Dell OptiPlex 5060 Micro
サービスマニュアル
メモ、注意、警告

メモ: 製品を使いやすくするための重要な情報を説明しています。

注意: ハードウェアの損傷やデータの損失の可能性を示し、その問題を回避するための方法を説明しています。

警告: 物的損害、けが、または死亡の原因となる可能性があることを示しています。
<table>
<thead>
<tr>
<th>ページ番号</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 コンピュータ内部の作業</td>
</tr>
<tr>
<td>7</td>
<td>2 テクノロジーとコンポーネント</td>
</tr>
<tr>
<td>14</td>
<td>3 コンポーネントの取り外しと取り付け</td>
</tr>
</tbody>
</table>

1 コンピュータ内部の作業

- 安全にお使いいただくために
- コンピュータの電源を切る — Windows 10
- コンピュータ内部の作業を始める前に
- コンピュータ内部の作業を終えた後に

2 テクノロジーとコンポーネント

- プロセッサ
- DDR4
 - DDR4 の詳細
 - メモリエラー
- USB の機能
 - USB 3.0 / USB 3.1 Gen 1 (SuperSpeed USB)
 - 速度
 - アプリケーション
 - 互換性
- USB Type-C
 - 代替モード
 - USB Power Delivery
- Thunderbolt over Type-C
 - Thunderbolt アイコン
- HDMI 2.0
 - HDMI 2.0 の機能
 - HDMI の利点
- DisplayPort over USB Type-C の利点

3 コンポーネントの取り外しと取り付け

- 推奨ツール
- ネジのサイズリスト
- Micro のマザーボードのレイアウト
- サイドカバー
 - 側面カバーの取り外し
 - 側面カバーの取り付け
- ハードドライブアセンブリ — 2.5 インチ
 - 2.5 インチハードドライブアセンブリの取り外し
 - ドライブブラケットからの 2.5 インチ ドライブの取り外し
 - ドライブブラケットへの 2.5 インチ ハード ドライブの取り付け
 - 2.5 インチ ドライブ アセンブリの取り付け
- ヒートシンク プロワ
 - ヒートシンク プロワの取り外し
<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒートシンク ブロワの取り付け</td>
<td>23</td>
</tr>
<tr>
<td>スピーカー</td>
<td>24</td>
</tr>
<tr>
<td>スピーカーの取り外し</td>
<td>24</td>
</tr>
<tr>
<td>スピーカーの取り付け</td>
<td>25</td>
</tr>
<tr>
<td>メモリモジュール</td>
<td>26</td>
</tr>
<tr>
<td>メモリモジュールの取り外し</td>
<td>26</td>
</tr>
<tr>
<td>メモリモジュールの取り付け</td>
<td>27</td>
</tr>
<tr>
<td>ヒートシンク</td>
<td>28</td>
</tr>
<tr>
<td>ヒートシンクの取り外し</td>
<td>28</td>
</tr>
<tr>
<td>ヒートシンクの取り付け</td>
<td>29</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>30</td>
</tr>
<tr>
<td>プロセッサの取り外し</td>
<td>30</td>
</tr>
<tr>
<td>プロセッサの取り付け</td>
<td>31</td>
</tr>
<tr>
<td>WLAN カード</td>
<td>32</td>
</tr>
<tr>
<td>WLAN カードの取り外し</td>
<td>32</td>
</tr>
<tr>
<td>WLAN カードの取り付け</td>
<td>33</td>
</tr>
<tr>
<td>M.2 PCIe SSD</td>
<td>34</td>
</tr>
<tr>
<td>M.2 PCIe SSD の取り外し</td>
<td>34</td>
</tr>
<tr>
<td>M.2 PCIe SSD の取り付け</td>
<td>35</td>
</tr>
<tr>
<td>オプションのモジュール</td>
<td>36</td>
</tr>
<tr>
<td>オプションのモジュールの取り外し</td>
<td>36</td>
</tr>
<tr>
<td>オプションのモジュールの取り付け</td>
<td>38</td>
</tr>
<tr>
<td>コイン型電池</td>
<td>39</td>
</tr>
<tr>
<td>コイン型電池の取り外し</td>
<td>39</td>
</tr>
<tr>
<td>コイン型電池の取り付け</td>
<td>40</td>
</tr>
<tr>
<td>システム基板</td>
<td>41</td>
</tr>
<tr>
<td>システム基板の取り外し</td>
<td>41</td>
</tr>
<tr>
<td>システム基板の取り付け</td>
<td>44</td>
</tr>
</tbody>
</table>

4 トラブルシューティング .. 48

4.1 強化された起動前システムアセスメント - ePSA 診断 48
4.2 ePSA 診断の実行 48
4.3 診断エラーメッセージ 50
4.4 システムエラーメッセージ 53

5 困ったときは ... 55

5.1 デルにお問い合わせ 55
コンピュータ内部の作業

安全にお使いいただくために

身体の安全を守り、コンピュータを損傷から保護するために、次の安全に関する注意に従ってください。特に指示がない限り、本書に含まれるそれぞれの手順では以下の条件を満たしていることを前提とします。

- コンピュータに付属の「安全に関する情報」を読んでいます。
- コンポーネントは交換可能であり、別売りの場合は取り外しの手順を逆順に実行すれば、取り付け可能であること。

警告：すべての電源を外してから、コンピュータカバーまたはパネルを開きます。コンピュータ内部の作業が終わったら、カバー、パネル、ネジをすべて取り付けてから、電源に接続します。

警告：コンピューター内部の作業を始める前に、お使いのコンピューターに付属しているガイドの安全にお使いいただくための注意事項をお読みください。安全にお使いいただくためのベストプラクティスの追加情報に関しては、規制順守ホームページ www.dell.com/regulatory_compliance をご覧ください。

注意：修理作業の多くは、認定されたサービス技術者のみが行うことができます。お客様は、製品マニュアルで許可されている範囲に限り、またはオンラインサービスもしくはテレホンサービスとサポートチームの指示を受けてのみ、トラブルシューティングと簡単な修理を行うことができます。デルが許可していない修理による損傷は、保証できません。製品に付属しているマニュアルの「安全にお使いいただくために」をお読みになり、指示に従ってください。

注意：静電気放出による損傷を避けるため、静電気防止用リストバンドを使用するか、またはコンピュータの裏面にあるコネクタに触れながら塗装されていない金属面に定期的に触れて、静電気を身体から除去してください。

注意：コンポーネントやカードの取り扱いには十分注意してください。コンポーネントやカード上の接続部分には触れていってください。カードを持つ際は縁を持ち、金属製の取り付けブラケットの部分を持ってください。プロセッサなどのコンポーネントを持つ際は、ピンではなく縁を持ってください。

注意：ケーブルを外すときは、コネクタまたはコネクタのノックタブを持ち、ケーブル自身を引っ張らないでください。一部のケーブルのコネクタには、ロックタブが付いています。このタイプのケーブルを外すときは、ロックタブを押し入れてからケーブルを外してください。コネクタを抜く際は、コネクタピンを曲げないように、まっすぐ引き抜いてください。また、ケーブルを接続する際は、両方のコネクタの向きと位置が合っていることを確認してください。

メモ：お使いのコンピュータの色および一部のコンポーネントは、本書で示されているものと異なる場合があります。

コンピュータの電源を切る — Windows 10

注意：データの消失を防ぐため、コンピューターの電源を切る、またはサイドカバーを取り外す前に、開いているファイルはすべて保存して閉じ、実行中のプログラムはすべて終了してください。

1 をクリックまたはタップします。
2 をクリックまたはタップしてから、[Shut down] をクリックまたはタップします。

メモ：コンピュータとすべての周辺機器の電源が切れていることを確認します。オペレーティング システムをシャットダウンした際に、コンピューターおよび取り付けられているデバイスの電源が自動的に切れなかった場合は、電源ボタンを約 6 秒間押し続けて電源を切ってください。
コンピュータ内部の作業を始める前に

コンピュータの損傷を防ぐため、コンピュータ内部の作業を始める前に、次の手順を実行してください。

1. 「安全にお使いいただくために」を必ずお読みください。
2. コンピュータのカバーに傷がつかないように、作業台が平らであり、汚れていないことを確認します。
3. コンピュータの電源を切ります。
4. コンピュータからすべてのネットワークケーブルを外します。
 △ 注意：ネットワークケーブルを外すには、まずケーブルのプラグをコンピュータから外し、次にケーブルをネットワークデバイスから外します。
5. コンピュータおよび取り付けられているすべてのデバイスをコンセントから外します。
6. システムのコンセントが外されている状態で、電源ボタンをしばらく押して、システム基板の静電気を除去します。
 □ メモ：静電気放出による損傷を避けるため、静電気防止用リストバンドを使用するか、またはコンピュータの裏面にあるコネクタに触れながら塗装されていない金属面に定期的に触れて、静電気を身体から除去してください。

コンピュータ内部の作業を終えた後に

取り付け手順が完了したら、コンピュータの電源を入れる前に、外付けデバイス、カード、ケーブルが接続されていることを確認してください。

1. 電話線、またはネットワークケーブルをコンピュータに接続します。
 △ 注意：ネットワークケーブルを接続するには、まずケーブルをネットワークデバイスに差し込み、次に、コンピュータに差し込みます。
2. コンピュータ、および取り付けられているすべてのデバイスをコンセントに接続します。
3. コンピュータの電源を入れます。
4. 必要に応じて ePSA 診断を実行して、コンピュータが正しく動作することを確認します。
テクノロジとコンポーネント

この章では、システムで使用可能なテクノロジーとコンポーネントの詳細について説明します。

トピック:
- プロセッサ
- DDR4
- USB の機能
- USB Type-C
- HDMI 2.0
- DisplayPort over USB Type-C の利点

プロセッサ

OptiPlex 5060 システムには、インテル第 8 世代 Coffee Lake チップセットとコアプロセッサーが搭載されています。

メモ: クロック速度とパフォーマンスは、作業負荷およびその他の変数に応じて異なります。キャッシュ合計はプロセッサのタイプによって異なりますが、最大 8 MB です。

- インテル Pentium Gold G5400 T (2 コア/4 MB/4 T/3.1 GHz/35 W), Windows 10/Linux をサポート
- インテル Pentium Gold G5500T (2 コア/4 MB/4 T/3.2 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i3-8100 T (4 コア/6 MB/4 T/3.1 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i3-8300 T (4 コア/8 MB/4 T/3.2 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i5-8400 T (6 コア/9 MB/6 T/最大 3.3 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i5-8500T (6 コア/9 MB/6 T/最大 3.5 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i5-8600T (6 コア/9 MB/6 T/最大 3.7 GHz/35 W), Windows 10/Linux をサポート
- インテル Core i7-8700T (6 コア/12 MB/12 T/最大 4.0 GHz/35 W), Windows 10/Linux をサポート

DDR4

DDR4 (Double Data Rate 第 4 世代) メモリは、DDR2 および DDR3 の後継である高速テクノロジーであり、DDR3 の最大 128 GB (DIMM あたり) と比べて、容量が最大 512 GB へと拡大しています。DDR4 同期ダイナミックランダムアクセスメモリは、切り込みの位置が SDRAM および DDR と異なっていて、誤った種類のメモリがシステムに取り付けられるのを防いでいます。

DDR3 の動作には、1.5 ボルトの電力が必要であるのに対し、DDR4 は 1.2 ボルトと 20 パーセントの省電力となっています。また、DDR4 には、ホストデバイスがメモリをリフレッシュすることなくスタンバイモードに入れる新たなディープパワーダウンモードが装備されています。ディープパワーダウンモードは、スタンバイ時の電力消費を 40 ~ 50 パーセント削減すると見込まれています。

DDR4 の詳細

DDR3 メモリモジュールと DDR4 メモリモジュールには、以下のような微妙な違いがあります。

キーノッチ (切り込み) の違い
DDR4 モジュールの切り込みは、DDR3 モジュールの切り込みとは異なる位置にあります。どちらの切り込みも挿入側にありますが、DDR4 の切り込みの位置は少し異なっていて、互換性のない基板やプラットフォームにモジュールを装着できないようになっています。

図 1. 切り込みの違い

厚さの増加
DDR4 モジュールは、より多くの信号レイヤを収容するために DDR3 よりもわずかに厚さが増しています。

図 2. 厚さの違い

カーブしたエッジ
DDR4 モジュールの特徴としてエッジがカーブしていて、差し込みが容易になると共に、メモリ取り付け時の PCB へのストレスが緩和されます。

図 3. カーブしたエッジ

メモリエラー
システムでのメモリエラーは、「点灯 - 点滅 - 点滅」または「点灯 - 点滅 - 点点」という新しい障害コードで表示されます。すべてのメモリが障害となると、LCD は点灯しません。メモリ障害の可能性をトラブルシューティングするには、正常であることがわかっているメモリモジュールをシステム底面（一部のポータブルシステムではキーボードの下）にあるメモリコネクタに取り付けます。

USB の機能
ユニバーサルシリアルバス、または USB、1996 年に導入されます。ホストコンピュータとは、マウス、キーボードなどの周辺デバイスを、外部ドライバの間の接続は、大幅にシンプル化とプリンターをします。

下記の表を参照して USB の進化について簡単に振り返ります。
USB 3.0 / USB 3.1 Gen 1（SuperSpeed USB）

長年にわたり、USB 2.0は、PC業界の事実上のインタフェース標準として定着しており、約60億個のデバイスがすでに販売されていますが、コンピューティングハードウェアのさらなる高速化と帯域幅拡大へのニーズの高まりから、より高速なインタフェース標準が必要になっています。USB 3.0/USB 3.1 Gen 1は、このニーズに対する答えをついに実現しました。理論的にはUSB 2.0の10倍のスピードを提供しています。USB 3.1 Gen 1の機能概要を、次に示します。

- より速い転送速度（最大5 Gbps）
- 電力を大量消費するデバイスにより良く適応するために拡大された最大バスパワーとデバイスの電流引き込み
- 新しい電源管理機能
- 全二重データ転送と新しい転送タイプのサポート
- USB 2.0の下位互換性
- 新しいコネクタとケーブル

以下のトピックでは、USB 3.0/USB 3.1 Gen 1に関するよくある質問の一部が記載されています。

速度

現時点で最新のUSB 3.0/USB 3.1 Gen 1仕様では、Super-Speed、Hi-Speed、およびFull-Speedの3つの速度モードが定義されています。新しいSuperSpeedモードの転送速度は4.8 Gbpsです。仕様では下位互換性を維持するために、Hi-speedモード（USB 2.0、480 Mbps）およびFull-speedモード（USB 1.1、12 Mbps）の低速モードもサポートされています。

USB 3.0/USB 3.1 Gen 1は次の技術変更によって、はるかに高いパフォーマンスを達成しています。

- 既存のUSB 2.0バスと並行して追加された追加の物理バス（以下の図を参照）。
- USB 2.0には4本のケーブル（電源、接地、および差分データ用の1組）がありましたが、USB 3.0/USB 3.1 Gen 1では2組の差分信号（送受信）用にさらに4本追加され、コネクタとケーブルの接続は合計で8つになります。
- USB 3.0/USB 3.1 Gen 1は、USB 2.0の半二重配置ではなく、両方向データインタフェースを使用します。これにより、帯域幅が理論的に10倍に増加します。
高精細ビデオコンテンツ、テラバイトのストレージデバイス、超高解像度のデジタルカメラなどのデータ転送に対する要求がますます高まっている現在、USB 2.0 は十分に高速ではない可能性があります。さらに、理論上の最大スループットである 480 Mbps を達成する USB 2.0 接続は存在せず、現実的なデータ転送率は、最大で約 320 Mbps（40 MB/s）未満となっています。同様に、USB 3.0 / USB 3.1 Gen 1 接続が 4.8 Gbps のスループットを達成することはありません。実際には、オーバーヘッドを含めて 400 MB/s が最大転送率であると想定されますが、この速度でも USB 3.0 / USB 3.1 Gen 1 は USB 2.0 の 10 倍向上しています。

アプリケーション

USB 3.0 / USB 3.1 Gen 1 により、デバイスで転送率が向上し、帯域幅が余裕ができるので、全体的なエクスペリエンスが向上します。以前の USB ビデオは、最大解像度、レイテンシー、ビデオ圧縮のそれぞれの観点でほとんど使用に耐えないものでしたが、利用可能な帯域幅が 5 〜 10 倍ならば、USB ビデオソリューションの有用性がはるかに向上することが容易に想像できます。単一リンクの DVI では、約 2 Gbps のスループットが必要です。480 Mbps の速度で制限がありましたので、5 Gbps では十分すぎるほどの帯域幅が実現します。4.8 Gbps の速度を約束することで、新しいインターフェース標準の利用範囲は、以前は USB 領域ではなかった外部 RAID ストレージシステムのような製品へと拡大する可能性があります。

以下に、使用可能な SuperSpeed USB 3.0/USB 3.1 Gen 1 の製品の一部をリストアップします。

- デスクトップ用外付け USB 3.0 / USB 3.1 Gen 1 ハードドライブ
- ポータブル USB 3.0 / USB 3.1 Gen 1 ハードドライブ
- USB 3.0 / USB 3.1 Gen 1 ドライブドックおよびアダプタ
- USB 3.0 / USB 3.1 Gen 1 フラッシュドライブおよびリーダー
- USB 3.0 / USB 3.1 Gen 1 ソリッドステートドライブ
- USB 3.0 / USB 3.1 Gen 1 RAID
- オプティカルメディアドライブ
- マルチメディアドライブ
- ネットワーク
- USB 3.0 / USB 3.1 Gen 1 アダプターカードおよびハブ

互換性

USB 3.0 / USB 3.1 Gen 1 は最初から慎重に計画されており、USB 2.0 との互換性を完全に維持しています。まず、USB 3.0 / USB 3.1 Gen 1 では新しいプロトコルの高速能力を利用するためには、新しい物理接続と新しいケーブルが指定されていますが、コネクタ自体は 4 つの USB 2.0 接点が以前と同じ場所にある同じ長方形のままでです。USB 3.0 / USB 3.1 Gen 1 は以前の USB 2.0 接続と互換を保ちながら、新しい互換規格を導入しています。
Windows 8 / 10 は USB 3.1 Gen 1 コントローラをネイティブでサポートしています。一方、以前のバージョンの Windows では、USB 3.0 / USB 3.1 Gen 1 コントローラ用の個別のドライバが必要です。

Microsoft は、Windows 7 での USB 3.1 Gen 1 サポートを発表しましたが、直近のリリースではなく、後続の Service Pack または更新プログラムでサポートされる予定です。Windows 7 で USB 3.0 / USB 3.1 Gen 1 サポートのリリースが成功した後、SuperSpeed のサポートが Vista で実現する可能性もあります。Vista でも USB 3.0 / USB 3.1 Gen 1 をサポートすべきであるという意見はパートナーの一部に見られるものの、Microsoft も述べており、こうした可能性が示されています。

USB Type-C

L型は新しい小型物理コネクタです。コネクタ自体で USB 3.1 や USB Power Delivery (USB PD) などのさまざまな新しい USB 規格をサポートできます。

代替モード

USB Type-C はとても小さい新しいコネクタ規格で、古い USB Type-A プラグの約 3 分の 1 のサイズです。これは単一コネクタ規格のため、すべてのデバイスで使用できます。USB Type-C ポートは、「代替モード」を使用して多種多様なプロトコルをサポートできます。このモードによって、アダプタが HDMI、VGA、DisplayPort などの接続タイプからの信号を 1 つの USB ポートから出力できるようになります。

USB Power Delivery

USB PD 仕様もまた USB Type-C と密接に関わっています。現在、スマートフォン、タブレット、およびその他のモバイルデバイスの充電には、多くの場合、USB 接続が使用されています。USB 2.0 接続は最大で 2.5 W の電力を供給するため、携帯電話の充電には使用できますが、それが限度です。たとえば、ラップトップでは最大で 60 W の電力が必要な場合があります。USB Power Delivery 仕様ではこの電力供給を 100 W にまで引き上げます。双方向性があるため、デバイスは電力を送受信できます。また、電力を送受信するのと同時に、接続を通してデータを転送することができます。これにより標準の USB 接続からすべてのデバイスを充電できるようになるため、ラップトップ専用の充電ケーブルに終わりを告げることになります。今日から、スマートフォンやその他のポータブルデバイスを充電するポータブルバックパックやラップトップを充電することができます。電源ケーブルに接続した外付けディスプレイに電力が供給され、この外付けディスプレイはラップトップを充電します。もちろん、外付けディスプレイは以前と同じように使用できます。これが 1 つの小さな USB Type-C 接続で実現します。これを使用するには、デバイスとケーブルが USB Power Delivery をサポートしている必要があります。USB Type-C 接続があるだけでは必ずしもサポートしているとは限りません。

USB Type-C および USB 3.1

USB 3.1 は、新しい USB 規格です。USB 3 で理論上の帯域幅が 5 Gbps であるのに比べ、USB 3.1 では 10 Gbps になります。これは 2 倍の帯域幅で、第 1 世代 Thunderbolt コネクタと同じ速度です。USB Type-C は USB 3.1 とは異なります。USB Type-C はコネクタの形状をしており、基盤となるテクノロジーは USB 2 または USB 3.0 です。Nokia の N1 Android タブレットでは USB Type-C コネクタを使用していますが、実際に使用されているのはすべて USB 2.0 です。USB 3.0 でもありません。しかし、これらのテクノロジーは密接に関わっています。

Thunderbolt over Type-C

Thunderbolt は、データ、ビデオ、オーディオ、電源を 1 つの接続にまとめることができるハードウェアインタフェースです。Thunderbolt では、PCI Express (PCIe) と DisplayPort (DP) を 1 つのシリアル信号に結合し、DC 電源も含め、すべてを 1 本のケーブルで提供できます。Thunderbolt 1 と Thunderbolt 2 は miniDP (DisplayPort) と同じコネクタを使用して周辺機器と接続します。これに対し、Thunderbolt 3 は USB Type-C コネクタを使用します。
図 4. Thunderbolt 1 と Thunderbolt 3

1 Thunderbolt 1 と Thunderbolt 2 (miniDP コネクタを使用)
2 Thunderbolt 3 (USB Type-C コネクタを使用)

Thunderbolt 3 over Type-C

Thunderbolt 3 では、最大 40 Gbps の速度で USB Type-C に接続できます。すべての機能をコンパクトな 1 つのポートに集約しており、どのようなドック、ディスプレイ、外付けハードライプなどのデータデバイスに対しても、高速な接続と優れた汎用性を実現します。Thunderbolt 3 は USB Type-C コネクタ / ポートを使用して、サポートしている周辺機器に接続します。

1 Thunderbolt 3 は、コンパクトでリバーシブルな USB Type-C コネクタとケーブルを使用
2 Thunderbolt 3 は、最大 40 Gbps の速度に対応
3 DisplayPort 1.2 – 既存の DisplayPort モニター、デバイス、ケーブルとの互換性あり
4 USB Power Delivery - サポートしているコンピュータ上で最大 130 W の電力供給

Thunderbolt 3 over USB Type-C の主な特徴

1 Thunderbolt、USB、DisplayPort、USB Type-C での給電を、1 本のケーブルで対応（製品によって機能は異なります）
2 コンパクトでリバーシブルな USB Type-C コネクタとケーブル
3 Thunderbolt ネットワークをサポート（*製品によって異なります）
4 最大 4K ディスプレイをサポート
5 最大 40 Gbps

メモ: データ転送速度は、デバイスに応じて異なる場合があります。

Thunderbolt アイコン

<table>
<thead>
<tr>
<th>Protocol</th>
<th>USB Type-A</th>
<th>USB Type-C</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thunderbolt</td>
<td>Not Applicable</td>
<td></td>
<td>Will use industry standard icon regardless of port style (i.e., miniDP or USB Type-C)</td>
</tr>
<tr>
<td>Thunderbolt w/ Power Delivery</td>
<td>Not Applicable</td>
<td></td>
<td>Up to 130 Watts via USB Type-C</td>
</tr>
</tbody>
</table>

図 5. Thunderbolt アイコンのバリエーション
HDMI 2.0

このトピックでは、HDMI 2.0 とその機能について利点と合わせて説明します。
HDMI（高精細度マルチメディアインターフェース）は、業界から支持される、非圧縮、全デジタルオーディオ/ビデオインタフェースです。HDMIは、DVDプレーヤー、A/Vレシーバーなどの互換性のあるデジタルオーディオ/ビデオソースと、デジタル TV（DTV）などの互換性のあるデジタルオーディオ/ビデオモニタ間のインタフェースを提供します。HDMIの対象とされる用途はテレビおよびDVDプレーヤーです。主な利点は、ケーブルの削減とコンテンツ保護プロビジョニングです。HDMIは、標準、拡張、または高解像度ビデオと、単一ケーブル上のマルチチャンネルデジタルオーディオをサポートします。

HDMI 2.0 の機能

• HDMI イーサネットチャネル - 高速ネットワークをHDMIリンクに追加すると、ユーザーは別のイーサネットケーブルなしでIP対応デバイスをフル活用できます。
• オーディオリターンチャネル - チューナー内蔵のHDMI接続TVで、他のオーディオケーブルの必要なくオーディオデータ「アップストリーム」をサラウンドオーディオシステムに送信できます。
• 3D - メジャーな3Dビデオ形式の入力/出力プロトコルを定義し、本当の3Dゲームと3Dホームシアターアプリケーションの下準備をします。
• コンテンツタイプ - デジタルフライデースペースのコンテンツタイプのリアルタイム信号伝達によって、TVでコンテンツタイプに基づく画像設定を最適化できます。
• 追加のカラースペース - デジタル写真やコンピュータグラフィックスで使用される追加のカラーモデルに対するサポートを追加します。
• 4Kサポート - 1080pをはるかに超えるビデオ解像度を可能にし、多くの映画館で使用されるデジタルシネマシステムに匹敵する次世代ディスプレイをサポートします。
• HDMIマイクロコネクタ - 1080pまでのビデオ解像度をサポートする、電話やその他のポータブルデバイス用の新しくて小さいコネクタです。
• 車両用接続システム - 真のHD品質を配信しつつ、自動車環境に特有の需要を満たすように設計された、車両用ビデオシステムの新しいケーブルとコネクタです。

HDMI の利点

• 高品質のHDMIで、鮮明で最高画質の非圧縮のデジタルオーディオとビデオを転送します。
• 低コストのHDMIは、簡単で効率の良い方法で非圧縮ビデオ形式をサポートすると同時に、デジタルインタフェースの品質と機能を提供します。
• オーディオHDMIは、標準ステレオからマルチチャンネルサラウンドまで複数のオーディオ形式をサポートします。
• HDMIは、ビデオとマルチチャンネルオーディオを1本のケーブルにまとめることで、A/Vシステムで現在使用している複数のケーブルの費用、複雑さ、混乱を取り除きます。
• HDMIはビデオソース（DVDプレーヤーなど）とDTV間の通信をサポートし、新しい機能に対応します。

DisplayPort over USB Type-C の利点

• フルDisplayPort A/V（オーディオ/ビデオ）パフォーマンス（60 Hzで最大4K）
• リバーシブルプラグの向きとケーブルの向き
• VGA、アナログ付DVIとの下位互換性
• SuperSpeed USB（USB 3.1）データ
• HDMI 2.0aをサポートし、前のバージョンと下位互換性があります
コンポーネントの取り外しと取り付け

推奨ツール

本マニュアルの手順には以下のツールが必要です。

- 小型のマイナスドライバ
- #1 プラスドライバ
- 細めのプラスチックスクライブ
- 六角ネジドライバ

ネジのサイズリスト

表 2. OptiPlex MFF

<table>
<thead>
<tr>
<th>コンポーネント</th>
<th>ネジの種類</th>
<th>数</th>
<th>イメージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベースカバー</td>
<td>#6.32x9.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>スピーカー</td>
<td>M2.5X4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AUX アンテナ</td>
<td>M3X3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Type-C モジュール ブラケット</td>
<td>M3X3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>システム基板</td>
<td>M3x4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WLAN SSD</td>
<td>M2x3.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Micro のマザーボードのレイアウト

Micro フォーム ファクターのボードのコンポーネント

1. HDD コネクタ
2. コイン型電池
3. CMOS クリア/パスワード/サービス モード ジャンパ
4. ビデオ コネクタ（HDMI/DP/VGA）
5. Type C コネクタ
6. キーボードおよびマウスのシリアル ポート コネクタ
7. CPU ロケット コネクタ
8. CPU ファン コネクタ
9. 内蔵スピーカー コネクタ
10. メモリ スロット
11. M.2 WLAN コネクタ
12. CMOS クリア/パスワード/サービス モード ジャンパ
13. M.2 SSD コネクタ
14. サイドカバー

サイドカバー

側面カバーの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 側面カバーを取り外すには、次の手順を実行します。
 a 側面カバーをシステムに固定している蝶ネジを外します。
b 側面カバーをシステムの前方にスライドさせ、カバーを持ち上げてシステムから取り外します。
側面カバーの取り付け

1 側面カバーを取り付けるには、次の手順を実行します。
 a 側面カバーをシステムにセットします。
 b カバーをシステムの背面方向にスライドさせて取り付けます。
c カバーをシステムに固定する蝶ネジを取り付けます。
2 「コンピュータ内部の作業を終えた後に」の手順に従います。

ハードドライブアセンブリー 2.5 インチ

2.5 インチ ハードドライブアセンブリの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 側面カバーを取り外します。
3 ドライブアセンブリを取り外すには、次の手順を実行します。
 a ハードドライブアセンブリの両側にある青色のタブを押します [1]。
 b ハードドライブアセンブリを押し下げてシステムから解放し。
ドライブブラケットからの 2.5 インチ ドライブの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5 インチ ハードドライブアセンブリ
3 ドライブブラケットを取り外すには、次の手順を実行します。
 a ドライブブラケットの片側を引いて、ブラケットのピンをドライブのスロットから外し [1]、ドライブを持ち上げます [2]。
ドライブブラケットへの 2.5 インチ ハード ドライブ の取り付け

1. ドライブブラケットのピンを、ドライブの片側のスロットに合わせて挿入します。
2. ドライブブラケットのもう一方の側を曲げ、プラケットのピンをドライブに合わせて挿入します。
3. 次のコンポーネントを取り付けます。
 a. 2.5 インチ ハードドライバアセンブリ
 b. サイドカバー
4. 「コンピュータ内部の作業を終えた後に」の手順に従います。

2.5 インチ ドライバ アセンブリの取り付け

1. ハードドライバアセンブリを取り付けるには、次の手順を実行します。
 a. ハードドライバアセンブリをシステムのスロットに差し込みます。
 b. カチッと所定の位置に収まるまで、ハードドライバアセンブリをシステム基板のコネクタに差し込みます。
2. 側面カバーを取り付けます。
3. 「コンピュータ内部の作業を終えた後に」の手順に従います。
ヒートシンク ブロワ

ヒートシンク ブロワの取り外し

1. 「コンピュータ内部の作業を始める前に」の手順に従います。
2. サイドカバーを取り外します。
3. ヒートシンクブロワを取り外すには、次の手順を実行します。
 a. ヒートシンクブロワの両側にある青色のタブを押します[1]。
 b. ヒートシンクブロワをスライドさせて持ち上げ、システムからリリースします。
 c. ヒートシンクブロワを裏返して、システムから取り外します[2]。

4. スピーカーケーブルとヒートシンクブロワケーブルをシステム基板のコネクタから外します。
ヒートシンク ブロワの取り付け

1. ヒートシンク ブロワを取り付けるには、次の手順を実行します。
 a. スピーカー ケーブルとヒートシンク ブロワ ケーブルをシステム基板のコネクタに接続します。
b ヒートシンクブロワをシステムにセットし、カチッと所定の位置に収まるまでスライドさせます。

2 サイドカバーを取り付けます。
3 「コンピュータ内部の作業を終えた後に」の手順に従います。

スピーカー

スピーカーの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b ヒートシンクブロワ
3 スピーカーを取り外すには、次の手順を実行します。
 a スピーカーケーブルをヒートシンクブロワの固定フックから外します [1]。
 b スピーカーをヒートシンクブロワに固定している2本の（M2.5x4）ネジを取り外します [2]。
 c スピーカーをヒートシンクブロワから取り外します [3]。
スピーカーの取り付け

1 スピーカーを取り付けるには、以下の手順を実行します。
 a スピーカーのスロットをヒートシンクブロワのスロットに合わせます [1]。
 b スピーカーをヒートシンクブロワに固定する2本の（M2.5X4）ネジを取り付けます [2]。
 c スピーカー ケーブルをヒートシンクブロワの固定フックを通して配線します [3]。
メモリモジュールの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b ヒートシンクブロワ
3 メモリモジュールを取り外すには、次の手順を実行します。
 a メモリモジュールが持ち上がるまで固定クリップをメモリモジュールから引きます [1]。
 b メモリモジュールをシステム基板のソケットから取り外します [2]。
メモリモジュールの取り付け

1 メモリモジュールを取り付けるには、次の手順を実行します。
 a メモリモジュールの切り込みをメモリモジュールコネクタのタブに合わせます。
 b メモリモジュールをメモリモジュールソケットに挿入し[1]。カチッと所定の位置に収まるまで押し込みます[2]。
2 次のコンポーネントを取り付けます。
 a ヒートシンク ブロワ
 b サイドカバー
3 「コンピュータ内部の作業を終えた後に」の手順に従います。

ヒートシンク

ヒートシンクの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5 インチ ハードドライブアセンブリ
 c ヒートシンク ブロワ
3 ヒートシンクを取り外すには、次の手順を行います。
 a ヒートシンクをシステムに固定している 4 本の (M3) 拘束ネジを緩めます [1]。
 b ヒートシンクを持ち上げてシステムから取り外します [2]。
ヒートシンクの取り付け

1 次の手順でヒートシンクを取り付けます。
 a ヒートシンクをプロセッサーにセットします [1]。
 b ヒートシンクをシステム基板に固定する4本の（M3）拘束ネジを締めます [2]。
次のコンポーネントを取り付けます。

a ヒートシンク ブロワ
b 2.5 インチハードドライブアセンブリ
c サイドカバー

3 「コンピュータ内部の作業を終えた後に」の手順に従います。

プロセッサ

プロセッサの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5 インチハードドライブアセンブリ
 c ヒートシンク ブロワ
 d ヒートシンク

3 プロセッサを取り外すには:
 a レバーを押し下げてプロセッサシールドのタブの下からソケットレバーを外します [1]。
 b レバーを持ち上げて、プロセッサシールドを持ち上げます [2]。
 c プロセッサを持ち上げて、ソケットから外します [3]。

注意: プロセッサーソケットピンは壊れやすく、損傷して修復できなくなることがあります。プロセッサをソケットから取り外す際には、プロセッサソケットのピンを曲げないように気をつけてください。
メモ: プロセッサーを取り外したら、再使用、返品、または一時保管用に帯電防止コンテナに入れておきます。プロセッサーの端子が損傷しないように、プロセッサーの底部には触れていってください。触れる際には必ず両端を持つようにしてください。

プロセッサの取り付け

1. プロセッサを取り付けるには、次の手順を実行します。
 a. プロセッサをソケットキーに合わせます。
 △注意: プロセッサは強く押さ込まないでください。プロセッサの位置が合っていれば、簡単にソケットに入ります。
 b. プロセッサのピン1インジケータをソケットの三角形に揃えます。
 c. プロセッサーのスロットがソケットキーに合うように、プロセッサーをソケットにセットします [1]。
 d. プロセッサー シールドを固定ネジの下にスライドさせて閉じます [2]。
 e. ソケットレバーを下げてタブの下に押し込んでロックします [3]。
次のコンポーネントを取り付けます。
a ヒートシンク
b ヒートシンク ブロワ
c 2.5インチハードドライブアセンブリ
d サイドカバー

「コンピュータ内部の作業を終えた後に」の手順に従います。

WLAN カード

WLAN カードの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5インチハードドライブアセンブリ
3 WLAN カードを取り外すには、次の手順を実行します。
 a プラスチック製のタブをWLAN カードに固定している1本のネジ（M2x3.5）を外します [1]。
 b プラスチック製のタブを取り外して、WLAN アンテナ ケーブルを取り出せるようにします [2]。
 c WLAN アンテナ ケーブルをWLAN カードのコネクタから外します [3]。
 d WLAN カードを持ち上げて、システム基板のコネクタから取り外します [4]。
WLAN カードの取り付け

1 WLAN カードを取り付けるには、次の手順を実行します。
 a WLAN カードをシステム基板のコネクタに差し込みます [1]。
 b WLAN アンテナケーブルを WLAN カードのコネクタに接続します [2]。
 c WLAN ケーブルを固定するプラスチック製のタブをセットします [3]。
 d プラスチック製のタブを WLAN カードに固定する1本のネジ (M2x3.5) を取り付けます [4]。
次のコンポーネントを取り付けます。
a 2.5インチハードドライブアセンブリ
b サイドカバー

コンピュータ内部の作業を終えた後に」の手順に従います。

M.2 PCIe SSD

M.2 PCIe SSD の取り外し

 Memo: この手順は、M.2 SATA SSD にも該当します。

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5インチハードドライブアセンブリ
3 M.2 PCIe SSD を取り外すには、次の手順を実行します。
 a M.2 PCIe SSD をシステム基板に固定している1本のネジ（M2x3.5）を外します[1]。
 b PCIe SSD をシステム基板のコネクタから持ち上げて引き出します [2]。
M.2 PCIe SSD の取り付け

メモ: この手順は、M.2 SATA SSD にも該当します。

1. M.2 PCIe SSD を取り付けるには、次の手順を実行します。
 a. M.2 PCIe SSD をシステム基板のコネクタに差し込みます [1]。
 b. M.2 PCIe SSD をシステム基板に固定する1本のネジ（M2x3.5）を取り付けます [2]。
2 次のコンポーネントを取り付けます。
 a 2.5インチハードドライブアセンブリ
 b サイドカバー
3 「コンピュータ内部の作業を終えた後に」の手順に従います。

オプションのモジュール

オプションのモジュールの取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 以下を取り外します。
 a サイドカバー
 b 2.5インチハードドライブアセンブリ
3 オプションのカードを取り外すには、次の手順を実行します。
 a システム基板のコネクタからオプションのカードのケーブルを外します [1]。
 b オプションのカードをシステムシャーシに固定している4本のネジを取り外します [2, 3]。
c オプションのカードをシステムから引き出して持ち上げます。
オプションのモジュールの取り付け

1. オプションのカードを取り付けるには、次の手順を実行します。
 a. オプションのカードをセットし、システム内の所定の位置に合わせます。
 b. 4 本のネジを取り付けて、オプションのカードをシステム シャーシに固定します (1, 2)
 c. オプションのカード ケーブルをシステム基板上のコネクタに接続します (3)。
2 次のコンポーネントを取り付けます。
 a サイドカバー
 b 2.5インチハードライバーアセンブリ
3 「コンピュータ内部の作業を終えた後に」の手順に従います。

コイン型電池

コイン型電池の取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b オプションのモジュール
3 コイン型電池を取り外すには、次の手順を実行します。
 a コイン型電池が外れるまで、リリースラッチを押します [1]。
 b コイン型電池をシステム基板から取り外します [2]。
コイン型電池の取り付け

1 コイン型電池を取り付けるには、次の手順を実行します。
 a コイン型電池の(+)記号側を上に向け、システム基板上のコネクタのプラス側にある固定タブの下に挿入します [1]。
 b 所定の位置にロックされるまで電池をコネクタに押し込みます [2]。
2 次のコンポーネントを取り付けます。
 a サイドカバー
 b オプションのモジュール
3 「コンピュータ内部の作業を終了した後に」の手順に従います。

システム基板

システム基板の取り外し

1 「コンピュータ内部の作業を始める前に」の手順に従います。
2 次のコンポーネントを取り外します。
 a サイドカバー
 b 2.5インチハードドライブアセンブリ
 c ヒートシンク ブロワ
 d WLAN
 e M.2 PCIe SSD
 f メモリモジュール
 g オプションのモジュール
 h ヒートシンク
 i プロセッサー
3 ハードディスクドライブキャディサポートを取り外すには、次の手順を実行します。
a ハードディスクドライブキャディサポートをシステム基板に固定しているネジを取り外します [1]。
b ハードディスクドライブキャディサポートを持ち上げて、システム基板から取り外します [2]。

4 システム基板を取り外すには、次の手順を実行します。
 a システム基板をシステムに固定している2本の（M3x4）ネジ [1] と3本の（6-32x5.4）ネジ [2] を取り外します。
b システム基板を持ち上げて、コネクタをコンピューターの背面から外します [1]。
c システム基板をスライドさせて、コンピューターから取り外します [2]。
システム基板の取り付け

1 システム基板を取り付けるには、次の手順を実行します。
 a システム基板の両端をつかみ、システムの背面に向けて傾けます。
 b システム基板の背面にあるコネクタがシャーシのスロットと揃い、システム基板のネジ穴がシステムの突起と揃うまで、システム基板をシステムに下ろします。
システム基板をシステムに固定する2本の（M3x4）ネジ [1] と3本の（6-32x5.4）ネジ [2] を取り付けます。
d ハードディスクドライブ キャディ サポートをシステム基板にセットします [1]。
e ハードディスクドライブ キャディ サポートをシステム基板に固定するネジを取り付けます [2]。
2 次のコンポーネントを取り付けます。
 a プロセッサー
 b ヒートシンク
 c メモリモジュール
 d オプションのモジュール
 e M.2 PCIe SSD
 f WLAN
 g ヒートシンク ブロワ
 h 2.5 インチ ハードドライブアセンブリ
 i サイドカバー
3 「コンピュータ内部の作業を終えた後に」の手順に従います。
トラブルシューティング

強化された起動前システムアセスメント - ePSA 診断

ePSA 診断（システム診断としても知られている）ではハードウェアの完全なチェックを実施します。ePSA には BIOS が組み込まれており、BIOS によって内部的に起動されます。組み込み型システム診断プログラムには、特定のデバイスやデバイスグループ用の一連のオプションが用意されており、以下の処理が可能です。

- テストを自動的に、または対話モードで実行
- テストの繰り返し
- テスト結果の表示または保存
- 詳細なテストで追加のテストオプションを実行し、障害の発生したデバイスに関する詳しい情報を得る
- テストが問題なく終了したかどうかを知らせるステータスマッピングを表示
- テスト中に発生した問題を通知するエラーメッセージを表示

注意: システム診断プログラムは、お使いのコンピュータをテストする場合にのみ使用してください。このプログラムを他のコンピュータで使用すると、無効な結果やエラーメッセージが発生する場合があります。

メモ: 特定のデバイスのテストではユーザー操作が必要となる場合があります。診断テストを実行する際には、常にコンピュータ端末の前にいるようにしてください。

ePSA 診断の実行

1. 前述の方法のいずれかでブート診断を起動します。
2. [One Time Boot] メニューで上/下の矢印キーを使用して [ePSA or diagnostics] に移動し、<Return> キーを押して起動します。
3. 起動メニュー画面で、診断オプションを選択します。
4. 右下隅にある矢印を押して、ページリストに移動します。
5. 何か問題がある場合は、エラーコードが表示されます。

特定のデバイスで診断テストを実行するには

1. 診断テストを停止するには、Esc を押して [Yes] クリックします。
2. 左のパネルからデバイスを選択し、テストの実行をクリックします。
3. 何か問題がある場合は、エラーコードが表示されます。

診断

コンピュータの POST（パワーオンセルフテスト）では、起動プロセスを開始する前に、コンピュータの基本要件が満たされハードウェアが適切に動作していることを確認します。コンピュータが POST に合格すると、通常モードでの起動を続行します。しかし、コンピュータが POST に合格しなかった場合は、起動中に LED が一連のコードを発します。システム LED は電源ボタンに組み込まれています。
次の表は、異なるライトパターンとその意味を示しています。

表 3. 点灯中の LED のサマリー

<table>
<thead>
<tr>
<th>橙色の LED の状態</th>
<th>白色の LED の状態</th>
<th>システムの状態</th>
<th>メモ</th>
</tr>
</thead>
<tbody>
<tr>
<td>消灯</td>
<td>消灯</td>
<td>S5</td>
<td></td>
</tr>
<tr>
<td>消灯</td>
<td>点滅</td>
<td>S3, PWRGD_PS なし</td>
<td></td>
</tr>
<tr>
<td>以前の状態</td>
<td>以前の状態</td>
<td>S3, PWRGD_PS なし</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td>消灯</td>
<td>S0, PWRGD_PS なし</td>
<td></td>
</tr>
<tr>
<td>青色に</td>
<td>消灯</td>
<td>S0, PWRGD_PS なし、コードのフェッチ=0</td>
<td></td>
</tr>
<tr>
<td>消灯</td>
<td>青色に</td>
<td>S0, PWRGD_PS なし、コードのフェッチ=1</td>
<td></td>
</tr>
</tbody>
</table>

この項目は、SLP_S5がアクティブからPWRGD_PS非アクティブまでの遅延の可能性の有無を示します。

表 4. 橙色の LED の点滅障害

<table>
<thead>
<tr>
<th>橙色の LED の状態</th>
<th>白色の LED の状態</th>
<th>システムの状態</th>
<th>メモ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>MBD が不良</td>
<td>MBD が不良 - SIO 仕様の表 12.4 の行 A, G, H, J - Post 前インジケータ [40]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MB, PSU、またはケーブルが不良</td>
<td>MBD, PSU、または PSU ケーブルが不良 - SIO 仕様の表 12.4 の行 B, C, D [40]</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>MBD, DIMM、または CPU が不良</td>
<td>MBD, DIMM、または CPU が不良 - SIO 仕様の表 12.4 の行 F および K [40]</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>コイン型電池の不良</td>
<td>コイン型電池の不良 - SIO 仕様の表 12.4 の行 M [40]</td>
</tr>
</tbody>
</table>

表 5. ホスト BIOS 制御下の状態

<table>
<thead>
<tr>
<th>橙色の LED の状態</th>
<th>白色の LED の状態</th>
<th>システムの状態</th>
<th>メモ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>BIOS の状態 1</td>
<td>BIOS の Post コード (古い LED パターン 0001) BIOS の破損。</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>BIOS の状態 2</td>
<td>BIOS の Post コード (古い LED パターン 0010) CPU の設定または CPU の障害。</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>BIOS の状態 3</td>
<td>BIOS の Post コード (古い LED パターン 0011) メモリ設定処理中、検出されたメモリモジュールは正常ですが、障害が発生しました。</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BIOS の状態 4</td>
<td>BIOS の Post コード (古い LED パターン 0100) PCI デバイスの設定または障害と、オプションシステムの設定または障害の組み合わせ。 BIOS が 0101 ビデオコードを除去します。</td>
</tr>
</tbody>
</table>

トラブルシューティング 49
診断エラーメッセージ

表6. 診断エラーメッセージ

エラーメッセージ	説明
AUXILIARY DEVICE FAILURE | タッチパッドまたは外付けマウスに問題がある可能性があります。外付けマウスを使用している場合、ケーブル接続を確認します。セットアップユーティリティで Pointing Device (ポインティングデバイス) オプションの設定を有効にします。
BAD COMMAND OR FILE NAME | コマンドのスペルは正しいか、空白の位置は正しいか、パス名は正しいかを確認してください。
CACHE DISABLED DUE TO FAILURE | マイクロプロセッサに内蔵の1次キャッシュに問題が発生しました。デルへのお問い合わせ
CD DRIVE CONTROLLER FAILURE | コンピュータからのコマンドにオプティカルドライブが応答しません。
DATA ERROR | ハードドライブからデータを読むことができません。
DECREASING AVAILABLE MEMORY | メモリモジュールに問題があるか、またはメモリモジュールが正しく取り付けられていない可能性があります。メモリモジュールを取り付けなおすか、必要があれば交換します。
DISK C: FAILED INITIALIZATION | ハードディスクドライブの初期化に失敗しました。Dell Diagnostics(診断)プログラムの Hard Disk Drive テストを実行します。
DRIVE NOT READY | 操作を続けている前に、ベイにはハードドライブが必要です。ハードディスクドライブベイにハードディスクドライブを取り付けます。

3 | 診断エラーメッセージ
<table>
<thead>
<tr>
<th>エラーメッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR READING PCMCIA CARD</td>
<td>コンピュータが、ExpressCardを認識できません。カードを挿入しなおすか、別のカードを使用してください。</td>
</tr>
<tr>
<td>EXTENDED MEMORY SIZE HAS CHANGED</td>
<td>不揮発性メモリ（NVRAM）に記録されているメモリ容量が、実際に取り付けられているメモリジョブの容量と一致しません。コンピュータを再起動します。再度エラーが表示される場合は、テルにお問い合わせください。</td>
</tr>
<tr>
<td>THE FILE BEING COPIED IS TOO LARGE FOR THE DESTINATION DRIVE</td>
<td>指定のディスクにコピーするにはファイルサイズが大きすぎます。またはディスクがいっぱいではありません。他のディスクにコピーするか容量の大きなディスクを使用します。</td>
</tr>
<tr>
<td>A FILENAME CANNOT CONTAIN ANY OF THE FOLLOWING CHARACTERS: \ / : * ? " < ></td>
<td>-</td>
</tr>
<tr>
<td>GATE A20 FAILURE</td>
<td>メモリジョブがしっかりと接続していない可能性があります。メモリジョブを取り付けなおし、必要があれば交換します。</td>
</tr>
<tr>
<td>GENERAL FAILURE</td>
<td>オペレーティングシステムはコマンドを実行できません。通常、このメッセージに続いて具体的な情報が表示されます。例えば、Printer out of paper. Take the appropriate action.</td>
</tr>
<tr>
<td>HARD-DISK DRIVE CONFIGURATION ERROR</td>
<td>コンピュータがドライブの種類を識別できません。コンピュータをシャットダウンし、ハードディスクドライブを取り外し、コンピュータをオプティカルドライブから起動します。次に、コンピュータをシャットダウンし、ハードドライブを再度取り付けて、コンピュータを再起動します。 Dell Diagnostics（診断）プログラムの Hard Disk Drive テストを実行します。</td>
</tr>
<tr>
<td>HARD-DISK DRIVE CONTROLLER FAILURE 0</td>
<td>ハードディスクドライブがコンピュータからのコマンドに応答しません。コンピュータをシャットダウンし、ハードディスクドライブを取り外し、コンピュータをオプティカルドライブから起動します。次に、コンピュータをシャットダウンし、ハードドライブを再度取り付けて、コンピュータを再起動します。問題が解決しない場合、別のドライブを取り付けます。Dell Diagnostics（診断）プログラムの Hard Disk Drive テストを実行します。</td>
</tr>
<tr>
<td>HARD-DISK DRIVE FAILURE</td>
<td>ハードディスクドライブがコンピュータからのコマンドに応答しません。コンピュータをシャットダウンし、ハードディスクドライブを取り外し、コンピュータをオプティカルドライブから起動します。次に、コンピュータをシャットダウンし、ハードディスクドライブを再度取り付けて、コンピュータを再起動します。問題が解決しない場合、別のドライブを取り付けます。Dell Diagnostics（診断）プログラムの Hard Disk Drive テストを実行します。</td>
</tr>
<tr>
<td>HARD-DISK DRIVE READ FAILURE</td>
<td>ハードディスクドライブに問題がある可能性があります。コンピュータをシャットダウンし、ハードディスクドライブを取り外し、コンピュータをオプティカルドライブから起動します。次に、コンピュータをシャットダウンし、ハードディスクドライブを再度取り付けて、コンピュータを再起動します。問題が解決しない場合、別のドライブを取り付けます。Dell Diagnostics（診断）プログラムの Hard Disk Drive テストを実行します。</td>
</tr>
<tr>
<td>INSERT BOOTABLE MEDIA</td>
<td>オペレーティングシステムは、オプティカルドライブなどの起動できないメディアから起動しようとしています。起動可能なメディアをセットします。</td>
</tr>
<tr>
<td>INVALID CONFIGURATION INFORMATION—PLEASE RUN SYSTEM SETUP PROGRAM</td>
<td>システム設定情報がハードウェア構成と一致しません。メモリジョブの取り付け後などにこのメッセージが表示されることがあります。セットアップユーティリティで対応するオプションを修正します。</td>
</tr>
<tr>
<td>KEYBOARD CLOCK LINE FAILURE</td>
<td>外付けキーボードを使用している場合は、ケーブル接続を確認します。Dell Diagnostics（診断）プログラムの Keyboard Controller テストを実行します。</td>
</tr>
<tr>
<td>エラーメッセージ</td>
<td>説明</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>KEYBOARD CONTROLLER FAILURE</td>
<td>外付けキーボードを使用している場合は、ケーブル接続を確認します。コンピュータを再起動し、起動ルーチン中にキーボードまたはマウスに触れないようにします。Dell Diagnostics（診断）プログラムのKeyboard Controllerテストを実行します。</td>
</tr>
<tr>
<td>KEYBOARD DATA LINE FAILURE</td>
<td>外付けキーボードを使用している場合は、ケーブル接続を確認します。Dell Diagnostics（診断）プログラムのKeyboard Controllerテストを実行します。</td>
</tr>
<tr>
<td>KEYBOARD STUCK KEY FAILURE</td>
<td>外付けキーボードまたはキーパッドの、ケーブル接続を確認します。コンピュータを再起動し、起動ルーチン中にキーボードまたはキーに触れないようにします。Dell Diagnostics（診断）プログラムのStuck Keyテストを実行します。</td>
</tr>
<tr>
<td>LICENSED CONTENT IS NOT ACCESSIBLE IN MEDIADIRECT</td>
<td>Dell MediaDirectでは、そのファイルのデジタル権限管理（DRM）制限が検証できないので、そのファイルは再生できません。</td>
</tr>
<tr>
<td>MEMORY ADDRESS LINE FAILURE AT ADDRESS, READ VALUE EXPECTING VALUE</td>
<td>メモリモジュールに問題があるか、メモリモジュールが正しく取り付けられていない可能性があります。メモリモジュールを取り付けなおすか、必要があれば交換します。</td>
</tr>
<tr>
<td>MEMORY ALLOCATION ERROR</td>
<td>実行しようとしているソフトウェアが、オペレーティングシステム、他のプログラム、またはユーティリティと拮抗しています。コンピュータをシャットダウンし、30秒待ってから再起動します。プログラムを再度実行します。エラーメッセージが依然として表示される場合、ソフトウェアのマニュアルを参照してください。</td>
</tr>
<tr>
<td>MEMORY DOUBLE WORD LOGIC FAILURE AT ADDRESS, READ VALUE EXPECTING VALUE</td>
<td>メモリモジュールに問題があるか、メモリモジュールが正しく取り付けられていない可能性があります。メモリモジュールを取り付けなおすか、必要があれば交換します。</td>
</tr>
<tr>
<td>MEMORY ODD/EVEN LOGIC FAILURE AT ADDRESS, READ VALUE EXPECTING VALUE</td>
<td>メモリモジュールに問題があるか、メモリモジュールが正しく取り付けられていない可能性があります。メモリモジュールを取り付けなおすか、必要があれば交換します。</td>
</tr>
<tr>
<td>MEMORY WRITE/READ FAILURE AT ADDRESS, READ VALUE EXPECTING VALUE</td>
<td>メモリモジュールに問題があるか、メモリモジュールが正しく取り付けられていない可能性があります。メモリモジュールを取り付けなおすか、必要があれば交換します。</td>
</tr>
<tr>
<td>NO BOOT DEVICE AVAILABLE</td>
<td>コンピュータのハードディスクドライブを見つけることができません。ハードドライブが起動デバイスの場合、ドライブが適切に装着されており、起動デバイスとして区分（パーティション）されているか確認します。</td>
</tr>
<tr>
<td>NO BOOT SECTOR ON HARD DRIVE</td>
<td>オペレーティングシステムが破損している可能性があります。デルにお問い合わせください。</td>
</tr>
<tr>
<td>NO TIMER TICK INTERRUPT</td>
<td>システム基板上のチップが誤動作している可能性があります。Dell Diagnostics（診断）プログラムのSystem Setテストを実行します。</td>
</tr>
<tr>
<td>NOT ENOUGH MEMORY OR RESOURCES. EXIT SOME PROGRAMS AND TRY AGAIN</td>
<td>開いているプログラムの数が多すぎます。すべてのウィンドウを閉じ、使用するプログラムのみを開きます。</td>
</tr>
<tr>
<td>OPERATING SYSTEM NOT FOUND</td>
<td>OSの再インストール。問題が解決しない場合は、デルにお問い合わせください。</td>
</tr>
</tbody>
</table>
| OPTIONAL ROM BAD CHECKSUM | オプションROMのセクターが不良セクターであるか、またはセクターのイメージが破壊されています。Windowsのエラーチェックユーティリティを使用して、ハードディスクドライブのファイル構造を調べます。手順につい
エラーメッセージ

システムエラーメッセージ

<table>
<thead>
<tr>
<th>システムメッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert! Previous attempts at booting this system have failed at checkpoint [nnnn]. For help in resolving this problem, please note this checkpoint and contact Dell Technical Support (警告：このシステムの前回の起動時にチェックポイント [nnnn] で障害が発生しました。この問題を解決するには、このチェックポイントをメモしてデルテクニカルサポートにお問い合わせください)</td>
<td>同じエラーによって、コンピュータは 3 回連続して起動ルーチンを終了できませんでした。</td>
</tr>
<tr>
<td>CMOS checksum error (CMOS チェックサムエラー)</td>
<td>RTC がリセットされ、BIOS セットアップのデフォルトがロードされています。</td>
</tr>
<tr>
<td>CPU fan failure (CPU ファン障害)</td>
<td>CPU ファンに障害が発生しました。</td>
</tr>
<tr>
<td>System fan failure (システムファン障害)</td>
<td>システムファンに障害が発生しました。</td>
</tr>
<tr>
<td>Hard-disk drive failure (ハードディスクドライブ障害)</td>
<td>POST 中にハードディスクドライブに障害が発生した可能性があります。</td>
</tr>
</tbody>
</table>

表 7. システムエラーメッセージ
<table>
<thead>
<tr>
<th>システムメッセージ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard failure (キーボード障害)</td>
<td>キーボードに障害が発生したか、またはケーブルがしっかりと接続されていません。ケーブルをつなぎ直しても問題が解決しない場合はキーボードを交換してください。</td>
</tr>
<tr>
<td>No boot device available (起動デバイスがありません)</td>
<td>ハードディスクドライブ上に起動可能なパーティションが存在しないか、ハードドライブケーブルがしっかりと接続されていないか、または起動可能なデバイスが存在しません。</td>
</tr>
</tbody>
</table>
 * ハードドライブが起動デバイスの場合、ケーブルが接続されていること、およびドライプが適切に取り付けられ、起動デバイスとしてパーティション分割されていることを確認します。 |
 * セットアップユーテリティを起動して、起動順序の情報が正しいことを確認します。 |
| No timer tick interrupt (タイマーティック割り込み信号がありません) | システム基板上のチップが誤動作しているか、またはマザーボードに障害が発生している可能性があります。 |
| NOTICE - Hard Drive SELF MONITORING SYSTEM has reported that a parameter has exceeded its normal operating range. Dell recommends that you back up your data regularly. A parameter out of range may or may not indicate a potential hard drive problem (注意 - ハードドライブの自己監視システムに、パラメーターが通常の動作範囲を超えていることが報告されています。デルではデータを定期的にバックアップすることをお勧めしています。パラメーターが範囲を超えていても、ハードドライブに潜在的な問題がある場合とそうでない場合があります。) | S.M.A.R.T エラー、ハードディスクドライブに障害の可能性があります。 |
困ったときは

デルへのお問い合わせ

Memo: お使いのコンピュータがインターネットに接続されていない場合は、購入時の納品書、出荷伝票、請求書、またはデルの製品カタログで連絡先をご確認ください。

デルでは、オンラインまたは電話によるサポートとサービスのオプションを複数提供しています。サポートやサービスの提供状況は国や製品ごとに異なり、国/地域によってはご利用いただけないサービスもございます。デルのセールス、テクニカルサポート、またはカスタマーサービスへは、次の手順でお問い合わせいただけます。

1. Dell.com/support にアクセスします。
2. サポートカテゴリを選択します。
3. ページの下部にある 国/地域の選択 ドロップダウンリストで、お住まいの国または地域を確認します。
4. 必要なサービスまたはサポートのリンクを選択します。