in SUPPORT-ASSIST mode.
   ```command-line
 do support-assist activity full-transfer [start-now | schedule [hourly | daily | weekly | monthly | yearly]]
   ```
Configure SupportAssist

OS10(config)# support-assist
OS10(config-support-assist)# contact-company name Eureka
OS10(config-support-assist-Eureka)# exit
OS10(config-support-assist)# server url http://eureka.com:701
OS10(config-support-assist)# do support-assist-activity full-transfer start-now

Remove SupportAssist schedule

OS10# no support-assist activity full-transfer schedule

Show EULA license

OS10# show support-assist eula
I accept the terms of the license agreement. You can reject the license agreement by configuring this command 'eula-consent support-assist reject.'
By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
Dell SupportAssist also collects and stores machine diagnostic information, which may include but is not limited to configuration information, user supplied contact information, names of data volumes, IP addresses, access control lists, diagnostics & performance information, network configuration information, host/server configuration & performance information and related data ("Collected Data") and transmits this information to Dell. By downloading SupportAssist and agreeing to be bound by these terms and the Dell End User License Agreement, available at: www.dell.com/aeula, you agree to allow Dell to provide remote monitoring services of your IT environment and you give Dell the right to collect the Collected Data in accordance with Dell's Privacy Policy, available at: www.dell.com/privacypolicycountryspecific, in order to enable the performance of all of the various functions of SupportAssist during your entitlement to receive related repair services from Dell. You further agree to allow Dell to transmit and store the Collected Data from SupportAssist in accordance with these terms. You agree that the provision of SupportAssist may involve international transfers of data from you to Dell and/or to Dell's affiliates, subcontractors or business partners. When making such transfers, Dell shall ensure appropriate protection is in place to safeguard the Collected Data being transferred in connection with SupportAssist. If you do not consent to the collection, transmission and/or use of the Collected Data, you may not download, install or otherwise use SupportAssist.

(END)

Set company name

You can optionally configure name, address and territory information. Although this information is optional, it is used by Dell EMC Technical Support to identify which company owns the device.

1  (Optional) Configure contact information in SUPPORT-ASSIST mode.
   contact-company name name

2  (Optional) Configure address information in SUPPORT-ASSIST mode. Use the no address command to remove the configuration.
   address city name state name country name zipcode number

3  (Optional) Configure street address information in SUPPORT-ASSIST mode. Use double quotes to add spaces within an address. Use the no street-address command to remove the configuration.
   street-address {address-line-1} [{address-line-2} {address-line-3}]

4  (Optional) Configure the territory and set the coverage in SUPPORT-ASSIST mode. Use the no territory command to remove the configuration.
   territory company-territory
Configure SupportAssist company
OS10(conf-support-assist)# contact-company name Eureka
OS10(conf-support-assist-Eureka)# address city San Jose state California Country America zipcode 95123
OS10(conf-support-assist-Eureka)# street-address "123 Main Street" "Bldg 999"
OS10(conf-support-assist-Eureka)# territory sales

Set contact information

Configure contact details in SupportAssist Company mode. You can set the name, email addresses, phone, method, and time zone. SupportAssist contact-person configurations are optional for the SupportAssist service.

1. (Optional) Enter the contact name in SUPPORT-ASSIST mode.
   contact-person first firstname last lastname
2. Enter the email addresses in SUPPORT-ASSIST mode.
   email-address email-address
3. Enter the preferred contact method in SUPPORT-ASSIST mode.
   preferred-method {email | phone | no-contact}
4. Enter a contact phone number in SUPPORT-ASSIST mode.
   phone primary number [alternate number]

Configure contact details

OS10(config)# support-assist
OS10(config-support-assist)# contact-company name Eureka
OS10(config-support-assist-Eureka)# contact-person first John last Smith
OS10(config-support-assist-Eureka)# email-address abc@dell.com
OS10(config-support-assist-Eureka-JohnJamesSmith)# preferred-method email
OS10(config-support-assist-Eureka)# phone primary 408-123-4567

Schedule activity

Configure the schedule for a full transfer of data. The default schedule is a full data transfer weekly — every Sunday at midnight (hour 0 minute 0).

- Configure full-transfer or log-transfer activities in EXEC mode.
  support-assist-activity {full-transfer} schedule {hourly | daily | weekly | monthly | yearly}
  - hourly min number — Enter the time to schedule an hourly task, from 0 to 59.
  - daily hour number min number — Enter the time to schedule a daily task, from 0 to 23 and 0 to 59.
  - weekly day-of-week number hour number min number — Enter the time to schedule a weekly task, from 0 to 6, 0 to 23, and 0 to 59.
  - monthly day number hour number min number — Enter the time to schedule a monthly task, from 1 to 31, 0 to 23, and 0 to 59.
  - yearly month number day number hour number min number — Enter the time to schedule a yearly task, from 1 to 12, 1 to 31, 0 to 23, and 0 to 59.

Configure activity schedule for full transfer

OS10# support-assist-activity full-transfer schedule daily hour 22 min 50
OS10# support-assist-activity full-transfer schedule weekly day-of-week 6 hour 22 min 30
OS10# support-assist-activity full-transfer schedule monthly day 15 hour 12 min 30
OS10# support-assist-activity full-transfer schedule yearly month 6 day 12 hour 6 min 30
**Set default activity schedule**

```bash
OS10(conf-support-assist)# no support-assist-activity full-transfer schedule
```

**View status**

View the SupportAssist configuration status, details, and EULA information using the `show` commands.

1. View the SupportAssist activity in EXEC mode.
   ```bash
 show support-assist status
   ```

2. View the EULA license agreement in EXEC mode.
   ```bash
 show support-assist eula
   ```

**View SupportAssist status**

```bash
OS10# show support-assist status
EULA : Accepted
Service : Enabled
Contact-Company : DellCMLCAEOS10
Street Address : 7625 Smetana Lane Dr
 Bldg 7615
 Cube F577
City : Minneapolis
State : Minnesota
Country : USA
Zipcode : 55418
Territory : USA
Contact-person : Michael Dale
Email : abc@dell.com
Primary phone : 555-123-4567
Alternate phone :
Contact method : email
Server(configured) : https://web.dell.com
Proxy IP :
Proxy Port :
Proxy username :
Activity Enable State :
 Activity State

 coredump-transfer enabled
 event-notification enabled
 full-transfer enabled

Scheduled Activity List :
Activity Schedule Schedule created on

full-transfer weekly: on sun at 00:00 Sep 12,2016 18:57:40

Activity Status :
Activity Status last start last success

 event-notification success Sep 12,2016 20:51:51 Sep 12,2016 20:51:51
 full-transfer success Sep 12,2016 20:30:28 Sep 12,2016 20:30:52
```

**View EULA license**

```bash
OS10# show support-assist eula
I accept the terms of the license agreement. You can reject the license agreement by configuring this command 'eula-consent support-assist reject.'
By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
Dell SupportAssist also collects and stores machine diagnostic information, which may include
```
SupportAssist commands

activity

Enables SupportAssist activities to run on an associated trigger or schedule time.

**Syntax**

```
activity [coredump-transfer | event-notification | full-transfer] enable
```

**Parameters**

- `coredump-transfer` — Enables transfer of core dump files.
- `event-notification` — Enables transfer of event notification files.
- `full-transfer` — Enables transfer of logs and technical support information.

**Default**

Enabled

**Command Mode**

SUPPORT-ASSIST

**Usage Information**

Use the no version of this command to remove the configuration.

**Example (Event)**

```
OS10(conf-support-assist)# activity event-notification enable
```

**Example (Full)**

```
OS10(conf-support-assist)# activity full-transfer enable
```

**Example (Turn Off)**

```
OS10(conf-support-assist)# no activity coredump-transfer enable
```

**Supported Releases**

10.2.0E or later

**contact-company**

Configures the company contact information.

**Syntax**

```
contact-company name
```

**Parameters**

- `name` — Enter the contact company name. A maximum of 140 characters.
**Default** Not configured
**Command Mode** SUPPORT-ASSIST
**Usage Information** You can enter only one contact-company. Use double quotes to enclose additional contact information. The no version of this command removes the configuration.

**Example**
```
OS10(conf-support-assist)# contact-company name Eureka
OS10(conf-support-assist-Eureka)#
```

**Supported Releases** 10.2.0E or later

### contact-person

**Configure the contact name for an individual.**

**Syntax**
```
contact-person [first firstname last lastname]
```

**Parameters**
- `first firstname` — Enter the keyword and the first name for the contact person. Use double quotes for more than one first name.
- `last lastname` — Enter the keyword and the last name for the contact person.

**Default** Not configured
**Command Mode** SUPPORT-ASSIST
**Usage Information** The no version of this command removes the configuration.

**Example**
```
OS10(conf-support-assist-Eureka)# contact-person first "John James" last Smith
```

**Supported Releases** 10.2.0E or later

### email-address

**Configure the email address for the contact name.**

**Syntax**
```
email-address address
```

**Parameters**
- `address` — Enter the email address for the contact name.

**Default** Not configured
**Command Mode** SUPPORT-ASSIST
**Usage Information** The no version of this command removes the configuration.

**Example**
```
OS10(conf-support-assist-Eureka-JohnJamesSmith)# email-address jjsmith@eureka.com
```

**Supported Releases** 10.2.0E or later

### eula-consent

**Accepts or rejects the SupportAssist end-user license agreement (EULA).**

**Syntax**
```
eula-consent {support-assist} {accept | reject}
```

Troubleshoot OS10 959
Parameters

- support-assist — Enter to accept or reject the EULA for the service.
- accept — Enter to accept the EULA-consent.
- reject — Enter to reject EULA-consent.

Default
Not configured

Command Mode
CONFIGURATION

Usage Information
If you reject the end-user license agreement, you cannot access Configuration mode. If there is an existing SupportAssist configuration, the configuration is not removed and the feature is disabled.

Example (Accept)
OS10(config)# eula-consent support-assist accept

Example (Reject)
OS10(config)# eula-consent support-assist reject
This action will disable Support Assist and erase all configured data. Do you want to proceed? [Y/N]: Y

Supported Releases
10.2.0E or later

preferred-method

Configures a preferred method to contact an individual.

Syntax
preferred-method {email | phone | no-contact}

Parameters
- email — Enter to select email as the preferred contact method.
- phone — Enter to select phone as the preferred contact method.
- no-contact — Enter to select no-contact as the preferred contact method.

Default
No-contact

Command Mode
SUPPORT-ASSIST

Usage Information
The no version of this command removes the configuration.

Example
OS10(conf-support-assist-Eureka-JohnJamesSmith)# preferred-method email

Supported Releases
10.2.0E or later

proxy-server

Configures a proxy IP address for reaching the SupportAssist server.

Syntax
proxy-server ip ipv4-address port number

Parameters
- ipv4-address — Enter the IPv4 address of the proxy server in a dotted decimal format (A.B.C.D).
- number — Enter the port number, from 0 to 65535.

Default
Not configured

Command Mode
SUPPORT-ASSIST

Usage Information
You cannot use an IPv6 address with this command.
**Example**

OS10(conf-support-assist)# proxy-server ip 10.1.1.5 port 701

**Supported Releases** 10.2.0E or later

## server url

Configures the domain or IP address of the remote SupportAssist server.

**Syntax**

```
server url server-url-string
```

**Parameters**

`server-url-string` — Enter the domain or IP address of the remote SupportAssist server. To include a space, enter a space within double quotes.

**Default**

https://stor.g3.ph.dell.com

**Command Mode** SUPPORT-ASSIST

**Usage Information**

Only configure one SupportAssist server. If you do not configure the SupportAssist server, the system uses the non-configurable default server. Use the `show support-assist status` command to view the server configuration. The `no` version of this command removes the remote server.

**Example**

OS10(conf-support-assist)# server url https://eureka.com:444

**Supported Releases** 10.2.0E or later

## show support-assist eula

Displays the EULA for SupportAssist.

**Syntax**

```
show support-assist eula
```

**Parameters**

None

**Default**

None

**Command Mode** EXEC

**Usage Information**

Use the `eula-consent support-assist accept` command to accept the license agreement.

**Example**

OS10# show support-assist eula

I accept the terms of the license agreement. You can reject the license agreement by configuring this command 'eula-consent support-assist reject.' By installing SupportAssist, you allow Dell, Inc. to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell, Inc. products and services. Dell, Inc. may use the information for providing recommendations to improve your IT infrastructure.

SupportAssist also collects and stores machine diagnostic information, which may include but is not limited to configuration information, user supplied contact information, names of data volumes, IP addresses, access control lists, diagnostics & performance information, network configuration information, host/server configuration & performance information and related data ("Collected Data") and transmits this information to Dell, Inc. By downloading SupportAssist and agreeing to be bound by these terms and the Dell, Inc. end user license agreement, available at: www.dell.com/aeula, you agree to allow Dell, Inc. to provide remote monitoring services of your IT environment and you give Dell, Inc. the right to collect the Collected Data in accordance with Dell, Inc.'s Privacy Policy, available at: www.dell.com/privacypolicycountryspecific, in order to enable the performance of all of the various functions of SupportAssist during your entitlement to receive related repair services from Dell, Inc. You further agree to allow Dell, Inc. to transmit and store the Collected Data from SupportAssist in accordance with
these terms. You agree that the provision of SupportAssist may involve international transfers of data from you to Dell, Inc. and/or to Dell, Inc.'s affiliates, subcontractors or business partners. When making such transfers, Dell, Inc. shall ensure appropriate protection is in place to safeguard the Collected Data being transferred in connection with SupportAssist. If you are downloading SupportAssist on behalf of a company or other legal entity, you are further certifying to Dell, Inc. that you have appropriate authority to provide this consent on behalf of that entity. If you do not consent to the collection, transmission and/or use of the Collected Data, you may not download, install or otherwise use SupportAssist.

Supported Releases 10.2.0E or later

show support-assist status

Displays SupportAssist status information including activities and events.

Syntax

show support-assist status

Parameters None

Default Not configured

Command Mode EXEC

Example

OS10# show support-assist status
EULA : Accepted
Service : Enabled
Contact-Company : DellCMLCAEOS10
Street Address : 7625 Smetana Lane Dr
Bldg 7615
Cube F577
City : Minneapolis
State : Minnesota
Country : USA
Zipcode : 55418
Territory : USA
Contact-person : Michael Dale
Email : abc@dell.com
Primary phone : 555-123-4567
Alternate phone :
Contact method : email
Server(configured) : https://web.dell.com
Proxy IP :
Proxy Port :
Proxy username :
Activity Enable State :

<table>
<thead>
<tr>
<th>Activity</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>coredump-transfer</td>
<td>enabled</td>
</tr>
<tr>
<td>event-notification</td>
<td>enabled</td>
</tr>
<tr>
<td>full-transfer</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Scheduled Activity List :

<table>
<thead>
<tr>
<th>Activity</th>
<th>Schedule</th>
<th>Schedule created on</th>
</tr>
</thead>
<tbody>
<tr>
<td>full-transfer</td>
<td>weekly: on sun at 00:00</td>
<td>Sep 12,2016 18:57:40</td>
</tr>
</tbody>
</table>

Activity Status :

<table>
<thead>
<tr>
<th>Activity</th>
<th>Status</th>
<th>last start</th>
<th>last success</th>
</tr>
</thead>
</table>
source-interface

Configures the interface used to connect to the SupportAssist server.

Syntax

source-interface interface

Parameters

interface:

- ethernet node/slot/port[:subport] — Enter a physical Ethernet interface.
- loopback number — Enter a Loopback interface, from 0 to 16383.
- management 1/1/1 — Enter the management interface.
- port-channel channel-id — Enter a port-channel ID, from 1 to 28.
- vlan vlan-id — Enter a VLAN ID, from 1 to 4093.

Default
A source interface is not configured.

Command Mode
SUPPORT-ASSIST

Usage Information
The no version of this command removes the configured source interface.

Example

OS10(conf-support-assist)# source-interface ethernet 1/1/4

Supported Releases
10.4.0E(R1) or later

street-address

Configures the street address information for the company.

Syntax

street-address {address}

Parameters

address — Enter one or more addresses in double quotes. A maximum of 140 characters.

Default
Not configured

Command Mode
SUPPORT-ASSIST

Usage Information
Add spaces to the company street address by enclosing the address in quotes. Separate each address with a space to place on a new line. The no version of this command removes the company address configuration.

Example

OS10(conf-support-assist-Eureka)# street-address "One Dell Way" "Suite 100"

Supported Releases
10.2.0E or later

support-assist-activity

Schedules a time to transfer the activity log.

Syntax

support-assist-activity full-transfer [start-now] [schedule {hourly minute | daily hour number min number | weekly day-of-week number hour number | monthly day number hour number min number | yearly month number day number}]
Parameters

- **start-now** — Schedules the transfer to start immediately.
- **hourly minute** — Schedule an hourly task, from 0 to 59.
- **daily** — Schedule a daily task:
  - **hour number** — Enter the keyword and number of hours to schedule the daily task, from 0 to 23.
  - **min number** — Enter the keyword and number of minutes to schedule the daily task, from 0 to 59.
- **weekly** — Schedule a weekly task:
  - **day-of-week number** — Enter the keyword and number for the day of the week to schedule the task, from 0 to 6.
  - **hour number** — Enter the keyword and number of the hour to schedule the weekly task, from 0 to 23.
- **monthly** — Schedule a monthly task:
  - **day number** — Enter the number for the day of the month to schedule the task, from 1 to 31.
  - **hour number** — Enter the number for the hour of the day to schedule the task, from 0 to 23.
  - **min number** — Enter the number for the minute of the hour to schedule the task, from 0 to 59.
- **yearly** — Schedule the yearly task:
  - **month number** — Enter the keyword and number of the month to schedule the yearly task, from 1 to 12.
  - **day number** — Enter the keyword and the number of the day to schedule the monthly task, from 1 to 31.

**Default**
Weekly on Sunday at midnight (hour 0 minute 0)

**Command Mode**
EXEC

**Usage Information**
The no version of this command removes the schedule activity.

**Example**
```
OS10# support-assist-activity full-transfer schedule daily hour 22 min 50
```

**Supported Releases**
10.2.0E or later

---

**territory**

Configures the territory for the company.

**Syntax**
```
territory territory
```

**Parameters**
- **territory** — Enter the territory for the company.

**Default**
Not configured

**Command Mode**
CONFIG-SUPPORT-ASSIST

**Usage Information**
The no version of this command removes the company territory configuration.

**Example**
```
OS10(conf-support-assist)# contact-company name Eureka
OS10(conf-support-assist-Eureka)# territory west
```

**Supported Releases**
10.2.0E or later

---

**Support bundle**

The Support Bundle is based on the sosreport tool. Use the Support Bundle to generate an sosreport tar file that collects Linux system configuration and diagnostics information, as well as the show command output to send to Dell EMC Technical Support.
To send Dell EMC Technical Support troubleshooting details about the Linux system configuration and OS10 diagnostics, generate an sosreport tar file.

1. Generate the tar file in EXEC mode.
   ```
 generate support-bundle
   ```

2. Verify the generated file in EXEC mode.
   ```
 dir supportbundle
   ```

3. Send the support bundle using FTP/SFTP/SCP/TFTP in EXEC mode.
   ```
 copy supportbundle://sosreport-filename.tar.gz tftp://server-address/path
   ```

Use the `delete supportbundle://sosreport-filename.tar.gz` command to delete a generated support bundle.

## Event notifications

Event notifications for the `generate support-bundle` command process at the start and end of the bundle they support, and reports either success or failure.

### Support bundle generation start event

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 19 16:57:55</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_STARTED: generate support-bundle execution has started successfully:All Plugin options disabled</td>
</tr>
<tr>
<td>Apr 19 16:57:55</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_STARTED: generate support-bundle execution has started successfully:All Plugin options enabled</td>
</tr>
</tbody>
</table>

### sosreport generation start event

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 11 22:9:43</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SOSREPORT_GEN_STARTED: CLI output collection task completed; sosreport execution task started:All Plugin options disabled</td>
</tr>
<tr>
<td>May 11 22:9:43</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SOSREPORT_GEN_STARTED: CLI output collection task completed; sosreport execution task started:All Plugin options enabled</td>
</tr>
</tbody>
</table>

### Support bundle generation successful event

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 19 17:0:9</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_COMPLETED: generate support-bundle execution has completed successfully:All Plugin options disabled</td>
</tr>
<tr>
<td>Apr 19 17:0:9</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_COMPLETED: generate support-bundle execution has completed successfully:All Plugin options enabled</td>
</tr>
</tbody>
</table>

### Support bundle generation failure

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 19 17:0:14</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_FAILURE: Failure in generate support-bundle execution:All Plugin options disabled</td>
</tr>
<tr>
<td>Apr 19 17:0:14</td>
<td>%Node.1-Unit.1:FRI:OS10 %log-notice:SUPPORT_BUNDLE_FAILURE: Failure in generate support-bundle execution:All Plugin options enabled</td>
</tr>
</tbody>
</table>

## generate support-bundle

Generates an sosreport tar file that collects configuration and diagnostic information on Linux systems.

**Syntax**

`generate support-bundle [enable-all-plugin-options]`

**Parameters**

`enable-all-plugin-options` — (Optional) Generate a full support bundle with all plugin options enabled.

**Defaults**

None

**Command Mode**

EXEC
Usage Information
To send the tar file to Dell EMC Technical Support, use the dir supportbundle and copy supportbundle://sosreport-OS10-file-number.tar.gz tftp://server-address/path commands.

Example
OS10# generate support-bundle

Example (Enable Options)
OS10# generate support-bundle enable-all-plugin-options

Supported Releases 10.2.0E or later

System monitoring
Monitor OS10 using system alarms and log information.

System alarms
Alarms alert you to conditions that might prevent normal device operation:

- **Critical** — A critical condition exists and requires immediate action. A critical alarm may trigger if one or more hardware components fail, or one or more hardware components exceed temperature thresholds.
- **Major** — A major error occurred and requires escalation or notification. For example, a major alarm may trigger if an interface failure occurs, such as a port-channel being down.
- **Minor** — A minor error or non-critical condition occurred that, if left unchecked, might cause system service interruption or performance degradation. A minor alarm requires monitoring or maintenance.
- **Informational** — An informational error occurred but does not impact performance. Monitor an informational alarm until the condition changes.

Triggered alarms are in one of these states:

- **Active** — Alarms that are current and not cleared.
- **Cleared** — Alarms that are resolved and the device has returned to normal operation.

System logging
You can change the system logging default settings using the severity level to control the type of system messages that log. The range of logging severities are:

- **log-emerg** — System is unstable.
- **log-alert** — Immediate action needed.
- **log-crit** — Critical conditions.
- **log-err** — Error conditions.
- **log-warning** — Warning conditions.
- **log-notice** — Normal but significant conditions, the default.
- **log-info** — Informational messages.
- **log-debug** — Debug messages.

- Enter the minimum severity level for logging to the console in CONFIGURATION mode.
  
  `logging console severity`

- Enter the minimum severity level for logging to the system log file in CONFIGURATION mode.
  
  `logging log-file severity`
• Enter the minimum severity level for logging to terminal lines in CONFIGURATION mode.
  
  ```
 logging monitor severity
  ```

• Enter which server to use for syslog messages with the hostname or IP address in CONFIGURATION mode.
  
  ```
 logging server {hostname/ip-address severity}
  ```

### Disable system logging

You can use the `no` version of any logging command to disable system logging.

- Disable console logging and reset the minimum logging severity to the default in CONFIGURATION mode.
  
  ```
 no logging console severity
  ```

- Disable log-file logging and reset the minimum logging severity to the default in CONFIGURATION mode.
  
  ```
 no logging log-file severity
  ```

- Disable monitor logging and reset the minimum logging severity to the default in CONFIGURATION mode.
  
  ```
 no logging monitor severity
  ```

- Disable server logging and reset the minimum logging severity to the default in CONFIGURATION mode.
  
  ```
 no logging server severity
  ```

- Re-enable any logging command in CONFIGURATION mode.
  
  ```
 no logging enable
  ```

### Enable server logging for log notice

```
OS10(config)# logging server dell.com severity log-notice
```
View logging process names

OS10# show logging process-names
don_alm
dn_app_vlt
dn_app_vrrp
dn_bgp
dn_dot1x
dn_eqa
dn_eqm
dn_eth_drv
dn_etl
dn_i3
dn_ifm
dn_infra_afs
dn_issu
dn_l2_services
dn_l2_services_
dn_l2_services_
dn_l2_services_
dn_l2_services_
dn_l3_core_serv
dn_l3_service
dn_lacp
dn_lldp
dn_mgmt_entity_

Environmental monitoring

Monitors the hardware environment to detect temperature, CPU, and memory utilization.

View environment

OS10# show environment

<table>
<thead>
<tr>
<th>Unit</th>
<th>State</th>
<th>Temperature</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>up</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Thermal sensors

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sensor-Id</th>
<th>Sensor-name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>T2 temp sensor</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>system-NIC temp sensor</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Ambient temp sensor</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>NPU temp sensor</td>
<td>40</td>
</tr>
</tbody>
</table>

Link-bundle monitoring

Monitoring link aggregation group (LAG) bundles allows the traffic distribution amounts in a link to look for unfair distribution at any given time. A threshold of 60% is an acceptable amount of traffic on a member link.

Links are monitored in 15-second intervals for three consecutive instances. Any deviation within that time sends syslog and an alarm event generates. When the deviation clears, another syslog sends and a clear alarm event generates.
Link-bundle utilization calculates the total bandwidth of all links divided by the total bytes-per-second of all links. If you enable monitoring, the utilization calculation performs when the utilization of the link-bundle (not a link within a bundle) exceeds 60%.

**Configure Threshold level for link-bundle monitoring**

```
OS10(config)# link-bundle-trigger-threshold 10
```

**View link-bundle monitoring threshold configuration**

```
OS10(config)# do show running-configuration
link-bundle-trigger-threshold 10
!
```

**Show link-bundle utilization**

```
OS10(config)# do show link-bundle-utilization
Link-bundle trigger threshold - 10
```

## Alarm commands

### alarm clear

Clears the alarm based on the alarm index for a user-clearable alarm. a transient alarm.

**Syntax**

```
alarm clear alarm-index
```

**Parameters**

- `clear alarm-index` — Enter the alarm ID to clear the alarm.

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

Use the `show alarm index` command to view a list of alarm IDs.

**Example**

```
OS10# alarm clear 200
```

**Supported Releases**

10.2.0E or later

### show alarms

Displays all current active system alarms.

**Syntax**

```
show alarms
```

**Parameters**

None

**Default**

Not configured

**Command Mode**

EXEC

**Usage Information**

None

**Example**

```
OS10# show alarms
```
show alarms details

Displays details about active alarms.

Syntax  show alarms details
Parameters  None
Default  Not configured
Command Mode  EXEC
Usage Information  None
Example  

OS10# show alarms details
Active-alarm details - 0
-------------------------------
Index: 0
Sequence Number: 1
Severity: critical
Type: 1081367
Source: Node.1-Unit.1
Name: EQM_THERMAL_CRIT_CROSSED
Description: Raise-time: Sep 20 0:1:5
Clear-time:
New: true
State: raised
-------------------------------
Active-alarm details - 1
-------------------------------
Index: 1
Sequence Number: 5
Severity: warning
Type: 1081364
Source: Node.1-Unit.1
Name: EQM_THERMAL_WARN_CROSSED
Description: Raise-time: Sep 20 0:16:52
Clear-time:
New: true
State: raised

show alarms history

Displays the history of cleared alarms.

Syntax  show alarms history [summary]
Parameters  summary — Enter to view a summary of the alarm history.
Default  Not configured
Command Mode  EXEC

Supported Releases  10.2.0E or later
Usage Information
None

Example
OS10# show alarms history

<table>
<thead>
<tr>
<th>Index</th>
<th>Severity</th>
<th>Name</th>
<th>Raise-time</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>minor</td>
<td>EQM_THERMAL_MINOR_CROSSED</td>
<td>Sep 20 0:8:24</td>
<td>Node.1-Unit.1</td>
</tr>
<tr>
<td>1</td>
<td>major</td>
<td>EQM_THERMAL_MAJOR_CROSSED</td>
<td>Sep 20 0:16:28</td>
<td>Node.1-Unit.1</td>
</tr>
<tr>
<td>2</td>
<td>minor</td>
<td>EQM_THERMAL_MINOR_CROSSED</td>
<td>Sep 20 0:15:39</td>
<td>Node.1-Unit.1</td>
</tr>
</tbody>
</table>

Example (Summary)
OS10# show alarms history summary

Alarm History Summary
-------------------------------
Total-count: 0
Critical-count: 0
Major-count: 0
Minor-count: 0
Warning-count: 0
-------------------------------

Supported Releases
10.2.0E or later

show alarms index
Displays information about a specific alarm using the alarm ID.

Syntax
show alarms index alarm-id

Parameters
index alarm-id — Enter the keyword and the alarm ID to view specific information.

Default
Not configured

Command Mode
EXEC

Usage Information
Use the alarm-id to clear and view alarm details.

Example
OS10# show alarms index 1

Active-alarm details - 1
-------------------------------------------
Index: 1
Sequence Number: 5
Severity: warning
Type: 1081364
Source: Node.1-Unit.1
Name: EQM_THERMAL_WARN_CROSSED
Description: 
Raise-time: Sep 20 0:16:52
Clear-time: 
New: true
State: raised

Supported Releases
10.2.0E or later

show alarms severity
Displays all active alarms using the severity level.

Syntax
show alarms severity severity
Parameters

severity — Set the alarm severity:

- critical — Critical alarm severity.
- major — Major alarm severity.
- minor — Minor alarm severity.
- warning — Warning alarm severity.

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example (Warning)

OS10# show alarms severity warning

Active-alarm details - 1

Index:             1
Sequence Number:   5
Severity:          warning
Type:              1081364
Source:            Node.1-Unit.1
Name:              EQM_THERMAL_WARN_CROSSED
Description:
Raise-time:        Sep 20 0:16:52
Clear-time:
New:               true
State:             raised

Example (Critical)

OS10# show alarms severity critical

Active-alarm details - 0

Index:             0
Sequence Number:   1
Severity:          critical
Type:              1081367
Source:            Node.1-Unit.1
Name:              EQM_THERMAL_CRIT_CROSSED
Description:
Raise-time:        Sep 20 0:1:5
Clear-time:
New:               true
State:             raised

Supported Releases 10.2.0E or later

show alarms summary

Displays the summary of alarm information.

Syntax

show alarms summary

Parameters

None

Default

Not configured

Command Mode

EXEC

Usage Information

None

Example

OS10# show alarms summary
Active-alarm Summary
-----------------------
Total-count:      6
Critical-count:   0
Major-count:      2
Minor-count:      2
Warning-count:    2
-----------------------

Supported Releases
10.2.0E or later

Logging commands

clear logging

Clears messages in the logging buffer.

Syntax
    clear logging log-file

Parameters
    None

Default
    Not configured

Command Mode
    EXEC

Usage Information
    None

Example
    OS10# clear logging log-file
    Proceed to clear the log file [confirm yes/no(default)]:

Supported Releases
10.2.0E or later

logging console

Disables, enables, or configures the minimum severity level for logging to the console.

Syntax
    logging console {disable | enable | severity}

Parameters
    severity — Set the minimum logging severity level:
        • log-emerg — Set to unusable.
        • log-alert — Set to immediate action is needed.
        • log-crit — Set to critical conditions.
        • log-err — Set to error conditions.
        • log-warning — Set to warning conditions.
        • log-notice — Set to normal but significant conditions, the default.
        • log-info — Set to informational messages.
        • log-debug — Set to debug messages.

Default
    Log-notice

Command Mode
    CONFIGURATION
Usage Information
To set the severity to the default level, use the no logging console severity command. The default severity level is log-notice.

Example
OS10(config)# logging console disable

Example (Enable)
OS10(config)# logging console enable

Example (Severity)
OS10(config)# logging console severity log-warning

Supported Releases 10.2.0E or later

logging enable
Enables system logging.

Syntax
logging enable

Parameters
None

Default
Enabled

Command Mode
CONFIGURATION

Usage Information
The no version of this command disables all logging.

Example
OS10(config)# logging enable

Supported Releases 10.2.0E or later

logging log-file
Disables, enables, or sets the minimum severity level for logging to the log file.

Syntax
logging log-file {disable | enable | severity}

Parameters
severity — Set the minimum logging severity level:
  • log-emerg — Set the system as unusable.
  • log-alert — Set to immediate action is needed.
  • log-crit — Set to critical conditions.
  • log-err — Set to error conditions.
  • log-warning — Set to warning conditions.
  • log-notice — Set to normal but significant conditions, the default.
  • log-info — Set to informational messages.
  • log-debug — Set to debug messages.

Default
Log-notice

Command Mode
CONFIGURATION

Usage Information
To reset the log-file severity to the default level, use the no logging log-file severity command. The default severity level is log-notice.
logging monitor

Set the minimum severity level for logging to the terminal lines.

**Syntax**

```
logging monitor severity severity-level
```

**Parameters**

- `severity-level` — Set the minimum logging severity level:
  - `log-emerg` — Set the system as unusable.
  - `log-alert` — Set to immediate action is needed.
  - `log-crit` — Set to critical conditions.
  - `log-err` — Set to error conditions.
  - `log-warning` — Set to warning conditions.
  - `log-notice` — Set to normal but significant conditions, the default.
  - `log-info` — Set to informational messages.
  - `log-debug` — Set to debug messages.

**Default**

Log-notice

**Command Mode**

CONFIGURATION

**Usage Information**

To reset the monitor severity to the default level, use the `no logging monitor severity` command. The default severity level is log-notice.

**Example**

```
OS10(config)# logging monitor severity log-info
```

**Supported Releases**

10.2.0E or later

logging server

Configures the remote syslog server.

**Syntax**

```
logging server {hostname | ipv4-address | ipv6-address} [severity severity-level | vrf management [severity severity-level] [tcp port-number | udp port-number]
```

**Parameters**

- `hostname | ipv4-address | ipv6-address` — (Optional) Enter either the hostname or IPv4/IPv6 address of the logging server.
- `vrf management` — (Optional) Configure the logging server for the management VRF instance.
- `severity-level` — (Optional) Set the logging threshold severity:
  - `log-emerg` — System as unusable.
  - `log-alert` — Immediate action is needed.
- log-crit — Critical conditions.
- log-err — Error conditions.
- log-warning — Warning conditions.
- log-notice — Normal but significant conditions, the default.
- log-info — Informational messages.
- log-debug — Debug messages.

- tcp port-number — (Optional) Send syslog messages over TCP to a specified port on a remote logging server, from 1 to 65535.
- udp port-number — (Optional) Send syslog messages over UDP to a specified port on a remote logging server, from 1 to 65535; default 514.

### Defaults
System messages of the log-notice security level and lower are generated.

Syslog messages are sent over UDP to port 514 on a remote logging server.

### Command Mode
CONFIGURATION

### Usage Information
Starting from 10.3.0E or later, this command supports IPv6 addresses. The previous versions support only IPv4 addresses. The no version of this command deletes the syslog server.

### Example
```
OS10(config)# logging server dell.com severity log-info
OS10(config)# logging server fda8:6c3:ce53:a890::2 tcp 1468
OS10(config)# logging server dell.com vrf management severity log-debug
```

### Supported Releases
10.2.0E or later

---

**show logging**

Displays system logging messages by log file, process-names, or summary.

**Syntax**
```
show logging {log-file [process-name | line-numbers] | process-names}
```

**Parameters**
- process-name — (Optional) Enter the process-name to use as a filter in syslog messages.
- line-numbers — (Optional) Enter the number of lines to include in the logging messages, from 1 to 65535.

**Default**
None

**Command Mode**
EXEC

**Usage Information**
The output from this command is the /var/log/eventlog file.

**Example (Log File)**
```
OS10# show logging log-file process-name dn_qos
```

**Example (Process-Names)**
```
OS10# show logging process-names
dn_pas_svc
dn_system_mgmt_
dn_env_tmpctl_
dn_pm_
dn_eth_drv
dn_etl
dn_eqa
dn_alm
dn_egm
dn_issu
dn_swupgrade
```
show trace

Displays trace messages.

**Syntax**

```
show trace [number-lines]
```

**Parameters**

`number-lines` — (Optional) Enter the number of lines to include in log messages, from 1 to 65535.

**Default**

Enabled

**Command Mode**

EXEC

**Usage Information**

The output from this command is the `/var/log/syslog` file.

**Example**

```
OS10# show trace
May 23 17:10:03 OS10 base_nas: [NETLINK:NH-EVENT]:ds_api_linux_neigh.c:nl_to_neigh_info:109, Operation:Add-NH family:IPv4(2) flags:0x0 state:Failed(32) if-idx:4
May 23 17:10:03 OS10 base_nas: [NETLINK:NH-EVENT]:ds_api_linux_neigh.c:nl_to_neigh_info:120, NextHop IP:192.168.10.1
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Values are invalid - can't be converted to SAI types (func:2359304)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Hash value - 20 can't be converted
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Values are invalid - can't be converted to SAI types (func:2359305)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Values are invalid - can't be converted to SAI types (func:2359311)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Hash value - 20 can't be converted
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Values are invalid - can't be converted to SAI types (func:2359312)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Invalid operation type for NDI (2359344)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Invalid operation type for NDI (2359345)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Invalid operation type for NDI (2359346)
May 23 17:10:04 OS10 base_nas: [NDI:NDI-SAI], Invalid operation type for NDI (2359319)
```
Supported Releases  10.2.0E or later

Log into OS10 device

Linux shell access is available for troubleshooting and diagnostic purposes only. Use linuxadmin for both the default user name and password. For security reasons, you must change the default linuxadmin password during the first login from the Linux shell. Use the username CLI command to change the password. Enter the write memory command for the system to save the new password for future logins.

⚠️ CAUTION: Changing the system state from the Linux shell can result in undesired and unpredictable system behavior. Only use Linux shell commands to display system state and variables, or as instructed by Dell EMC Support.

OS10 login: linuxadmin
Password: linuxadmin >> only for first-time login
You are required to change your password immediately (root enforced)
Changing password for linuxadmin.
(current) UNIX password: linuxadmin
Enter new UNIX password: re-enter the new password
Linux OS10 3.16.7-ckt20 #1 SMP Debian 3.16.7-ckt20-1+deb8u4 (2017-05-01) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

---

This product is protected by U.S. and international copyright and
intellectual property laws. Dell EMC and the Dell EMC logo are
trademarks of Dell Inc. in the United States and/or other
jurisdictions. All other marks and names mentioned herein may be
trademarks of their respective companies.

linuxadmin@OS10:~$

To log in to OS10 and access the command-line interface, enter su — admin at the Linux shell prompt, then admin as the password.

linuxadmin@OS10:~$ su — admin
Password: admin
OS10#

Frequently asked questions

This section contains answers to frequently asked questions for ONIE-enabled devices.

- Installation contains information about how to enter ONIE: Install mode after a reboot, find information about your specific switch, how to log into the OS10 shell, and so on.
- Hardware contains information about how to view default console settings, how to view hardware alarms and events, how to view LED status, and so on.
• Configuration contains information about how to enter CONFIGURATION mode, how to modify the candidate configuration, and so on.
• Security contains information about how to add users, troubleshoot RADIUS, how to view current DHCP information, and so on.
• Layer 2 contains information about how to configure routing information including 802.1X, LACP, LLDP, MAC, and so on.
• Layer 3 contains information about how to troubleshoot BCP, ECMP, OSPF, and so on.
• System management contains information about how to view current interface configuration information, how to view a list of all system devices, how to view the software version, and so on.
• Quality of service contains information about quality of service including classification and marking, congestion management, policing and shaping, and so on.
• Monitoring contains information about how to view alarms, events, logs, and so on.

Installation

How do I configure a default management route?

Although the default management route was configured during installation, you can use the `route add default gw` command from the Linux shell to configure the default management IP address for routing. SupportAssist requires the default management route is configured to work properly, as well as DNS configured and a route to a proxy server. For more information, see `Configure SupportAssist` and `proxy-server`.

How do I log into the OS10 shell as the system administration?

Use `linuxadmin` as the username and password to enter OS10 at root level.

Where can I find additional installation information for my specific device?

See the Setup Guide shipped with your device or the platform-specific Installation Guide on the Dell EMC Support page at dell.com/support.

Hardware

What are the default console settings for ON-Series devices?

• Set the data rate to 115200 baud
• Set the data format to 8 bits, stop bits to 1, and no parity
• Set flow control to none

How do I view the hardware inventory?

Use the `show inventory` command to view complete system inventory.

How do I view the process-related information?

Use the `show processes node-id node-id-number [pid process-id]` command to view the process CPU utilization information.

Configuration

How do I enter CONFIGURATION mode?

Use the `configure terminal` command to change from EXEC mode to CONFIGURATION mode.

I made changes to the running configuration file but the updates are not showing. How do I view my changes?
Use the `show running-configuration` command to view changes that you have made to the running-configuration file. Here are the differences between the available configuration files:

- startup-configuration contains the configuration applied at device startup
- running-configuration contains the current configuration of the device
- candidate-configuration is an intermediate temporary buffer that stores configuration changes prior to applying them to the running-configuration

## Security

### How do I add new users?

Use the `username` commands to add new users. Use the `show users` command to view a list of current users.

### How do I view RADIUS transactions to troubleshoot problems?

Use the `debug radius` command.

### How do I view the current DHCP binding information?

Use the `show ip dhcp binding` command.

## Layer 2

### How do I view the VLAN running configuration?

Use the `show vlan` command to view all configured VLANs.

## Layer 3

### How do I view IPv6 interface information?

Use the `show ipv6 route summary` command.

### How do I view summary information for all IP routes?

Use the `show running-configuration` command.

### How do I view summary information for the OSPF database?

Use the `show ip ospf database` command.

### How do I view configuration of OSPF neighbors connected to the local router?

Use the `show ip ospf neighbor` command.

## System management

### How can I view the current interface configuration?

Use the `show running-configuration` command to view all currently configured interfaces.
How can I view a list of all system devices?
Use the `show inventory` command to view a complete list.

How can I view the software version?
Use the `show version` command to view the currently running software version.

Access control lists

How do I setup filters to deny or permit packets from an IPv4 or IPv6 address?
Use the `deny` or `permit` commands to create ACL filters.

How do I clear access-list counters?
Use the `clear ip access-list counters`, `clear ipv6 access-list counters`, or `clear mac access-list counters` commands.

How do I setup filters to automatically assign sequencer numbers for specific addresses?
Use the `seq deny` or `seq permit` commands for specific packet filtering.

How do I view access-list and access-group information?
Use the `show {ip | mac | ipv6} access-group` and `show {ip | mac | ipv6} access-list` commands.

Quality of service

What are the QoS error messages?
Flow control error messages:
- Error: priority-flow-control mode is on, disable pfc mode to enable LLFC
- % Warning: Make sure all qos-groups are matched in a single class in attached policy-map

Priority flow control mode error message:
% Error: LLFC flowcontrol is on, disable LLFC to enable PFC

PFC shared-buffer size error message:
% Error: Hardware update failed.

Pause error message:
% Error: Buffer-size should be greater than Pause threshold and Pause threshold should be greater than equal to Resume threshold.

PFC cost of service error messages:
- % Error: Not enough buffers are available, to enable system-qos wide pause for all pfc-cos values in the policy-map
- % Error: Not enough buffers are available, to enable system-qos wide pause for the pfc-cos values in the policy-map
Monitoring

How can I check if SupportAssist is enabled?
Use the `show support-assist status` command to view current configuration information.

How can I view a list of alarms?
Use the `show alarms details` command to view a list of all system alarms.

How do I enable or disable system logging?
Use the `logging enable` command or the `logging disable` command.

How do I view system logging messages?
Use the `show logging` command to view messages by log file or process name.
Support resources

The Dell EMC Support site provides a range of documents and tools to assist you with effectively using Dell EMC devices. Through the support site you can obtain technical information regarding Dell EMC products, access software upgrades and patches, download available management software, and manage your open cases. The Dell EMC support site provides integrated, secure access to these services.

To access the Dell EMC Support site, go to www.dell.com/support/. To display information in your language, scroll down to the bottom of the page and select your country from the drop-down menu.

- To obtain product-specific information, enter the 7-character service tag or 11-digit express service code of your switch and click Submit. To view the service tag or express service code, pull out the luggage tag on the chassis or enter the show chassis command from the CLI.
- To receive additional kinds of technical support, click Contact Us, then click Technical Support.

To access system documentation, see www.dell.com/manuals/.

To search for drivers and downloads, see www.dell.com/drivers/.

To participate in Dell EMC community blogs and forums, see www.dell.com/community.