ANMERKUNG: Eine ANMERKUNG macht auf wichtige Informationen aufmerksam, mit denen Sie Ihr Produkt besser einsetzen können.

VORSICHT: Ein VORSICHTSHINWEIS warnt vor möglichen Beschädigungen der Hardware oder vor Datenverlust und zeigt, wie diese vermieden werden können.

WARNUNG: Mit WARNUNG wird auf eine potenziell gefährliche Situation hingewiesen, die zu Sachschäden, Verletzungen oder zum Tod führen kann.
<table>
<thead>
<tr>
<th>Kapitel 1: Übersicht</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was ist neu in dieser Version?</td>
<td>12</td>
</tr>
<tr>
<td>Vor dem Installieren von Storage Management</td>
<td>12</td>
</tr>
<tr>
<td>Versionsvoraussetzungen für Controller-Firmware und Treiber</td>
<td>12</td>
</tr>
<tr>
<td>Unterstützte Controller</td>
<td>13</td>
</tr>
<tr>
<td>Unterstützung für Festplatten- und Datenträgerverwaltung</td>
<td>14</td>
</tr>
<tr>
<td>Kapitel 2: Erste Schritte</td>
<td>15</td>
</tr>
<tr>
<td>Starten von Storage Management</td>
<td>15</td>
</tr>
<tr>
<td>Auf Systemen, die Microsoft Windows ausführen</td>
<td>15</td>
</tr>
<tr>
<td>Auf einem System, auf dem Linux und ein Remote-System ausgeführt wird</td>
<td>15</td>
</tr>
<tr>
<td>Benutzerberechtigungen</td>
<td>16</td>
</tr>
<tr>
<td>Verwenden der graphischen Benutzeroberfläche</td>
<td>16</td>
</tr>
<tr>
<td>Das Objekt Speicher</td>
<td>16</td>
</tr>
<tr>
<td>Funktionszustand</td>
<td>16</td>
</tr>
<tr>
<td>Informationen oder Konfiguration</td>
<td>16</td>
</tr>
<tr>
<td>Verwenden der Befehlszeilenoberfläche in Storage Management</td>
<td>16</td>
</tr>
<tr>
<td>Aufrufen der Online-Hilfe</td>
<td>17</td>
</tr>
<tr>
<td>Häufig verwendete Speichertasks</td>
<td>17</td>
</tr>
<tr>
<td>Kapitel 3: Zum Verständnis von RAID-Konzepten</td>
<td>18</td>
</tr>
<tr>
<td>RAID</td>
<td>18</td>
</tr>
<tr>
<td>Hardware- und Software-RAID</td>
<td>18</td>
</tr>
<tr>
<td>RAID-Konzepte</td>
<td>18</td>
</tr>
<tr>
<td>RAID-Stufen</td>
<td>19</td>
</tr>
<tr>
<td>Datenspeicher-Organisation zur erhöhten Verfügbarkeit und Leistung</td>
<td>19</td>
</tr>
<tr>
<td>RAID-Stufen und -Verkettung auswählen</td>
<td>20</td>
</tr>
<tr>
<td>Verkettung</td>
<td>20</td>
</tr>
<tr>
<td>RAID-Level 0 – Striping</td>
<td>21</td>
</tr>
<tr>
<td>RAID-Level 1 – Datenspiegelung</td>
<td>21</td>
</tr>
<tr>
<td>RAID-Level 5 – Striping mit verteilter Parität</td>
<td>22</td>
</tr>
<tr>
<td>RAID-Level 6 – Striping mit zusätzlicher verteilter Parität</td>
<td>23</td>
</tr>
<tr>
<td>RAID-Level 50 – Striping über RAID 5-Sets</td>
<td>23</td>
</tr>
<tr>
<td>RAID-Level 60 – Striping über RAID 6-Sets</td>
<td>24</td>
</tr>
<tr>
<td>RAID-Level 10 – Striped-Mirrors</td>
<td>25</td>
</tr>
<tr>
<td>RAID-Stufe 1-Verkettet (Verketteter Spiegel)</td>
<td>26</td>
</tr>
<tr>
<td>RAID-Stufen- und -Verkettungsleistungsvergleich</td>
<td>27</td>
</tr>
<tr>
<td>Kein-RAID</td>
<td>28</td>
</tr>
<tr>
<td>Kapitel 4: Schneller Zugriff auf Speicherstatus und Tasks</td>
<td>29</td>
</tr>
<tr>
<td>Speichermöglichkeiten</td>
<td>29</td>
</tr>
<tr>
<td>Hotspare-Schutzregel</td>
<td>29</td>
</tr>
<tr>
<td>Speicherkomponentenschwierigkeiten</td>
<td>30</td>
</tr>
<tr>
<td>Speichermöglichkeiten und aktuelle Aktivität</td>
<td>30</td>
</tr>
</tbody>
</table>
Kapitel 5: PCI Express-Support für Solid State-Geräte ... 32
PCIe-SSD-Laufwerke .. 32
PCIe SSD-Funktionen .. 32
PCIe SSD SubSystem-Eigenschaften .. 32
PCIe Extender-Karten .. 32
Eigenschaften des physischen Geräts ... 34
Physische Geräte-Tasks .. 36
Blinken und Blinken beenden auf einem PCIe SSD ... 37
Voll-Initialisierung auf einem Micron PCIe SSD aktivieren .. 37
Entfernen eines PCIe SSD vorbereiten .. 38
Exportieren des Protokolls .. 38
Durchführen einer kryptografischen Lösung auf einer NVMe PCIe SSD 38
Tasks des PCIe SSDs in der Steckplatz-Karte ... 39
So finden Sie das kryptografische Löschen in Storage Management für eine PCIe SSD in der
Steckplatz-Karte ... 39
Eigenschaften des PCIe SSDs in der Steckplatz-Karte ... 39
Tasks des PCIe SSDs in der Steckplatz-Karte ... 41
Exportieren des Protokolls für ein PCIe SSD in der Steckplatz-Karte 41
„Protokolldatei exportieren“ in Storage Management für NVMe-PCIe-SSDs ausfindig machen 41
Funktionszustand des PCIe SSD-Subsystems ... 42
Rückwandplatinen ... 42
Firmware-Version der Rückwandplatine .. 42

Kapitel 6: Speicherinformationen und globale Tasks ... 43
Speichermedieneigenschaften ... 43
Globale Tasks ... 43
Einstellen des Schwellenwerts für verbleibende eingestufte Schreibbeständigkeit 43
Einstellen des Schwellenwerts für verfügbare Reserve .. 44
Speicher-Controller-Eigenschaften .. 45
Speicherkomponenten ... 46

Kapitel 7: Controller ... 47
Controller .. 47
RAID-Controller Technologie: SATA und SAS .. 47
SAS RAID-Controller .. 47
RAID-Controller-Merkmale ... 48
Controller – Unterstützte RAID-Stufen .. 48
Controller – Unterstützte Stripe-Größen .. 49
RAID-Controller Lese-, Schreib- und Festplatten-Cache-Regeln ... 49
Leseregel ... 49
Schreibregel ... 49
Festplatten-Cache-Regel .. 49
Hintergrundinitialisierung auf PERC-Controllern .. 50
Nicht-RAID-Controller - Beschreibung .. 51
Kapitel 9: Unterstützung für BOSS-S1 RAID-Controller

Kapitel 10: Gehäuse und Rückwandplatten

Kapitel 11: Steckplätze

Kapitel 12: Bandlaufwerk

Kapitel 13: RAID-Controller-Batterien

Kapitel 14: Physische Festplatten oder physische Geräte
Kapitel 15: Virtuelle Festplatten

Erwägungen vor der Erstellung von virtuellen Festplatten... 122
Erwägungen zur virtuellen Festplatte für die Controller .. 123
Erwägungen für Hotspares auf S100- und S300-Controllern ... 124
Erwägungen zur virtuellen Festplatte auf Systemen, die Linux ausführen ... 124
Anzahl physischer Festplatten pro virtueller Festplatte ... 125
Anzahl von virtuellen Festplatten pro Controller .. 125
Berechnung der maximalen Größe virtueller Festplatten .. 125
Kanal-redundante virtuelle Festplatten .. 125
Erstellung einer virtuellen Festplatte ... 126
Virtuelle Festplatten neu konfigurieren/migrieren .. 126
Start- und Ziel-RAID-Stufen für die Neukonfiguration der virtuellen Festplatte und die Kapazitätserweiterung 126
Integrität der redundanten virtuellen Festplatten erhalten .. 128
Redundante Informationen neu erstellen .. 128
Verwaltung von ungültigen Blocks einer virtuellen Festplatte ... 128
Eigenschaften und Tasks der virtuellen Festplatte ... 130
Virtuelle Festplatte – Verfügbare Tasks ... 132
Eine virtuelle Festplatte neukonfigurieren .. 133
Formatieren, Initialisieren, Langsam und Schnell initialisieren ... 133
Hintergrundinitialisierung abbrechen .. 133
Tote Segmente wiederherstellen .. 133
Daten auf den virtuellen Laufwerken löschen .. 133
Durchführung einer Übereinstimmungüberprüfung .. 133
Übereinstimmungüberprüfung abbrechen .. 134
Übereinstimmungsüberprüfung anhalten.................................134
Wiederaufnahme einer Übereinstimmungsüberprüfung..........................134
Blinken und Blinken beenden einer virtuellen Festplatte..........................134
Eine virtuelle Festplatte umbenennen..134
Neuerstellung abbrechen...134
Ändern der Regel für die virtuelle Festplatte..134
Eine Mitgliedfestplatte ersetzen..135
Ungültige Blöcke der virtuellen Festplatte löschen.................................135
Eine virtuelle Festplatte verschlüsseln..135
Schnellassistent zur Erstellung von virtuellen Festplatten........................135
Schnellassistent zur Erstellung von virtuellen Festplatten (Schritt 2)........136
Erweiterter Assistent zur Erstellung von virtuellen Laufwerken erstellen...137
Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 2)...139
Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 3)...140
Bereichsbearbeitung..142
Eine virtuelle Festplatte neu konfigurieren (Schritt 1 von 3).........................142
„Neu konfigurieren“ in Storage Management ausfindig machen..................142
Task der virtuellen Festplatte: Neu konfigurieren (Schritt 2 von 3)................143
Eine virtuelle Festplatte erneut konfigurieren: Kapazität der virtuellen Festplatte erweitern (Schritt 2 von 3)........144
Task der virtuellen Festplatte: Neu konfigurieren (Schritt 3 von 3)................144
Langsam und Schnell initialisieren..144
Erwägungen für das langsame Initialisieren..145
Festplatte formatieren oder initialisieren...145
Den Task der virtuellen Festplatte in Storage Management ausfindig machen...145
Löschen eines virtuellen Laufwerks...146
Eine virtuelle Festplatte löschen..146
„Löschen“ in Storage Management ausfindig machen..............................146
Eine virtuelle Festplatte umbenennen...146
Eine virtuelle Festplatte umbenennen...146
„Umbenennen“ im Storage Management ausfindig machen......................147
Regeländerungen einer virtuellen Festplatte..147
Ändern der Lese-, Schreib- oder Festplatten-Cache-Regeln für eine virtuelle Festplatte..147
„Regel ändern“ in Storage Management ausfindig machen......................147
Split Mirror..147
Einen Mirror teilen...147
„Split Mirror“ in Storage Management ausfindig machen........................147
Spiegelung beenden...148
Spiegelung beenden...148
„Nicht-Spiegeln“ in Storage Management ausfindig machen.....................148
Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen........148
Einen dedizierten Hotspare zuweisen...148
Die Zuweisung eines dedizierten Hotspare rückgängig machen..............149
„Dedizierten Hotspare zuweisen oder Zuweisung für dedizierten Hotspare rückgängig machen“ in Storage Management ausfindig machen...149
Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 1 von 2)..149
Eine Mitgliedsfestplatte ersetzen (Schritt 1 von 2).......................................149
„Mitgliedsfestplatte ersetzen“ in Storage Management finden..........................150
Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 2 von 2)..150

Kapitel 16: Physische und virtuelle Festplatten von einem System auf ein anderes umsetzen..........151
Kapitel 17: Virtuelle Festplatte mit einem Hotspare schützen ... 152
 Hotspare-Informationen .. 152
 Einstellen der Hotspare-Schutzregel ... 152
 Dedizierte Hotspare-Schutzregel ... 152
 Globale Hotspare-Schutzregel .. 153
 Überlegungen zu Hotspare-Schutzregeln ... 153
 Überlegungen zur Gehäuseaffinität ... 153

Kapitel 18: Fehlerbehebung ... 154
 Allgemeine Fehlerbehebungsverfahren ... 154
 Richtig angeschlossene Kabel .. 154
 Systemanforderungen ... 154
 Treiber und Firmware ... 154
 Hardwareprobleme isolieren .. 155
 Eine fehlerhafte Festplatte ersetzen .. 155
 Online-Befehl der physischen Festplatten auf ausgewählten Controllern verwenden 156
 Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte .. 156
 Lösen von Problemen beim Microsoft Windows-Upgrade .. 156

 Fehlerbehebung an der virtuellen Festplatte ... 157
 Eine Neuerstellung funktioniert nicht .. 157
 Eine Neuerstellung wird mit Fehlern abgeschlossen .. 157
 Virtuelle Festplatte kann nicht erstellt werden .. 158
 Eine virtuelle Festplatte der minimalen Größe ist für Windows Festplattenverwaltung nicht sichtbar 158
 Fehler der virtuellen Festplatte auf Systemen, die Linux ausführen .. 158
 Probleme, die dem Verwenden der gleichen physischen Festplatten sowohl für redundante als auch für nicht-redundante virtuelle Festplatten zugeordnet sind ... 158

 Spezifische Problèmesituationen und Lösungen .. 158
 Physische Festplatte befindet sich im Offline-Zustand oder zeigt einen Fehlerstatus an 159
 Empfang der Warnung **Beschädigter Block** mit dem Fehler **Ersetzen, Feststellen oder Medium** 159
 Warnungen 2146 bis 2150 während einer Neuerstellung oder während eine virtuelle Festplatte herabgesetzt ist erhalten .. 159
 Warnungen 2146 bis 2150 während einer E/A-Konsistenzüberprüfung, Formatieren oder anderen Arbeitsgängen erhalten ... 160
 Probleme bei Lese- und Schreibvorgängen ... 160
 Eine Task-Menüoption wird nicht angezeigt .. 160
 Die Meldung „Festplatte oder Laufwerk beschädigt“ empfiehlt, während eines Neustarts eine automatische Überprüfung durchzuführen ... 160
 Falsche Status- und Fehlermeldungen nach einem Windows-Ruhezustand .. 160
 Möglichkeit einer Verzögerung beim Storage Management vor dem Aktualisieren des Temperatursondenstatus ... 160
 Storage Management kann die Anzeige von Speichergeräten nach einem Neustart verzögern 161
 Es kann keine Anmeldung an ein Remote-System durchgeführt werden .. 161
 Kann nicht mit dem Remote-System verbinden, das auf dem Microsoft Windows Server 2003 ausgeführt wird .. 161
 Neukonfigurieren einer virtuellen Festplatte führt zu einer Fehleranzeige in Mozilla-Browser 161
Kapitel 21: Bestimmen des Funktionszustands für Speicherkomponenten

Funktionszustands-Rollup: Batterie wird geladen oder ist leer..191
Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte sind fehlerhaft oder wurden entfernt..192
Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte werden nicht unterstützt, oder sie wurden teilweise bzw. permanent herabgesetzt...192
Funktionszustands-Rollup: Alle physischen Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand..192
Funktionszustands-Rollup: Einige physische Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand..193
Funktionszustands-Rollup: Virtuelle Festplatte wurde herabgesetzt; physische Festplatten sind fehlerhaft oder werden neu erstellt..193
Funktionszustands-Rollup: Virtuelle Festplatte ist fehlerhaft..193
Funktionszustands-Rollup: Nicht unterstützte Firmware-Version...194
Funktionszustand-Rollup: Gehäusenetzteil fehlerhaft oder Stromverbindung abgetrennt.................................194
Funktionszustands-Rollup: Eines der Gehäuse-EMM ist fehlerhaft...194

Funktionen auf den PERC Hardware-Controllern..165
Controller-Tasks, unterstützt auf den PERC Hardware-Controllern..166
Batterie-Tasks, unterstützt von den PERC Hardware-Controllern..169
Konnektor-Tasks, unterstützt von den PERC Hardware-Controllern...170
Tasks der physischen Festplatte, unterstützt von den PERC Hardware-Controllern..171
Tasks der virtuellen Festplatte, unterstützt von den PERC Hardware-Controllern..174
Technische Daten der virtuellen Laufwerke für die PERC Hardware-Controller..177
RAID-Stufen, die von den PERC Hardware-Controllern unterstützt werden..183
Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern..183
Unterstützte Funktionen auf den PERC Software RAID-Controlern..185
Controller-Tasks, unterstützt auf den PERC Software RAID-Controller..185
Tasks der physischen Festplatte, unterstützt von den PERC Software RAID-Controller......................................185
Tasks der virtuellen Festplatte, unterstützt von den PERC Software RAID-Controller......................................186
Technische Daten der virtuellen Festplatte für Software RAID-Controller..187
RAID-Stufen, die auf den PERC Software RAID-Controlern unterstützt werden..189
Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Software RAID-Controller................................189
Auf den PERC Software RAID-Controlern unterstützte Gehäuse..190

Kapitel 19: Häufig gestellte Fragen..163
Warum funktioniert eine Neuerstellung nicht?..163
Entfernung der falschen Festplatte verhindern...163
Wie kann ich eine physische Festplatte sicher entfernen oder ersetzen?..163
Was kann ich tun, wenn ich die falsche physische Festplatte entfernt habe?..164
Identifizieren der installierten Firmware-Version..164
Über welche Controller verfüge ich?..164
Welche RAID-Stufe ist für mich am besten?..164

Kapitel 20: Unterstützte Funktionen...165
Unterstützte Funktionen auf den PERC Hardware-Controllern...165
Controller-Tasks, unterstützt auf den PERC Hardware-Controllern..166
Batterie-Tasks, unterstützt von den PERC Hardware-Controllern..169
Konnektor-Tasks, unterstützt von den PERC Hardware-Controllern...170
Tasks der physischen Festplatte, unterstützt von den PERC Hardware-Controllern..171
Tasks der virtuellen Festplatte, unterstützt von den PERC Hardware-Controllern..174
Technische Daten der virtuellen Laufwerke für die PERC Hardware-Controller..177
RAID-Stufen, die von den PERC Hardware-Controllern unterstützt werden..183
Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern..183
Unterstützte Funktionen auf den PERC Software RAID-Controlern..185
Controller-Tasks, unterstützt auf den PERC Software RAID-Controller..185
Tasks der physischen Festplatte, unterstützt von den PERC Software RAID-Controller......................................185
Tasks der virtuellen Festplatte, unterstützt von den PERC Software RAID-Controller......................................186
Technische Daten der virtuellen Festplatte für Software RAID-Controller..187
RAID-Stufen, die auf den PERC Software RAID-Controlern unterstützt werden..189
Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Software RAID-Controller................................189
Auf den PERC Software RAID-Controlern unterstützte Gehäuse..190
Funktionszustands-Rollup: Beide Stromversorgungsanschlüsse zum Gehäuse wurden verloren..........................195
Funktionszustands-Rollup: Eine oder mehrere physische Festplatte(n) ist/sind fehlerhaft................................... 195
Funktionszustands-Rollup: Physische Festplatte wird neu erstellt...195

Anhang A: Identifizieren der Serie Ihrer Dell EMC PowerEdge-Server..196

Storage Management unterstützt SATA und SAS, aber nicht Fibre Channel.

Informationen zu Storage Management-Warnhinweisen finden Sie im Referenzhandbuch zu den Meldungen des Server Administrators unter dell.com/openmanagemanuals.

Themen:
- Was ist neu in dieser Version?
- Vor dem Installieren von Storage Management

Was ist neu in dieser Version?

Diese Version von Storage Management bietet die folgenden neuen Funktionen:

- Unterstützung der folgenden Betriebssysteme:
 - Red Hat Enterprise Linux 8.1.
 - Red Hat Enterprise Linux 7.7.
 - SUSE Linux Enterprise Server 15 SP1.
 - ESXi 6.5 U3.
 - ESXi 6.7 U3.
- Unterstützung für die PowerEdge Server-R7525.
- Unterstützung für neue BOSS-S1 Ereignisse (PDR221, PDR222, PDR223, PDR224) in Storage Management.
- EEMI-Meldungen wurden hinzugefügt, um die Teilenummer der fehlerhaften Komponente einzubeziehen.
- Unterstützung für Sanitize Cryptographic Erase für NVMe-Laufwerke auf Systemen, die auf Linux und ESXi Betriebssystem ausgeführt werden.

ANMERKUNG: Für die Liste der unterstützten Betriebssysteme und Server navigieren Sie unter dell.com/openmanagemanuals zu OpenManage-Software und rufen dann die erforderliche Version des Dokuments OpenManage Software-Support-Matrix auf.

Vor dem Installieren von Storage Management

Die folgenden Abschnitte enthalten Erwägungen für die Installation von Storage Management.

Versionsvoraussetzungen für Controller-Firmware und Treiber

Damit Storage Management ordnungsgemäß ausgeführt werden kann, muss die erforderliche Mindestversion der Firmware und Treiber auf dem Controller installiert sein. Die in den Versionshinweisen zu Server Administrator aufgelisteten Firmware und Treiber beziehen sich auf die minimale unterstützte Version für diese Controller. Spätere Versionen der Firmware und Treiber werden auch unterstützt. Für die aktuellsten Treiber- und Firmware-Anforderungen, kontaktieren Sie bitte Ihren Dienstanbieter.

ANMERKUNG: Um den neuesten storport-Treiber herunterzuladen, siehe „Microsoft Knowledge Base Artikel KB943545“ unter support.microsoft.com.
Wenn Sie Storage Management ohne die mindestens erforderliche Firmware und Treiber installieren, kann Storage Management die Controller möglicherweise nicht anzeigen oder andere Funktionen nicht ausführen. Storage Management erzeugt die Warnmeldungen 2131 und 2132, wenn es nicht unterstützte Firmware oder Treiber auf einem Controller erkennt.

Weitere Informationen zu Warnnachrichten finden Sie im Server Administrator Meldungen-Referenzhandbuch.

Unterstützte Controller

ANMERKUNG: Die in den Server Administrator Versionshinweisen gelisteten Firmware und Treiber beziehen sich auf die minimale unterstützte Version für diese Controller. Spätere Versionen der Firmware und Treiber werden auch unterstützt. Für die aktuellsten Treiber- und Firmware-Anforderungen, kontaktieren Sie bitte Ihren Dienstanbieter.

Diese Ausgabe von Storage Management unterstützt die folgenden Controller.

Unterstützte RAID-Controller

Das Storage Management unterstützt die folgenden RAID-Controller. Informationen zur Technologie, die von den unterstützten RAID-Controllern verwendet wird, finden Sie unter RAID Controller Technologie: SATA und SAS.

- PERC S100, PERC S110, PERC S130, PERC S300, PERC S40, PERC 150
- PERC H840-Adapter
- PERC H740P-Adapter, PERC H740P Mini Monolithic
- PERC FD33xD/FD33xS
- PERC H730P MX, PERC H745P MX
- PERC H745P Front, PERC H345 Front
- PERC H745 Adapter, PERC H345 Adapter

ANMERKUNG: Die Reihenfolge der im Storage Management angezeigten Controller unterscheidet sich möglicherweise von der Reihenfolge der in der Human Interface (HII) und PERC-Options-ROM angezeigten Controller. Die Reihenfolge der Controller führt zu keinerlei Einschränkungen.

Unterstützte Nicht-RAID-Controller

Storage Management unterstützt die folgenden Nicht-RAID-Controller:

- SAS 12 Gbit/s-HBA
- HBA 330
- HBA 330 MX
- HBA 330 MMZ
- HBA 345-Adapter
- HBA 345 Front

ANMERKUNG: Wenn eine Rückwandplatine ohne einen Expander (passive Rückwandplatine) an einen HBA 330 Controller angeschlossen wurde, ist die Aufzählung der physischen Festplatten zwischen Anschluss 0 und Anschluss 1 aufgeteilt. Beispiel: Wenn die passive Rückwandplatine mit maximal acht physischen Festplatten bestückt ist, werden die ersten vier physischen Festplatten unter Anschluss 0 und die übrigen vier physischen Festplatten unter Anschluss 1 aufgelistet. Sie können nur dann alle acht physischen Festplatten anzeigen, wenn beide Schächte angeschlossen sind. Wenn ein Schacht angeschlossen ist, werden nur die physischen Festplatten für diesen Schacht angezeigt.

ANMERKUNG: Bei 12 Gbit/s-SAS-HBA- und HBA 330-Controllern können unter Verfügbare Reports der Steckplatzbelegungsreport und der Firmware-Version-Report für physische Festplatte angezeigt werden.

ANMERKUNG: Ein logischer Anschluss wird unter den PERC 10.x- und HBA 330-Controllern angezeigt und alle physischen Laufwerke werden unter diesem logischen Anschluss erkannt.

Unterstützung für Festplatten- und Datenträgerverwaltung

Storage Management bietet keine Festplatten- und Datenträgerverwaltung. Um Festplatten- und Datenträgerverwaltung zu implementieren, müssen die nativen Festplatten- und Datenträgerverwaltungs-Dienstprogramme verwendet werden, die von Ihrem Betriebssystem bereitgestellt werden.
Erste Schritte

Server Administrator Storage Management wurde für Systemadministratoren konzipiert, die Hardware-RAID-Lösungen implementieren und mit Speicherumgebungen von Groß- und Kleinunternehmen vertraut sind.

ANMERKUNG: Storage Management meldet den Zustand von Festplatten und anderen Speicherkomponenten aus Sicht des Controllers.

Themen:
- Starten von Storage Management
- Benutzerberechtigungen
- Verwenden der graphischen Benutzeroberfläche
- Verwenden der Befehlszeilenoberfläche in Storage Management
- Aufrufen der Online-Hilfe
- Häufig verwendete Speichertasks

Starten von Storage Management

Auf Systemen, die Microsoft Windows ausführen

Um eine Server Administrator-Sitzung auf einem lokalen System mit Microsoft Windows-Betriebssystem zu starten, klicken Sie auf das **Server Administrator** Symbol auf Ihrem Desktop und melden Sie sich unter Verwendung eines Kontos mit Administratorrechten an.

ANMERKUNG: Es sind administrative Berechtigungen für Konfigurationszwecke erforderlich.

Auf einem System, auf dem Linux und ein Remote-System ausgeführt wird

Um eine Server Administrator-Sitzung mit Linux- oder einem Remote-System zu starten, klicken Sie auf das **Server Administrator**-Symbol auf Ihrem Desktop und melden Sie sich unter Verwendung eines Kontos mit Administratorrechten an.
Oder öffnen Sie einen Web-Browser, geben Sie im Adressfeld Folgendes ein und drücken Sie die <Eingabe>-Taste:

https://<localhost>:1311

wobei <localhost> der zugeordnete Name für Managed System und 1311 der Standardanschluss ist.
oder
https://<IP address>:1311

wobei <IP-Adresse> die IP-Adresse von Managed System und 1311 der Standardanschluss ist.

ANMERKUNG: Geben Sie https:// (nicht http://) in das Adressfeld ein, um eine gültige Antwort im Browser zu erhalten.

Benutzerberechtigungen

Server Administrator bietet Sicherheit durch den Einsatz der Benutzergruppen Benutzer, Hauptbenutzer und Administrator. Die einzelnen Benutzergruppen verfügen über unterschiedliche Zugriffsrechte auf die Funktionen in Server Administrator.

Um auf alle Funktionen in Storage Management zugreifen zu können, sind die Administratorberechtigungen erforderlich. Mit der Administratorberechtigung können Sie die Tasks in Drop-Down-Menüs ausführen, Assistenten starten und die Befehle der omconfig storage-Befehlszeilenoberfläche verwenden. Ohne Administratorrechte können Sie die Speicherkomponenten nicht verwalten und konfigurieren.

Mit Benutzer- und Hauptbenutzerberechtigungen können Sie den Speicherstatus anzeigen, aber Speicher nicht verwalten oder konfigurieren. Mit Benutzer- und Hauptbenutzerberechtigungen können Sie den omreport Speicher befehl verwenden und nicht den omconfig Speicher befehl.

Verwenden der graphischen Benutzeroberfläche

In den folgenden Abschnitten wird beschrieben, wie Sie auf die Funktionen von Storage Management über die graphische Benutzeroberfläche von Server Administrator zugreifen können.

Das Objekt Speicher

In der Strukturansicht von Server Administrator wird das Objekt Speicher angezeigt. Zugriff auf die Funktionen in Storage Management erfolgt durch Auswahl des Objekts Speicher oder durch Erweitern des Objekts Speicher und Auswahl eines untergeordneten Objekts.

Funktionszustand

Klicken Sie auf der Seite Eigenschaften auf Funktionszustand, um Statusinformationen für die Speicherkomponenten anzuzeigen.

Informationen oder Konfiguration

Klicken Sie auf der Seite Eigenschaften auf Informationen/Konfiguration, um die Informationen zu den Eigenschaften eines Speicheroobjekts anzuzeigen. Im Unterregister Informationen/Konfiguration finden Sie Optionen zum Ausführen von Speicher-Tasks und zum Starten von Assistenten.

Verwenden der Befehlszeilenoberfläche in Storage Management

Aufrufen der Online-Hilfe

Storage Management verfügt über eine ausführliche Online-Hilfe. Die Hilfe kann über die graphische Benutzeroberfläche von Server Administrator aufgerufen werden, sobald das Objekt Speicher oder ein untergeordnetes Objekt in der Strukturansicht ausgewählt ist. Die Online-Hilfe ist folgendermaßen verfügbar:

- Inhaltsverzeichnis – Das Inhaltsverzeichnis ist auf der Seite verfügbar, auf der die Informationen angezeigt werden, wenn Sie auf die kontext sensible Hilfe zugreifen.

Häufig verwendete Speichertasks

In diesem Abschnitt finden Sie Informationen über häufig verwendete Speicher-Tasks:

- Virtuelle Festplatten erstellen und konfigurieren (RAID-Konfiguration). Für weitere Informationen, siehe:
 - Virtuelle Laufwerke – Dieses Thema liefert ausführliche Informationen bezüglich der virtuellen Festplattenverwaltung. Hierzu gehören Controller-spezifische Hinweise, die sich auf die Erstellung und Verwaltung virtueller Festplatten auswirken.
- Der virtuellen Festplatte ein Hotspare zuweisen – Wenn eine virtuelle Festplatte eine redundante RAID-Stufe verwendet, können Sie dann ein Hotspare zuweisen (physische Festplatte zur Sicherung), um Dateien neu zu erstellen, wenn eine physische Festplatte in der virtuellen Festplatte fehlschlägt.
 - Schützen Ihrer virtuellen Festplatte mit einem Hotspare – Dieses Thema bietet Informationen zu Hotspares und beinhaltet Controller-spezifische Informationen.
- Eine Übereinstimmungsüberprüfung ausführen – Der Task Integrität der redundanten virtuellen Festplatten aufrechterhalten überprüft die Korrektheit der redundanten Daten einer virtuellen Festplatte.
- Eine virtuelle Festplatte neu konfigurieren – Um die Kapazität einer virtuellen Festplatte zu erweitern, können Sie den virtuellen Festplatten physische Festplatten hinzufügen. Darüber hinaus können Sie die RAID-Stufen ändern. Weitere Informationen finden Sie unter Task der virtuellen Festplatte: Neu konfigurieren (Schritt 1 von 3).
Zum Verständnis von RAID-Konzepten

Themen:
- RAID
- Datenspeicher-Organisation zur erhöhten Verfügbarkeit und Leistung
- RAID-Stufen und -Verkettung auswählen
- RAID-Stufen- und -Verkettungsleistungsvergleich
- Kein-RAID

RAID

RAID ist eine Technologie zum Verwalten der Datenspeicherung auf physischen Festplatten, die sich im System befinden oder damit verbunden sind. Ein Hauptaspekt von RAID ist die Fähigkeit, mehrere physische Festplatten einzubeziehen, sodass die kombinierte Speicherkapazität mehrerer physischer Festplatten als ein einziger, erweiterter Festplattenspeicherplatz betrachtet werden kann. Ein anderer wichtiger Punkt bei RAID ist die Möglichkeit, redundante Daten zu erhalten, die dazu verwendet werden können, Daten im Falle eines Festplattenausfalls wiederherzustellen. RAID verwendet verschiedene Methoden, um Daten zu speichern und zu rekonstruieren, wie z. B. Striping, Datenspiegelung und Parität. Es gibt verschiedene RAID-Level, die verschiedene Methoden zur Speicherung und zum Rekonstruieren von Daten verwenden. Die RAID-Level besitzen verschiedene Eigenschaften in Bezug auf Lese-/Schreib-Leistung, Datensicherung und Speicherkapazität. Da nicht alle RAID-Level redundante Daten erhalten, können einige RAID-Level verlorene Daten nicht wiederherstellen. Das von Ihnen ausgewählte RAID-Level hängt davon ab, ob Ihre Priorität bei Leistung, Sicherung oder Speicherkapazität liegt.

Hardware- und Software-RAID

RAID-Konzepte

RAID verwendet bestimmte Methoden, um Daten auf Festplatten zu schreiben. Mit diesen Methoden kann RAID eine Datenredundanz oder verbesserte Leistung bereit stellen. Diese Methoden umfassen:

Stripe Grösse – Der gesamte Festplattenspeicherplatz, der von einem Stripe belegt wird, ohne eine Paritätsfestplatte einzuschließen. Beispiel: Ein Stripe hat 64 KB Festplattenspeicherplatz und 16 KB Daten auf jeder Festplatte im Stripe. In diesem Fall ist die Stripe-Größe 64 KB und die Stripe-Elementgröße ist 16 KB.

Stripe-Elementgröße – Die Menge des Festplattenspeicherplatzes, die von einem Stripe-Element benutzt wird. Beispiel: Ein Stripe hat 64 KB Festplattenspeicherplatz und 16 KB Daten auf jeder Festplatte im Stripe. In diesem Fall ist die Stripe-Elementgröße 16 KB und die Stripe-Größe ist 64 KB.

Parität – Parität bezieht sich auf redundante Daten, die unter Verwendung eines Algorithmus in Verbindung mit Striping erhalten werden. Wenn einer der gestripten Festplatten ausfällt, können die Daten von den Paritätsinformationen mit dem Algorithmus rekonstruiert werden.

Bereich – Ein Bereich ist eine RAID-Technik, mit der Speicherplatz von Gruppen physischer Festplatten in einer virtuellen RAID 10, 50, oder 60 Festplatte kombiniert wird.

RAID-Stufen

Jede RAID-Stufe verwendet eine Kombination von Datenspiegelung, Striping und Parität, um Datenredundanz oder eine verbesserte Lese- und Schreibleistung bereitzustellen. Details zu den einzelnen RAID-Stufen finden Sie unter RAID-Stufen und Verkettungen auswählen.

Datenspeicher-Organisation zur erhöhten Verfügbarkeit und Leistung

Wenn eine Verkettung oder RAID-Stufe ausgewählt wird, treffen die folgenden Leistungs- und Kostenerwägungen zu:

- Verfügbarkeit oder Fehlertoleranz – Verfügbarkeit oder Fehlertoleranz bezieht sich auf die Fähigkeit eines Systems, Vorgänge zu erhalten und Zugriff auf Daten anzugeben, selbst wenn eine seiner Komponente fehlerhaft ist. Auf RAID-Datenträgern wird Verfügbarkeit oder Fehlertoleranz durch die Erhaltung von redundanten Daten bereitgestellt. Redundante Daten umfassen Spiegel (vervielfältigte Daten) und Paritätsinformationen (Daten werden mit einem Algorithmus rekonstruiert).
- Kosteneffizienz – Das Erhalten der redundanten Daten oder Paritätsinformationen, die dem RAID-Volumen zugeordnet sind, erfordert zusätzlichen Festplattenspeicherplatz. Wenn die Daten temporär, leicht reproduzierbar oder nicht unbedingt notwendig sind, können die erhöhten Kosten der Datenredundanz eventuell nicht gerechtfertigt werden.
RAID-Stufen und -Verkettung auswählen

Die folgenden Themen enthalten spezifische Informationen zur Art und Weise wie jede RAID-Stufe oder -Verkettung Daten speichert, sowie auch deren spezifische Leistungs- und Schutzeigenschaften:

- Verkettung
- RAID-Stufe 0 (Striping)
- RAID-Stufe 1 (Datenspiegelung)
- RAID-Stufe 5 (Striping mit verteilter Parität)
- RAID-Stufe 6 (Striping mit zusätzlicher verteilter Parität)
- RAID-Stufe 50 (Striping über RAID 5-Sets)
- RAID-Stufe 60 (Striping über RAID 6-Sets)
- RAID-Stufe 10 (Striping über gespiegelte Sets)
- RAID-Stufen- und -Verkettungsleistungsvergleich
- Kein-RAID

Verkettung

In Storage Management bezieht sich Verkettung auf das Speichern von Daten entweder auf einer physischen Festplatte oder auf einem Festplattenspeicherplatz, der sich über mehrere physische Festplatten erstreckt. Bei der übergreifenden Speicherung auf mehreren Festplatten kann das Betriebssystem aufgrund der Verkettung mehrere physische Festplatten als eine einzige Festplatte anzeigen. Die auf einer einzigen Festplatte gespeicherten Daten können als ein einfacher Datenträger betrachtet werden. Diese Festplatte kann auch als eine virtuelle Festplatte bezeichnet werden, die nur eine einzige physische Festplatte beinhaltet.

Daten, die sich über mehr als eine physikalische Festplatte erstrecken, können als übergreifender Datenträger bezeichnet werden. Mehrere verkettete Festplatten können auch als eine virtuelle Festplatte bezeichnet werden, die mehr als eine physische Festplatte beinhaltet. Ein dynamischer Datenträger, der sich auf verschiedene Bereiche derselben Festplatte erstreckt, wird auch als verkettet bezeichnet.

Wenn eine physische Festplatte auf einem verketteten oder übergreifenden Datenträger versagt, steht der gesamte Datenträger nicht mehr zur Verfügung. Da die Daten nicht redundant sind, können sie nicht durch die Neuerstellung von einer gespiegelten Festplatte oder durch Paritätsinformationen wiederhergestellt werden. Die einzige Option ist die Wiederherstellung von einem Backup.

Da verkettete Datenträger keinen Speicherplatz zur Verwaltung redundanten Daten verwenden, sind diese kostengünstiger als Datenträger, die Spiegelung oder Paritätsinformationen verwenden. Ein verketteter Datenträger ist eventuell eine gute Wahl für temporäre oder leicht wiederherstellbare Daten, bzw. dann, wenn die Kosten der Datenredundanz nicht gerechtfertigt werden können. Ein verketteter Datenträger kann außerdem durch das Hinzufügen einer zusätzlichen physischen Festplatte problemlos erweitert werden.
Es werden keine redundanten Daten gespeichert. Wenn eine Festplatte fehlerhaft wird, fällt die große virtuelle Festplatte aus.

Keine Leistungssteigerung.

Keine Redundanz.

RAID-Level 0 – Striping

RAID 0 verwendet Daten-Striping, wobei Daten in gleich großen Segmenten auf alle physischen Festplatten geschrieben werden. RAID 0 bietet keine Datenredundanz.

RAID 0-Eigenschaften:
- Gruppiert n Festplatten als eine große virtuelle Festplatte mit einer Kapazität von (kleinste Festplattendicke) *n Festplatten.
- Daten werden auf den Festplatten abwechselnd gespeichert.
- Es werden keine redundanten Daten gespeichert. Wenn eine Festplatte fehlerhaft wird, fällt die große virtuelle Festplatte aus – ohne eine Möglichkeit zur Neuerstellung der Daten
- Bessere Lese- und Schreibleistung.

RAID-Level 1 – Datenspiegelung

RAID 1 stellt die einfachste Art und Weise dar, redundante Daten zu erhalten. Mit RAID 1 werden Daten auf eine oder mehrere physische Festplatten gespiegelt oder dupliziert. Wenn eine physische Festplatte ausfällt, können die Daten unter Verwendung der Daten der anderen Seite der Spiegelung neu erstellt werden.
RAID 1-Eigenschaften:
- Die Daten werden auf den beiden Festplatten repliziert.
- Wenn eine Festplatte ausfällt, kann die virtuelle Festplatte weiterhin betrieben werden. Die Daten werden von der Spiegelung der ausgefallenen Festplatte gelesen.
- Bessere Leseleistung, aber etwas langsamere Schreibleistung.
- Redundanz zum Schutz der Daten.
- RAID 1 ist in Bezug auf Festplattenspeicherplatz teurer, da die doppelte Anzahl von Festplatten verwendet wird, die zum Speichern der Daten ohne Redundanz erforderlich wären.

RAID-Level 5 – Striping mit verteilter Parität

RAID 5 bietet Datenredundanz, indem Daten-Striping zusammen mit Paritätsinformationen verwendet wird. Anstatt eine physische Festplatte für Parität zu bestimmen, werden die Paritätsinformationen über alle physischen Festplatten in der Festplattengruppe gestriped.

RAID 5-Eigenschaften:
Gruppiert n Festplatten als eine große virtuelle Festplatte mit einer Kapazität von $(n-1)$ Festplatten.

- Redundante Informationen (Parität) werden abwechselnd auf allen Festplatten gespeichert.
- Wenn eine Festplatte fehlerhaft wird, funktioniert die virtuelle Festplatte weiterhin, wird aber mit geringerer Leistung ausgeführt. Die Daten werden von den verbleibenden Festplatten rekonstruiert.
- Bessere Leseleistung, aber langsamere Schreibleistung.
- Redundanz zum Schutz der Daten.

RAID-Level 6 – Striping mit zusätzlicher verteilter Parität

RAID 6-Eigenschaften:

- Gruppiert n Festplatten als eine große virtuelle Festplatte mit einer Kapazität von $(n-2)$ Festplatten.
- Redundante Informationen (Parität) werden abwechselnd auf allen Festplatten gespeichert.
- Die virtuelle Festplatte bleibt auch bei zwei Festplattenausfällen noch betriebsfähig. Die Daten werden von den verbleibenden Festplatten rekonstruiert.
- Bessere Leseleistung, aber langsamere Schreibleistung.
- Erhöhte Redundanz zum Schutz der Daten.
- Für Parität sind zwei Festplatten pro Bereich erforderlich. RAID 6 ist in Bezug auf Festplattenspeicherplatz teurer.

RAID-Level 50 – Striping über RAID 5-Sets

Bei RAID 50 erfolgt das Striping über mehr als einen Bereich physischer Festplatten. Eine RAID 5-Festplattengruppe, die mit drei physischen Festplatten implementiert ist und dann mit einer Festplattengruppe von drei weiteren physischen Festplatten fortfährt, wäre beispielsweise RAID 50.

Es ist möglich, RAID 50 zu implementieren, auch wenn die Hardware dies nicht direkt unterstützt. In diesem Fall würden Sie mehr als eine virtuelle RAID 5-Festplatte implementieren und die RAID 5-Festplatten dann in dynamische Festplatten umwandeln. Sie können dann ein dynamisches Volume erstellen, das sich über alle virtuellen RAID 5-Festplatten erstreckt.
RAID 50-Eigenschaften:

- Gruppiert $n \times s$ Festplatten als eine große virtuelle Festplatte mit einer Kapazität von $s \times (n-1)$ Festplatten, wobei s die Anzahl von Bereichen und n die Anzahl von Festplatten innerhalb jeden Bereiches darstellt.
- Redundante Informationen (Parität) werden abwechselnd auf allen Festplatten jedes RAID 5-Bereiches gespeichert.
- Bessere Leseleistung, aber langsamere Schreibleistung.
- Erfordert die gleiche Menge an Paritätsinformationen wie RAID 5.
- Daten werden über alle Bereiche gestriped. RAID 50 ist in Bezug auf Festplattenspeicherplatz teurer.

RAID-Level 60 – Striping über RAID 6-Sets

Bei RAID 60 erfolgt das Striping über mehrere Gruppen physischer Festplatten, die als RAID 6 konfiguriert sind. Eine RAID 6-Festplattengruppe, die mit vier physischen Festplatten implementiert ist und dann mit einer Festplattengruppe von vier weiteren physischen Festplatten fortfährt, wäre beispielsweise RAID 60.
RAID 60-Eigenschaften:

- Gruppiert n*s Festplatten als eine große virtuelle Festplatte mit einer Kapazität von s*(n-2) Festplatten, wobei s die Anzahl von Bereichen und n die Anzahl von Festplatten innerhalb jeden Bereiches darstellt.
- Redundante Informationen (Parität) werden abwechselnd auf allen Festplatten jedes RAID 6-Bereiches gespeichert.
- Bessere Leseleistung, aber langsamere Schreibleistung.
- Erhöhte Redundanz bietet höhere Datensicherung als ein RAID 50.
- Erfordert verhältnismäßig die gleiche Menge an Paritätsinformationen wie RAID 6.
- Für Parität sind zwei Festplatten pro Bereich erforderlich. RAID 60 ist in Bezug auf Festplattenspeicherplatz teurer.

RAID-Level 10 – Striped-Mirrors

Für RAB ist RAID-Level 10 eine Implementierung von RAID-Level 1. RAID 10 kombiniert gespiegelte physische Festplatten (RAID 1) und Daten-Striping (RAID 0). Mit RAID 10 werden Daten über mehrere physische Festplatten gestriped. Die gestripte Festplattengruppe wird dann auf einen anderen Satz physischer Festplatten gespiegelt. RAID 10 kann als ein Spiegel von Stripes betrachtet werden.
RAID 10-Eigenschaften:

- Gruppiert n Festplatten als eine große virtuelle Festplatte mit einer Kapazität von \((n/2)\) Festplatten, wobei \(n\) für eine gerade Ganzzahl steht.
- Gespiegelte Daten werden über Sätze physischer Festplatten gestriped. Dieses Level bietet Redundanz durch Datenspiegelung.
- Wenn eine Festplatte ausfällt, kann die virtuelle Festplatte weiterhin betrieben werden. Die Daten werden von der verbleibenden gespiegelten Festplatte gelesen.
- Verbesserte Lese- und Schreibleistung.
- Redundanz zum Schutz der Daten.

RAID-Stufe 1-Verkettet (Verketteter Spiegel)

Bei RAID 1-Verkettet handelt es sich um eine RAID 1-Festplattengruppe, die sich über mehr als ein einzelnes Paar von physischen Festplatten erstreckt. Somit werden die Vorteile von Verkettung mit der Redundanz von RAID 1 kombiniert. Bei diesem RAID-Typ wird kein Striping durchgeführt.

ANMERKUNG: Es kann keine virtuelle RAID 1-Verkettet-Festplatte erstellt oder eine Neukonfiguration auf RAID 1-Verkettet mit Storage Management durchgeführt werden. Eine virtuelle RAID 1-Verkettet-Festplatte kann nur anhand von Storage Management überwacht werden.
RAID-Stufen- und -Verkettungsleistungsvergleich

In der folgenden Tabelle werden die Leistungseigenschaften der am häufigsten verwendeten RAID-Stufen verglichen. Diese Tabelle bietet allgemeine Richtlinien zur Auswahl einer RAID-Stufe. Schätzen Sie Ihre spezifischen Umgebungsanforderungen ab, bevor Sie eine RAID-Stufe wählen.

ANMERKUNG: Die folgende Tabelle zeigt nicht alle von Storage Management unterstützten RAID-Stufen auf. Für Informationen zu allen von Storage Management unterstützten RAID-Stufen, siehe RAID-Stufen und Verkettungen auswählen.

Tabelle 1. RAID-Stufen- und -Verkettungsleistungsvergleich

<table>
<thead>
<tr>
<th>RAID-Stufe</th>
<th>Datenverfügbarkeit</th>
<th>Leseleistung</th>
<th>Schreibleistung</th>
<th>Neuerstellungslistung</th>
<th>Mindestanzahl von erforderlichen Festplatten</th>
<th>Vorschläge zur Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkettung</td>
<td>Keine Steigerung</td>
<td>Keine Steigerung</td>
<td>Keine Steigerung</td>
<td>k. A.</td>
<td>1 oder 2, abhängig vom Controller</td>
<td>Kosteneffektiver als redundante RAID-Stufen. Für nicht-kritische Daten verwenden.</td>
</tr>
<tr>
<td>RAID 0</td>
<td>Keine</td>
<td>Sehr gut</td>
<td>Sehr gut</td>
<td>k. A.</td>
<td>N</td>
<td>Nicht-kritische Daten</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Ausgezeichnet</td>
<td>Sehr gut</td>
<td>Gut</td>
<td>Gut</td>
<td>(N = 1)</td>
<td>Kleine Datenbanken, Datenbank-Protokolle und kritische Informationen</td>
</tr>
<tr>
<td>RAID 10</td>
<td>Ausgezeichnet</td>
<td>Sehr gut</td>
<td>Mittelmäßig</td>
<td>Gut</td>
<td>2N x X</td>
<td>Daten-intensive Umgebungen (große Datensätze)</td>
</tr>
</tbody>
</table>

Zum Verständnis von RAID-Konzepten 27
Tabelle 1. RAID-Stufen- und -Verkettungsleistungsvergleich (fortgesetzt)

<table>
<thead>
<tr>
<th>RAID-Stufe</th>
<th>Datenverfügbarkeit</th>
<th>Leseleistung</th>
<th>Schreibleistung</th>
<th>Neuerstellungsl.</th>
<th>Mindestanzahl von erforderlichen Festplatten</th>
<th>Vorschläge zur Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 50</td>
<td>Gut</td>
<td>Sehr gut</td>
<td>Mittelmäßig</td>
<td>Mittelmäßig</td>
<td>N + 2 (N = wenigstens 4)</td>
<td>Mittelgroße direkte oder Daten-intensive Verwendungen</td>
</tr>
<tr>
<td>RAID 60</td>
<td>Ausgezeichnet</td>
<td>Sehr gut</td>
<td>Mittelmäßig</td>
<td>Schlecht</td>
<td>N + 2 (N = wenigstens 2)</td>
<td>Kritische Informationen. Mittelgroße transaktionale oder datenintensive Verwendungen</td>
</tr>
</tbody>
</table>

Kein-RAID

_N = Anzahl physischer Festplatten
X = Anzahl von RAID-Sets
Schneller Zugriff auf Speicherstatus und Tasks

In diesem Abschnitt werden zum einen verschiedene Methoden zum Bestimmen des Status oder des Funktionszustands der Speicherkomponenten Ihres Systems beschrieben und zum anderen, wie die verfügbaren Controller-Tasks schnell gestartet werden können.

Themen:

- Speichermedienfunktionszustand
- Hotspare-Schutzregel
- Speicherkomponentenschweregrad
- Speichermedeneigenschaften und aktuelle Aktivität
- Warnungen oder Ereignisse
- Festplattenverlässlichkeit auf RAID-Controllern überwachen
- Warnungen verwenden, um Fehler festzustellen
- Zeitverzögerung beim Anzeigen von Konfigurationsänderungen

Speichermedienfunktionszustand

Die [Speicherinstrumententafel](#) zeigt den kombinierten Status für alle Controller und Speicherkomponenten niederer Stufe an. Wenn der Funktionszustand des Speichersystems z. B. auf Grund eines herabgesetzten Gehäuses gefährdet wurde, zeigt sowohl das Unterregister Gehäusefunktionszustand als auch der Controller-Schweregrad auf der [Speicherinstrumententafel](#) ein gelbes Ausrufezeichen an, um auf einen Warnungsschweregrad hinzuweisen. Wenn ein Controller auf der [Speicherinstrumententafel](#) den Status Warnung oder Kritisch anzeigt, führen Sie die folgenden Maßnahmen aus, um die Ursache des Status Warnung oder Kritisch zu ermitteln:

- Klicken Sie auf [Warnungsprotokoll überprüfen](#), um das Link Warnungsprotokoll anzuzeigen. Untersuchen Sie das Warnungsprotokoll auf Warnungen, die sich auf den Status des Controllers und seiner Komponenten niederer Stufe beziehen. Der Link Warnungsprotokoll überprüfen wird nur dann angezeigt, wenn der Controller einen Status des Typs Warnung oder Kritisch anzeigt.
- Wählen Sie den Controller aus, und ermitteln Sie den Status der Komponenten niederer Stufe. Für weitere Informationen, siehe [Speicherkomponentenschweregrad](#).
- Klicken Sie auf die virtuelle Festplatte, die sich im herabgesetzten Zustand befindet, um die Seite Eigenschaften der physischen Festplatte anzuzeigen.

[ANMERKUNG:] Der virtuelle Festplatten-Link wird nur angezeigt, wenn die physischen Festplatten, die Teil der virtuellen Festplatte sind, sich im Zustand Warnung oder Kritisch befinden.

Um weitere Informationen dazu zu erhalten, wie der Komponentenstatus der unteren Ebene im Status für den Controller als rolled up angezeigt wird, siehe Feststellen des Zustandes für Speicherkomponenten.

Hotspare-Schutzregel

Mit dem Task [Hotspare-Schutzregel einstellen](#) können Sie die Zahl der den virtuellen Festplatten zugeordneten Hotspares einstellen oder ändern.

Sobald Sie die Anzahl der zugewiesenen Hotspares eingestellt haben, löst jede Abweichung vom Schwellenwert der Schutzregel eine Warnung aus, und zwar auf Grundlage der von Ihnen eingestellten Schweregradstufe.
Speicherkomponentenschweregrad

Es könnte hilfreich sein, das Warnungsprotokoll auf Ereignisse zu überprüfen, die darauf hinweisen, warum eine Komponente einen Warnungs- oder Kritisch-Status besitzt.

Tabelle 2. Komponentenschweregrad

<table>
<thead>
<tr>
<th>Schweregrad</th>
<th>Komponentenstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/OK</td>
<td>Die Komponente funktioniert wie erwartet.</td>
</tr>
<tr>
<td>Kritisch/Fehlgeschlagen/Fehler/Unbehebbar</td>
<td>Die Komponente schlägt fehl oder ein Ausfall steht bevor. Die Komponente erfordert sofortige Beachtung und muss eventuell ersetzt werden. Es kann ein Datenverlust eingetreten sein.</td>
</tr>
</tbody>
</table>

Zugehörige Konzepte
Bestimmen des Funktionszustands für Speicherkomponenten auf Seite 191

Speichermedieneigenschaften und aktuelle Aktivität

Das Unterregister Informationen/Konfiguration zeigt Informationen bezüglich der Speicherkomponente an. Diese Eigenschaften schließen Details wie die Anzahl von Konnektoren (Kanäle oder Schnittstellen) auf einem Controller oder die Gehäuseverwaltungsmodul (EMM)-Firmwareversion ein.

Die Eigenschaften Zustand und Fortschritt zeigen die aktuelle Aktivität der Komponente an. Zum Beispiel zeigt eine physische Offline-Festplatte den Offline-Status an, während die Fortschritt-Eigenschaft anzeigt, wie nahe ein Betriebsvorgang (wie z. B. eine Neuerstellung) seinem Abschluss ist.

Die folgenden Abschnitte beschreiben die Eigenschaften für jede Komponente:

- Speicherinformationen und globale Tasks
- Batterieeigenschaften und -Tasks
- Konnektor-Eigenschaften und -Tasks
- Gehäuse- und Rückwandplatineneigenschaften und -Tasks
- Eigenschaften der physischen Festplatte oder des physischen Geräts
- Tasks der physischen Festplatte oder des physischen Geräts
- EMM-Eigenschaften
- Lüftereigenschaften
- Netzteil-eigenschaften
- Temperatursonden-Eigenschaften und -Tasks
- Eigenschaften und Tasks der virtuellen Festplatte

Warnungen oder Ereignisse

Festplattenverlässlichkeit auf RAID-Controllern überwachen

Storage Management unterstützt die Selbstüberwachungsanalyse- und Berichtstechnologie (SMART) auf physischen Festplatten, die SMART-aktiviert sind.

ANMERKUNG: Wenn E/A auf einem Controller angehalten wird, bekommen Sie keine SMART-Warnmeldungen.

Warnungen verwenden, um Fehler festzustellen

Einige Speicherkomponenten haben Warnungen, die, wenn aktiviert, Sie alarmieren, wenn eine Komponente fehlerhaft ist.

Zeitverzögerung beim Anzeigen von Konfigurationsänderungen

PCI Express-Support für Solid State-Geräte

Dieser Abschnitt gibt eine Übersicht des Storage Management-Geräteverwaltungssupports für Solid State-Geräte (Solid-State Drive, SSD) mit PCIe (PCI Express) und deren zugeordnete Geräte wie die Rückwandplatine und Extender-Karte.

In Storage Management wird PCIe SSD in der Strukturansicht unter „Storage“ angezeigt. Storage Management gibt die PCIe SSD-Geräte und ihre verschiedenen Eigenschaften an.

ANMERKUNG: Storage Management unterstützt keine RAID-Verwaltung oder -Konfiguration auf PCIe SSD-Subsystemen.

ANMERKUNG: Auf SUSE Linux Enterprise 15.0 wird die NVME-Protokollversion mit 0,0 berechnet.

ANMERKUNG: Intel P4800x NVMe wird mit dem SWRAID-Controller nicht unterstützt.

Themen:
- PCIe-SSD-Laufwerke
- PCIe SSD-Funktionen
- PCIe SSD SubSystem-Eigenschaften
- PCIe Extender-Karten
- Eigenschaften des physischen Geräts
- Physische Geräte-Tasks
- Tasks des PCIe SSDs in der Steckplatz-Karte
- Eigenschaften des PCIe SSDs in der Steckplatz-Karte
- Tasks des PCIe SSDs in der Steckplatz-Karte
- Exportieren des Protokolls für ein PCIe SSD in der Steckplatz-Karte
 - „Protokolldatei exportieren“ in Storage Management für NVMe-PCIe-SSDs ausfindig machen
 - Funktionszustand des PCIe SSD-Subsystems

PCIe-SSD-Laufwerke

PCIe SSD-Funktionen

Es folgen die Hauptfunktionen des PCIe SSD:
- Hotplug-Fähigkeit
- Hochleistungsgerät
- Support für 2,5-Zoll HDD-Formfaktor

PCIe-SSD SubSystem-Eigenschaften

Das PCIe SSD-Subsystem beinhaltet folgende Komponenten:
Tabelle 3. PCIe-SSD SubSystem-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Zeigt die Subsystem-ID an, die dem PCIe SSD-Subsystem durch das Storage Management zugewiesen wurde. Das Storage Management nummeriert die Controller und die ans System angebundenen PCIe SSD Subsysteme beginnend mit Null. Diese Nummer ist dieselbe wie die ID-Nummer des PCIe SSD-Subsystems, die durch den Befehl <code>omreport</code> gemeldet wird. Weitere Informationen zur Befehlszeilenschnittstelle finden Sie im Server Administrator Benutzerhandbuch zur Befehlszeilenschnittstelle. ANMERKUNG: In CLI-Befehlen wird die ID des PCIe SSD-Subsystems als die Controller-ID angezeigt.</td>
</tr>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand des PCIe SSD-Subsystems dar.</td>
</tr>
<tr>
<td>ANMERKUNG:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des Subsystems an.</td>
</tr>
<tr>
<td>Steckplatzkennung</td>
<td>Zeigt den Steckplatz an, in dem das PCIe SSD-Subsystem angeschlossen ist. ANMERKUNG: Wenn Nicht zutreffend angezeigt wird, können Sie die Steckplatzkennung identifizieren, indem Sie das Objekt System > Haupt > Systemgehäuse > Steckplätze in der Strukturansicht auswählen und auf die Registerkarte Informationen klicken. Die Eigenschaft Steckplatzkennung in diesem Register zeigt möglicherweise die korrekten Informationen an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den Status des Subsystems an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Bereit – Das Subsystem funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>● Herabgesetzt – Das Subsystem hat einen Fehler gefunden und läuft in herabgesetztem Zustand.</td>
</tr>
<tr>
<td></td>
<td>● Ausgefallen – Das Subsystem hat einen Fehler gefunden und funktioniert nicht mehr.</td>
</tr>
<tr>
<td>Verfügbare Reports</td>
<td>Ermöglicht Ihnen die Anzeige des Steckplatzbelegungsreports. Für weitere Informationen, siehe Verfügbare Reports.</td>
</tr>
</tbody>
</table>

PCIe Extender-Karten

Die PCIe Extender-Karte ist an die Rückwandplatine des Systems angeschlossen und stellt PCIe-Konnektivität für bis zu vier PCIe SSD-Geräte vorne am Gehäuse bereit.
Anmerkung: Die PCIe Extender-Karte hat keine Eigenschaften oder Tasks.

Tabelle 4. PCIe-Erweiterungskarte

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Zeigt die ID an, die der PCIe-Extender-Karte durch Storage Management zugewiesen wurde.</td>
</tr>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der PCIe-Extender-Karte dar.</td>
</tr>
<tr>
<td></td>
<td>✓ – Normal/OK</td>
</tr>
<tr>
<td></td>
<td>⚠ – Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>🚨 – Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen der Extender-Karte an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den aktuellen Status der Extender-Karte an. Mögliche Werte sind:</td>
</tr>
<tr>
<td></td>
<td>Bereit – Die Extender-Karte funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>Ausgefallen – Die Extender-Karte hat einen Fehler gefunden und funktioniert nicht mehr.</td>
</tr>
</tbody>
</table>

Eigenschaften des physischen Geräts

Die folgende Tabelle führt die Eigenschaften des physischen Geräts für PCIe SSD auf.

Tabelle 5. Eigenschaften des physischen Geräts

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Zeigt den Namen des PCIe SSD an. Der Name setzt sich aus der Schacht kennung und dem Einschub zusammen, in dem das PCIe SSD installiert ist.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den Funktionszustand des PCIe SSD an.</td>
</tr>
<tr>
<td>Busprotokoll</td>
<td>Zeigt die Technologie an, die das PCIe SSD verwendet.</td>
</tr>
<tr>
<td>Geräteprotokoll</td>
<td>Zeigt das Geräteprotokoll des physischen Geräts an, z. B. Non-Volatile Memory Express (NVMe).</td>
</tr>
<tr>
<td>Medien</td>
<td>Zeigt den Medientyp der physischen Festplatte an.</td>
</tr>
<tr>
<td>Lebensdauer-Status des Gerätes</td>
<td>Zeigt den Lebensdauer-Status des PCIe SSD an. Der Lebensdauer-Status des Gerätes wird durch die folgenden Attribute bestimmt:</td>
</tr>
<tr>
<td></td>
<td>Der Prozentsatz der genutzten Lebensdauer – Dieses Attribut ist durch die Zeit bestimmt, die vergangen ist, seitdem das Gerät gestartet wurde (bis zu drei Jahren), oder durch den Prozentsatz von Gesamthzahl der geschriebenen Bytes (TBW).</td>
</tr>
<tr>
<td></td>
<td>Schreibgeschützt-Fortschritt – Dieses Attribut wird durch die Herabsetzung der Zahl von verfügbaren Spare-Sektoren bestimmt.</td>
</tr>
</tbody>
</table>
Tabelle 5. Eigenschaften des physischen Geräts (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die möglichen Werte für den Geräte-Lebensdauerstatus sind:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treiberversion</th>
<th>Zeigt die Treiberversion an, die im PCIe SSD-Subsystem installiert ist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANMERKUNG: Storage Management zeigt Nicht zutreffend auf einigen Untersystemen an, für welche die Treiber-Version nicht erhalten werden kann.</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 5. Eigenschaften des physischen Geräts (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschätzte verbleibende Schreibdauer</td>
<td>Zeigt Informationen über SSD Erneuerung / Ersatz an, basierend auf die Höhe der Schreib-Arbeitslasten. Dieses Feld gibt die gesamten verbleibenden Programme oder Löschzyklen, die auf SSD verfügbar sind, an, basierend auf der kumulativen Spezifikation der gesamten NAND (negierte AND oder NOT AND) Flash-Chips im SSD. ANMERKUNG: Diese Option gilt für Micron PCIe SSDs, nicht-flüchtige Memory Express (NVMe) PCIe SSDs und SAS/SATA SSDs.</td>
</tr>
<tr>
<td>Modellnummer</td>
<td>Zeigt die Seriennummer (PPID) des PCIe SSD an.</td>
</tr>
<tr>
<td>Kapazität</td>
<td>Zeigt die volle Kapazität des Geräts an.</td>
</tr>
<tr>
<td>Produkt-ID</td>
<td>Zeigt die Produkt-ID des Geräts an.</td>
</tr>
<tr>
<td>Seriennummer</td>
<td>Zeigt die Seriennummer des Geräts an.</td>
</tr>
<tr>
<td>Verhandelte Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die aktuelle verhandelte Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Maximale Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die funktionelle Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Verhandelte Linkbreite der PCIe</td>
<td>Zeigt die aktuell vereinbarte Übertragungsrate des physischen Geräts an.</td>
</tr>
<tr>
<td>Maximale Linkbreite der PCIe</td>
<td>Zeigt die funktionelle Linkbreite des physischen Geräts an.</td>
</tr>
<tr>
<td>Verfügbare Reserve</td>
<td>Zeigt den eingestellten Reservewert für alle PCIe SSDs/HHHL an. Die neue Festplatte hat eine 100 %-ige Reserve, was der Nutzung entspricht. ANMERKUNG: Dieses Feld gilt nicht für NVMe Intel P4800x-Geräte.</td>
</tr>
</tbody>
</table>

Physische Geräte-Tasks

Die physischen Geräte-Tasks für PCIe SSD lauten wie folgt:

- Blinken und Blinken beenden
- Entfernen eines PCIe SSD vorbereiten
- Exportieren des Protokolls
- Durchführen einer kryptografischen Löschung auf einer NVMe PCIe SSD

So führen Sie einen physischen Geräte-Task aus:

36 PCI Express-Support für Solid State-Geräte
1. Im Fenster Server Administrator in der System-Struktur erweitern Sie das Struktur-Objekt Speicher, um die Speicherkomponentenobjekte anzuzeigen.
2. Erweitern Sie das Objekt PCIe SSD-Subsystem.
3. Erweitern Sie das Objekt Gehäuse (Rückwandplatine).
4. Wählen Sie das Objekt Physische Geräte aus.

Blinken und Blinken beenden auf einem PCIe SSD

Voll-Initialisierung auf einem Micron PCIe SSD aktivieren

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

⚠️ VORSICHT: Die Vollinitialisierung löscht alle Daten auf der Festplatte permanent.

⚠️ VORSICHT: Es ist wichtig, auf VMware ESXi-Hosts vor dem Ausführen der Vollinitialisierung auf dem Micron PCIe SSD zuerst alle Datenspeicher zu löschen. Andernfalls kann es zur Instabilität des Systems kommen.

Wählen Sie zum Löschen eines verschlüsselten physischen Geräts den Task Voll-Initialisierung. Dieser Task ist verfügbar für:

- Nicht konfigurierte SED-Festplatten
- Fremdkonfigurierte verschlüsselte Festplatten
- Nicht konfiguriertes und Fremd-SED-Festplatten, auch wenn kein Verschlüsselungsschlüssel im Controller vorhanden ist

Verwandte Tasks
- Das Ausführen einer Voll-Initialisierung auf einem Micron PCIe SSD

Das Ausführen einer Voll-Initialisierung auf einem Micron PCIe SSD

Das Ausführen einer Voll-Initialisierung auf einem Micron PCIe SSD überschreibt alle Blöcke und führt zu permanentem Datenverlust auf dem Micron PCIe SSD. Während der Voll-Initialisierung kann der Host nicht auf das Micron PCIe SSD zugreifen.

Verwandter Task
- „Vollinitialisierung“ in Storage Management finden

„Vollinitialisierung“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:
1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie das Objekt Gehäuse oder Rückwandplatine.
4. Wählen Sie das Objekt Physische Geräte aus.
Entfernung eines PCIe SSD vorbereiten

PCIe-SSDs unterstützen den ordnungsgemäßen Hot Swap, was Ihnen das Hinzufügen oder Entfernen eines Geräts ermöglicht, ohne das System, auf dem die Geräte installiert sind, anzuhalten oder neu zu starten.

VORSICHT: Das Identifizierungs-LED-Muster (Blinkvorgang) ist dasselbe LED-Muster wie das Muster zum sicheren Entfernen. Wenn Sie den Vorgang zur Vorbereitung auf die Entfernung starten, stellen Sie sicher, dass das System nicht mehr auf Ihr PCIe-SSD zugreifen kann, bevor Sie das PCIe SSD physisch entfernen.

VORSICHT: Um Datenverlust zu vermeiden, ist es obligatorisch, dass Sie den Task „Zum Entfernen vorbereiten“ verwenden, bevor Sie ein Gerät physisch entfernen.

ANMERKUNG: Ein kontrollierter Hot-Swap-Vorgang wird nur unterstützt, wenn PCIe-SSDs auf einem unterstützten System installiert sind, auf dem ein unterstütztes Betriebssystem ausgeführt wird. Um sicherzustellen, dass Sie über die richtige Hardware für Ihr PCIe-SSD verfügen, lesen Sie das systemspezifische Benutzerhandbuch.

ANMERKUNG: Der Task Vorbereitung zur Entfernung für PCIe-SSDs wird auf Systemen unterstützt, auf denen das Betriebssystem VMware vSphere (ESXi) 6.0 und höher ausgeführt wird. Dieser Task wird jedoch nicht auf früheren Versionen des Betriebssystems VMware vSphere (ESXi) unterstützt.

Verwenden Sie den Task Vorbereitung zur Entfernung, um ein PCIe-SSD sicher aus dem System zu entfernen. Diese Aufgabe führt dazu, dass die Statusleuchten am Gerät blinken. Sie können nach Ausführen des Task Vorbereitung zur Entfernung das Gerät sicher aus dem System entfernen, wenn Folgendes zutrifft:

- Das PCIe-SSD blinkt im LED-Muster kann sicher entfernt werden.
- Das System kann nicht mehr auf das PCIe SSD zugreifen.

Exportieren des Protokolls

Das Export-Protokoll enthält Debug-Informationen des PCIe SSD und kann bei der Fehlerbehebung nützlich sein. Sie können das Ausfallsicherheitsprotokoll über die Dropdown-Liste Physisches Gerät – Verfügbare Tasks exportieren.

Durchführen einer kryptografischen Lösung auf einer NVMe PCIe SSD

ANMERKUNG: Die virtuelle Festplatte mit RAID 10-Konfiguration kann für die ausgewählte Anzahl an physikalischen Festplatten nicht erstellt werden. Weitere Informationen finden Sie im „OpenManage CLI Guide“ (Handbuch für OpenManage CLI).

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

ANMERKUNG: Nachdem Sie ein NVMe PCIe SSD per Hot-Plug verbinden, kann die Anzeige des NVMe NVMe PCIe SSD auf Storage Management einige Sekunden in Anspruch nehmen.

VORSICHT: Die kryptografische Lösung löscht alle auf der Festplatte vorhandenen Daten dauerhaft.

Das Ausführen eines kryptografischen Löschvorgangs auf einem NVMe PCIe SSD überschreibt alle Blöcke und führt zu permanentem Datenverlust auf dem NVMe PCIe SSD. Beim kryptografischen Löschvorgang kann der Host nicht auf das NVMe PCIe SSD zugreifen.

ANMERKUNG: Falls das System neu gestartet wird oder wenn während einer kryptografischen Lösung der Strom ausfällt, wird der Vorgang abgebrochen. Sie müssen das System neu starten und den Vorgang erneut ausführen.

ANMERKUNG: Storage Management führt nur den Task Kryptografisches Löschen aus und berichtet nicht den Status des Tasks. Auf einigen NVMe-Geräten führt Storage Management den Task Kryptografisches Löschen bereinigen durch. Im Vergleich zum Kryptografischen Löschen wird eine Verzögerung beim Reporting der Warnmeldung zum Task Kryptografisches Löschen bereinigen beobachtet.

ANMERKUNG: Der kryptographische Löschvorgang wird nicht unterstützt auf Intel P4800X.

Verwandter Task

- So finden Sie das kryptografische Löschen in Storage Management
So finden Sie das kryptografische Löschen in Storage Management

ANMERKUNG: Das kryptografische Löschen wird nicht für NVMe-Geräte unterstützt, die mit dem SWRAID-Controller verbunden sind.

1. Im Fenster *Server Administrator* in der System-Struktur erweitern Sie *Speicher*, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie das Objekt Gehäuse oder Rückwandplatine.
4. Wählen Sie das Objekt *Physische Geräte* aus.
5. Wählen Sie *Kryptografische Löschung* aus dem Dropdown-Menü *Tasks* des physischen Geräts, das Sie löschen möchten.
6. Klicken Sie auf *Ausführen*.

Tasks des PCIe SSDs in der Steckplatz-Karte

Folgende Tasks können auf dem PCIe SSD in der Steckplatz-Karte ausgeführt werden:

So führen Sie einen Task des PCIe SSDs in der Steckplatz-Karte aus:

1. Im Fenster *Server Administrator* in der *System*-Struktur erweitern Sie das Struktur-Objekt *Speicher*, um die Speicherkomponentenobjekte anzuzeigen.
2. Erweitern Sie das Objekt *PCIe SSD-Subsystem*.
3. Wählen Sie das *PCIe SSD in Steckplatz*-Objekt.
5. Klicken Sie auf *Ausführen*.

So finden Sie das kryptografische Löschen in Storage Management für eine PCIe SSD in der Steckplatz-Karte

1. Im Fenster *Server Administrator* in der System-Struktur erweitern Sie *Speicher*, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das *PCIe SSD in Steckplatz*-Objekt.
5. Klicken Sie auf *Ausführen*.

Eigenschaften des PCIe SSDs in der Steckplatz-Karte

Die folgende Tabelle führt die Eigenschaften des PCIe SSDs in der Steckplatz-Karte auf.

Tabelle 6. Eigenschaften des PCIe SSDs in der Steckplatz-Karte

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Zeigt die ID, die dem PCIe SSD durch Storage Management zugewiesen wurde.</td>
</tr>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand des PCIe SSDs im Steckplatz dar.</td>
</tr>
</tbody>
</table>

PCI Express-Support für Solid State-Geräte 39
<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnung/Nicht-kritisch</td>
<td></td>
</tr>
<tr>
<td>Kritisch/Fehlgeschlagen/Fehler</td>
<td></td>
</tr>
<tr>
<td>Unbekannt</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des PCIe SSD in der Steckplatz-Karte als PCIe SSD in Steckplatz <X>, wobei <X> für die vordere Gehäuse-Steckplatz-Nummer steht.</td>
</tr>
<tr>
<td>Gerätename</td>
<td>Zeigt den Namen des PCIe SSD in der Steckplatz-Karte an. Der Name setzt sich aus der Schachtkennung und dem Einschub zusammen, in dem das PCIe SSD in der Steckplatz-Karte installiert ist.</td>
</tr>
<tr>
<td>Busprotokoll</td>
<td>Zeigt die Technologie an, die das PCIe SSD verwendet.</td>
</tr>
<tr>
<td>Geräteprotokoll</td>
<td>Zeigt das Geräteprotokoll des PCIe SSD in der Steckplatz-Karte an, z. B. Non-Volatile Memory Express (NVMe).</td>
</tr>
<tr>
<td>Medien</td>
<td>Zeigt den Medientyp des Geräts an.</td>
</tr>
<tr>
<td>Treiberversion</td>
<td>Zeigt die Treiberversion an, die auf dem PCIe SSD-Untersystem installiert ist. ANMERKUNG: Storage Management zeigt Nicht zutreffend auf einigen Untersystemen an, für welche die Treiber-Version nicht erhalten werden kann.</td>
</tr>
<tr>
<td>Geschätzte verbleibende Schreibdauer</td>
<td>Zeigt Informationen über SSD Erneuerung / Ersatz an, basierend auf die Höhe der Schreib-Arbeitslast. Dieses Feld gibt die gesamten verbleibenden Programme oder Löschzyklen, die auf SSD verfügbar sind, an, basierend auf der kumulativen Spezifikation der gesamten NAND (negierte AND oder NOT AND) Flash-Chips im SSD. ANMERKUNG: Diese Option gilt für Micron PCIe SSDs, nicht-flüchtige Memory Express (NVMe) PCIe SSDs und SAS/SATA SSDs.</td>
</tr>
<tr>
<td>NVMe-Spezifikationsversion</td>
<td>Zeigt die NVMe-Spezifikationsversion des PCIe SSD an.</td>
</tr>
<tr>
<td>Modellnummer</td>
<td>Zeigt die Seriennummer (PPID) des PCIe SSD an.</td>
</tr>
<tr>
<td>Kapazität</td>
<td>Zeigt die volle Kapazität des Geräts an.</td>
</tr>
<tr>
<td>Produkt-ID</td>
<td>Zeigt die Produkt-ID des Geräts an.</td>
</tr>
<tr>
<td>Seriennummer</td>
<td>Zeigt die Seriennummer des Geräts an.</td>
</tr>
</tbody>
</table>
Eigenschaften des PCIe SSDs in der Steckplatz-Karte (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhandelte Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die aktuelle verhandelte Übertragungsrate des Geräts in GT/s an.</td>
</tr>
<tr>
<td>Maximale Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die funktionelle Übertragungsrate des Geräts in GT/s an.</td>
</tr>
<tr>
<td>Verhandelte Linkbreite der PCIe</td>
<td>Zeigt die aktuell vereinbarte Linkbreite des Geräts an.</td>
</tr>
<tr>
<td>Maximale Linkbreite der PCIe</td>
<td>Zeigt die funktionelle Linkbreite des Geräts an.</td>
</tr>
<tr>
<td>Formfaktor</td>
<td>Zeigt den Formfaktor des Geräts an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>Add-in-Karte — Für HHHL-Geräte</td>
</tr>
<tr>
<td></td>
<td>2,5 Zoll — Für andere physische Geräte als HHHL-Geräte.</td>
</tr>
<tr>
<td>Verfügbar Reserve</td>
<td>Zeigt den eingestellten Reservewert für alle PCIe SSDs an. Die neue Festplatte hat eine 100 %-ige Reserve, was der Nutzung entspricht.</td>
</tr>
</tbody>
</table>

Tasks des PCIe SSDs in der Steckplatz-Karte

Folgende Tasks können auf dem PCIe-SSD in der Steckplatz-Karte ausgeführt werden:

1. Im Fenster **Server Administrator** in der **System-**Struktur erweitern Sie das Struktur-Objekt **Speicher**, um die Speicherkomponentenobjekte anzuzeigen.
2. Erweitern Sie das Objekt **PCIe SSD-Subsystem**.
3. Wählen Sie das **PCIe SSD in Steckplatz**-Objekt.
5. Klicken Sie auf **Ausführen**.

Exportieren des Protokolls für ein PCIe SSD in der Steckplatz-Karte

Das Export-Protokoll enthält Debug-Informationen für das PCIe SSD und kann bei der Fehlerbehebung nützlich sein. Sie können das Ausfallsicherheitsprotokoll für das PCIe SSD in der Steckplatz-Karte über die Dropdown-Liste **Verfügbare Tasks** exportieren.

Zugehörige Informationen

„Protokolldatei exportieren“ in Storage Management für NVMe-PCIe-SSDs ausfindig machen auf Seite 41

„Protokolldatei exportieren“ in Storage Management für NVMe-PCIe-SSDs ausfindig machen

Um diesen Task im Storage Management ausfindig zu machen:

1. Erweitern Sie das Objekt **Speicher** in der Strukturansicht, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie die **PCIe-SSD-Subsysteme**.
3. **Physische Laufwerke** auswählen.
4. Wählen Sie den Task **Protokoll exportieren** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf Ausführen.
Die Seite Protokoll exportieren wird angezeigt.

6. Auf der Seite Protokoll exportieren werden die folgenden Attribute angezeigt:

- **Host-Name**
- **Pfad**
- **Dateiname** – In diesem Textfeld können Sie einen benutzerdefinierten Dateinamen für die Protokolldatei angeben. Die Datei mit dem exportierten Protokoll wird mit einer .log Dateierweiterung gespeichert und die Dateierweiterung kann durch keine andere durch den Benutzer eingegebene Dateierweiterung überschrieben werden. Der Standarddateiname ist NVME_<Gerätename>_<MonatTagStundeMinuteSekunde>.log.

7. Klicken Sie auf Protokolldatei exportieren, um die Datei zu exportieren.

Funktionszustand des PCIe SSD-Subsystems

Gibt den Rollup-Funktionszustand der physischen Geräte an. Der einzelne Funktionszustand der physischen Geräte erscheint auf der entsprechenden Stufe.

Rückwandplatinen

PCIe SSDs sind an der PCIe SSD-Rückwandplatine des Systems angehängt. Die Anzahl unterstützter PCIe SSDs hängt vom System ab.

ANMERKUNG: PCIe SSDs müssen mit PCIe SSD-Rückwandplatinen eingesetzt werden. Verbinden Sie SAS/SATA-Geräte nicht mit einer PCIe SSD-Rückwandplatine oder umgekehrt.

Firmware-Version der Rückwandplatine

Die Version der Rückwandplatine-Firmware wird auf der Seite Informationen/Konfiguration des PCIe SSD-Subsystems angegeben.

ANMERKUNG: Die Firmwareversion ist die einzige Rückwandplatineneigenschaft, die für PCIe SSD unterstützt wird.
Speicherinformationen und globale Tasks

Verwenden Sie das Fenster Speicherinformationen und Globale Tasks, um Informationen auf höchster Ebene über die Speicher Ihres Systems anzusehen. Mit diesem Fenster können Sie auch globale Tasks starten, die sämtliche dem System beigefügten Controller betreffen.

Themen:
- Speichermedieneigenschaften
- Globale Tasks
- Speicher-Controller-Eigenschaften

Speichermedieneigenschaften

Das Objekt „Speicherstrukturansicht“ hat die folgenden Eigenschaften.

Tabelle 7. Speichermedieneigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar. Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td></td>
<td>- Normal/OK</td>
</tr>
<tr>
<td></td>
<td>- Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>- Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td>Smart-temperaturbedingtes Herunterfahren</td>
<td>Zeigt an, ob temperaturbedingtes Herunterfahren aktiviert oder deaktiviert ist.</td>
</tr>
</tbody>
</table>

Globale Tasks

Um einen globalen Task durchzuführen, wählen Sie den Task vom Dropdown-Menü Globale Tasks aus und klicken Sie auf Ausführen. Die verfügbaren Tasks im Drop-Down-Menü „Globale Tasks“ lauten:
- Einstellen der Hotspare-Schutzregel
- Einstellen des Schwellenwerts für verbleibende eingestufte Schreibbeständigkeit

Einstellen des Schwellenwerts für verbleibende eingestufte Schreibbeständigkeit

Die Option Einstellen des Schwellenwerts für verbleibende eingestufte Schreibbeständigkeit wird auf PCIe und SAS/SATA SSDs unterstützt. Die Option Einstellen des Schwellenwerts für verbleibende eingestufte Schreibbeständigkeit bietet erweiterte Funktionen bei der Verwaltung des Schwellenwerts bei PCIe SSDs oder SAS/SATA SSDs bzw. bei beiden, je nach Systemkonfiguration.

So legen Sie den Schwellenwert für verbleibende eingestufte Schreibbeständigkeit fest:
1. Wählen Sie im Fenster Server Administrator in der System-Struktur Speicher in der Strukturansicht aus.
 - Das Fenster Speicher-Eigenschaften wird angezeigt.
2. Klicken Sie auf das Unterradregister **Informationen/Konfiguration**, um weitere Informationen anzuzeigen.

3. Wählen Sie unter **Globale Tasks Schwellenwert für verbleibende eingestufte Schreibbeständigkeit einstellen** aus dem Dropdown-Menü aus.

 ANMERKUNG: Sie können auch auf den Link **Schwellenwert für verbleibende eingestufte Schreibbeständigkeit einstellen** klicken, der unter der Systemstruktur **Speicher** für den Zugriff zur Verfügung steht.

4. Klicken Sie auf **Ausführen**.

 Das Fenster **Schwellenwert für verbleibende eingestufte Schreibbeständigkeit einstellen** wird mit den folgenden Optionen angezeigt:

 - Festlegung des Schwellenwerts für PCIe SSD (0-100) – Zeigt den Standard-Schwellenwert für alle PCIe-SSDs
 - Festlegung des Schwellenwerts für SAS/SATA SSD (0-100) – Zeigt den Standard-Schwellenwert für alle SAS/SATA-SSDs

5. Geben Sie die Schwellenwerte für eine oder beide der verfügbaren Optionen ein, und klicken Sie auf **Änderungen anwenden**.

 ANMERKUNG: Wenn Sie auf **Änderungen übernehmen** klicken, ohne einen neuen Schwellenwert für jede der verfügbaren Optionen einzugeben, wird eine Fehlermeldung angezeigt. Geben Sie einen neuen Schwellenwert ein und klicken Sie dann auf **Änderungen übernehmen**, um den Task fertigzustellen.

6. Nachdem Sie auf **Änderungen anwenden** geklickt haben, aktualisiert Storage Management die Systeme mit den neuen Schwellenwerten.

 Nachdem der Task abgeschlossen ist, werden Sie automatisch zum Fenster **Informationen/Konfiguration** weitergeleitet.

 ANMERKUNG: Die neu eingegebenen Schwellenwerte werden beibehalten, auch wenn Sie ein Upgrade von Server Administrator durchführen.

 ANMERKUNG: Wenn der Schwellenwert für verbleibende eingestufte Schreibbeständigkeit unter den konfigurierten Schwellenwert fällt, wird eine Warnung protokolliert und die SNMP-Trap dafür empfangen. Weitere Informationen zu SNMP-Traps finden Sie im referenzhandbuch für Dell EMC OpenManage SNMP unter dell.com/openmanagemanuals.

Tabelle 8. Schwellenwert für verbleibende eingestufte Schreibbeständigkeit – Abfrageintervall

<table>
<thead>
<tr>
<th>Gerätetyp</th>
<th>Schwellenwert – Abfrageintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVMe PCIe SSDs</td>
<td>Fünf Minuten</td>
</tr>
<tr>
<td>Non-NVMe PCIe SSDs</td>
<td>Vierundzwanzig Stunden</td>
</tr>
<tr>
<td>SAS/SATA SSDs</td>
<td>Sieben Tage</td>
</tr>
</tbody>
</table>

Einstellen des Schwellenwerts für verfügbare Reserve

Die Option **Einstellen des Schwellenwerts für verfügbare Reserve** wird auf PCIe SSDs unterstützt. Die Option **Einstellen des Schwellenwerts für verfügbare Reserve** bietet erweiterte Funktionen zur Konfiguration des Grenzwerts für die verfügbare Reserve von NVMe PCIe SSDs.

ANMERKUNG: Dieser Vorgang wird nicht auf SSDs unterstützt, die mit einem PERC und HBA verbunden sind.

ANMERKUNG: Dieser Vorgang unterstützt PCIe SSDs, die sowohl mit dem SWRAID-Controller als auch mit PCIe SSD-Subsystemen verbunden sind.

So stellen Sie den Schwellenwert für verfügbare Reserve ein:

1. Wählen Sie im Fenster **Server Administrator** in der **System-Struktur Speicher** in der Strukturansicht aus. Das Fenster Speicher-Eigenschaften wird angezeigt.

2. Klicken Sie auf das Unterradregister **Zustand**, um weitere Informationen anzuzeigen.

ANMERKUNG: Der standardmäßige Warnungsschwellenwert ist bei 10 % und der standardmäßige kritische Schwellenwert bei 5 %.
ANMERKUNG: Wenn der Warnungsschwellenwert für eine verfügbare Reserve eingestellt ist, wird eine Warnmeldung ausgegeben, wenn der Wert oder weniger erreicht wird. Wenn der kritische Schwellenwert für eine verfügbare Reserve eingestellt ist, wird eine kritische Warnmeldung ausgegeben, wenn der Wert oder weniger erreicht wird.

ANMERKUNG: Sie können diese Option auch aus der Registerkarte Informationen/Konfiguration > Globale Tasks auswählen.

Das Fenster Einstellen des Schwellenwerts für verfügbare Reserve wird angezeigt.

ANMERKUNG: Falls verfügbar, wird nach Einstellen des Schwellenwerts für verfügbare Reserve eine Warnmeldung generiert.

ANMERKUNG: Der Schwellenwert kann nicht auf 100 % festgelegt werden.

5. Klicken Sie auf Änderungen anwenden.

ANMERKUNG: Wenn Sie auf Änderungen übernehmen klicken, ohne einen neuen Schwellenwert für jede der verfügbaren Optionen einzugeben, wird eine Fehlermeldung angezeigt. Geben Sie einen neuen Schwellenwert ein und klicken Sie dann auf Änderungen übernehmen, um den Task fertigzustellen.

ANMERKUNG: Die neu eingegebenen Schwellenwerte werden beibehalten, auch wenn Sie ein Upgrade von Server Administrator durchführen.

Speicher-Controller-Eigenschaften

Die über jeden Controller angezeigten Informationen hängen eventuell von den Controller-Eigenschaften ab.

Tabelle 9. Controller-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Zeigt den Status des Controllers an.</td>
</tr>
<tr>
<td>ID</td>
<td>Zeigt die Controller-ID, wie berichtet, durch den omreport CLI-Befehl an.</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des Controllers an. Um detailliertere Informationen zu einem Controller zu erhalten, klicken Sie auf den Controller-Namen.</td>
</tr>
<tr>
<td>Steckplatzkennung</td>
<td>Zeigt den Steckplatz an, dem der Controller beigefügt wird. Storage Management zeigt Steckplatz nicht zutreffend für einige Controller an, für welche die Steckplatz-ID nicht angezeigt werden kann, und Integriert für integrierte Controller.</td>
</tr>
</tbody>
</table>

ANMERKUNG: Wenn Steckplatz nicht verfügbar angezeigt wird, können Sie die Steckplatzkennung identifizieren, indem Sie das Objekt System > Haupt > Systemgehäuse > Steckplätze in der Strukturangezeige auswählen und das Register Informationen auswählen.
Tabelle 9. Controller-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steckplatzkennung</td>
<td>Eigenschaft Steckplatzkennung in diesem Register kann die korrekten Informationen anzeigen.</td>
</tr>
</tbody>
</table>
| Zustand | Zeigt den Status des Controllers an. Mögliche Werte sind:
| | - **Bereit** – Der Controller funktioniert normal.
| | - **Herabgesetzt** – Der Controller hat eine fehlerhafte Komponente und wird in einem herabgesetzten Zustand betrieben.
| | - **Fehlerhaft** – Der Controller hat eine oder mehrere fehlerhafte Komponenten und funktioniert nicht mehr. |
| Firmware-Version | Zeigt die Version der auf diesem Controller verfügbaren Firmware an. |
| Treiberversion | Zeigt die Version der auf diesem Controller installierten Treiber an. |
| Minimale erforderliche Treiberversion | Zeigt die minimale Treiberversion an, die von Storage Management benötigt wird. Diese Eigenschaft wird nur dann angezeigt, wenn der Controller-Treiber nicht den minimalen Anforderungen entspricht. |
| Neuerstellungsrate | Die Neuerstellungsrate ist der Prozentsatz der Systemressourcen, der zur Neuerstellung einer fehlerhaften Festplatte bereit gestellt wird, wenn diese notwendig ist. Weitere Informationen zur Neuerstellungsrate finden Sie unter Neuerstellungsrate einstellen. |
| Alarmzustand | Zeigt an, ob der Controlleralarm aktiviert oder deaktiviert ist. |
| Cluster-Modus | Gibt an, ob der Controller Teil einer Cluster-Konfiguration ist. |

Speicherkomponenten

Weitere Informationen über angeschlossene Controller finden Sie unter Controller.
Dieses Kapitel bietet Informationen über die Controller und Controller-Funktionen, die von Storage Management unterstützt sind.

Themen:

- Controller
- RAID-Controller Technologie: SATA und SAS
- RAID-Controller-Merkmale
- Controller – Unterstützte RAID-Stufen
- Controller – Unterstützte Stripe-Größen
- RAID-Controller Lese-, Schreib- und Festplatten-Cache-Regeln
- Hintergrundinitialisierung auf PERC-Controllern
- Nicht-RAID-Controller - Beschreibung
- Firmware- oder Treiberversionen
- Controller-Funktionszustand
- Controller-Eigenschaften und -Tasks
- Controller-Tasks
- Sperrmodus der Systemkonfiguration
- Anzeigen der verfügbaren Reports

Controller

Die meisten Betriebssysteme lesen und schreiben Daten nicht direkt von den/zu den Festplatten, sondern senden stattdessen Lese- und Schreibanleitungen an einen Controller. Der Controller ist die Hardware in Ihrem System, die direkt mit den Festplatten kommuniziert, um Daten zu lesen und zu schreiben. Ein Controller besitzt Anschlüsse (Kanäle oder Schnittstellen), die mit einer oder mehreren Festplatte(n) oder mit einem Gehäuse, das physische Festplatten enthält, verbunden sind. RAID-Controller können sich über die Grenzen von Festplatten erstrecken, um einen erweiterten Speicherplatz (oder eine virtuelle Festplatte) zu erzeugen, der/die die Kapazität von mehr als einer Festplatte verwendet.

Controller führen auch andere Tasks durch, wie z. B. das Starten von Neuerstellungen, Initialisieren von Festplatten usw. Um diese Tasks durchzuführen, erfordert der Controller spezielle Software wie Firmware und Treiber. Um ordnungsgemäß zu funktionieren, muss die erforderliche Mindestversion der Firmware und Treiber auf dem Controller installiert sein.

RAID-Controller Technologie: SATA und SAS

SAS RAID-Controller

Die folgenden RAID-Controller verwenden Serial Attached SCSI (SAS)- oder SATA-Technologie.

- PERC S100-, S110-, S130-, S300-, S140- und S150-Controller
- PERC H200-, H700- und H800-Controller
Die Controller der Familie PERC H310-Adapter, PERC H310 Mini Monolithic, PERC H310 Mini Blades, PERC H710-Adapter, PERC H710 Mini Blades, PERC H710 Mini Monolithic, PERC H710P-Adapter, PERC H710P Mini Blades, PERC H710P Mini Monolithic und PERC H810-Adapter

PERC H840-Adapter

PERC H740P-Adapter und PERC H740P Mini Monolithic

PERC FD33xD/FD33xS

PERC H730P MX

PERC H745P MX

PERC H740P, PERC H740P Slim

Adapter PERC H745, Adapter PERC H345

Front PERC H745P, Front PERC H345

RAID-Controller-Merkmale

Im Folgenden werden einige RAID-Controller-Funktionen besprochen und Links zu einer detaillierteren Erklärung gegeben. Für Informationen über die Funktionen, die von den Controllern unterstützt werden, siehe Unterstützte Funktionen.

- **Hotspares** – Auf RAID-Controllern ist ein Hotspare ein Backup für eine fehlerhafte Festplatte. Siehe Schützen Ihrer virtuellen Festplatte mit einem Hotspare.

- **Daten neu erstellen** – Daten einer fehlerhaften physischen Festplatte können neu erstellt werden, wenn die Festplatte Mitglied einer redundanten virtuellen Festplatte ist. Siehe Redundante Informationen neu erstellen.

- **Virtuelle Festplatteninvehiterweiterung** – Die virtuelle Festplatteninvehiterweiterung ermöglicht Ihnen die Kapazität einer virtuellen Festplatte zu erweitern während sie online bleibt, indem Sie zusätzliche Festplatten zur virtuellen Festplatte hinzufügen. Dieses Merkmal ist auch als Online-Kapazitätserweiterung (OLCE) bekannt. Siehe Tasks der virtuellen Festplatte.

- **RAID-Migration** – Nachdem Sie eine virtuelle Festplatte erstellt haben, können Sie die RAID-Stufe ändern. Siehe Virtuelle Festplatten neu konfigurieren oder migrieren.

- **Physische und virtuelle Festplatten zu einem anderen Controller verschieben** – Diese Funktion ermöglicht Ihnen die physischen und virtuellen Festplatten von einem System zu einem anderen zu verschieben. Siehe Physische und virtuelle Festplatten von einem System auf ein anderes verschieben.

- **Übereinstimmungsüberprüfung** – Eine Übereinstimmungsüberprüfung bestimmt die Integrität der redundanten Daten einer virtuellen Festplatte. Wenn es erforderlich ist, erstellt diese Funktion die redundanten Informationen erneut. Siehe Integrität der redundanten virtuellen Festplatten erhalten.

- **Patrol Read** – Patrol Read identifiziert Festplattenfehler, um Festplattenfehler und Datenverlust oder -beschädigung zu vermeiden. Siehe Patrol Read Modus einstellen für weitere Informationen.

- **Festplattenmigration oder Fremdkonfigurationen** – Einige Controller ermöglichen Ihnen, physische Festplatten, die eine oder mehrere virtuelle Festplatten enthalten, auf einen anderen Controller zu verschieben. Der empfangene Controller kann die Fremdkonfiguration (virtuelle Festplatten) erkennen und importieren. Für weitere Informationen siehe Fremdkonfigurationsvorgänge.

Controller – Unterstützte RAID-Stufen

RAID-Controller können ggf. verschiedene RAID-Stufen unterstützen. Weitere Informationen zu unterstützten RAID-Stufen für einen Controller finden Sie unter Unterstützte Funktionen.
Controller – Unterstützte Stripe-Größen

Beim Erstellen einer virtuellen Festplatte müssen Sie die Stripe-Größe für die virtuelle Festplatte angeben. Unterschiedliche Controller haben verschiedene Einschränkungen bezüglich der Stripe-Größen, die sie unterstützen können. Um Informationen zu den Stripe-Größen, die ein Controller unterstützt, zu erhalten, siehe den Abschnitt „virtuelle Festplattenspezifikationen für den Controller“ unter Unterstützte Funktionen.

RAID-Controller Lese-, Schreib- und Festplatten-Cache-Regeln

Beim Erstellen einer virtuellen Festplatte können Sie die Lese-, Schreib- und Festplatten-Cache-Regeln für die virtuelle Festplatte festlegen. Im folgenden Abschnitt werden diese Regeln beschrieben.

Leseregel

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Die Leseregeln bestimmen, ob der Controller beim Suchen von Daten sequenzielle Sektoren auf der virtuellen Festplatte lesen soll.

- Kein Vorauslesen – Das Auswählen der Regel „Kein Vorauslesen“ gibt an, dass der Controller die Regel „Vorauslesen“ nicht verwenden sollte.

Schreibregel

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Die Schreibregeln bestimmen, ob der Controller ein Schreibanfrage-Beendigungssignal sendet, sobald die Daten sich im Cache befinden oder nachdem sie auf die Festplatte geschrieben wurden.

- Rückschreiben – Der Controller sendet ein Signal zum Abschluss der Schreibanforderung, sobald sich die Daten im Controller-Cache befinden, jedoch noch nicht auf die Festplatte geschrieben wurden. Ein Rückschreiben im Cache kann die Systemleistung verbessern, da bei nachfolgenden Leseauftritten die Daten schneller aus dem Cache als vom Laufwerk abgerufen werden können. Es kann jedoch im Falle eines Festplattenausfalls zu Datenverlust kommen, da ein Systemausfall die Daten auf die Festplatte verhindert. Bei anderen Anwendungen können ebenfalls Probleme auftreten, wenn Aktionen die Verfügbarkeit der Daten auf der Festplatte voraussetzen.

- Rückschreiben erzwingen – Der Schreib-Cache wird unabhängig davon aktiviert, ob der Controller über eine Batterie verfügt. Wenn der Controller über keine Batterie verfügt und das Rückschreiben im Cache erzwungen wird, kann bei einem Stromausfall ein Datenverlust auftreten.

ANMERKUNG: Bei PERC 10-Controllern ist die Regel „Rückschreiben erzwingen“ identisch mit der Regel „Rückschreiben“.

- Durchschreiben: Der Controller sendet erst dann ein Signal für den Abschluss der Schreibanforderung, nachdem die Daten auf das Laufwerk geschrieben wurden. Das Durchschreiben im Cache bietet eine bessere Datensicherheit als das Rückschreiben im Cache, da das System annimmt, dass die Daten erst verfügbar sind, nachdem sie auf das Laufwerk geschrieben wurden.

ANMERKUNG: Bei aktiviertem Cluster-Modus ist Durchschreiben die Standardschreibregel.

Festplatten-Cache-Regel

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Die Funktion „Festplatten-Cache-Regel“ kann verwendet werden, um den Schreib-Cache des Festplattenlaufwerks zu verwalten.

Stellen Sie die Cache-Regeln für physische Festplatten auf, die Teil einer virtuellen Festplatte sind. Aktivieren Sie dazu die Festplatten-Cache-Regel. Wenn diese Funktion aktiviert ist, schreibt die physische Festplatte Daten in den zugehörigen Cache, bevor diese auf die physische Festplatte geschrieben werden. Da es schneller geht, Daten in den Cache zu schreiben als auf eine Festplatte, verbessert das Aktivieren dieser Funktion die Systemleistung.

Im Folgenden werden die Festplatten-Cache-Regel-Optionen für mit einem PERC Hardware-Controller verbundene Nicht-RAID-Festplatten aufgeführt:

- **Aktiviert** – Festplatten-Cache-Regel ist aktiviert.
- **Deaktiviert** – Festplatten-Cache-Regel ist deaktiviert.

ANMERKUNG: Die Option Unverändert gilt nur für Hardware-Controller der Reihe PERC 9 und höher mit der aktuellsten Firmware-Version.

ANMERKUNG: Wenn Sie die Festplatten-Cache-Regel-Einstellungen der physischen Laufwerke auf die werkseitigen Standardeinstellungen zurücksetzen möchten, dann müssen Sie den Server neu starten.

Im Folgenden werden die Festplatten-Cache-Regel-Optionen für RAID-Festplatten, die mit einem Software-RAID-Controller verbunden sind, aufgeführt:

- **Aktiviert** – Festplatten-Cache-Regel ist aktiviert.
- **Deaktiviert** – Festplatten-Cache-Regel ist deaktiviert.

ANMERKUNG: Bei virtuellen Festplatten basierend auf SATA-Laufwerken ist die Standardeinstellung für Festplatten-Cache-Regel Aktiviert; bei virtuellen Festplatten basierend auf SAS-Laufwerken ist die Standardeinstellung Deaktiviert.

ANMERKUNG: Für Controller der Familie SAS 6i/R und PERC H200 ist das Einstellen der Festplatten-Cache-Regeln erst nach dem Erstellen der virtuellen Festplatte verfügbar.

Verwandter Task

- Ändern der Regel für die virtuelle Festplatte

Hintergrundinitialisierung auf PERC-Controllern

Auf PERC-Controllern startet die Hintergrundinitialisierung einer redundanten, virtuellen Festplatte automatisch innerhalb 0 bis 5 Sekunden nachdem die virtuelle Festplatte erstellt wurde. Die Hintergrundinitialisierung einer redundanten virtuellen Festplatte bereitet die virtuelle Festplatte darauf vor, redundante Daten zu erhalten und die Schreibleistung zu verbessern. Nachdem z. B. die Hintergrundinitialisierung einer virtuellen RAID 5-Festplatte abgeschlossen ist, sind die Paritäteninformationen initialisiert. Nachdem die Hintergrundinitialisierung einer virtuellen RAID 1-Festplatte abgeschlossen ist, werden die physischen Festplatten gespiegelt.

Nicht-RAID-Controller - Beschreibung

ANMERKUNG: Die unterstützten Funktionen können je nach Controller unterschiedlich sein.

Nicht-RAID-SAS-Controller

Die folgenden Nicht-RAID-Controller verwenden SAS-Technologie:
- HBA 330 MX
- HBA 330 MMZ
- SAS 12 Gbit/s-HBA
- HBA 330 Mini
- HBA 330-Adapter
- HBA 345-Adapter
- HBA 345 Front/Adapter

ANMERKUNG: Wenn eine Rückwandplatine ohne einen Expander (passive Rückwandplatine) an einen HBA 330 Controller angeschlossen wurde, ist die Aufzählung der physischen Festplatten zwischen Anschluss 0 und Anschluss 1 aufgeteilt. Beispiel: Wenn die passive Rückwandplatine mit maximal acht physischen Festplatten bestückt ist, werden die ersten vier physischen Festplatten unter Anschluss 0 und die übrigen vier physischen Festplatten unter Anschluss 1 aufgelistet. Sie können nur dann alle acht physischen Festplatten anzeigen, wenn beide Schächte angeschlossen sind. Wenn ein Schacht angeschlossen ist, werden nur die physischen Festplatten für diesen Schacht angezeigt.

Firmware- oder Treiberversionen

Verwenden Sie das Fenster für Firmware- oder Treiberversionen, um Informationen zu Controller-Firmware und -Treibern anzuzeigen. Für weitere Informationen zu Firmware und Treiber, siehe Vor dem Installieren von Storage Management.

Zugehörige Konzepte
Firmware- oder Treibereigenschaften auf Seite 51

Firmware- oder Treibereigenschaften

ANMERKUNG: Die in den Versionshinweisen zu Server Administrator aufgelisteten Firmware und Treiber beziehen sich auf die minimale unterstützte Version für diese Controller. Spätere Versionen der Firmware und Treiber werden auch unterstützt. Für die aktuellsten Treiber- und Firmware-Anforderungen, kontaktieren Sie bitte Ihren Dienstanbieter.

Tabelle 10. Firmware-/Treibereigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die zurzeit auf dem Controller installierte Firmware-Version an.</td>
</tr>
<tr>
<td>Treiberversion</td>
<td>Zeigt die auf dem Controller installierte Treiber-Version an.</td>
</tr>
<tr>
<td>Minimale erforderliche Treiberversion</td>
<td>Zeigt die minimale Treiberversion an, die von Storage Management benötigt wird. Diese Eigenschaft wird nur dann angezeigt, wenn der Controller-Treiber nicht den minimalen Anforderungen entspricht.</td>
</tr>
<tr>
<td>Storport-Treiberversion</td>
<td>Zeigt die Version des auf dem System installierten Storport-Treibers an.</td>
</tr>
</tbody>
</table>

ANMERKUNG: Um den neuesten Storport-Treiber herunterzuladen, siehe „Microsoft Knowledge Base Artikel KB943545“ unter support.microsoft.com.

Controller-Funktionszustand

Die Seite „Controller-Funktionszustand“ zeigt den Status des Controllers und der an den Controller angeschlossenen Komponenten an.

Controller-Komponenten

Für Informationen zum Erweitern von Komponenten, siehe:
- RAID-Controller-Batterien
- Firmware- oder Treiberversionen
- Anschlüsse
 ANMERKUNG: Wenn Sie das Gehäuse im Modus des redundanten Pfads angeschlossen haben, werden die Konnektoren als logischer Konnektor dargestellt.
- Virtuelle Festplatten

Controller-Eigenschaften und -Tasks

Verwenden Sie das Fenster für Controller-Eigenschaften und -Tasks zur Anzeige von Informationen zum Controller und zur Ausführung von Controller-Tasks.

ANMERKUNG: Die in den Server Administrator Versionshinweisen gelisteten Firmware und Treiber beziehen sich auf die minimale unterstützte Version für diese Controller. Spätere Versionen der Firmware und Treiber werden auch unterstützt. Für die aktuellsten Treiber- und Firmware-Anforderungen, kontaktieren Sie bitte Ihren Dienstanbieter. Die Controller-Eigenschaften hängen eventuell vom Controller-Modell ab.
Tabelle 11. Controller-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermediakomponente dar. Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td>Namen</td>
<td>Zeigt den Namen des Controllers an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den Status des Controllers an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die zurzeit auf dem Controller installierte Firmware-Version an.</td>
</tr>
</tbody>
</table>
Tabelle 11. Controller-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale erforderliche Firmware-Version</td>
<td>Zeigt die minimale Firmware-Version an, die von Storage Management benötigt wird. Diese Eigenschaft wird nur dann angezeigt, wenn die Controller-Firmware nicht den minimalen Anforderungen entspricht.</td>
</tr>
<tr>
<td>Treiberversion</td>
<td>Zeigt die auf dem Controller installierte Treiber-Version an.</td>
</tr>
<tr>
<td>Minimale erforderliche Treiberversion</td>
<td>Zeigt die minimale Treiberversion an, die von Storage Management benötigt wird. Diese Eigenschaft wird nur dann angezeigt, wenn der Controller-Treiber nicht den minimalen Anforderungen entspricht.</td>
</tr>
<tr>
<td>Neuerstellungsrate</td>
<td>Die Neuerstellungsrate ist der Prozentsatz der verfügbaren Systemressourcen, der zur Neuerstellung einer fehlerhaften Festplatte bereitgestellt wird, wenn diese notwendig ist. Weitere Informationen zur Neuerstellungsrate finden Sie unter Neuerstellungsrate einstellen.</td>
</tr>
<tr>
<td>Hintergrundinitialisierungsrate</td>
<td>Die Hintergrundinitialisierungsrate (BGI) ist der Prozentsatz der Systemressourcen, der zur Ausführung der Hintergrundinitialisierung einer virtuellen Festplatte nach dessen Erstellung dediziert ist. Weitere Informationen zur BGI-Rate finden Sie unter Hintergrundinitialisierungsrate einstellen.</td>
</tr>
<tr>
<td>Übereinstimmungsüberprüfungsrate</td>
<td>Die Übereinstimmungsüberprüfungsrate ist der Prozentsatz der verfügbaren Ressourcen auf einem System, der zur Ausführung einer Übereinstimmungsüberprüfung auf einer redundanten virtuellen Festplatte dediziert ist. Weitere Informationen finden Sie unter Übereinstimmungsüberprüfung ausführen.</td>
</tr>
<tr>
<td>Rekonstruktionsrate</td>
<td>Die Rekonstruktionsrate ist der Prozentsatz der verfügbaren Systemressourcen, die für die Rekonstruktion einer Festplattengruppe nach dem Hinzufügen einer physischen Festplatte oder der Änderungen der RAID-Ebene einer virtuellen Festplatte in einer Festplattengruppe abgestellt werden sollen, dediziert ist. Weitere Informationen zur Rekonstruktionsrate finden Sie unter Rekonstruktionsrate einstellen.</td>
</tr>
<tr>
<td>Rücksetzbares Hotspare zulassen und Element austauschen</td>
<td>Ermöglicht das automatische Kopieren der Daten von einer physischen Festplatte zu einem Hotspare (im Falle eines vorhergesagten Fehlers) oder von einem Hotspare zu einer physischen Festplatte (falls eine herabgesetzte Festplatte ersetzt wird).</td>
</tr>
</tbody>
</table>
Tabelle 11. Controller-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatisches Ersetzen von Element bei vorhergesagtem Fehler</td>
<td>Ermöglicht das automatische Kopieren der Daten von einer physischen Festplatte zu einem Hotspare im Fall eines vorhergesagten Fehlers. Verwenden Sie diese Eigenschaft in Verbindung mit der Eigenschaft "Rücksetzbaren Hotspare erlauben und Mitglied austauschen".</td>
</tr>
<tr>
<td>Ansicht des redundanten Pfads</td>
<td>Zeigt an, ob Storage Management eine Konfiguration mit redundantem Pfad ermittelt hat. Storage Management ermittelt die Konfiguration mit redundantem Pfad, wenn beide Controller-Schnittstellen an dasselbe Gehäuse angeschlossen sind, das sich im vereinten Modus befindet.</td>
</tr>
<tr>
<td>Verschlüsselungsfähig</td>
<td>Gibt an, ob der Controller Verschlüsselungsfunktionen unterstützen kann. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Verschlüsselungsschlüssel vorhanden</td>
<td>Gibt an, ob der Controller über einen Verschlüsselungsschlüssel verfügt. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Verschlüsselungsmodus</td>
<td>Gibt an, ob der Controller lokale Schlüsselverwaltung (LKM), Enterprise Key Management (EKM) oder Keine benutzt. Weitere Informationen finden Sie unter Verschlüsselungsschlüssel verwalten.</td>
</tr>
<tr>
<td>T10-Protection Information-Fähigkeit</td>
<td>Gibt an, ob der Controller Datenintegrität unterstützt. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Cache-Speicher-Größe</td>
<td>Zeigt die Größe des Cache-Speichers auf dem Controller an.</td>
</tr>
<tr>
<td>Patrol Read-Modus</td>
<td>Zeigt die Einstellung des Patrol Read-Modus für den Controller an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Automatisch – Patrol-Read läuft beständig auf dem System. Bei Abschluss einer Patrol-Read-Iteration wird innerhalb des vom Controller festgelegten Intervalls der nächste Patrol-Read angesetzt. Patrol Read kann im automatischen Modus nicht von Hand gestartet oder angehalten werden.</td>
</tr>
<tr>
<td></td>
<td>● Manuell – Ermöglicht Ihnen, den Patrol Read-Vorgang manuell zu starten oder anzuhalten.</td>
</tr>
<tr>
<td></td>
<td>● Deaktiviert – Gibt an, dass der Patrol Read-Vorgang deaktiviert ist.</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen über Patrol Read finden Sie unter Patrol Read Modus einstellen und Patrol Read starten und stoppen.</td>
</tr>
<tr>
<td>Patrol Read-Zustand</td>
<td>Anzeige des gegenwärtigen Zustands des Patrol Read-Ablaufs. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Bereit – Der Patrol Read-Vorgang ist aktiviert und wird bei der nächsten Ansetzung, oder wenn manuell eingeleitet, ausgeführt.</td>
</tr>
<tr>
<td></td>
<td>● Aktiv – Der Patrol Read-Vorgang wird derzeit ausgeführt.</td>
</tr>
<tr>
<td></td>
<td>● Gestoppt – Das Patrol Read wurde gestoppt.</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen über Patrol Read finden Sie unter Patrol Read Modus einstellen.</td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Patrol Read-Rate** | Diese Eigenschaft steht für den Prozentsatz der Systemressourcen, die zum Ausführen des Patrol Read-Vorgangs dediziert sind. **Patrol Read-Rate** ändert den Umfang an Systemressourcen, die für den Patrol Read-Task vorgesehen sind. Die **Patrol Read-Rate** kann zwischen 0% und 100% konfiguriert werden, wobei:
 ● 0% – die geringste Priorität für Controller angibt und die geringste Auswirkung auf die Systemleistung hat.
 ● 100% – die höchste Priorität für Controller angibt und eine größere Auswirkung auf die Systemleistung hat. |
| **Patrol Read-Iterationen** | Zeigt die Anzahl von **Patrol Read-Iterationen**. Weitere Informationen über Patrol Read finden Sie unter Patrol Read Modus einstellen. |
| **Cluster-Modus** | Gibt an, ob der Controller Teil einer Cluster-Konfiguration ist. |
| **Beständiger Hotspare** | Zeigt an, ob der Hotspare beständig ist. Die möglichen Wert sind:
 ● **Deaktiviert** – Der dem Hotspare-Laufwerk entsprechende Steckplatz ist beständig. Falls das Laufwerk vom Steckplatz entfernt wird und irgendein Laufwerk eingefügt wird, ist die Hotspare-Funktion des Steckplatzes beendet. Sie müssen das Laufwerk manuell wieder als Hotspare zuweisen. |
| **Controller-Tasks** | Ermöglicht Ihnen, den Controller zu konfigurieren und zu verwalten. |

Controller-Tasks

Zum Ausführen eines Controller-Tasks:

1. Im Fenster *Server Administrator* in der System-Struktur erweitern Sie *Speicher*, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf **Ausführen**.

ANMERKUNG: Unterschiedliche Controller unterstützen verschiedene Funktionen. Aus diesem Grund können die angezeigten Tasks im Drop-Down-Menü **Verfügbare Tasks** unterschiedlich sein, abhängig von dem in der Strukturansicht ausgewählten Controller. Wenn aufgrund der Konfigurationseinschränkungen des Controllers oder des Systems keine Tasks ausgeführt werden können, wird die Option **Keine Tasks verfügbar** angezeigt.

Controller-Tasks
Das Folgende beschreibt eine Liste der verfügbaren Tasks auf dem Controller:

- Erstellen eines virtuellen Laufwerks
- Controller-Alarm aktivieren
- Controller-Alarm deaktivieren
- Controller-Alarm abstellen
- Controller-Alarm testen
- Neuerstellungsrate einstellen
- Konfigurations-Reset
- Exportieren der Controller-Protokolldatei
- Fremdkonfigurationsvorgänge
- Fremdkonfigurationen importieren
- Importieren oder Wiederherstellungen von Fremdkonfigurationen
- Fremdkonfiguration löschen
- Hintergrundinitialisierungsrate einstellen
- Übereinstimmungsüberprüfungsrate einstellen
- Rekonstruktionsrate einstellen
- Patrol Read-Modus einstellen
- Patrol Read starten und stoppen
- Verwalten von gesichertem Cache
- Controller-Eigenschaften ändern
- Strom der physischen Festplatte verwalten
- Verschlüsselungsschlüssel verwalten
- In RAID-fähige Festplatten konvertieren
- In Nicht-RAID-Festplatten konvertieren
- Ändern des Controller-Modus
- Automatische Konfiguration des RAID0-Betriebs

Erstellen eines virtuellen Laufwerks
Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Um den **Create Virtual Disk Express Wizard** (Erweiterten Assistenten zur Erstellung virtueller Festplatten) zu starten, wählen Sie den Task **Virtuelle Festplatte erstellen**.

Controller-Alarm aktivieren
Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Um den Alarm auf dem Controller zu aktivieren, wählen Sie den Task **Alarm aktivieren** aus. Wenn der Alarm aktiviert ist, wird der Alarm im Falle eines Geräteversagens ausgelöst.

Controller-Alarm deaktivieren
Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Verwenden Sie den Task **Alarm deaktivieren**, um den Controller-Alarm zu deaktivieren. Wenn der Alarm deaktiviert ist, wird der Alarm im Falle eines Geräteversagens nicht ausgelöst.
Controller-Alarm abstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Akustischen Alarm abstellen um den Controller-Alarm abzustellen. Nachdem der Alarm abgestellt wurde, ist er immer noch aktiviert für den Fall eines zukünftigen Geräteversagens.

Controller-Alarm testen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Alarm testen, um zu testen, ob sich der Controller-Alarm im normalen Betriebszustand befindet. Es wird ein etwa 2 Sekunden anhaltender Alarmton ausgegeben.

Neuerstellungsrate einstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Neuerstellungsrate einstellen ermöglicht das Ändern der Neuerstellungsrate für einen Controller.

Während einer Neuerstellung wird der gesamte Inhalt einer physischen Festplatte rekonstruiert. Die Neuerstellungsrate, konfigurierbar zwischen 0 % und 100 %, stellt den Prozentsatz der Systemressourcen dar, die dazu bestimmt sind, fehlerhafte physische Festplatten neu zu erstellen. Bei 0 % hat die Neuerstellung die niedrigste Priorität für den Controller und dauert am längsten. Diese Einstellung hat den geringsten Einfluss auf die Systemleistung. Eine Neuerstellungsrate von 0 % bedeutet nicht, dass der Ablauf angehalten oder unterbrochen wird.

Bei 100 % hat die Neuerstellung die höchste Priorität für den Controller und beschränkt die Neuerstellungsdauer auf ein Minimum. Diese Einstellung hat den größten Einfluss auf die Systemleistung.

Auf den PERC-Controllern verwendet die Controller-Firmware außerdem die Neuerstellungsrate einstellung, um die Systemressourcenzuweisung für folgende Tasks zu steuern:

- Durchführung einer Übereinstimmungsüberprüfung
- Hintergrundinitialisierung Siehe Hintergrundinitialisierung abbrechen
- Vollinitialisierung Eine BIOS-Einstellung bestimmt, ob eine Voll- oder Schnell-Initialisierung durchgeführt wird. Siehe Formatieren, Initialisieren, Langsam und Schnell initialisieren
- Neu konfigurieren. Siehe Task der virtuellen Festplatte: Neu konfigurieren (Schritt 1 von 3)

Ändern der Neuerstellungsrate

So ändern Sie die Neuerstellungsrate:

1. Geben Sie einen numerischen Wert in dem Textfeld Neuerstellungsrate einstellen (0-100) ein. Der Wert muss zwischen 0 und 100 liegen.
2. Klicken Sie auf Änderungen anwenden.
 Zum Beenden und Abbrechen Ihrer Änderungen klicken Sie auf Zurück zur vorhergehenden Seite.

,,Neuerstellungsrate einstellen“ in Storage Management finden

1. Erweitern Sie das Objekt Speicher in der Strukturansicht, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf Ausführen.
 Sie können diesen Task auch über das Drop-Down-Menü Controller-Eigenschaften ändern finden.
Reset für die Controller-Konfiguration durchführen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Konfigurations-Reset ermöglicht es Ihnen, alle Informationen auf dem Controller zu löschen, so dass Sie eine neue Konfiguration ausführen können. Dieser Vorgang zerstört alle Daten und virtuelle Festplatten auf dem Controller und macht die Zuweisung jeglicher Hotspares rückgängig.

Nach diesem Vorgang muss der Speicher vollständig neu konfiguriert werden.

VORSICHT: Durch das Reset einer Konfiguration werden permanent alle Daten auf allen virtuellen Festplatten zerstört, die mit dem Controller verbunden sind. Falls sich die System- oder Startpartition auf diesen virtuellen Festplatten befindet, wird sie gelöscht.

ANMERKUNG: Ein Reset der Controller-Konfiguration entfernt eine fremdkonfigurierte Konfiguration nicht. Zum Entfernen einer fremdkonfigurierten Konfiguration wählen Sie den Task Fremdkonfiguration entfernen aus.

ANMERKUNG: Dieser Task wird auf PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

Durchführen eines Konfigurations-Reset

Um einen Konfigurations-Reset durchzuführen:

2. Klicken Sie auf Konfigurations-Reset, wenn Sie bereit sind, alle Informationen auf dem Controller zu löschen.
 Um zu beenden, ohne die Controller-Konfiguration zurückzusetzen, klicken Sie auf Zurück zur vorhergehenden Seite.

„Konfigurations-Reset“ in Storage Management finden

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf Ausführen.
 Sie können diesen Task auch über das Drop-Down-Menü Controller-Eigenschaften ändern finden.

Exportieren der Controller-Protokolldatei

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Mit dem Task Exportieren des Protokolls wird das Controller-Protokoll in eine Textdatei exportiert. Das Protokoll enthält detaillierte Informationen zu den Controller-Vorgängen und kann hilfreich bei Fehlerbehebungen sein.

Abhängig vom Controller lautet der Protokolldateiname entweder afa_<MMTT>.log oder lsi_<MMTT>.log, wobei <MMTT> Monat und Tag angibt.

ANMERKUNG: In der VMware ESXi-Umgebung wird nur eine einzige Protokolldatei (lsiexport.log) erstellt. Falls die Datei bereits besteht, wird durch den Export der Protokolldatei die bestehende Protokolldatei überschrieben.

ANMERKUNG: Controller ohne Cache können keine Protokolle speichern und Protokolldateien exportieren.

Exportieren der Controller-Protokolldatei

1. Wenn Sie bereit sind, klicken Sie auf Protokolldatei exportieren.
2. Um zu beenden, ohne die Controller-Protokolldatei zu exportieren, klicken Sie auf **Zurück zur vorhergehenden Seite**.

„Protokolldatei exportieren“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:

1. Erweitern Sie das Objekt **Speicher** in der Strukturansicht, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf **Informationen/Konfiguration**.
4. Wählen Sie den Task **Protokoll exportieren** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Sie können diesen Task auch über das Drop-Down-Menü **Controller-Eigenschaften ändern** finden.

Fremdkonfigurationsvorgänge

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Der Task **Fremdkonfigurationsvorgänge** liefert eine Vorschau der Fremdkonfigurationen, die Sie importieren können.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

ANMERKUNG: Der Tast **Fremdkonfigurationsvorgänge** ist nur auf PERC 6 und SAS-Controllern mit Firmware-Version 6.1 und höher verfügbar.

Eine Fremdkonfiguration sind Daten, die sich auf physischen Festplatten befinden, die von einem Controller zu einem anderen verschoben wurden. Virtuelle Festplatten, die sich auf umgesetzten physischen Festplatten befinden, werden als Fremdkonfiguration betrachtet.

ANMERKUNG: Es wird nicht empfohlen, ein externes Gehäusekabel zu entfernen, während das Betriebssystem auf dem System ausgeführt wird. Das Entfernen des Kabels könnte zu einer Fremdkonfiguration führen, wenn die Verbindung wiederhergestellt wird.

Der Task **Fremdkonfigurationsvorgänge** wird nur angezeigt, wenn ein Controller eine Fremdkonfiguration erkannt hat. Wählen Sie diese Option aus und klicken Sie auf **Ausführen**, um die Seite **Fremdkonfigurationsvorschau** anzuzeigen.

Die Seite **Fremdkonfigurationsvorschau** bietet eine Vorschau auf die fremden Festplatten und ermöglicht es Ihnen, Vorgänge wie Importe oder Löschen der Daten auf fremden Festplatten auszuführen. Sie können auch eine gesperrte Fremdkonfiguration importieren oder löschen.

Wenn eine Fremdkonfiguration erkannt wird, die mithilfe eines **lokalen Schlüsselmanagers** (Local Key Manager, LKM) gesperrt ist, dann wird die zugeordnete **Verschlüsselungsschlüssel-Identifizierung** angezeigt, die Sie auffordert, die entsprechende Passphrase einzugeben, um die Laufwerke freizugeben.

Wenn

Um das Freigeben von Fremdkonfigurationen zu vermeiden und mit der Vorschau, dem Import oder Löschen von nicht gesperrten Fremdkonfigurationen fortzufahren, klicken Sie auf **Überspringen** oder **Fortfahren**.

Wenn Sie die Fremdkonfigurationen nicht importieren oder löschen möchten oder wenn Sie die zugeordnete Passphrase der entsprechenden **Verschlüsselungsschlüsselidentifizierung** verloren haben, führen Sie den Task **Kryptografisches Löschen** für die physischen Festplatten durch.

VORSICHT: Das Durchführen des Tasks Kryptografisches Löschen löscht alle Daten auf der physischen Festplatte.

Einige Bedingungen, wie z. B. eine nicht unterstützte RAID-Stufe oder eine unvollständige Festplattengruppe, können den Import oder die Wiederherstellung von fremden virtuellen Festplatten verhindern.

Fremdkonfigurationseigenschaften

In der folgenden Tabelle werden die Eigenschaften aufgeführt, die für fremde Festplatten und globale Hotsares angezeigt werden.

Tabelle 12. Fremdkonfigurationseigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>- Normal/OK</td>
</tr>
<tr>
<td></td>
<td>- Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>- Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td>Name</td>
<td>Diese Eigenschaft zeigt den Namen der Fremdkonfiguration an und ist als Link verfügbar. Der Link ermöglicht Ihnen, auf die physischen Festplatten zuzugreifen, aus denen die fremde Festplatte besteht.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Diese Eigenschaft zeigt den aktuellen Status der Fremdkonfiguration an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>- Bereit – Die fremde Festplatte kann importiert werden und funktioniert nach dem Import normal.</td>
</tr>
<tr>
<td></td>
<td>- Herabgesetzt – Die fremde Festplatte befindet sich im herabgesetzten Zustand und wird nach dem Import neu erstellt.</td>
</tr>
<tr>
<td></td>
<td>- Fehlerhaft – Die fremde Festplatte ist fehlerhaft und kann nicht mehr betrieben werden. Die Fremdkonfiguration kann nicht importiert werden.</td>
</tr>
<tr>
<td></td>
<td>Die Fremdkonfiguration kann sich aus einem der folgenden Gründe in einem herabgesetzten oder fehlerhaften Zustand befinden:</td>
</tr>
<tr>
<td></td>
<td>- Fehlende physische Festplatte – Eine der physischen Festplatten fehlt auf der potentiellen virtuellen Festplatte oder ist nicht verfügbar.</td>
</tr>
<tr>
<td></td>
<td>- Fehlender Bereich – Einer oder mehrere Bereiche einer virtuellen Hybrid-Festplatte fehlen.</td>
</tr>
<tr>
<td></td>
<td>- Nicht unterstützte Konfigurationen auf der virtuellen Festplatte – Die virtuelle Festplatte verfügt über eine nicht unterstützte RAID-Stufe.</td>
</tr>
<tr>
<td></td>
<td>- Importieren und Exportieren – Die virtuellen Festplatten, die für den Import verfügbar sind, übersteigen die Anzahl an für den Export verfügbaren virtuellen Festplatten.</td>
</tr>
<tr>
<td></td>
<td>- Inkompatible physische Festplatte – Konfiguration auf der physischen Festplatte wird nicht von der RAID-Firmware erkannt.</td>
</tr>
<tr>
<td></td>
<td>- Waisentreiber – Eine physische Festplatte in der Fremdkonfiguration verfügt über Konfigurationsinformationen, die sich einer anderen physischen Festplatte anpassen, die bereits Teil eines Arrays ist (entweder ein fremdes oder systemeigenes Array).</td>
</tr>
<tr>
<td></td>
<td>ANMERKUNG: Sonstige anwendbare physische Tasks und Eigenschaften finden Sie unter Eigenschaften der physischen Festplatte oder des physischen Geräts und Tasks der physischen Festplatte oder des physischen Geräts.</td>
</tr>
<tr>
<td>Layout</td>
<td>Diese Eigenschaft zeigt die RAID-Stufe der Fremdkonfiguration an.</td>
</tr>
<tr>
<td>Bemerkungen</td>
<td>Liefert Informationen über die fremde virtuelle Festplatte. Wenn die virtuelle Festplatte nicht importiert werden kann, wird die Ursache des Fehlsprechens angezeigt.</td>
</tr>
<tr>
<td></td>
<td>- Fehlende physische Festplatte oder fehlender Bereich – Eine oder mehrere zu importierende(n) physische(n) Festplatte(n) oder Bereich(e) auf der virtuellen Festplatte fehlt bzw. fehlen.</td>
</tr>
<tr>
<td></td>
<td>- Nicht unterstützt – Die ausgewählte RAID-Stufe wird auf diesem Controller nicht unterstützt.</td>
</tr>
<tr>
<td></td>
<td>- Überholte physische Festplatten – Die physische Festplatte auf der zu importierenden virtuellen Festplatte verfügt über überholte Daten.</td>
</tr>
</tbody>
</table>
Tabelle 12. Fremdkonfigurationseigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedizierter Hotspare</td>
<td>Diese Eigenschaft zeigt an, ob die fremde Festplatte ein dedizierter Hotspare ist.</td>
</tr>
</tbody>
</table>

Basierend auf diesen Informationen zu Eigenschaften können Sie entscheiden, ob Sie die Fremdkonfiguration importieren, wiederherstellen oder löschen möchten.

Den Tasks „Fremdkonfigurationsvorgänge“ in Storage Management finden

Für SAS-Controller mit Firmware-Version 6.1:

1. Im Fenster *Server Administrator* in der System-Struktur erweitern Sie *Speicher*, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
4. Wählen Sie *Fremdkonfigurationsvorgänge* im Dropdown-Menü *Controller-Tasks*.
5. Klicken Sie auf *Auszuführen*.

Fremdkonfigurationen importieren

Manche Controller ermöglichen den Import einer Fremdkonfiguration, sodass die virtuellen Festplatten nach dem Umsetzen der physischen Festplatten nicht verloren gehen.

Sie können eine Fremdkonfiguration nur dann importieren, wenn sie eine virtuelle Festplatte enthält, die entweder den Zustand *Bereit* oder *Herabgesetzt* hat. In anderen Worten: Es müssen sämtliche virtuelle Festplatten vorhanden sein, doch wenn die virtuelle Festplatte eine redundante RAID-Stufe verwendet, dann sind die zusätzlichen redundanten Daten nicht erforderlich.

Wenn zum Beispiel die Fremdkonfiguration nur eine Seite einer Spiegelung auf einer virtuellen RAID 1-Festplatte enthält, befindet sich die virtuelle Festplatte im Zustand *Herabgesetzt* und kann importiert werden. Wenn andererseits die Fremdkonfiguration nur eine physische Festplatte enthält, die ursprünglich als RAID 5 mit drei physischen Festplatten konfiguriert wurde, gilt die virtuelle RAID 5-Festplatte als *Fehlerhaft* und kann nicht importiert werden.

Eine Fremdkonfiguration kann neben virtuellen Festplatten auch eine physische Festplatte enthalten, die auf einem Controller als Hotspare zugewiesen war und dann auf einen anderen Controller umgesetzt wurde. Der Task *Fremdkonfiguration importieren* importiert die neue physische Festplatte als Hotspare. Wenn die physische Festplatte auf dem vorhergehenden Controller ein dedizierter Hotspare war, die virtuelle Festplatte, der der Hotspare zugewiesen war, jedoch nicht mehr in der Fremdkonfiguration enthalten ist, wird die physische Festplatte als globaler Hotspare importiert.

Der Task *Fremdkonfiguration importieren* wird nur angezeigt, wenn der Controller eine Fremdkonfiguration erkannt hat. Durch Überprüfung des Zustands der physischen Festplatte können Sie auch feststellen, ob eine physische Festplatte eine Fremdkonfiguration (virtuelle Festplatte oder Hotspare) enthält. Wenn der Zustand der physischen Festplatte *Fremd* ist, dann enthält die physische Festplatte sämtliche oder einige Teile einer virtuellen Festplatte oder verfügt über eine Hotspare-Zuweisung.

Wenn Sie über eine unvollständige Fremdkonfiguration verfügen, die nicht importiert werden kann, können Sie die Option *Fremde Konfiguration löschen* verwenden, um die Freddaten auf den physischen Festplatten zu löschen.

ANMERKUNG: Mit dem Task Fremdkonfiguration importieren werden alle virtuellen Festplatten auf physischen Festplatten importiert, die dem Controller zugeordnet wurden. Wenn mehr als als eine fremde virtuelle Festplatte vorhanden ist, werden alle Fremdkonfigurationen importiert.

Importieren oder Wiederherstellungen von Fremdkonfigurationen

Der Wiederherstellungsvorgang versucht, die herabgesetzten, fehlerhaften oder fehlenden virtuellen Festplatten wieder in einen funktionsfähigen Zustand zu bringen. Eine virtuelle Festplatte kann sich in einem herabgesetzten, fehlerhaften oder fehlenden Zustand befinden, nachdem sie die Kommunikation mit dem Controller aufgrund eines Stromausfalles, einer defekten Kabelverbindung oder anderer Fehler verloren hat. Eine Neuerstellungs- oder Hintergrundinitialisierung kann automatisch beginnen, nachdem der Wiederherstellungsvorgang abgeschlossen ist.

Die Daten der virtuellen Festplatte stimmen eventuell nach der Wiederherstellung nicht mehr überein. Sie müssen die Daten der virtuellen Festplatten überprüfen, nachdem der Task *Fremdkonfiguration importieren/wiederherstellen* abgeschlossen ist.

In einigen Fällen sind die Daten der virtuellen Festplatte nicht vollständig und es ist nicht möglich, die virtuelle Festplatte erfolgreich wiederherzustellen.
Um eine Fremdkonfiguration zu importieren oder wiederherzustellen:
Klicken Sie auf Importieren/Wiederherstellen, um alle virtuellen Festplatten zu importieren oder wiederherzustellen, die sich auf der mit dem Controller verbundenen physischen Festplatte befinden.
Um zu beenden, ohne die Fremdkonfiguration zu importieren oder wiederherzustellen, klicken Sie auf Abbrechen.

„Fremdkonfiguration importieren oder wiederherstellen“ in Storage Management finden

Für SAS-Controller mit Firmware-Version 6.1 und höher:
1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf Ausführen.

Fremdkonfiguration löschen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

ANMERKUNG: Der Task Fremdkonfiguration löschen zerstört permanent alle Daten auf den physischen Festplatten, die dem Controller hinzugefügt werden. Wenn mehr als eine fremde virtuelle Festplatte vorhanden ist, werden all Konfigurationen gelöscht. Es ist daher vielleicht besser, die virtuelle Festplatte zu importieren als die Daten zu zerstören.

So lösen Sie eine Fremdkonfiguration:
Klicken Sie auf Fremdkonfiguration löschen, um alle virtuellen Festplatten zu löschen oder zu entfernen, die sich auf den physischen Festplatten befinden und die zum Controller hinzugefügt sind.
Um zu beenden, ohne die Fremdkonfiguration zu löschen, klicken Sie auf Abbrechen.

„Fremdkonfiguration löschen“ in Storage Management finden

Für SAS-Controller mit Firmware-Version 6.1 und höher:
1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf Ausführen.

Physische Festplatten in fremden virtuellen Festplatten

Auf der Seite **Physische Festplatten in fremden virtuellen Festplatten** werden die physischen Festplatten und der dedizierte Hotspare in der Fremdkonfiguration angezeigt (falls vorhanden).

In der folgenden Tabelle werden die Eigenschaften für physische Festplatten in der Fremdkonfiguration beschrieben.

Tabelle 13. Eigenschaften der physischen Festplatte

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td></td>
<td>- Normal/OK</td>
</tr>
<tr>
<td></td>
<td>- Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>- Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td>Name</td>
<td>Anzeige des Namens der physischen Festplatte. Der Name besteht aus der Konnektor-Nummer, gefolgt von der Festplattennummer.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den aktuellen Status der physischen Festplatte an.</td>
</tr>
<tr>
<td>Zustand nach dem Import</td>
<td>Zeigt den Zustand der physischen Festplatte nach dem Import an. Die physische Festplatte kann in einem der folgenden Zustände importiert werden:</td>
</tr>
<tr>
<td></td>
<td>- Online – Die physische Festplatte ist Teil der importierten virtuellen Festplatte und funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>- Offline – Die physische Festplatte ist nach dem Import auf die virtuelle Festplatte offline.</td>
</tr>
<tr>
<td></td>
<td>- Fremd – Die virtuelle Festplatte, welche die physische Festplatte enthält, kann nicht importiert werden und die physische Festplatte bleibt im fremdzustand.</td>
</tr>
<tr>
<td></td>
<td>- Neu erstellen – Nach dem Importieren der virtuellen Festplatte wird die physische Festplatte neu erstellt.</td>
</tr>
<tr>
<td>Kapazität</td>
<td>Zeigt die Kapazität der Festplatte an.</td>
</tr>
<tr>
<td>Fehler erwartet</td>
<td>Zeigt an, ob die physische Festplatte eine Self-Monitoring Analysis and Reporting Technology(SMART)-Warnung erhalten hat oder nicht und dementsprechend ob ein Fehler zu erwarten ist. Weitere Informationen zur vorhersehbaren SMART-Fehleranalyse finden Sie unter Überwachen der Festplattenzuverlässigkeit auf RAID-Controllern. Weitere Informationen zum Ersetzen einer physischen Festplatte finden Sie unter Ersetzen einer physischen Festplatte, die SMART Warnungen erhält.</td>
</tr>
<tr>
<td></td>
<td>Sie sollten auch das Warnungsprotokoll durchsehen, um festzustellen, ob die physische Festplatte Warnungen bezüglich einer SMART-Fehlervorhersage erstellt hat. Diese Warnungen können bei der Feststellung der Ursache der SMART-Warnung behilflich sein. Die folgenden Warnungen können als Reaktion auf eine Smart-Warnung erstellt werden:</td>
</tr>
<tr>
<td></td>
<td>- 2094</td>
</tr>
<tr>
<td></td>
<td>- 2106</td>
</tr>
<tr>
<td></td>
<td>- 2107</td>
</tr>
<tr>
<td></td>
<td>- 2108</td>
</tr>
<tr>
<td></td>
<td>- 2109</td>
</tr>
<tr>
<td></td>
<td>- 2110</td>
</tr>
<tr>
<td></td>
<td>- 2111</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen zu Warnnachrichten finden Sie im Server Administrator Meldungen-Referenzhandbuch.</td>
</tr>
<tr>
<td>Fortschritt</td>
<td>Zeigt den Fortschritt eines Vorgangs an, der auf der physischen Festplatte ausgeführt wird.</td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Busprotokoll</td>
<td>Anzeige der von der physischen Festplatte verwendeten Technologie. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>* SAS – Seriell Verbundenes SCSI</td>
</tr>
<tr>
<td></td>
<td>* SATA – Seriell erweiterte Technologieanführung (Serial Advanced Technology Attachment)</td>
</tr>
<tr>
<td>Geräteprotokoll</td>
<td>Zeigt das Geräteprotokoll des physischen Geräts an, z. B. Non-Volatile Memory Express (NVMe).</td>
</tr>
<tr>
<td>Zertifiziert</td>
<td>Zeigt an, dass das Laufwerk über Firmware verfügt, die vom Serviceanbieter getestet und vollständig qualifiziert wurde. Laufwerke, die nicht durch den Serviceanbieter zertifiziert wurden, funktionieren möglicherweise, werden jedoch nicht unterstützt und nicht für die Verwendung in Servern empfohlen.</td>
</tr>
<tr>
<td>Medien</td>
<td>Zeigt den Medientyp der physischen Festplatte an. Die möglichen Wert sind:</td>
</tr>
<tr>
<td></td>
<td>* Unbekannt – Storage Management kann den Datenträgertyp der physischen Festplatte nicht bestimmen.</td>
</tr>
<tr>
<td>Genutzter RAID-Festplattenspeicherplatz</td>
<td>Zeigt den Speicherplatz auf der physischen Festplatte an, der von virtualen Festplatten auf dem Controller genutzt wird. Diese Eigenschaft gilt nicht für physische Festplatten, die mit Nicht-RAID-Controllern verbunden sind.</td>
</tr>
<tr>
<td></td>
<td>Unter bestimmten Umständen wird unter Verwendeter RAID-Speicherplatz der Wert Null (0) angezeigt, obwohl eigentlich ein Teil der physischen Festplatte benutzt wird. Dies geschieht, wenn der genutzte Speicherplatz 0,005 GB oder weniger beträgt. Der Algorithmus für die Berechnung des genutzten Speicherplatzes rundet einen Wert von 0,005 GB oder weniger auf Null ab. Genutzter Speicherplatz zwischen 0,006 GB und 0,009 GB wird auf 0,01 GB aufgerundet.</td>
</tr>
<tr>
<td>Verfügbare RAID-Festplattenspeicherplatz</td>
<td>Zeigt die Größe des verfügbaren Speicherplatzes auf der Festplatte an. Diese Eigenschaft gilt nicht für physische Festplatten, die mit Nicht-RAID-Controllern verbunden sind.</td>
</tr>
<tr>
<td>Hotspare</td>
<td>Zeigt an, ob die Festplatte als ein Hotspare zugewiesen ist. Diese Eigenschaft gilt nicht für physische Festplatten, die mit Nicht-RAID-Controllern verbunden sind.</td>
</tr>
<tr>
<td>Hersteller-ID</td>
<td>Zeigt den Hardwarehersteller der Festplatte an.</td>
</tr>
<tr>
<td>Produkt-ID</td>
<td>Zeigt die Produkt-ID des Geräts an.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die Firmware-Version der physischen Geräte an.</td>
</tr>
<tr>
<td>Seriennummer</td>
<td>Zeigt die Seriennummer der Festplatten an.</td>
</tr>
<tr>
<td>Verhandelte Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die aktuelle verhandelte Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Maximale Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die funktionelle Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Herstellungstag</td>
<td>Zeigt den Tag des Monats an, an dem die physische Festplatte hergestellt wurde.</td>
</tr>
<tr>
<td>Herstellungwoche</td>
<td>Zeigt die Woche des Jahres an, an dem die physische Festplatte hergestellt wurde.</td>
</tr>
<tr>
<td>Herstellungsjahr</td>
<td>Zeigt das Jahr an, in dem die physische Festplatte hergestellt wurde.</td>
</tr>
<tr>
<td>Status nach Import</td>
<td>Zeigt den Status der physischen Festplatte an, nachdem die Fremdkonfiguration importiert worden ist. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>* Fremd</td>
</tr>
<tr>
<td></td>
<td>* Online</td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>● Offline</td>
<td>Zeigt an, ob die physische Festplatte eine selbstverschlüsselnde Festplatte (SED) ist. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>● Ersetzt</td>
<td>Zeigt an, ob die physische Festplatte zum Controller verschlüsselt ist. Mögliche Werte sind Ja und Nein. Für eine Nicht-SED lautet der Wert –.</td>
</tr>
<tr>
<td>● Neu erstellen</td>
<td>Zeigt die aktuell vereinbarte Übertragungsrate des physischen Geräts an.</td>
</tr>
</tbody>
</table>

Verschlüsselungsfähig

Zeigt an, ob die physische Festplatte eine selbstverschlüsselnde Festplatte (SED) ist. Mögliche Werte sind Ja und Nein.

Verschlüsselt

Zeigt an, ob die physische Festplatte zum Controller verschlüsselt ist. Mögliche Werte sind Ja und Nein. Für eine Nicht-SED lautet der Wert –.

Teilenummer

Zeigt die eindeutige Zuweisungsnnummer der Materialliste für eine physische Festplatte an. Die Zahlen 4 bis 8 stellen die Serviceanbieter-Teilenummer für das entsprechende Laufwerk dar.

Verhandelte Linkbreite der PCIe

Zeigt die funktionelle Linkbreite des physischen Geräts an.

Maximale Linkbreite der PCIe

Zeigt die aktuell vereinbarte Übertragungsrate des physischen Geräts an.

Hintergrundinitialisierungsraten einstellen

Unterstützt mein Controller diese Funktion? Siehe „Unterstützte Funktionen“.

Der Task **Hintergrundinitialisierungsraten einstellen** ändert den Umfang an Systemressourcen, die für den Task „Hintergrundinitialisierung“ bereitgestellt werden.

Die Hintergrundinitialisierungsraten, konfigurierbar zwischen 0% und 100%, repräsentiert den Prozentsatz der Systemressourcen, die für die Ausführung des Tasks „Hintergrundinitialisierung“ bereitgestellt werden. Bei 0% hat die Hintergrundinitialisierung die niedrigste Priorität für den Controller und dauert am längsten. Diese Einstellung hat den geringsten Einfluss auf die Systemleistung. Eine Hintergrundinitialisierungsrate von 0% bedeutet nicht, dass die Hintergrundinitialisierung gestoppt oder angehalten wird.

Bei 100% ist die Hintergrundinitialisierung die höchste Priorität für den Controller. Die Hintergrundinitialisierungszeit wird auf ein Minimum beschränkt und ist die Einstellung, die den größten Einfluss auf die Systemleistung hat.

Ändern der Controller-Hintergrundinitialisierungsrate

1. Geben Sie einen numerischen Wert in dem Textfeld **Neue BGI-Rate einstellen (0-100)** ein. Der Wert muss zwischen 0 und 100 liegen.
2. Klicken Sie auf **Änderungen anwenden**. Zum Beenden und Abbrechen Ihrer Änderungen klicken Sie auf **Zurück zur vorhergehenden Seite**.

„Hintergrundinitialisierungsrate“ in Storage Management finden

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf der Seite **Controller-Eigenschaften** auf **Informationen/Konfiguration**.
4. Wählen Sie den Task **Hintergrundinitialisierungsraten einstellen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Wählen Sie **Ausführen**. Sie können diesen Task auch über das Drop-Down-Menü **Controller-Eigenschaften ändern** finden.

Übereinstimmungsüberprüfungsrate einstellen

Unterstützt mein Controller diese Funktion? Siehe „Unterstützte Funktionen“.

Der Task **Übereinstimmungsüberprüfungsrate einstellen** ändert den Umfang an Systemressourcen, die für den Task „Übereinstimmungsüberprüfung“ bereitgestellt werden.

Die Übereinstimmungsüberprüfungsrate, konfigurierbar zwischen 0% und 100%, repräsentiert den Prozentsatz der Systemressourcen, die für die Ausführung des Tasks „Übereinstimmungsüberprüfungsrate“ bereitgestellt werden. Bei 0% hat die Übereinstimmungsüberprüfung...
die niedrigste Priorität für den Controller und dauert am längsten. Diese Einstellung hat den geringsten Einfluss auf die Systemleistung. Eine Übereinstimmungüberprüfungsrate von 0 % bedeutet nicht, dass die Übereinstimmungüberprüfung gestoppt oder angehalten wird. Bei 100 % ist die Übereinstimmungüberprüfung die höchste Priorität für den Controller. Die Übereinstimmungüberprüfungszeit wird auf ein Minimum beschränkt und ist die Einstellung, die den größten Einfluss auf die Systemleistung hat.

Ändern der Controller-Übereinstimmungsüberprüfungsrate

1. Geben Sie einen numerischen Wert in dem Textfeld Neue Übereinstimmungsüberprüfungsrate einstellen (0-100) ein. Der Wert muss zwischen 0 und 100 liegen.

„Set Check Consistency Rate“ in Storage Management finden

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Klicken Sie auf Ausführen.
 Sie können diesen Task auch über das Drop-Down-Menü Controller-Eigenschaften ändern finden.

Rekonstruktionsrate einstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Rekonstruktionsrate einstellen ändert den Umfang an Systemressourcen, die für den Task „Rekonstruieren“ bereitgestellt werden.

Der Task „Rekonstruieren“ baut die virtuelle Festplatte neu, nachdem Sie die RAID-Stufe geändert oder die virtuelle Festplatte auf eine andere Weise neu konfiguriert haben. Die Rekonstruktionsrate, konfigurierbar zwischen 0 % und 100 %, repräsentiert den Prozentsatz der Systemressourcen, die für die Ausführung des Task „Rekonstruieren“ bereitgestellt werden. Bei 0 % hat die Rekonstruktion die niedrigste Priorität für den Controller und dauert am längsten. Diese Einstellung hat den geringsten Einfluss auf die Systemleistung. Eine Rekonstruktionsrate von 0 % bedeutet nicht, dass die Rekonstruktion gestoppt oder angehalten wird. Bei 100 % hat die Rekonstruktion die höchste Priorität für den Controller und die Rekonstruierungsduer wird auf ein Minimum beschränkt. Diese Einstellung hat den größten Einfluss auf die Systemleistung.

Ändern der Controller-Rekonstruktionsrate

1. Geben Sie einen numerischen Wert in dem Textfeld Neue Rekonstruktionsrate einstellen (0-100) ein. Der Wert muss zwischen 0 und 100 liegen.

„Rekonstruktionsrate einstellen“ in Storage Management finden

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
5. Wählen Sie Ausführen.
 Sie können diesen Task auch über das Drop-Down-Menü Controller-Eigenschaften ändern finden.
Patrol Read-Modus einstellen

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im **HBA**-Modus ausgeführt werden, nicht unterstützt.

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Patrol Read stellt Festplattenfehler fest, um Festplattenfehler und Verlust oder Beschädigung von Daten zu vermeiden. Der Task **Patrol Read einstellen** wird nur auf Festplatten ausgeführt, die in einer virtuellen Festplatte verwendet werden oder Hotspares sind.

Der Task **Patrol Read einstellen** wird im Hintergrund ausgeführt. Wenn **Patrol Read-Modus einstellen** auf **Automatisch** gesetzt wird, wird Patrol Read eingeleitet, wenn der Controller eine Zeit lang im Leerlauf war und wenn keine weiteren Hintergrund-Tasks aktiv sind. Unter diesen Umständen verbessert die Patrol Read-Funktion auch die Systemleistung, da Festplattenfehler identifiziert und korrigiert werden können, während die Festplatte keine E/A-Aktivitäten aufweist.

Patrol Read wird unter den folgenden Umständen nicht auf einer physischen Festplatte ausgeführt:

- Die physikalische Festplatte ist nicht in einer virtuellen Festplatte eingeschlossen oder als Hotspare zugewiesen.
- Die physikalische Festplatte ist in einer virtuellen Festplatte enthalten, die gegenwärtig in eins der folgenden Verfahren eingebunden ist:
 - Neu erstellen
 - Neukonfiguration oder Neuaufbau
 - Hintergrundinitialisierung
 - Übereinstimmungsüberprüfung

Zusätzlich wird der Patrol Read bei hoher E/A-Aktivität unterbrochen und wieder aufgenommen, wenn die E/A-Aktivitäten fertig gestellt sind.

Einstellen des Patrol Read-Modus

Wählen Sie die gewünschte Patrol Read-Modus-Option. Die verfügbaren Optionen sind:

- **Automatisch** – Das Einstellen des Modus auf automatisch leitet den Patrol Read-Task ein. Wenn der Task abgeschlossen ist, wird er innerhalb eines vorgegebenen Zeitraums automatisch wieder ausgeführt. Auf einigen Controllern wird der Patrol Read-Task z. B. alle vier Stunden ausgeführt und auf anderen Controllern hingegen nur alle sieben Tage. Der Task „Patrol Read“ wird kontinuierlich auf dem System ausgeführt und startet von Neuem innerhalb eines vorgegebenen Zeitraums, nachdem eine Iteration des Task abgeschlossen ist. Wenn das System neu gestartet wird, während der Patrol Read-Task im **Auto**-Modus ausgeführt wird, beginnt Patrol Read von Neuem bei Null Prozent (0%). Wenn der Task „Patrol Read“ auf den **Auto**-Modus eingestellt ist, können Sie den Task nicht starten oder anhalten. Der **Auto**-Modus ist die Standardeinstellung.

 ANMERKUNG: Weitere Informationen dazu, wie oft der Patrol Read-Task ausgeführt wird, wenn er sich im automatischen Modus befindet, stehen in der Controller-Dokumentation zur Verfügung.

- **Manuell** – Ermöglicht Ihnen, den Task Patrol Read unter Verwendung Patrol Read starten und stoppen zu starten und zu stoppen. Durch die Einstellung des Modus auf **Manuell** wird der Task Patrol Read nicht eingeleitet. Wenn Sie den Patrol Read gestartet haben und das System neu gestartet wird, während Patrol Read im manuellen Modus ausgeführt wird, wird Patrol Read nicht neu gestartet.

- **Deaktiviert** – Verhindert, dass der Patrol Read-Task auf dem System ausgeführt wird.

„Patrol Read-Modus einstellen“ in Storage Management finden

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf der Seite **Controller-Eigenschaften** auf **Informationen/Konfiguration**.
4. Wählen Sie **Patrol Read-Modus einstellen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Sie können diesen Task auch über das Drop-Down-Menü **Controller-Eigenschaften ändern** finden.

Patrol Read starten und stoppen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
ANMERKUNG: Der Patrol Read-Vorgang wird auf Solid-State-Festplatten (SSDs) nicht unterstützt.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

Wenn der Patrol Read-Modus einstellen auf Manuell eingestellt ist, können Sie den Task Patrol Rad starten oder stoppen, während er ausgeführt wird.

Unter bestimmten Bedingungen kann der Task Patrol Read nicht ausgeführt werden.

So starten oder stoppen Sie den Patrol Read-Task:

1. Klicken Sie auf **Patrol Read starten** oder **Patrol Read stoppen**.

ANMERKUNG: Auf Hardware-Controllern der Familie PERC 9 und höher zeigt der Task **Patrol Read stoppen** Folgendes an: **Patrol Read abgebrochen** oder **Manuell gestoppt**. Auf Controllern, die älter als PERC 9 sind, zeigt der Task **Patrol Read stoppen** Folgendes an: **Patrol Read ist abgeschlossen**.

Um zu beenden, ohne Patrol Read zu starten oder zu stoppen, klicken Sie auf **Zurück zur vorhergehenden Seite**.

„Patrol Read starten und stoppen“ in Storage Management finden

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf der Seite **Controller-Eigenschaften** auf **Informationen/Konfiguration**.
4. Wählen Sie **Patrol Read starten** oder **Patrol Read stoppen** im Drop-Down-Menü **Verfügbare Tasks**.
5. Klicken Sie auf **Ausführen**.

Sie können diesen Task auch über das Drop-Down-Menü **Controller-Eigenschaften ändern** finden.

Controller-Eigenschaften ändern

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task **Controller-Eigenschaften ändern** bietet die Möglichkeit, mehrere Controller-Eigenschaften gleichzeitig zu ändern. Dieser Task steht nur auf SAS-Controllern mit der Firmwareversion 6.1 und höher zur Verfügung.

Sie können eine oder alle der folgenden Eigenschaften mit dem Task **Controller-Eigenschaften ändern** ändern:

- Neuerstellungsrate
- Hintergrundinitialisierungsrate
- Übereinstimmungsüberprüfungsrate
- Rekonstruktionsrate
- Übereinstimmungsüberprüfung bei Fehler abbrechen
- Rücksetzbares Hotspare
- Load-Balance
- Automatisches Ersetzen von Element bei vorhergesagtem Fehler
- Ansicht des redundanten Pfads
- Beständiger Hotspare

ANMERKUNG: Sie können diese Eigenschaften auch über die Befehlszeilenschnittstelle festlegen. Ausführlichere Informationen finden Sie im **Server Administrator Benutzerhandbuch zur Befehlszeilenschnittstelle**.

„Controller-Eigenschaften ändern“ in Storage Management finden

1. Wählen Sie im Fenster **Server Administrator** der System-Struktur **Speicher** aus.
2. Wählen Sie auf der Seite **Speicherinstrumententafel Controller-Eigenschaften ändern** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
3. Klicken Sie auf **Ausführen**.
„Controller-Eigenschaften ändern“ in Storage Management finden: Methode 2

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf der Seite **Controller-Eigenschaften** auf **Informationen/Konfiguration**.
4. Wählen Sie **Controller-Eigenschaften ändern...** im Dropdown-Menü **Controller-Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Strom der physischen Festplatte verwalten

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task **Strom der physischen Festplatte verwalten** ermöglicht Ihnen, den von den physischen Festplatten verbrauchten Strom zu verwalten.

ANMERKUNG: Der Task **Strom der physischen Festplatte verwalten** ist bei H330-Karten bei Herunterfahren der Hotspares und nicht konfigurierten Festplatten verfügbar. PERC H730P-, H730-, H740P- und H840-Karten unterstützen ebenso den Task **Strom der physischen Festplatte verwalten** mit den zusätzlichen Stromsparmodus-Optionen **Herunterfahren konfigurierter Festplatten** und **Automatisches Stromsparren bei Festplatten (Leerlauf C)**.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im **HBA**-Modus ausgeführt werden, nicht unterstützt.

Sie können die folgenden Modi zur Verwaltung des Stromverbrauchs aktivieren:

- **Ausbalancierter Stromsparmodus** – bietet gute Stromeinsparungen mit limitierter E/A-Latenz.
- **Maximaler Stromsparmodus** – bietet maximale Stromeinsparung für alle Festplatten.
- **Angepasster Stromsparmodus** – ermöglicht benutzerdefinierte Stromsparanpassungen. Wenn Sie diesen Strommodus auswählen, sind die Standardwerte bereits ausgefüllt. Sie können die Funktionen, die Sie aktivieren möchten, aus- oder abwählen. Wählen Sie **Quality of Service (QoS)** aus, um die Stromsparanpassungen für konfigurierte Festplatten durch das Festlegen einer **Startzeit** und eines **Zeitintervalls** für das Hochfahren anzupassen.

So aktivieren Sie die Funktion **Quality of Service (QoS):**

1. Wählen Sie **Angepasster Stromsparmodus**.
2. Wählen Sie **Aktivieren** bei der Option **Herunterfahren konfigurierter Festplatten** aus.

Eigenschaften in der Option Strom der physischen Festplatte verwalten

Die folgende Tabelle zeigt die Eigenschaften in der Option **Strom der physischen Festplatte verwalten** an:
Tabelle 14. Strom der physischen Festplatte verwalten (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitintervall für das Herunterfahren</td>
<td>Diese Eigenschaft stellt das Zeitintervall ein, nach dem die Hotspares und die nicht konfigurierten Festplatten heruntergefahren werden.</td>
</tr>
<tr>
<td>Servicequalität (QOS, Quality Of Service)</td>
<td></td>
</tr>
<tr>
<td>Aktivieren Sie die Einstellungen für die Diensteigenschaften</td>
<td>Wählen Sie dieses Kontrollkästchen aus, um die Startzeit und die Zeitspanne für den Hochfahrvorgang auf der virtuellen Laufwerksebene einzustellen.</td>
</tr>
<tr>
<td>ANMERKUNG: Diese Option ist nur dann verfügbar, wenn die Option Konfigurierte Festplatten herunterfahren ausgewählt ist.</td>
<td></td>
</tr>
<tr>
<td>Startzeit (Std.:Min.)</td>
<td>Zeigt die Startzeit des Batterielernzyklus an. Diese Option ist lediglich aktiviert, wenn das Kontrollkästchen Servicequalität-Einstellungen aktivieren ausgewählt ist.</td>
</tr>
</tbody>
</table>

Strom von unkonfigurierten physischen Festplatten und Hotspares verwalten

1. Wählen Sie Aktiviert für die Optionen Nicht konfigurierte Festplatten herunterfahren und Hotspares herunterfahren aus.

Strom der physischen Festplatten durch den angepassten Stromsparmodus zu verwalten

Um den Strom der physischen Festplatten durch den Angepassten Stromsparmodus zu verwalten:

1. Wählen Sie die Option Angepasster Stromsparmodus aus.

Den Strom der physischen Festplatten durch die Option QoS verwalten

Um den Strom der physischen Festplatten durch die Option QoS zu verwalten:

1. Wählen Sie die Option Angepasster Stromsparmodus aus.
2. Wählen Sie Aktiviert aus dem Dropdown-Menü Herunterfahren konfigurierter Festplatten aus.
3. Die Option Servicequalität (QoS, Quality of Service) ist aktiviert.
 - Geben Sie die Startzeit und einen Zeitintervall zum Hochfahren ein.

Verwalten des Zeitintervalls für die QoS-Option

Um das Zeitintervall für die QoS-Option auf der virtuellen Laufwerksebene zu verwalten:

1. Wählen Sie auf der Seite Servicequalität (QoS, Quality of Service) das Kontrollkästchen Servicequalität-Einstellungen aktivieren aus.
2. Stellen Sie die Startzeit ein.
 - Die Startzeit kann zwischen 1 bis 24 Stunden liegen.
ANMERKUNG: Die Option *Servicequalität-Einstellungen aktivieren* ist nur dann aktiviert, wenn die Option *Konfigurierte Laufwerke herunterfahren* aktiviert ist.

„Strom der physischen Festplatten verwalten“ in Storage Management finden

1. Im Fenster *Server Administrator* in der System-Struktur erweitern Sie *Speicher*, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
4. Wählen Sie *Strom der physischen Festplatte verwalten* aus dem Dropdown-Menü *Verfügbare Tasks* aus.
5. Klicken Sie auf *Ausführen*.

Verwalten von gesichertem Cache

Die Funktion *Gesicherten Cache verwalten* gibt Ihnen die Möglichkeit, die Controller-Cache-Daten zu ignorieren oder wiederherzustellen.

In der Rückschreibregel werden Daten in den Cache geschrieben, bevor diese auf die physische Festplatte geschrieben werden. Wenn die virtuelle Festplatte offline geht oder aus einem irgendeinem Grund gelöscht wird, gehen die Daten im Cache verloren.

Daten im Cache können ebenfalls bei einem unbeabsichtigtem Kabelfehler oder Stromausfall verloren gehen. Im Falle eines solchen Fehlers behält Storage Management die Daten, die in den gesicherten bzw. geänderten Cache geschrieben wurden, bis Sie die virtuelle Festplatte wiederherstellen oder den Cache löschen.

Diese Funktion ist nur bei SAS-Controllern mit Firmware-Version 6.1 und höher verfügbar.

Der Status des Controllers wird vom gesicherten Cache beeinflusst. Der Controller-Status wird als herabgesetzt angezeigt, wenn der Controller einen gesicherten Cache aufweist.

Sie können den gesicherten Cache nur verwerfen, wenn alle der folgenden Bedingungen zutreffen:

- Der Controller verfügt über keine Fremdkonfiguration. Wählen Sie *Klicken für Vorschau* aus, um Details der Fremdkonfiguration anzuzeigen. Siehe *Fremdkonfigurationsvorgänge*.
- Der Controller weist keine virtuellen Festplatten auf, die offline sind oder fehlen. Falls virtuelle Festplatten vorhanden sind, die offline sind oder fehlen, stellen Sie sicher, dass Sie ein Backup von diesen virtuellen Festplatten haben.
- Kabelverbindungen zu einer virtuellen Festplatte sind nicht unterbrochen.

Verschlüsselungsschlüssel

Der Controller verwendet den Verschlüsselungsschlüssel, um den Zugriff auf SED (Self Encryption Disks) freizugeben oder zu sperren. Sie können nur jeweils einen Verschlüsselungsschlüssel für jeden verschlüsselungsfähigen Controller erstellen.

Wenn Sie das LKM (Local Key Management) verwenden, müssen Sie den Verschlüsselungsschlüssel erstellen, indem Sie die Verschlüsselungsschlüssel-Identifizierung und die *Passphrase* angeben.

Verschlüsselungsschlüssel-Identifizierung

Eine Verschlüsselungsschlüssel-Identifizierung ist eine vom Benutzer erstellte Textkennzeichnung für die *Passphrase*. Die Identifizierung hilft Ihnen zu bestimmen, welche *Passphrase* Sie während der Authentifizierung für den Import von fremden verschlüsselten SED-Laufwerken eingeben müssen.
Passphrase

Eine Passphrase ist eine vom Benutzer erstellte Zeichenkette, mit der der Controller den Verschlüsselungsschlüssel erstellt.

ANMERKUNG: Weitere Richtlinien zu Verschlüsselungsschlüsseln und Passphrasen stehen durch Klicken auf das auf der Seite **Verschlüsselungsschlüssel verwalten** zur Verfügung.

Erstellen eines Verschlüsselungsschlüssels und Aktivieren von LKM

So erstellen Sie einen Verschlüsselungsschlüssel auf dem ausgewählten Controller:

1. Wählen Sie die Option **Lokale Schlüsselverwaltung (LKM) aktivieren** aus.
2. Geben Sie **Verschlüsselungsschlüssel-Kennung** ein.
 - Eine Verschlüsselungsschlüssel-Kennung kann Zahlen, Kleinbuchstaben, Großbuchstaben, nicht-alphanumerische Zeichen oder eine Kombination derselben enthalten.
 - **ANMERKUNG:** Die Richtlinien für die Kennung des Verschlüsselungsschlüssels und Passphrase können Sie aufrufen, indem Sie auf das auf der Seite klicken.
3. Geben Sie eine **Passphrase** ein.
 - Eine Passphrase muss mindestens eine Zahl, einen Kleinbuchstaben, einen Großbuchstaben und ein nicht-alphanumerisches Zeichen (außer Leerzeichen) enthalten.
 - **ANMERKUNG:** Server Administrator Storage Management gibt eine vorgeschlagene Passphrase unter dem Textfeld Passphrase an.
 - **VORSICHT:** Es ist wichtig zu verstehen, dass eine verlorene Passphrase nicht wiederhergestellt werden kann. Wenn Sie die mit der verlorenen Passphrase assoziierten physischen Laufwerke auf einen anderen Controller verschieben oder wenn der Controller fehlerhaft ist oder ersetzt wird, können Sie von diesem Laufwerk nicht auf Daten zugreifen.
 - **ANMERKUNG:** Wenn die Verschlüsselungsschlüssel-Kennung oder Passphrase Sonderzeichen enthält wie &. <, und >, werden sie in der Datei als & " < und > geschrieben.
 - **ANMERKUNG:** Sollte das System während des Erstellens der Datei abstürzen, wird die Sicherungsdatei am festgelegten Speicherort gespeichert.
5. Markieren Sie das Kontrollkästchen, um anzugeben, dass Sie die Auswirkungen des Verwendens einer Passphrase verstehen und klicken Sie auf **Änderungen anwenden**.
 - Auf der Controller-Seite Informationen/Konfiguration ist Verschlüsselungsschlüssel vorhanden auf „Ja“ eingestellt und der Verschlüsselungsmodus auf LKM.

Verschlüsselungsschlüssel ändern oder löschen

Sie können den Verschlüsselungsschlüssel eines Controllers ändern, wenn der Controller bereits über einen konfigurierten Verschlüsselungsschlüssel verfügt. Sie können einen Verschlüsselungsschlüssel für verschlüsselte Controller nur dann löschen, wenn keine verschlüsselten virtuellen Laufwerken vorhanden sind.

Um den Verschlüsselungsschlüssel zu ändern, geben Sie die **neue Kennung des Verschlüsselungsschlüssels** und Passphrase ein. Sie werden dazu aufgefordert, die aktuelle Passphrase zu authentifizieren. Stellen Sie sicher, dass Sie die Anmerkung über die Wichtigkeit von Passphrasen und über die Folgen einer Nichtspeicherung derselben lesen, bevor Sie die Änderungen anwenden.

Wenn Sie den Verschlüsselungsschlüssel ändern, wird die bestehende Controller-Konfiguration zur Verwendung des neuen Verschlüsselungsschlüssels aktualisiert. Wenn Sie zu einem früheren Zeitpunkt irgendwelche verschlüsselten Laufwerke entfernt haben, müssen Sie sich mit der alten Passphrase authentifizieren, um die verschlüsselten Laufwerke zu importieren.

Wenn der Verschlüsselungsschlüssel geändert wird, können Sie die Dateidetails im angegebenen Systemspeicherort speichern, wenn das Kästchen Escrow aktiviert ist. Wenn Sie die Verschlüsselungsschlüssel-Anmeldeinformationen für einen Controller bereits gespeichert

Wenn das Kontrollkästchen Escrow nicht aktiviert ist, wird die Datei für zukünftige Bezugnahmen nicht erstellt.

Verschlüsselungsschlüssel verwalten

1. **ANMERKUNG:** Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.
2. **ANMERKUNG:** Zum Konfigurieren der Verschlüsselung ist keine SED erforderlich. Die Verschlüsselungseinstellungen werden zum Konfigurieren der virtuellen Festplatte und der SED verwendet.
3. **ANMERKUNG:** Wenn auf Controllern die Verschlüsselung deaktiviert ist, aktivieren Sie die Verschlüsselung für virtuelle Festplatten, die mithilfe von SED-Laufwerken erstellt wurden, manuell. Auch wenn die virtuelle Festplatte erstellt wird, nachdem auf einem Controller Verschlüsselung aktiviert worden ist, muss zum Erstellen einer verschlüsselten virtuellen Festplatte die Verschlüsselungsoption noch vom Erweiterten Assistenten während der Erstellung einer virtuellen Festplatte ausgewählt werden.

Auf einem verschlüsselungsfähigen Controller ermöglicht Ihnen der Task Verschlüsselungsschlüssel verwalten, die Verschlüsselung im LKM-Modus zu aktivieren. Wenn Sie das LKM aktivieren, können Sie für einen verschlüsselungsfähigen Controller einen Verschlüsselungsschlüssel erstellen. Wenn das Kontrollkästchen Escrow aktiviert ist, wird die Datei an einem bestimmten Speicherort für die spätere Verwendung gespeichert. Sie können den Verschlüsselungsschlüssel auch ändern oder löschen.

1. **ANMERKUNG:** Dieser Task steht nur auf PERC H7xx-, H8x0- und PERC FD33xD-Controllern zur Verfügung.

Verwalten des Verschlüsselungsschlüssel-Tasks in Storage Management

So rufen Sie den Task „Verschlüsselungsschlüssel verwalten“ in Storage Management auf:

1. Wählen Sie im Fenster Server Administrator der System-Struktur Speicher aus.
2. Im Drop-Dow-Menü rufen Sie Speicherinstrumententafel > Verfügbare Tasks > Verschlüsselungsschlüssel verwalten... auf.

Verwalten des Verschlüsselungsschlüssel-Tasks in Storage Management – Methode 2

Sie können den Task Verschlüsselungsschlüssel verwalten in Storage Management auch auf diese Weise aufrufen:

1. Erweitern Sie das Objekt Speicher in der Strukturanzsicht, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein verschlüsselungsfähiges Controller-Objekt aus.
5. Klicken Sie auf Ausführen.

Wenn der Controller verschlüsselungsfähig ist und kein Verschlüsselungsschlüssel vorhanden ist, wird die Seite Verschlüsselungsschlüssel erstellen angezeigt. Andernfalls erscheint die Seite Verschlüsselungsschlüssel ändern oder löschen.

In Nicht-RAID-Festplatten konvertieren

Auf unterstützten PERC-Adaptoren:

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

1. **ANMERKUNG:** Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie das Controller-Objekt aus.
 Es werden die Festplatten mit dem Status Bereit angezeigt.
5. Wählen Sie die Festplatten aus, die Sie ändern möchten.
 Es wird die Benachrichtigung das die Festplatten konvertiert wurden, angezeigt.

In RAID-fähige Festplatten konvertieren

Auf unterstützten PERC-Adaptern:

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie das Controller-Objekt aus.
4. Wählen Sie im Drop-Down-Menü der Controller-Tasks den Task In RAID fähige-Festplatten konvertieren aus.
 Die Nicht-RAID-Festplatten werden angezeigt.
5. Wählen Sie die Festplatten aus, die Sie ändern möchten.
 Es wird eine Benachrichtigung angezeigt, dass die Festplatten konvertiert wurden.

ANMERKUNG: Dieser Vorgang wird nicht von PERC 10 Controllern unterstützt.

Ändern des Controller-Modus

Sie können den Controller-Modus in den Modus „Redundant Array of Independent Disks“ (RAID) oder „Hostbusadapter“ (HBA) ändern. Führen Sie zum Ändern des Controller-Modus die folgenden Schritte aus:

ANMERKUNG: Diese Option wird nur von Hardware-Controllern der Serie PowerEdge RAID Controller 9 (PERC 9) und später unterstützt.

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie das Controller-Objekt aus.
4. Wählen Sie im Dropdown-Menü Controller-Tasks Controller-Modus ändern... und klicken Sie dann auf Ausführen.
 Das Fenster Controller-Modus ändern wird angezeigt. Der Abschnitt Aktueller Controller-Modus zeigt den Modus für den Controller an – RAID, HBA oder Erweiterter HBA.
5. Wählen Sie RAID, HBA oder Erweiterter HBA aus dem Abschnitt Controller-Modus ändern aus und klicken Sie dann auf Änderungen anwenden.
6. Wenn Sie nach Klicken auf Änderungen anwenden eine der folgenden Fehlermeldungen erhalten, klicken Sie auf OK und anschließend auf Zurück zur vorherigen Seite. Deaktivieren oder entfernen Sie die in der Fehlermeldung aufgeführten Optionen und wiederholen Sie dann die Schritte 1 bis 5.
 - Der Controller läuft bereits im ausgewählten Modus. – Überprüfen Sie den Controller-Modus im Abschnitt Aktueller Controller-Modus, bevor Sie fortfahren.
 - Der Controller-Modus kann nicht geändert werden, solange eine Fremdkonfiguration auf dem Controller vorhanden ist. – Entfernen Sie alle fremden Konfigurationen und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

ANMERKUNG: Dies gilt nicht für den erweiterten HBA.
• Der Controller-Modus kann nicht geändert werden, solange ein beibehaltener Cache auf dem Controller vorhanden ist. – Entfernen Sie den beibehaltenen Cache und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

ANMERKUNG: Dies gilt nicht für den erweiterten HBA.

• Der Controller-Modus kann nicht geändert werden, solange virtuelle Festplatten auf dem Controller vorhanden sind. – Entfernen Sie alle virtuellen Festplatten und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

• Der Controller-Modus kann nicht geändert werden, solange Hot Spares auf dem Controller vorhanden sind. – Entfernen Sie alle Hot Spares und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

• Der Controller-Modus kann nicht geändert werden, solange dem Controller ein Sicherheitsschlüssel zugewiesen ist. – Entfernen Sie den Sicherheitsschlüssel und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

ANMERKUNG: Dies gilt nicht für den erweiterten HBA.

• Der Controller-Modus kann nicht geändert werden, solange ein oder mehrere Nicht-RAID-Laufwerke vorhanden sind. – Entfernen Sie alle Nicht-RAID-Laufwerke und wiederholen Sie dann die Schritte zum Ändern des Controller-Modus.

ANMERKUNG: Dies gilt für Controller, die im erweiterten HBA-Modus ausgeführt werden.

ANMERKUNG: Nach Durchführung der Änderungen am Controller unter „Controller-Modus ändern“ von RAID zu eHBA und umgekehrt lässt Storage Management die Ausführung von Konfigurationstätigkeiten solange nicht zu, bis der Server neu gestartet wird.

Zugehörige Links:

• Controller-Tasks

Automatische Konfiguration des RAID0-Betriebs

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Sie können diese Funktion verwenden, um automatisch alle physischen Festplatten mit dem Status **Bereit** mit virtuellen RAID-0-Festplatten zu konfigurieren. Diese Funktion wird nur auf Hardware-Controller der Produktfamilie PERC 9 und höher mit der neuesten Firmware-Version unterstützt.

ANMERKUNG: Bei der Durchführung eines automatischen Konfigurationsvorgangs von RAID 0 auf einem einzelnen Speicher-Controller ist die maximale Anzahl der unterstützten physikalischen Laufwerke 192. Nur physische Festplatten mit dem Status **Bereit** werden in virtuellen RAID-0-Festplatten konfiguriert.

Bevor Sie den Vorgang fortsetzen, rufen Sie die Details-Seite der physischen Festplatten auf und prüfen Sie, ob sich die physischen Festplatten im Status **Bereit** befinden. Um physische Festplatten in virtuelle RAID 0-Festplatten zu konfigurieren, führen Sie die folgenden Schritte aus:

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Wählen Sie das Controller-Objekt aus.
3. Klicken Sie auf der Seite **Controller-Eigenschaften** auf **Informationen/Konfiguration**.
4. Wählen Sie im Dropdown-Menü **Controller-Tasks** **RAID0 automatisch konfigurieren**, und klicken Sie dann auf **Ausführen**. Das Fenster **RAID 0 automatisch konfigurieren** wird angezeigt. Lesen Sie die Meldungen, die in diesem Fenster angezeigt werden, bevor Sie fortfahren.
5. Klicken Sie auf **Bestätigen**, um die physischen Festplatten zu konfigurieren.

Der automatische Konfigurationsvorgang kann einige Zeit in Anspruch nehmen, je nach Konfiguration und den verfügbaren physischen Festplatten mit dem Status **Bereit**. Der Vorgang **RAID 0 automatisch konfigurieren** ist nur dann erfolgreich abgeschlossen, wenn das **Warnungsprotokoll** aktualisiert wird. Überprüfen Sie das **Warnungsprotokoll** für weitere Informationen.

ANMERKUNG: Wenn keine physischen Festplatten mit dem Status **Bereit** vorhanden sind und Sie den Vorgang wiederholen, ignoriert der Vorgang „RAID 0 automatisch konfigurieren“ Ihre Anfrage ohne Anzeige einer Fehlermeldung. Weitere Informationen zu Warnmeldungen und Korrekturmaßnahmen finden Sie im Referenzhandbuch zu Server Administrator-Meldungen unter dell.com/openmanagemanuals.

Sperrmodus der Systemkonfiguration

Wenn sich der Server im Sperrmodus der Systemkonfiguration befindet, können Sie keinen Konfigurationsvorgang über die OMSS-GUI oder -CLI ausführen. Wenn dieser Modus eingestellt ist, können Sie die meisten Vorgänge im OMSS nicht ausführen, mit Ausnahme einiger Aufzählungs- oder Berichtsvorgänge.

ANMERKUNG: OMSS unterstützt kein Konfigurieren oder Einstellung des Sperrmodus über die GUI oder CLI. Sie müssen den Sperrmodus der Systemkonfiguration über die iDRAC-GUI oder ähnliche Anwendungen aktivieren.

ANMERKUNG: Wenn Sie den Data Manager-/Engine-Dienst nach Aktivieren des Sperrmodus der Systemkonfiguration neu starten, wird dies sofort auf der OMSS-Seite abgebildet. Möglicherweise müssen Sie die OMSS-GUI nach dem Neustart aktualisieren.

OMSS-CLI: Wenn sich das System im Sperrmodus der Systemkonfiguration befindet, sind nur die Tasks, die in der GUI verfügbar sind oder unterstützt werden, in der OMSS-CLI verfügbar oder werden darin unterstützt. Wenn Sie versuchen, einen nicht unterstützten Vorgang auszuführen, wird die folgende Fehlermeldung angezeigt.

‘Error! System Configuration Lockdown mode is turned ON. Configuration actions cannot be performed in this mode. Operation failed!!!’

Unterstützte globale Tasks bei aktiviertem Sperrmodus der Systemkonfiguration

<table>
<thead>
<tr>
<th>Name der globalen Tasks</th>
<th>PERC H730P / Adapter / Mini Monolith</th>
<th>PERC H740P / Adapter / Mini Monolith</th>
<th>PERC H330P - Adapter / Mini Monolith</th>
<th>PERC H840P - Adapter / Mini Monolith</th>
<th>PERC HBA330 Adapter / Mini Monolith</th>
<th>PERC HBA330 Adapter / Mini Monolith</th>
<th>PERC H345P Front / Adapter</th>
<th>PERC S140 Front / Adapter</th>
<th>PERC S150 HBA 345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnungsprotokoll überprüfen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Einstellen der Hotspare-Schutzregel</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>
Tabelle 15. Unterstützte globale Tasks bei aktiviertem Sperrmodus der Systemkonfiguration (fortgesetzt)

<table>
<thead>
<tr>
<th>Name des globalen Tasks</th>
<th>PERC H730P-Adapter/Mini Monolithic</th>
<th>PERC H740P-Adapter/Mini Monolithic</th>
<th>PERC H730 - Adapter/Mini Monolithic</th>
<th>PERC H840 - Adapter/Mini Monolithic</th>
<th>PERC HBA 330-Adapter/Mini</th>
<th>PERC HBA 330 P MX</th>
<th>PERC H745 P MX</th>
<th>PERC HBA 330 MX</th>
<th>PERC HBA 330 MMZ</th>
<th>PERC H745 P Front/Adapter</th>
<th>PERC S140</th>
<th>PERC S150</th>
<th>HBA 345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstellen des RRWE-Schwellenwer</td>
<td>Nein</td>
</tr>
<tr>
<td>Einstellen des Schwellenwer</td>
<td>Nein</td>
</tr>
</tbody>
</table>
Unterstützte Controller-Tasks bei aktiviertem Sperrmodus der Systemkonfiguration

Tabelle 16. Unterstützte Controller-Tasks bei aktiviertem Sperrmodus der Systemkonfiguration

<table>
<thead>
<tr>
<th>Controller - Task-Name</th>
<th>PERC H730 P-Adapter/Mini Monolithic</th>
<th>PERC H740 P-Adapter/Mini Monolithic</th>
<th>PERC H730 - Adapter/Mini Monolithic</th>
<th>PERC H840 - Adapter</th>
<th>HBA 330 Adapter/Mini</th>
<th>PERC 12-GBit/s-SAS-HBA</th>
<th>PERC H745 P MX</th>
<th>HBA 330 MX</th>
<th>HBA 330 MMZ</th>
<th>HBA 345</th>
<th>PERC H745 P Front/Adapter</th>
<th>PERC H345 Front/Adapter</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportieren des Protokolls</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Patrol Read starten</td>
<td>Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

ANMERKUNG: Wenn der Task **Patrol Read starten** vom Controller unterstützt wird, wird er auch im „Sperrmodus der Systemkonfiguration“ unterstützt.

Unterstützte Controller-Berichte bei aktiviertem Sperrmodus der Systemkonfiguration

Tabelle 17. Unterstützte Controller-Berichte bei aktiviertem Sperrmodus der Systemkonfiguration

<table>
<thead>
<tr>
<th>Controller - Bericht-Name</th>
<th>PERC H730 P-Adapter/Mini Monolithic</th>
<th>PERC H740 P-Adapter/Mini Monolithic</th>
<th>PERC H730 - Adapter/Mini Monolithic</th>
<th>PERC H840 - Adapter</th>
<th>HBA 330 Adapter/Mini</th>
<th>PERC 12-GBit/s-SAS-HBA</th>
<th>PERC H745 P MX</th>
<th>HBA 330 MX</th>
<th>HBA 330 MMZ</th>
<th>HBA 345</th>
<th>PERC 745 P Front und Adapter</th>
<th>PERC H345 Front und Adapter</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrol Read - Bericht anzeigen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmung</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 17. Unterstützte Controller-Berichte bei aktiviertem Sperrmodus der Systemkonfiguration (fortgesetzt)

<table>
<thead>
<tr>
<th>Controller-Bericht-Name</th>
<th>PERC H730 P-Adapter/Mini Monolithic</th>
<th>PERC H740 P-Adapter/Mini Monolithic</th>
<th>PERC H330 - Adapter/Mini Monolithic</th>
<th>PERC H840-Adapter/Mini Monolithic</th>
<th>HBA 330 Adapter/Mini</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>HBA 330 MMZ</th>
<th>HBA 330 MMZ</th>
<th>HBA 330 MX</th>
<th>HBA 330 MX</th>
<th>PERC 745P Front und Adapter</th>
<th>PERC H345 Front und Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>berprüfung-Bericht anzeige</td>
<td>Ja</td>
</tr>
<tr>
<td>Steckplatzbelegung report anzeige</td>
<td>Ja</td>
</tr>
<tr>
<td>Firmeware-Versions-Bericht für physische Festplatte anzeige</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Unterstützte Tasks der physischen Festplatte bei aktiviertem Sperrmodus der Systemkonfiguration

Tabelle 18. Unterstützte Tasks der physischen Festplatte bei aktiviertem Sperrmodus der Systemkonfiguration

<table>
<thead>
<tr>
<th>Task - Name der physischen Festplatte</th>
<th>PERC H730 P-Adapter/Mini Monolithic</th>
<th>PERC H740 P-Adapter/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic</th>
<th>PERC H840-Adapter/Mini Monolithic</th>
<th>HBA 330 Adapter/Mini</th>
<th>12-GBit/s-SAS-HBA</th>
<th>PERC H345P Front und Adapter</th>
<th>PERC H345 Front und Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinken</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Blinken beginnen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

80 Controller
Tabelle 18. Unterstützte Tasks der physischen Festplatte bei aktiviertem Sperrmodus der Systemkonfiguration (fortgesetzt)

<table>
<thead>
<tr>
<th>Task - Name der physischen Festplatte</th>
<th>PERC H730-P-Adapter/Mini Monolithic</th>
<th>PERC H740-P-Adapter/Mini Monolithic</th>
<th>PERC H730-P-Adapter/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic</th>
<th>PERC H8-Adapter/Mini Monolithic</th>
<th>PERC 12-GBit/s-SAS-HBA</th>
<th>HBA 330 Adapter/Mini Monolithic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportieren des Protokolls</td>
<td>Nein</td>
</tr>
</tbody>
</table>

ANMERKUNG: Je nach dem RAID-Level ist der Task Übereinstimmungsüberprüfung für verschiedene PERC-Controller zulässig.

Tabelle 19. Unterstützte Tasks der virtuellen Festplatte bei aktiviertem Sperrmodus der Systemkonfiguration

<table>
<thead>
<tr>
<th>Task - Name der virtuellen Festplatte</th>
<th>PERC H730-P-Adapter/Mini Monolithic</th>
<th>PERC H740-P-Adapter/Mini Monolithic</th>
<th>PERC H730-P-Adapter/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic</th>
<th>PERC H8-Adapter/Mini Monolithic</th>
<th>PERC 12-GBit/s-SAS-HBA</th>
<th>HBA 330 Adapter/Mini Monolithic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übereinstimmungsüberprüfung</td>
<td>Ja</td>
</tr>
<tr>
<td>Blinken</td>
<td>Ja</td>
</tr>
<tr>
<td>Blinken beenden</td>
<td>Ja</td>
</tr>
</tbody>
</table>

ANMERKUNG: Je nach dem RAID-Level ist der Task Übereinstimmungsüberprüfung für verschiedene PERC-Controller zulässig.

Anzeigen der verfügbaren Reports

Zum Anzeigen eines Berichts:

1. Erweitern Sie das Objekt Speicher in der Strukturansicht, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus.
3. Klicken Sie auf **Informationen/Konfiguration**.
5. Klicken Sie auf **Ausführen**.

Verfügbare Reports

- Patrol Read-Bericht anzeigen
- Übereinstimmungsüberprüfungs-Bericht anzeigen
- Steckplatzbelegungsreport anzeigen
- Firmware-Version-Report für physische Festplatte anzeigen

Patrol Read-Report anzeigen

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

„**Patrol Read Report anzeigen“ in Storage Management finden

1. Klicken Sie im Fenster **Server Administrator** in der System-Struktur auf **Speicher**.
3. Klicken Sie auf **Ausführen**.

Übereinstimmungsüberprüfungs-Report anzeigen

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

„**Übereinstimmungsüberprüfungs-Report“ in Storage Management finden

1. Klicken Sie im Fenster **Server Administrator** in der System-Struktur auf **Speicher**.
3. Klicken Sie auf **Ausführen**.

Einstellen der Konfiguration mit redundantem Pfad

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Für redundante Pfade muss sich das Gehäuse im Modus **Vereint** befinden, aber spezifische Schnittstellenverbindungen sind nicht erforderlich. Eine Verbindung von jeglichen Controller-Schnittstellen zu jeglichen EMM **Ein** -Schnittstellen erstellt den redundanten Pfad solange zwei Kabel verwendet werden. „Redundanter Pfad“ wird aber auch dann weiterhin im Feld angezeigt, wenn der redundante Pfad entfernt wurde. Der redundante Pfad wird nur dann nicht länger angezeigt, wenn er in der Speicherverwaltung gelöscht wurde.

In einem linearen Verkabelungsszenario kann mehr als ein Gehäuse im redundanten Pfadmodus mit einem Controller verbunden sein. Sie können in einem linearen Verkabelte Gehäuse bis zu vier MD1400 und MD1420 mit einem PERC H840-Controller und einem SAS-12 Gbit/s-Adapter verbinden. Ein Beispiel für eine lineare Verkabelungskonfiguration (für PERC 6/E-Controller) finden Sie in der folgenden Abbildung:
Geht der Kommunikationskanal zwischen Konnektor und erstem Gehäuse verloren, geht die Konfiguration des redundanten Pfads an sich verloren. In diesem Fall wird der Funktionszustand des logischen Konnektors als kritisch angezeigt. Navigieren Sie zur Seite Informationen/Konfiguration des logischen Konnektors, um Details des Pfadzustands anzuzeigen. Eine kurze Zusammenfassung dieses Vorgangs finden Sie in der folgenden Tabelle:

Tabelle 20. Pfad zwischen Controller und Gehäuse 1

<table>
<thead>
<tr>
<th>Funktionszustand des logischen Konnektors</th>
<th>Pfad zwischen Controller und Gehäuse 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konnektor 0 (C0)</td>
<td>Konnektor 1 (C1)</td>
</tr>
<tr>
<td>✔️ Verfügbar</td>
<td>Verfügbar</td>
</tr>
<tr>
<td>✔️ Verfügbar</td>
<td>Unterbrochen</td>
</tr>
<tr>
<td>❌ Getrennt</td>
<td>Verfügbar</td>
</tr>
</tbody>
</table>

Wenn jedoch der Kommunikationskanal zwischen zwei beliebigen Gehäusen verloren geht, wird die Konfiguration des redundanten Pfads herabgesetzt, und der Funktionszustand des logischen Konnektors wird als herabgesetzt angezeigt. Eine kurze Zusammenfassung dieses Vorgangs finden Sie in der folgenden Tabelle.

Tabelle 21. Pfad zwischen Gehäuse n und Gehäuse n+1

<table>
<thead>
<tr>
<th>Funktionszustand des logischen Konnektors</th>
<th>Pfad zwischen Gehäuse n und Gehäuse n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konnektor 0 (C0)</td>
<td>Konnektor 1 (C1)</td>
</tr>
<tr>
<td>✔️ Verfügbar</td>
<td>Verfügbar</td>
</tr>
<tr>
<td>✔️ Verfügbar</td>
<td>Unterbrochen</td>
</tr>
<tr>
<td>❌ Getrennt</td>
<td>Verfügbar</td>
</tr>
</tbody>
</table>

Im oben genannten Szenario wird der Gehäusestatus im Warnmodus angezeigt. Durch Klicken auf Informationen/Konfiguration auf der Seite Gehäuse werden alle Gehäusekomponenten (EMMs, Lüfter, physische Festplatten, Netzteile und Temperatur) angezeigt, die in einem normalen Zustand sein sollten. Klicken Sie auf Informationen/Konfiguration des Gehäuses, um die Meldung Pfadfehler anzuzeigen, die darauf hinweist, dass das Gehäuse einen Kommunikationspfad um Controller verloren hat, was wiederum darauf hinweist, dass sich das Gehäuse nicht mehr im Modus des redundanten Pfads befindet.
Steckplatzbelegungsreport anzeigen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task **Steckplatzbelegungsreport anzeigen** erlaubt Ihnen, leere und eingenommene Steckplatzdetails von allen Gehäusen und Rückwandplatinen anzuzeigen. Er stellt eine Übersicht zur Verfügung, welche die Einnahme von Steckplätzen physischer Festplatten darstellt. Bewegen Sie die Maus über die einzelnen Steckplätze, um Details anzuzeigen, wie z. B. physische Festplatten-ID, Zustand und Größe.

Die dynamische Zuordnung von leeren MX5016s wirkt sich nicht auf das Laufwerk aus.

ANMERKUNG: Sie können den Gehäusenamen im Steckplatzbelegungsreport nicht unmittelbar nach dem Einsetzen des MX5016s anzeigen. Sobald das Einsetzen erfolgt ist, können Sie ihn nach einem Zeitraum von 10 bis 15 Minuten oder sofort nach einem Neustart der Dienste anzeigen.

Firmware-Version-Report für physische Festplatte anzeigen

ANMERKUNG: Diese Option wird auf PERC-Hardware-Controllern, die im **HBA**-Modus ausgeführt werden, nicht unterstützt.

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Firmware-Version-Report für physische Festplatte vergleicht die aktuelle Firmware mit einer Liste aktuell verfügbarer Firmware und Legacy-Treibermodellen.

ANMERKUNG: Zur Erstellung eines HDD-Firmware-Versions-Reports werden die ausgehandelte Geschwindigkeit und die Modellnummer der Laufwerke als Schlüssel für Indexeinträge in der `hddfwver.csv`-Datei verwendet. Sollte die ausgehandelte Geschwindigkeit des Controllers nicht verfügbar sein, wird die Modellnummer des Laufwerks als Schlüssel für Indexeinträge in der `hddfwver.csv`-Datei verwendet.

Sie können einen Report auf einer Basis pro Controller oder für das Speichersystem durchführen.

Klicken Sie für jeden Controller-Report auf Speicher > Controller > Informationen/Konfiguration > Verfügbare Reports > Firmware-Version-Report für physische Festplatte anzeigen > Ausführen

Wählen Sie für einen Speichersystem-Report Speicher > Informationen/Konfiguration > Globale Tasks > Firmware-Version-Report für physische Festplatte anzeigen > Ausführen

Sollten Sie nicht über die neusten Vergleichsdatei `hddfwver.csv` verfügen, kontaktieren Sie Ihren Dienstanbieter, um die neusten Vergleichsdatei herunterzuladen. Ersetzen Sie die existierende `hddfwver.csv`-Datei mit der neuen Datei unter dem folgenden Standort:

Auf Systemen, die Windows ausführen:

C:\Program Files (x86)\Dell\SysMgt\sm

wobei C:\Programmdateien ggf. je nach System unterschiedlich sein kann.

Auf Systemen, die Linux ausführen:

/opt/dell/srvadmin/etc/srvadmin-storage/hddfwver.csv

Auf Systemen, die ESXi ausführen:

/etc/cim/dell/srvadmin/srvadmin-storage/hddfwver.csv

Wenn die existierende Firmware für alle physischen Festplatten die neuste ist, wird die folgende Meldung angezeigt.

There are no physical disks available that require firmware update.

Eigenschaften des Firmwareversion-Reports der physischen Festplatte

Der Report zeigt Informationen für die Laufwerke die eine Firmwareaktualisierung benötigen, wie in der Tabelle unten gezeigt, an.
Tabelle 22. Eigenschaften des Firmwareversion-Reports der physischen Festplatte

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Zeigt den Nexus oder Standort jedes Laufwerks, das aktualisiert werden muss, an. Der Nexus wird als zwei- oder dreistellige Zuordnung des Laufwerkstandorts dargestellt. Beispiel: Zweistellige Zuordnung: 0:1 = Konnektor 1; Gehäuse 0 Dreistellige Zuordnung: 1:0:4 = Konnektor 1; Gehäuse 0; Steckplatz 4</td>
</tr>
<tr>
<td>Modellnummer</td>
<td>Zeigt die eindeutige Nummer, die den Laufwerken und Laufwerkskapazitäten eines spezifischen OEM-Herstellers zugeordnet sind, an.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die aktuell ausgeführte Firmwareversion auf einem spezifischen Laufwerk im System an.</td>
</tr>
<tr>
<td>Die neueste verfügbare Firmware-Version</td>
<td>Die Firmwareversion, die mit der Firmwareversion in der Vergleichsdatei verglichen wird.</td>
</tr>
<tr>
<td>DUP-Neustart erforderlich</td>
<td>Wenn das Feld auf Ja gesetzt ist, ist das [DUP]-Feld nicht leer. Es weist auf die Verfügbarkeit eines Online-DUPs hin. Das DUP kann durch eine ausführbare Datei zur Firmwarenutzlast gesendet werden, die Firmware wird aber erst nach dem nächsten Systemneustart an die Festplatte gebunden. Somit können Sie Eins-zu-n-Online-Bereitstellungen unter Verwendung von Anwendungen oder Scripts ausführen, die die ausführbare Datei starten können.</td>
</tr>
<tr>
<td>Teilenummer</td>
<td>Sollte ein Laufwerksfehler vorliegen, können Sie den Firmware-Version-Report für physische Festplatte anzeigen ausführen, um die Teilenummer des fehlerhaften Laufwerks herauszufinden und zu überprüfen, ob eines der Laufwerke eine Aktualisierung benötigt.</td>
</tr>
</tbody>
</table>
Unterstützung für PERC 9- und PERC 10-Hardware-Controller

Die neue PERC 9 und PERC 10-Hardware-Controller-Familie unterstützt die folgenden Verbesserungen im Bereich der Speicherlösungen:

- Unterstützung von virtuellen RAID-Level 10-Festplatten auf PERC 9- und PERC 10-Hardware-Controllern
- Unterstützung für Advanced Format-Festplattenlaufwerke mit 4-KB-Sektoren

ANMERKUNG: Die Reihenfolge der im Storage Management angezeigten Controller unterscheidet sich möglicherweise mit der Reihenfolge der in der Human Interface (HII) und PERC-Option-ROM angezeigten Controller. Die Reihenfolge der Controller führt zu keinerlei Einschränkungen.

Themen:

- Unterstützung von virtuellen RAID-Level 10-Festplatten auf PERC 9- und PERC 10-Hardware-Controllern
- Unterstützung für Advanced Format-Festplattenlaufwerke mit 4-KB-Sektoren

Unterstützung von virtuellen RAID-Level 10-Festplatten auf PERC 9- und PERC 10-Hardware-Controllern

RAID-Level 10 ist eine Lösung für Benutzer, die eine hohe Leistung und Redundanz für die schnellstmögliche Wiederherstellung bei einem Festplattenausfall benötigen. Auch wenn ein RAID-Level 10-Setup kostenintensiver in der Verwaltung ist, so bietet es doch zahlreiche Vorteile, da es die Eigenschaften von RAID-Level 1 und RAID-Level 0 kombiniert.

ANMERKUNG: Für das Setup von virtuellen RAID-Level 10-Festplatten mit PERC 9- und PERC 10-Hardware-Controllern sind mindestens 4 physische Festplatten und höchstens 256 physische Festplatten zulässig.

Sie können virtuelle RAID-Level 10-Festplatten auf PERC 9- und PERC 10-Hardware-Controllern erstellen, indem Sie die folgenden Assistenten verwenden:

- Schnell-Assistent
- Erweiterter Assistent

Verwandte Tasks

- Schnellassistent zur Erstellung von virtuellen Festplatten
- Erweiterter Assistent zur Erstellung von virtuellen Festplatten erstellen

Erstellung virtueller RAID-Level 10-Festplatten mit Uneven Span

Die Funktion zur Erstellung virtueller RAID-Level 10-Festplatten mit unregelmäßigem Span ist über die Benutzeroberfläche (User Interface, UI) und die Befehlszeilenschnittstelle (Command Line Interface, CLI) des Storage Managements verfügbar. Weitere Informationen zur Storage Management-CLI finden Sie im Server Administrator Benutzerhandbuch zur Befehlszeilenschnittstelle.
Basierend auf der minimalen (und geraden) Anzahl ausgewählter physischer Festplatten empfiehlt die Firmware des Hardware-Controllers der Reihe PERC 9 und höher das bevorzugte Span-Layout.

ANMERKUNG: Der Befehl zur Erstellung virtueller RAID-Level 10-Festplatten über die Storage Management-CLI bietet auf PERC 9- und PERC 10-Hardware-Controllern keine Unterstützung für den optionalen Parameter `spanlength`.

Der **Erweiterte Assistent** bietet auf Hardware-Controllern der Reihe PERC 9 und höher für die Erstellung virtueller RAID-Level-10-Festplatten keine Option zur Auswahl der Span-Länge.

Das Span-Layout für die virtuelle RAID-Level-10-Festplatte, das von dem Schnell-Assistenten auf Hardware-Controllern der Reihe PERC 9 und höher erstellt wurde, nutzt das Span-Layout gemäß der Empfehlung durch die Firmware des Hardware-Controllers der Reihe PERC 9 und höher.

ANMERKUNG: Storage Management verwendet das vorgeschlagene Span-Layout der Hardware-Controller-Firmware von PERC 9 und höher für die Erstellung von virtuellen Festplatten mit RAID-Level 10.

Das durch die Firmware des Hardware-Controllers der Reihe PERC 9 und höher vorgeschlagene Span-Layout bleibt für einen gleichen Satz an physischen Festplatten unverändert.

Die Funktion **Intelligente Datenspiegelung** wird nicht auf PERC 9-Controllern oder höheren PERC-Controllern unterstützt.

Bei der Erstellung einer virtuellen Festplatte werden bei Verwendung des **Erweiterten Assistenten** auf Hardware-Controllern der Reihe PERC 9 und höher die Informationen zum Span-Layout unter **Ausgewählte physische Festplatten** nicht angezeigt.

Bei der Erstellung virtueller RAID-Level-10-Festplatten auf Hardware-Controllern der Reihe PERC 9 und höher wird Uneven Spanning unterstützt.

Das Gruppieren von über den **Erweiterten Assistenten** für virtuelle RAID-Level-10-Festplatten ausgewählten physischen Festplatten wird auf Hardware-Controllern der Reihe PERC 9 und höher nicht unterstützt.

Wenn Sie eine Fremdkonfiguration von älteren Hardware-Controllern als PERC 9 auf neuen Hardware-Controllern der Reihe PERC 9 und höher importieren, bleibt das Span-Layout für virtuelle RAID-Level-10-Festplatten gleich.

Wenn Sie eine Fremdkonfiguration für virtuelle RAID-Level-10-Festplatten von Hardware-Controllern der Reihe PERC 9 und höher auf anderen Hardware-Controllern der Reihe PERC 9 und höher importieren, ändert sich das Span-Layout nicht.

ANMERKUNG: Der Import einer Fremdkonfiguration von Hardware-Controllern der Reihe PERC 9 und höher auf Hardware-Controllern, die älter als PERC 9 sind, wird nicht unterstützt (mit Ausnahme von virtuellen RAID-Level-10-Festplatten).

Verwandte Tasks

- Schnellassistent zur Erstellung von virtuellen Festplatten
- Erweiterter Assistent zur Erstellung von virtuellen Festplatten erstellen

Unterstützung für Advanced Format-Festplattenlaufwerke mit 4-KB-Sektoren

Seit der Einführung der Unterstützung für Hardware-Controller der Produktfamilie PERC 9 und höher in Storage Management können Benutzer, die Legacy-Festplattenlaufwerke mit 512-B-Sektoren verwenden, jetzt auf Advanced Format-Festplattenlaufwerke mit 4-KB-Sektoren umsteigen. Festplattenlaufwerke mit 4-KB-Sektoren sind in der Verwendung der Massenspeicher-Oberflächendatenträger durch die Kombination von Daten effizienter, indem Daten in einem Sektor von 4.096 B (4KB) kombiniert werden, die sonst in acht 512-B-Sektoren gespeichert worden wären. Diese Datenkombinierungsfunktion bei Festplatten mit 4-KB-Sektoren verbessert die Effizienz und Fehlerberichtigungsfunktionalität.

Storage Management unterstützt die Erstellung virtueller Festplatten auf Festplattenlaufwerken mit 4-KB-Sektoren, die mit Hardware-Controllern der Reihe PERC 9 und höher verbunden sind.

ANMERKUNG: Festplattenlaufwerke mit 4-KB-Sektoren werden auf Hardware-Controllern älter als PERC 9 nicht unterstützt. Wenn das Festplattenlaufwerk mit 4-KB-Sektoren mit einem älteren Hardware-Controller als PERC 9 verbunden ist, wird das Festplattenlaufwerk mit 4-KB-Sektoren als **Nicht unterstützt** angezeigt.

Wenn Sie eine virtuelle Festplatte unter Verwendung des **Erweiterten Assistenten** erstellen, können Sie den physischen Datenträger aus der Dropdown-Liste **Sektorgröße** auswählen. Die folgenden Optionen sind verfügbar:

- 512B
- 4 KB
Sie können für die Erstellung von virtuellen Festplatten nicht gleichzeitig Festplatten mit 4-KB-Sektoren und Festplatten mit 512-B-Sektoren verwenden, da das Mischen von Festplattenlaufwerkssektoren in Storage Management nicht zulässig ist.

ANMERKUNG: Wenn das System Festplattenlaufwerke mit 512e-Sektoren enthält, werden die Festplatten mit 512e-Sektoren als Festplatten mit 512B-Sektoren erkannt/aufgeführt und folgen dem Verhalten der Festplatten mit 512B-Sektoren.

Hotspare-Überlegungen – Festplattenlaufwerke mit 4-KB-Sektoren

Im Folgenden werden die Hotspare-Überlegungen (dedizierte und globale Hotspares) für auf Hardware-Controller der Reihe PERC 9 und höher unterstützte Festplattenlaufwerke mit 4-KB-Sektoren aufgeführt:

- Festplatten mit 4-KB-Sektoren können nicht als dediziertes Hotspare für virtuelle Laufwerke verwendet werden, die sie mit 512-B-Sektoren-Laufwerken erstellt wurden und umgekehrt.
- Festplatten mit 4-KB-Sektoren können nicht als globale Hotspare-Laufwerke zugewiesen werden, falls das erstellte virtuelle Laufwerk nur aus Festplatten mit 512-B-Sektoren besteht und umgekehrt.
- Festplatten mit 4-KB-Sektoren können als globale Hotspare-Laufwerke zugewiesen werden, falls in den erstellten virtuellen Laufwerken Festplatten mit 4-KB-Sektoren und Festplatten mit 512-B-Sektoren vorhanden sind und umgekehrt.

ANMERKUNG: Wenn Sie diese Maßnahme durchführen, wird eine Warnmeldung angezeigt.

Verwandte Tasks

- Erweiterter Assistent zur Erstellung von virtuellen Festplatten erstellen

Überlegungen zur Neukonfiguration – Festplattenlaufwerke mit 4-KB-Sektoren

Festplattenlaufwerke mit 4-KB-Sektoren können nicht mit aus Festplattenlaufwerken mit 512-B-Sektoren bestehenden virtuellen Laufwerken umkonfiguriert werden und umgekehrt.
Unterstützung für BOSS-S1 RAID-Controller

Alle Betriebssysteme, die mit OM 9.0.1 oder höher kompatibel sind, werden von Boss-S1 RAID-Controllern unterstützt.

BOSS-S1 RAID-Controller unterstützen die folgenden Aufzählungen und Überwachungsvorgänge:

- Die physischen Festplatten (M.2-Geräte) werden direkt an den Controller angeschlossen.
- Aufzählung der physischen Festplatten (M.2-Geräte) wird unterstützt.
- Aufzählung der virtuellen Festplatten auf M.2-Geräten wird unterstützt.

ANMERKUNG: Die Speicherverwaltung aktualisiert die M.2-Geräte-Firmware täglich um 12:00 Uhr.

Die folgenden Tasks werden nicht unterstützt:

- Konfigurationsoptionen werden für diesen Controller nicht unterstützt.
- Gehäuse und Anschlüsse sind für den Controller nicht verfügbar.
- Vorgänge/Tasks physischer Festplatten werden für diesen Controller nicht unterstützt.
- Konfigurationsvorgänge, einschließlich Erstellung, Löschung, Neukonfiguration usw., werden für virtuelle Festplatten nicht unterstützt.
- Controller-Tasks werden nicht unterstützt.

ANMERKUNG: SAS-Adresse ist für M.2-Geräte nicht verfügbar.

Die folgenden Controller-Eigenschaften werden für diese Controller aufgeführt: ID, Status, Name, Steckplatz-ID, Zustand, Firmware-Version und Patrol Read-Rate.

ANMERKUNG: Obwohl die **Neuerstellungsrate** in der OM GUI und CLI angezeigt wird, sollte sie nicht berücksichtigt werden. Diese Eigenschaft wird nicht aufgeführt.

ANMERKUNG: Layout-Option ist für Nicht-RAID-Festplatten nicht verfügbar.

ANMERKUNG: Bei BOSS-S1 RAID-Controllern wird die physische Festplatte direkt an den Controller angeschlossen, da für diesen Controller kein Gehäuse oder Anschluss verfügbar ist.

ANMERKUNG: Konfigurationsvorgänge über OMSA werden für virtuelle Festplatten, physische Festplatten und Controller nicht unterstützt.
Gehäuse und Rückwandplatinen

Physische Festplatten können sich in einem Gehäuse befinden oder an die Rückwandplatine des Systems angeschlossen sind. Ein Gehäuse wird extern mit dem System verbunden, während die Rückwandplatine und deren physische Festplatten integriert sind.

Themen:
- Rückwandplatinen
- Gehäuse
- Gehäuseverwaltung
- Einen offenen Konnektor für das Gehäuse identifizieren
- Gehäusekomponenten

Rückwandplatinen

Flexible Rückwandplatinen-Verzonung

ANMERKUNG: Die flexible Rückwandplatinen-Verzonung kann nur über RACADM und nicht über Storage Management konfiguriert werden.

ANMERKUNG: Es ist eine Lücke von mindestens sechs Sekunden für Vorgänge zum Hinzufügen oder Entfernen von hot-plugfähigen Geräten erforderlich.

Gehäuse

ANMERKUNG: Bei dieser Funktion ist erforderlich, dass die physischen Geräte, die am Controller angeschlossen sind, über die neueste Firmware verfügen. Die neueste unterstützte Firmware können Sie von Ihrem Dienstanbieter erhalten.

Nachdem Sie einen Hotplug bei einem Gehäuse oder eine Neukonfiguration während des Betriebs durchgeführt haben, aktualisieren Sie die linke Struktur, um die Status- und Konfigurationsänderungen anzuzeigen; ein Systemneustart ist nicht erforderlich.

ANMERKUNG: Storage Management ermöglicht kein Entfernen von Gehäusen während des Betriebs. Sie müssen das System neu starten, damit diese Änderung in Storage Management wirksam wird.

ANMERKUNG: Es ist eine Lücke von mindestens sechs Sekunden für Vorgänge zum Hinzufügen oder Entfernen von hot-plug-fähigen Geräten erforderlich.

Wenn sich der Gehäusestatus geändert hat, benachrichtigt Sie Storage Management mit Warnungen, die im Warnungsprotokoll angezeigt werden.

Die folgenden Abschnitte enthalten weitere Informationen zu Gehäusekomponenten und Verwaltungsfunktionen, die in Storage Management enthalten sind:

- MX5016s
- Gehäuse physischer Festplatten
- Gehäuselüfter
- Gehäusenetzteile
- Gehäusetemperatursonden
- Gehäuseverwaltungsmodule (EMMs)
- Gehäuse- und Rückwandplatinenfunktionszustand
- Gehäuse- und Rückwandplatineneigenschaften und -Tasks

MX5016s

An den MX5016s angeschlossene Festplattenlaufwerke können PowerEdge Modular-Servern auf zwei Arten zugeordnet werden:

- **Steckplatzzuordnung:** Bei der Steckplatzzuordnung können Festplatten bestimmten PowerEdge Modular-Serversteckplätzen zugeordnet werden. Die Zuordnung des MX5016s auf Steckplatzebene ist von Rechnern aus möglich. Bei 1 Rechner und 3 MX5016s kann jeder beliebige einzelne Steckplatz jedes MX5016s dem Rechner zugeordnet werden. Storage Management ermittelt und listet nur die Steckplätze mit im MX5016s vorhandenen Festplatten.

 ANMERKUNG: Diese Version unterstützt Zuordnung auf Steckplatzebene.

- **Gehäuse-Zuordnung:** Bei der Gehäuse-Zuordnung ermittelt und listet Storage Management das vollständige Gehäuse.

 ANMERKUNG: Storage Management überwacht nicht den Bestand, wenn der MX5016s nicht den spezifischen PowerEdge Modular-Servern zugeordnet ist.

 ANMERKUNG: Storage Management listet keine Steckplatzinformationen, wenn keine dynamische Zuordnung oder Aufhebung der Zuordnung von leeren MX5016s oder Laufwerken vorhanden ist, bevor die dynamische Zuordnung oder Aufhebung der Zuordnung durchgeführt wird.

 ANMERKUNG: Bei vollständig bestücktem PowerEdge MX7000-Gehäuse braucht das Storage Management-System einige Minuten zum Laden der Speicherkomponenten.

 ANMERKUNG: Warten Sie beim Einstecken weiterer Festplatten während des Betriebs des MX5016 jedes Mal auf die Warnmeldung, um eine falsche Nummerierung zu vermeiden.
Gehäuse physischer Festplatten

Die physischen Festplatten des Gehäuses werden in der Strukturansicht unter dem Gehäuseobjekt angezeigt. Durch die Auswahl einer Festplatte in der Strukturansicht werden die Statusinformationen angezeigt.

Gehäuselüfter

Lüftereigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td></td>
<td>- Normal/OK</td>
</tr>
<tr>
<td></td>
<td>- Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>- Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Lüfternamen an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den Status des Controllers an. Mögliche Werte sind:</td>
</tr>
<tr>
<td></td>
<td>- Bereit – Der Lüfter funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>- Herabgesetzt - Der Lüfter-Controller hat einen Fehler gefunden und wird in einem herabgesetzten Zustand betrieben.</td>
</tr>
<tr>
<td></td>
<td>- Offline – Der Lüfter oder das Netzteil ist vom Gehäuse entfernt worden.</td>
</tr>
<tr>
<td></td>
<td>- Fehlend – Der Lüfter ist nicht im Gehäuse vorhanden.</td>
</tr>
<tr>
<td>Teilenummer</td>
<td>Diese Eigenschaft zeigt die Teilenummer des Lüfters an.</td>
</tr>
<tr>
<td></td>
<td>Diese Eigenschaft wird nicht für die 22xS-Gehäuse angezeigt, auf denen sich E.17-Firmware oder höher befindet.</td>
</tr>
</tbody>
</table>

Gehäusenetzteile

Netzteileigenschaften

Tabelle 24. Netzteileigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienskomponente dar.</td>
</tr>
<tr>
<td></td>
<td>✔️ – Normal/OK</td>
</tr>
<tr>
<td></td>
<td>🚫 – Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>⚠️ – Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des Netzteils an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den aktuellen Status des Netzteils an.</td>
</tr>
<tr>
<td></td>
<td>✔️ – Bereit – Das Netzteil funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>⚠️ – Herabgesetzt – Das Netzteil ist auf einen Fehler gestoßen und wird in einem herabgesetzten Zustand betrieben.</td>
</tr>
<tr>
<td></td>
<td>✔️ – Fehlend – Das Netzteil ist im Gehäuse nicht vorhanden.</td>
</tr>
<tr>
<td>Teilenummer</td>
<td>Diese Eigenschaft zeigt die Teilenummer des Netzteils an.</td>
</tr>
<tr>
<td></td>
<td>Diese Eigenschaft wird nicht für die 22xS-Gehäuse angezeigt, auf denen sich E.17-Firmware oder höher befindet.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Diese Eigenschaft zeigt die Firmware-Versionsnummer des Netzteils an.</td>
</tr>
</tbody>
</table>

Gehäusetemperatursonden

Der Fehlerschwellenwert ist ein Standardwert, der nicht geändert werden kann. Sie können jedoch den Warnungsschwellenwert einstellen.

Temperatursonden-Eigenschaften und -Tasks einstellen

Klicken Sie zum Starten des Assistenten zum Ändern des Warnungsschwellenwertes für die Temperatursonde auf Temperatursonde einstellen. Sie können die Warnungsschwellenwerte für jede der Temperatursonden im Gehäuse ändern.

Starten des Assistenten „Temperatursonde einstellen“

So starten Sie den Assistenten Temperatursonde einstellen:

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie das Gehäuseobjekt.
4. Wählen Sie das Objekt Temperaturen aus.
5. Klicken Sie auf Temperatursonde einstellen.
Temperatursonden-Eigenschaften und -Tasks

Tabelle 25. Temperatursonden-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td></td>
<td>– Normal/OK</td>
</tr>
<tr>
<td></td>
<td>– Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>– Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td>Name</td>
<td>Diese Eigenschaft zeigt den Namen der Temperatursonde an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den aktuellen Status der Temperatursonde an.</td>
</tr>
<tr>
<td></td>
<td>- Bereit – Die Temperatursonde funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>- Herabgesetzt – Die Temperatursonde ist auf einen Fehler gestoßen und wird in einem herabgesetzten Zustand betrieben.</td>
</tr>
<tr>
<td></td>
<td>- Fehlend – Die Temperatursonde ist im Gehäuse nicht vorhanden.</td>
</tr>
<tr>
<td></td>
<td>- Inaktiv – Die Temperatursonde ist im Gehäuse vorhanden, aber die von ihr überwachte EMM ist nicht installiert.</td>
</tr>
<tr>
<td>Lesen</td>
<td>Diese Eigenschaft zeigt die aktuelle Temperatur des Gehäuses an, die von der Temperatursonde gemeldet wurde.</td>
</tr>
<tr>
<td>Warnungsschwelle</td>
<td>Die Eigenschaften Minimum und Maximum zeigen die Temperaturen an, die zurzeit als Warnungsschwellenwerte eingestellt sind.</td>
</tr>
<tr>
<td>Fehlerschwelle</td>
<td>Die Eigenschaften Minimum und Maximum zeigen die Temperaturen an, die zurzeit als Fehlerschwellenwert eingestellt sind.</td>
</tr>
</tbody>
</table>
Gehäuseverwaltungsmodul

Die Gehäuseverwaltungsmodule (EMMs), die in dem Gehäuse installiert sind, werden unter dem EMMs-Objekt in der Strukturansicht angezeigt. Sie können das EMMs-Objekt auswählen, um die einzelnen EMM-Module und deren Statusinformationen anzuzeigen.

Das Gehäuse kann ein oder mehrere Module enthalten. Die EMM-Module überwachen die folgenden Komponenten des Gehäuses: Diese Komponenten umfassen:

- Lüfter
- Netzteile
- Temperatursonden
- Das Einlegen oder Entfernen einer physischen Festplatte
- Die LEDs auf dem Gehäuse

Wenn der Gehäusealarm aktiviert ist, löst das EMM den Alarm aus, wenn bestimmte Zustände eintreten. Weitere Informationen zum Aktivieren des Alarms und der Bedingungen, die den Alarm aktivieren, finden Sie unter Gehäusealarm aktivieren. Weitere Informationen zu EMMs finden Sie in der Dokumentation Ihrer Hardware.

Alle EMM-Module in dem Gehäuse müssen die gleiche Firmwareversion aufweisen. Die Eigenschaften der einzelnen EMM-Module können angezeigt werden, um die Firmwareversion zu überprüfen.

Überprüfen der EMM-Firmware-Version des Gehäuses

Unterstützt mein Controller diese Funktion? Siehe „Unterstützte Funktionen“.

Die Firmware der Gehäuseverwaltungsmodule (EMM) muss sich auf der gleichen Stufe wie das Gehäuse befinden. Der Status der EMMs wird als herabgesetzt angezeigt, wenn die EMM-Firmware nicht übereinstimmt.

Um die EMM-Firmware-Version zu überprüfen:

1. Klicken Sie im Fenster Server Administrator in der System-Struktur auf die Instrumententafel Speicher.
2. Erweitern Sie die Strukturansicht, bis das EMMs-Objekt angezeigt wird.

Informationen, die sich auf die Gehäuse EEMs beziehen, finden Sie unter Gehäuseverwaltungsmodule (EMMs).

EMM-Eigenschaften

Tabelle 26. EMM-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td>✔️ - Normal/OK</td>
<td></td>
</tr>
<tr>
<td>❗️ - Warnung/Nicht-kritisch</td>
<td></td>
</tr>
<tr>
<td>🚨 - Kritisch/Fehlgeschlagen/Fehler</td>
<td></td>
</tr>
<tr>
<td>🔴 - Unbekannt</td>
<td></td>
</tr>
<tr>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den EMM-Namen an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den gegenwärtigen Funktionszustand der EMMs an. Mögliche Werte sind:</td>
</tr>
<tr>
<td>• Bereit – Das EMM funktioniert normal.</td>
<td></td>
</tr>
<tr>
<td>• Herabgesetzt – Der EMM-Controller hat einen Fehler gefunden und wird in einem herabgesetzten Zustand betrieben.</td>
<td></td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fehlend</td>
<td>Das EMM ist im Gehäuse nicht vorhanden.</td>
</tr>
<tr>
<td>Nicht installiert</td>
<td>Das EMM ist im Gehäuse nicht vorhanden.</td>
</tr>
<tr>
<td>Teilenummer</td>
<td>Diese Eigenschaft zeigt die Teilenummer des EMM-Moduls an.</td>
</tr>
<tr>
<td>Typ</td>
<td>Diese Eigenschaft zeigt an, ob EMM ein SCSI SES-Modul oder ein SCSI-Abschlusswiderstand ist.</td>
</tr>
<tr>
<td></td>
<td>SCSI Terminator – Die SCSI-Abschlusswiderstandskarte wird nur verwendet, wenn das 220S oder 221S-Gehäuse nicht mit einem redundanten SCSI SES-Modultyp von EMM konfiguriert ist. In Systemen, die mit zwei SCSI SES-Modulen ausgestattet sind, wird die SCSI-Terminierung durch die EMMs ausgeführt.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Diese Eigenschaft weist auf die Firmware-Version hin, die auf dem EMM geladen ist. Alle EMM-Module im Gehäuse sollten die gleiche Firmware-Ebene besitzen.</td>
</tr>
<tr>
<td></td>
<td>ANMERKUNG: Für Systeme mit mehreren Rückwandplatinen erscheint die Firmware-Version als Versionen gegen und in Bandlaufrichtung.</td>
</tr>
<tr>
<td>SCSI-Geschwindigkeit</td>
<td>Diese Eigenschaft zeigt die maximale SCSI-Geschwindigkeit an, die das EMM in einem SCSI-Gehäuse unterstützt.</td>
</tr>
</tbody>
</table>

Gehäuse- und Rückwandplatinenfunktionszustand

Dieser Bildschirm zeigt den Status des Gehäuses oder der Rückwandplatine und deren angeschlossenen Komponenten an.

Gehäuse- und Rückwandplatineninformationen

Lesen Sie die folgenden Themen, um Informationen zu Gehäuse und Rückwandplatinen zu erhalten:

- Gehäuse und Rückwandplatinen
- Gehäuse- und Rückwandplatineneigenschaften
- Gehäuse- und Rückwandplatinen-Tasks

Gehäuse- und Rückwandplatinenkomponenten

Um Informationen zu angeschlossenen Komponenten zu erhalten, siehe Physische Festplatten oder physische Geräte.

Gehäuse- und Rückwandplatineneigenschaften und -Tasks

Sie können Informationen zum Gehäuse oder der Rückwandplatine und zur Ausführung von Gehäuse-Tasks anzeigen.
Zugehörrige Konzepte
Gehäuse- und Rückwandplatineneigenschaften auf Seite 97
Gehäuse- und Rückwandplatinen-Tasks auf Seite 98

Gehäuse- und Rückwandplatineneigenschaften

Tabelle 27. Gehäuse- und Rückwandplatineneigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Zeigt die ID des Gehäuses oder der Rückwandplatine an.</td>
</tr>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar. Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td></td>
<td>✔️ - Normal/OK</td>
</tr>
<tr>
<td></td>
<td>⚠️ - Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>⚠️ - Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td></td>
<td>ANMERKUNG: Wenn das Gehäuse mit dem Controller im redundanten Pfadmodus verbunden ist (siehe Redundante Pfadkonfiguration einstellen für weitere Informationen), kann, der Verlust der Verbindung zu einem EMM verursachen, dass der Gehäusezustand als herabgesetzt angezeigt wird.</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des Gehäuses oder der Rückwandplatine an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den Status des Gehäuses oder der Rückwandplatine an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Bereit – Das Gehäuse oder die Rückwandplatine funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>● Herabgesetzt – Der Controller hat einen Fehler gefunden und wird in einem herabgesetzten Zustand betrieben. Der herabgesetzte Zustand wendet sich nicht auf die Rückwandplatten an.</td>
</tr>
<tr>
<td></td>
<td>● Fehlerhaft – Das Gehäuse oder die Rückwandplatine ist auf einen Fehler gestoßen und funktioniert nicht mehr.</td>
</tr>
<tr>
<td>Ziel-ID</td>
<td>Zeigt die SCSI-ID der Rückwandplatine (Server-intern) oder das Gehäuse an, mit dem der Controller-Konnektor verbunden ist. Der Standardwert ist sechs.</td>
</tr>
<tr>
<td>Konfiguration</td>
<td>Zeigt den Modus an, in dem das Gehäuse betrieben wird. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Joined – Gibt an, dass das Gehäuse im Joined-Bus-Modus betrieben wird.</td>
</tr>
<tr>
<td></td>
<td>● Split – Gibt an, dass das Gehäuse im Split-Bus-Modus betrieben wird.</td>
</tr>
<tr>
<td></td>
<td>● Vereint – Gibt an, dass das Gehäuse im Vereint-Modus betrieben wird.</td>
</tr>
</tbody>
</table>
Tabelle 27. Gehäuse- und Rückwandplatineneigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wenn der Busconfigurationsschalter auf einem 220S- oder 221S-Gehäuse umgeschaltet wird, sollte das Gehäuse ausgeschaltet sein. Weitere Informationen finden Sie unter Modus der 220S- und 221S-Gehäuse ändern.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die Version der Gehäuse-Firmware an. [ANMERKUNG: Für Systeme, die mehrere Rückwandplatinen unterstützen, erscheint die Firmware-Version als Versionen gegen und in Bandlaufrichtung.]</td>
</tr>
<tr>
<td>Asset Tag</td>
<td>Anzeige der Systemkennnummer des Gehäuses. Sie können diese Eigenschaft unter Verwendung des Tasks Bestandsdaten festlegen ändern.</td>
</tr>
<tr>
<td>Rückwandplatinen-Teilenummer</td>
<td>Zeigt die Teilenummer des Gehäuses an.</td>
</tr>
<tr>
<td>Gehäuseteilenummer</td>
<td>Zeigt die Teilenummer des Gehäuses an.</td>
</tr>
<tr>
<td>Gehäusealarm</td>
<td>Zeigt an, ob der Gehäusealarm aktiviert oder deaktiviert ist.</td>
</tr>
</tbody>
</table>

Gehäuse- und Rückwandplatinen-Tasks

Zum Ausführen eines Gehäuse-Tasks vom Drop-Down-Menü:

1. Im Fenster Server Administrator unter der Systemstruktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Gehäuse-Objekt aus.
Gehäuse – Verfügbare Tasks

Gehäusetasks im Drop-Down-Menü sind:

- Den Gehäuse-Alarm aktivieren
- Den Gehäuse-Alarm deaktivieren
- Einstellen von Bestandsdaten
- Blinken der LED auf dem Gehäuse

Aktivieren des Gehäusealarms

Unterstützt mein Gehäuse diese Funktion? Siehe Unterstützte Funktionen.

Wählen Sie den Task **Alarm aktivieren**, um den Gehäusealarm zu aktivieren. Wenn der Alarm aktiviert ist, wird der akustische Alarm ausgelöst, wenn eines der folgenden Ereignisse stattfindet:

- Die Gehäusetemperatur hat den Warnungsschwellenwert überschritten.
- Ein Netzteil, Lüfter oder Gehäuseverwaltungsmodul (EMM) ist fehlerhaft.

Den Gehäuse-Alarm deaktivieren

Unterstützt mein Gehäuse diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task **Alarm deaktivieren**, um den Gehäusealarm zu deaktivieren. Wenn der Alarm deaktiviert ist, wird er nicht ausgelöst, wenn das Gehäuse einen Temperaturwarnungsschwellenwert überschreitet oder andere Fehlerzustände aufgetreten sind, wie z. B. ein fehlerhafter Lüfter, Netzteil oder Controller. Wenn der Alarm bereits ausgelöst wurde, kann er mit diesem Task ausgeschaltet werden.

Einstellen von Bestandsdaten

Unterstützt mein Gehäuse diese Funktion? Siehe Unterstützte Funktionen.

Ändern der Systemkennnummer und des Bestandsnamens eines Gehäuses

Um die Systemkennnummer und den Bestandsnamen des Gehäuses zu ändern:

1. Geben Sie die neue Systemkennnummer im Textfeld **Neue Systemkennnummer** ein. Sie können eine Inventarnummer bestimmen oder andere für Ihre Umgebung bedeutungsvolle Informationen eingeben. Die Systemkennnummer bezieht sich normalerweise auf die Gehäusehardware.

3. Klicken Sie auf **Änderungen anwenden**.

Zum Beenden und Abbrechen Ihrer Änderungen klicken Sie auf Zurück zur Seite "Gehäuseinformationen".

Zugehörige Konzepte

Einstellen von Bestandsdaten auf Seite 99

„Bestandsdaten einstellen“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Gehäuse-Objekt aus.
4. Klicken Sie auf **Informationen/Konfiguration**.
5. Wählen Sie **Bestandsdaten einstellen** aus dem Drop-Down-Menü **Gehäuse-Tasks** aus.
6. Klicken Sie auf **Ausführen**.

Blinken der LED auf dem Gehäuse

Unterstützt mein Gehäuse diese Funktion? Siehe **Unterstützte Funktionen**.

Einstellen der Temperatursondenwerte

Unterstützt mein Gehäuse diese Funktion? Siehe **Unterstützte Funktionen**.

Der Fehlerschwellenwert weist darauf hin, dass die Temperatur des Gehäuses den minimalen Warnungsschwellenwert unterschritten oder den maximalen Warnungsschwellenwert überschritten hat, welches zu Datenverlust führen könnte. Die Standardwerte für den Fehlerschwellenwert können nicht geändert werden.

Gehäusetemperatur des Gehäuses überprüfen

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Gehäusetemperatur überprüfen:
1. Klicken Sie im Fenster **Server Administrator** in der System-Struktur auf die Instrumententafel **Speicher**.
2. Erweitern Sie die Strukturansicht, bis das **Temperaturen**-Objekt angezeigt wird.
3. Wählen Sie das Objekt **Temperaturen** aus. Die von der Temperatursonde gemeldete Temperatur wird im rechten Teilefenster in der Spalte **Messwert** in Celsius angegeben.

Ändern des Warnungsschwellenwerts auf der Temperatursonde

Die Gehäusetemperatursonden sind in dem Abschnitt **Temperatursonden** aufgeführt. Um den Warnungsschwellenwert für die Temperatursonde zu ändern:
1. Wählen Sie die Sonden aus, die Sie ändern möchten.
2. Wählen Sie **Neue Werte einstellen** auf der Seite **Neue Temperatursondenwerte einstellen** aus.
3. Geben Sie die niedrigste akzeptable Temperatur in Celsius für das Gehäuse in das Textfeld **Minimaler Warnungsschwellenwert** ein. Die Textfeldkennzeichnung zeigt den zulässigen Bereich an, der festgelegt werden kann.
4. Geben Sie die höchste akzeptable Temperatur in Celsius für das Gehäuse in das Textfeld **Maximaler Warnungsschwellenwert** ein. Die Textfeldkennzeichnung zeigt den zulässigen Bereich an, der festgelegt werden kann.
5. Klicken Sie auf **Änderungen anwenden**.

Wenn Sie die Warnungsschwellenwerte zurücksetzen möchten, wählen Sie die Schaltfläche **Reset auf Standardwerte durchführen** aus und klicken Sie dann auf **Änderungen anwenden**. Die Standardwerte werden in den Textfeldern **Minimaler Warnungsschwellenwert** und **Maximaler Warnungsschwellenwert** angezeigt.

ANMERKUNG: Auf einigen Gehäusen stellt sich beim Storage Management eventuell eine kurze Verzögerung ein, bevor die aktuelle Gehäusetemperatur und der aktuelle Temperatursondenstatus angezeigt werden.

Temperatursondenwerte in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:
1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie ein **Konnektor**-Objekt.
4. Wählen Sie das Gehäuseobjekt aus.
5. Wählen Sie das Unterregister **Information/Konfiguration** aus.
6. Wählen Sie **Temperatursondenwerte einstellen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
7. Klicken Sie auf **Ausführen**.

Gehäuse- und Rückwandplatineneigenschaften und -Tasks

Sie können Informationen zum Gehäuse oder der Rückwandplatine und zur Ausführung von Gehäuse-Tasks anzeigen.

Zugehörige Konzepte

- Gehäuse- und Rückwandplatineneigenschaften auf Seite 97
- Gehäuse- und Rückwandplatinen-Tasks auf Seite 98

Verfügbare Reports

- Steckplatzbelegungsreport anzeigen

Steckplatzbelegungsreport anzeigen

ANMERKUNG: Diese Option wird auf PERC-Hardware-Controllern, die im **HBA**-Modus ausgeführt werden, nicht unterstützt, wenn das Laufwerk nicht zugeordnet ist.

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Der Task **Steckplatzbelegungsreport anzeigen** ermöglicht Ihnen die Anzeige der leeren Steckplätze, der belegten Steckplätze oder der Steckplätze, die aufgrund der Rückwandplatinenverzonung des ausgewählten Gehäuses aufgeteilt sind. Der Report bietet eine Übersicht, aus der die Belegung der Steckplätze physischer Laufwerke hervorgeht. Bewegen Sie die Maus über die einzelnen Steckplätze, um Details anzuzeigen, wie z. B. physische Festplatten-ID, Zustand und Größe.

Weitere Informationen über die flexible Rückwandplatinenverzonung finden Sie unter **Rückwandplatinen**.

„**Anzeige des Steckplatzbelegungsreports**“ in Speicherverwaltung finden

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Gehäuseobjekt aus.
4. Klicken Sie auf **Informationen/Konfiguration**.
5. Wählen Sie **Steckplatzbelegungsreport anzeigen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
6. Klicken Sie auf **Ausführen**.

Wenn die Rückwandplatine die flexible Rückwandplatinen-Verzonung unterstützt, werden nur die leeren bzw. belegten Steckplätze des Controllers, den Sie gerade anzeigen, angezeigt. Die Steckplätze des anderen Controllers sind grau unterlegt und für diese Steckplätze werden keine Informationen angezeigt. Weitere Informationen über die flexible Rückwandplatinen-Verzonung finden Sie unter **Rückwandplatinen**.

Modus der 220S- und 221S-Gehäuse ändern

Gehäuseverwaltung

Zusätzlich zu den Gehäuse-Tasks können die folgenden Aktivitäten für die Gehäuseverwaltung erforderlich sein.

- **Service-Tag-Nummer des Gehäuses identifizieren** – Um die Service-Tag-Nummer des Gehäuses zu identifizieren, wählen Sie das Gehäuse in der Strukturanzeige aus und klicken auf **Informationen/Konfiguration**. Die Seite **Informationen/Konfiguration** zeigt die Service-Tag-Nummer und andere Gehäuseeigenschaften an.

- **Vorbereitung einer physischen Festplatte zur Entfernung** – Der Task, der Ihnen die Vorbereitung der physischen Festplatte zur Entfernung ermöglicht, ist ein physischer Festplattenbefehl. Siehe Entfernen vorbereiten.

- **Fehlerbehebung** – Weitere Informationen zur Fehlerbehebung finden Sie unter Fehlerbehebung.

- **Die falsche physische Festplatte entfernen** – Sie können das Entfernen der falschen physischen Festplatte vermeiden, indem Sie die LED-Anzeige der Festplatte blinken lassen, die Sie zu entfernen beabsichtigen. Siehe Blinken und Blinken beenden (physische Festplatte).

- Wenn Sie die falsche physische Festplatte bereits entfernt haben, siehe:
 - Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte
 - Einen offenen Konnektor für das Gehäuse identifizieren

Einen offenen Konnektor für das Gehäuse identifizieren

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Wenn das Gehäuse nicht an einen offenen Konnektor angeschlossen wurde, müssen Sie eventuell einen Konnektor auf dem Controller identifizieren, der für diesen Zweck verwendet werden kann. So identifizieren Sie einen offenen Konnektor:

1. Im Fenster **Server Administrator** in der **Systemstruktur** erweitern Sie **Speicher**.
2. Erweitern Sie das Controller-Objekt.
 Die verfügbaren Konnektoren werden angezeigt. Diese Konnektoren sind nummeriert, wobei die erste Nummer null ist.

Gehäusekomponenten

Für Informationen zum Erweitern von Komponenten, siehe:

- Eigenschaften der physischen Festplatte oder des physischen Geräts
- EMM-Eigenschaften
- Lüftereigenschaften
- Netzteileigenschaften
- Temperatursonden-Eigenschaften und -Tasks
Steckplätze

Ein Controller enthält einen oder mehrere Steckplätze (Kanäle oder Schnittstellen), mit denen Festplatten verbunden werden können. Sie können extern auf einen Steckplatz zugreifen, indem Sie ein Gehäuse an das System anschließen (für externe Festplatten) oder indem Sie den Controller intern an eine Rückwandplatine des Systems anschließen (für interne Festplatten). Sie können die Steckplätze auf dem Controller anzeigen, indem Sie das Controllerobjekt in der Strukturansicht erweitern.

Themen:
- Kanalredundanz
- Erstellung einer kanalredundanten virtuellen Festplatte
- Konnektor-Funktionszustand
- Konnektor-Eigenschaften und -Tasks
- Logische Konnektor-Eigenschaften und -Tasks

Kanalredundanz

Sie können eine virtuelle Festplatte erstellen, die physische Festplatten verwendet, die mit verschiedenen Controller-Kanälen verbunden sind. Die physischen Festplatten können sich in einem externen Gehäuse oder in der Rückwandplatine (internes Gehäuse) befinden. Wenn die virtuelle Festplatte redundante Daten auf verschiedenen Kanälen in Stand hält, sind die virtuellen Festplatten kanalredundant. Kanalredundanz bedeutet, dass keine Daten verloren gehen, wenn einer der Kanäle ausfällt, da sich redundante Daten auf einem anderen Kanal befinden.

Kanalredundanz wird implementiert, indem physische Festplatten auf verschiedenen Kanälen ausgewählt werden, wenn der Erweiterte Assistent zur Erstellung von virtuellen Festplatten verwendet wird.

ANMERKUNG: Kanalredundanz bezieht sich nur auf Controller, die mehr als einen Kanal besitzen und mit einem externen Festplattengehäuse verbunden werden.

Erstellung einer kanalredundanten virtuellen Festplatte

ANMERKUNG: Kanalredundanz bezieht sich nur auf Controller, die mehr als einen Kanal besitzen und mit einem externen Festplattengehäuse verbunden werden.

In den folgenden Anleitungen wird beschrieben, wie eine virtuelle Festplatte erstellt wird, die Kanalredundanz verwendet.

1. Starten Sie den Erweiterten Assistent zur Erstellung von virtuellen Festplatten:
 a. Klicken Sie im Fenster Server Administrator in der System-Struktur auf die Instrumententafel Speicher.
 c. Wählen Sie das Objekt Virtuelle Festplatten und klicken Sie auf Zur Seite Assistent zum Erstellen von virtuellen Festplatten wechseln.
 d. Klicken Sie auf Erweiterter Assistent für virtuelle Festplatten.
2. Befolgen Sie die Schritte im Abschnitt Erweiterten Assistent zur Erstellung von virtuellen Festplatten.

Es gibt spezifische RAID-Stufen- und Konfigurationsanforderungen, um Kanalredundanz zu implementieren. Es muss die gleiche Anzahl von physischen Festplatten auf jedem verwendeten Kanal ausgewählt werden. Informationen zu der Anzahl der physischen Festplatten, die für verschiedene RAID-Stufen verwendet werden können, finden Sie unter Anzahl der physischen Festplatten pro virtueller Festplatte. Für Informationen zu Controller-spezifischen Umsetzungen, siehe Controller unterstützte RAID-Stufen.
Erstellen einer physischen Festplatte für kanalredundante virtuelle Festplatten auf PERC-Controllern

Die folgenden Abschnitte beschreiben das Erstellen einer kanalredundanten virtuellen Festplatte unter Verwendung von RAID 10 oder RAID 50 auf PERC-Controllern.

Eine kanalredundante virtuelle Festplatte unter Verwendung von RAID 10 erstellen

So erstellen Sie eine kanalredundante virtuelle Festplatte unter Verwendung von RAID 10:

1. Wählen Sie eine physische Festplatte auf jedem der beiden Kanäle aus.
2. Wählen Sie eine weitere Festplatte auf jedem der beiden Kanäle aus. Sie haben damit jetzt die Mindestanzahl von Festplatten für ein RAID 10 ausgewählt.
 Wiederholen Sie Schritt 2, bis Sie über die gewünschte Anzahl von Festplatten verfügen.
3. Klicken Sie auf Fortfahren, um die Erstellungen zu beenden.

Eine kanalredundante virtuelle Festplatte unter Verwendung von RAID 50 erstellen

So erstellen Sie eine kanalredundante virtuelle Festplatte unter Verwendung von RAID 50:

1. Wählen Sie eine physische Festplatte auf jedem der drei Kanäle aus.
2. Wählen Sie eine weitere Festplatte auf jedem der drei Kanäle aus. Sie haben damit jetzt die Mindestanzahl von Festplatten für ein RAID 50 ausgewählt.
 Wiederholen Sie Schritt 2, bis Sie über die gewünschte Anzahl von Festplatten verfügen.
3. Klicken Sie auf Fortfahren, um die Erstellungen zu beenden.

Konnektor-Funktionszustand

Controller-Informationen

Weitere Informationen über Controller finden Sie unter Controller

Konnektorkomponenten

Informationen zu verbundenen Komponenten finden Sie unter Gehäuse und Rückwandplatinen.

Konnektor-Eigenschaften und -Tasks

Verwenden Sie die Seite Konnektor-Eigenschaften- und Tasks, um Informationen über den Konnektor anzuzeigen und Konnektor-Tasks auszuführen.

Tabelle 28. Konnektor-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
</tbody>
</table>
Tabelle 28. Konnektor-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Zeigt die Konnektornummer an.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Anzeige des Konnektorstatus. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>● Bereit – Der Konnektor funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>● Beeinträchtigt – Am Controller ist ein Fehler aufgetreten und er</td>
</tr>
<tr>
<td></td>
<td>arbeitet in einem herabgesetzten Zustand.</td>
</tr>
<tr>
<td></td>
<td>● Fehlerhaft – Der Konnektor ist auf einen Fehler gestoßen und</td>
</tr>
<tr>
<td></td>
<td>funktioniert nicht mehr.</td>
</tr>
<tr>
<td>Konnektortyp</td>
<td>Zeigt an, ob der Konnektor im RAID- oder SCSI-Modus arbeitet. Abhängig</td>
</tr>
<tr>
<td></td>
<td>vom Controller-Typ kann der Konnektor entweder ein SCSI-Konnektor oder</td>
</tr>
<tr>
<td></td>
<td>ein SAS-Port sein.</td>
</tr>
<tr>
<td>Terminierung</td>
<td>Zeigt den Terminierungstyp des Konnektors an. Zu den möglichen Werten</td>
</tr>
<tr>
<td></td>
<td>gehören:</td>
</tr>
<tr>
<td></td>
<td>● Eng – Gibt einen 8 Bit-Datenbus an.</td>
</tr>
<tr>
<td></td>
<td>● Breit – Gibt einen 16-Bit-Datenbus an.</td>
</tr>
<tr>
<td></td>
<td>● Unbekannt – Gibt an, dass der Terminierungstyp unbekannt ist.</td>
</tr>
<tr>
<td></td>
<td>● Nicht terminiert – Auf einem SCSI-Controller weist diese Eigenschaft</td>
</tr>
<tr>
<td></td>
<td>darauf hin, dass der Datenbus nicht terminiert ist. Diese Eigenschaft</td>
</tr>
<tr>
<td></td>
<td>wird auch angezeigt, wenn der Terminierungstyp Unbekannt ist.</td>
</tr>
<tr>
<td>SCSI-Geschwindigkeit</td>
<td>Zeigt die SCSI-Taktrate für ein SCSI-Gerät an.</td>
</tr>
</tbody>
</table>

Logische Konnektor-Eigenschaften und -Tasks

Verwenden Sie die Seite Logische Konnektor-Eigenschaften und -Tasks, um Informationen über den logischen Konnektor (Konnektor im redundanten Modus) anzuzeigen und Konnektor-Tasks auszuführen.

Tabelle 29. Eigenschaften des logischen Konnektors

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der</td>
</tr>
<tr>
<td></td>
<td>Speichermedienkomponente dar.</td>
</tr>
<tr>
<td></td>
<td>● Normal/OK</td>
</tr>
<tr>
<td></td>
<td>● Warnung/Nicht-kritisch</td>
</tr>
<tr>
<td></td>
<td>● Kritisch/Fehlgeschlagen/Fehler</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
</tbody>
</table>
Tabelle 29. Eigenschaften des logischen Konnektors (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Zeigt die Konnektornummer an. Der Standardwert ist 0.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Anzeige des Konnektorstatus. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td></td>
<td>- Bereit – Der Konnektor funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>- Beeinträchtigt – Am Controller ist ein Fehler aufgetreten und er arbeitet in einem herabgesetzten Zustand.</td>
</tr>
<tr>
<td></td>
<td>- Fehlerhaft – Der Konnektor ist auf einen Fehler gestoßen und funktioniert nicht mehr.</td>
</tr>
</tbody>
</table>

Pfadfunktionszustand

Der Pfadfunktionszustand der Konnektoren wird als "Normal", "Warnung" oder "Kritisch" dargestellt. Die möglichen Werte werden als Verfügbar, Herabgesetzt oder Failed.

Wenn der Gehäusefunktionszustand als herabgesetzt angezeigt wird und weitere Untersuchungen ergeben, dass alle Gehäusekomponenten (EMMs, Lüfter, physische Festplatten, Netzteile und Temperatur) im Normalzustand sind, wählen Sie das Unterregister Informationen/Konfiguration des Gehäuses aus, um Details des Pfadfehlers anzuzeigen.

Löschen der Ansicht des redundanten Konnektoren-Pfads

Wenn die **Ansicht** des redundanten Pfads nicht angezeigt werden soll, führen Sie eine physische Trennung der Konnektorschnittstelle vom Gehäuse durch und starten das System neu. Nachdem das System neu gestartet wurde, zeigt die Benutzeroberfläche weiterhin den logischen Konnektor an, aber in einem kritischen Zustand. Um den redundanten Pfadmodus zu löschen, wählen Sie **Redundante Pfadansicht löschen** von den Controller-Tasks aus.

Durch Auswahl dieser Option wird die Ansicht des redundanten Pfads gelöscht, und die Konnektoren werden auf der Benutzeroberfläche als Konnektor 0 und Konnektor 1 dargestellt.

Konnektorkomponenten

Informationen zu verbundenen Komponenten finden Sie unter Eigenschaften und Tasks von Gehäusen und Rückwandplatinen.
Die Bandlaufwerke beinhalten mehrere Band-Backup-Einheiten (TBU) auf denen Daten gespeichert werden können. Storage Management spezifiziert alle TBUs die für den Daten-Backup verwendet werden. Sie können die Bandlaufwerke, die einem bestimmten Controller zugewiesen sind, auf Bandlaufwerke auf der Seite Controller anzeigen.

Themen:
- Bandlaufwerkseigenschaften

Bandlaufwerkseigenschaften

Tabelle 30. Bandlaufwerkseigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Zeigt die Bandlaufwerks-ID an.</td>
</tr>
<tr>
<td>Name</td>
<td>Zeigt den Namen des Bandlaufwerks an.</td>
</tr>
<tr>
<td>Busprotokoll</td>
<td>Zeigt den Bus-Protokoltyp des Bandlaufwerks an.</td>
</tr>
<tr>
<td>Medien</td>
<td>Zeigt den Medientyp des Bandlaufwerks an.</td>
</tr>
<tr>
<td>Hersteller-ID</td>
<td>Zeigt die Hersteller-ID an.</td>
</tr>
<tr>
<td>Produkt-ID</td>
<td>Zeigt die Produkt-ID an.</td>
</tr>
<tr>
<td>SAS-Adresse</td>
<td>Zeigt die SAS des Bandlaufwerks an.</td>
</tr>
</tbody>
</table>
Einige RAID-Controller besitzen Batterien. Wenn der Controller eine Batterie hat, zeigt Storage Management die Batterie unter dem Objekt Controller in der Strukturansicht.

Bei einem Stromausfall schützt die Controller-Batterie Daten, die sich im flüchtigen Cache-Speicher (SRAM) befinden, jedoch noch nicht auf eine Festplatte geschrieben sind. Die Batterie ist für eine Laufzeit von mindestens 24 Stunden ausgelegt.

Bei einer Erstinstallation eines RAID-Controllers in einem Server muss die Batterie möglicherweise aufgeladen werden.

Weitere Informationen zu Warnnachrichten finden Sie im Server Administrator Meldungen-Referenzhandbuch.

Zugehörige Konzepte
Batterieeigenschaften und -Tasks auf Seite 108

Themen:
• Batterieeigenschaften und -Tasks
• Batterie-Tasks
• „Lernzyklus verzögern“ in Storage Management finden

Batterieeigenschaften und -Tasks

Verwenden Sie die Seite Batterie-Eigenschaften- und -Tasks, um Informationen über die Batterie anzuzeigen und Batterie-Tasks auszuführen.

Tabelle 31. Batterie-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td>Status Wird geladen</td>
<td>Der Akku durchläuft gerade die Aufladephase des Akku-Lernzyklus.</td>
</tr>
<tr>
<td>Status Fehlgeschlagen</td>
<td>Die Batterie ist ausgefallen und muss ersetzt werden.</td>
</tr>
<tr>
<td>Status Wird geladen</td>
<td>Der Akku durchläuft gerade die Aufladephase des Akku-Lernzyklus.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Anzeige des Namens der Batterie.</td>
</tr>
<tr>
<td>Lern-Modus</td>
<td>Anzeige des Lern-Modus der Batterie. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td>Lern-Modus Automatisch</td>
<td>Das Storage Management führt auf der Grundlage der eingestellten Zeit einen Lernzyklus durch.</td>
</tr>
<tr>
<td>Lern-Modus Warnung</td>
<td>Der Lernzyklus hat den 90-Tage-Standard überschritten.</td>
</tr>
</tbody>
</table>

ANMERKUNG: Warnung steht nur auf PERC 6-Controllern mit der Firmware Version 6.1 und höher zur Verfügung.
Tabelle 31. Batterie-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nächste Lernzeit</td>
<td>Zeigt die Anzahl an Tagen und Stunden an, bis die Controller-Firmware den nächsten Lernzyklus einleitet.</td>
</tr>
<tr>
<td>Maximale Lernverzögerung</td>
<td>Zeigt die maximale Anzahl von Tagen und Stunden an, die der Batterielernzyklus verzögert werden kann. Die Controller-Firmware leitet den Batterielernzyklus automatisch ein. Der Lernzyklus kann nicht gestoppt oder angehalten werden, Sie können ihn jedoch verzögern.</td>
</tr>
</tbody>
</table>

Batterie-Tasks

Um auf die Batterie-Tasks zuzugreifen:

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie die Speicherinstrumententafel, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie Batterie aus.
5. Klicken Sie auf Ausführen.

„Lernzyklus verzögern“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie die Instrumententafel Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie das Controller-Objekt.
3. Wählen Sie das Batterie-Objekt aus.
5. Klicken Sie auf Ausführen.
Physische Festplatten oder physische Geräte

Themen:
- Anleitungen zum Ersetzen einer physischen Festplatte oder eines physischen Geräts
- Dem System eine neue Festplatte hinzufügen
- Ersetzen einer physischen Festplatte, die SMART-Warnungen empfängt
- Andere Festplattenverfahren
- Eigenschaften der physischen Festplatte oder des physischen Geräts
- Tasks der physischen Festplatte oder des physischen Geräts
- Tasks der physischen Festplatte

Anleitungen zum Ersetzen einer physischen Festplatte oder eines physischen Geräts

Eine Ersatzfestplatte muss nicht zwangs läufig vom gleichen Modell sein wie die physischen Festplatten oder Geräte im Speichergehäuse. Verwenden Sie beim Ersetzen eine Festplatte folgende Richtlinien:

- Ein Laufwerk innerhalb eines Arrays muss durch ein Laufwerk gleicher oder höherer Kapazität ersetzt werden.
- SAS- und SATA-Laufwerke auf der gleichen Rückwandplatine, aber nicht innerhalb der gleichen virtuellen Festplatte.
- Solid State-Laufwerke (SSD) und Festplattenlaufwerke (HDD) auf der gleichen Rückwandplatine, jedoch nicht innerhalb der gleichen virtuellen Festplatte.

Dem System eine neue Festplatte hinzufügen

So fügen Sie dem System eine neue physische Festplatte hinzu:

1. Installieren Sie die neue(n) physische(n) Festplatte(n) oder physischen Geräte oder verbinden Sie sie. Um weitere Informationen zu erhalten, lesen Sie die der Festplatte beiliegende Dokumentation ein.
2. Führen Sie folgende Schritte durch:

Für SAS-Controller

Für SAS-Controller müssen Sie die folgenden Schritte durchführen:
1. Prüfen Sie das Warnungsprotokoll auf eine Meldung, die überprüft, dass das System die neue Festplatte identifiziert hat. Sie können Warnung 2052 oder 2294 erhalten. Weitere Informationen zu Warnnachrichten finden Sie im Server Administrator Meldungen-Referenzhandbuch.

2. Aktualisieren Sie die Anzeige durch Klicken auf Aktualisieren () oder durch Wechseln der Seiten.

 ANMERKUNG: Beim Klicken auf die Schaltfläche Aktualisieren im rechten Fenster wird nur das rechte Fenster aktualisiert. Um die neue physische Festplatte in der Strukturansicht des linken Fensters anzuzeigen, klicken Sie auf den im oberen Bereich des Fensters angezeigten Systemnamen oder wählen Sie in der Menüleiste des Browsers Ansicht > Aktualisieren.

 Die neue physische Festplatte oder das neue physische Gerät wird nach der Aktualisierung der Anzeige in der Struktur angezeigt. Wenn die neue Festplatte nicht angezeigt wird, führen Sie einen Neustart des Computers durch.

 Weitere Informationen dazu:
 - Wenn Sie eine Festplatte ersetzen, die Teil einer virtuellen Festplatte ist, lesen Sie Ersetzen einer fehlerhaften Festplatte.
 - Wenn Sie eine neue Festplatte in einer virtuellen Festplatte integrieren möchten, lesen Sie Erwägungen zur virtuellen Festplatte für Controller.
 - Weitere Informationen finden Sie unter RAID Controller-Technologie: SATA und SAS.

Ersetzen einer physischen Festplatte, die SMART-Warnungen empfängt

Self-Monitoring Analysis and Reporting Technology (SMART)-Warnungen sind Meldungen, die voraussagen, dass eine Festplatte eventuell bald versagen wird. Wenn eine physische Festplatte SMART-Warnungen empfängt, sollten Sie die Festplatte ersetzen. Verwenden Sie die folgenden Verfahren, um eine Festplatte zu ersetzen, die SMART-Warnungen empfängt.

Wenn die Festplatte Teil einer redundanten virtuellen Festplatte ist

VORSICHT: Um potenziellen Datenverlust zu vermeiden, sollten Sie eine Übereinstimmungsüberprüfung durchführen, bevor Sie eine physische Festplatte entfernen, die SMART-Warnungen empfängt. Die Übereinstimmungsüberprüfung bestätigt, dass alle Daten innerhalb der redundanten virtuellen Festplatte zugänglich sind, und verwendet die Redundanz, um eventuell vorhandene beschädigte Blöcke zu reparieren. Unter gewissen Umständen kann ein Datenverlust eintreten, wenn keine Übereinstimmungsüberprüfung durchgeführt wurde. Dies kann z. B. auftreten, wenn die physische Festplatte, die SMART-Warnungen empfängt, beschädigte Festplattenblöcke besitzt und vor dem Entfernen der Festplatte keine Übereinstimmungsüberprüfung ausgeführt wird.

1. Wählen Sie die redundante virtuelle Festplatte aus, die die physische Festplatte beinhaltet, die SMART-Warnungen empfängt, und führen Sie den Task Übereinstimmungsüberprüfung aus. Weitere Informationen finden Sie unter Übereinstimmungsüberprüfung ausführen.
2. Wählen Sie die Festplatte aus, die SMART-Warnungen empfängt, und führen Sie den Task Offline aus.
3. Entfernen Sie die Festplatte manuell.
4. Legen Sie eine neue Festplatte ein. Stellen Sie sicher, dass die neue Festplatte genau so groß wie oder größer als die ursprüngliche Festplatte ist. Auf einigen Controllern können Sie den zusätzlichen Festplattenspeicher nicht verwenden, wenn Sie eine größere Festplatte als die, die Sie ersetzen, einlegen. Weitere Informationen hinsichtlich der Größe des Festplattenspeichers finden Sie unter Erwägungen zur virtuellen Festplatte für Controller.
5. So weisen Sie die Festplatte mit dem Zustand BEREIT als Hotspare zu. Nach Abschluss dieses Verfahrens wird automatisch eine Neuerstellung gestartet, da die virtuelle Festplatte redundant ist.

Wenn die Festplatte kein Teil einer redundanten virtuellen Festplatte ist

1. Sichern Sie die Daten der virtuellen Festplatte.
2. Löschen Sie die virtuelle Festplatte.
3. Ersetzen Sie die Festplatte, die SMART-Warnungen empfängt.
4. Erstellen Sie eine neue virtuelle Festplatte. Stellen Sie sicher, dass die neue virtuelle Festplatte genau so groß wie oder größer als die ursprüngliche virtuelle Festplatte ist. Controller-spezifische Informationen hinsichtlich der Erstellung virtueller Festplatten finden Sie unter Erwägungen zur virtuellen Festplatte für die Controller.

5. Stellen Sie die gesicherten Daten von der ursprünglichen virtuellen Festplatte auf der neu erstellten virtuellen Festplatte wieder her.

Andere Festplattenverfahren

- Eine fehlerhafte Festplatte ersetzen
- Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte
- Physische und virtuelle Festplatten von einem System auf ein anderes umsetzen
- Fehlerbehebung

Eigenschaften der physischen Festplatte oder des physischen Geräts

Um Informationen über physische Festplatten oder physische Geräte anzuzeigen und Tasks für die physischen Festplatten oder physische Geräte auszuführen, gehen Sie zur Seite „Eigenschaften der physischen Festplatte oder des physischen Geräts“.

Tabelle 32. Eigenschaften der physischen Festplatte

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td>- Normal/OK</td>
<td></td>
</tr>
<tr>
<td>- Warnung/Nicht kritisch</td>
<td></td>
</tr>
<tr>
<td>- Kritisch/Fehlgeschlagen/Fehler</td>
<td>Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.</td>
</tr>
<tr>
<td>Stromstatus</td>
<td>Zeigt den Stromstatus der physischen Festplatten an. Der Stromstatus ist nur für H700- und H800-Controller vorhanden und ist nicht auf der Seite „Physische Festplatte für virtuelle Festplatte“ vorhanden.</td>
</tr>
<tr>
<td>Heruntergefahren</td>
<td>Zeigt an, dass sich die physische Festplatte im heruntergefahrenen Zustand befindet. Nur Hotspares und nicht konfigurierte Festplatten können sich im heruntergefahrenen Zustand befinden, wenn während eines angegebenen Zeitintervalls auf den Festplatten keine Aktivität registriert wird.</td>
</tr>
<tr>
<td>Übergang</td>
<td>Zeigt an, dass die physische Festplatte sich vom heruntergefahrenen Zustand in den hochgefahrenen Zustand ändert.</td>
</tr>
<tr>
<td>Hochgefahren</td>
<td>Zeigt an, dass sich die physische Festplatte im hochgefahrenen Zustand befindet.</td>
</tr>
<tr>
<td>Zustand</td>
<td>Zeigt den aktuellen Zustand der physischen Festplatte oder des physischen Geräts an. Zu den möglichen Werten gehören:</td>
</tr>
<tr>
<td>- Bereit – Die physische Festplatte oder das physische Gerät funktioniert normal. Falls die Festplatte an einen RAID-Controller angehängt ist, gibt der Zustand Bereit</td>
<td></td>
</tr>
<tr>
<td>Eigenschaft</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>an, dass die virtuelle Festplatte die physische Festplatte verwenden kann. Wenn die physische Festplatte oder das physische Gerät in einer virtuellen Festplatte verwendet wird, ändert sich der Zustand zu Online.</td>
<td></td>
</tr>
<tr>
<td>Online</td>
<td>- Anzeige, dass die physische Festplatte Teil einer virtuellen Festplatte ist und normal funktioniert. Weitere Informationen finden Sie unter Online und Offline setzen.</td>
</tr>
<tr>
<td>Herabgesetzt</td>
<td>- Die physische Festplatte oder das physische Gerät ist auf einen Fehler gestoßen und wird in einem herabgesetzten Zustand betrieben.</td>
</tr>
<tr>
<td>Fehlgeschlagen</td>
<td>- Bei der physischen Festplatte oder dem physischen Gerät ist ein Fehler aufgetreten und die Funktion wurde eingestellt. Dieser Zustand wird auch dann angezeigt, wenn eine physische Festplatte, die Teil einer redundanten virtuellen Festplatte ist, offline gesetzt oder deaktiviert wurde. Weitere Informationen finden Sie unter Online und Offline setzen.</td>
</tr>
<tr>
<td>Offline</td>
<td>- Die physische Festplatte oder das physische Gerät ist fehlerhaft oder enthält tote Segmente. Überprüfen Sie, ob der Task Tote Segmente entfernen auf dem Drop-Down-Menü der physischen Festplatte erscheint. Aktualisieren Sie das System und entfernen Sie dann das tote Segment (Entfernen toter Segmente) für die physische Festplatte. Falls der Task nicht angezeigt wird, kann die physische Festplatte oder das physische Gerät nicht wiederhergestellt werden.</td>
</tr>
<tr>
<td>Neuerstellen</td>
<td>- Daten von einer redundanten virtuellen Festplatte werden zurzeit auf der physischen Festplatte oder auf dem physischen Gerät neu erstellt.</td>
</tr>
<tr>
<td>Entfernt</td>
<td>- Die physische Festplatte oder das physische Gerät wurde entfernt. Dieser Zustand gilt nur für physische Festplatten, die Teil einer virtuellen Festplatte sind.</td>
</tr>
<tr>
<td>Löschen</td>
<td>- Der Lösch-Task wird auf der physischen Festplatte oder dem physischen Gerät ausgeführt. Eine physische Festplatte oder ein physisches Gerät kann den Löschzustand auch anzeigen, falls die physische Festplatte oder das physische Gerät Mitglied einer virtuellen Festplatte ist, die langsam initialisiert wird. Weitere Informationen finden Sie unter Physische Festplatte löschen und Löschen abbrechen ausführen und Langsam und schnell Initialisieren.</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>- Die physische Festplatte oder das physische Gerät ist ausgefallen und befindet sich in einem nicht verwendungsfähigen Zustand. Manchmal kann die physische Festplatte in einen verwendbaren Zustand zurückkehren, indem Sie einen Task Formatieren und Initialisieren; Langsam und schnell Initialisieren ausführen. Falls der Task Formatieren und Initialisieren; Langsam und schnell Initialisieren nicht im Dropdown-Menü der physischen Festplatte oder des physischen Geräts erscheint, dann kann diese Festplatte oder dieses Gerät nicht wiederhergestellt werden.</td>
</tr>
<tr>
<td>Fremd</td>
<td>- Die physische Festplatte wurde von einem anderen Controller verschoben und enthält alle oder einen gewissen Teil einer virtuellen Festplatte (Fremdkonfiguration). Eine physische Festplatte oder ein physisches Gerät, die die Kommunikation mit dem Controller aufgrund eines Stromausfalls, eines defekten Kabels oder anderer Fehler verloren hat, kann auch den Fremdzustand anzeigen. Weitere Informationen finden Sie unter Fremdkonfigurationsvorgänge.</td>
</tr>
</tbody>
</table>
| **Nicht unterstützt** | - Die physische Festplatte oder das physische Gerät verwendet eine nicht unterstützte Technologie oder ist möglicherweise nicht durch Ihren **
<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Dienstanbieter zertifiziert | Die physische Festplatte kann nicht mittels Storage Management verwaltet werden.
- **Ersetzen** – Ein Task **Mitgliedsfestplatte ersetzen** wird auf der physischen Festplatte oder dem physischen Gerät ausgeführt. Weitere Informationen finden Sie unter [Mitgliedsfestplatte ersetzen](#) und **Rücksetzbares Hotspare aktivieren**.

ANMERKUNG: Sie können das Kopieren von Daten jederzeit während der Ausführung dieses Tasks abbrechen.

Sie können die folgenden Tasks auf Nicht-RAID Festplatten ausführen:
- Als Lokalisierungsoption identifizieren.
- Vorgänge „Blinken" oder „Blinken beenden" ausführen.
- Festplatte als bootbares Gerät auswählen.

Folgende Aktionen können auf der Festplatte nicht durchgeführt werden:
- Festplatte auf offline oder online setzen.
- Als Teil einer virtuellen Festplatte auswählen.
- Hotspare zuweisen.
- Als Quelle oder Ziel für Neuerstellung, Rückkopieren, Mitglied ersetzen oder Rekonstruieren auswählen.
- Herunterfahren, um Energie zu sparen.
- Als bootbares Gerät auswählen.

<table>
<thead>
<tr>
<th>Zertifiziert</th>
<th>Zeigt an, ob die physische Festplatte oder das physische Gerät von Ihrem Dienstanbieter zertifiziert ist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gespiegelte Set-ID</td>
<td>Zeigt die Einstellungs-ID der Spiegelung der physischen Festplatte oder des physischen Geräts an, die/das Daten von einer anderen physischen Festplatte oder eines anderen physischen Geräts dupliziert hat.</td>
</tr>
<tr>
<td>Kapazität</td>
<td>Zeigt die Kapazität der Festplatte an.</td>
</tr>
</tbody>
</table>
| Fehler erwartet | Zeigt an, ob die physische Festplatte oder das physische Gerät eine SMART-Warnung erhalten hat und daher ein Ausfall erwartet wird. Weitere Informationen zur vorhersagbaren SMART-Fehleranalyse finden Sie unter Überwachen der Festplattenzuverlässigkeit auf RAID-Controllern. Weitere Informationen zum Ersetzen einer physischen Festplatte finden Sie unter Ersetzen einer physischen Festplatte, die SMART Warnungen erhält.

Sie sollten auch das Warnungsprotokoll durchsehen, um festzustellen, ob die physische Festplatte Warnungen bezüglich einer SMART-Fehlervorhersage erstellt hat. Diese Warnungen können bei der Feststellung der Ursache der SMART-Warnung behilflich sein. Die folgenden Warnungen können als Reaktion auf eine Smart-Warnung erstellt werden:
- **2094**
- **2106**
- **2107**
- **2108**
- **2109**
- **2110**
- **2111**

Weitere Informationen zu Warnnachrichten finden Sie im [Server Administrator Messages Reference Guide](#) (Server Administrator Meldungen-Referenzhandbuch).
<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortschritt</td>
<td>Zeigt den Fortschritt eines Vorgangs an, der auf der physischen Festplatte ausgeführt wird.</td>
</tr>
<tr>
<td>Verschlüsselungsfähig</td>
<td>Zeigt an, ob die physische Festplatte oder das physische Gerät eine SED (Self Encryption Disk) ist. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Verschlüsselt</td>
<td>Zeigt an, ob die physische Festplatte zum Controller verschlüsselt ist. Mögliche Werte sind Ja und Nein. Für eine Nicht-SED lautet der Wert –.</td>
</tr>
<tr>
<td>Geräteprotokoll</td>
<td>Zeigt das Geräteprotokoll des physischen Geräts an, z. B. Non-Volatile Memory Express (NVMe).</td>
</tr>
<tr>
<td>Geschätzte verbleibende Schreibdauer</td>
<td>Zeigt Informationen über SSD Erneuerung / Ersatz an, basierend auf die Höhe der Schreib-Arbeitslasten. Dieses Feld gibt die gesamten verbleibenden Programme oder Löschzyklen, die auf SSD verfügbar sind, an, basierend auf der kumulativen Spezifikation der gesamten NAND (negierte AND oder NOT AND) Flash-Chips im SSD. ANMERKUNG: Diese Option gilt für Micron PCIe SSDs, nicht-flüchtige Memory Express (NVMe) PCIe SSDs, M.2-Geräte und SAS/SATA SSDs.</td>
</tr>
<tr>
<td>Genutzter RAID-Festplattenspeicherplatz</td>
<td>Zeigt an, wie viel Speicherplatz der physischen Festplatte oder des physischen Geräts von den virtuellen Festplatten auf dem Controller verwendet wird. Diese Eigenschaft gilt nicht für physische Festplatten oder Geräte, die mit Nicht-RAID-Controllern verbunden sind. Unter bestimmten Umständen zeigt der verwendete RAID-Speicherplatz einen Wert von Null an, obwohl eigentlich ein Teil der physischen Festplatte oder des physischen Geräts benutzt wird. Dies geschieht, wenn der genutzte Speicherplatz 0,005 GB oder weniger beträgt. Der Algorithmus für die Berechnung des genutzten Speicherplatzes rundet einen Wert von 0,005 GB oder weniger auf 0 ab. Genutzter Speicherplatz zwischen 0,006 GB und 0,009 GB wird auf 0,01 GB aufgerundet.</td>
</tr>
<tr>
<td>Verfügbarer RAID-Festplattenspeicherplatz</td>
<td>Zeigt die Größe des verfügbaren Speicherplatzes auf der Festplatte an. Diese Eigenschaft gilt nicht für physische Festplatten, die mit Nicht-RAID-Controllern verbunden sind.</td>
</tr>
<tr>
<td>Hotspare</td>
<td>Zeigt an, ob die Festplatte als ein Hotspare zugewiesen ist. Diese Eigenschaft gilt nicht für physische Festplatten, die mit Nicht-RAID-Controllern verbunden sind.</td>
</tr>
<tr>
<td>Hersteller-ID</td>
<td>Zeigt den Hardwarehersteller der Festplatte an.</td>
</tr>
<tr>
<td>Produkt-ID</td>
<td>Zeigt die Produkt-ID des Geräts an.</td>
</tr>
<tr>
<td>Firmware-Version</td>
<td>Zeigt die Firmware-Version der physischen Geräte an.</td>
</tr>
<tr>
<td>Seriennummer</td>
<td>Zeigt die Seriennummer der Festplatten an.</td>
</tr>
<tr>
<td>Teilenummer</td>
<td>Zeigt die Seriennummer (PPID) der physischen Festplatte an.</td>
</tr>
</tbody>
</table>
Tabelle 32. Eigenschaften der physischen Festplatte (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10-Protection Information-Fähigkeit</td>
<td>Zeigt an, ob die physische Festplatte Datenintegrität unterstützt. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Sektorengröße</td>
<td>Zeigt die Sektorgröße der physischen Festplatte an. Die möglichen Optionen sind 512 B und 4 KB.</td>
</tr>
<tr>
<td>Verhandelte Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die aktuelle verhandelte Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Maximale Link-Geschwindigkeit der PCIe</td>
<td>Zeigt die funktionelle Übertragungsrate des physischen Geräts in GT/s an.</td>
</tr>
<tr>
<td>Herstellungstag</td>
<td>Zeigt den Tag des Monats an, an dem die physische Festplatte gefertigt wurde.</td>
</tr>
<tr>
<td>Herstellungswcheke</td>
<td>Zeigt die Woche des Jahres an, in der die physische Festplatte gefertigt wurde.</td>
</tr>
<tr>
<td>Herstellungsjahr</td>
<td>Anzeige des Jahres, in dem die physische Festplatte hergestellt wurde.</td>
</tr>
<tr>
<td>Verhandelte Linkbreite der PCIe</td>
<td>Zeigt die aktuell vereinbarte Übertragungsrate des physischen Geräts an.</td>
</tr>
<tr>
<td>Maximale Linkbreite der PCIe</td>
<td>Zeigt die funktionelle Linkbreite des physischen Geräts an.</td>
</tr>
<tr>
<td>Verfügbare Reserve</td>
<td>Zeigt die verfügbare Reserve an, die für alle SSDs (SAS/SATA) festgelegt ist. Die neue Festplatte hat eine 100 %-ige Reserve, was der Nutzung entspricht.</td>
</tr>
<tr>
<td>Möglichkeit zum kryptografischen Löschen</td>
<td>Zeigt „Ja“ an, wenn das kryptografische Löschen oder das Bereinigen durch kryptografisches Löschen unterstützt wird.</td>
</tr>
</tbody>
</table>

Tasks der physischen Festplatte oder des physischen Geräts

So führen Sie einen Task der physischen Festplatte oder des physischen Geräts aus:

1. Erweitern Sie das Strukturobjekt Speicher, um die Controller-Objekte anzuzeigen.
2. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
3. Erweitern Sie das Objekt Gehäuse oder Rückwandplatine.
4. Wählen Sie physische Festplatten oder physische Geräte aus.

Tasks der physischen Festplatte

Nachfolgend wird die Liste von Tasks angezeigt, die Sie auf einer physischen Festplatte ausführen können:
Blinken und Blinken beenden (physische Festplatte)

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

ANMERKUNG: Die Tasks Blinken und Blinken beenden werden nur für physische Hotswap-Festplatten unterstützt (Festplatten, die sich in einem Träger befinden). Wenn Sie einen Broadcom PCIe U320-Controller verwenden, werden die Tasks Blinken und Blinken beenden auf physische Festplatten angewendet, die in einen Server oder in ein Gehäuse eingefügt werden können. Wenn sich die physische Festplatte nicht in einem Träger befindet, sondern dafür gedacht ist, mit einem SCSI-Kabel verbunden zu werden (typischerweise ein Bandkabel), sind die Tasks Blinken und Blinken beenden deaktiviert.

Tote Segmente entfernen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Tote Segmente entfernen stellt Festplattenspeicherplatz wieder her, der zur Zeit unbrauchbar ist. Ein totes oder verwaistes Plattensegment bezieht sich auf den Bereich einer physischen Festplatte oder eines physischen Geräts, die/das aus einem der folgenden Gründe unbrauchbar ist:

- Das tote Segment ist ein Bereich der physischen Festplatte oder des physischen Geräts, der beschädigt ist.
- Das tote Segment ist in einer virtuellen Festplatte enthalten, aber die virtuelle Festplatte verwendet diesen Bereich der physischen Festplatte oder des physischen Geräts nicht mehr.
- Die physische Festplatte oder das physische Gerät enthält mehr als eine virtuelle Festplatte. In diesem Fall kann Festplatten-Speicherplatz, der nicht in einer der virtuellen Festplatten eingeschlossen ist, unbrauchbar sein.
- Das tote Segment befindet sich auf einer physischen Festplatte oder einem physischen Gerät, die/das vom Controller getrennt und dann wieder mit ihm verbunden wurde.

Vorbereitung auf Entfernung

ANMERKUNG: Das kryptografische Löschen wird nicht für NVMe-Geräte unterstützt, die mit dem SWRAID-Controller verbunden sind.

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Vorbereitung zur Entfernung, um eine physische Festplatte oder ein physisches Gerät herunterzufahren, damit es sicher aus einem Gehäuse oder einer Rückwandplatine entfernt werden kann. Es wird empfohlen, diesen Task vor dem Entfernen einer Festplatte oder eines Geräts durchführen, um einen Datenverlust zu verhindern.

Dieser Task führt dazu, dass die LED an der Festplatte blinkt. Sie können die Festplatte oder das Gerät unter den folgenden Bedingungen sicher entfernen:

- Warten Sie ungefähr 30 Sekunden, damit ein Festplatten-Herunterfahren durchgeführt werden kann.
- Warten Sie, bis Sie eine Veränderung am anfänglichen Blinkmuster bemerken oder bis die Leuchten aufgehört haben, zu blinken.
Eine physische Festplatte oder ein physisches Gerät befindet sich nicht mehr im Zustand „Bereit“. Das Entfernen und Ersetzen einer physischen Festplatte oder eines physischen Geräts aus dem Gehäuse oder der Rückwandplatine führt dazu, dass die physische Festplatte oder das physische Gerät hochgefahren und wieder in den Zustand Bereit gebracht wird.

ANMERKUNG: Dieses Verfahren ist nicht für physische Festplatten oder Geräte verfügbar, die als Hotspare zugewiesen sind oder für physische Festplatten oder Geräte, die Teil einer virtuellen Festplatte sind. Darüber hinaus wird dieser Vorgang nur für Hot Swapfähige physikalische Festplatten oder Geräte unterstützt (Festplatten, die sich in einem Träger befinden).

Daten neu erstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Mit dem Task **Neu erstellen** können Daten rekonstruiert werden, wenn eine physische Festplatte in einer redundanten virtuellen Festplatte fehlerhaft ist.

ANMERKUNG: Die Neuerstellung einer Festplatte kann eventuell mehrere Stunden in Anspruch nehmen.

Neuerstellung abbrechen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task **Neuerstellung abbrechen**, um eine Neuerstellung, die aktuell ausgeführt wird, abzubrechen. Wenn Sie eine Neuerstellung abbrechen, bleibt die virtuelle Festplatte im Zustand Herabgesetzt. Wenn eine zusätzliche physische Festplatte fehlerhaft ist, kann dies einen Fehler der virtuellen Festplatte verursachen und eventuell Datenverlust zur Folge haben. Es wird empfohlen, dass Sie die fehlerhafte physische Festplatte so schnell wie möglich neu erstellen.

ANMERKUNG: Bei Abbruch der Neuerstellung einer physischen Festplatte, die als Hotspare zugewiesen ist, starten Sie die Neuerstellung auf derselben physischen Festplatte wieder, damit die Daten wiederhergestellt werden können. Das Abbrechen der Neuerstellung einer physischen Festplatte und das Zuweisen einer anderen physischen Festplatte als Hotspare hat nicht zur Folge, dass der neu zugewiesene Hotspare die Daten neu erstellt. Die Neuerstellung muss auf der physischen Festplatte neu gestartet werden, die der ursprüngliche Hotspare war.

Globales Hotspare zuweisen und die Zuweisung rückerständig machen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Ein globaler Hotspare ist eine nicht verwendete Backup-Festplatte, die Teil der Festplattengruppe ist. Hotspares verbleiben im Standby-Modus. Wenn eine in einer virtuellen Festplatte verwendete physische Festplatte fehlerhaft ist, wird der zugewiesene Hotspare aktiviert, um die fehlerhafte physische Festplatte ohne Unterbrechung des Systems und ohne Benutzereingriff zu ersetzen. Wenn ein Hotspare aktiviert wird, werden die Daten aller redundanten virtuellen Festplatten neu erstellt, die die fehlerhafte physische Festplatte verwendet haben.

Sie können die Hotspare-Zuweisung ändern, indem Sie eine Festplattenzuweisung rückerständig machen und eine andere Festplatte je nach Bedarf wählen. Sie können auch mehr als eine physische Festplatte als einen globalen Hotspare zuweisen.

ANMERKUNG: Wenn auf PERC S100- und S300-Controllern freier Speicherplatz auf dem globalen Hotspare verfügbar ist, funktioniert dieser auch dann als Spare, nachdem eine fehlerhafte physische Festplatte ersetzt wurde.

Globale Hotspares müssen manuell zugewiesen werden und die Zuweisung muss manuell rückerständig gemacht werden. Sie werden nicht spezifischen virtuellen Festplatten zugewiesen. Wenn Sie einer virtuellen Festplatte ein Hotspare (als Ersatz für eine physische Festplatte, die in der virtuellen Festplatte ausfällt) zuweisen möchten, verwenden Sie die Option **Dedizierten Hotspare zuweisen und Zuweisung rückerständig machen**.

ANMERKUNG: Wenn virtuelle Festplatten gelöscht werden, ist es möglich, dass die Zuweisung für alle zugewiesenen globalen Hotspares rückerständig gemacht wird, wenn die letzte virtuelle Festplatte, die mit dem Controller verknüpft ist, gelöscht wird. Wenn die letzte virtuelle Festplatte einer Festplattengruppe gelöscht wird, werden alle zugewiesenen dedizierten Hotspares automatisch globale Hotspares.

ANMERKUNG: Wenn sich für PERC H310, H700, H710, H710P, H800, H810, H330, H730, H730P, H730P MX, H740P, H745P MX, H830, H840, PERC FD33xD/FD33xS, PERC H745 und PERC H345 Adapter ein beliebiges von Ihnen ausgewähltes Laufwerk im heruntergefahrenen Zustand befindet, wird folgende Meldung angezeigt: The current physical drive is in the
Die physische Festplatte auf Online oder Offline einstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Die Tasks Online und Offline sind nur auf physischen Festplatten anzuwenden, die in einer redundanten virtuellen Festplatte enthalten sind und mit einem PERC-Controller verbunden sind.

Der Task Offline wird dazu verwendet, eine Festplatte zu deaktivieren, bevor sie entfernt wird. Der Task Online wird dazu verwendet, eine Offline-gesetzte Festplatte wieder zu aktivieren. In einigen Fällen können Sie den Task Online auf einer fehlerhaften Festplatte durchführen, um zu versuchen, die Daten von der Festplatte wiederherzustellen.

Online oder Offline – die Physische Festplatte

So versetzen Sie die physische Festplatte in den Online- bzw. Offline-Zustand:

1. Zeigen Sie die physische Festplatte an, die Online oder Offline gebracht werden muss. Wenn eine physische Festplatte in den Offline-Zustand versetzt wird, muss beim Ausführen dieses Tasks mit Datenverlust gerechnet werden. Sichern Sie gegebenenfalls Ihre Daten ab. Wenn Sie die physische Festplatte zum Blinken veranlassen möchten, klicken Sie auf die Schaltfläche Blinken.
2. Klicken Sie auf Online bzw. Offline, wenn Sie fertig sind oder klicken Sie auf Zurück zur vorhergehenden Seite.

„Online“ oder „Offline“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie ein Konnektor-Objekt.
4. Erweitern Sie das Objekt Gehäuse oder Rückwandplatine.
5. Wählen Sie das Objekt Physische Festplatten aus.

„Physische Festplatte löschen und Löschen abbrechen“ ausführen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Physische Festplatte löschen, um Daten auf einer physischen Festplatte zu löschen. Der Task Löschen bezieht sich auf physische Festplatten, die sich im Zustand Bereit befinden und Daten enthalten, oder die sich im Zustand Löschen befinden.

ANMERKUNG: Eine physische Festplatte kann auch den Zustand Löschen anzeigen, wenn sie Mitglied einer virtuellen Festplatte ist, die langsam initialisiert wird. Das Ausführen des Tasks Löschen abbrechen auf der physischen Festplatte verursacht, dass der Task Langsam initialisieren für die gesamte virtuelle Festplatte abgebrochen wird.

So löschen Sie die physische Festplatte:

1. Überprüfen Sie die physische Festplatte, die vom Task Löschen gelöscht werden soll. Vergewissern Sie sich, dass sie keine benötigten Daten enthält und erstellen Sie gegebenenfalls eine Sicherungskopie. Wenn Sie die physische Festplatte zum Blinken veranlassen möchten, klicken Sie auf die Schaltfläche Blinken.
2. Klicken Sie auf Löschen, wenn Sie bereit sind, alle Informationen auf der physischen Festplatte zu löschen. Um zu beenden, ohne die physische Festplatte zu löschen, klicken Sie auf Zurück zur vorherigen Seite.
„Löschen“ in Storage Management finden

Um diesen Task im Storage Management ausfindig zu machen:

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
4. Wählen Sie das Objekt Physische Festplatten aus.
5. Wählen Sie Löschen aus dem Drop-Down-Menü Tasks der physischen Festplatte aus, die Sie löschen möchten.

Aktivieren rücksetzbarer Hotspares

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Rücksetzbares Hotspare, um Daten von einem Hotspare zu einer physischen Festplatte zurück zu kopieren.

Wenn die physische Festplatte in einer virtuellen Festplatte einen Fehler aufweist, werden die Daten auf der fehlerhaften Festplatte zum zugewiesenen Hotspare kopiert. Wenn Sie die fehlerhafte Festplatte durch eine neue physische Festplatte ersetzen und Sie den Task Rücksetzbarer Hotspare aktiviert haben, werden die Daten vom früheren Hotspare zur neuen Festplatte kopiert.

Mit dem Task Rücksetzbares Hotspare können Sie Daten auch bei einem vorhergesagten Fehler von einer physischen Festplatte zum Hotspare kopieren.

Wenn Rücksetzbares Hotspare aktiviert ist und die physische Festplatte SMART-fähig ist, beginnt die Controller-Firmware automatisch mit dem Kopieren von Daten von der SMART-aktivierten Festplatte in der virtuellen Festplatte zum Hotspare.

ANMERKUNG: Um den Task Rücksetzbares Hotspare zu verwenden, sollten Sie der virtuellen Festplatte ein Hotspare zugewiesen haben.

ANMERKUNG: Wenn die Festplatte nicht SMART-fähig oder die Option Automatisches Ersetzen bei vorhergesagtem Fehler deaktiviert ist, wird die fehlerhafte Festplatte nicht automatisch ersetzt.

Aktivieren rücksetzbarer Hotspares

So aktivieren Sie rücksetzbare Hotspares:

1. Auf der Seite Controller-Eigenschaften ändern aktivieren Sie Rücksetzbaren Hotspare erlauben und Mitglied austauschen, Mitglied bei vorhergesagtem Fehler automatisch austauschen.
2. Klicken Sie auf Änderungen anwenden.

Den „Controller-Task“ in Storage Management finden

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Wählen Sie ein Controller-Objekt aus, bei dem Sie den Task rücksetzbares Hotspare aktivieren möchten.

ANMERKUNG: Die Neuerstellungsrate für Rücksetzbares Hotspare ist dieselbe wie diejenige, die für den Controller definiert wurde.

Kryptografisches Löschen durchführen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

VORSICHT: Die kryptografische Lösung löscht alle auf der Festplatte vorhandenen Daten dauerhaft.

Verwenden Sie den Task Kryptografisches Löschen, um eine verschlüsselte physische Festplatte zu löschen. Diese Aufgabe ist verfügbar für:
Für „Sofortiges sicheres Löschen“ (ISE) geeignete Laufwerke
Nicht konfigurierte SED-Festplatten
Fremdkonfigurierte verschlüsselte Festplatten
Nicht konfiguriertes und Fremd-SED-Festplatten, auch wenn kein Verschlüsselungsschlüssel im Controller vorhanden ist

ANMERKUNG: Der Task „Kryptografisches Löschen“ ist nach der Durchführung des Tasks nicht verfügbar. Aktualisieren Sie nach einiger Zeit, damit der Task angezeigt wird.

Zugehörige Informationen
So finden Sie das kryptografische Löschen in Storage Management auf Seite 121

So finden Sie das kryptografische Löschen in Storage Management

Um diesen Task im Storage Management ausfindig zu machen:

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Erweitern Sie ein Konnektor-Objekt.
4. Erweitern Sie das Objekt Gehäuse oder Rückwandplatine.
5. Wählen Sie das Objekt **Physische Geräte** aus.
7. Klicken Sie auf **Ausführen**.
 Nach dem Abschluss der Task wird das Meldungsprotokoll ausgefüllt.

In RAID-fähige Festplatte konvertieren

Mit diesem Task wird eine Festplatte für alle RAID-Vorgänge aktiviert.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

ANMERKUNG: Dieser Task wird auf PERC 10-Controllern nicht unterstützt.

In eine Nicht-RAID-Festplatte konvertieren

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt. Diese Funktion wird jedoch für PERC-Controller unterstützt, die im erweiterten HBA-Modus ausgeführt werden.
Um RAID-Funktionen zu implementieren, müssen RAID-Controller eine virtuelle Festplatte erstellen. Eine virtuelle Festplatte bezieht sich auf einen Speicher, der von einem RAID-Controller aus einer oder mehreren physischen Festplatte(n) erstellt wurde. Obwohl eine virtuelle Festplatte aus mehreren physischen Festplatten erstellt werden kann, wird sie vom Betriebssystem als eine einzelne Festplatte betrachtet. Je nach der verwendeten RAID-Stufe kann eine virtuelle Festplatte eventuell redundante Daten in dem Fall eines Festplattenfehlers erhalten oder bestimmte Leistungsattribute besitzen.

ANMERKUNG: Virtuelle Festplatten können nur auf einem RAID-Controller erstellt werden.

Themen:
- Erwägungen vor der Erstellung von virtuellen Festplatten
- Erstellung einer virtuellen Festplatte
- Virtuelle Festplatten neu konfigurieren/migrieren
- Start- und Ziel-RAID-Stufen für die Neukonfiguration der virtuellen Festplatte und die Kapazitätserweiterung
- Integrität der redundanten virtuellen Festplatten erhalten
- Redundante Informationen neu erstellen
- Verwaltung von ungültigen Blocks einer virtuellen Festplatte
- Empfehlungen zum Löschen von ungültigen Blöcken
- Eigenschaften und Tasks der virtuellen Festplatte
- Virtuelle Festplatte – Verfügbare Tasks
 - Schnellassistent zur Erstellung von virtuellen Festplatten
 - Schnellassistent zur Erstellung von virtuellen Festplatten (Schritt 2)
 - Erweiterter Assistent zur Erstellung von virtuellen Laufwerken erstellen
 - Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 2)
 - Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 3)
 - Bereichsbearbeitung
 - Eine virtuelle Festplatte neu konfigurieren (Schritt 1 von 3)
 - „Neu konfigurieren“ in Storage Management ausfindig machen
 - Task der virtuellen Festplatte: Neu konfigurieren (Schritt 2 von 3)
 - Eine virtuelle Festplatte erneut konfigurieren: Kapazität der virtuellen Festplatte erweitern (Schritt 2 von 3)
 - Task der virtuellen Festplatte: Neu konfigurieren (Schritt 3 von 3)
 - Langsam und Schnell initialisieren
 - Festplatte formatieren oder initialisieren
 - Löschen eines virtuellen Laufwerks
 - Eine virtuelle Festplatte umbenennen
 - Regeländerungen einer virtuellen Festplatte
 - Split Mirror
 - Spiegelung beenden
 - Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen
 - Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 1 von 2)
 - Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 2 von 2)

Erwägungen vor der Erstellung von virtuellen Festplatten

In den folgenden Abschnitten werden Controller-Informationen beschrieben, die sich auf virtuelle Festplatten beziehen:
Erwägungen zur virtuellen Festplatte für die Controller

Probleme, die dem Verwenden der gleichen physischen Festplatten sowohl für redundante als auch für nicht-redundante virtuelle Festplatten zugeordnet sind

Erwägungen zur virtuellen Festplatte auf Systemen, die Linux ausführen

Anzahl physischer Festplatten pro virtueller Festplatte

Anzahl von virtuellen Festplatten pro Controller

Berechnung der maximalen Größe virtueller Festplatten

Die folgenden Abschnitte könnten sich auch als hilfreich erweisen:

- RAID-Controller Lese-, Schreib-, Cache- und Festplatten-Cache-Regeln
- Hotspare-Informationen
- Controller-unterstützte Stripe-Größen
- Zeitverzögerung beim Anzeigen von Konfigurationsänderungen

ANMERKUNG: Konsultieren Sie zusätzlich zu diesem Dokument die Hardwaredokumentation, die den Controllern beiliegt. Das Lesen der Hardwaredokumentation zusammen mit diesem Dokument gibt Ihnen eventuell eine bessere Einsicht über die Controller-Einschränkungen.

Erwägungen zur virtuellen Festplatte für die Controller

Zusätzlich zu den Aspekten, die in diesem Abschnitt erläutert werden, sollten Sie die Controller-Einschränkungen berücksichtigen, die in „Anzahl an physischen Festplatten pro virtueller Festplatte“ für die folgenden Controller beschrieben werden:

- PERC H730P Adapter, PERC H730P Mini Monolithic, PERC H730P Mini Blades, PERC H730P Slim
- PERC H730-Adapter, PERC H730 Mini Monolithic, PERC H730 Mini Blades
- PERC H740P-Adapter, PERC H740P Mini Monolithic
- PERC H830-Adapter
- PERC H840-Adapter
- PERC FD33xD/FD33xS
- PERC H730P MX
- PERC H745P MX
- PERC H330 Mini, PERC H730, PERC H740P und PERC H740P Mini
- PERC H745P Front, PERC H345 Adapter
- PERC H745, PERC H345 Adapter
- PERC S150

Bei der Erstellung virtueller Festplatten sind die folgenden Erwägungen in Betracht zu ziehen:

- Virtuelle Festplatten auf Controllern erstellen – Wenn Sie eine virtuelle Festplatte erstellen, geben Sie an, welche physischen Festplatten auf der virtuellen Festplatte enthalten sein sollen. Die von Ihnen erstellte virtuelle Festplatte erstreckt sich über die angegebenen physischen Festplatten. Abhängig von der Größe der virtuellen Festplatte verwendet die virtuelle Festplatte eventuell nicht den gesamten Speicherplatz auf den physischen Festplatten. Evtl. verbleibender Speicherplatz auf den physischen Festplatten kann nicht für eine zweite virtuelle Festplatte verwendet werden, es sei denn, die physischen Festplatten besitzen die gleiche Größe. Wenn die physischen Festplatten die gleiche Größe aufweisen und der verbleibende Speicherplatz für eine zweite virtuelle Festplatte verwendet wird, kann diese neue virtuelle Festplatte außerdem nicht mit physischen Festplatten erweitert werden, die nicht in der ursprünglichen virtuellen Festplatte enthalten sind.

- Zuordnung von Speicherplatz beim Löschen und Erstellen von virtuellen Festplatten auf Controllern – Wenn Sie eine virtuelle Festplatte löschen, geben Sie den Speicherplatz auf den physischen Festplatten, der zuvor von der gelöschten virtuellen Festplatte verwendet wurde, frei oder machen diesen verfügbar. Wenn Sie mehrere virtuelle Festplatten auf einer Festplattengruppe erstellt haben, kann das Löschen von virtuellen Festplatten freie Speicherplatzfärcher ergeben, die sich an verschiedenen Speicherorten auf den physischen Festplatten befinden. Wenn eine neue virtuelle Festplatte erstellt wird, muss der Controller entscheiden, welcher freie Speicherplatz auf den physischen Festplatten der neuen virtuellen Festplatte zugewiesen werden soll. Die PERC-Controller suchen den größten Bereich an freiem Speicherplatz und ordnen diesen Bereich der neuen virtuellen Festplatte zu.

auszuwählen, weist eine Popup-Meldung darauf hin, dass die 2 TB-Grenze erreicht wurde und dass eine geringere Anzahl an physischen Festplatten ausgewählt werden sollte. Bei der 2 TB-Grenze handelt es sich um eine branchenweite SCSI-Einschränkung.

- **Virtuelle Festplatten erweitern** – Sie können den Task „Neu konfigurieren“ nur verwenden, um eine virtuelle Festplatte zu erweitern, welche die volle Kapazität der physischen Festplatten seines Mitglieds verwendet.
- **Virtuelle Festplatten neu konfigurieren** – Der Task Neu konfigurieren ist nicht verfügbar, wenn Sie über mehr als eine virtuelle Festplatte verfügen, die den gleichen Satz von physischen Festplatten verwenden. Sie können jedoch eine virtuelle Festplatte neu konfigurieren, wenn sie die einzige virtuelle Festplatte auf einem Satz physischer Festplatten ist.
- **Namen für virtuelle Festplatten nicht auf Controller gespeichert** – Die Namen der virtuellen Laufwerke, die Sie erstellen, werden nicht im Controller gespeichert. Wenn Sie einen Neustart mit einem anderen Betriebssystem ausführen, wird die virtuelle Festplatte eventuell mit seiner eigenen Namenskonvention um.
- **Erstellen und Löschen von virtuellen Festplatten auf Cluster-aktivierten Controller** – Es gibt bestimmte Erwägungen zum Erstellen oder Löschen einer virtuellen Festplatte von einem Cluster-aktivierten Controller.

- **Kanalredundanz umsetzen** – Eine virtuelle Festplatte ist kanalredundant, wenn sie redundante Daten auf mehr als einem Kanal erhält. Wenn einer der Kanäle ausfällt, gehen keine Daten verloren, da sich redundante Daten auf einem anderen Kanal befinden.
- **Daten neu erstellen** – Eine fehlerhafte physische Festplatte, die sowohl von redundanten als auch von nicht-redundanten virtuellen Festplatten verwendet wird, kann nicht neu erstellt werden. Das Neuerstellen einer fehlerhaften physischen Festplatte erfordert in diesem Fall das Löschen der nicht-redundanten virtuellen Festplatte.

Physische Festplatten sind an Festplattengruppen gebunden und daher gibt es keine Vermischung von RAID-Stufen auf einer Festplattengruppe.

Ebenso sind bestehende gemischte Konfigurationen nicht betroffen. Sie können jedoch keine gemischten Konfigurationen erstellen.

Sie können auf den virtuellen Festplatten Lesen oder Schreiben, sowie die Festplatten neu erstellen oder löschen.

Sie können keine virtuellen Festplatten auf einem Set von migrierten Festplatten von vorhergehenden RAID-Softwareversionen, mit mehrfachen RAID-Stufen, erstellen.

Erwägungen für Hotspires auf S100- und S300-Controllern

Für die S100- und S300-Controller ist einer virtuellen Festplatte ein Hotspare zugewiesen. Wenn eine physische Festplatte fehlerhaft ist, wird nur der Teil der physischen Festplatte, der die virtuelle Festplatte enthält, auf dem Hotspare neu erstellt. Daten oder Speicherplatz der physischen Festplatte, die nicht in der virtuellen Festplatte enthalten sind, werden nicht neu erstellt.

Auf den S100- und S300-Controllern können individuelle physische Festplatten in mehr als einer virtuellen Festplatte enthalten sein. (Die Zuweisung eines Teils einer physischen Festplatte an eine virtuelle Festplatte schließt nicht aus, dass der verbleibende Teil der physischen Festplatte von anderen virtuellen Festplatten verwendet wird.) Es werden nur die virtuellen Festplatten neu erstellt, denen der Hotspare zugewiesen ist. Beim Verwenden von Storage Management kann eine Festplatte, die als Hotspare zugewiesen ist, nicht auf einem S100- und S300-Controller als einer virtuellen Festplatte zugehörig verwendet werden.

Erwägungen zur virtuellen Festplatte auf Systemen, die Linux ausführen

Bei manchen Versionen des Linux-Betriebssystems ist die Größe von virtuellen Festplatten auf 1 TB begrenzt. Bevor eine virtuelle Festplatte erstellt wird, die größer als 1 TB ist, müssen Sie sicherstellen, dass Ihr Betriebssystem die Größe dieser virtuellen Festplatte unterstützt. Der vom Betriebssystem gewährte Support hängt von der Version des Betriebssystems und etwaigen, von Ihnen umgesetzten Aktualisierungen oder Modifikationen ab. Darüber hinaus sollten Sie die Fähigkeit ihrer peripheren Geräte darauf untersuchen, ob sie eine virtuelle Festplatte, die größer als 1 TB ist, unterstützen können. Weitere Informationen finden Sie in Ihrer Betriebssystem- und Geräte-Dokumentation.
Anzahl physischer Festplatten pro virtueller Festplatte

Die Anzahl von physischen Festplatten, die in einer virtuellen Festplatte enthalten sein können, unterliegt Einschränkungen. Diese Einschränkungen hängen vom Controller ab. Wenn eine virtuelle Festplatte erstellt wird, unterstützen Controller eine bestimmte Anzahl von Stripes und Bereichen (Methoden zur Speicherkombination auf physischen Festplatten). Da die Gesamtanzahl von Stripes und Bereichen eingeschränkt ist, wird die Anzahl physischer Festplatten, die verwendet werden können, ebenso eingeschränkt. Die Einschränkungen von Stripes und Bereichen wirken sich wie folgt auf die möglichen Verkettungen und RAID-Stufen aus:

- Die maximale Anzahl von Bereichen wirkt sich auf Verkettung, RAID 10, RAID 50 und RAID 60 aus.
- Die maximale Anzahl von Stripes wirkt sich auf RAID 0, RAID 5, RAID 50, RAID 6 und RAID 60 aus.
- Die Anzahl physischer Festplatten in einem Spiegel ist immer 2. Dies wirkt sich auf RAID 1 und RAID 10 aus.

Bei RAID 50 und RAID 60 kann eine größere Anzahl physischer Festplatten verwendet werden, als dies bei den anderen RAID-Stufen möglich ist. RAID 10 auf einem SAS-Controller mit Firmware-Version 6.1 kann maximal 256 physische Festplatten verwenden. Bei der Verwendung von RAID 10, RAID 50 oder RAID 60 wird jedoch die Anzahl physischer Festplatten, die in einer virtuellen Festplatte enthalten sein können, durch die Anzahl von Konnektoren auf dem Controller eingeschränkt. Der Grund hierfür ist, dass nur eine begrenzte Anzahl physischer Festplatten physisch mit dem Controller verbunden sein kann.

Weitere Informationen zur maximalen Anzahl der von einer virtuellen Festplatte unterstützten physischen Festplatten finden Sie in den Technischen Daten der virtuellen Festplatte für den Controller im Abschnitt Unterstützte Funktionen.

Anzahl von virtuellen Festplatten pro Controller

Es gelten Einschränkungen für die Anzahl der virtuellen Festplatte, die auf dem Controller erstellt werden können. Weitere Informationen über die maximale Anzahl der virtuellen Festplatte, die von einem Controller unterstützt werden, finden Sie unter Technische Daten der virtuellen Festplatten in Unterstützte Funktionen.

Berechnung der maximalen Größe virtueller Festplatten

Der **Schnellassistent zur Erstellung von virtuellen Festplatten** zeigt die minimalen und maximalen Größenwerte für virtuelle Festplatten an. In diesem Abschnitt wird beschrieben, wie basierend auf dem Controller-Typ die maximale Größe für die virtuelle Festplatte berechnet wird. Um den Controllertyp zu identifizieren, siehe RAID-Controller-Technologie: SATA und SAS.

SATA RAID-Controller

SAS RAID-Controller

Wenn Sie einen SAS-Controller verwenden, berechnet der Controller die maximale Größe der virtuellen Festplatte basierend auf dem verfügbaren Festplattenspeicherplatz, der von der Mindestanzahl physischer Festplatten zur Verfügung gestellt wurde, die erforderlich sind, um die von Ihnen ausgewählte RAID-Stufe zu erstellen. Wenn Sie z. B. ein RAID 5 bestimmt haben, berechnet der Controller die maximale Größe der virtuellen Festplatte basierend auf drei physischen Festplatten, da zum Erstellen eines RAID 5 nur drei physische Festplatten erforderlich sind.

Kanal-redundante virtuelle Festplatten

Wenn eine virtuelle Festplatte erstellt wird, können Festplatten verwendet werden, die an verschiedene Kanäle angeschlossen sind, um Kanalredundanz zu implementieren. Diese Konfiguration könnte für Festplatten verwendet werden, die sich in Gehäusen befinden, in denen ein temperaturbedingtes Herunterfahren auftreten könnte.
Erstellung einer virtuellen Festplatte

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

WARNUNG: Im Hintergrund startet eine automatische Initialisierung und wenn einige Nutzerdaten vorhanden sind, wird sie gelöscht.

Um RAID-Funktionen zu implementieren, müssen Sie ein virtuelles Laufwerk erstellen. Ein virtuelles Laufwerk bezieht sich auf den Datenspeicher, den ein RAID-Controller mit einem oder mehreren physischen Laufwerken erstellt hat. Obwohl ein virtuelles Laufwerk aus mehreren physischen Laufwerken bestehen kann, wird es vom Betriebssystem als ein einzelnes Laufwerk behandelt.

Bevor Sie ein virtuelles Laufwerk erstellen, sollten Sie sich mit den Informationen unter Erwägungen vor der Erstellung von virtuellen Laufwerken vertraut machen.

Storage Management stellt Assistenten zur Erstellung von virtuellen Laufwerken bereit:

- **Der Schnellassistent zur Erstellung virtueller Laufwerke** berechnet das geeignete Layout des virtuellen Laufwerks basierend auf Überlegungen zum verfügbaren Speicherplatz und dem Controller. Mit diesem Assistenten können Sie mithilfe der empfohlenen Auswahl schnell ein virtuelles Laufwerk erstellen.

Virtuelle Festplatten neu konfigurieren/migrieren

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Eine virtuelle Festplatte kann neu konfiguriert oder migriert werden, um die Festplattenkapazität zu erhöhen oder die RAID-Stufe der virtuellen Festplatte zu ändern.

ANMERKUNG: Wenn auf Software-RAID-Controllern S110 und S130 eine physische Festplatte (SATA-SSD oder HDD) von einer virtuellen Festplatte entfernt wird und die gleiche physische Festplatte innerhalb eines Bruchteils einer Sekunde sofort wieder in die virtuelle Festplatte eingefügt wird (hot plug), dann wird der Zustand der virtuellen Festplatte als **Bereit** angezeigt, und der Zustand der physischen Festplatte wird als **Online** angezeigt. Wenn jedoch die gleiche physische Festplatte nach einer kurzen Verzögerung wieder eingefügt wird, dann wird der Zustand der virtuellen Festplatte als **Herabgesetzt** angezeigt, und der Zustand der physischen Festplatte wird als **Bereit** angezeigt.

Um eine virtuelle Festplatte neu zu konfigurieren:

1. Lesen Sie die Informationen im Abschnitt Start- und Ziel-RAID-Stufen für die Neukonfiguration und Kapazitätserweiterung der virtuellen Festplatte.
2. Finden Sie den Controller, auf dem sich die virtuelle Festplatte befindet, in der Strukturansicht. Erweitern Sie das Controller-Objekt, bis das Objekt **Virtuelle Festplatte** angezeigt wird.
3. Wählen Sie den Task **Neu konfigurieren** aus dem **Task-Drop-Down-Menü** der virtuellen Festplatte aus, und klicken Sie auf **Ausführen**.
4. Schließen Sie den Task **Neu konfigurieren** mit dem Neukonfigurationsassistenten ab.

Start- und Ziel-RAID-Stufen für die Neukonfiguration der virtuellen Festplatte und die Kapazitätserweiterung

Nachdem eine virtuelle Festplatte erstellt wurde, hängen die Optionen zur Neukonfiguration der virtuellen Festplatte vom Controller, der RAID-Stufe und den verfügbaren physischen Festplatten ab.
Tabelle 33. Mögliche Szenarios für die Neukonfiguration einer virtuellen Festplatte

<table>
<thead>
<tr>
<th>Controller</th>
<th>Start-RAID-Stufe</th>
<th>Ziel-RAID-Stufe</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAID 0</td>
<td>RAID 0, RAID 5</td>
<td>Fügen Sie mindestens eine zusätzliche Festplatte hinzu.</td>
</tr>
<tr>
<td></td>
<td>RAID 0</td>
<td>RAID-6</td>
<td>RAID 6 erfordert mindestens 4 Festplatten. Die Neukonfiguration von RAID 0 auf RAID 6 erfordert mindestens 2 zusätzliche Festplatten, selbst wenn hierdurch das für RAID 6 erforderliche 4-Festplatten-Minimum überschritten wird</td>
</tr>
<tr>
<td></td>
<td>RAID 1</td>
<td>RAID 0</td>
<td>Mit oder ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID 1</td>
<td>RAID 5, RAID 6</td>
<td>Fügen Sie mindestens eine zusätzliche Festplatte hinzu. RAID 6 erfordert mindestens 4 Festplatten.</td>
</tr>
<tr>
<td></td>
<td>RAID-5</td>
<td>RAID 0</td>
<td>Mit oder ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID-5</td>
<td>RAID 5, RAID 6</td>
<td>Fügen Sie mindestens eine zusätzliche Festplatte hinzu. RAID 6 erfordert mindestens 4 Festplatten.</td>
</tr>
<tr>
<td></td>
<td>RAID-6</td>
<td>RAID 0, RAID 5</td>
<td>Mit oder ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID-6</td>
<td>RAID-6</td>
<td>Fügen Sie mindestens eine zusätzliche Festplatte hinzu</td>
</tr>
<tr>
<td></td>
<td>RAID-10</td>
<td>RAID-10</td>
<td>Ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td>PERC S100, S110, S130, S140, S300 und S150</td>
<td>RAID 0</td>
<td>RAID 0</td>
<td>Mit oder ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>Ohne zusätzliche Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID-5</td>
<td>RAID-5</td>
<td>Mit oder ohne Hinzufügen weiterer Festplatten</td>
</tr>
<tr>
<td></td>
<td>RAID-10</td>
<td>RAID-10</td>
<td>Ohne zusätzliche Festplatten</td>
</tr>
</tbody>
</table>

ANMERKUNG: Die Reihenfolge der im Storage Management angezeigten Controller unterscheidet sich möglicherweise von der Reihenfolge der in der Human Interface (HII) und PERC-Options-ROM angezeigten Controller. Die Reihenfolge der Controller führt zu keinerlei Einschränkungen.

ANMERKUNG: Der virtuelle RAID 10-Festplatten-Neukonfigurierungsvorgang unterstützt keine intelligenziale Datenspiegelung.
Integrität der redundanten virtuellen Festplatten erhalten

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Übereinstimmungsüberprüfung der virtuellen Festplatte überprüft die Genauigkeit der redundanten (Paritäts-) Informationen. Dieser Task gilt nur für redundante virtuelle Festplatten. Wenn es erforderlich ist, erstellt der Task Übereinstimmungsüberprüfung die redundanten Daten erneut.

Um redundante Informationen von einer virtuellen Festplatte zu überprüfen:

1. Finden Sie den Controller, auf dem sich die virtuelle Festplatte befindet, in der Strukturansicht. Erweitern Sie das Controller-Objekt, bis das Objekt Virtuelle Festplatte angezeigt wird.

Redundante Informationen neu erstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Wenn Sie eine redundante virtuelle Festplatte besitzen, können Sie den Inhalt einer fehlerhaften physischen Festplatte auf einer neuen Festplatte oder einem Hot Spare rekonstruieren. Eine Neuerstellung kann während des Normalbetriebs stattfinden, wobei jedoch die Systemleistung herabgesetzt wird.

Ein globales Hot Spare kann Teil eines Neuerstellungsvorgangs für virtuelle Laufwerke unterschiedlicher RAID-Stufen auf SWRAID-Controllern sein.

Verwaltung von ungültigen Blocks einer virtuellen Festplatte

Ungültige Blocks einer virtuellen Festplatte sind ungültige Blöcke auf einem oder mehreren Mitglied(ern) der physischen Festplatten. Lesevorgänge auf den virtuellen Festplatten, die ungültige Blöcke aufweisen, können fehlschlagen.

Storage Management erstellt eine kritische Warnung (2387), um Sie über die ungültigen Blöcke auf der virtuellen Festplatte zu benachrichtigen.

Ungültige Blöcke einer virtuellen Festplatte werden ermittelt, wenn der Controller einen Vorgang ausführt, für den das Scannen der Festplatte erforderlich ist. Beispiele für Vorgänge, die diese Warnung ergeben können, sind:

- Übereinstimmungsüberprüfung
- Neu erstellen
- Formatieren der virtuellen Festplatte
- E/A
- Patrol Read

Die Wiederherstellung von ungültigen Blocks einer physischen Festplatte, hängt von der RAID-Stufe und vom Zustand der virtuellen Festplatte ab. Wenn eine virtuelle Festplatte redundant ist, kann der Controller einen ungültigen Block auf einer physischen Festplatte wiederherstellen. Wenn eine virtuelle Festplatte nicht redundant ist, führt der ungültige Block der physischen Festplatte zum ungültigen Block einer virtuellen Festplatte.

Tabelle 34. Beispielszenarien für ungültige Blocks einer virtuellen Festplatte

<table>
<thead>
<tr>
<th>RAID-Stufe Virtuelle Festplatte</th>
<th>Zustand</th>
<th>Szenario</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>Herabgesetzt</td>
<td>Ein ungültiger Block auf einer physischen Festplatte.</td>
<td>Der Controller ist nicht in der Lage, Daten von Peer-Festplatten neu zu erstellen, da keine Redundanz vorhanden ist. Dies ergibt einen ungültigen Block einer virtuellen Festplatte.</td>
</tr>
</tbody>
</table>
Tabelle 34. Beispielszenarien für ungültige Blocks einer virtuellen Festplatte (fortgesetzt)

<table>
<thead>
<tr>
<th>RAID-Stufe Virtuelle Festplatte</th>
<th>Zustand</th>
<th>Szenario</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 5</td>
<td>Bereit</td>
<td>Ein ungültiger Block auf einer physischen Festplatte.</td>
<td>Der Controller regeneriert Daten von Peer-Festplatten und sendet einen Schreibbefehl an den ungültigen Block. Die Festplatte ordnet daraufhin die Adressierung des logischen Blocks (LBA) einer anderen physischen Position zu. Das Problem ist behoben.</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Herabgesetzt</td>
<td>Ein ungültiger Block auf einer physischen Festplatte.</td>
<td>Der Controller ist nicht in der Lage, Daten von Peer-Festplatten neu zu erstellen, weil eine Festplatte fehlt. Dies ergibt einen ungültigen Block einer virtuellen Festplatte.</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Bereit</td>
<td>Ein ungültiger Block auf zwei physischen Festplatten am selben Standort.</td>
<td>Der Controller kann Daten von Peer-Festplatten nicht regenerieren. Dies führt zu einem ungültigen Block in einer virtuellen Festplatte.</td>
</tr>
</tbody>
</table>

Empfehlungen zum Löschen von ungültigen Blöcken

Mit dem Storage Management können Sie Warnungen für ungültige Blöcke löschen. Gehen Sie wie folgt vor, um ungültige Blöcke zu löschen:

1. Führen Sie ein Backup der virtuellen Festplatte aus, wobei die Option Überprüfen ausgewählt sein muss.

 Eins von den zwei folgenden Szenarien kann auftreten:

 - Der Backup-Vorgang schlägt bei einer oder mehreren Dateien fehl. In diesem Falle ist die Datei aus einem früheren Backup wiederherzustellen. Fahren Sie nach dem Wiederherstellen der Datei mit Schritt 2 fort.
Der Backup-Vorgang konnte fehlerfrei abgeschlossen werden. Dies weist darauf hin, dass auf dem beschriebenen Anteil Ihrer virtuellen Festplatte kein ungültiger Block vorhanden ist.

Wenn Sie immer noch Warnungen für ungültige Blöcke erhalten, befinden sich die ungültigen Blöcke in einem Nicht-Datenbereich. Fahren Sie mit Schritt 2 fort.

2. Führen Sie **Patrol Read** aus und überprüfen Sie das Systemereignisprotokoll, um sicherzustellen, dass keine neuen ungültigen Blöcke gefunden werden.

Wenn noch immer ungültige Blöcke vorhanden sind, fahren Sie mit Schritt 3 fort. Wenn nicht, ist der Fehler behoben, und Schritt 3 muss nicht durchgeführt werden.

3. Um diese ungültigen Blöcke zu löschen, führen Sie den Task **Ungültige Blöcke der virtuellen Festplatte löschen** aus.

Die Funktion **Ungültige Blöcke der virtuellen Festplatte löschen** gilt für PERC H730P MX und PERC H745P MX.

Eigenschaften und Tasks der virtuellen Festplatte

Um Informationen über virtuelle Festplatten anzuzeigen und Tasks der virtuellen Festplatte auszuführen, verwenden Sie das Fenster „Eigenschaften und Tasks der virtuellen Festplatte“.

Wählen Sie aus dem Menü „Optionen“:

- **Partitionen aktualisieren**: Klicken Sie hier, um die Partitionsdaten der virtuellen Festplatte zu aktualisieren, nachdem die Partition unter Verwendung der Befehle des Betriebssystems für die verfügbaren virtuellen Festplatten erstellt wurde.

- **Gehen Sie zum Assistenten zur Erstellung virtueller Festplatten**: Startet den Assistenten zum Erstellen virtueller Festplatten.

Eigenschaften der virtuellen Festplatte

Die Eigenschaften der virtuellen Festplatte hängen eventuell vom Controller-Modell ab.

Tabelle 35. Eigenschaften der virtuellen Festplatte

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Diese Symbole stellen den Schweregrad bzw. den Funktionszustand der Speichermedienkomponente dar.</td>
</tr>
<tr>
<td></td>
<td>- Normal/OK</td>
</tr>
<tr>
<td></td>
<td>- Warnung/Nicht kritisch</td>
</tr>
<tr>
<td></td>
<td>- Kritisch/Fehlgelangen/Fehler</td>
</tr>
</tbody>
</table>

Weitere Informationen finden Sie unter Speicherkomponentenschweregrad.

|--------------------|---|

<table>
<thead>
<tr>
<th>Zustand</th>
<th>Zeigt den Status der virtuellen Festplatte an. Zu den möglichen Werten gehören:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Bereit – Die virtuelle Festplatte funktioniert normal.</td>
</tr>
<tr>
<td></td>
<td>- Herabgesetzt – Eine physische Festplatte in einer redundanten, virtuellen Festplatte ist nicht Online.</td>
</tr>
<tr>
<td></td>
<td>- Resynchronisieren – Eine Übereinstimmungsüberprüfung wird auf der virtuellen Festplatte ausgeführt. Die Durchführung von Übereinstimmungsüberprüfung abbrechen auf einer virtuellen Festplatte, während sich diese im Resynchronisierungszustand befindet, hat zur Folge, dass die virtuelle Festplatte in einen Zustand des Typs Fehlerhafte Redundanz wechselt.</td>
</tr>
</tbody>
</table>

130 Virtuelle Festplatten
<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Resynchronisieren angehalten</td>
<td>Eine Übereinstimmungsüberprüfung ist auf der virtuellen Festplatte angehalten worden.</td>
</tr>
<tr>
<td>● Regenerieren</td>
<td>Eine physische Festplatte in der virtuellen Festplatte wird neu erstellt.</td>
</tr>
<tr>
<td>● Rekonstruieren</td>
<td>Die Konfiguration der virtuellen Festplatte ist geändert worden. Die in der virtuellen Festplatte enthaltenen physischen Festplatten werden modifiziert, um die neue Konfiguration zu unterstützen.</td>
</tr>
<tr>
<td>● Fehlerhaft</td>
<td>Die virtuelle Festplatte ist auf einen oder mehrere Komponentenfehler gestoßen und funktioniert nicht mehr.</td>
</tr>
<tr>
<td>● Hintergrundinitialisierung</td>
<td>Eine Hintergrundinitialisierung wird auf der virtuellen Festplatte ausgeführt.</td>
</tr>
<tr>
<td>● Formatierung</td>
<td>Die virtuelle Festplatte wird formatiert. Weitere Informationen finden Sie unter Formatieren, Initialisieren, Langsam und Schnell initialisieren.</td>
</tr>
<tr>
<td>● Initialisieren</td>
<td>Die virtuelle Festplatte wird initialisiert. Weitere Informationen finden Sie unter Formatieren, Initialisieren, Langsam und Schnell initialisieren.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>● Herabgesetzte Redundanz</td>
<td>Dieser Zustand ist auf RAID 6 and RAID 60 anwendbar, in welchem eine physische Festplatte in einer virtuellen Festplatte nicht Online ist, aber die virtuelle Festplatte noch zugreifbar ist und funktioniert.</td>
</tr>
<tr>
<td>Partionen</td>
<td>Diese Eigenschaft zeigt an, ob die virtuelle Festplatte eine Partition hat. Die möglichen Werte sind Nicht verfügbar und ein Link zu der Informationsseite Partitionen.</td>
</tr>
<tr>
<td>Ungültige Blocks einer virtuellen Festplatte</td>
<td>Zeigt an, ob die virtuelle Festplatte einen ungültigen Block hat.</td>
</tr>
<tr>
<td>Verschlüsselt</td>
<td>Zeigt an, ob die virtuelle Festplatte verschlüsselt ist. Mögliche Werte sind Ja und Nein.</td>
</tr>
<tr>
<td>Hotspare-Regel verletzt</td>
<td>Zeigt an, ob eine Hotspare-Schutzregel verletzt worden ist. ANMERKUNG: Diese Eigenschaft wird nur dann angezeigt, wenn Sie eine Hotspare-Schutzregel festgelegt haben. Weitere Informationen finden Sie unter Hotspare-Schutzregel einstellen.</td>
</tr>
<tr>
<td>Layout</td>
<td>Zeigt die RAID-Stufe an.</td>
</tr>
<tr>
<td>Größe</td>
<td>Zeigt die Gesamtkapazität der virtuellen Festplatte an. Der Algorithmus zur Berechnung der Größe der virtuellen Festplatte rundet einen Wert von 0,005 und kleiner auf 0,00 ab, und einen Wert zwischen 0,006 und 0,009 auf 0,01 auf. Die Größe einer virtuellen Festplatte von 819,725 wird z. B. auf 819,72 abgerundet. Die Größe einer virtuellen Festplatte von 819,726 wird auf 819,73 aufgerundet.</td>
</tr>
<tr>
<td>Gerätenamen</td>
<td>Zeigt den vom Betriebssystem vergebenen Gerätenamen für dieses Objekt an.</td>
</tr>
<tr>
<td>Busprotokoll</td>
<td>Zeigt die Technologie an, die die in der virtuellen Festplatte enthaltenen physischen Festplatten verwenden. Zu den möglichen Werten gehören: SAS, SATA.</td>
</tr>
</tbody>
</table>

Virtuelle Festplatten 131
Tabelle 35. Eigenschaften der virtuellen Festplatte (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Medien | Zeigt den Datenträgertyp der physischen Festplatte an, die sich in der virtuellen Festplatte befindet. Die möglichen Wert sind:
| |
| | ● HDD (Festplatte)
| | ● SSD
| | ● Unbekannt – Storage Management kann den Datenträgertyp der physischen Festplatte nicht bestimmen. |
| | **ANMERKUNG:** Auf der virtuellen Festplatte können nicht gleichzeitig HDD- und SSD-Datenträger vorhanden sein. Ebenso ist es nicht möglich, gleichzeitig sowohl SAS- wie auch SATA-Laufwerke auf der virtuellen Festplatte zu haben. |
| Stripe-Größe | Zeigt die Stripe-Größe der virtuellen Festplatte an. |

Tasks der virtuellen Festplatte

Zum Ausführen eines virtuellen Festplatten-Task vom Drop-Down-Menü:

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt Virtuelle Festplatte aus.
4. Wählen Sie eine Aufgabe aus dem Drop-Down-Menü **Available Tasks** (Verfügbare Aufgaben) aus.
5. Klicken Sie auf **Ausführen**.

Virtuelle Festplatte – Verfügbare Tasks

Das Folgende beschreibt eine Liste der möglichen Tasks im Drop-Down-Menü virtueller Festplatten **Verfügbare Tasks**.

- Eine virtuelle Festplatte neu konfigurieren
- Formatieren, Initialisieren, Langsam und Schnell initialisieren
- Hintergrundinitialisierung abbrechen
- Tote Segmente wiederherstellen
- Daten auf den virtuellen Laufwerken löschen
- Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen
- Durchführung einer Übereinstimmungsüberprüfung
- Übereinstimmungsüberprüfung abbrechen
- Übereinstimmungsüberprüfung anhalten
- Wiederaufnahme einer Übereinstimmungsüberprüfung
- Blinken und Blinken beenden einer virtuellen Festplatte
- Eine virtuelle Festplatte umbenennen
- Split Mirror
- Spiegelung beenden
Eine virtuelle Festplatte neukonfigurieren

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task Neukonfigurieren, um die Eigenschaften der virtuellen Festplatte zu ändern. Zum Beispiel kann dieser Task dazu verwendet werden, physische Festplatten hinzuzufügen oder die RAID-Stufe zu ändern.

Formatieren, Initialisieren, Langsam und Schnell initialisieren

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Formatieren, Initialisieren, Langsam initialisieren oder Schnell initialisieren ermöglicht es Ihnen, die Dateien zu löschen und die Dateisysteme von einer virtuellen Festplatte zu entfernen. Für einige Controller ist es erforderlich, dass Sie eine virtuelle Festplatte initialisieren, bevor er verwendet werden kann.

Hintergrundinitialisierung abbrechen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Hintergrundinitialisierung abbrechen ermöglicht es Ihnen, die Hintergrundinitialisierung auf einer virtuellen Festplatte abzubrechen.

Auf PERC-Controllern startet die Initialisierung von redundanten Festplatten automatisch, nachdem die virtuelle Festplatte erstellt ist. Da die Initialisierung im Hintergrund durchgeführt wird, können andere Prozesse weiterhin ausgeführt werden, während die Initialisierung abgeschlossen wird.

Die Hintergrundinitialisierung einer redundanten virtuellen Festplatte bereitet die virtuelle Festplatte auf Paritätsinformationen vor und verbessert die Schreibleistung. Es ist wichtig, dass die Hintergrundinitialisierung beendet werden kann. Sie können die Hintergrundinitialisierung jedoch abbrechen. Wenn Sie dies tun, startet der Controller die Hintergrundinitialisierung später erneut.

Tote Segmente wiederherstellen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Tote Segmente wiederherstellen stellt Daten von einer beschädigten RAID-5 virtuellen Festplatte wieder her. Der Task Tote Segmente wiederherstellen versucht, Daten von einem beschädigten Teil einer physischen Festplatte wiederherzustellen, die in einer virtuellen RAID-5-Festplatte eingeschlossen ist. Der Task Tote Segmente wiederherstellen verwendet die Paritäts- oder redundanten Informationen, um die verlorenen Daten zu rekonstruieren. Dieser Task ist nicht immer instande, verlorene Daten wiederherzustellen.

Daten auf den virtuellen Laufwerken löschen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task Löschen zerstört alle Daten auf der virtuellen Festplatte.

Durchführung einer Übereinstimmungsüberprüfung

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Übereinstimmungsüberprüfung abbrechen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Der Task Übereinstimmungsüberprüfung abbrechen beendet einen aktuellen Übereinstimmungsüberprüfungsvorgang.

Übereinstimmungsüberprüfung anhalten

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Der Task Übereinstimmungsüberprüfung anhalten hält einen aktuellen Übereinstimmungsüberprüfungsvorgang an.

Wiederaufnahme einer Übereinstimmungsüberprüfung

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Verwenden Sie den Task Übereinstimmungsüberprüfung wieder aufnehmen, um eine Übereinstimmungsüberprüfung wieder aufzunehmen, nachdem diese angehalten wurde.

Blinken und Blinken beenden einer virtuellen Festplatte

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Mit den Tasks Blinken und Blinken beenden starten bzw. stoppen die Leuchten der physischen Festplatten, die in die virtuellen Festplatte integriert sind, das Blinken.

ANMERKUNG: Der Blinkvorgang ist nur für Wechseldatenträger verfügbar.

Eine virtuelle Festplatte umbenennen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Verwenden Sie den Task Umbenennen, um den Namen einer virtuellen Festplatte zu ändern.

Neuerstellung abbrechen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.
Verwenden Sie den Task Neuerstellung abbrechen, um eine Neuerstellung, die aktuell ausgeführt wird, abzubrechen. Wenn Sie eine Neuerstellung abbrechen, bleibt die virtuelle Festplatte im Zustand Herabgesetzt. Wenn eine zusätzliche physische Festplatte fehlerhaft ist, kann dies einen Fehler der virtuellen Festplatte verursachen und eventuell Datenverlust zur Folge haben. Es wird empfohlen, dass Sie die fehlerhafte physische Festplatte so schnell wie möglich neu erstellen.

ANMERKUNG: Bei Abbruch der Neuerstellung einer physischen Festplatte, die als Hotspare zugewiesen ist, starten Sie die Neuerstellung auf derselben physischen Festplatte wieder, damit die Daten wiederhergestellt werden können. Das Abbrechen der Neuerstellung einer physischen Festplatte und das Zuweisen einer anderen physischen Festplatte als Hotspare hat nicht zur Folge, dass der neu zugewiesene Hotspare die Daten neu erstellt. Die Neuerstellung muss auf der physischen Festplatte neu gestartet werden, die der ursprüngliche Hotspare war.

Ändern der Regel für die virtuelle Festplatte

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Eine Mitgliedfestplatte ersetzen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Verwenden Sie den Task **Mitgliedfestplatte ersetzen**, um Daten von einer physischen Festplatte, die ein Mitglied einer virtuellen Festplatte ist, zu einer anderen physischen Festplatte zu kopieren, indem Sie die **Mitgliedersatzkonfigurationsoption** angeben. Sie können mehrere Kopien von Daten aus unterschiedlichen Array-Gruppen einleiten.

Ungültige Blöcke der virtuellen Festplatte löschen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Eine virtuelle Festplatte verschlüsseln

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Der Task **Virtuelle Festplatte verschlüsseln** dient zum Verschlüsseln einer unverschlüsselten virtuellen Festplatte. Diese Funktion ist nur auf Controllern verfügbar, die

- einen Verschlüsselungsschlüssel besitzen
- über virtuelle SED (Self Encryption Drives)-Festplatten verfügen

Schnellassistent zur Erstellung von virtuellen Festplatten

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

WARNUNG: Im Hintergrund startet eine automatische Initialisierung und wenn einige Nutzerdaten vorhanden sind, wird sie gelöscht.

Der **Schnellassistent zur Erstellung einer virtuellen Festplatte** ermöglicht die Auswahl des Assistententyps sowie des RAID-Levels. Der **Schnellassistent zur Erstellung virtueller Festplatten** berechnet die geeignete Konfiguration der virtuellen Festplatte basierend auf Überlegungen zum verfügbaren Speicherplatz und dem Controller. Um Ihre eigene Auswahl für die Konfiguration des virtuellen Laufwerks zu treffen, wählen Sie die Option **Erweiterter Assistent** aus.

Bevor Sie eine virtuelle Festplatte erstellen, sollten Sie sich mit den Informationen unter Erwägungen vor der Erstellung von virtuellen Festplatten vertraut machen. Die Informationen in RAID-Stufen und -Verkettung auswählen könnten sich auch als hilfreich erweisen.

ANMERKUNG: Dieser Task wird auf den PERC-Hardware-Controllern, die im HBA-Modus ausgeführt werden, nicht unterstützt.

So erstellen Sie eine virtuelle Festplatte unter Verwendung des **Schnellassistenten zur Erstellung virtueller Festplatten**:

1. Erweitern Sie im Fenster „Server Administrator“ **System > Speicher**.
2. Klicken Sie auf **Anschluss 0 (RAID)**.
Die Seite **Virtuelle Festplatte(n) auf Controller <Controller-Name>** wird angezeigt.

3. Klicken Sie auf Gehen Sie zum **Assistenten zur Erstellung virtueller Festplatten**

Die Seite **Assistent zur Erstellung virtueller Festplatten (Schritt 1) <Controller-Name>** wird angezeigt.

4. Wählen Sie die Option **Schnellassistent** und die **RAID-Stufe** aus der Dropdown-Liste aus.

 - Je nach Controller ermöglichen die Option **Verkettet**, die Speicherkapazität mehrerer Festplatten zu kombinieren oder eine virtuelle Festplatte mit nur einer einzigen physischen Festplatte zu erstellen. Weitere Informationen zur Anzahl der unterstützten physischen Festplatten bei Verwendung der Option **Verkettet** finden Sie unter Anzahl an physischen Festplatten pro virtueller Festplatte. Die Option **Verkettet** bietet keine Datenredundanz und hat keinen Einfluss auf die Lese- und Schreibleistung.
 - Wählen Sie für Striping mit verteilter Parität **RAID 5** aus. Diese Auswahl gruppiert n Festplatten als eine große virtuelle Festplatte mit einer Gesamtkapazität von (n-1)*Festplatten. Wenn eine Festplatte ausfällt, funktioniert die virtuelle Festplatte weiterhin. Diese Funktion bietet eine bessere Datenredundanz und Leseleistung, jedoch eine langsamer Schreibleistung. Auf Ihrem System müssen sich mindestens drei physische Festplatten befinden, damit RAID 5 verwendet werden kann.
 - Wählen Sie **RAID 50** aus, um Striping über mehr als einen Bereich physischer Festplatten zu implementieren. RAID 50 gruppiert n*s Festplatten als eine große virtuelle Festplatte mit einer Kapazität von s*(n-1) Festplatten, wobei s die Anzahl von Bereichen und n die Anzahl von Festplatten innerhalb der einzelnen Bereiche darstellt.
 - Wählen Sie **RAID 60** aus, um Striping über mehr als einen RAID 6-Bereich zu implementieren. RAID 60 gruppiert n*s Festplatten als eine große virtuelle Festplatte mit einer Kapazität von s*(n-2) Festplatten, wobei s die Anzahl von Bereichen und n die Anzahl von Festplatten innerhalb der einzelnen Bereiche darstellt. RAID 60 bietet erhöhte Datensicherheit und bessere Leseleistung, jedoch eine langsamer Schreibleistung.

5. Klicken Sie auf **Weiter**.

Schnellassistent zur Erstellung von virtuellen Festplatten (Schritt 2)

1. Geben Sie in das Feld **Name** einen Namen für die virtuelle Festplatte ein.

Der Name der virtuellen Festplatte kann nur alphanumerische Zeichen, Leerstellen, Bindestriche und Unterstriche enthalten. Die maximale Länge hängt vom Controller ab. In den meisten Fällen beträgt die maximale Länge 15 Zeichen. Der Name kann nicht mit einer Leerstelle anfangen oder enden.

 ANMERKUNG: Es wird empfohlen, dass Sie einen eindeutigen Namen für jede virtuelle Festplatte angeben. Wenn Sie virtuelle Festplatten mit demselben Namen haben, wird es schwierig sein, zwischen den erstellten Warnungen zu differenzieren.

 ANMERKUNG: Erhält eine physische Festplatte eine SMART-Warnung, kann sie nicht in einer virtuellen Festplatte verwendet werden. Weitere Informationen über SMART-Warnungen finden Sie unter Festplattenverlässlichkeit auf RAID-Controllern überwachen.
2. Geben Sie im Feld **Größe** die Größe der virtuellen Festplatte an.

Die Größe der virtuellen Festplatte muss zwischen den minimalen und maximalen Werten liegen, die in der Nähe des Textfeldes **Größe** angezeigt werden. Weitere Informationen dazu, wie die maximale Größe der virtuellen Festplatte berechnet wird, finden Sie unter Berechnung der maximalen Größe virtueller Festplatten.

In manchen Fällen ist die virtuelle Festplatte etwas größer als die Größe, die Sie angegeben haben. Der **Assistent zur Erstellung einer virtuellen Festplatte** passt die Größe der virtuellen Festplatte an, um zu verhindern, dass ein Teil des Speicherplatzes der physischen Festplatte unbrauchbar gemacht wird.

Wenn sich für PERC H700- und PERC H800-Controller irgendein von Ihnen ausgewähltes Laufwerk im heruntergefahrenen Zustand befindet, wird folgende Meldung angezeigt:

```
The below listed physical drive(s) are in the Spun Down state. Executing this task on these drive(s) takes additional time, because the drive(s) need to spun up.
```

Bei SWRAID-Controlern wird die folgende Meldung angezeigt, wenn entfernbare und nicht entfernbare Geräte zum Erstellen einer virtuellen Festplatte verwendet werden:

```
A combination of removable and non-removable NVMe devices have been used to create this virtual disk. Are you sure you want to procered?
```

Klicken Sie auf **Fertigstellen**, um die virtuelle Festplatte zu erstellen.

Wenn Sie zum vorherigen Bildschirm **Schnellassistent zur Erstellung von virtuellen Festplatten** zurückkehren und Ihre Auswahl ändern möchten, klicken Sie auf **Zurück zur vorhergehenden Seite**.

Klicken Sie auf **Assistent beenden**, um die Erstellung der virtuellen Festplatte abzubrechen.

Die virtuelle Festplatte wird auf der Seite **Virtuelle Festplatte(n) auf Controller <Controller Name>** angezeigt.

Erweiterter Assistent zur Erstellung von virtuellen Laufwerken erstellen

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

⚠️ **WARUNG:** Im Hintergrund startet eine automatische Initialisierung und wenn einige Nutzerdaten vorhanden sind, wird sie gelöscht.

Mit dem **Erweiternten Assistenten zur Erstellung von virtuellen Laufwerken** können die Lese-, Schreib- und Cache-Regeln und Parameter wie RAID-Stufe, Bus-Protokoll, Medientyp und Verschlüsseltes Laufwerk für das virtuelle Laufwerk angegeben werden. Es können auch die physischen Laufwerke und der zu verwendende Controller-Konnektor ausgewählt werden. Zur Verwendung des Erweiternten Assistenten sind gute Kenntnisse über RAID-Stufen und Hardware erforderlich. Wenn Sie möchten, dass der Assistent eine empfohlene virtuelle Laufwerkkonfiguration für Sie auswählt, klicken Sie auf die Option **Schnell-Assistent**.

Bevor Sie ein virtuelles Laufwerk erstellen, sollten Sie sich mit den Informationen unter Erwägungen vor der Erstellung von virtuellen Laufwerken vertraut machen. Die Informationen in RAID-Stufen und -Verkettung auswählen könnten sich auch als hilfreich erweisen.

⚠️ **ANMERKUNG:** Dieser Task wird auf den PERC-Hardware-Controlern, die im **HBA**-Modus ausgeführt werden, nicht unterstützt.

So erstellen Sie ein virtuelles Laufwerk unter Verwendung des **Erweiternten Assistenten zur Erstellung virtueller Laufwerke**:

1. Erweitern Sie auf der linken Seite der Seite **Server Administrator** die Option **Speicher**.
2. Klicken Sie auf den <PERC-Controller>.
3. Klicken Sie auf **Virtuelles Laufwerk**.
4. Die Seite **Virtuelle Laufwerk(e) auf Controller <Controller-Name>** wird angezeigt.
5. Klicken Sie auf **Assistenten zur Erstellung virtueller Laufwerke**.
6. Die Seite **Assistent zur Erstellung virtueller Laufwerke (Schritt 1) <Controller-Name>** wird angezeigt.
7. Wählen Sie Option **Erweiterter Assistent** aus.
8. Wählen Sie **Ja** aus der Dropdown-Liste **Verschlüsseltes virtuelles Laufwerk erstellen**, um sicherzustellen, dass nur verschlüsselte physische Laufwerke zur Erstellung des virtuellen Laufwerks verwendet werden.
 Die RAID-Ebenen stehen basierend auf der Anzahl verschlüsselter physischer Laufwerke zur Auswahl zur Verfügung.
Wenn Sie Nein auswählen, stehen die RAID-Ebenen basierend auf der Gesamtzahl der im System vorhandenen physischen Laufwerke zur Verfügung.

7. Wählen Sie die erforderliche RAID-Ebene aus der Dropdown-Liste aus.

- Je nach Controller ermöglicht die Option Verkettet, die Speicherkapazität mehrerer Laufwerke zu kombinieren oder ein virtuelles Laufwerk mit nur einem einzigen physischen Laufwerk zu erstellen. Weitere Informationen zur Anzahl der Laufwerke, die von Verkettet unterstützt werden, finden Sie unter Anzahl physischer Laufwerke pro virtuellem Laufwerk. Verkettet bietet keine Datenredundanz und es hat keinen Einfluss auf die Lese- und Schreibleistung.

Intelligente Datenspiegelung - Kalkuliert die Bereichszusammensetzung basierend auf den von Ihnen ausgewählten physischen Laufwerken.

Auf diesem Bildschirm werden Bereiche nicht angezeigt. Wählen Sie Weiter aus, um die Bereichsgruppe auf dem Zusammenfassungsbildschirm anzuzeigen. Klicken Sie auf Assistent beenden, um die Erstellung des virtuellen Laufwerks abzubrechen.

Storage Management berechnet die optimale Bereichszusammensetzung folgendermaßen:

- Bestimmung der Bereichsberechnung:
 - Berechne der Anzahl an Laufwerken, die von den ausgewählten Laufwerken genutzt werden können.
 - Maximiere der Anzahl an Bereichen, um die E/A-Leistung zu erhöhen.

- Bestimmen der Spiegelung für die physischen Laufwerke: Der Spiegel wird so bestimmt, dass eine maximale Redundanz gewährleistet ist. Der Algorithmus versucht außerdem, ein physisches Laufwerk mit einem Laufwerk zu spiegeln, die der Größe am ehesten entspricht. Die Intelligente Datenspiegelung räumt der Größe jedoch höhere Priorität ein als der Redundanz.

Der Algorithmus bestimmt den Spiegelkandidat auf Grundlage der folgenden Reihenfolge:

- Bei Konnektoren auf der gleichen Gehäusestufe und mit der gleichen Größe.
- Bei Konnektoren im Gehäuse, die nicht die gleiche Stufe, aber die gleiche Größe aufweisen.
- Bei Gehäusen, die mit dem gleichen Konnektor und einem Laufwerk der gleichen Größe verbunden sind.
- Innerhalb des Gehäuses mit einem physischen Laufwerk von akzeptablem Größenunterschied.
- Bei Konnektoren auf der gleichen Gehäusestufe und mit einem akzeptablen Größenunterschied.
- Bei Konnektoren im Gehäuse, die zwar nicht die gleiche Gehäusestufe aufweisen, jedoch ein Laufwerk mit einem akzeptablen Größenunterschied.

Wenn der Größenunterschied nicht akzeptabel ist, wird das Laufwerk nicht gespiegelt und deshalb aus dem Bereich herausgenommen. Die Anzahl der Bereiche und der Laufwerke im Bereich wird neu berechnet.

ANMERKUNG: Es wird empfohlen, Intelligente Datenspiegelung zu verwenden, um RAID 10 über Gehäuse hinweg zu erstellen, um eine einfache und optimale Konfiguration zu erhalten.

ANMERKUNG: Um die Redundanz über Gehäuse hinweg anzuzeigen, die durch Intelligente Datenspiegelung erreicht worden ist, klicken Sie auf das virtuelle Laufwerk und zeigen für jeden Bereich die physischen Laufwerk-IDs an, die von alternativen Gehäusen stammen.

- Wählen Sie RAID 50 aus, um Striping über mehr als einen Bereich physischer Laufwerke zu implementieren. RAID 50 gruppiert n*s Laufwerke als ein großes virtuelles Laufwerk mit einer Kapazität von s*(n-1) Laufwerken, wobei s die Anzahl von Bereichen und n die Anzahl von Laufwerken innerhalb der Bereiche darstellt.
- Wählen Sie RAID 60 aus, um Striping über mehr als einen RAID 6-Bereich zu implementieren. RAID 60 gruppiert n*s Laufwerke als ein großes virtuelles Laufwerk mit einer Kapazität von s*(n-2) Laufwerken, wobei s die Anzahl von Bereichen und n die Anzahl von Laufwerken innerhalb der Bereiche darstellt. RAID 60 bietet erhöhte Datensicherung und bessere Leseleistung, aber langsammere Schreibleistung.

8. Wählen Sie das Bus Protokoll aus.
Dies sind die möglichen Optionen:
- SAS
- SATA

Folgende Optionen stehen zur Verfügung:
- HDD (Festplattenlaufwerk)
- SSD
Weitere Informationen über Bus Protokoll und Medientyp finden Sie unter Eigenschaften und Tasks des virtuellen Laufwerks.

10. Klicken Sie auf Weiter.
Die Seite Erweiterter Assistent zur Erstellung virtueller Laufwerke (Schritt 2 von 3) – <Controller Name> wird mit den verfügbaren Konnektoren und physischen Festplatten angezeigt.

Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 2)
Abhängig von der von Ihnen ausgewählten RAID-Stufe auf der Seite Assistent zur Erstellung virtueller Festplatten (Schritt 1) <Controller Name>, zeigt die Seite Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 2 von 3) – <Controller-Name> die Festplatten und Anschlüsse (Kanäle oder Ports), die zur Konfiguration der virtuellen Festplatte zur Verfügung stehen.

ANMERKUNG: Falls Sie eine verschlüsselte virtuelle Festplatte erstellen, werden nur die verschlüsselten physischen Festplatten angezeigt. Andernfalls werden sowohl verschlüsselte als auch unverschlüsselte physische Festplatten angezeigt.

Im folgenden wird ein Beispiel für mögliche Einträge gezeigt:

Konnektor 0
Der Abschnitt Konnektor auf der Seite zeigt die Konnektoren des Controllers und die an jeden Konnektor angeschlossenen Festplatten an. Wählen Sie die physischen Festplatten aus, die Sie in die virtuelle Festplatte einschließen wollen. In diesem Beispiel besitzt der Controller einen einzigen Konnektor mit fünf Festplatten.
- Physische Festplatte 0:0:0
- Physische Festplatte 0:1:0
- Physische Festplatte 0:2:0
- Physische Festplatte 0:3:0
- Physische Festplatte 0:4:0

Ausgewählte physische Festplatten
Der Abschnitt Ausgewählte physische Festplatten auf der Seite zeigt die Festplatten an, die Sie ausgewählt haben. In diesem Beispiel sind zwei Festplatten ausgewählt.
- Physische Festplatte 0:0:0
Jede RAID-Stufe hat bestimmte Anforderungen bezüglich der Anzahl von Festplatten, die ausgewählt sein müssen. RAID 10, RAID 50 und RAID 60 weisen ebenfalls Voraussetzungen bezüglich der Anzahl der Festplatten auf, die in jedem Stripe oder Bereich enthalten sein müssen.

Wenn der Controller ein SAS-Controller mit Firmware-Version 6.1 und höher ist und Sie RAID 10, RAID 50 und RAID 60 ausgewählt haben, zeigt die Benutzeroberfläche Folgendes an:

- **Alle Festplatten** auswählen – Ermöglicht Ihnen, alle physischen Festplatten in allen Gehäusen auszuwählen.
- **Gehäuse** – Ermöglicht Ihnen, alle physischen Festplatten im Gehäuse auszuwählen.

ANMERKUNG: Die Optionen **Alle Festplatten** und **Gehäuse** ermöglichen Ihnen, Bereiche zu bearbeiten, nachdem Sie die physischen Festplatten ausgewählt haben, aus denen sie bestehen. Sie können einen Bereich entfernen und einen Bereich mit unterschiedlichen physischen Festplatten neu spezifizieren, bevor Sie fortfahren.

- **Mit Anzahl der Festplatten pro Bereich** können Sie die Anzahl der Festplatten in jedem Bereich auswählen (Standard = 2). Diese Option steht nur auf SAS-Controllern mit der Firmware Version 6.1 und höher zur Verfügung.

ANMERKUNG: Diese Option ist nur verfügbar, wenn Sie **Intelligente Datenspiegelung** auf der Seite **Erweiterter Assistent für die Erstellung einer virtuellen Festplatte (Schritt 2 von 3)** ausgewählt haben.

ANMERKUNG: Bei einem SAS-Controller mit Firmware-Version 6.1 und höher unterstützt RAID 10 nur eine gerade Anzahl an Festplatten pro Bereich und maximal 8 Bereiche mit jeweils 32 Festplatten.

ANMERKUNG: Der Befehl zur Erstellung virtueller RAID-Level 10-Festplatten über die Storage Management-CLI bietet auf PERC 9- und PERC 10-Hardware-Controllern keine Unterstützung für den optionalen Parameter `spanlength`.

Angenommen, der Controller verfügt über drei Gehäuse mit jeweils sechs physischen Festplatten (Gesamtzahl verfügbarer Festplatten = 3 x 6 = 18 Festplatten). Wenn Sie vier Festplatten pro Bereich auswählen, erstellt der Controller vier Bereiche (18 Festplatten/4 Festplatten pro Bereich = 4 Bereiche). Die letzten beiden Festplatten des letzten Gehäuses sind nicht Teil des RAID 10.

ANMERKUNG: Nur physische Festplatten, die sich nach den virtuellen Festplattenparametern richten und auf der Seite **Assistent zur Erstellung virtueller Festplatten** ausgewählt sind, werden angezeigt.

Wählen Sie den erforderlichen Konnektor und die entsprechende physische Festplatte aus und klicken Sie auf **Weiter**.

Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 3)

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| 1. | **Geben Sie in das Feld Name einen Namen für die virtuelle Festplatte ein.** Der Name der virtuellen Festplatte kann nur alphanumerische Zeichen, Leerstellen, Bindestriche und Unterstriche enthalten. Die maximale Länge hängt vom Controller ab. In den meisten Fällen beträgt die maximale Länge 15 Zeichen.
| 2. | **Geben Sie im Feld Größe die Größe des virtuellen Laufwerks ein.** Die Größe der virtuellen Festplatte muss zwischen den minimalen und maximalen Werten liegen, die in der Nähe des Textfeldes **Größe** angezeigt werden. In manchen Fällen ist die virtuelle Festplatte etwas größer als die Größe, die Sie angegeben haben. Der **Assistent zur Erstellung einer virtuellen Festplatte** passt die Größe der virtuellen Festplatte an, um zu verhindern, dass ein Teil des Speicherplatzes der physischen Festplatte unbrauchbar gemacht wird. |
ANMERKUNG: Erhält eine physische Festplatte eine SMART-Warnung, kann sie nicht in einer virtuellen Festplatte verwendet werden.

ANMERKUNG: Es ist u. U. möglich für einen Controller, der mehr als einen Kanal besitzt, ein virtuelles Laufwerk zu konfigurieren, das Kanal-redundant ist.

Abhängig von der ausgewählten RAID-Stufe und Größe der virtuellen Festplatte zeigt diese Seite die zur Konfiguration der virtuellen Festplatte verfügbaren Festplatten und Konnektoren (Kanäle und Schnittstellen) an.

ANMERKUNG: Für die Schreibregel auf Controllern, die nicht über eine Batterie verfügen, ist die Unterstützung eingeschränkt. Cache-Regeln werden nicht auf Controllern unterstützt, die nicht über eine Batterie verfügen.

ANMERKUNG: Wenn Sie die Option Verschlüsselte virtuelle Festplatte erstellen in Erweiterter Assistent zur Erstellung von virtuellen Festplatten ausgewählt haben, dann wird in den Attributen Zusammenfassung von virtuellen Festplatten ein Attribut Verschlüsselte virtuelle Festplatte mit einem Wert Ja angezeigt. Klicken Sie auf Bereichsbearbeitung, um Bereiche, die in Erweiterter Assistent für die Erstellung einer virtuellen Festplatte erstellt wurden, zu bearbeiten.

Die Option Bereichsbearbeitung ist nur verfügbar, wenn der Controller ein SAS-Controller mit Firmware 6.1 oder höher ist und wenn Sie RAID 10 ausgewählt haben.

ANMERKUNG: Wenn Sie auf Bereichsbearbeitung klicken, wird die intelligente, bereits angewendete Datenspiegelung ungültig werden.

5. Klicken Sie auf Fertigstellen, um die Erstellung der virtuellen Festplatte abzuschließen.

Die virtuelle Festplatte wird auf der Seite Virtuelle Festplatte(n) auf Controller <Controller Name> angezeigt. Wenn sich für PERC H700- und PERC H800-Controller irgendein von Ihnen ausgewähltes Laufwerk im heruntergefahrenen Zustand befindet, wird folgende Meldung angezeigt:

The below listed physical drive(s) are in the spun down state. Executing this task on these drive(s) takes additional time, because the drive(s) need to spun up.

Die Nachricht zeigt die ID(s) des/der heruntergefahrenen Laufwerks(e) an.

Wenn Sie zur vorherigen Seite Erweiterter Assistent zur Erstellung von virtuellen Festplatten zurückkehren und Ihre Auswahl ändern möchten, klicken Sie auf Zurück zur vorhergehenden Seite.

Klicken Sie auf Assistent beenden, um die Erstellung der virtuellen Festplatte abzubrechen.

AUF der Seite Erweiterter Assistent zur Erstellung von virtuellen Festplatten (Schritt 3 von 3) - <Controller-Name> wird ein Kontrollkästchen neben jeder physischen Festplatte angezeigt, die sich als dedizierter Hotspare eignet. Wählen Sie das Kontrollkästchen einer physischen Festplatte aus, wenn Sie einen dedizierten Hotspare zuweisen möchten.

Das Kontrollkästchen der physischen Festplatte ist nicht verfügbar, wenn der Controller keine physische Festplatte besitzt, die ein geeigneter Hotspare für die zu erstellende virtuelle Festplatte ist. Die verfügbaren physischen Festplatten können zum Beispiel zu klein sein, um die virtuelle Festplatte zu schützen. Wenn das Kontrollkästchen Physische Festplatte nicht verfügbar ist, müssen Sie möglicherweise eine kleinere virtuelle Festplatte festlegen, einen anderen RAID-Level verwenden oder die Auswahl der Festplatte ändern.

ANMERKUNG: Wenn Sie eine verschlüsselte virtuelle Festplatte erstellen, dann werden nur verschlüsselte physische Festplatten als Kandidaten für Hotspares angezeigt.
Bereichsbearbeitung

Im Bearbeitungsmodus können Sie die Anzahl der physischen Festplatten pro Bereich nicht ändern. Wenn genügend verfügbare physische Festplatten vorhanden sind, können Sie die Anzahl der Bereiche verringern oder erhöhen. Sie können ebenfalls den Inhalt eines Bereichs verändern, indem Sie den Bereich entfernen und eine neue physische Festplatte für diesen Bereich auswählen.

Um eine virtuelle Festplatte erfolgreich zu erstellen, müssen stets mindestens zwei Bereiche vorhanden sein.

ANMERKUNG: Wenn Sie auf **Bereichsbearbeitung** klicken, wird die bereits angewendete **intelligente Datenspiegelung** ungültig werden.

ANMERKUNG: Die Funktion **Intelligente Datenspiegelung** wird nicht auf PERC 9-Controllern oder höheren PERC-Controllern unterstützt.

Eine virtuelle Festplatte neu konfigurieren (Schritt 1 von 3)

1. Wählen Sie die physischen Festplatten aus, die Sie in die virtuelle Festplatte einschließen wollen. Sie können die Kapazität der virtuellen Festplatte erweitern, indem Sie weitere physische Festplatten hinzufügen. Auf einigen Controllern können physische Festplatten auch entfernt werden.

Die Änderungen, die Sie an der Auswahl physischer Festplatten vornehmen, werden in der Tabelle **Ausgewählte physische Festplatten** angezeigt.

ANMERKUNG: Es ist u. U. möglich für einen Controller, der mehr als einen Kanal besitzt, ein virtuelles Laufwerk zu konfigurieren, das Kanal-redundant ist.

2. Klicken Sie auf **Fortfahren**, um zum nächsten Bildschirm zu wechseln oder **Assistent beenden**, wenn Sie abbrechen möchten.

„Neu konfigurieren“ in Storage Management ausfindig machen

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie **Neu konfigurieren** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf Ausführen.

Task der virtuellen Festplatte: Neu konfigurieren (Schritt 2 von 3)

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Mit der Seite „Virtuelle Festplatte: Neu konfigurieren Schritt 2“ können Sie die RAID-Stufe und Größe für die neu konfigurierte virtuelle Festplatte auswählen. Die Option **Kapazität erweitern** wird nur für PERC H730P MX- und PERC H745P MX-Controller mit Firmware 7.1 oder höher angezeigt.

Wenn Sie **Kapazität erweitern** in Schritt 1 ausgewählt haben, können Sie auf dieser Seite die Kapazität der virtuellen Festplatte erweitern.

So konfigurieren Sie eine virtuelle Festplatte erneut (RAID-Stufe und -Größe ändern): Schritt 2 von 3

1. Wählen Sie die neue RAID-Stufe für die virtuelle Festplatte aus – Die verfügbaren RAID-Stufen hängen von der Anzahl der ausgewählten physischen Festplatten und vom Controller ab. Im Folgenden werden die möglichen RAID-Stufen beschrieben:

 - Je nach Controller ermöglicht die Option „Verkettet“, die Speicherkapazität mehrerer Festplatten zu kombinieren oder eine virtuelle Festplatte mit nur einer einzigen physischen Festplatte zu erstellen. Weitere Informationen darüber, ob der Controller eine einzige physische Festplatte bzw. zwei oder mehr Festplatten unter Verwendung der Option **Verkettet** unterstützt, finden Sie unter Anzahl an physischen Festplatten pro virtueller Festplatte. Die Option „Verkettet“ bietet keine Datenredundanz und hat keinen Einfluss auf die Lese- und Schreibleistung.

ANMERKUNG:

- Die RAID-10-Neukonfiguration der virtuellen Festplatte gilt nur für Hardware-Controller der Produktfamilie PERC 9 und höher mit der neuesten Firmware-Version.
- Andere RAID-Stufen virtueller Festplatten können nicht in virtuelle RAID 10-Festplatten konvertiert werden.
- Virtuelle RAID-10-Festplatten können nicht in virtuelle Festplatten mit anderen RAID-Stufen konvertiert werden.
- Die Neukonfiguration von virtuellen RAID 10-Festplatten wird nur für eine gerade Anzahl von physischen Festplatten unterstützt.
- Die Neukonfiguration von virtuellen RAID-10-Festplatten ist für bis zu 32 Festplatten zulässig.
- Die Neukonfiguration von virtuellen RAID10-Festplatten gilt nur für einen einzelnen Bereich mit 32 Festplatten.
- Der virtuelle RAID 10-Festplatten-Neukonfigurierungsvorgang unterstützt keine Intelligente Datenspiegelung.

ANMERKUNG: Für virtuelle RAID 10-Partitionslaufwerke gibt es nur zwei Methoden zur Steigerung der Festplattengröße oder -kapazität:

- Erweiterung der Kapazität durch Steigerung des prozentualen Anteilswerts.
Hinzufügen neuer Festplatten zur ursprünglichen virtuellen RAID-10-Festplatte.

ANMERKUNG: Wenn Sie RAID 10 mit unregelmäßigen Spans auf PERC 9-Controllern erstellen und dann versuchen, die virtuelle RAID 10-Festplatte von PERC 9 auf PERC 10 zu importieren, schlägt der Import fehl.

Eine virtuelle Festplatte erneut konfigurieren: Kapazität der virtuellen Festplatte erweitern (Schritt 2 von 3)

ANMERKUNG: Für virtuelle RAID 10-Partitionslaufwerke gibt es nur zwei Methoden zur Steigerung der Festplattengröße oder -kapazität:

- Erweitern der Kapazität durch Steigerung des prozentualen Anteilswerts.
- Hinzufügen neuer Festplatten zur ursprünglichen virtuellen RAID-10-Festplatte.

1. Eingeben des Prozentsatzes der verfügbaren Festplattengröße, um den Sie die Kapazität der virtuellen Festplatte erweitern möchten. Auf dem Bildschirm wird die maximal verfügbare Festplattengröße sowie eine Beschreibung der ausgewählten RAID-Stufe angezeigt.

2. Klicken Sie auf **Fortfahren**, um zum nächsten Bildschirm zu wechseln, oder klicken Sie auf **Assistent beenden**, wenn Sie abbrechen möchten.

Task der virtuellen Festplatte: Neu konfigurieren (Schritt 3 von 3)

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Auf der Seite „Virtuelle Festplatte: Neu konfigurieren Schritt 3“ können Sie Ihre Änderungen vor der Beendigung der Neukonfiguration der virtuellen Festplatte nachprüfen.

1. Überprüfen Sie Ihre Änderungen. Die Tabelle **Neue Konfiguration der virtuellen Festplatte** zeigt die Änderungen an, die Sie an der virtuellen Festplatte vorgenommen haben. Die Tabelle **Vorherige Konfiguration der virtuellen Festplatte** zeigt die ursprüngliche virtuelle Festplatte vor der Neukonfiguration an.

2. Klicken Sie auf **Fertig stellen**, um die Neukonfiguration der virtuellen Festplatte abzuschließen. Zum Beenden, ohne die ursprüngliche virtuelle Festplatte zu ändern, klicken Sie auf **Assistent beenden**.

ANMERKUNG: Nach dem Beginn des Neukonfigurationsprozesses der virtuellen Festplatte werden die Lese- und Schreibregeln vorübergehend auf die Standardeinstellungen zurückgesetzt, bis der Vorgang abgeschlossen ist.

Langsam und Schnell initialisieren

Erwägungen für das schnelle Initialisieren

Der Task **Schnell initialisieren** initialisiert alle in der virtuellen Festplatte eingeschlossenen physischen Festplatten. Mit dem Task **Schnell initialisieren** werden die Metadaten auf den physischen Festplatten aktualisiert, sodass der gesamte Festplattenspeicherplatz für künftige Schreibvorgänge verfügbar ist. Die Initialisierung kann schnell abgeschlossen werden, da vorhandene Informationen auf den physischen Festplatten nicht gelöscht werden, obwohl künftige Schreibvorgänge die auf den physischen Festplatten verbleibenden Informationen überschreiben werden.

VORSICHT: Die Ausführung von „Schnell initialisieren“ verursacht, dass auf bestehende Daten nicht mehr zugegriffen werden kann. Dieser Task kann Daten zerstören.

Im Vergleich zum Task **Langsam initialisieren** weist **Schnell initialisieren** die folgenden Vorteile auf:

- Der Task **Schnell initialisieren** nimmt weniger Zeit in Anspruch.
Der Task **Schnell initialisieren** schreibt keine Nullen in die Festplattenblöcke auf den physischen Festplatten. Da der Task **Schnell initialisieren** keinen Schreibvorgang ausführt, verursacht er eine geringere Herabsetzung der Festplatte als der Task **Langsam initialisieren**.

Wenn Sie Probleme mit einer physischen Festplatte haben oder vermuten, dass sie beschädigte Festplattenblöcke hat, wird empfohlen, den Task **Langsam initialisieren** auszuführen, da dieser Task beschädigte Blöcke neu zuweist und in alle Festplattenblöcke Nullen schreibt.

Erwägungen für das langsame Initialisieren

Verwenden Sie den Task **Langsam initialisieren**, um alle in der virtuellen Festplatte eingeschlossenen physischen Festplatten zu initialisieren. Mit dem Task **Langsam initialisieren** werden die Metadaten auf den physischen Festplatten aktualisiert und alle vorhandenen Daten und Dateisysteme gelöscht.

Im Vergleich zum Task **Schnell initialisieren** wird empfohlen, den Task **Langsam initialisieren** anzuwenden, wenn Probleme mit einer physischen Festplatte aufgetreten sind oder beschädigte Festplattenblöcke vermutet werden. Mit dem Task **Langsam initialisieren** werden beschädigte Blocks neu zugewiesen und Nullen in alle Festplattenblocks geschrieben.

Der Task **Langsam initialisieren** initialisiert eine physische Festplatte nach der anderen. Jede physische Festplatte zeigt den Zustand Löschen an, während sie initialisiert wird. Während sich eine physische Festplatte im Zustand Löschen befindet, ist der Task **Löschen abbrechen** der physischen Festplatte verfügbar. Das Ausführen des Tasks **Löschen abbrechen** auf der physischen Festplatte verursacht, dass der Task **Langsam initialisieren** für die gesamte virtuelle Festplatte und alle physischen Mitgliedsfestplatten abgebrochen wird.

Festplatte formatieren oder initialisieren

Gehen Sie wie folgt vor, um eine Festplatte zu formatieren oder zu initialisieren:

1. Überprüfen Sie die virtuelle Festplatte, die durch den Task Formatieren oder Initialisieren gelöscht wird und stellen Sie sicher, dass keine wichtigen Daten verloren gehen. Klicken Sie im unteren Teil des Bildschirms auf **Blinken**, um ein Blinken der physischen Festplatten zu veranlassen, die sich in der virtuellen Festplatte befinden.
2. Abhängig von dem einzuleitenden Task klicken Sie auf die folgende Schaltfläche:
 - **Formatieren**
 - **Initialisieren**
 - **Langsam Initialisieren**
 - **Schnell Initialisieren**

 Wenn Sie beenden möchten, ohne die virtuelle Festplatte zu formatieren oder initialisieren, klicken Sie auf **Zurück zur Seite Virtuelle Festplatte**.

Den Task der virtuellen Festplatte in Storage Management ausfindig machen

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt Virtuelle Festplatte aus.
 - **Formatieren**
 - **Initialisieren**
 - **Langsam Initialisieren**
 - **Schnell Initialisieren**
5. Klicken Sie auf **Ausführen**.
Löschen eines virtuellen Laufwerks

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Das Löschen einer virtuellen Festplatte zerstört alle Informationen, einschließlich der Dateisysteme und Datenträger, die sich auf der virtuellen Festplatte befinden.

ANMERKUNG: Wenn virtuelle Festplatten gelöscht werden, kann bei allen zugewiesenen globalen Hotspares die Zuweisung rückgängig gemacht werden wenn die letzte virtuelle Festplatte gelöscht wird, die mit dem Controller verknüpft ist. Wenn die letzte virtuelle Festplatte einer Festplattengruppe gelöscht wird, werden alle zugewiesenen dedizierten Hotspares automatisch globale Hotspares.

Eine virtuelle Festplatte löschen

Um festzustellen, welche physischen Festplatten in dem virtuellen Laufwerk enthalten sind, klicken Sie auf Blinken. Die LED-Leuchten an den physischen Festplatten blinken 30 bis 60 Sekunden lang.

Wenn eine virtuelle Festplatte gelöscht wird, sollten folgende Erwägungen in Betracht gezogen werden:

- Bestimmte Erwägungen sind beim Löschen einer virtuellen Festplatte von einem Cluster-aktivierten Controller zu beachten.
- Es wird empfohlen, das System nach dem Löschen der virtuellen Festplatte neu zu starten. Durch den Neustart des Systems wird sichergestellt, dass das Betriebssystem die Festplattenkonfiguration richtig erkennt.

„Löschen“ in Storage Management ausfindig machen

1. Im Fenster Server Administrator in der System-Struktur erweitern Sie Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt Virtuelle Festplatte aus.
5. Klicken Sie auf Ausführen.

Eine virtuelle Festplatte umbenennen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Durch das Umbenennen einer virtuellen Festplatte kann der Name der virtuellen Festplatte geändert werden. Das Nummerierungsformat der virtuellen Festplatte bleibt unverändert.

Die Erwägungen zum Controller-BIOS hängen von Ihrem Controller ab:

Der Name der virtuellen Festplatte kann alphanumerische Zeichen und Leerstellen sowie Bindestriche und Unterstriche enthalten. Die maximale Länge des Namens hängt vom Controller ab. Meistens ist die maximale Länge 15 Zeichen. Der Name darf nicht mit einer Leerstelle beginnen oder enden und das Feld darf nicht leer sein.

Eine virtuelle Festplatte umbenennen

1. Geben Sie den neuen Namen in das Textfeld ein.
2. Klicken Sie auf Umbenennen.

Zum Beenden, ohne die virtuelle Festplatte umzubenennen, klicken Sie auf Zurück zur Seite Virtuelle Festplatte.
„Umbenennen“ im Storage Management ausfindig machen

Um diesen Task im Storage Management ausfindig zu machen:
1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie **Umbenennen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Regeländerungen einer virtuellen Festplatte

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Ändern der Lese-, Schreib- oder Festplatten-Cache-Regeln für eine virtuelle Festplatte

1. Wählen Sie die neue Regel aus den Drop-Down-Menüs **Leseregel**, **Schreibregel** und **Festplatten-Cache-Regeln** aus.
2. Klicken Sie auf **Änderungen anwenden**.
 Zum Beenden ohne die Regel für die virtuelle Festplatte zu ändern, klicken Sie **Zurück zur Seite Virtuelle Festplatte**.

„Regel ändern“ in Storage Management ausfindig machen

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie den Task **Regeln ändern** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Split Mirror

Unterstützt mein Controller diese Funktion? Siehe **Unterstützte Funktionen**.

Verwenden Sie den Task **Split Mirror**, um gespiegelte Daten zu trennen, die ursprünglich als ein RAID 1, RAID 1 verkettet oder RAID 10 virtuele Festplatte konfiguriert wurden. Das Teilen einer RAID 1- oder RAID 1-verketteten Spiegelung erstellt zwei verkettete, nicht-redundante, virtuelle Festplatten. Das Teilen einer RAID 10-Spiegelung erstellt zwei RAID 0 (gestriped) nicht-redundante, virtuelle Festplatten. Während dieses Vorgangs gehen keine Daten verloren.

ANMERKUNG: Bei Linux kann auf einer geladenen virtuellen Festplatte Split Mirror nicht ausgeführt werden. Aus diesem Grund kann kein Split Mirror auf dem Startlaufwerk ausgeführt werden.

Einen Mirror teilen

Klicken Sie auf **Split Mirror**. Zum Beenden ohne den Mirror zu teilen, klicken Sie auf **Zurück zur Seite Virtuelle Festplatte**.

VORSICHT: Die virtuelle Festplatte wird nach dem Ausführen eines Split Mirror-Vorgangs nicht mehr redundant sein.

„Split Mirror“ in Storage Management ausfindig machen

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie **Split Mirror** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Spiegelung beenden

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

ANMERKUNG: Bei Linux kann auf einer geladenen virtuellen Festplatte **Spiegelung beenden** nicht ausgeführt werden.

„Nicht-Spiegeln“ in Storage Management ausfindig machen

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie **Nicht-Spiegeln** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Dedizierten Hotspare zuweisen und Zuweisung rücksichtig machen

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Ein dedizierter Hotspare ist eine nicht verwendete Backup-Festplatte, die einer einzelnen virtuellen Festplatte zugewiesen ist. Wenn eine physische Festplatte in der virtuellen Festplatte versagt, wird der Hotspare aktiviert, um die fehlerhafte physische Festplatte ohne Unterbrechung des Systems oder erforderlichen Benutzereingriff zu ersetzen.

Weitere Informationen über Hotspares inklusive Größenanforderungen finden Sie unter **Virtuelle Festplatte mit einem Hotspare schützen**.

Einen dedizierten Hotspare zuweisen

1. Wählen Sie die Festplatte in der Tabelle **Anschluss** (Kanal oder Port) aus, die Sie als dedizierten Hotspare verwenden möchten. Auf einigen Controller kann mehr als eine Festplatte ausgewählt werden. Die Festplatten, die Sie als dedizierte Hotspares ausgewählt haben, werden in der Tabelle **Zurzeit als dedizierte Hotspares konfigurierte Festplatten** angezeigt.
2. Klicken Sie auf **Änderungen anwenden**, wenn Sie damit fertig sind.

ANMERKUNG: Wenn sich für PERC H310 Adapter, PERC H310 Mini Monolithic, PERC H310 Mini Blades, PERC H700, PERC H710 Adapter, PERC H710 Mini Blades, PERC H710 Mini Monolithic, PERC H710P Adapter, PERC H710P Mini Blades, PERC H710P Mini Monolithic, PERC H730P MX, PERC H745P MX, PERC H800 und PERC H810 Adapter-Controller irgendein von Ihnen...
Die Zuweisung eines dedizierten Hotspare rückgängig machen

1. Wählen Sie die Festplatte in der Tabelle Festplatten, die aktuell als dedizierte Hotspares konfiguriert sind aus, um die Zuweisung rückgängig zu machen. Auf einigen Controllern kann mehr als eine Festplatte ausgewählt werden. Durch Anklicken der Festplatte wird dieses aus der Tabelle Festplatten, die aktuell als dedizierte Hotspares konfiguriert sind entfernt und der Tabelle Konnektor (Kanal oder Schnittstelle) wieder hinzugefügt.
2. Klicken Sie auf Änderungen anwenden, wenn Sie damit fertig sind.

„Dedizierten Hotpare zuweisen oder Zuweisung für dedizierten Hotpare rückgängig machen“ in Storage Management ausfindig machen

1. Erweitern Sie das Strukturobjekt Speicher, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt Virtuelle Festplatte aus.
5. Klicken Sie auf Ausführen.

Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 1 von 2)

ANMERKUNG: Diese Funktion wird nur bei SAS- und SATA-Controllern mit Firmware-Version 6.1 und höher unterstützt.

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Sie können Daten von einer physischen Festplatte, die ein Mitglied einer virtuellen Festplatte ist, zu einer anderen physischen Festplatte kopieren, indem Sie eine Mitgliedersatzkonfigurationsoption angeben. Sie können mehrere Kopien von Daten aus unterschiedlichen Array-Gruppen einleiten.

Die physische Quellfestplatte sollte Teil einer virtuellen Festplatte sein und sich im Online-Zustand befinden. Außerdem sollte die virtuelle Festplatte nicht komplett herabgesetzt sein.

ANMERKUNG: Sie müssen ebenfalls die Option Rücksetzbare Hotpare aktivieren, um den Task Mitgliedfestplatte ersetzen zu verwenden.

Die physische Zielfestplatte sollte sich im Zustand 'Bereit' befinden, die richtige Größe und den passenden Typ aufweisen und für Schreibvorgänge verfügbar sein.

ANMERKUNG: Die physische Zielfestplatte kann auch ein verfügbarer Hotpare sein.

Eine Mitgliedsfestplatte ersetzen (Schritt 1 von 2)

1. Wählen Sie die physische Festplatte, die Sie ersetzen wollen, in der Tabelle Konnektor aus.
2. Wählen Sie die Zielfestplatte in der Tabelle Verfügbare Festplatten für Mitgliedersatzvorgang aus.

VORSICHT: Wenn Sie einen Hotpare als physische Zielfestplatte wählen, wird die virtuelle Festplatte ohne Hotpare sein, es sei denn, Sie weisen einen zu.

ANMERKUNG: Sie können immer nur eine physische Quell-/Zielfestplatte auf einmal auswählen.
3. Klicken Sie auf **Apply Changes** (Änderungen anwenden).

Zum Beenden ohne die Mitgliedsfestplatte zu ersetzen, klicken Sie auf **Zurück zur Seite Virtuelle Festplatte**.

Sie können den Fortschritt des Tasks **Mitgliedsfestplatte ersetzen** auf der Seite **Details zur physischen Festplatte** anzeigen.

ANMERKUNG: Wenn sich für PERC H330-, H730-, H730P-, H740P-, H745P MX- und H840-Controller ein beliebiges von Ihnen ausgewähltes Laufwerk im heruntergefahrenen Zustand befindet, wird folgende Meldung angezeigt: The below listed physical drive(s) are in the spin down state. Executing this task on these drive(s) takes additional time, because the drive(s) need to spun up (Die im Folgenden aufgeführten Laufwerke befinden sich im heruntergefahrenen Zustand. Für das Ausführen dieses Tasks auf diesen Laufwerken wird zusätzliche Zeit benötigt, da die Laufwerke hochgefahren werden müssen). Die Nachricht zeigt die ID(s) des/der heruntergefahrenen Laufwerks(e) an.

„Mitgliedsfestplatte ersetzen“ in Storage Management finden

1. Im Fenster **Server Administrator** in der System-Struktur erweitern Sie **Speicher**, um die Controller-Objekte anzuzeigen.
2. Erweitern Sie ein Controller-Objekt.
3. Wählen Sie das Objekt **Virtuelle Festplatte** aus.
4. Wählen Sie den Task **Mitgliedsfestplatte ersetzen** aus dem Drop-Down-Menü **Verfügbare Tasks** aus.
5. Klicken Sie auf **Ausführen**.

Task der virtuellen Festplatte: Mitgliedsfestplatte ersetzen (Schritt 2 von 2)

Auf dieser Seite wird die Zusammenfassung der Attribute der virtuellen Festplatte angezeigt, auf der Sie die Mitgliedsfestplatte ersetzen. Verwenden Sie diese Seite, um Ihre Änderungen nachzuprüfen, bevor Sie auf der virtuellen Festplatte den Task des Ersetzens der Mitgliedsfestplatte durchführen.

Eine Mitgliedsfestplatte ersetzen (Schritt 2 von 2)

1. Überprüfen Sie Ihre Änderungen. In der Tabelle **Physische Quellfestplatte** werden Einzelheiten zur physischen Quellfestplatte angezeigt. In der Tabelle **Physische Zielfestplatte** werden Einzelheiten zur physischen Zielfestplatte angezeigt.
2. Klicken Sie auf **Fertig stellen**, um die Erstellung der virtuellen Festplatte abzuschließen.

Wenn Sie bei Mitglied ersetzen eine Änderung vornehmen möchten, klicken Sie auf **Zurück zur vorhergehenden Seite**. Zum Beenden ohne Änderungen vorzunehmen, klicken Sie auf **Abbrechen**.
Physische und virtuelle Festplatten von einem System auf ein anderes umsetzen

In diesem Abschnitt wird das Umsetzen physischer und virtueller Festplatten von einem System auf ein anderes beschrieben.

Themen:

- Erforderliche Voraussetzungen
- Virtuelle SAS-Festplatten auf ein anderes System migrieren

Erforderliche Voraussetzungen

SAS-Controller

SAS-Controller

- Auf SAS-Controllern können Sie eine virtuelle Festplatte migrieren, indem Sie die physische Festplatte von einem Controller auf einen anderen umsetzen und dann die Fremdkonfiguration auf den empfangenden Controller importieren.
- Wenn ein Gehäuse auf einem SAS-Controller umgesetzt wird, können Sie es zu einer beliebigen Konnektornummer bewegen und dann die Fremdkonfiguration auf den empfangenden Controller importieren.

Virtuelle SAS-Festplatten auf ein anderes System migrieren

Virtuelle Festplatten und Datenträger von einem System zu einem anderen migrieren.

1. Schalten Sie das System aus, von dem die physischen Festplatten verschoben werden.
2. Wenn der empfangende Controller keine vorhandene Konfiguration für virtuelle Festplatten besitzt, schalten Sie dessen Server aus.
3. Setzen Sie die physischen Festplatten in das neue Gehäuse ein.
4. Starten Sie das am empfangenden Controller verbundene System.
5. Verwenden Sie den Task Fremdkonfigurationsoptionen, um die migrierten virtuellen Festplatten auf dem empfangenden Controller zu importieren.

ANMERKUNG: Die Fremdkonfigurationsabläufe werden auf den Controllern PERC S100, S110, S130 und S300 nicht unterstützt.

Die Migration wurde abgeschlossen. Die virtuelle Festplatte kann jetzt mit Storage Management verwaltet werden.
Virtuelle Festplatte mit einem Hotspare schützen

Wenn eine virtuelle Festplatte mit einem RAID-Controller erstellt wird, besteht die Möglichkeit den Systembetrieb aufrecht zu erhalten, wenn eine Festplatte fehlerhaft ist. Um dies zu bewerkstelligen, muss der virtuellen Festplatte ein Hotspare zugewiesen werden. Wenn eine Festplatte fehlerhaft ist, werden die redundanten Daten auf dem Hotspare neu erstellt, ohne dass der Systembetrieb unterbrochen wird.

Themen:
• Hotspare-Informationen
• Einstellen der Hotspare-Schutzregel

Hotspare-Informationen

Die Hotspare-Implementierung ist je nach Controller unterschiedlich. Weitere Informationen zu Hotspares finden Sie hier:

In den folgenden Abschnitten wird beschrieben, wie ein Hotspare zugewiesen wird:
• Globales Hotspare zuweisen und die Zuweisung rückgängig machen
• Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen

Einstellen der Hotspare-Schutzregel

Die Hotspare-Schutzregel wird nur auf seriell verbundenen SCSI-(SAS) Controllern unterstützt.

Die Hotspare-Schutzregel bietet Ihnen eine höhere Schutzstufe für die virtuellen Festplatten, indem Sie die Zahl der dedizierten/ globalen Hotspares festlegen können, die einer virtuellen Festplatte/Controller zugewiesen werden können. Sie können auch die Schweregradstufen für die Schutzregel festlegen. Storage Management sendet Warnungen, wenn die Hotspare-Schutzregeln verletzt werden.

Storage Management bietet zwar keine Standardregeln an, doch können Sie die für Ihre Umgebung am besten geeignete Hotspare- Schutzregel festlegen.

Dedizierte Hotspare-Schutzregel

Tabelle 36. Hotspare-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID-Stufe</td>
<td>Zeigt die RAID-Stufe(n) an, für die Sie die Hotspare-Schutzregel konfigurieren möchten.</td>
</tr>
<tr>
<td>Minimale Anzahl von Festplatten</td>
<td>Zeigt die minimale Anzahl von physischen Festplatten an, die als dedizierte Hotspares für die ausgewählte(n) RAID-Stufe(n) zugewiesen werden können.</td>
</tr>
</tbody>
</table>
Tabelle 36. Hotspare-Eigenschaften (fortgesetzt)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweregradstufe</td>
<td>Zeigt die Schweregradstufe an, die Sie der erstellten Warnung zuweisen möchten, wenn diese Regel verletzt wird.</td>
</tr>
</tbody>
</table>

ANMERKUNG: Der Status der virtuellen Festplatte wird von der Schweregradstufe bestimmt, die Sie für diese Regel festlegen.

Zurücksetzen der Hotspare-Schutzregel

Wählen Sie das RAID Layout ab, um die Schutzregel für den dedizierten Hotspare zurückzusetzen.

Globale Hotspare-Schutzregel

Tabelle 37. Globale Hotspare Schutzregel-Eigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Hotspare aktivieren</td>
<td>Aktiviert die Schutzregel des globalen Hotspare.</td>
</tr>
<tr>
<td>Minimale Anzahl von Festplatten</td>
<td>Zeigt die minimale Anzahl der physischen Festplatten an, die als globale Hotspares für den Controller zugewiesen werden sollen.</td>
</tr>
<tr>
<td>Schweregradstufe</td>
<td>Zeigt die Schweregradebene an, die Sie der generierten Warnung zuweisen müssen, wenn gegen die Global Hotspare-Regel verstoßen wird.</td>
</tr>
<tr>
<td>Berücksichtigen Sie die globale Hotspare-Regel, wenn Sie den Status der virtuellen Festplatte festlegen</td>
<td>Storage Management erachtet die Global Hot Spare-Regel, um den Zustand der virtuellen Festplatte zu bestimmen. Der Status der virtuellen Festplatte wird von der Schweregradstufe bestimmt, die Sie für diese Regel festlegen.</td>
</tr>
</tbody>
</table>

ANMERKUNG: Wenn Sie ein globales Hotspare zuweisen, nehmen Sie eine physische Festplatte mit einer höheren Kapazität, damit sie jede ausgefallene Festplatte auf dem Controller ersetzen kann.

Überlegungen zu Hotspare-Schutzregeln

- Die dedizierte Hotspare-Schutzregel gilt nicht für die SAS/IR-, PERC- und H200-Controller.
- RAID 0 unterstützt Hotspares oder die Schutzregel nicht.
- Für Controller der Familie SAS/IR und PERC H200 können nur zwei globale Hotspares zugewiesen werden.
- Falls der Status der virtuellen Festplatte mit Herabgesetzt oder Fehlerhaft angezeigt wird, weil eine Hotspare-Schutzregel verletzt worden ist, dann müssen Sie die erforderliche Zahl an Hotspares zuweisen (gemäß Definition in der Schutzregel), damit wieder der normale Status angezeigt wird.
- Die Hotspare-Schutzregel gilt nicht für die Controller PERC S100, S110, S130 und S300.

Überlegungen zur Gehäuseaffinität

Einstellungen zur Gehäuseaffinität für ein globales/dediziertes Hotspare werden nicht automatisch eingestellt, wenn Sie auf die Version 6.1 aktualisieren. Einstellungen zur Gehäuseaffinität für globale/dedizierte Hotspares werden nicht automatisch eingestellt, wenn Sie eine fremde virtuelle Festplatte importieren.
In diesem Abschnitt werden Fehlerbehebungsverfahren für sowohl am häufigsten vorkommende Fälle als auch für spezifische Probleme beschrieben.

Themen:

- Allgemeine Fehlerbehebungsverfahren
- Fehlerbehebung an der virtuellen Festplatte
- Spezifische Problemsituationen und -Lösungen
- PCIe SSD-Fehlerbehebung

Allgemeine Fehlerbehebungsverfahren

Dieser Abschnitt beschreibt Befehle und Vorgehensweisen zur Fehlerbehebung. Behandelte Themen umfassen:

- Richtig angeschlossene Kabel
- Systemanforderungen
- Treiber und Firmware
- Hardwareprobleme isolieren
- Eine fehlerhafte Festplatte ersetzen
- Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte
- Löschen von Problemen beim Microsoft Windows-Upgrade

Richtig angeschlossene Kabel

Überprüfen Sie, dass das Netzkabel und die Adapterkabel richtig angeschlossen sind. Wenn das System ein Problem mit den Lese- und Schreibvorgängen zu einer spezifischen virtuellen Festplatte oder einer Nicht-RAID physischen Festplatte hat (wenn zum Beispiel das System hängt), dann müssen Sie sicherstellen, dass die Kabel zum entsprechenden Gehäuse oder zur Rückwandplatine sicher eingesteckt sind. Wenn eine gute Verbindung besteht und das Problem weiterhin auftritt, müssen Sie eventuell ein Kabel ersetzen.

Bei SAS-Controllern ist zu überprüfen, ob die Kabelkonfiguration gültig ist. Die SAS-Hardwaredokumentation enthält die gültigen Konfigurationen. Wenn die Kabelkonfiguration ungültig ist, können Sie die Warnung 2182 oder 2356 erhalten.

Weitere Informationen zu Warnnachrichten finden Sie im Server Administrator Messages Reference Guide (Server Administrator Meldungen-Referenzhandbuch).

Systemanforderungen

Stellen Sie sicher, dass das System allen Anforderungen entspricht. Überprüfen Sie im Besonderen, ob die richtigen Firmware- und Treiberversionen auf dem System installiert sind.

Treiber und Firmware

\[\text{ANMERKUNG:} \] Sie können überprüfen, welche Firmware und Treiber installiert sind, indem Sie in der Strukturansicht das Objekt Speicher und auf das Register Informationen/Konfiguration klicken. Sie können auch das Warnungsprotokoll auf Warnungen überprüfen, die in Bezug zu nicht unterstützten Firmware- und Treiberversionen stehen.
Es wird außerdem empfohlen, das neuste Server-System-BIOS in regelmäßigen Zeitabständen abzurufen und anzuwenden, um die neuesten Verbesserungen nutzen zu können. Für weitere Informationen, siehe in der System-Dokumentation.

Hardwareprobleme isolieren

Wenn Sie eine Timeout-Warnung bezüglich eines Hardware-Geräts empfangen, oder wenn Sie vermuten, dass ein mit dem System verbundenes Gerät einen Fehler wahrnimmt, dann bestätigen Sie das Problem wie folgt:

- Überprüfen Sie den richtigen Anschluss der Kabel.
- Wenn die Kabel richtig angeschlossen sind und das Problem weiterhin besteht, ziehen Sie die Gerätekabel ab und starten Sie das System neu. Wenn das System erfolgreich neu startet, ist eventuell eines der Geräte beschädigt. Weitere Informationen finden Sie in der Hardwaregerätedokumentation.

Eine fehlerhafte Festplatte ersetzen

Eine fehlerhafte Festplatte muss eventuell in den folgenden Fällen ersetzt werden:

- Ersetzen einer fehlerhaften Festplatte, die Teil einer redundanten virtuellen Festplatte ist
- Eine fehlerhafte physische Festplatte ersetzen, die Teil einer nicht-redundanten, virtuellen Festplatte ist

Ersetzen einer fehlerhaften Festplatte, die Teil einer redundanten virtuellen Festplatte ist

Wenn die fehlerhafte Festplatte Teil einer redundanten virtuellen Festplatte ist, sollte das Festplattenversagen keinen Datenverlust verursachen. Die fehlerhafte Festplatte muss sofort ersetzt werden, da zusätzliche ausfallende Festplatten einen Datenverlust verursachen können.

Wenn die redundante virtuelle Festplatte einen zugewiesenen Hotspare besitzt, werden die Daten von der fehlerhaften Festplatte auf dem Hotspare neu erstellt. Nach der Neuerstellung funktioniert der ehemalige Hotspare als normale physische Festplatte, und die virtuelle Festplatte besitzt keinen Hotspare mehr. In diesem Fall muss die fehlerhafte Festplatte ersetzt werden und die Ersatzfestplatte sollte als Hotspare zugewiesen werden.

ANMERKUNG: Wenn der redundanten virtuellen Festplatte kein Hotspare zugewiesen ist, ersetzen Sie die fehlerhafte Festplatte anhand des Verfahrens, das unter „Physische Festplatte ersetzen, die SMART-Warnungen empfängt“ beschrieben wird.

Festplatte ersetzen

Ersätzen einer fehlerhaften Festplatte, die Teil einer redundanten virtuellen Festplatte ist:

1. Entfernen Sie die fehlerhafte Festplatte.
2. Legen Sie eine neue Festplatte ein. Stellen Sie sicher, dass die neue Festplatte über genauso viel oder mehr Speicherplatz verfügt als die Festplatte, die Sie ersetzen. Auf einigen Controllern können Sie den zusätzlichen Speicherplatz nicht verwenden, wenn Sie eine Festplatte, die über mehr Speicherplatz verfügt, einlegen.

Eine Neuerstellung wird automatisch gestartet, da die virtuelle Festplatte redundant ist.

Als Hotspare zuweisen

Wenn die virtuelle Festplatte bereits einen zugewiesenen Hotspare besitzt, werden die Daten eventuell bereits von der fehlerhaften Festplatte auf dem Hotspare neu erstellt. In diesem Fall muss ein neuer Hotspare zugewiesen werden.

Eine fehlerhafte physische Festplatte ersetzen, die Teil einer nicht-redundanten, virtuellen Festplatte ist

Wenn die fehlerhafte physische Festplatte Teil einer nicht-redundanten, virtuellen Festplatte ist (wie RAID 0), dann verursacht der Fehler einer einzigen physischen Festplatte das Fehlschlagen der gesamten virtuellen Festplatte. Um fortzufahren, müssen Sie den Zeitpunkt des Backups überprüfen, und ob seit dem letzten Backup neue Daten auf die virtuelle Festplatte geschrieben wurden.
Wenn vor kurzem ein Backup durchgeführt wurde und seit dem Backup keine neuen Daten auf die Festplatten geschrieben wurden, können Sie eine Wiederherstellung vom Backup ausführen.

Festplatte ersetzen

1. Löschen Sie die virtuelle Festplatte, die sich zurzeit in einem fehlerhaften Zustand befindet.
2. Entfernen Sie die fehlerhafte physische Festplatte.
3. Legen Sie eine neue physische Festplatte ein.
4. Erstellen Sie eine neue virtuelle Festplatte.
5. Stellen Sie die Daten vom Backup wieder her.

Online-Befehl der physischen Festplatten auf ausgewählten Controllern verwenden

Unterstützt mein Controller diese Funktion? Siehe Unterstützte Funktionen.

Wenn Ihnen kein passendes Backup zur Verfügung steht, und wenn die fehlerhafte Festplatte Teil einer virtuellen Festplatte auf einem Controller ist, der den Online-Task der physischen Festplatte unterstützt, können Sie versuchen, Daten durch Auswahl von Online vom Drop-Down-Task-Menü der fehlerhaften Festplatte abzurufen.

Es gibt keine Garantie, dass Sie mit dieser Methode Daten wiederherstellen können. Eine Online-Erzwingung repariert nicht die fehlerhafte Festplatte. Sie sollten nicht versuchen, neue Daten auf die virtuelle Festplatte zu schreiben.

Nachdem Sie beliebige, brauchbare Daten von der Festplatte erhalten haben, ersetzen Sie die fehlerhafte Festplatte wie in Ersetzen einer fehlerhaften Festplatte, die Teil einer redundanten virtuellen Festplatte ist oder Ersetzen einer fehlerhaften Festplatte, die Teil einer nicht-redundanten virtuellen Festplatte ist beschrieben.

Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte

Wenn die physische Festplatte, die Sie versehentlich entfernt haben, Teil einer redundanten virtuellen Festplatte ist, die auch einen Hotspare zugewiesen hat, führt die virtuelle Festplatte automatisch eine Neuerstellung entweder sofort durch, oder wenn eine Schreibanfrage verarbeitet wird. Nachdem die Neuerstellung abgeschlossen ist, besitzt die virtuelle Festplatte keinen Hotspare mehr, da die Daten auf der Festplatte, die zuvor als Hotspare zugewiesen war, neu erstellt wurden. In diesem Fall sollte ein neuer Hotspare zugewiesen werden.

Wenn die physische Festplatte, die Sie entfernt haben, Teil einer redundanten virtuellen Festplatte ist, die keinen Hotspare zugewiesen hat, ersetzen Sie die virtuelle Festplatte und führen eine Neuerstellung aus.

Für Informationen zur Neuerstellung physischer Festplatten und Zuweisung von Hotspares, siehe Hotspare-Informationen.

Sie können es vermeiden, die falsche physische Festplatte zu entfernen, indem Sie die LED-Anzeige der zu entfernden physischen Festplatte blinken lassen. Um mehr Informationen dazu zu erhalten, wie man die LED zum Blinken bringt, siehe Blinken und Blinken beenden (Physische Festplatte).

Lösen von Problemen beim Microsoft Windows-Upgrade

Um dieses Problem zu verhindern, sollte Storage Management vor der Erweiterung deinstalliert werden.

Nachdem Storage Management deinstalliert wurde und die Erweiterung abgeschlossen wurde, installieren Sie Storage Management neu mit dem Storage Management-Installationsdatenträger.
Fehlerbehebung an der virtuellen Festplatte

Die folgenden Abschnitte beschreiben Fehlerbehebungsverfahren für virtuelle Festplatten:

- Ersetzen einer fehlerhaften Festplatte, die Teil einer redundanten virtuellen Festplatte ist
- Eine Neuerstellung funktioniert nicht
- Eine Neuerstellung wird mit Fehlern abgeschlossen
- Virtuelle Festplatte kann nicht erstellt werden
- Fehler der virtuellen Festplatte auf Systemen, die Linux ausführen
- Probleme, die dem Verwenden der gleichen physischen Festplatten sowohl für redundante als auch für nicht-redundante virtuelle Festplatten zugeordnet sind

Eine Neuerstellung funktioniert nicht

Eine Neuerstellung funktioniert in den folgenden Situationen nicht:

- Die virtuelle Festplatte ist nicht-redundant – Zum Beispiel kann eine RAID 0-virtuelle Festplatte nicht neu erstellt werden, da RAID 0 keine Datennachweisung angibt.
- Der virtuelle Festplatte ist kein Hotspare zugewiesen – Solange die virtuelle Festplatte redundant ist, um sie neu zu erstellen:
 - Entfernen Sie die fehlerhafte physikalische Festplatte und tauschen Sie sie aus. Auf der neuen Festplatte wird automatisch eine Neuerstellung gestartet.
 - Weisen Sie der virtuellen Festplatte einen Hotspare zu und führen Sie dann eine Neuerstellung durch.
- Sie sind dabei, auf einem zu kleinen Hotspare neu zu erstellen – Unterschiedliche Controller verfügen über unterschiedliche Größenanforderungen für Hotspares.
- Die Hotspare-Zuweisung wurde von der virtuellen Festplatte rückgängig gemacht – Dies könnte auf einigen Controllern passieren, wenn das Hotspare auf mehr als eine virtuelle Festplatte zugewiesen war und bereits verwendet wurde, um eine fehlerhafte physische Festplatte für eine andere virtuelle Festplatte neu zu erstellen.
- Die virtuelle Festplatte enthält fehlerhafte oder beschädigte physikalische Festplatten; diese Situation erzeugt möglicherweise die Warnmeldung 2083. Weitere Informationen zu Warnmeldungen finden Sie im Server Administrator Meldungen-Referenzhandbuch.
- Die Einstellung der Neuerstellungsrate ist niedrig – Wenn die Einstellung der Neuerstellungsrate ziemlich niedrig ist und das System eine Anzahl von Vorgängen ausführt, dann kann die Neuerstellung ungewöhnlich viel Zeit zum Beenden in Anspruch nehmen.
- Die Neuerstellung wurde abgebrochen – Ein anderer Benutzer kann eine von Ihnen eingeleitete Neuerstellung abbrechen

Eine Neuerstellung wird mit Fehlern abgeschlossen

Eine Neuerstellung wird mit Fehlern abgeschlossen, wenn ein Teil der Festplatte beschädigt ist, der redundante (Paritäts-) Informationen enthält. Das Neuerstellungsverfahren kann Daten von den funktionsfähigen Teilen der Festplatte wiederherstellen, jedoch nicht von dem beschädigten Teil.

Wenn eine Neuerstellung alle Daten außer Daten auf beschädigten Abschnitten der Festplatte wiederherstellen kann, weist dies auf ein erfolgreiches Abschließen hin, während gleichzeitig Warnung 2163 ausgegeben wird. Weitere Informationen zu Warnmeldungen finden Sie im Server Administrator Meldungen-Referenzhandbuch.

Die Neuerstellung meldet eventuell auch Sense Key-Fehler. In dieser Situation führen Sie die folgenden Maßnahmen aus, um die maximal mögliche Anzahl an Daten wiederherzustellen:

1. Sichern Sie die herabgesetzte virtuelle Festplatte auf einem neuen (unbenutzten) Band.
 - Wenn das Backup erfolgreich ist – Wenn das Backup erfolgreich abschließt, dann sind die Benutzerdaten auf der virtuellen Festplatte bis zu 10% beschädigt. In diesem Fall fahren Sie mit Schritt 2 fort.
 - Wenn das Backup auf Fehler stößt – Wenn das Backup auf Fehler stößt, sind die Benutzerdaten beschädigt worden und können von der virtuellen Festplatte nicht mehr wiederhergestellt werden. In diesem Fall ist die einzige Möglichkeit, die Festplatte wiederherzustellen, von einem vorhergehenden Backup auf der virtuellen Festplatte wiederherzustellen.

2. Führen Sie eine Übereinstimmungsüberprüfung der virtuellen Festplatte, für das Sie ein Backup auf ein Band durchgeführt haben, durch.
3. Stellen Sie die virtuelle Festplatte vom Band auf funktionsfähige physische Festplatten wieder her.
Virtuelle Festplatte kann nicht erstellt werden

Sie versuchen eventuell eine RAID-Konfiguration zu verwenden, die nicht vom Controller unterstützt wird. Überprüfen Sie das Folgende:

- Wie viele virtuelle Festplatten sind bereits auf dem Controller vorhanden? Jeder Controller unterstützt eine maximale Anzahl von virtuellen Festplatten.
- Ist genügend verfügbarer Speicherplatz auf der Festplatte vorhanden? Auf den zur Erstellung der virtuellen Festplatte ausgewählten physischen Festplatten muss ausreichender freier Speicherplatz zur Verfügung stehen.
- Der Controller führt eventuell andere Tasks aus, wie z. B. die Neuerstellung einer physischen Festplatte, die abgeschlossen werden müssen, bevor der Controller die neue virtuelle Festplatte erstellen kann.

Eine virtuelle Festplatte der minimalen Größe ist für Windows Festplattenverwaltung nicht sichtbar

Wenn Sie eine virtuelle Festplatte mit der zulässigen Mindestgröße in Storage Management erstellen, ist die virtuelle Festplatte vielleicht nicht sichtbar für die Windows Festplattenverwaltung, sogar nach der Initialisierung. Dies ist der Fall, weil die Windows Festplattenverwaltung nur dann extrem kleine virtuelle Festplatten erkennen kann, wenn sie dynamisch sind. Es wird dazu geraten, virtuelle Festplatten größeren Umfangs zu erstellen, wenn Storage Management verwendet wird.

Fehler der virtuellen Festplatte auf Systemen, die Linux ausführen

Bei manchen Versionen des Linux-Betriebssystems ist die Größe von virtuellen Festplatten auf 1 TB begrenzt. Wenn Sie eine virtuelle Festplatte erstellen, die über die 1 TB-Einschränkung hinaus geht, kann das System folgendes Verhalten zeigen:

- E/A-Fehler auf der virtuellen Festplatte oder logischen Festplatte.
- Nicht zugreifbare virtuelle Festplatte oder logische Festplatte.
- Die Größe der virtuellen Festplatte oder logischen Festplatte ist geringer als erwartet.

Wenn Sie eine virtuelle Festplatte erstellt haben, die über die 1 TB-Einschränkung hinaus geht, sollten Sie folgende Maßnahmen ergreifen:

1. Sichern Sie Ihre Daten ab.
2. Löschen Sie die virtuelle Festplatte.
3. Erstellen Sie ein oder mehrere virtuelle Festplatten, die kleiner als 1 TB sind.
4. Stellen Sie Ihre Daten vom Backup wieder her.

Unabhängig davon, ob Ihr Linux-Betriebssystem die Größe der virtuellen Festplatte auf 1TB einschränkt, hängt die Größe der virtuellen Festplatte von der Version des Betriebssystems sowie von jeglichen Aktualisierungen und Änderungen, die Sie umgesetzt haben, ab. Für weitere Informationen, siehe die Dokumentation Ihres Betriebssystems.

Probleme, die dem Verwenden der gleichen physischen Festplatten sowohl für redundante als auch für nicht-redundante virtuelle Festplatten zugeordnet sind

Beim Erstellen von virtuellen Festplatten sollten Sie vermeiden, die gleichen physischen Festplatten für sowohl redundante als auch nicht-redundante virtuelle Festplatten zu verwenden. Dies gilt für alle Controller. Das Verwenden der gleichen physischen Festplatten sowohl für redundante als auch für nicht-redundante, virtuelle Festplatten kann unerwartetes Verhalten, einschließlich Datenverlust, hervorrufen.

ANMERKUNG: SAS-Controller erlauben Ihnen nicht, redundante und nicht-redundante virtuelle Festplatten auf dem gleichen Satz von physischen Festplatten zu erstellen.

Spezifische Problemsituationen und -Lösungen

Dieser Abschnitt enthält zusätzliche Informationen zur Fehlerbehebung. Themen umfassen:

- Physische Festplatte befindet sich im Offline-Zustand oder zeigt einen Fehlerstatus an
- Empfang der Warnung Beschädigter Block mit dem Fehler Ersetzen, Feststellen oder Medium
- Probleme bei Lese- und Schreibvorgängen
• Eine Task-Menüoption wird nicht angezeigt
• Die Meldung „Festplatte oder Laufwerk beschädigt“ empfiehlt, während eines Neustarts eine automatische Überprüfung durchzuführen
• Falsche Status- und Fehlermeldungen nach einem Windows-Ruhezustand
• Möglichkeit einer Verzögerung beim Storage Management vor dem Aktualisieren des Temperatursondenstatus
• Storage Management kann die Anzeige von Speichergeräten nach einem Neustart verzögern
• Es kann keine Anmeldung an ein Remote-System durchgeführt werden
• Kann nicht mit dem Remote-System verbinden, das auf dem Microsoft Windows Server 2003 ausführt
• Neuconfigurieren einer virtualen Festplatte führt zu einer Fehlanzeige in Mozilla-Browser
• Physische Festplatten werden unter dem Strukturobjekt Konnektor, nicht dem Strukturobjekt Gehäuse, angezeigt

Physische Festplatte befindet sich im Offline-Zustand oder zeigt einen Fehlerstatus an

Eine physische Festplatte zeigt eventuell einen Fehlerstatus an, wenn sie beschädigt wurde, in den Offline-Zustand versetzt wurde oder Mitglied einer virtuellen Festplatte war, die gelöscht oder initialisiert wurde. Der Fehlerzustand kann eventuell mit den folgenden Maßnahmen berichtigt werden:

• Wenn ein Benutzer die Festplatte Offline gesetzt hat, versetzen Sie die Festplatte wieder in den Online-Status, indem Sie den Festplatten-Task Online durchführen.
• Überprüfen Sie, ob irgendwelche Kabel-, Gehäuse- oder Controller-Probleme die Festplatte von der Kommunikation mit dem Controller abhalten. Wenn Sie ein Problem finden und es lösen und die Festplatte nicht auf den Status Online oder Bereit zurückkehrt, starten Sie das System neu.
• Ersetzen Sie die Festplatte, wenn sie beschädigt ist.

Empfang der Warnung Beschädigter Block mit dem Fehler Ersetzen, Feststellen oder Medium

Die folgenden Warnungen oder Ereignisse werden erstellt, wenn ein Teil einer physischen Festplatte beschädigt ist:

• 2146
• 2147
• 2148
• 2149
• 2150

Dieser Schaden wird entdeckt, wenn der Controller einen Arbeitsvorgang ausführt, die das Scannen der Festplatte verlangt. Beispiele von Arbeitsvorgängen, die auf diese Warnungen hinauslaufen können, sind wie folgt:

• Übereinstimmungsüberprüfung
• Neu erstellen
• Formatieren der virtuellen Festplatte
• E/A

Wenn Sie Warnungen 2146 bis 2150 als das Ergebnis einer Neuerstellung erhalten oder während sich die virtuelle Festplatte in einem herabgesetzten Zustand befindet, dann können Daten nicht von der beschädigten Festplatte wiederhergestellt werden, ohne von der Sicherungskopie wiederherzustellen. Wenn Sie Warnungen 2146 bis 2150 unter anderen Umständen als einer Neuerstellung erhalten, dann kann Datenwiederherstellung möglich sein. Im folgenden wird jede dieser Situationen beschrieben.

Warnungen 2146 bis 2150 während einer Neuerstellung oder während eine virtuelle Festplatte herabgesetzt ist erhalten

Führen Sie folgende Schritte durch:

1. Ersetzen Sie die beschädigte physische Festplatte.
2. Erstellen Sie eine neue virtuelle Festplatte und lassen Sie die virtuelle Festplatte wieder komplett resynchronisieren.
 Während der Resynchronisierung ist der Status der virtuellen Festplatte Resynchronisiert.
3. Stellen Sie Daten zur virtuellen Festplatte wieder von der Sicherungskopie her.
Warnungen 2146 bis 2150 während einer E/A-Konsistenzüberprüfung, Formatieren oder anderen Arbeitsgängen erhalten

Wenn Sie Warnungen 2146 bis 2150 erhalten, während Sie einen anderen Arbeitsgang als eine Neuerstellung ausführen, sollten Sie die beschädigte Festplatte sofort ersetzen, um Datenverlust zu vermeiden.

Gehen Sie hierzu wie folgt vor:
1. Sichern Sie die herabgesetzte virtuelle Festplatte auf ein neues (unbenutztes) Band.
2. Ersetzen Sie die beschädigte Festplatte.
3. Führen sie eine Neuerstellung durch.

Probleme bei Lese- und Schreibvorgängen

Wenn ein System hängt, Zeitüberschreitungen oder andere Probleme mit Lese- und Schreibvorgängen auftreten, kann dieses Problem eventuell von den Controller-Kabeln oder einem Gerät verursacht werden.

Eine Task-Menüoption wird nicht angezeigt

Es gibt auch andere Gründe, warum ein Task zu einer bestimmten Zeit nicht durchgeführt werden kann. Zum Beispiel wird eventuell bereits ein Task auf dem Objekt durchgeführt, die zuerst abgeschlossen werden muss, bevor zusätzliche Tasks durchgeführt werden können.

Die Meldung „Festplatte oder Laufwerk beschädigt“ empfiehlt, während eines Neustarts eine automatische Überprüfung durchzuführen

Führen Sie die automatische Überprüfung aus, aber machen Sie sich keine Gedanken wegen dieser Meldung. Der Neustart wird abgeschlossen, nachdem die automatische Überprüfung fertig ist. Dies kann je nach der Größe Ihres Systems, ungefähr zehn Minuten dauern.

Falsche Status- und Fehlermeldungen nach einem Windows-Ruhezustand

Möglichkeit einer Verzögerung beim Storage Management vor dem Aktualisieren des Temperatursondenstatus

Storage Management kann die Anzeige von Speichergeräten nach einem Neustart verzögern

Storage Management erfordert Zeit nach einem Neustart, um alle verbundenen Speichergeräte ausfindig zu machen und entsprechende Bestandsaufnahmen durchzuführen. Die Anzeige der Speicher-Controller kann sich verzögern, bis dieser Vorgang abgeschlossen hat.

Es kann keine Anmeldung an ein Remote-System durchgeführt werden

Neukonfigurieren einer virtuellen Festplatte führt zu einer Fehlanzeige in Mozilla-Browser

Beim neu Konfigurieren einer virtuellen Festplatte mit dem Mozilla-Browser kann die folgende Fehlermeldung angezeigt werden:

Obwohl diese Seite verschlüsselt ist, werden die Informationen, die Sie eingegeben haben, über eine unverschlüsselte Verbindung gesendet und könnten leicht von Dritten gelesen werden.

Sie können diese Fehlermeldung durch Ändern einer Mozilla-Browsereinstellung deaktivieren. So deaktivieren Sie diese Fehlermeldung:

1. Wählen Sie Bearbeiten > Einstellungen.
2. Klicken Sie auf Datenschutz und Sicherheit.
3. Klicken Sie auf SSL.

Physische Festplatten werden unter dem Strukturobjekt Konnektor, nicht dem Strukturobjekt Gehäuse, angezeigt

Storage Management fragt in häufigen Abständen den Status physischer Festplatten ab. Wenn sich die physische Festplatte in einem Gehäuse befindet, werden die vom SCSI-Gehäuseprozessor (SEP) berichteten Daten zum Ermitteln des Status der physischen Festplatte verwendet.

Im Fall, dass der SEP nicht funktioniert, ist Storage Management immer noch in der Lage, den Status der physischen Festplatte abzfragen, doch kann Storage Management nicht feststellen, dass sich die physische Festplatte im Gehäuse befindet. In diesem Fall zeigt Storage Management die physische Festplatte direkt unter dem Objekt „Konnektor“ in der Strukturanzeige an und nicht unter dem Objekt „Gehäuse“.

PCIe SSD-Fehlerbehebung

Die folgenden Abschnitte beschreiben Fehlerbehebungsverfahren für PCIe SSD. Themen umfassen:

- PCIe SSD wird im Betriebssystem nicht gesehen
- PCIe SSD ist nicht in der Festplattenverwaltung im Betriebssystem sichtbar

Peripheral Component Interconnect Express Solid-State-Laufwerk wird im Betriebssystem nicht gesehen

Mögliche Ursache: Die Hardware ist nicht richtig installiert

Lösung: Überprüfen Sie die folgenden Komponenten, um sicherzustellen, dass sie angeschlossen sind:

- Geräte: Stellen Sie sicher, dass die PCIe SSDs in einer PCIe SSD-Rückwandplatine installiert sind.
- Rückwandplatine: Stellen Sie sicher, dass die Kabel für die PCIe SSD-Rückwandplatine angeschlossen sind.
- Kabel: PCIe-Kabel sind nur für diese Konfiguration zu verwenden. Stellen Sie sicher, dass die Rückwandplatinen-Kabelanschlüsse in die Rückwandplatine und die Extender-Kartenkabelanschlüsse in die Extender-Karte passen.

PCIe SSD ist nicht in der Festplattenverwaltung im Betriebssystem sichtbar

Wahrscheinliche Ursache: Der Gerätetreiber ist nicht installiert.

Lösung:

1. Laden Sie den aktuellen PCIe SSD-Treiber von der Support-Seite herunter.
2. Öffnen Sie den Gerätemanager und doppelklicken Sie auf Andere Geräte, wo das PCIe-Gerät mit einer gelben Markierung versehen ist.

Weitere Informationen zu möglichen Fehlerzuständen mit Ihrem PCIe SSD finden Sie im systemspezifischen Benutzerhandbuch.
Häufig gestellte Fragen

Dieser Abschnitt enthält häufig gestellte Fragen mit Antworten zu Situationen, die in einer Speichermedienumgebung erfahrungsgemäß vorkommen.

- Warum funktioniert eine Neuerstellung nicht?
- Entfernung der falschen Festplatte verhindern
- Wie kann ich eine physische Festplatte sicher entfernen oder ersetzen?
- Was kann ich tun, wenn ich die falsche physische Festplatte entfernt habe?
- Wie identifiziere ich die installierte Firmware-Version?
- Über welche Controller verfüge ich?
- Welche RAID-Stufe ist für mich am besten?

Themen:
- Warum funktioniert eine Neuerstellung nicht?
- Entfernung der falschen Festplatte verhindern
- Wie kann ich eine physische Festplatte sicher entfernen oder ersetzen?
- Was kann ich tun, wenn ich die falsche physische Festplatte entfernt habe?
- Identifizieren der installierten Firmware-Version
- Über welche Controller verfüge ich?
- Welche RAID-Stufe ist für mich am besten?

Warum funktioniert eine Neuerstellung nicht?

Weitere Informationen finden Sie unter Eine Neuerstellung funktioniert nicht.

Entfernung der falschen Festplatte verhindern

Sie können es vermeiden, die falsche Festplatte zu entfernen, indem Sie die LED-Anzeige auf der Festplatte blinken, die Sie entfernen möchten. Um Informationen zum Blinken der LED-Anzeige zu erhalten:

- Siehe Blinken und Blinken beenden (Physische Festplatte), um die LED-Anzeige auf einer physischen Festplatte zu blinken.
- Siehe Blinken und Blinken beenden (Virtuelle Festplatte), um die LED-Anzeige auf allen in einer bestimmten virtuellen Festplatte enthaltenen physischen Festplatten zu blinken.

Wenn Sie die falsche physische Festplatte bereits entfernt haben, siehe Wiederherstellung vom Entfernen der falschen physischen Festplatte.

Wie kann ich eine physische Festplatte sicher entfernen oder ersetzen?

Die folgenden Abschnitte enthalten Informationen zum sicheren Entfernen einer funktionierenden physischen Festplatte:

- Für Festplatten, die sich in einem Gehäuse befinden, verwenden Sie den Task Vorbereitung zum Entfernen eines PCIe SSD, um die Festplatte innerhalb des Gehäuses zu finden und sie vor dem Entfernen zu deaktivieren.
- Für physische Festplatten, die in einer virtuellen Festplatte eingeschlossen sind, verwenden Sie den Task Offline, um die Festplatte vor dem Entfernen zu deaktivieren. Wenn Sie Hilfe benötigen, um die Festplatte innerhalb des Gehäuses zu finden, können Sie die Leuchtdioden- (LED) Anzeige der Festplatte blinken lassen.
Was kann ich tun, wenn ich die falsche physische Festplatte entfernt habe?
Weitere Informationen finden Sie unter Wiederherstellung nach dem Entfernen einer falschen physischen Festplatte.

Identifizieren der installierten Firmware-Version
1. Wählen Sie das Objekt Speicher in der Strukturansicht aus.

Über welche Controller verfüge ich?
Jeder am System angeschlossene Controller wird unter dem Speicher-Objekt in der Strukturansicht angezeigt. Außerdem zeigen die Seiten Funktionszustand und Informationen/Konfiguration Informationen zu jedem Controller an. Um zu identifizieren, welche Controller am System angeschlossen sind:
2. Klicken Sie auf das Unterregister Informationen/Konfiguration, um zusätzliche Informationen für jeden Controller anzuzeigen.

Welche RAID-Stufe ist für mich am besten?
Weitere Informationen finden Sie unter RAID-Stufen und Verkettungen auswählen und RAID-Stufen und Verkettungsleistungen vergleichen.
Unterstützte Funktionen

ANMERKUNG: Die Reihenfolge der im Storage Management angezeigten Controller unterscheidet sich möglicherweise von der Reihenfolge der in der Human Interface (HII) und PERC-Options-ROM angezeigten Controller. Die Reihenfolge der Controller führt zu keinerlei Einschränkungen.

Themen:

- Unterstützte Funktionen auf den PERC Hardware-Controllern
- Controller-Tasks, unterstützt auf den PERC Hardware-Controllern
- Batterie-Tasks, unterstützt von den PERC Hardware-Controllern
- Konnektor-Tasks, unterstützt von den PERC Hardware-Controllern
- Tasks der physischen Festplatte, unterstützt von den PERC Hardware-Controllern
- Tasks der virtuellen Festplatte, unterstützt von den PERC Hardware-Controllern
- Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller
- RAID-Stufen, die von den PERC Hardware-Controllern unterstützt werden
- Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern
- Unterstützte Funktionen auf den PERC Software RAID-Controllern

Unterstützte Funktionen auf den PERC Hardware-Controllern

In diesem Abschnitt wird besprochen, was die Controller unterstützten Funktionen sind und ob ein Gehäuse mit den folgenden Hardware-Controllern verbunden werden kann:

- PERC FD33xD/FD33xS
- PERC H830-Adapter
- PERC H840-Adapter
- PERC H730P-Adapter, PERC H730P Mini Monolithic, PERC H730P Mini Blades, PERC H730P Slim
- PERC H730-Adapter, PERC H730 Mini Monolithic, PERC H730 Mini Blades
- PERC H740P-Adapter, PERC H740P Mini Monolithic
- PERC H330-Adapter, PERC H330 Mini Monolithic, PERC H330 Mini Blades, PERC H330 Embedded
- PERC H730P MX
- PERC H745P MX
- PERC H730, PERC H740P und PERC H740P Mini
- PERC H745P Front, PERC H345 Front
- Adapter PERC H745, Adapter PERC H345

ANMERKUNG: Die Reihenfolge der im Storage Management angezeigten Controller unterscheidet sich möglicherweise von der Reihenfolge der in der Human Interface (HII) und PERC-Options-ROM angezeigten Controller. Die Reihenfolge der Controller führt zu keinerlei Einschränkungen.

Die folgenden Funktionen stehen zur Verfügung:

- Controller-Tasks
- Batterie-Tasks
- Konnektor-Tasks
- Tasks der physischen Festplatte
Controller-Tasks, unterstützt auf den PERC Hardware-Controllern

Tabelle 38. Controller-Tasks, unterstützt auf den PERC Hardware-Controllern

<table>
<thead>
<tr>
<th>Controller-Task-Name</th>
<th>PERC H700 Adapter/Integrierte PERC H700 Modular</th>
<th>PERC H710-Adapter/Mini Monolith/Mini Blade</th>
<th>PERC H710P-Adapter</th>
<th>PERC H740P-Adapter/Mini Monolith</th>
<th>PERC H740P-Adapter/Mini Monolith</th>
<th>PERC H730-Adapter/Mini-Blade/Mini Monolith/Mini Blades</th>
<th>PERC H730P-MX PERC H740P-MX</th>
<th>PERC H745P Vorne/Adapter</th>
<th>PERC H345 Vorne/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm aktivieren</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Alarm deaktivieren</td>
<td>-</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Akustischen Alarm abstellen</td>
<td>-</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Alarm testen</td>
<td>-</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Load-Balance</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Konfigurations-Reset</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Neuerstellungsrate einstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Hintergrundinitialisierung rate einstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungüberprüfungsraten einstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Rekonstruktionsrate einstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Erneuter Scan eines Controllers</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Controller-Task-Name</td>
<td>PERC H700 Adapter/Integrier te PERC H700 Modular PERC H710-Adapter/Mini Monolithic/Mini-Blade PERC H710P-Adapter</td>
<td>PERC H730P-Adapter/Mini Monolithic/Mini-Blades/Schlank PERC H730-Adapter/Mini Monolithic/Mini-Blades</td>
<td>PERC H740P-Adapter/Mini Monolithic PERC H745P-Adapter PERC H830-Adapter/PERC H840-Adapter</td>
<td>PERC FD33x/PERC H745P-Adapter PERC H745P-Adapter</td>
<td>PERC H730P MX PERC H745P MX PERC H745Vorne</td>
<td>PERC H745Vorne/Adapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung einer virtuellen Festplatte</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Protokolldatei exportieren</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Fremdkonfiguration löschen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Fremdkonfiguration importieren</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Fremdkonfiguration importieren/wiederherstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Patrol Read-Modus einstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Patrol Read starten</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID in Nicht-RAID konvertieren</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Nicht-RAID in RAID konvertieren</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Mitglied ersetzen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Importvorschau von Fremdkonfiguration</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Hotplug von Gehäusen</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Controller-Eigenschaf ten ändern</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Intelligente Daten-</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>spiegelung</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Konfiguration mit</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>redundantem Pfad</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Festplatten-Cache-</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Regel</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Gesichertes Cache</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>verwaltet</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Verschlüsselung-</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>schlüsselverwalten</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>CacheCade verwalten</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Beständiger Hotspare</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Strom der physischen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Festplatte für nicht</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>konfigurierte und Hotspare-</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Stromplattenverwalten</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Strom der physischen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Festplatte für konfigurierte Festplattenverwalten</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Automatische</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Konfiguration von RAID 0</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Nicht-RAID-HDD</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 38. Controller-Tasks, unterstützt auf den PERC Hardware-Controllern (fortgesetzt)

<table>
<thead>
<tr>
<th>Controller-Task-Name</th>
<th>PERC H700 Adapter/Integrierte PERC H700 Modular PERC H710-Adapter/Mini Monolithic/Mini-Blade PERC H710P-Adapter</th>
<th>PERC H730P Adapter/Mini Monolithic/Blades/Schlank PERC H730-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H740P-Adapter/Mini Monolithic</th>
<th>PERC H830-Adapter/Mini-Blade/Mini Monolithic/MiniBlades/ integriert</th>
<th>PERC H840-Adapter</th>
<th>PERC FD33xD/FD33xS</th>
<th>PERC H730P MX PERC H745P MX</th>
<th>PERC H745P Vorne/Adapter</th>
<th>PERC H745 Vorne/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festplatten-Cache-Regel</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Patrol Read Report</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungsüberprüfungs-Report</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Tabelle 39. Batterie-Tasks, unterstützt von den PERC Hardware-Controllern

| Batterie-Task-Name | PERC H700-Adapter/Integrierte PERC H700 Modular PERC H710-Adapter/Mini Monolithic/Mini-Blade | PERC H310 Adapter/Mini Monolithic/Mini-Blade PERC H330-Adapter/Mini Monolithic/Mini-Blades/Schlank PERC H730-Adapter/Mini Monolithic/Mini-Blades/integriert | PERC H740P-Adapter/Mini Monolithic PERC H830-Adapter/Mini-Blade/Mini Monolithic/MiniBlades/ integriert | PERC H840-Adapter | PERC FD33xD/FD33xS | PERC H730P MX PERC H745P MX | PERC H745P Vorne/Adapter | PERC H745 Vorne/Adapter | PERC H345 Front/Adapter |
|---------------------|---|---------------------------------|---------------------------------|-------------------|------------------|---------------------|------------------------|------------------------|
| Batterie | Nein |

Unterstützte Funktionen 169
Tabelle 39. Batterie-Tasks, unterstützt von den PERC Hardware-Controllern (fortgesetzt)

<table>
<thead>
<tr>
<th>Batterie-Task-Name</th>
<th>PERC H700-Adapter/Integriert</th>
<th>PERC H700 Modular</th>
<th>PERC H710-Adapter/Mini Monolithic/Mini-Blade</th>
<th>PERC H310 Mini Monolithic/Mini-Blade</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini-Blades/Integriert</th>
<th>PERC H730P Adapter/Mini Monolithic/Mini-Blades/Schlank</th>
<th>PERC H730-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H830-Adapter</th>
<th>PERC H840-Adapter</th>
<th>PERC FD33xD/FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P MX Front/Adapter</th>
<th>PERC H345P MX Front/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>überholen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Lernzyklus starten</td>
<td>Ja</td>
<td>-</td>
<td>Nein</td>
</tr>
<tr>
<td>Lernzyklus verzögern</td>
<td>Ja</td>
<td>-</td>
<td>Nein</td>
</tr>
</tbody>
</table>

ANMERKUNG: Die Akku-Tasks werden auf PERC-Hardware-Controllern nicht unterstützt.

Konnektoren-Tasks, unterstützt von den PERC Hardware-Controllern

Tabelle 40. Konnektor-Tasks, unterstützt auf den PERC Hardware-Controllern

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konnektor neu scannen</td>
<td>Nein</td>
</tr>
</tbody>
</table>
Tasks der physischen Festplatte, unterstützt von den PERC-Hardware-Controllern

<table>
<thead>
<tr>
<th>Task-Name der physischen Festplatte</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H710-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H710P-Adapter</th>
<th>PERC H730-Adapter/Mini Monolithic/Mini-Blades/Integriert</th>
<th>PERC H730P-Adapter</th>
<th>PERC H730P Adapter/Mini Monolithic</th>
<th>PERC H740P-Adapter/Mini Monolithic</th>
<th>PERC H745P Adapter/Vorne</th>
<th>PERC H745 Vorne</th>
<th>PERC H345 Vorne/Adapte r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinken/Blindendeinhalten</td>
<td>Ja</td>
</tr>
<tr>
<td>Globales Hot spare zuweisen und die Zuweisung rückgängig machen</td>
<td>Ja</td>
</tr>
<tr>
<td>Vorbereitung zur Entfernung</td>
<td>Nein</td>
</tr>
<tr>
<td>Offline</td>
<td>Ja</td>
</tr>
<tr>
<td>Online</td>
<td>Ja</td>
</tr>
<tr>
<td>Initialisieren</td>
<td>Nein</td>
</tr>
<tr>
<td>Neuerstellen</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Unterstützte Funktionen
Tabelle 41. Tasks der physischen Festplatte, unterstützt von den PERC-Hardware-Controllern (fortgesetzt)

<table>
<thead>
<tr>
<th>Task-Name der physischen Festplatte</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H310-Adapter/Mini Blade/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini Blades/integriert</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini Blades/Schlank</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini Blades</th>
<th>PERC H830-Adapter/PerC H840-Adapter</th>
<th>PERC FD33xD/FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P Adapter/Vorne</th>
<th>PERC H745 Vorne</th>
<th>PERC H345 Vorne/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuerstellung abbrechen</td>
<td>Ja</td>
</tr>
<tr>
<td>Tote Festplatten segmentieren entfernen</td>
<td>Nein</td>
</tr>
<tr>
<td>Festplatte formieren</td>
<td>Nein</td>
</tr>
<tr>
<td>Clear (Lösch)</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Löschen abbrechen</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Mitglied ersetzen abbrechen</td>
<td>Ja</td>
</tr>
<tr>
<td>In RAID-fähige Festplatte konvertieren</td>
<td>-</td>
<td>Ja</td>
</tr>
<tr>
<td>In nicht -</td>
<td>-</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 41. Tasks der physischen Festplatte, unterstützt von den PERC-Hardware-Controllern (fortgesetzt)

| Task-Name der physischen Festplatte | PERC H700-Adapter/Integriert/Modular | PERC H710-Adapter/Mini-Blade/Mini Monolithic | PERC H710P-Adapter | PERC H310-Adapter/Mini Blade/Mini Monolithic | PERC H330-Adapter/Mini Monolithic/Mini-Blades/Integriert | PERC H830-Adapter/Mini Monolithic/Mini-Blades/Schlank | PERC H730-Adapter/Mini Monolithic | PERC H840-Adapter | PERC FD33xCD | PERC FD33xS | PERC H730PMX | PERC H730P/Vorne | PERC H745PMX | PERC H745P/Vorne | PERC H745/Vorne | PERC H345/Vorne/Adapte |
|-----------------------------------|--------------------------------------|---|-------------------|---|--|--|--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| RAID-fähige Festplatte konvertieren | Nein | Nein | Ja | Nein |
| Kryptografischer Löschvorgang | Ja |
| Rücksetzbares Hotspare | Ja |
Tasks der virtuellen Festplatte, unterstützt von den PERC-Hardware-Controllern

Tabelle 42. Tasks der virtuellen Festplatte, unterstützt von den PERC-Hardware-Controllern

<table>
<thead>
<tr>
<th>Task-Name der virtuellen Festplatte</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H710-Adapter/Mini Monolithic/Mini Blade</th>
<th>PERC H710P-Adapter/Mini Blade/Mini Monolithic</th>
<th>PERC H310-Adapter/Mini Monolithic/Mini Blade</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini Blades/Embedded</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini Blades/Slim</th>
<th>PERC H740P-Adapter/Mini Monolithic</th>
<th>PERC FD33xD/FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P Front/Adapter</th>
<th>PERC H745 Front</th>
<th>PERC H745 Front/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen.</td>
<td>Ja</td>
</tr>
<tr>
<td>Erstellung einer virtuellen Festplatte</td>
<td>Ja</td>
</tr>
<tr>
<td>Erweiterter Assistent zur Erstellung von virtuellen Festplatten erstellen</td>
<td>Ja</td>
</tr>
<tr>
<td>Schnellassistent zur Erstellung von virtuellen Festplatten</td>
<td>Ja</td>
</tr>
<tr>
<td>Umbenennen</td>
<td>Ja</td>
</tr>
<tr>
<td>Blinken/ Blinken beenden</td>
<td>Ja</td>
</tr>
<tr>
<td>Neu konfigurieren</td>
<td>Ja</td>
</tr>
<tr>
<td>Regel ändern</td>
<td>Ja</td>
</tr>
<tr>
<td>Split Mirror</td>
<td>Nein</td>
</tr>
<tr>
<td>Task-Name der virtuellen Festplatte</td>
<td>PERC H700-Adapter/Integriert/Modular</td>
<td>PERC H710-Adapter/Mini Monolithic/Mini Blade</td>
<td>PERC H710P-Adapter/Mini Blade/Mini Monolithic</td>
<td>PERC H310-Adapter/Mini Blade/Mini Monolithic</td>
<td>PERC H330-Adapter/Mini Monolithic/Mini Blades/Embedded</td>
<td>PERC H730-Adapter/Mini Monolithic/Mini Blades/Slim</td>
<td>PERC H730P-Adapter/Mini Monolithic/Mini Blades</td>
<td>PERC H740P-Adapter/Mini Monolithic/Mini Blades</td>
<td>PERC H730P MX</td>
<td>PERC H740P MX</td>
<td>PERC H745 Front/Adapter</td>
<td>PERC H745 Front</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Spiegelung beenden</td>
<td>Nein</td>
</tr>
<tr>
<td>Virtuelle Festplatte löschen</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungsprüfung</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungsprüfung abbrechen</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungsprüfung anhalten</td>
<td>Nein</td>
</tr>
<tr>
<td>Übereinstimmungsprüfung wieder aufnehmen</td>
<td>Nein</td>
</tr>
<tr>
<td>Hintergrund initialisierung (BGI)</td>
<td>Ja</td>
</tr>
<tr>
<td>Virtuelle Festplatte formatieren</td>
<td>Nein</td>
</tr>
<tr>
<td>Formatierung der virtuellen Festplatte abbrechen</td>
<td>Nein</td>
</tr>
<tr>
<td>Tote Festplatten segmente wiederherstellen</td>
<td>Nein</td>
</tr>
<tr>
<td>Virtuelle Festplatte</td>
<td>Ja</td>
</tr>
<tr>
<td>Task-Name der virtuellen Festplatte</td>
<td>PERC H700-Adapter/Integriert/Modular</td>
<td>PERC H710-Adapter/Mini Monolithic/Mini Blade</td>
<td>PERC H710P-Adapter/Mini Blade/Mini Monolithic</td>
<td>PERC H310-Adapter/Mini Blade/Mini Monolithic</td>
<td>PERC H330-Adapter/Mini Blades/Embedded</td>
<td>PERC H730P-Adapter/Mini Monolithic</td>
<td>PERC H830-Adapter/Mini Monolithic/Mini Blades/Slim</td>
<td>PERC H730P-Adapter/Mini Monolithic/Mini Blades</td>
<td>PERC H740P-Adapter/Mini Monolithic/Mini Blades</td>
<td>PERC H33xD/FD33xS</td>
<td>PERC H730P MX</td>
<td>PERC H745P Front/Adapter</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>schnell initialisieren</td>
<td></td>
</tr>
<tr>
<td>Virtuelle Festplatte langsam initialisieren</td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitglied ersetzen</td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtuelle Festplatte verschlüsseln</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungültige Blöcke der virtuellen Festplatte löschen</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller

Tabelle 43. Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller

| Spezifikationen des virtuellen Laufwerks | PERC H700-Adapter/Integriert/Modular | PERC H710 Mini-Blade | PERC H310-Adapter/Mini-Blade/Mini Monolithic | PERC H730P-Adapter/Mini Monolithic/Mini-Blades/Minoblank | PERC H730P-Adapter/Mini Monolithic/Mini-Blades/Minoblank | PERC H330-Adapter/Mini Monolithic/Mini-Blades/integriert | PERC H830-Adapter/PERC H840-Adapter | PERC FD33xD/FF33xS | PERC H730P MX | PERC H745P MX | PERC H745P Front/Adapter | PERC H730P MX |
|--|--------------------------------------|---------------------|---|--|--|--|--|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| Maximal Anzahl von virtuellen Laufwerken pro Controller | 64 | 16 | 64 | 32 | 240* | 64 | 64 | eHBA-Modus – 240 | eHBA-Modus – 240 | eHBA-Modus – 240 | eHBA-Modus – 240 | 32 |
| Minimal Größe des virtuellen Laufwerks | 100 MB |
| Minimal Größe des virtuellen Laufwerks | Keine |
| Maximal Anzahl von Bereichen pro virtuellem Laufwerk | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Maximal | 32 | 8 | 32 | 32 | 8 | 32 | 32 | 32 | 32 | 32 | 8 |

Unterstützte Funktionen
Spezifikationen des virtuellen Laufwerks	PERC H700-Adapter/Integriert/Modular	PERC H710 Mini-Blade	PERC H730P-Adapter/Mini-Blade/Mini Monolithic	PERC H730-Adapter/Mini Monolithic/Mini Blades/Schlank	PERC H740P-Adapter/Mini Monolithic/Mini Blades	PERC H730P-Adapter/Mini Monolithic/Mini Blades/Integriert	PERC H830-Adapter/PERC H840-Adapter	PERC FD33x/FD33xS	PERC H730P MX	PERC H745P MX	PERC H745P Front/Adapter	PERC H345 Front/Adapter	
Anzahl von physischen Laufwerken pro Bereich	8 K	64 K											
Mindest-Stripe Size	1 MB	64 K	1 MB	1 MB	64 K	1 MB	64 K						
Maximale Stripe Size	16	16	16	16	16	16	16	16	16	16	16	16	
Maximale Anzahl virtueller Laufwerke pro Laufwerkguppe	-	-	-	-	-	-	-	-	-	-	-	-	-
Tabelle 43. Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller (fortgesetzt)

<table>
<thead>
<tr>
<th>Spezifikation des virtuellen Laufwerks</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini Blades/Schlank</th>
<th>PERC H740P-Adapter/Mini Monolithic/Mini Blades</th>
<th>PERC H730P-Adapter/Mini Blade</th>
<th>PERC H830-Adapter/PERC H840-Adapter</th>
<th>PERC FD33x-D/PERC FD33x S</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P Front/Adapte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Anzahl von physischen Laufwerken in einem RAID 0</td>
<td>32</td>
</tr>
<tr>
<td>Maximaler Anzahl von physischen Laufwerken in einem RAID 1</td>
<td>2</td>
</tr>
<tr>
<td>Maximaler Anzahl von physischen Laufwerken in einem RAID 5</td>
<td>32</td>
</tr>
<tr>
<td>Maximaler Anzahl von physischen Laufwerken in einem</td>
<td>256</td>
</tr>
</tbody>
</table>

Unterstützte Funktionen 179
<table>
<thead>
<tr>
<th>Spezifikationen des virtuellen Laufwerks</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H740P-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H830-Adapter/PERC H840-Adapter</th>
<th>PERC FD33x/PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P Front/Adapte r</th>
<th>PERC H345 Front/Adapte r</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 10 Maximaler Anzahl von physischen Laufwerken in einem RAID 50</td>
<td>256</td>
<td>-</td>
<td>256</td>
<td>256</td>
<td>-</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken, die verket tet werden können</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken in einem RAID 0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabelle 43. Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller (fortgesetzt)
Tabelle 43. Technische Daten des virtuellen Laufwerks für die PERC Hardware-Controller (fortgesetzt)

<table>
<thead>
<tr>
<th>Spezifikationen des virtuellen Laufwerks</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H710 Mini-Blade</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H730P Adapter/Mini Monolithic/Mini-Blades/Schlank</th>
<th>PERC H740P-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini-Blades/Integriert</th>
<th>PERC H830-Adapter/PERC H840-Adapter</th>
<th>PERC FD33x D/FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H740P Front/Adapter</th>
<th>PERC H345 Front/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>chen Laufwerken in einem RAID 1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken in einem RAID 5</td>
<td>4</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken in einem RAID 10</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Laufwerken in einem RAID 50</td>
<td>32</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>-</td>
</tr>
</tbody>
</table>

Unterstützte Funktionen

181
<table>
<thead>
<tr>
<th>Spezifikationen des virtuellen Laufwerks</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini-Blade/Mini Monolithic</th>
<th>PERC H740P-Adapter/Mini Monolithic/Mini-Blade</th>
<th>PERC H730P-Adapter/Mini Monolithic/Schlank</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini-Blade/Mini Monolithic</th>
<th>PERC H830-Adapter/Mini Monolithic Integriert</th>
<th>PERC H840-Adapter</th>
<th>PERC FD33x/D/ FD33x S</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P Front/Adapter</th>
<th>PERC H345 Front/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>physischene Laufwerke in einem RAID 6</td>
<td>256 - 256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximaler Anzahl von physischen Laufwerken in einem RAID 6</td>
<td>4 - 4</td>
<td></td>
</tr>
<tr>
<td>Minimaler Anzahl von physischen Laufwerken in einem RAID 6</td>
<td>8 - 8</td>
<td></td>
</tr>
</tbody>
</table>

Unterstützte Funktionen
ANMERKUNG: Bei der Durchführung eines automatischen Konfigurationsvorgangs von RAID0 auf einem PERC H830-Hardware-Controller ist die maximale Anzahl der unterstützten physikalischen Laufwerke 192.

RAID-Stufen, die von den PERC Hardware-Controllern unterstützt werden

Tabelle 44. RAID-Stufen, die von den PERC Hardware-Controllern unterstützt werden

<table>
<thead>
<tr>
<th>RAID-Stufe</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H710 Mini Blade</th>
<th>PERC H710P Adapter/Mini Monolithic</th>
<th>PERC H730P Adapter/Mini Monolithic/Mini-Blades/Schlank</th>
<th>PERC H730-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H730P-Adapter/Mini Monolithic/Mini-Blades/Integriert</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H830-Adapter/PERC H840-Adapter</th>
<th>PERC FD33xD/ FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P MX</th>
<th>PERC H745P Vorne/Adapter</th>
<th>PERC H345 Vorne/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkettung</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID 0</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID-5</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID-10</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 50</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID-6</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID 60</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern

Tabelle 45. Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache-Einstellung</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
</tr>
<tr>
<td>Leseregel</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 45. Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Hardware-Controllern (fortgesetzt)

<table>
<thead>
<tr>
<th>Lese-, Schreib- und Cache-Regeln</th>
<th>PERC H700-Adapter/Integriert/Modular</th>
<th>PERC H710-Adapter/Mini Monolithic/Mini-Blade</th>
<th>PERC H710P-Adapter</th>
<th>PERC H310-Adapter/Mini-Blade/Mini Monolithic</th>
<th>PERC H330-Adapter/Mini Monolithic/Mini-Blades/integriert</th>
<th>PERC H730P Adapter/Mini Monolithic/Mini-Blades/Schlank</th>
<th>PERC H730-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC H740P-Adapter/Mini Monolithic/Mini-Blades</th>
<th>PERC FD33xD/FD33xS</th>
<th>PERC H730P MX</th>
<th>PERC H745P Vorne/Adapter</th>
<th>PERC H345 Vorne/Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorauslese n (Aktiviert)</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Adaptives Vorauslesen</td>
<td>Nein</td>
</tr>
<tr>
<td>Kein Vorauslesen (Deaktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Schreibregel</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Rückschreiben (Aktiviert)</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Durchschreiben (Deaktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Rückschreiben erzwingen (Immer aktiviert)</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Schreib-Cache aktiviert und geschützt.</td>
<td>Nein</td>
</tr>
<tr>
<td>Cache-Regeln</td>
<td>Nein</td>
</tr>
<tr>
<td>Festplatten-Cache Regel</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Cache-E/A</td>
<td>Nein</td>
</tr>
<tr>
<td>Direkt-E/A</td>
<td>Nein</td>
</tr>
</tbody>
</table>

184 Unterstützte Funktionen
Unterstützte Funktionen auf den PERC Software RAID-Controllern

In diesem Abschnitt wird besprochen, was die Controller-unterstützten Funktionen sind und ob ein Gehäuse mit dem Controller verbunden werden kann. Der Software-RAID-Controller umfasst PERC S100-, PERC S110-, PERC S130-, PERC S300-, PERC S140- und PERC S150-Controller.

- Controller-Tasks
- Tasks der physischen Festplatte
- Tasks der virtuellen Festplatte
- Spezifikationen der virtuellen Festplatte
- Unterstützte RAID-Stufen
- Lese-, Schreib-, Cache und Festplatte-Cache-Regel
- Gehäuse-Support

Controller-Tasks, unterstützt auf den PERC Software RAID-Controllern

Tabelle 46. Controller-Tasks, die auf den Controllern PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt werden

<table>
<thead>
<tr>
<th>Controller-Task-Name</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstellung einer virtuellen Festplatte</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

ANMERKUNG: Bei physischen Festplatten, die mit einem Software-RAID-S130-Controller verbunden sind, werden vom Controller standardmäßig 512 MB Festplattenspeicherplatz für Metadaten verwendet.

Tasks der physischen Festplatte, unterstützt von den PERC Software RAID-Controllern

Tabelle 47. Tasks des physischen Laufwerks, die durch die Controller PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt werden

<table>
<thead>
<tr>
<th>Task-Name der physischen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinken/Blinken beenden</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Globales Hotspare zuweisen und die Zuweisung rückgängig machen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Festplatten-Cache-Regel einrichten</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 47. Tasks des physischen Laufwerks, die durch die Controller PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt werden (fortgesetzt)

<table>
<thead>
<tr>
<th>Task-Name der physischen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportieren des Protokolls</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>In RAID-fähige Festplatte konvertieren</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Vorbereitung zur Entfernung</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

ANMERKUNG: Bei physischen Festplatten, die mit einem Software-RAID-S130-Controller verbunden sind, werden vom Controller standardmäßig 512 MB Festplattenspeicherplatz für Metadaten verwendet.

ANMERKUNG: Beim Durchführen des Vorgangs Vorbereitung zur Entfernung auf dem physischen Laufwerk wird das zugehörige virtuelle Laufwerk in einen fehlerhaften Zustand versetzt.

ANMERKUNG: Die Meldung The operation failed to complete wird angezeigt, wenn Sie den Vorgang Vorbereitung zur Entfernung auf der physischen Festplatte der virtuellen Boot-Festplatte/geladenen virtuellen Festplatte durchführen.

Tasks der virtuellen Festplatte, unterstützt von den PERC Software-Controllern

Tabelle 48. Tasks der virtuellen Festplatte, die auf den Controllern PERC S100, PERC S110, PERC S130, S300, S140 und S150 unterstützt werden

<table>
<thead>
<tr>
<th>Task-Name der virtuellen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedizierten Hotspare zuweisen und Zuweisung rückgängig machen.</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Erstellung einer virtuellen Festplatte</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Erweiterter Assistent zur Erstellung von virtuellen Festplatten erstellen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Schnellassistent zur Erstellung</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 48. Tasks der virtuellen Festplatte, die auf den Controllern PERC S100, PERC S110, PERC S130, S300, S140 und S150 unterstützt werden (fortgesetzt)

<table>
<thead>
<tr>
<th>Task-Name der virtuellen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbenennen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Blinken/Blinken beenden</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Neu konfigurieren</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Regel ändern</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Letzte virtuelle Festplatte löschen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>(Beliebige) virtuelle Festplatte löschen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Übereinstimmungsüberprüfung</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Festplatten-Cache-Regel</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Technische Daten der virtuellen Festplatte für Software RAID-Controller

Tabelle 49. Spezifikationen der virtuellen Festplatte für die Controller PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150

<table>
<thead>
<tr>
<th>Spezifikationen der virtuellen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Anzahl von virtuellen Festplatten pro Controller</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Minimale Größe der virtuellen Festplatte</td>
<td>100 MB</td>
<td>100 MB</td>
<td>105 MB</td>
<td>100 MB</td>
<td>100 MB</td>
<td>100 MB</td>
</tr>
<tr>
<td>Maximale Größe der virtuellen Festplatte</td>
<td>Keine</td>
<td>Keine</td>
<td>Keine</td>
<td>Keine</td>
<td>Keine</td>
<td>Keine</td>
</tr>
<tr>
<td>Maximale Anzahl von Bereichen pro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabelle 49. Spezifikationen der virtuellen Festplatte für die Controller PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 (fortgesetzt)

<table>
<thead>
<tr>
<th>Spezifikationen der virtuellen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Anzahl von physischen Festplatten pro Bereich</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mindest-Stripe-Größe</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
</tr>
<tr>
<td>Maximale Stripe-Größe</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
<td>64 K</td>
</tr>
<tr>
<td>Maximale Anzahl von virtuellen Festplatten pro physischer Festplatte</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten, die verkettet werden können</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten in einem RAID 0</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten in einem RAID 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten in einem RAID 5</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten in einem RAID 10</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximale Anzahl von physischen Festplatten, die verkettet werden können</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Festplatten in einem RAID 0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Festplatten in einem RAID 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Tabelle 49. Spezifikationen der virtuellen Festplatte für die Controller PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 (fortgesetzt)

<table>
<thead>
<tr>
<th>Spezifikationen der virtuellen Festplatte</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale Anzahl von physischen Festplatten in einem RAID 5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minimale Anzahl von physischen Festplatten in einem RAID 10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

RAID-Stufen, die auf den PERC Software RAID-Controllern unterstützt werden

Tabelle 50. RAID-Stufen, die auf den Controllern PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt werden

<table>
<thead>
<tr>
<th>RAID-Stufe</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 10</td>
<td>Ja</td>
<td>Nein</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>RAID 50</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID 6</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>RAID 60</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Lese-, Schreib- und Cache-Regeln, unterstützt von den PERC Software RAID-Controllern

Tabelle 51. Lese-, Schreib- und Cache-Regel, die auf den Controllern PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt wird

<table>
<thead>
<tr>
<th>Lese-, Schreib- und Cache-Regeln</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache-Einstellungen</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Leseregel</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Tabelle 51. Lese-, Schreib- und Cache-Regel, die auf den Controllern PERC S100, PERC S110, PERC S130, PERC S300, PERC S140 und PERC S150 unterstützt wird (fortgesetzt)

<table>
<thead>
<tr>
<th>Lese-, Schreib- und Cache-Regeln</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorauslesen (Aktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Kein Vorauslesen (Deaktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Schreibregel</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Rückschreiben (Aktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Durchschreiben (Deaktiviert)</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Rückschreiben erzwingen (Immer aktiviert)</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Schreib-Cache aktiviert und geschützt.</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Cache-Regeln</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Festplatten-Cache-Regel</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Cache-E/A</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Direkt-E/A</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Auf den PERC Software RAID-Controller unterstützte Gehäuse

Tabelle 52. Gehäuseunterstützung auf PERC S100-, PERC S110-, PERC S130-, S140-, S300- und S150-Controllern

<table>
<thead>
<tr>
<th>Gehäuse-Support</th>
<th>PERC S100</th>
<th>PERC S110</th>
<th>PERC S130</th>
<th>PERC S300</th>
<th>PERC S140</th>
<th>PERC S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kann ein Gehäuse mit diesem Controller verbunden werden?</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>
Bestimmen des Funktionszustands für Speicherkomponenten

Dieses Kapitel beschreibt, wie der Status der Speicherkomponenten niederer Stufe in den kombinierten Status „aufgerollt“ ist, der für den Controller oder eine andere Komponente höherer Stufe angezeigt wird. Die in diesen Tabellen aufgeführten Beispiele decken nicht alle Szenarios ab. Sie zeigen jedoch an, wie der Status aufgerollt wird, wenn sich eine bestimmte Komponente in funktionsfähigem, herabgesetztem oder fehlerhaftem Zustand befindet.

Zugehörige Konzepte
Speicherkomponentenschweregrad auf Seite 30

Themen:
- Funktionszustands-Rollup: Batterie wird geladen oder ist leer
- Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte sind fehlerhaft oder wurden entfernt
- Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte werden nicht unterstützt, oder sie wurden teilweise bzw. permanent herabgesetzt
- Funktionszustands-Rollup: Alle physischen Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand
- Funktionszustands-Rollup: Einige physische Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand
- Funktionszustands-Rollup: Virtuelle Festplatte wurde herabgesetzt; physische Festplatten sind fehlerhaft oder werden neu erstellt
- Funktionszustands-Rollup: Virtuelle Festplatte ist fehlerhaft
- Funktionszustands-Rollup: Nicht unterstützte Firmware-Version
- Funktionszustand-Rollup: Gehäusenetztteil fehlerhaft oder Stromverbindung abgetrennt
- Funktionszustands-Rollup: Eines der Gehäuse-EMM ist fehlerhaft
- Funktionszustands-Rollup: Beide Stromversorgungsanschlüsse zum Gehäuse wurden verloren
- Funktionszustands-Rollup: Eine oder mehrere physische Festplatte(n) ist/sind fehlerhaft
- Funktionszustands-Rollup: Physische Festplatte wird neu erstellt

Funktionszustands-Rollup: Batterie wird geladen oder ist leer

Tabelle 53. Funktionszustands-Rollup: Batterie wird geladen oder ist leer (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponententag</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
</table>
Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte sind fehlerhaft oder wurden entfernt

Tabelle 54. Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte sind fehlerhaft oder wurden entfernt (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponententatus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte werden nicht unterstützt, oder sie wurden teilweise bzw. permanent herabgesetzt

Tabelle 55. Funktionszustands-Rollup: Physische Festplatten in einer virtuellen Festplatte werden nicht unterstützt, oder sie wurden teilweise bzw. permanent herabgesetzt

<table>
<thead>
<tr>
<th>Komponententatus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Alle physischen Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand

Tabelle 56. Funktionszustands-Rollup: Alle physischen Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponententatus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

192 Bestimmen des Funktionszustands für Speicherkomponenten
Funktionszustands-Rollup: Einige physische Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand

Tabelle 57. Funktionszustands-Rollup: Einige physische Festplatten in einer virtuellen Festplatte befinden sich im Fremdzustand (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>!</td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Virtuelle Festplatte wurde herabgesetzt; physische Festplatten sind fehlerhaft oder werden neu erstellt

Tabelle 58. Funktionszustands-Rollup: Virtuelle Festplatte wurde herabgesetzt; physische Festplatten sind fehlerhaft oder werden neu erstellt (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Virtuelle Festplatte ist fehlerhaft

Tabelle 59. Funktionszustands-Rollup: Virtuelle Festplatte ist fehlerhaft (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>
Funktionszustands-Rollup: Nicht unterstützte Firmware-Version

Tabelle 60. Funktionszustands-Rollup: Nicht unterstützte Firmware-Version (Gehäuse nicht eingeschlossen)

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Akku</th>
<th>Anschluss</th>
<th>Physische Festplatte(n)</th>
<th>Firmware/Treiber</th>
<th>Virtuelle Festplatte(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustand-Rollup: Gehäusenetzteil fehlerhaft oder Stromverbindung abgetrennt

Tabelle 61. Funktionszustand-Rollup: Gehäusenetzteil fehlerhaft oder Stromverbindung abgetrennt

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Anschluss</th>
<th>Gehäuse</th>
<th>Gehäusenetztteil</th>
<th>Virtuelle Festplatten</th>
<th>Physische Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Eines der Gehäuse-EMM ist fehlerhaft

Tabelle 62. Funktionszustands-Rollup: Eines der Gehäuse-EMM ist fehlerhaft

<table>
<thead>
<tr>
<th>Komponentenstatus</th>
<th>Speichersystem</th>
<th>Controller</th>
<th>Anschluss</th>
<th>Gehäuse</th>
<th>Gehäuse-EMM</th>
<th>Virtuelle Festplatten</th>
<th>Physische Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Funktionszustands-Rollup: Beide Stromversorgungsanschlüsse zum Gehäuse wurden verloren

Tabelle 63. Funktionszustands-Rollup: Beide Stromversorgungsanschlüsse zum Gehäuse wurden verloren

<table>
<thead>
<tr>
<th>Komponentensstzus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Anschluss</th>
<th>Gehäuse</th>
<th>Gehäusekomponenten</th>
<th>Virtuelle Festplatten</th>
<th>Physische Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionszustands-Rollup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Eine oder mehrere physische Festplatte(n) ist/sind fehlerhaft

Tabelle 64. Funktionszustands-Rollup: Eine oder mehrere physische Festplatte(n) ist/sind fehlerhaft

<table>
<thead>
<tr>
<th>Komponentensstzus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Anschluss</th>
<th>Gehäuse</th>
<th>Gehäusephysische Festplatte(n)</th>
<th>Virtuelle Festplatten</th>
<th>Physische Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionszustands-Rollup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funktionszustands-Rollup: Physische Festplatte wird neu erstellt

Tabelle 65. Funktionszustands-Rollup: Physische Festplatte wird neu erstellt

<table>
<thead>
<tr>
<th>Komponentensstzus</th>
<th>Speichersystem></th>
<th>Controller</th>
<th>Anschluss</th>
<th>Gehäuse</th>
<th>Gehäusekomponenten</th>
<th>Virtuelle Festplatten</th>
<th>Physische Festplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionszustands-Rollup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identifizieren der Serie Ihrer Dell EMC PowerEdge-Server

Die PowerEdge-Serverserie von Dell EMC ist basierend auf ihrer Konfiguration in verschiedene Kategorien unterteilt. Zur einfachen Referenz werden sie als Server der Serien YX2X, YX3X, YX4X, YX4XX oder YX5XX bezeichnet. Die Struktur der Namenskonvention wird nachfolgend beschrieben:

Der Buchstabe Y steht für die Buchstaben in der Server-Modellnummer. Die Buchstaben geben den Formfaktor des Servers an. Die Formfaktoren werden nachfolgend beschrieben:

- Cloud (C)
- Flexibel (F)
- Modular (M oder MX)
- Rack (R)
- Tower (T)

- Das erste X gibt den Wertestrom oder die Klasse des Servers an.
 - 1–5 – iDRAC basic
 - 6–9 – iDRAC Express
- Die Ziffer steht für die Generation des Servers. Sie wird in der Server-Namenskonvention beibehalten und nicht durch den Buchstaben X ersetzt
 - 0 – Serie 10
 - 1 – Serie 11
 - 2 – Serie 12
 - 3 – Serie 13
 - 4 – Serie 14
 - 5 – Serie 15
 - 1 Server mit einem Sockel
 - 2 Server mit zwei Sockeln
- Das letzte X steht immer für die Bauart des Prozessors, wie nachfolgend beschrieben:
 - 0 – Intel
 - 5—AMD

Tabelle 66. Benennungskonvention für PowerEdge-Server und Beispiele

<table>
<thead>
<tr>
<th>YX3X-Server</th>
<th>YX4X-Systeme</th>
<th>YX4XX Systeme</th>
<th>YX5XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerEdge M630</td>
<td>PowerEdge M640</td>
<td>PowerEdge R6415</td>
<td>PowerEdge R6515</td>
</tr>
<tr>
<td>PowerEdge M830</td>
<td>PowerEdge R440</td>
<td>PowerEdge R7415</td>
<td>PowerEdge R7515</td>
</tr>
<tr>
<td>PowerEdge T130</td>
<td>PowerEdge R540</td>
<td>PowerEdge R7425</td>
<td>PowerEdge R6525</td>
</tr>
</tbody>
</table>