Dell EMC PowerEdge R840
설치 및 서비스 설명서
참고, 주의 및 경고

⚠️ 노트: “참고”는 제품을 보다 효율적으로 사용하는 데 도움이 되는 중요 정보를 제공합니다.

⚠️ 주의: 주의사항은 하드웨어의 손상 또는 데이터 유실 위험을 설명하며, 이러한 문제를 방지할 수 있는 방법을 알려줍니다.

⚠️ 경고: 경고는 재산 손실, 신체적 상해 또는 사망 위험이 있음을 알려줍니다.
목차

1 본 문서의 정보

<table>
<thead>
<tr>
<th>목차</th>
<th>8</th>
</tr>
</thead>
</table>

2 Dell EMC PowerEdge R840 시스템 개요

<table>
<thead>
<tr>
<th>시스템의 전면 모습</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>컨트롤 패널</td>
<td>10</td>
</tr>
<tr>
<td>LCD 패널</td>
<td>11</td>
</tr>
<tr>
<td>시스템의 후면</td>
<td>13</td>
</tr>
<tr>
<td>시스템 내부</td>
<td>14</td>
</tr>
<tr>
<td>시스템의 서비스 테그 찾기</td>
<td>15</td>
</tr>
<tr>
<td>시스템 정보 레이블</td>
<td>16</td>
</tr>
</tbody>
</table>

3 초기 시스템 설정 및 구성

<table>
<thead>
<tr>
<th>시스템 설정</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDRAC 구성</td>
<td>19</td>
</tr>
<tr>
<td>iDRAC IP 주소 설정 옵션</td>
<td>19</td>
</tr>
<tr>
<td>iDRAC에 로그인</td>
<td>19</td>
</tr>
<tr>
<td>운영 체제 설치 옵션</td>
<td>20</td>
</tr>
<tr>
<td>폴웨어 및 드라이버 다운로드 방법</td>
<td>20</td>
</tr>
<tr>
<td>드라이버 및 폴웨어 다운로드</td>
<td>21</td>
</tr>
</tbody>
</table>

4 사전 운영 체제 관리 애플리케이션

<table>
<thead>
<tr>
<th>사전 운영 체제 응용프로그램을 관리할 수 있는 옵션</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>시스템 설치 프로그램</td>
<td>22</td>
</tr>
<tr>
<td>시스템 설정 보기</td>
<td>22</td>
</tr>
<tr>
<td>시스템 설정 세부 정보</td>
<td>22</td>
</tr>
<tr>
<td>System BIOS(시스템 BIOS)</td>
<td>23</td>
</tr>
<tr>
<td>iDRAC 설정 유틸리티</td>
<td>40</td>
</tr>
<tr>
<td>장치 설정</td>
<td>40</td>
</tr>
<tr>
<td>Dell Lifecycle Controller</td>
<td>40</td>
</tr>
<tr>
<td>내장형 시스템 관리</td>
<td>40</td>
</tr>
<tr>
<td>부팅 관리자</td>
<td>41</td>
</tr>
<tr>
<td>부팅 관리자 보기</td>
<td>41</td>
</tr>
<tr>
<td>부팅 관리자 기본 메뉴</td>
<td>41</td>
</tr>
<tr>
<td>일회용 UEFI 부팅 메뉴</td>
<td>41</td>
</tr>
<tr>
<td>시스템 유틸리티</td>
<td>41</td>
</tr>
<tr>
<td>PXE 부팅</td>
<td>41</td>
</tr>
</tbody>
</table>

5 시스템 구성 요소 설치 및 제거

<table>
<thead>
<tr>
<th>안전 지침</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>컴퓨터 내부 작업을 시작하기 전에</td>
<td>42</td>
</tr>
<tr>
<td>시스템 내부 작업을 마친 후</td>
<td>42</td>
</tr>
<tr>
<td>권장 도구</td>
<td>43</td>
</tr>
<tr>
<td>전면 배젤(옵션)</td>
<td>43</td>
</tr>
<tr>
<td>전면 배젤 분리</td>
<td>43</td>
</tr>
</tbody>
</table>
목차

프로세서 및 방열판 모듈 제거 .. 97
프로세서 및 방열판 모듈에서 프로세서 제거 .. 98
프로세서 및 방열판 모듈에 프로세서 설치 .. 99
프로세서 및 방열판 모듈 장착 ... 102
IDSDM 또는 vFlash 모듈 (옵션) ... 104
IDSDM 또는 vFlash 모듈 제거 .. 104
IDSDM 또는 vFlash 모듈 설치 .. 105
SD 카드 (선택 사양) 분리 .. 105
MicroSD 카드 설치 .. 106
네트워크 도트 카드 .. 107
네트워크 도트 카드 분리 .. 107
네트워크 도트 카드 설치 .. 108
드라이브 백플레인 .. 109
드라이브 매핑 ... 110
드라이브 후면판 분리 .. 111
드라이브 백플레인 설치 .. 112
케이블 배선 ... 114
시스템 전지 ... 119
시스템 전지 교체 ... 119
USB 3.0 모듈 (옵션) .. 120
USB 3.0 모듈 제거 ... 120
USB 3.0 모듈 설치 ... 121
선택 사양 인 내부 USB 메모리 카드 ... 122
내부 USB 메모리 카드 설치 .. 122
옵티컬 드라이브 (옵션) ... 123
광학 드라이브 분리.. 123
옵티컬 드라이브 설치 .. 124
전원 공급 장치 ... 124
핫 스테이지 기능 ... 125
전원 공급 장치 보호 모듈 제거 .. 125
전원 공급 장치 보호 모듈 설치 .. 126
전원 공급 장치 제거 .. 126
전원 공급 장치 설치 .. 127
DC 전원 공급 장치의 배선 지침 .. 128
전원 접속기 보드 .. 129
전원 접속기 보드 제거 .. 129
전원 접속기 보드 설치 .. 130
시스템 보드 ... 131
시스템 보드 분리 ... 131
시스템 보드 설치 ... 132
간편한 복원을 사용하여 서비스 태그 복원 ... 134
서비스 태그 수동 업데이트 ... 134
TPM(Trusted Platform Module) ... 134
TPM(Trusted Platform Module) 업그레이드 .. 134
BitLocker 사용자를 위한 TPM 초기화 .. 135
TXT 사용자를 위한 TPM 1.2 초기화 ... 136
제어판 ... 136
왼쪽 제어판 분리 .. 136
왼쪽 컨트롤 패널 설치 .. 137
오른쪽 컨트롤 패널 제거 .. 138
목차

6 점퍼 및 커넥터 ... 141
시스템 보드 커넥터.. 142
시스템 보드 점퍼 설정 ... 144
있은 암호 비활성화 ... 144

7 기술 사양 .. 146
세시 크기 ... 146
세시 무게 ... 147
프로세서 사양 ... 147
지원되는 운영 체제 ... 147
PSU 사양 ... 147
시스템 전지 사양 ... 148
확장 카드 라이저 사양 ... 148
메모리 사양 .. 149
RAID 컨트롤러 사양 ... 150
드라이브 사양 ... 150
드라이브 ... 150
광학 드라이브 .. 150
테이프 드라이브 .. 150
포트 및 커넥터 사양 ... 151
USB 포트 ... 151
NIC 포트 .. 151
VGA 포트 ... 151
직렬 커넥터 ... 151
IDSDM 또는 vFlash 모듈 .. 151
비디오 사양 .. 152
환경 사양 ... 152
표준 작동 온도 ... 153
확대된 작동 온도 .. 153
미세 먼지 및 가스 오염 사양 ... 156

8 시스템 진단 및 표시등 코드 ... 158
상태 LED 표시등 .. 158
시스템 상태 및 시스템 ID 표시등 코드 159
iDRAC Quick Sync 2 표시등 코드 159
iDRAC Direct LED 표시등 코드 .. 160
NIC 표시등 코드 .. 160
전원 공급 장치 표시등 코드 ... 161
드라이브 표시등 코드 ... 163
PowerEdge R840 시스템 진단 ... 164
Dell 내장형 시스템 진단 프로그램 164

9 도움말 얻기 .. 165
Dell에 문의하기 .. 165
설명서에 대한 사용자 의견 ... 165
QRL을 사용하여 시스템 정보에 액세스 165
SupportAssist를 사용하여 자동화된 지원을 수신 166
본 문서의 정보

이 문서에서는 시스템, 구성 요소 설치 및 교체에 대한 정보, 기술 사양, 진단 툴 및 특정 구성 요소 설치 시 따라야 하는 지침에 대한 개요를 제공합니다.
Dell EMC PowerEdge R840 시스템 개요

Dell EMC PowerEdge R840 시스템은 최대 다음을 지원하는 2U 서버입니다.

- 4개의 인텔 제온 확장 가능 프로세서
- 48개의 DIMM 슬롯
- 2개의 AC 또는 DC 중복 전원 공급 장치
- 26개의 SAS, SATA, Nearline SAS 하드 드라이브 또는 SSD(후면 액세스 가능한 2개의 드라이브 포함) 드라이브

지원되는 드라이브에 대한 자세한 내용은 기술 사양 섹션을 참조하십시오.

노트: SAS, SATA 하드 드라이브, NVMe 및 SSD의 모든 인스턴스는 별도로 명시된 경우가 아니라면 이 문서에서 드라이브라고 합니다.

주제:
- 시스템의 전면 모습
- 시스템의 후면
- 시스템 내부
- 시스템의 서비스 태그 찾기
- 시스템 정보 레이블

시스템의 전면 모습

그림 1. 24개의 6.35cm(2.5인치) 드라이브 시스템의 전면 모습
1. 왼쪽 제어판
2. 드라이브
3. 오른쪽 제어판
4. 서비스 태그
그림 2. 8개의 6.35cm(2.5인치) 드라이브 시스템의 전면 모습
1. 왼쪽 제어판
2. 드라이브 슬롯
3. 옵티컬 드라이브(옵션)
4. USB 3.0 포트(옵션)
5. 오른쪽 제어판
6. 서비스 태그

포트에 대한 자세한 내용은 기술 사양 섹션을 참조하십시오.

컨트롤 패널

왼쪽 제어판

그림 3. iDRAC Quick Sync 2.0 표시등(옵션)이 있는 왼쪽 컨트롤 패널 모습
1. 상태 LED 표시등
2. 시스템 상태 및 시스템 ID 표시등
3. iDRAC Quick Sync 2 무선 표시등(옵션)

오른쪽 컨트롤 패널 모습

그림 4. 오른쪽 컨트롤 패널 모습
1. 전원 버튼
2. USB 2.0 포트(2개)
3. iDRAC Direct 포트
4. iDRAC Direct LED
5. VGA 포트

노트: 포트에 대한 자세한 내용은 기술 사양 섹션을 참조하십시오.

LCD 패널

LCD 패널은 시스템 정보와 상태 및 오류 메시지를 제공하여 시스템이 올바르게 작동하는지 또는 시스템에 문제가 발생한지를 나타냅니다. LCD 패널은 시스템의 iDRAC IP 주소를 구성하거나 보는 데도 사용할 수 있습니다. 시스템 구성 요소를 모니터링하는 시스템 캠퍼우어 및 에이전트에서 생성된 이벤트 및 오류 메시지 확인 방법에 대한 자세한 정보는 qrl.dell.com에서 Error Code Lookup(오류 코드 조회) 페이지를 참조하십시오.

LCD 패널은 전면 베젤(선택 사항)에서만 사용할 수 있습니다. 전면 베젤(선택 사항)은 핫 플러그 백스텝을 지원합니다.

LCD 패널의 상태 및 조건은 여기에 설명되어 있습니다.

- 정상 작동 상태에서는 LCD의 백라이트가 흰색으로 켜집니다.
- 시스템에 주의를 요구하는 경우 LCD 백라이트는 주황색으로 커지며, 오류 코드가 표시된 후 설정 텍스트가 표시됩니다.

노트: 전원에 연결된 시스템에서 오류가 감지되면 시스템 전원을 켜는지 여부에 관계없이 LCD가 호박색으로 커집니다.
- 시스템이 꺼지고 오류가 없으면 LCD는 5분간의 비활성 후에 대기 모드로 전환됩니다. LCD의 아무 버튼이나 누르면 LCD가 커집니다.
- LCD 패널이 응답하지 않는 경우 베젤을 제거하고 다시 설치합니다.
 - 문제가 해결되지 않으면, 도움말 문의를 참조하십시오.
- iDRAC 유튜리티, LCD 패널 또는 기타 도구로 LCD 메시지를 해제한 경우에는 LCD 백라이트가 깨진 상태로 유지됩니다.

그림 5. LCD 패널 구조

표 1. LCD 패널 구조

<table>
<thead>
<tr>
<th>항목</th>
<th>버튼 또는 디스플레이</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>왼쪽</td>
<td>왼쪽으로 커서를 한 단계 이동합니다.</td>
</tr>
<tr>
<td>2</td>
<td>선택</td>
<td>커서에 의해 강조 표시된 메뉴 항목을 선택합니다.</td>
</tr>
</tbody>
</table>
항목 | 버튼 또는 디스플레이 | 설명
---|---|---
3 | 우측 | 앞쪽으로 커서를 한 단계 이동합니다. 메시지를 스크롤하는 동안 다음을 수행할 수 있습니다. • 버튼을 긴 누르면 스크롤 속도가 증가합니다. • 중지하려면 단추를 해제합니다. **노트:** 버튼에서 손을 때면 디스플레이 스크롤이 중지됩니다. 45초간 비활성 시 디스플레이에서 스크롤이 시작됩니다.
4 | LCD 디스플레이 | 시스템 정보와 상태, 오류 메시지 또는 iDRAC IP 주소를 표시합니다.

홈 화면 보기
홈 화면에는 시스템에 대해 사용자가 구성할 수 있는 정보가 표시됩니다. 이 화면은 상태 메시지 또는 오류가 없는 상태로 시스템이 정상적으로 작동하는 동안 표시됩니다. 시스템이 꺼지고 오류가 없으면 LCD는 5분간의 비활성 후에 대기 모드로 전환됩니다. LCD의 아무 버튼이나 누르면 LCD가 커집니다.

단계
1. **Home(홈)** 화면을 보려면 세 개의 탐색 단추(선택, 왼쪽 또는 오른쪽) 중 하나를 누릅니다.
2. 다른 메뉴에서 **Home(홈)** 화면으로 이동하려면 다음 단계를 수행하십시오.
 a) 위쪽 화살표 가 표시될 때까지 탐색 버튼을 긴 누릅니다.
 b) 위쪽 화살표 를 사용하여 Home 아이콘 으로 이동합니다.
 c) Home 아이콘을 선택합니다.
 d) **Home(홈)** 화면에서 Select(선택) 단추를 누르면 기본 메뉴가 시작됩니다.

설치 메뉴
노트: 설치 메뉴에서 옵션을 선택하면 다음 작업으로 진행하기 전에 해당 옵션을 확인해야 합니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDRAC</td>
<td>DHCP 또는 고정 IP를 선택하여 네트워크 모드를 구성합니다. 고정 IP를 선택하는 경우 사용 가능한 필드는 IP, 서브넷(Sub) 및 게이트웨이(Gtw)입니다. DNS 설정을 선택하여 DNS를 활성화하고 도메인 주소를 봅니다. 두 개의 별도 DNS 항목을 사용할 수 있습니다.</td>
</tr>
<tr>
<td>Set error(오류 설정)</td>
<td>SEL을 선택하여 SEL에 있는 IPMI 설정과 일치하는 형식으로 LCD 오류 메시지를 표시합니다. 이를 통해 LCD 메시지를 SEL 항목과 일치시킬 수 있습니다. Simple을 선택하면 LCD 오류 메시지가 사용자에게 알기 쉽게 표시됩니다. 시스템 구성 요소를 모니터링하는 시스템의 팁워어 및 에이전트에서 생성된 이벤트 및 오류 메시지 확인 방법에 대한 자세한 정보는 qrl.dell.com에서 Error Code Lookup(오류 코드 조회) 페이지를 참조하십시오.</td>
</tr>
<tr>
<td>홈 설정</td>
<td>Home 화면에 표시할 기본 정보를 선택합니다. Home 화면에서 기본값으로 설정할 수 있는 옵션 및 옵션 항목을 보려면 View Menu 섹션을 참조하십시오.</td>
</tr>
</tbody>
</table>

보기 메뉴
노트: View(보기) 메뉴에서 옵션을 선택하는 경우 다음 작업으로 진행하기 전에 옵션을 확인해야 합니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDRAC IP</td>
<td>idrac9를 위한 IPv4 또는 IPv6 주소를 표시합니다. 주소에는 DNS (/dev/ 기본 및 보조), 게이트웨이, IP, 서브넷 (ipv6에는 서브넷이 포함되지 않음).</td>
</tr>
<tr>
<td>MAC</td>
<td>iDRAC, iSCSI 또는 네트워크 장치에 대한 MAC 주소를 표시합니다.</td>
</tr>
<tr>
<td>이름</td>
<td>시스템의 호스트, 모델 또는 사용자 문자열의 이름을 표시합니다.</td>
</tr>
<tr>
<td>번호</td>
<td>시스템의 자산 태그 또는 서비스 태그를 표시합니다.</td>
</tr>
</tbody>
</table>
옵션 설명
전원 시스템의 전력 출력을 BTU/시간 또는 와트 단위로 표시합니다. 디스플레이 형식 `setup(설치) 메뉴의 Set home(홈 설정) 하위 메뉴에서 구성할 수 있습니다.
온도 시스템의 온도를 센서 또는 화씨 단위로 표시합니다. 디스플레이 형식 `setup(설치) 메뉴의 Set home(홈 설정) 하위 메뉴에서 구성할 수 있습니다.

시스템의 후면

그림 6. 24개의 2.5" 드라이브 시스템의 후면
1. 라이저 1 - 전체 높이 PCIe 확장 카드(슬롯 1 및 2)
3. 라이저 2 - 전체 높이 PCIe 확장 카드(슬롯 5 및 6)
5. 시스템
7. USB 3.0 포트(2개)
9. 직렬 포트
11. 후면 핸들
2. 시스템 보드에 있는 절반 높이 PCIe 확장 카드 슬롯(슬롯 3 및 4)
4. 전원 공급 장치(2개)
6. iDRAC9 전용 포트
8. VGA 포트
10. NIC 포트(4개)

그림 7. 24개의 2.5" + 2개의 2.5"(후면) 드라이브 시스템의 후면
1. 라이저 1 - 전체 높이 PCIe 확장 카드 슬롯(슬롯 1 및 2)
3. 후면 드라이브(2개)
5. 시스템
7. USB 3.0 포트(2개)
9. 직렬 포트
11. 후면 핸들
2. 시스템 보드에 있는 절반 높이 PCIe 확장 카드 슬롯(슬롯 3 및 4)
4. 전원 공급 장치(2개)
6. iDRAC9 전용 포트
8. VGA 포트
10. NIC 포트(4개)

노트: 포트 및 커넥터에 대한 자세한 내용은 기술 사양 섹션을 참조하십시오.
시스템 내부

| 노트: | 핫 스왑 가능한 구성 요소는 주황색 접촉점이 있고 핫 스왑 가능하지 않는 구성 요소는 파란색 접촉점이 있습니다.

그림 8. 후면 드라이브 케이지가 포함되지 않는 시스템 내부

1. 드라이브 백플레인
2. SAS 확장기 보드
3. 냉각 펜 (6개)
4. 시스템 보드
5. 전체 높이 확장 카드 라이저 2
6. 전체 높이 확장 카드 라이저 1
7. 침입 스위치
시스템의 서비스 태그 찾기

고유한 익스프레스 서비스 코드(Express Service Code) 및 서비스 태그를 사용하여 시스템을 식별할 수 있습니다. 시스템 전면의 정보 태그를 당겨서 익스프레스 서비스 코드(Express Service Code)와 서비스 태그를 확인합니다. 또는 해당 정보를 시스템 세시에 있는 스티커에서 확인할 수도 있습니다.

미니 EST(Enterprise Service Tag)는 시스템의 후면에 있습니다. 이 정보는 Dell에서 담당 직원에게 고객 문의 전화를 연결할 시 사용합니다.

그림 10. 시스템의 서비스 태그 찾기
1. 정보 태그(상단 모습)
2. 정보 태그(하단)
3. OMM(OpenManage Mobile) 레이블(옵션)
4. iDRAC MAC 주소 및 iDRAC 보안 암호 레이블

노트: iDRAC에 대한 보안 기본 액세스를 선택한 경우 iDRAC 보안 기본 암호는 시스템 정보 태그의 후면에 있습니 다. iDRAC에 대한 보안 기본 액세스를 선택하지 않은 경 우 레이블의 해당 섹션은 비어 있고 기본 사용자 이름과 암호는 root 및 calvin입니다.
시스템 정보 레이블

PowerEdge R840 - 전면 시스템 정보 레이블

그림 11. LED 동작, 구성 및 레이아웃

PowerEdge R840 - 서비스 정보

그림 12. 기계 개요
그림 13. 신호 및 전원 케이블 라우팅

그림 14. 전기 개요

그림 15. CPU 설치
그림 16. 익스프레스 서비스 태그
시스템 설정
시스템을 설정하려면 다음 단계를 수행하십시오.

단계
1. 시스템 포장을 풀습니다.
3. 주변 장치를 시스템에 연결합니다.
4. 시스템을 전원 콘센트에 연결합니다.
5. 전원 버튼을 누르거나 iDRAC를 사용하여 시스템의 전원을 커줍니다.
6. 연결된 주변 기기의 전원을 켭니다.

시스템 설정에 대한 자세한 정보는 시스템과 함께 제공된 시작 가이드를 참조하십시오.

iDRAC 구성
iDRAC(Integrated Dell Remote Access Controller)는 시스템 관리자가 생산성을 높이고 Dell 시스템의 전체 가용성을 향상시키도록 설계되었습니다. iDRAC는 시스템 문제를 관리자에게 알려 원격으로 시스템을 관리받도록 합니다. 따라서 시스템에 물리적으로 액세스할 필요성이 줄어듭니다.

iDRAC IP 주소 설정 옵션
시스템 및 iDRAC 간의 통신을 활성화하려면 먼저 네트워크 인프라스트럭쳐에 따라 네트워크 설정을 구성해야 합니다. 기본적으로 이 옵션은 DHCP로 설정됩니다. 다음 인터페이스 중 하나를 사용하여 iDRAC IP 주소를 설정할 수 있습니다.

인터넷

iDRAC 설정 유필리티

Dell Deployment Toolkit

Dell Lifecycle Controller

서버 LCD 패널

iDRAC Direct 및 Quick Sync 2(선택 사항)

노트: iDRAC에 액세스하려면 이더넷 케이블을 iDRAC9 전용 네트워크 포트에 연결하십시오. 공유 LOM 모드가 활성화된 시스템을 선택한 경우 해당 공유 LOM 모드를 통해 iDRAC에 액세스할 수도 있습니다.

iDRAC에 로그인
iDRAC에 다음과 같이 로그인할 수 있습니다.

• iDRAC 사용자
Microsoft Active Directory 사용자
Lightweight Directory Access Protocol(LDAP) 사용자

iDRAC에 대한 보안 기본값 액세스를 선택한 경우 시스템 정보 태그에 있는 iDRAC 보안 기본값 암호를 사용해야 합니다. iDRAC에 대한 보안 기본값 액세스를 선택하지 않은 경우 기본 사용자 이름과 암호는 root 및 calvin입니다. SSO(Single Sign-On) 또는 스마트 카드를 사용하여 로그인할 수도 있습니다.

노트: iDRAC에 로그인하려면 iDRAC 자격 증명이 있어야 합니다.
노트: iDRAC IP 주소를 설정한 후 기본 사용자 이름과 암호를 변경해야 합니다.
노트: Dell EMC PowerEdge R840의 인텔 QAT(Quick Assist Technology)는 칩셋 통합에서 지원되며 라이센스(선택 사항)를 통해 활성화됩니다. 라이센스 파일은 iDRAC를 통해 슬래시에서 활성화됩니다.

인TEL QAT에 대한 브라이더, 문서 자료 및 백서에 대한 자세한 정보는 https://01.org/intel-quickassist-technology를 참조하십시오.

RACADM을 사용하여 iDRAC에 액세스할 수도 있습니다. 자세한 내용은 www.dell.com/poweredgemanuals에서 RACADM 명령줄 인터페이스 참조 가이드를 참조하십시오.

운영 체제 설치 옵션
시스템에 운영 체제가 제공되어 있지 않은 경우 다음 리소스 중 하나를 사용하여 지원되는 운영 체제를 설치하십시오.

표 2. 운영 체제를 설치할 수 있는 리소스

<table>
<thead>
<tr>
<th>리소스</th>
<th>위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDRAC</td>
<td>www.dell.com/idracmanuals</td>
</tr>
<tr>
<td>Lifecycle Controller</td>
<td>www.dell.com/idracmanuals > Lifecycle Controller</td>
</tr>
<tr>
<td>Dell OpenManage Deployment Toolkit</td>
<td>www.dell.com/openmanagemanuals > OpenManage Deployment Toolkit</td>
</tr>
<tr>
<td>Dell 공인 VMWare ESXi</td>
<td>www.dell.com/virtualizationsolutions</td>
</tr>
<tr>
<td>Dell PowerEdge 시스템에서 지원되는 운영 체제의 설치 및 방법을 보여주는 동영상</td>
<td>Dell EMC PowerEdge 시스템에서 지원되는 운영 체제</td>
</tr>
</tbody>
</table>

펌웨어 및 드라이버 다운로드 방법
다음 방법 중 하나로 펌웨어 및 드라이버를 다운로드할 수 있습니다.

표 3. 펌웨어 및 드라이버

<table>
<thead>
<tr>
<th>방법</th>
<th>위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell EMC 지원 사이트</td>
<td>www.dell.com/support/home</td>
</tr>
<tr>
<td>Dell Remote Access Controller Lifecycle Controller(iDRAC with LC) 사용</td>
<td>www.dell.com/idracmanuals</td>
</tr>
<tr>
<td>Dell Repository Manager(DRM) 사용</td>
<td>www.dell.com/openmanagemanuals > Repository Manager</td>
</tr>
<tr>
<td>Dell OpenManage Essentials(OME) 사용</td>
<td>www.dell.com/openmanagemanuals > OpenManage Essentials</td>
</tr>
<tr>
<td>Dell Server Update Utility(SUU) 사용</td>
<td>www.dell.com/openmanagemanuals > Server Update Utility</td>
</tr>
<tr>
<td>Dell OpenManage Deployment Toolkit(DTK) 사용</td>
<td>www.dell.com/openmanagemanuals > OpenManage Deployment Toolkit</td>
</tr>
<tr>
<td>iDRAC 가상 미디어 사용</td>
<td>www.dell.com/idracmanuals</td>
</tr>
</tbody>
</table>
드라이버 및 펌웨어 다운로드

Dell EMC는 시스템에 최신 BIOS, 드라이버 및 시스템 관리 펌웨어를 다운로드하여 설치할 것을 권장합니다.

전제조건
드라이버 및 펌웨어를 다운로드하기 전에 웹 브라우저 캐시를 지워야 합니다.

단계
2. 드라이버 및 다운로드 섹션에서 서비스 태그 또는 제품 ID 입력 상자에 시스템의 서비스 태그를 입력한 후 제출을 클릭합니다.
 ① 노트: 서비스 태그가 없는 경우 제품 감지를 선택하여 시스템이 자동으로 서비스 태그를 감지하도록 하거나 제품 보기 클릭하고 제품으로 이동합니다.
3. 드라이버 및 다운로드를 클릭합니다.
 시스템에 해당하는 드라이버가 표시됩니다.
4. 드라이버를 USB 드라이브, CD 또는 DVD로 다운로드합니다.
사전 운영 체제 관리 앱플리케이션

시스템 엔지니어를 사용하여 운영 체제로 부팅하지 않고 시스템의 기본 설정 및 기능을 관리할 수 있습니다.

주제:
- 사전 운영 체제 응용프로그램을 관리할 수 있는 옵션
- 시스템 설치 프로그램
- Dell Lifecycle Controller
- 부팅 관리자
- PXE 부팅

사전 운영 체제 응용프로그램을 관리할 수 있는 옵션

이 시스템에는 다음과 같은 사전 운영 체제 앱플리케이션을 관리할 수 있는 옵션이 있습니다.
- 시스템 설치 프로그램
- Dell Lifecycle Controller
- 부팅 관리자
- 사전 부팅 실행 환경(PXE)

시스템 설치 프로그램

System Setup(시스템 설정) 화면을 사용하여 시스템의 BIOS 설정, iDRAC 설정, 및 장치 설정을 구성할 수 있습니다.

① 노트: 선택한 필드에 대한 도움말 텍스트는 기본적으로 그래픽 브라우저에 표시됩니다. 텍스트 브라우저에서 도움말 텍스트를 보려면 F1 키를 누르시오.

다음 두 가지 방법으로 시스템 설정에 액세스할 수 있습니다.
- 표준 그래픽 브라우저 - 브라우저는 기본적으로 활성화됩니다.
- 텍스트 브라우저 - 브라우저는 콘솔 라디액션을 사용하여 활성화됩니다.

시스템 설정 보기

System Setup(시스템 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

① 노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

시스템 설정 세부 정보

System Setup Main Menu(시스템 설정 기본 메뉴) 화면 세부 정보는 다음과 같습니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>System BIOS(시스템 BIOS) 설정을 구성할 수 있습니다.</td>
<td></td>
</tr>
</tbody>
</table>
이용설명
iDRAC 설정을 구성할 수 있습니다.

iDRAC Settings(idrac 설정) 유틸리티는 UEFI (Unified Extensible Firmware Interface)를 사용하여 iDRAC 매개 변수를 설정하고 구성하려면 인터페이스, iDRAC 설정 유틸리티를 사용하여 다양한 iDRAC 매개 변수를 활성화하거나 비활성화할 수 있습니다. 이 유틸리티에 대한 자세한 정보는 www.dell.com/idracmanuals에서 Integrated Dell Remote Access Controller 사용자 가이드를 참조하십시오.

장치 설정 네트워크 카드 또는 스토리지 컨트롤러와 같은 디바이스 설정을 구성할 수 있습니다.

System BIOS(시스템 BIOS)

System BIOS 화면을 사용하여 부팅 순서, 시스템 암호, 설정 암호, SATA 및 PCIe NVMe RAID 모드 설정, USB 포트 활성화 또는 비활성화와 같은 특정 기능을 편집할 수 있습니다.

시스템 BIOS 보기

System Setup(시스템 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 하기 위해 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.

시스템 BIOS 설정 세부 정보

이 작업 정보

다음은 System BIOS Settings(시스템 BIOS 설정) 화면 세부 정보에 대한 설명입니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>시스템 정보</td>
<td>시스템 모델 이름, BIOS 버전, 서비스 태그 등의 시스템에 대한 정보를 표시합니다.</td>
</tr>
<tr>
<td>메모리 설정</td>
<td>설치된 메모리와 관련된 정보 및 옵션을 표시합니다.</td>
</tr>
<tr>
<td>프로세서 설정</td>
<td>프로세서와 관련된 속도, 캐시 크기 등의 정보 및 옵션을 표시합니다.</td>
</tr>
<tr>
<td>SATA 설정</td>
<td>내장형 SATA 컨트롤러 및 포트를 활성화하거나 비활성화하는 옵션을 표시합니다.</td>
</tr>
<tr>
<td>NVMe Settings</td>
<td>네트워크 설정을 변경할 수 있는 옵션을 표시합니다. 시스템에 포함되어 있을 경우 NVMe 드라이브를 RAID 어레이에 구성하려는 RAID 모드는 모두 및 SATA 설정 메뉴의 Embedded SATA(내장형 SATA) 필드 이 필드는 설정 합니다. 설정을 UEFI 부팅 모드를 변경해야 하는 경우에도 있습니다. 그렇지 않으면, 이 필드 가 비 RAID 모드로(제한됨)로 설정되어야 합니다.</td>
</tr>
<tr>
<td>부팅 설정</td>
<td>부팅 모드(BIOS 또는 UEFI)를 지정하는 옵션을 표시합니다. UEFI 및 BIOS 부팅 설정을 수정할 수 있습니다.</td>
</tr>
<tr>
<td>Network Settings(네트워크 설정)</td>
<td>UEFI 네트워크 설정을 관리하는 옵션 및 부팅 프로토콜을 지정합니다.</td>
</tr>
<tr>
<td>내장형 장치</td>
<td>내장형 장치 컨트롤러 및 포트를 관리하고 관련 기능 및 옵션 설정 내용을 표시합니다.</td>
</tr>
<tr>
<td>직렬 통신</td>
<td>직렬 포트를 관리하고 관련 기능 및 옵션을 지정하는 옵션을 표시합니다.</td>
</tr>
<tr>
<td>시스템 프로필 설정</td>
<td>프로세서 전원 관리 설정, 메모리 주파수 등을 변경하는 옵션을 표시합니다.</td>
</tr>
<tr>
<td>시스템 보안</td>
<td>시스템 암호, 설정 암호, TPM(Trusted Platform Module) 보안 등의 시스템 보안 설정을 구성하는 옵션을 표시합니다. 또한 시스템의 전원 및 NMI 단추를 관리합니다.</td>
</tr>
</tbody>
</table>
옵션 설명
Redundant OS 중복 OS 제어에 대한 중복 OS 정보를 설정합니다.
Control 중복 OS 정보를 설정합니다.
기타 설정 시스템 날짜, 시간 등을 변경하는 옵션을 표시합니다.

시스템 정보
System Information(시스템 정보) 화면을 사용하여 서비스 태그, 시스템 모델 이름 및 BIOS 버전과 같은 시스템 속성을 볼 수 있습니다.

시스템 정보 보기
System Information(시스템 정보) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

 F2 = System Setup

① 노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.
3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 System Information(시스템 정보)를 클릭합니다.

시스템 정보 세부 정보
이 작업 정보
System Information(시스템 정보) 화면 세부 정보는 다음과 같습니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>시스템 모델 이름</td>
<td>시스템 모델 이름을 표시합니다.</td>
</tr>
<tr>
<td>시스템 BIOS 버전</td>
<td>시스템에 설치된 BIOS 버전을 표시합니다.</td>
</tr>
<tr>
<td>시스템 관리 엔진 버전</td>
<td>관리 엔진 펌웨어의 현재 버전을 표시합니다.</td>
</tr>
<tr>
<td>시스템 서비스 태그</td>
<td>시스템 서비스 태그를 표시합니다.</td>
</tr>
<tr>
<td>시스템 제조업체 이름</td>
<td>OEM(Original Equipment Manufacturer)의 이름을 나타냅니다.</td>
</tr>
<tr>
<td>시스템 제조업체 연락처 정보</td>
<td>OEM(Original Equipment Manufacturer)의 연락처 정보를 나타냅니다.</td>
</tr>
<tr>
<td>시스템 CPLD 버전</td>
<td>시스템, CPLD(Complex Programmable Logic Device) 펌웨어의 현재 버전을 표시합니다.</td>
</tr>
<tr>
<td>UEFI 준수 버전</td>
<td>시스템 펌웨어의 UEFI 규정 준수 수준을 표시합니다.</td>
</tr>
</tbody>
</table>

메모리 설정
Memory Settings(메모리 설정) 화면을 사용하면 모든 메모리 설정을 볼 수 있을 뿐 아니라 시스템 메모리 테스트 및 노드 인터리빙과 같은 특정 메모리 기능을 활성화 또는 비활성화할 수 있습니다.

메모리 설정 보기
Memory Settings(메모리 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료한 다음 시스템을 재시작하고 다시 시도합니 다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Memory Settings(메모리 설정)를 클릭합니다.

메모리 설정 세부 정보

이 작업 정보

Memory Settings(메모리 설정) 화면 내용은 다음과 같이 설명됩니다.

음선 설명

System Memory Size 시스템의 메모리 크기를 표시합니다.
System Memory Type 시스템에 설치된 메모리 종류를 표시합니다.
System Memory Speed 시스템 메모리 속도를 표시합니다.
System Memory Voltage 시스템 메모리 전압을 표시합니다.
Video Memory 비디오 메모리 크기를 표시합니다.
System Memory Testing 시스템 부팅 중에 시스템 메모리 테스트가 실행되는지 여부를 정의합니다. 옵션으로 Enabled(활성화) 및 Disabled(비활성화)가 있습니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.

노트: 활성화된 경우 시스템을 부팅하는 데 더 많은 시간이 소요됩니다. 부팅 시간은 시스템 메모리 크기에 따라 달라집니다.

메모리 작동 모드

메모리 작동 모드를 지정합니다. 사용 가능한 음선은 Optimizer 모드, 단일 랙크 Spare Mode(스페어 모드), 다중 랙크 Spare Mode(스페어 모드), Mirror Mode(미러 모드), 및 Dell Fault Resilient Mode(델 결함 복원 모드)입니다. 기본적으로 이 옵션은 Optimizer 모드로 설정됩니다.

노트: 시스템의 메모리 구성에 따라 Memory Operating Mode(메모리 작동 모드)에 여러 가지 기본값 및 사용 가능한 음선이 있을 수 있습니다.

노트: Dell Fault Resilient Mode는 결함 복원이 있는 메모리 영역을 구축합니다. 이 모드는 중요한 응용 프로그램을 로드할 수 있는 기능을 지원하거나 운영 체제 컨벌을 활성화하여 시스템 가용성을 극대화할 수 있는 운영 체제에 의해 사용될 수 있습니다.

Current State of Memory Operating Mode(메모리 작동 모드)의 현재 상태를 지정합니다.

Node Interleaving NUMA(Non-Uniform Memory Architecture) 지원 여부를 지정합니다. 이 필드를 Enabled(활성화)로 설정하는 경우 대칭 메모리 구성이 설치되어 있으며 메모리 인터리빙이 지원됩니다. Disabled(비활성화)로 설정된 경우 시스템에서 NUMA(비대칭)메모리 구성이 지원됩니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.

ADDDC 설정 ADDDC(Adaptive Double DRAM Device Correction) 설정 가능성을 활성화하거나 비활성화합니다. ADDDC 설정 가능성을 활성화하면 오류가 발생한 DRAM을 동적으로 바꿉니다. 비활성화로 설정하는 경우 특정 워크로드를 처리할 때 시스템 성능에 모드의 영향을 미칠 수 있습니다. 이 기능은 x4 DIMM에만 적용됩니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.

Opportunistic Self-Refresh Self- 새로 고침 기능을 opportunistic(자발적) 활성화하거나 비활성화합니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.

Persistent Memory 이 필드는 시스템의 영구 메모리 제어를 말합니다. 이 옵션은 시스템에 영구 메모리 모듈이 설치된 경우에 사용 가능합니다.
영구 메모리 세부 정보

이 작업 정보

Persistent Memory 화면 세부 정보는 www.dell.com/poweredgemanuals의 NVDIMM-N 사용자 가이드 및 DCPMM 사용자 가이드에서 찾을 수 있습니다.

프로세서 설정

Processor Settings(프로세서 설정) 화면을 사용하면 프로세서 설정을 보고 가상화 기술, 하드웨어 프리페저 논리 프로세서 유화 상태 및 편의적 자동 새로운 고침 활성화와 같은 특정 기능을 수행할 수 있습니다.

프로세서 설정 보기

Processor Settings(프로세서 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 꺼거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.
3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Processor Settings(프로세서 설정)를 클릭합니다.

프로세서 설정 세부 정보

이 작업 정보

Processor Settings(프로세서 설정) 화면 세부 정보는 다음과 같습니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>논리 프로세서</td>
<td>논리 프로세서를 활성화하거나 비활성화하고 논리 프로세서의 개수를 표시합니다. 이 옵션은 Enabled(활성화)로 설정되는 경우, BIOS는 모든 논리 프로세서를 표시합니다. 이 옵션은 Disabled(비활성화)로 설정되는 경우, BIOS는 코어당 1개의 논리 프로세서만 표시합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>CPU 상호 연결 속도</td>
<td>시스템에서 CPU 간 통신 링크의 주파수를 대고 수 있습니다. 이 옵션은 기본값으로 Maximum data rate(최대 데이터 속도)로 설정됩니다. 최대 데이터 속도는 BIOS가 프로세서에서 지원하는 최대 주파수에서 통신 회선을 작동하고 있음을 나타냅니다. 프로세서가 지원하는 다양한 특정 주파수 중에서 선택할 수도 있습니다. 최상의 성능을 위해서는 최대 데이터 속도를 선택해야 합니다. 또한 최적 CPU에서 프로세서의 I/O 장치에 대한 액세스를 저하할 수 있습니다. 그러나, 절전 고려 사항 성능을 능가하는 경우, CPU 통신 링크 주파수를 줄이시시오를 사용해야 할 수 있습니다. 이 경우 시스템 성능에 미치는 영향을 최소화하기 위해 가장 근접한 NUMA 노드로 메모리 및 I/O 액세스를 지역화해야 합니다.</td>
</tr>
<tr>
<td>가상화 기술</td>
<td>프로세서의 가상화 기술을 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
</tbody>
</table>

| 인접 캐시 형 프리페처 | 순차적 메모리 액세스를 많이 사용해야 하는 애플리케이션을 위해 시스템을 최적화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다. 임의의 메모리 액세스를 많이 사용해야 하는 애플리케이션에 대해서는 이 옵션을 비활성화할 수 있습니다. |

F2 = System Setup

노트: F2를 누르기 전에 운영 체제가 로드되기 시작하면 시스템가 부팅을 완료한 다음 시스템을 재시작하고 다시 시도하십시오.
<table>
<thead>
<tr>
<th>응선</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>하드웨어 프리페치</td>
<td>하드웨어 프리페치를 활성화 또는 비활성화할 수 있습니다. 이 응선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>소프트웨어 프리페치</td>
<td>소프트웨어 프리페치를 활성화 또는 비활성화합니다. 이 응선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>DCU 스타트머 프리페치</td>
<td>DCU(Data Cache Unit) 스타트머 프리페치를 활성화하거나 비활성화할 수 있습니다. 이 응선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>DCU IP 프리페치</td>
<td>DCU(Data Cache Unit) IP 프리페치를 활성화하거나 비활성화합니다. 이 응선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>하위 NUMA 클러스터</td>
<td>SNC(Sub NUMA Clustering)는 시스템에서 각 클러스터가 메모리 흐름을 세분하게 되어 있는 상태에서 주소 변환 기준으로 LLC를 공유소자 없는 클러스터로 분해하는 기능입니다. 이를 통해 LLC의 평균 자원 시간이 단락됩니다. 하위 NUMA 클러스터를 활성화 또는 비활성화합니다. 이 응선은 기본적으로 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>UPI 프리페치</td>
<td>DDR 버스에서 메모리 읽기를 일찍 시작할 수 있습니다. UPI(Ultra Path Interconnect) Rx 경로가 iMC(Integrated Memory Controller)로 직접 예상되는 메모리 읽기를 생성합니다. 이 응선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>논리 프로세서 응용 상태</td>
<td>시스템의 에너지 효율성을 향상시킬 수 있습니다. 이 응선은 운영 체제 코어 파티션 알고리즘을 사용하여 일부 논리 프로세서를 시스템에 파티션하여 해당 프로세서 코어가 전원 효율이 낮은 상태로 전환되지도록 합니다. 이 응선은 운영 체제에서 지원되는 경우에만 활성화되며 기본적으로 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>TDP 구성</td>
<td>TDP 레벨을 구성할 수 있습니다. 사용 가능한 응선은 공정. 레벨 1. 레벨 2입니다. 기본값으로 이 응선은 Nominal(공정)로 설정됩니다.</td>
</tr>
<tr>
<td>x2APIC 모드</td>
<td>x2APIC 모드를 활성화하거나 비활성화합니다. 기본적으로 이 응선은 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>Dell 제어된 터보</td>
<td>터보 개선을 제어합니다. 이 응선은 시스템 프로필을 성능으로 설정한 경우에는만 활성화됩니다.</td>
</tr>
<tr>
<td>Dell AVX 확장 기술</td>
<td>Dell AVX 확장 기술을 구성할 수 있습니다. 이 응선은 기본적으로 0으로 설정됩니다.</td>
</tr>
<tr>
<td>프로세서당 코어 수</td>
<td>프로세서의 활성화된 코어 수를 제어합니다. 경로에 따라 활성화된 코어 수를 줄였을 때 인텔 터보 부스트 기술의 성능이 제한적으로 향상되어 잡색적으로 더 많은 공유 캐시를 활용하는 것을 확인할 수 있습니다. 대부분의 응용 프로그램은 더 많은 수의 프로세서 코어를 활용하는 것이므로 공정 성능을 향상하려면 코어 비활성화를 신중하게 고려해야 합니다.</td>
</tr>
<tr>
<td>프로세서 비속 속도</td>
<td>프로세서의 코어 속도를 표시합니다.</td>
</tr>
<tr>
<td>프로세서 n</td>
<td>프로세서의 버스 속도를 표시합니다.</td>
</tr>
</tbody>
</table>

시스템에 설치된 각 프로세서에 대해 다음 설정이 표시됩니다.

<table>
<thead>
<tr>
<th>응선</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family-Model-Stepping</td>
<td>인텔에서 정의한 대로 프로세서의 제품군, 모델 및 스테핑을 표시합니다.</td>
</tr>
<tr>
<td>브랜드</td>
<td>브랜드 이름을 표시합니다.</td>
</tr>
<tr>
<td>수준 2 캐시</td>
<td>전체 L2 캐시를 표시합니다.</td>
</tr>
<tr>
<td>수준 3 캐시</td>
<td>전체 L3 캐시를 표시합니다.</td>
</tr>
<tr>
<td>코어 수</td>
<td>프로세서당 코어 수를 표시합니다.</td>
</tr>
<tr>
<td>최대 코어 용량</td>
<td>프로세서당 최대 코어 용량을 지정합니다.</td>
</tr>
<tr>
<td>Microcode</td>
<td>마이크로코드를 지정합니다.</td>
</tr>
</tbody>
</table>

사전 운영 체제 관리 에뮬레이션 27
SATA 설정

SATA Settings(SATA 설정) 화면을 사용하여 SATA 디바이스의 SATA 설정을 보고 시스템에서 SATA 및 PCIe NVMe RAID 모드를 활성화할 수 있습니다.

SATA 설정 보기

SATA Settings(SATA 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.
 (F2 = System Setup)
3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 SATA Settings(SATA 설정)를 클릭합니다.

SATA 설정 세부 정보

이 작업 정보

SATA Settings(SATA 설정) 화면 내용은 다음과 같이 설명됩니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>내장형 SATA</td>
<td>내장형 SATA 옵션을 Off(끄기) 또는 AHCI 또는 RAID 모드로 설정할 수 있습니다. 이 옵션은 기본값으로 AHCI Mode(AHCI 모드)로 설정됩니다.</td>
</tr>
<tr>
<td>Security Freeze Lock</td>
<td>POST 중 Security Freeze Lock 명령을 내장형 SATA 드라이브로 전송합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>쓰기 캐시</td>
<td>POST 중 내장형 SATA 드라이브에 대한 명령을 활성화하거나 비활성화합니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.</td>
</tr>
</tbody>
</table>

포트 n

선택한 장치에 대한 드라이브 종류를 설정합니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델</td>
<td>선택한 장치의 드라이브 모델을 표시합니다.</td>
</tr>
<tr>
<td>노트:</td>
<td>디바이스가 설치되어 있지 않으면 Unknown(알 수 없음)으로 표시됩니다.</td>
</tr>
<tr>
<td>드라이브 유형</td>
<td>SAVTA 포트에 연결된 드라이브의 종류를 표시합니다.</td>
</tr>
<tr>
<td>노트:</td>
<td>디바이스가 설치되어 있지 않으면 Unknown Device(알 수 없는 디바이스)로 표시됩니다.</td>
</tr>
<tr>
<td>용량</td>
<td>드라이브의 전체 용량을 표시합니다. 응티컬 드라이브와 같은 이동식 미디어 디바이스에 대해서는 이 필드가 의미되지 않습니다.</td>
</tr>
<tr>
<td>노트:</td>
<td>디바이스가 설치되어 있지 않으면 N/A(해당 없음)로 표시됩니다.</td>
</tr>
</tbody>
</table>

NVMe 설정

NVMe 설정을 통해 NVMe 드라이브를 RAID 모드 또는 Non-RAID(비 RAID) 모드로 설정할 수 있습니다.

노트: 이러한 드라이브를 RAID 모드로 구성하려면 System BIOS Settings(시스템 BIOS 설정) > SATA Settings(SATA 설정) > Embedded SATA Option(내장형 SATA 옵션)을 클릭하고 RAID 모드를 활성화합니다. 그렇지 않으면, 이 필드를 Non-RAID(비 RAID) 모드로 설정해야 합니다.
NVMe 설정 보기

NVMe Settings(NVMe 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

| F2 = System Setup |

‡ 노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 NVMe Settings(NVMe 설정)를 클릭합니다.

NVMe 설정 세부 정보

이 작업 정보

NVMe 설정 화면 세부 정보는 다음과 같습니다.

<table>
<thead>
<tr>
<th>읍선</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVMe Mode</td>
<td>NVMe 모드를 설정할 수 있습니다. 기본적으로 이 읍선은 Non RAID(비 RAID)로 설정되어 있습니다.</td>
</tr>
</tbody>
</table>

부팅 설정

Boot Settings(부팅 설정) 화면을 사용하여 부팅 모드를 BIOS 또는 UEFI로 설정할 수 있습니다. 또한 부팅 순서를 지정할 수 있습니다.

- BIOS: BIOS Boot Mode(BIOS 부팅 모드)는 기본 부팅 모드입니다. 이 모드는 이전 버전과의 호환성을 위해 유지됩니다.
- UEFI: UEFI(Unified Extensible Firmware Interface)는 운영 체제와 플랫폼 관계에 사실의 새로운 인터페이스입니다. 이 인터페이스는 운영 체제 및 로드기에 사용할 수 있는 부팅 및 관리 서비스 를 제공하며, 플랫폼 관련 정보가 들어 데이터 테이블로 이루어져 있습니다. 다음 이 길은 Boot Mode(부팅 모드)가 UEFI로 설정된 경우 사용 가능합니다.
 - 2TB보다 큰 드라이브 파티션 지원.
 - 고급 보안(예: UEFI 보안 부팅).
 - 보다 빠른 부팅 시간.

‡ 노트: NVMe 드라이브에서 부팅하기 위해서는 UEFI 부팅 모드만 사용해야 합니다.

부팅 설정 보기

Boot Settings(부팅 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

| F2 = System Setup |

‡ 노트: F2를 누르기 전에 운영 체제가 로드되기 시작하면 시스템가 부팅을 완료한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Boot Settings(부팅 설정)를 클릭합니다.

부팅 설정 세부 정보

이 작업 정보

Boot Settings(부팅 설정) 화면 세부 정보는 다음과 같습니다.
옵션	설명
Boot Mode | 부팅 순서를 구성할 수 있고 개별 부팅 옵션을 활성화하거나 비활성화할 수 있습니다. 사용 가능한 옵션은 BIOS 및 UEFI입니다. 기본적으로 이 옵션은 UEFI로 설정됩니다.
Boot Sequence Retry | Boot Sequence Retry(부팅 순서 재시도) 기능을 활성화하거나 비활성화합니다. 마지막 부팅 시도가 실패한 경우 시스템에서 즉시 올드 재설정을 수행하거나, Reset 또는 Enabled 설정에 따라 30초 시간 제한 후에 부팅을 다시 시도합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.
Hard-Disk Failover | 드라이브 오류 발생 시 부팅되는 드라이브를 지정합니다. 장치는 부팅 옵션 설정 메뉴를 하드 디스크 드라이브 순서에서 선택한, 이 옵션이 Disabled(비활성화)로 설정된 경우 목록의 첫 번째 드라이브만 부팅을 시도합니다. 이 옵션은 Enabled(활성화)로 설정된 경우 모든 드라이브가 Hard-Disk Drive Sequence(하드 디스크 드라이브 순서)에서 설정된 순서대로 부팅을 시도합니다. UEFI 부팅 모드에 대해 이 옵션을 사용할 수 없습니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.
 일반 USB 부팅 | USB 부팅 옵션을 활성화 또는 비활성화합니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.
 하드 디스크 드라이브 표시자 | 하드 디스크 드라이브 표시자 옵션을 활성화하거나 비활성화합니다. 기본적으로 이 옵션은 비활성화로 설정됩니다.
UEFI 부팅 설정 | UEFI 부팅 설정 화면을 사용하여 UEFI 부팅 순서를 지정할 수 있습니다.

이 작업 정보

옵션	설명
UEFI 부팅 순서 | UEFI 부팅 순서를 변경할 수 있습니다.
부팅 옵션 활성화/비활성화 | UEFI 부트 디바이스를 활성화하거나 비활성화할 수 있습니다.

Network Settings(네트워크 설정)

Network Settings(네트워크 설정) 화면을 사용하여 UEFI PXE, iSCSI 및 HTTP 부팅 설정을 수동할 수 있습니다. 네트워크 설정 옵션은 UEFI 부팅 모드에서만 사용할 수 있습니다.

1. 노트: BIOS는 BIOS 모드의 네트워크 설정을 제어하지 않습니다. BIOS 부팅 모드의 경우, 네트워크 컨트롤러의 ROM 부팅(옵션)이 네트워크 설정을 처리합니다.

네트워크 설정 보기

Network Settings(네트워크 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

1. 노트: F2를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Network Settings(네트워크 설정)를 클릭합니다.

네트워크 설정 화면 세부 정보

Network Settings(네트워크 설정) 화면의 세부 정보는 다음과 같이 설명됩니다.

이작업 정보

옵션	설명
UEFI PXE Settings | UEFI PXE 디바이스의 구성도 제어할 수 있습니다.
<p>표 4. UEFI iSCSI 설정 화면 세부 정보</p><table><thead><tr><th>옵션</th><th>설명</th></tr></thead><tbody><tr><td>iSCSI Initiator Name</td><td>IQN 형식의 iSCSI 초기자 이름을 지정합니다.</td></tr><tr><td>iSCSI Device1</td><td>iSCSI 장치를 활성화 또는 비활성화합니다. 비활성화된 경우 UEFI 부팅 옵션이 iSCSI 장치를 위해 자동으로 생성됩니다. 이 옵션은 기본값으로 Disabled(비활성화)로 설정됩니다.</td></tr><tr><td>iSCSI Device1 Settings</td><td>iSCSI 장치의 구성도 제어할 수 있습니다.</td></tr></tbody></table><p>내장형 장치</p><p>Integrated Devices(내장형 장치) 화면을 사용하여 비디오 컨트롤러, 통합 RAID 컨트롤러 및 USB 포트를 포함한 모든 내장형 장치의 설정을 보고 구성할 수 있습니다.</p><p>내장형 장치 보기</p><p>Integrated Devices(내장형 장치) 섹션을 보려면 다음 단계를 수행하십시오.</p><p>단계</p>시스템을 켜거나 재시작합니다.다음 메시지가 표시되면 즉시 F2를 누릅니다.노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.System BIOS(시스템 BIOS) 화면에서 Integrated Devices(내장형 장치)를 클릭합니다.<p>내장형 장치 세부 정보</p><p>이 작업 정보</p><p>Integrated Devices(내장형 장치) 화면 세부 정보는 다음과 같습니다.</p><table><thead><tr><th>옵션</th><th>설명</th></tr></thead><tbody><tr><td>User Accessible USB Ports</td><td>사용자 액세스 가능한 USB 포트를 구성합니다. Only Back Ports On(후면 포트만 켜기)을 선택하면 전면 USB 포트가 비활성화됩니다. All Ports Off(모든 포트 고기)를 선택하면 모든 전면 및 후면 USB 포트가 비활성화됩니다. All Ports Off (Dynamic)(모든 포트 고기(동적))을 선택하면 POST 중간 또는 전면 및 후면 USB 포트가 비활성화되면 전면 포트는 시스템 재설정 없이 권한 있는 사용자가 동적으로 활성화 또는 비활성화할 수 있습니다. USB 키보드 및 마우스는 선택에 따라 부팅 프로세스 동안 특정 USB 포트에서 여전히 가능합니다. 부팅 프로세스가 완료되면 USB 포트를 Enabled(사용) 또는 Disabled(사용 안 함) 설정에 따라가 있습니다.</td></tr></tbody></table>
<table>
<thead>
<tr>
<th>음성</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal USB Port</td>
<td>내부 USB 포트를 활성화하거나 비활성화합니다. 기본적으로 이 음선은 Nominal(공정)로 설정됩니다.</td>
</tr>
<tr>
<td>iDRAC Direct USB Port</td>
<td>iDRAC Direct USB 포트가 iDRAC에서 관리하기 위해 독립적으로 보호기기 문서 생성 없음. 이 음선은 On(켜기) 또는 Off(끄기)로 설정하는 경우, iDRAC 포트 권한에 의해서 설정된 모든 USB 장치를 감지하지 않습니다. 기본적으로 이 음선은 Nominal(공정)로 설정됩니다.</td>
</tr>
<tr>
<td>Integrated Network Card 1</td>
<td>내장형 네트워크 카드를 활성화하거나 비활성화합니다. Disabled(사용 안 함)로 설정하는 경우, NDC로 운영 체제(os)를 사용할 수 없습니다. 이 음선은 기본적으로 Enabled(활성화)로 설정됩니다. 노트: OS Disabled(비활성화)로 설정되어 있는 경우, NIC iDRAC에 의해 공유 네트워크 액세스에 대해 사용할 수 있는지 알고 있습니다.</td>
</tr>
<tr>
<td>I/OAT DMA Engine</td>
<td>I/OAT 음성을 활성화하거나 비활성화할 수 있습니다. I/OAT가 DMA 기능 세트의 네트워크 트래픽 및 낮은 CPU 사용률을 가속화하도록 설계되었습니다. 하드웨어 및 소프트웨어가 해당 기능을 지원하는 경우에만 활성화할 수 있습니다.</td>
</tr>
<tr>
<td>Embedded Video Controller</td>
<td>기본 디스플레이로 설정하는 Video Controller(내장형 비디오 컨트롤러의 사용을 활성화하거나 비활성화합니다. Enabled(활성화)로 설정되는 경우, Embedded Video Controller(내장형 비디오 컨트롤러)를 기본 디스플레이가 됩니다.e 옵션과는 구분할 수도 있습니다. Hardware가 그래픽 카드가 설치되어 있는 경우, None(없음) 또는 POST(인증)로 설정될 수 있습니다. BIOS가 그래픽을 사용하는 경우, I/OAT또는 NDC가 설정된 경우, 그래픽도 비활성화되며 비활성화 설정된 경우, 활성화 설정된 그래픽 카드는 동작하지 않습니다. 이 음선은 기본적으로 Enabled(활성화)로 설정됩니다. 노트: SR-IOV(Single Root I/O Virtualization) 기반의 BIOS 구성은 활성화 또는 비활성화합니다. 기본적으로 이 음선은 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>SR-IOV Global Enable</td>
<td>SR-IOV(Single Root I/O Virtualization) 장치의 BIOS 구성은 활성화 또는 비활성화합니다. 기본적으로 이 음선은 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>OS Watchdog Timer</td>
<td>시스템이 응답을 얻지 못하는 경우, 이러한 작동 타이머가 운영 체제 복구에 도움을 줍니다. 이 음선이 Enabled(활성화)로 설정되는 경우, 운영 체제가 타이머를 초기화합니다. 이 음선이 Disabled(비활성화)(기본 값)로 설정되면 타이머는 시스템에 영향을 주지 않습니다.</td>
</tr>
<tr>
<td>archivo porcentaje</td>
<td>BIOS 및 OS에 액세스할 수 있는 모든 블록 습트 포트를 활성화하거나 비활성화합니다. 기본적으로 이 음선은 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>Memory Mapped I/O above 4 GB</td>
<td>대용량 메모리가 필요한 PCIe 장치 지원을 활성화하거나 비활성화합니다. 64-bit 운영 체제에 대해서만 이 음선을 활성화할 수 있습니다. 이 음선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>Memory Mapped I/O Base</td>
<td>12tb로 설정하는 경우, 시스템은 12tb임에도 베이스를 매핑하. OS에 대해 이 음선을 활성화하는 주소 지정 44비트 PCIe가 필요합니다.</td>
</tr>
</tbody>
</table>

슬롯 비활성화

<table>
<thead>
<tr>
<th>이 작업 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>슬롯 비활성화 화면 세부 정보는 다음과 같습니다.</td>
</tr>
</tbody>
</table>

슬롯 비활성화

시스템에서 사용 가능한 PCIe 슬롯을 활성화하거나 비활성화합니다. 슬롯 비활성화 기능은 지정된 슬롯에 설정된 PCIe 카드의 구성을 제거합니다. 슬롯 비활성화는 설치된 주변 장치 카드로 인해 운영 체제에 부팅할 수 없거나 어플리케이션 시작에 지연되는 경우에만 사용해야 합니다. 슬롯이 비활성화되면 음선 ROA와 UEFI 트래픽이 모두 비활성화됩니다. 시스템에 있는 슬롯만 제어할 수 있습니다.

표 5. 슬롯 비활성화

<table>
<thead>
<tr>
<th>슬롯 번호</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>슬롯 1</td>
<td>활성화 또는 비활성화하거나 PCIe 슬롯 1에 대해 부팅 드라이버만 비활성화됩니다. 이 음선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>슬롯 2</td>
<td>활성화 또는 비활성화하거나 PCIe 슬롯 2에 대해 부팅 드라이버만 비활성화됩니다. 이 음선은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>슬롯 번호</td>
<td>설명</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>슬롯 3</td>
<td>PCIe 슬롯 3에 부팅 드라이버들이 비활성화되어 있는 또는 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>슬롯 4</td>
<td>PCIe 슬롯 4에 부팅 드라이버들이 비활성화되어 있는 또는 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>슬롯 5</td>
<td>또는 PCIe 슬롯에 드라이버가 활성화되어 있는 부팅만 5을 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>슬롯 6</td>
<td>또는 PCIe 슬롯에 드라이버가 비활성화되어 있는 부팅만 6을 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
</tbody>
</table>

슬롯 분기

이 작업 정보

Slot Bifurcation(슬롯 분기) 화면 세부 정보는 다음과 같습니다.

슬롯 분기

Platform Default Bifurcation(플랫폼 기본 분기), Auto discovery of Bifurcation(분기 자동 검색) 및 Manual bifurcation Control(수동 분기 제어)을 사용할 수 있습니다. 기본이 설정하려면 플랫폼 기본 bifurcation. 슬롯 분기 필드는 수동 분기 제어로 설정된 경우 액세스 가능하고 플랫폼 기본값 분기 또는 분기 자동 검색으로 설정된 경우 회색으로 표시됩니다.

표 6. 슬롯 분기

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>자동 검색 분기 설정</td>
<td>플랫폼 기본 분기. 자동 분기. 수동 분기</td>
</tr>
<tr>
<td>슬롯 1 분기</td>
<td>x4 분기 또는 x8 분기</td>
</tr>
<tr>
<td>슬롯 2 분기</td>
<td>x16 분기 또는 x8 분기 또는 x4 분기 또는 x4, x8 분기 또는 x8, x4 분기</td>
</tr>
<tr>
<td>슬롯 3 분기</td>
<td>x16 분기 또는 x8 분기 또는 x4 분기 또는 x4, x8 분기 또는 x8, x4 분기</td>
</tr>
<tr>
<td>슬롯 4 분기</td>
<td>x16 분기 또는 x8 분기 또는 x4 분기 또는 x4, x8 분기 또는 x8, x4 분기</td>
</tr>
<tr>
<td>슬롯 5 분기</td>
<td>x4 분기 또는 x8 분기</td>
</tr>
<tr>
<td>슬롯 6 분기</td>
<td>x16 분기 또는 x8 분기 또는 x4 분기 또는 x4, x8 분기 또는 x8, x4 분기</td>
</tr>
</tbody>
</table>
직렬 통신
Serial Communication(직렬 통신) 화면을 사용하면 직렬 통신 포트 속성을 볼 수 있습니다.

직렬 통신 보기
Serial Communication(직렬 통신) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

1. 노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Serial Communication(직렬 통신)을 클릭합니다.

직렬 통신 세부 정보

이 작업 정보
Serial Communication(직렬 통신) 화면 세부 정보는 다음과 같습니다.

표

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>직렬 통신</td>
<td>BIOS에서 직렬 통신 장치(직렬 장치 1 및 직렬 장치 2)를 선택합니다. 또한 BIOS 콘솔 재주정이 활성화될 수 있도록 포트 주소를 지정할 수 있습니다. 기본적으로 이 옵션은 Auto로 설정됩니다. COM port(COM 포트) 또는 Console Redirection(콘솔 재주정) 옵션을 활성화합니다. 이 옵션은 기본적으로 off(끄기)로 설정됩니다.</td>
</tr>
<tr>
<td>직렬 포트 주소</td>
<td>직렬 장치의 포트 주소를 설정할 수 있습니다. 이 필드는 직렬 포트 주소를 COM1 또는 COM2(COM1=0x3F8, COM2=0x2F8)로 설정합니다. 기본적으로 이 옵션은 Serial Device 2=COM1로 설정됩니다. 노트: Serial Over LAN(SOL) 기능으로는 직렬 장치 2만 사용할 수 있습니다. SOL을 통한 콘솔 재주정을 사용하려면 콘솔 재주정 및 직렬 디바이스에 대해 동일한 포트 주소를 구성합니다.</td>
</tr>
<tr>
<td>외부 직렬 커넥터</td>
<td>이 옵션으로 외부 직렬 커넥터를 사용해 Serial Device 1(직렬 디바이스 1), Serial Device 2(직렬 디바이스 2) 또는 Remote Access Device(원격 액세스 디바이스)에 연결할 수 있습니다. 이 옵션은 기본적으로 Serial Device 1(직렬 디바이스 1)로 설정되어 있습니다. 노트: SOL(Serial Over LAN)에는 직렬 디바이스 2만 사용할 수 있습니다. SOL을 통한 콘솔 재주정을 사용하려면 콘솔 재주정 및 직렬 디바이스에 대해 동일한 포트 주소를 구성합니다. 노트: 시스템이 부팅할 때마다 BIOS는 iDRAC에 저장된 직렬 MUX 설정을 동기화합니다. 직렬 MUX 설정은 iDRAC에서 독립적으로 변경할 수 있습니다. BIOS 설정 유틸리티에서 BIOS 기본 설정을 로드해도 이 설정이 직렬 디바이스 1의 기본 설정으로 되돌아가는 것은 아닙니다. 외부 직렬 커넥터를 직렬 디바이스 1로 연결할 수 있습니다.</td>
</tr>
<tr>
<td>안전 보드 레이드</td>
<td>콘솔 재주정에 사용되는 안전 보드 레이드를 지정합니다. BIOS에서는 보드 레이드를 자동으로 결정하려고 합니다. 이 시도가 실패한 경우에는 안전 보드 레이드가 사용되며, 안전 보드 레이드 값은 변경되지 않아야 합니다. 이 옵션은 기본적으로 115200 유틸리티로 설정됩니다.</td>
</tr>
<tr>
<td>원격 터미널 유형</td>
<td>원격 콘솔 터미널 유형을 설정할 수 있습니다. 기본적으로 이 옵션은 VT100/VT220으로 설정됩니다.</td>
</tr>
<tr>
<td>부팅 후 재주정</td>
<td>운영 체제 로딩 시 BIOS 콘솔 재주정을 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
</tbody>
</table>

시스템 프로필 설정
System Profile Settings(시스템 프로필 설정) 화면을 사용하면 전원 관리와 같은 특정 시스템 성능 설정을 활성화할 수 있습니다.
시스템 프로필 설정 보기

System Profile Settings (시스템 프로필 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 꺼거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2 키를 누르기 전에 운영 체제를 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu (시스템 설정 기본 메뉴) 화면에서 System BIOS (시스템 BIOS)를 클릭합니다.
4. System BIOS (시스템 BIOS) 화면에서 System Profile Settings (시스템 프로필 설정)를 클릭합니다.

시스템 프로필 설정 세부 정보

이 작업 정보

System Profile Settings (시스템 프로필 설정) 화면 내용은 다음과 같이 설명됩니다.

음선 설명

System Profile 시스템 암호를 설정할 수 있습니다. System Profile (시스템 프로필) 음선을 Custom (사용자 정의) 이외의 다른 모드로 설정하는 경우, BIOS가 자동으로 나머지 음선을 설정합니다. 모드가 Custom (사용자 정의)로 설정된 경우에만 사용자가 나머지 음선을 변경할 수 있습니다. 기본적으로 이 음선은 Performance Per Watt Optimized (DAFC) (최적화된 모드)로 설정됩니다. DAPC는 Dell Active Power Controller를 말합니다. 다른 음선으로는 Performance Per Watt (OS) (와트당 성능 (OS)), Performance (성능) 및 Workstation Performance (워크스테이션 성능)가 있습니다.

노트: System Profile (시스템 프로필) 음선이 Custom (사용자 정의)로 설정된 경우에만 시스템 프로필 설정 화면에 모든 매개 변수가 표시됩니다.

CPU Power Management CPU 전원 관리를 설정합니다. 기본적으로 이 음선은 Thorough로 설정됩니다. DBPM은 Demand-Based Power Management의 약자입니다.

Memory Frequency 시스템 메모리 속도를 설정합니다. Maximum Performance (최대 성능) 또는 저전 속도를 선택할 수 있습니다. 기본적으로 이 음선은 OFF로 설정됩니다.

Turbo Boost 프로세서가 턴보 부스트 모드에서 작동하거나 작동하지 않도록 설정합니다. 기본적으로 이 음선은 Enabled로 설정됩니다.

CIE 유럽 성능에 있는 프로세서가 최소 성능 상태로 전환하거나 전환하지 않도록 설정합니다. 기본적으로 이 음선은 Enabled로 설정됩니다.

C States 프로세서가 사용 가능한 모든 전원 상태에서 작동하거나 작동하지 않도록 설정합니다. 기본적으로 이 음선은 Enabled로 설정됩니다.

Write Data CRC 쓰기 데이터 CRC를 활성화하거나 비활성화합니다. 기본적으로 이 음선은 Disabled로 설정됩니다.

Memory Patrol Scrub 메모리 패트롤 스크립 주파수를 설정합니다. 기본적으로 이 음선은 OFF로 설정됩니다.

Memory Refresh Rate 1x 또는 2x 중 하나로 메모리 갱신율을 설정합니다. 기본적으로 이 음선은 Nominal로 설정됩니다.

Uncore Frequency Processor Uncore Frequency (프로세서 언코어 빈도) 음선을 선택할 수 있습니다.

Dynamic mode (동적 모드)를 사용하면 프로세서가 진행 시간 동안 코어 및 언코어 전반의 전원 리소스를 최적화할 수 있습니다. 언코어 빈도를 최적화하려면 Save 전원 또는 최적화 성능은 에너지 효율 정책의 설정으로 전환할 때 옵션이다.

CPU가 프로세서의 내부 동작을 조작하는 설정을 사용하여 높은 성능 또는 전력 절감을 목표로 하는지 여부를 결정합니다. 기본적으로 이 음선은 Balanced Performance (균형잡힌 성능)로 설정됩니다.
<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Turbo Boost Enabled Cores for Processor 1(터보 부스트를 지원하는 프로세서 1 활성 코어 수)</td>
<td>프로세서 1에 대해 터보 부스트를 지원하는 프로세서 활성 코어의 수를 제어합니다. 기본적으로 최대 수의 코어가 활성화됩니다.</td>
</tr>
<tr>
<td>Monitors/Mwait</td>
<td>프로세서의 Monitor/Mwait 명령어를 활성화할 수 있습니다. 이 옵션은 Enabled(활성화)로 설정에 대한 모든 시스템 프로필, 재워하고 사용자 지정 기본적으로.</td>
</tr>
<tr>
<td>CPU Interconnect Bus Link Power Management</td>
<td>CPU를 활성화하거나 비활성화합니다. 버스 링크 전원 관리 상호 연결. 기본적으로 이 옵션은 Enabled로 설정됩니다.</td>
</tr>
<tr>
<td>PCI ASPM L1 Link Power Management</td>
<td>PCI Slot ASPM L1 링크를 전원 관리 활성화하거나 비활성화합니다. 기본적으로 이 옵션은 Enabled로 설정됩니다.</td>
</tr>
</tbody>
</table>

시스템 보안
System Security(시스템 보안) 화면을 사용하면 시스템 암호, 설정 암호 설정 및 전원 단추를 비활성화하는 것과 같은 특정 기능을 수행할 수 있습니다.

시스템 보안 보기
System Security(시스템 보안) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.

시스템 보안 설정 세부 정보
이 작업 정보
System Security Settings(시스템 보안 설정) 화면 내용은 다음과 같이 설명됩니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU AES-NI</td>
<td>고급 암호화 표준 명령 집합(AES-NI)을 사용하여 암호화 및 암호 해독을 수행함으로써 애플리케이션의 속도를 향상시키ます. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>시스템 암호</td>
<td>시스템 암호를 설정할 수 있습니다. 기본적으로 이 옵션은 Enabled(활성화)로 설정되며, 시스템에 암호 점퍼가 설치되어 있지 않은 경우 읽기 전용입니다.</td>
</tr>
<tr>
<td>설정 암호</td>
<td>시스템 암호를 설정할 수 있습니다. 시스템에 암호 점퍼가 설치되지 않은 경우 이 옵션은 읽기 전용입니다.</td>
</tr>
<tr>
<td>암호 상태</td>
<td>시스템 암호를 설정할 수 있습니다. 이 옵션은 기본적으로 Unlocked(잠금 해제)로 설정됩니다.</td>
</tr>
</tbody>
</table>
설명

TPM의 보고 모드를 제어할 수 있습니다. 기본적으로 TPM Security(TPM 보안) 옵션은 off(끄기)로 설정합니다. TPM Status(TPM 상태) 필드가 On with Pre-boot Measurements(사전 부팅 검사를 통해 커기) 또는 On without Pre-boot Measurements(사전 부팅 검사를 통해 커기)로 설정된 경우에만 TPM Status(TPM 상대), TPM Activation(TPM 활성화) 및 Intel TXT(인텔 TXT) 필드를 수정할 수 있습니다.

TPM 1.2가 설치되면 TPM Security(TPM 보안) 옵션이 Off(끄기), On with Pre-boot Measurements(사전 부팅 검사를 통해 커기) 또는 On without Pre-boot Measurements(사전 부팅 검사를 통해 커기)로 설정됩니다.

<table>
<thead>
<tr>
<th>표 7. TPM 1.2 보안 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPM 정보</td>
</tr>
<tr>
<td>TPM 정보</td>
</tr>
<tr>
<td>TPM 펼웨어</td>
</tr>
<tr>
<td>TPM 상태</td>
</tr>
<tr>
<td>TPM 명령</td>
</tr>
</tbody>
</table>

TPM 2.0이 설치되면 TPM Security(TPM 보안) 옵션이 On(켜기) 또는 Off(끄기)로 설정됩니다. 이 옵션은 기본적으로 off(끄기)로 설정됩니다.

<table>
<thead>
<tr>
<th>표 8. TPM 2.0 보안 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPM 정보</td>
</tr>
<tr>
<td>TPM 정보</td>
</tr>
<tr>
<td>TPM 펼웨어</td>
</tr>
</tbody>
</table>

인텔(R) TXT

Intel Trusted Execution Technology(TXT) 옵션을 활성화하거나 비활성화합니다. 인텔 TXT 옵션을 활성화하거나 지울 수 있습니다. 옵션은 기본적으로 off(끄기)로 설정됩니다.

TPM 2.0이 설치되면 TPM 2 Algorithm(TPM 2 알고리즘) 옵션을 사용할 수 있습니다. TPM(SHA1, SHA256)에서 지워지는 해시 알고리즘을 선택할 수 있습니다. TXT를 사용하려면 TPM 2 Algorithm(TPM 2 알고리즘) 옵션을 SHA256으로 설정해야 합니다.

전원 버튼

장치 전면에 있는 전원 단추를 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.

AC 전원 복구

AC 전원이 시스템에 복원된 후 시스템이 작동하는 방식을 설정합니다. 이 옵션은 기본적으로 Last(마지막)로 설정됩니다.

AC 전원 복구 지연

AC 전원이 시스템에 복구된 후 시스템 전원을 켜 때 지연되는 시간을 설정합니다. 이 옵션은 기본적으로 Immediate(즉시)로 설정됩니다.

사용자 정의 지연

AC Power Recovery Delay(AC 전원 복구 지연)에 대한 User Defined(사용자 정의) 옵션이 선택되어 있는 경우 User Defined Delay(사용자 정의 지연) 옵션을 설정합니다.
이중화 OS 제어

Redundant OS Control 화면을 사용하여 이중화 OS 제어에 사용할 이중화 OS 정보를 설정할 수 있습니다. 이 시스템에서 물리적 복구 디스크를 설정할 수 있습니다.

이중화 OS 제어 보기

Redundant OS Control(이중화 OS 제어) 화면을 보려면 다음 단계를 수행하십시오.
단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Redundant OS Control(이중화 OS 제어)를 클릭합니다.

이중화 OS 제어 화면 세부 정보
이중화 OS 제어 화면 세부 정보는 다음과 같습니다.

이중화 OS 위치

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>없음</td>
<td>다음 디바이스에서 백업 디스크를 선택할 수 있습니다.</td>
</tr>
<tr>
<td>내부 SD 카드</td>
<td></td>
</tr>
<tr>
<td>AHCI 모드의 SATA 포트</td>
<td></td>
</tr>
<tr>
<td>BOSS PCIe 카드(내부 M.2 드라이브)</td>
<td></td>
</tr>
<tr>
<td>USB 포트</td>
<td></td>
</tr>
</tbody>
</table>

노트: BIOS가 해당 구성에서 개별 드라이브 간에 구별할 수 없으므로 RAID 구성과 NVMe 카드가 포함되지 않았습니다.

이중화 OS 상태

노트: 이중화 OS 위치가 없음으로 설정된 경우 이 옵션은 비활성화됩니다.

표시로 설정되면 백업 디스크가 부팅 목록 및 OS에 표시됩니다. 숨겨짐으로 설정되면 백업 디스크가 비활성화되고 부팅 목록 및 OS에 표시되지 않습니다. 이 옵션은 기본값으로 표시로 설정됩니다.

노트: BIOS가 하드웨어의 디바이스를 비활성화하므로 OS가 액세스할 수 없습니다.

이중화 OS 부팅

노트: 이중화 OS 위치가 없음으로 설정되거나 이중화 OS 상태가 숨김으로 설정되면 이 옵션이 비활성화 됩니다.

활성화로 설정되면 BIOS가 이중화 OS 위치에서 지정된 디바이스로 부팅됩니다. 비활성화로 설정되면 BIOS가 현재 부팅 목록 설정을 유지합니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.

기타 설정

Miscellaneous Settings(기타 설정) 화면을 사용하여 자산 관리 애플리케이션, 시스템 날짜 및 시간의 변경과 같은 특정 기능을 수행할 수 있습니다.

기타 설정 보기

Miscellaneous Settings(기타 설정) 화면을 보려면 다음 단계를 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
2. 다음 메시지가 표시되면 즉시 F2를 누릅니다.

F2 = System Setup

노트: F2 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하도록 한 다음 시스템을 재시작하고 다시 시도합니다.

3. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS)를 클릭합니다.
4. System BIOS(시스템 BIOS) 화면에서 Miscellaneous Settings(기타 설정)를 클릭합니다.
기타 설정 세부 정보

이 작업 정보

Miscellaneous Settings(기타 설정) 화면에 다음과 같은 내용이 표시됩니다.

<table>
<thead>
<tr>
<th>옵션</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Time(시스템 시간)</td>
<td>시스템의 시간을 설정합니다.</td>
</tr>
<tr>
<td>System Date(시스템 날짜)</td>
<td>시스템의 날짜를 설정합니다.</td>
</tr>
<tr>
<td>Asset Tag</td>
<td>자산 태그를 표시하며, 보안 및 추적 용도로 자산 태그를 수정할 수 있습니다. 시스템 부팅 시 NumLock을 활성화 또는 비활성화할지 설정할 수 있습니다. 기본적으로 이 옵션은 Nominal(공칭)로 설정됩니다.</td>
</tr>
<tr>
<td>Keyboard NumLock(키보드 NumLock)</td>
<td>오류 시 F1/F2 프롬프트를 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다. F1/F2 프롬프트는 키보드 오류만 포함합니다.</td>
</tr>
<tr>
<td>Load Legacy Video Option ROM(기존 비디오 옵션 ROM 로드)</td>
<td>시스템 BIOS가 비디오 컨트롤러에서 기존 비디오(INT 10H) 옵션 ROM을 로드할지 정할 수 있습니다. 운영 체제에서 UEFI 비디오 출력 표준을 지원하지 않으면 Enabled를 선택할 수 있습니다. 이 필드는 UEFI 부팅 모드에서만 사용할 수 있습니다. UEFI Secure Boot(UEFI 보안 부팅) 모드가 활성화된 경우 이 옵션을 Enabled(활성화)로 설정할 수 없습니다. 기본적으로 이 옵션은 Disabled(비활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>Dell Wyse P25/P45 BIOS Access</td>
<td>Dell Wyse P25/P45 BIOS 액세스를 활성화하거나 비활성화합니다. 이 옵션은 기본적으로 Enabled(활성화)로 설정됩니다.</td>
</tr>
<tr>
<td>Power Cycle Request</td>
<td>전원 주기 요청을 활성화하거나 비활성화합니다. 기본적으로 이 옵션은 None(없음)로 설정됩니다.</td>
</tr>
</tbody>
</table>

iDRAC 설정 유틸리티

iDRAC 설정 유틸리티는 UEFI를 사용하여 iDRAC 메개변수를 설정하고 구성하는 인터페이스입니다. iDRAC 설정 유틸리티를 사용하여 다양한 iDRAC 메개 변수를 활성화하거나 비활성화할 수 있습니다.

노트: iDRAC 설정 유틸리티의 일부 기능에 액세스하려면 iDRAC Enterprise 라이선스를 업그레이드해야 합니다.

장치 설정

Device Settings(장치 설정)를 통해 장치 메개 변수를 구성할 수 있습니다.

Dell Lifecycle Controller

Dell LC(Lifecycle Controller)는 시스템 배포, 구성, 업데이트, 유지 보수 및 진단을 포함하여 고급 내장형 시스템 관리 기능을 제공합니다. LC는 iDRAC 대역 외 솔루션과 Dell 시스템 내장형 UEFI(Unified Extensible Firmware Interface) 애플리케이션의 일부로 제공됩니다.

내장형 시스템 관리

Dell Lifecycle Controller는 시스템의 수명주기 전체에 걸쳐 고급 내장형 시스템 관리 기능을 제공합니다. Dell Lifecycle Controller는 부팅 순서 외 시동될 수 있으며 운영 체제와 독립적으로 작동할 수 있습니다.

노트: 특정 플랫폼 구성에서는 Lifecycle Controller가 제공하는 일부 기능이 지원되지 않을 수 있습니다.
부팅 관리자

Boot Manager(부팅 관리자) 화면에서 부팅 옵션과 진단 유필리티를 선택할 수 있습니다.

부팅 관리자 보기

이 작업 정보
부팅 관리자를 시작하려면 다음을 수행하십시오.

단계
1. 시스템을 켜거나 재시작합니다.
 여기에 단계 수행의 결과를 입력합니다(선택사항).
2. 다음과 같은 메시지가 나타나면 F11을 누릅니다.
 F11 = Boot Manager
 F11 키를 누르기 전에 운영 체제가 로드되기 시작하면 시스템이 부팅을 완료하게 한 다음 시스템을 재시작하고 다시 시도합니다.

부팅 관리자 기본 메뉴

메뉴 항목	설명
일반 부팅 계속 | 시스템에서는 먼저 부팅 순서의 첫 번째 항목에 해당하는 장치로 부팅을 시도합니다. 부팅 시도가 실패하면 부팅 순서의 다음 항목에 해당하는 장치로 부팅을 계속 시도합니다. 이러한 부팅 시도는 부팅에 성공하거나 시도할 부팅 옵션이 더 이상 없을 때까지 계속됩니다.
일회용 UEFI 부팅 메뉴 | UEFI 부팅 메뉴에 액세스하고 부팅할 일회용 부팅 음성을 선택할 수 있습니다.
시스템 설정 시작 | 시스템 설정에 액세스할 수 있습니다.
출시 주기 컨트롤러 | 시스템 전단 및 UEFI 셀과 같은 시스템 유틸리티 메뉴를 실행할 수 있습니다.
시스템 유틸리티 | System Utilities(시스템 유틸리티)에는 실행할 수 있는 다음과 같은 유틸리티가 포함되어 있습니다.

PXE 부팅

PXE(preboot eXecution Environment) 음선을 사용하여 네트워크에 연결된 시스템을 원격으로 부팅하고 구성할 수 있습니다.

PXE boot(PXE 부팅) 음선에 액세스하려면 시스템을 부팅한 다음 BIOS 설정에서 표준 부팅 순서를 사용하는 대신 POST 중에 F12 키를 누릅니다. 이렇게 하면 메뉴가 엽기지 않거나 네트워크 디바이스의 관리가 허용됩니다.
시스템 구성 요소 설치 및 제거

안전 지침

노트: 시스템을 들어 올려야 할 경우에는 다른 사람의 도움을 받으십시오. 부상을 방지하려면 혼자 시스템을 들어 올리지 마십시오.

경고: 시스템이 커져 있는 상태에서 시스템 커버를 열거나 제거하면 감전의 위험에 노출될 수 있습니다.

주의: 커버가 없는 상태에서 시스템을 5분 이상 작동하지 마십시오. 시스템 커버가 없는 상태에서 시스템을 작동하면 부품의 손상을 야기할 수 있습니다.

노트: 시스템 내부 구성 요소를 다룰 때는 항상 정전기 방지 매트와 정전기 방지 스트랩을 사용하는 것이 좋습니다.

주의: 적절한 운반 및 냉각을 유지하려면 시스템 팬 및 시스템의 모든 베이에 구성 요소 또는 보호물이 항상 장착되어 있어야 합니다.

 컴퓨터 내부 작업을 시작하기 전에

전제조건

나열되어 있는 안전 지침을 따릅니다(안전 지침).

단계

1. 연결된 모든 주변 기기와 시스템을 꺼냅니다.
2. 전원 콘센트에서 시스템을 분리하고 주변 장치도 분리합니다.
3. 해당되는 경우 레에 시스템을 분리합니다.
4. 시스템 커버를 제거합니다.

시스템 내부 작업을 마친 후

전제조건

나열되어 있는 안전 지침을 따릅니다(안전 지침).

단계

1. 시스템 커버를 설치합니다.
2. 해당하는 경우 레에 시스템을 설치합니다.
3. 주변 기기를 다시 연결하고 시스템을 전원 콘센트에 연결합니다.
4. 연결된 주변 기기를 켜 다음 시스템을 켜봅니다.
권장 도구

분리 및 설치 절차를 수행하려면 다음과 같은 도구가 필요합니다.

• 베젤 잠금 장치 키
 키는 시스템에 베젤이 포함되어 있는 경우에만 필요합니다.
• #1 십자 드라이버
• #2 십자 드라이버
• Torx #T30 십자 드ライ버
• 1/4인치 납작 머리 드라이버
• 손목 접지대

DC 전원 공급 장치용 케이블을 조립하려면 다음과 같은 도구가 필요합니다.

• AMP 90871-1 핸드 크리핑 도구 또는 이에 상당하는 도구
• Tyco Electronics 58433-3 또는 이에 상당하는 도구
• 10 AWG 크기의 단선 또는 연선 절연 구리선으로부터 절연체를 제거할 수 있는 외이어 스트리퍼 플라이어

주: 앞과 외이어 부품 번호 3080 또는 이에 상당하는 선(65/30 연선)을 사용합니다.

전면 베펜(옵션)

베젤의 잠금 장치는 드라이브에 대한 무단 액세스를 방지하는 데 사용됩니다. 베펜의 LCD 패널에서 시스템 상태를 확인할 수 있습니다. 자세한 내용은 LCD 패널 섹션을 참조하십시오.

전면 베펜 분리

전체조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.

단계
1. 베펜 키를 사용하여 베펜 잠금을 해제합니다.
2. 분리 버튼을 누르고 베펜 왼쪽 끝을 당깁니다.
3. 오른쪽 끝을 고리에서 분리하여 베펜을 분리합니다.
다음 단계
1. 베젤을 장착합니다.

전면 베젤 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 베젤 키를 찾아 분리합니다.

 노트: 베젤 키는 LCD 베젤 패키지의 일부입니다.

단계
1. 베젤의 오른쪽 끝을 시스템에 맞추고 삽입합니다.
2. 분리 버튼을 누르고 베젤의 왼쪽 끝을 시스템에 기웁니다.
3. 키를 사용하여 베젤을 잠깁니다.
시스템 덮개

시스템 덮개 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 연결된 모든 주변 기기와 시스템을 꺼냅니다.
3. 전원 콘센트에서 시스템을 분리하고 주변 장치도 분리합니다.
4. 해당되는 경우 레일에서 시스템을 분리합니다.

단계
1. 0.64cm(1/4인치) 납작 머리 또는 Phillips(+) #2 스크루 드라이버를 사용하여 레치 분리 잠금 장치를 반시계 방향으로 돌려 잠금 해제 위치에 드립니다.
2. 시스템 커버가 뒤로 밀릴 때까지 레치를 옆니다.
3. 시스템에서 덮개를 들어 올립니다.

그림 19. 시스템 덮개 분리
다음 단계
1. 시스템 커버를 장착합니다.

시스템 덮개 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 모든 내부 케이블이 올바르게 라우팅 및 연결되어 있고 공구 또는 다른 부품이 시스템 내부에 남아 있지 않은지 확인합니다.

단계
1. 시스템 커버의 탭을 시스템의 가이드 슬롯에 맞춥니다.
2. 시스템 커버 레치를 닫습니다.
3. 1/4" 납작 머리 또는 Phillips(+) #2 스크루 드라이버를 사용하여 레치 분리 잠금 장치를 시계방향으로 돌려 잠금 위치에 둡니다.
다음 단계
1. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

공기 덮개

공기 커버는 전체 시스템 전반에 공기 흐름을 보내 시스템 내부의 일정한 공기 흐름을 유지합니다. 공기 커버는 시스템 과열을 방지하고 시스템 내부의 균일한 공기 흐름을 유지하는 데 사용됩니다. 시스템에서는 두 가지 유형의 공기 커버 구성이 지원됩니다.

- 비 GPU 공기 커버
- GPU 공기 커버

비 GPU 공기 커버 제거

전제조건

주의: 공기 덮개가 제거된 상태로 시스템을 작동시키지 마십시오. 시스템이 빠르게 과열되어 시스템이 종료되거나 데이터 손실이 발생할 수 있습니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 NVDIMM 배터리를 제거합니다.

단계

공기 커버를 참고 드어 올려 시스템에서 벗냅니다.
그림 21. 비 GPU 공기 커버 제거

다음 단계
1. 비 GPU 공기 커버를 장착합니다.

비 GPU 공기 커버 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.

단계
1. 공기 커버의 탭을 시스템의 슬롯에 맞습니다.
2. 단단히 고정될 때까지 공기 커버를 시스템에 내려놓습니다.
다음 단계
1. 해당하는 경우 NVDIMM 배터리를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

GPU 공기 커버 제거

전제조건

⚠️ 주의: 공기 덮개가 제거된 상태로 시스템을 작동시키지 마십시오. 시스템이 빠르게 과열되어 시스템이 종료되거나 데이터 손실이 발생할 수 있습니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.

단계
1. 공기 커버 커버의 파란색 접촉점을 잡고 커버를 일정한 각도로 들어 올려 공기 커버에서 분리한 다음 시스템에서 빼냅니다.
그림 23. GPU 공기 커버 제거
2. 설치되어 있는 경우 NVDIMM-N 배터리를 제거합니다.
3. 확장 카드 라이저 1 및 2를 제거합니다.
4. 공기 커버를 잡고 들어 올려 시스템에서 빼냅니다.

그림 24. GPU 공기 커버 제거

다음 단계
1. 공기 커버를 장착합니다.
GPU 공기 커버 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.

단계
1. 공기 커버의 탑을 시스템의 슬롯에 맞춥니다.

2. 단단히 고정될 때까지 공기 커버를 시스템에 내려놓습니다.
3. 확장 카드 라이저 1 및 2를 설치합니다.
4. 해당하는 경우 NVDIMM-N 배터리를 설치합니다.
5. 공기 커버 커버의 파란색 접촉점을 잡고 커버를 일정한 각도로 기울인 다음 단단히 장착될 때까지 아래로 밀니다.

![그림 25. GPU 공기 커버 설치](image-url)
다음 단계
1. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

냉각 팬 조립품

냉각 팬 조립품은 프로세서, 드라이브 및 메모리와 같은 서버의 주요 구성 요소가 서늘한 상태를 유지하기 위해 적절한 공기 순환이 되도록 보장합니다. 서버의 냉각 시스템에 오류가 있음을 Server 과열을 초래할 수 있고 손상이 발생할 수 있음.

냉각 팬 조립품 분리

전제조건
1. 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.

단계
1. 분리 레버를 들여 올려 냉각 팬 어셈블리를 잠금 해제합니다.
2. 분리 레버를 잡고 냉각 팬 어셈블리를 시스템에서 들여 올립니다.
다음 단계
1. 냉각 팬 조립품을 장착합니다.

냉각 팬 조립품 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.

단계
1. 냉각 팬 어셈블리의 가이드 슬롯을 시스템의 격리 애자에 맞춥니다.
2. 냉각 팬 커넥터가 시스템 보드의 커넥터와 맞물릴 때까지 냉각 팬 어셈블리를 시스템 안으로 내립니다.
3. 분리 레버를 눌러 냉각 팬 어셈블리를 제자리에 고정합니다.
그림 28. 냉각 팬 조립품 설치

다음 단계
1. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

냉각 팬

냉각 팬은 시스템이 작동할 때 발생하는 열을 소멸하기 위해 시스템에 통합됩니다. 이러한 팬은 프로세서, 확장 카드 및 메모리 모듈에 대한 냉각을 제공합니다.

노트: 각 팬은 시스템의 관리 소프트웨어에 나열되고, 해당 팬 번호를 참조합니다. 특정 팬에 문제가 있으면 냉각 팬 어셈블리에 있는 팬 번호를 통해 문제의 팬을 간단히 식별하고 교체할 수 있습니다.

냉각 팬 분리

전체조건

노트: 시스템이 켜져 있는 상태에서 시스템 커버를 열거나 제거하면 감전의 위험에 노출될 수 있습니다. 냉각 팬을 분리하거나 설치하는 중에는 매우 주의해야 합니다.

주의: 냉각 팬은 핫 스왑이 가능합니다. 시스템이 켜져 있는 상태에서 적절한 냉각 상태를 유지하려면 팬을 한 번에 하나만 교체합니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 비 GPU 공기 커버 또는 GPU 공기 커버를 제거합니다.

단계
분리 탭을 누르고 냉각 팬을 들어 올려 냉각 팬 어셈블리에서 깨냅니다.
그림 29. 냉각 팬 분리

다음 단계
1. 냉각 팬을 장착합니다.

냉각 팬 설치

전제조건

노트: 시스템이 켜져 있는 상태에서 시스템 커버를 열거나 제거하면 감전의 위험에 노출될 수 있습니다. 냉각 팬을 분리하거나 설치하는 중에는 매우 주의해야 합니다.

주의: 냉각 팬은 헤드 스왑이 가능합니다. 시스템이 켜져 있는 상태에서 적절한 냉각 상태를 유지하려면 팬을 한 번에 하나만 교체합니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 비 GPU 공기 커버 또는 GPU 공기 커버를 제거합니다.

단계
1. 냉각 팬의 접촉점을 잡고 냉각 팬의 커넥터를 시스템 보드의 커넥터에 맞춥니다.
2. 분리 탭이 제자리에 고정될 때까지 냉각 팬을 냉각 팬 어셈블리로 밀어 넣습니다.
다음 단계
1. 비 GPU 공기 커버 또는 GPU 공기 커버를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

NVDIMM-N 배터리
NVDIMM-N 배터리는 공기 커버에 설치되어 있습니다.

NVDIMM-N 배터리 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. GPU 공기 커버의 경우, GPU 공기 커버를 제거합니다.

주의: NVDIMM-N 배터리는 핫 스왑이 가능하지 않습니다. 데이터 손실 및 잠재적인 시스템 손상을 방지하려면 NVDIMM-N 배터리를 제거하기 전에 케이블을 연결 해제하여 시스템, 시스템의 LED, NVDIMM-N의 LED, NVDIMM-N 배터리의 LED가 꺼져 있는지 확인합니다.

노트: 배터리 커넥터의 손상을 방지하려면 배터리를 설치하거나 제거할 때 커넥터를 잡으십시오.

단계
1. NVDIMM-N 배터리에서 케이블을 연결 해제합니다.
2. Phillips #2 스크루 드라이버를 사용하여 NVDIMM-N 배터리를 공기 커버에 고정하는 나사를 풀습니다.
3. 파란색 접촉점을 잡고 NVDIMM-N 배터리를 일정한 각도로 들어 올려 공기 커버 슬롯에서 분리합니다.
4. 시스템에서 NVDIMM-N 배터리를 들어 올려 빼냅니다.
다음 단계
1. NVDIMM-N 배터리를 장착합니다.

NVDIMM 배터리 장착

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 절차를 따릅니다.
3. GPU 공기 커버의 경우, GPU 공기 커버 커버를 제거합니다.

⚠ 주의: NVDIMM-N 배터리는 핫 스왑이 가능하지 않습니다. 데이터 손실 및 잠재적인 시스템 손상을 방지하려면 NVDIMM-N 배터리를 설치하기 전에 케이블을 연결 해제하여 시스템, 시스템의 LED, NVDIMM-N의 LED, NVDIMM-N 배터리의 LED가 꺼져 있는지 확인합니다.

⚠ 주의: 배터리 커넥터의 손상을 방지하려면 배터리를 설치하거나 분리하는 경우 커넥터를 단단히 잡아야 합니다.

단계
1. NVDIMM-N 배터리를 일정한 각도로 기울인 다음 배터리를 공기 커버의 슬롯에 놓습니다.
2. Phillips #2 스크루 드라이버를 사용하여 NVDIMM-N 배터리를 공기 커버에 고정하는 나사를 장착합니다.
3. NVDIMM-N 배터리에 케이블을 연결합니다.

그림 33. 비 GPU 공기 커버에 NVDIMM-N 배터리 설치
다음 단계
1. GPU 공기 커버의 경우, GPU 공기 커버 커버를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

드라이브

드라이브 보호물을 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.

주의: 적절한 시스템 냉각 상태를 유지하려면 모든 빈 드라이브 슬롯에 드라이브 보호물을 설치해야 합니다.

주의: 이전 세대 PowerEdge 서버에서 드라이브 보호물을 혼합하여 사용할 수는 없습니다.

단계
분리 버튼을 누르고 드라이브 보호물을 드라이브 슬롯에서 밀어 꺼냅니다.
드라이브 보호물 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.

주의: 적절한 시스템 냉각 상태를 유지하려면 모든 빈 드라이브 슬롯에 드라이브 보호물을 설치해야 합니다.

주의: 이전 세대 PowerEdge 서버에서 드라이브 보호물을 혼합하여 사용할 수는 없습니다.

단계
분리 버튼이 닫각 소리가 나며 제자리에 고정될 때까지 드라이브 보호물을 드라이브 슬롯에 밀어 넣습니다.

드라이브 캐리어 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.
4. 관리 소프트웨어를 사용하여 제거하려는 드라이브를 준비합니다.

드라이브가 온라인 상태인 경우 녹색 작동/오류 표시등은 드라이브 전원이 꺼질 때 깜빡입니다. 드라이브 표시등이 깨지면 드라이브를 제거할 수 있습니다. 자세한 내용은 스토리지 컨트롤러 문서 자료를 참조하십시오.

주의: 시스템을 실행하는 동안 드라이브를 제거하거나 설치하려면 먼저 스토리지 컨트롤러 카드 문서 자료를 참조하여 호스트 어댑터가 드라이브 제거 및 삽입을 지원하도록 올바르게 구성되어 있는지를 확인하십시오.

주의: 이전 세대 PowerEdge 서버에서 드라이브 캐리어를 혼합하여 사용할 수는 없습니다.

주의: 데터 손실을 막으려면 운영 체제가 드라이브 설치를 지원해야 합니다. 운영 체제와 함께 제공된 설명서를 참조하십시오.

단계
1. 분리 버튼을 늘려 드라이브 캐리어 분리 핸들을 엽니다.
2. 핸들을 잡고 드라이브 캐리어를 밀어서 드라이브 슬롯에서 꺼냅니다.

노트: 드라이브를 즉시 장착하지 않을 경우, 적절한 시스템 냉각을 유지하기 위해 빈 드라이브 슬롯에 드라이브 보호물을 설치합니다.

그림 37. 드라이브 캐리어 제거

다음 단계
1. 드라이브 캐리어 또는 드라이브 보호물을 설치합니다.

드라이브 캐리어 설치

전제조건

주의: 시스템을 실행하는 동안 드라이브를 제거하거나 설치하려면 먼저 스토리지 컨트롤러 카드 문서 자료를 참조하여 호스트 어댑터가 드라이브 제거 및 삽입을 지원하도록 올바르게 구성되어 있는지를 확인하십시오.

주의: 동일한 RAID 볼륨에 SAS와 SATA 드라이브를 결합하여 사용할 수 없습니다.

주의: 드라이브를 설치할 때 인접 드라이브가 완전히 설치되어 있는지 확인합니다. 드라이브 캐리어를 삽입하고 부분적으로 설치된 캐리어 열에 있는 해당 핸들을 잡고먼 부분적으로 설치된 캐리어의 설드 스프링이 손상되어 사용하지 못할 수 있습니다.

주의: 데터 손실을 막으려면, 운영 체제가 핫스왑 드라이브 설치를 지원해야 합니다. 운영 체제와 함께 제공된 설명서를 참조하십시오.
주의: 교체 핫 스왑 가능 드라이브가 설치되었고 시스템의 전원이 켜진 상태라면 드라이브가 자동으로 재구축을 시작합니다. 교체 드라이브는 비어 있거나 덮어쓸 데이터만 포함되어 있어야 합니다. 교체 드라이브에 있는 모든 데이터는 드라이브를 설치하는 즉시 지워집니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.
4. 설치되어 있는 경우, 드라이브 보호물을 제거합니다.

단계

1. 드라이브 캐리어 전면의 분리 버튼을 누르고 분리 핸들을 엽니다.
2. 드라이브 송곳에 드라이브 캐리어를 삽입하고 드라이브가 백플레인에 연결될 때까지 엽니다.
3. 드라이브 캐리어 분리 핸들을 막아 드라이브를 제자리에 고정합니다.

그림 38. 드라이브 캐리어 설치

다음 단계

1. 해당하는 경우 전면 베젤을 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

드라이브 캐리어에서 드라이브 제거

전제조건

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.

 주의: 이전 세대 PowerEdge 서버에서 드라이브 캐리어를 혼합하여 사용할 수는 없습니다.

2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.
4. 드라이브 캐리어를 제거합니다.

단계

1. Phillips #1 스크루 드라이버를 사용하여 드라이브 캐리어의 슬라이드 레일에서 나사를 제거합니다.
2. 드라이브 캐리어에서 드라이브를 들어냅니다.
다음 단계
1. 드라이브 캐리어에 드라이브를 설치합니다.

드라이브 캐리어에 드라이브 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.
4. 드라이브 캐리어를 제거합니다.

주의: 다른 세대 PowerEdge 서버의 드라이브 캐리어를 혼합하여 사용하는 것은 지원되지 않습니다.

단계
1. 드라이브의 커넥터 끝이 캐리어의 후면을 향한 상태로 드라이브를 캐리어에 삽입합니다.
2. 드라이브의 나사 구멍을 드라이브 캐리어의 나사 구멍에 맞춥니다.
 올바르게 맞춰지면 드라이브 후면이 드라이브 캐리어의 후면과 접하게 됩니다.
3. Phillips #1 스크루 드라이버를 사용하여 나사로 드라이브를 드라이브 캐리어에 고정합니다.

노트: 드라이브 캐리어에 드라이브를 설치하는 경우 나사의 토크를 4in-lbs로 맞춰야 합니다.
다음 단계
1. 드라이브 캐리어를 설치합니다.
2. 해당하는 경우 전면 베젤을 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

후면 드라이브 케이지
후면 드라이브 케이지는 최대 2개의 6.35cm(2.5인치) 드라이브를 지원합니다.

후면 드라이브 케이지 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 모든 드라이브를 제거합니다.
5. 후면 드라이브 백플레인에서 모든 케이블을 연결 해제합니다.

단계
1. Philips #2 스크루 드라이버를 사용하여 드라이브 케이지를 시스템에 고정하는 나사를 풀습니다.
2. 드라이브 케이지를 잡고 들어올려 시스템에서 분리합니다.
다음 단계
1. 후면 드라이브 케이지를 장착합니다.

후면 드라이브 케이지 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.

단계
1. 드라이브 케이지의 슬롯을 시스템 셀시의 가이드에 맞춥니다.
2. 단단히 고정될 때까지 드라이브 케이지를 시스템 안으로 내립니다.
다음 단계
1. 모든 케이블을 후면 드라이브 백플레인에 연결합니다.
2. 드라이브를 설치합니다.
3. 공기 커버를 설치합니다.
4. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

시스템 메모리
시스템에는 48개의 메모리 소켓이 12개씩 네 세트(프로세서당 한 세트)로 분할되어 포함되어 있습니다. 12개 소켓을 포함하는 각 세트는 6개의 채널로 구성됩니다. 6개의 메모리 채널이 각 프로세서에 할당됩니다. 각 채널에서 첫 번째 소켓의 분리 탭은 황색으로 표시되고, 두 번째 소켓의 분리 탭은 검은색으로 표시됩니다.
그림 43. 메모리 소켓 위치

메모리 채널은 다음과 같이 구성됩니다.

표 9. 메모리 채널

<table>
<thead>
<tr>
<th>프로세서</th>
<th>채널 0</th>
<th>채널 1</th>
<th>채널 2</th>
<th>채널 3</th>
<th>채널 4</th>
<th>채널 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>프로세서 1</td>
<td>슬롯 A1 및 A7</td>
<td>슬롯 A2 및 A8</td>
<td>슬롯 A3 및 A9</td>
<td>슬롯 A4 및 A10</td>
<td>슬롯 A5 및 A11</td>
<td>슬롯 A6 및 A12</td>
</tr>
<tr>
<td>프로세서 2</td>
<td>슬롯 B1 및 B7</td>
<td>슬롯 B2 및 B8</td>
<td>슬롯 B3 및 B9</td>
<td>슬롯 B4 및 B10</td>
<td>슬롯 B5 및 B11</td>
<td>슬롯 B6 및 B12</td>
</tr>
<tr>
<td>프로세서 3</td>
<td>슬롯 C1 및 C7</td>
<td>슬롯 C2 및 C8</td>
<td>슬롯 C3 및 C9</td>
<td>슬롯 C4 및 C10</td>
<td>슬롯 C5 및 C11</td>
<td>슬롯 C6 및 C12</td>
</tr>
<tr>
<td>프로세서 4</td>
<td>슬롯 D1 및 D7</td>
<td>슬롯 D2 및 D8</td>
<td>슬롯 D3 및 D9</td>
<td>슬롯 D4 및 D10</td>
<td>슬롯 D5 및 D11</td>
<td>슬롯 D6 및 D12</td>
</tr>
</tbody>
</table>
일반 메모리 모듈 설치 지침
시스템의 최적 성능을 보장하려면 다음의 일반 지침을 따라 시스템 메모리를 구성합니다. 이 지침을 준수하지 않고 시스템 메모리를 구성하면 시스템이 부팅되지 않거나, 메모리를 구성하는 동안 시스템이 중단되거나, 메모리가 올바른 상태로 시스템이 작동될 수 없습니다.
메모리 버스는 다음 요인에 따라 2666MT/s, 2400MT/s 또는 2133MT/s 주파수에서 작동할 수 있습니다.
- 선택한 시스템 프로필(예: Performance Optimized(최적화된 성능) 또는 Custom(사용자 지정))에 따라 시스템의 성능이 최적화되고, 메모리 속도는 최대 2933MT/s로 설정됩니다.
- 프로세서의 지원되는 최대 DDR4 DIMM 속도는 최대 2666MT/s로 설정되어야 합니다.
- DIMM의 지원되는 최대 속도는 2933MT/s입니다.

노트: MT/s는 DIMM 속도를 초당 메가전송 단위로 나타냅니다.

이 시스템은 유연한 메모리 구성을 지원하며, 시스템이 모든 유효한 칩셋 아키텍처에 따라 구성되고 해당 구성에서 실행될 수 있습니다. 다음은 메모리 모듈 설치에 권장되는 지침입니다.
- 모든 DIMM은 DDR4이어야 합니다.
- RDIMM과 LRDIMM은 혼합하여 사용할 수 없습니다.
- NVDIMM과 LRDIMM은 혼합하여 사용할 수 없습니다.
- NVDIMM과 RDIMM은 혼합하여 사용할 수 없습니다.
- DDP(Dual Die Package) LRDIMM인 64GB LRDIMM과 TSV(Through Silicon Via/3DS) LRDIMM인 128GB LRDIMM은 혼합하여 사용할 수 없습니다.
- x4 및 x8 DRAM 기반 메모리 모듈은 혼합하여 사용할 수 없습니다.
- 랭크 개수에 관계없이 채널당 최대 2개의 RDIMM을 장착할 수 있습니다.
- 랭크 개수에 관계없이 채널당 최대 2개의 LRDIMM을 장착할 수 있습니다.
- 랭크 개수에 관계없이 최대 2개의 다른 랭크 DIMM을 채널에 장착할 수 있습니다.
- 속도가 서로 다른 여러 개의 메모리 모듈을 설치하는 경우에는 설치되어 있는 모듈 속도 중 가장 느린 속도로 작동됩니다.
- 프로세서가 설치된 경우에만 메모리 모듈 소켓을 장착합니다.
- 단일 프로세서 시스템의 경우 A1-A12 소켓을 사용할 수 있습니다.
- 중복 프로세서 시스템의 경우에는 A1-A12 소켓 및 B1-B12 소켓을 사용할 수 있습니다.
- 랭크의 소켓은 독립적으로 사용할 수 있습니다.
- 환색 분리 쩔이 있는 모든 소켓을 먼저 채우고 검은색 분리 쩔을 채웁니다.
- 용량이 다른 메모리 모듈과 혼합하여 사용하는 경우에는 용량이 가장 높은 메모리 모듈을 먼저 소켓에 장착합니다.
- 예를 들어, 8GB 메모리 모듈과 16GB 메모리 모듈을 혼합하여 사용하는 경우 8GB 메모리 모듈의 소켓에 장착하고, 16GB 메모리 모듈을 장착합니다.
- 경영구를 구현하기 위해 다른 규칙을 따르는 경우, 용량이 다른 메모리 모듈을 혼합할 수 있습니다.
- 예를 들어, 8GB 메모리 모듈과 16GB 메모리 모듈을 혼합하여 사용할 수 있습니다.
- 중복 프로세서 구성에서 각 프로세서에 대한 메모리 구성은 동일해야 합니다.
- 예를 들어, 프로세서 1에 대해 소켓 A1을 장착하는 경우 프로세서 2에 대해 소켓 B1를 장착합니다.

NVDIMM-N 메모리 모듈 설치 지침
다음은 NVDIMM-N 메모리 모듈 설치에 권장되는 지침입니다.
- 각 시스템은 1, 2, 4, 6 또는 12개 NVDIMM-N의 메모리 구성을 지원합니다.
- 지원되는 구성에는 튜얼 프로세서와 최소 12개의 RDIMM이 있습니다.
- 최대 12개의 NVDIMM-N을 시스템에 설치할 수 있습니다.
- NVDIMM-N 또는 RDIMM은 LRDIMM과 혼합하여 사용할 수 없습니다.
- DDR4 NVDIMM-N은 프로세서 1 및 2의 검은색 분리 쩔에 장착되어야 합니다.
• 4개의 프로세서를 포함하는 시스템의 경우 프로세서 3 및 4에 장착된 RDIMM과 프로세서 1 및 2에 장착된 RDIMM의 수가 같아야 합니다.
• 구성 3, 6, 9 및 12의 모든 슬롯을 사용할 수 있으나 시스템에는 최대 12개의 NVDIMM-N을 설치할 수 있습니다.

표 10. 듀얼 프로세서 구성에 지원되는 NVDIMM-N

<table>
<thead>
<tr>
<th>구성</th>
<th>설명</th>
<th>메모리 설치 규칙</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RDIMM</td>
</tr>
<tr>
<td>구성 1</td>
<td>12개의 16GB RDIMM, 1개의 NVDIMM-N</td>
<td>프로세서1 (A1, 2, 3, 4, 5, 6) 프로세서2 (B1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성 2</td>
<td>12개의 32GB RDIMM, 1개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 3</td>
<td>23개의 32GB RDIMM, 1개의 NVDIMM-N</td>
<td>프로세서1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 프로세서2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)</td>
</tr>
<tr>
<td>구성 4</td>
<td>12개의 16GB RDIMM, 2개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 5</td>
<td>12개의 32GB RDIMM, 2개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 6</td>
<td>22개의 32GB RDIMM, 2개의 NVDIMM-N</td>
<td>프로세서1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 프로세서2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>구성 7</td>
<td>12개의 16GB RDIMM, 4개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 8</td>
<td>22개의 32GB RDIMM, 4개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 9</td>
<td>20개의 32GB RDIMM, 4개의 NVDIMM-N</td>
<td>프로세서1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 프로세서2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>구성 10</td>
<td>12개의 16GB RDIMM, 6개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 11</td>
<td>12개의 32GB RDIMM, 6개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 12</td>
<td>18개의 32GB RDIMM, 6개의 NVDIMM-N</td>
<td>프로세서1 (1, 2, 3, 4, 5, 6, 7, 8, 9) 프로세서2 (1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성</td>
<td>설명</td>
<td>메모리 설치 규칙</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>구성 13</td>
<td>12개의 16GB RDIMM, 12개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
<tr>
<td>구성 14</td>
<td>12개의 32GB RDIMM, 12개의 NVDIMM-N</td>
<td>모든 12개의 RDIMM 구성에서 동일합니다. 구성 1을 참조하십시오.</td>
</tr>
</tbody>
</table>

표 11. 쿼드 프로세서 구성에 지원되는 NVDIMM-N

<table>
<thead>
<tr>
<th>구성</th>
<th>설명</th>
<th>메모리 설치 규칙</th>
</tr>
</thead>
<tbody>
<tr>
<td>구성 1</td>
<td>24개의 16GB RDIMM, 1개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6), 프로세서 2 (B1, 2, 3, 4, 5, 6), 프로세서 3 (C1, 2, 3, 4, 5, 6), 프로세서 4 (D1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성 2</td>
<td>24개의 32GB RDIMM, 1개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), 프로세서 3 (C1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 4 (D1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)</td>
</tr>
<tr>
<td>구성 3</td>
<td>47개의 32GB RDIMM, 1개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 3 (C1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 4 (D1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)</td>
</tr>
<tr>
<td>구성 4</td>
<td>24개의 16GB RDIMM, 2개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6), 프로세서 2 (B1, 2, 3, 4, 5, 6), 프로세서 3 (C1, 2, 3, 4, 5, 6), 프로세서 4 (D1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성 5</td>
<td>24개의 32GB RDIMM, 2개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6), 프로세서 2 (B1, 2, 3, 4, 5, 6), 프로세서 3 (C1, 2, 3, 4, 5, 6), 프로세서 4 (D1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성 6</td>
<td>46개의 32GB RDIMM, 2개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 2 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 3 (C1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 프로세서 4 (D1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)</td>
</tr>
<tr>
<td>구성 7</td>
<td>24개의 16GB RDIMM, 4개의 NVDIMM-N</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6), 프로세서 2 (B1, 2, 3, 4, 5, 6), 프로세서 3 (C1, 2, 3, 4, 5, 6), 프로세서 4 (D1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성 8</td>
<td>24개의 32GB RDIMM, 4개의 NVDIMM</td>
<td>프로세서 1 (A1, 2, 3, 4, 5, 6), 프로세서 2 (B1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>구성</td>
<td>설명</td>
<td>메모리 설치 규칙</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RDIMM</td>
</tr>
<tr>
<td>구성을 9</td>
<td>44개의 32GB RDIMM, 4개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (C1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)</td>
</tr>
<tr>
<td>구성을 10</td>
<td>24개의 16GB RDIMM, 6개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성을 11</td>
<td>24개의 32GB RDIMM, 6개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성을 12</td>
<td>42개의 32GB RDIMM, 6개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성을 13</td>
<td>24개의 16GB RDIMM, 12개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성을 14</td>
<td>24개의 32GB RDIMM, 12개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>구성을 15</td>
<td>36개의 32GB RDIMM, 12개의 NVDIMM-N</td>
<td>프로세서 (A1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로세서 (B1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
</tbody>
</table>

DCPMM 설치 지침

다음은 DCPMM(데이터 센터 영구적 메모리 모듈) 메모리 모듈 설치에 대한 권장 지침입니다.

- 각 시스템은 채널당 최대 1개의 DCPMM 메모리 모듈을 지원합니다.
 - **노트:** 서로 다른 두 개의 DCPMM 용량을 혼용하는 경우 구성이 지원되지 않으므로 F1/F2 경고가 표시됩니다.
- DCPMM은 RDIMM, LRDIMM 및 3DS LRDIMM와 함께 혼합될 수 있습니다.
- 통합 메모리 컨트롤러(IMC)를 위해 채널 내에서나 소켓 전반에서의 DDR4 DIMM 유형(RDIMM, LRDIMM 및 3DS LRDIMM) 혼합은 지원되지 않습니다.
- DCPMM 적응 모드(업 다이렉트 모드, 메모리 모드) 혼합은 지원되지 않습니다.
- 채널에 하나의 DIMM만 장착된 경우 항상 해당 채널의 첫 번째 슬롯(흰색 슬롯)으로 이동해야 합니다.
- DCPMM 및 DDR4 DIMM이 동일한 채널에 장착된 경우에는 항상 DCPMM을 두 번째 슬롯(검은색 슬롯)에 연결합니다.
- DCPMM이 메모리 모드로 구성되어 있는 경우, DDR4 대 DCPMM 용량의 권장 비율은 IMC당 1:4~1:16입니다.
- DCPMM은 다른 DCPMM 또는 NVDIMM와 함께 혼용할 수 없습니다.
- DCPMM이 설치된 경우에는 다양한 용량의 RDIMM 및 LRDIMM을 혼합하는 것이 허용되지 않습니다.
- 다른 용량의 DCPMM은 허용되지 않습니다.

표 12. 메모리 모드 구성(듀얼 및 쿼드 소켓)

<table>
<thead>
<tr>
<th>CPU당 음대인 DIMM</th>
<th>CPU당 DRAM DIMM</th>
<th>CPU당 총 용량</th>
<th>2소켓 OS 메모리 용량</th>
<th>4소켓 OS 메모리 용량</th>
<th>DDR:DCPMM 비율</th>
</tr>
</thead>
<tbody>
<tr>
<td>6개의 128GB</td>
<td>6개의 32GB</td>
<td>960GB</td>
<td>1.5TB</td>
<td>3TB</td>
<td>1:4</td>
</tr>
<tr>
<td>6개의 256GB</td>
<td>6개의 32GB</td>
<td>1728GB</td>
<td>3TB</td>
<td>6TB</td>
<td>1:8</td>
</tr>
<tr>
<td>6개의 256GB</td>
<td>6개의 64GB</td>
<td>1920 GB</td>
<td>3TB</td>
<td>6TB</td>
<td>1:4</td>
</tr>
<tr>
<td>6개의 512GB</td>
<td>6개의 64GB</td>
<td>3456GB</td>
<td>6TB</td>
<td>12TB</td>
<td>1:8</td>
</tr>
<tr>
<td>6개의 512GB</td>
<td>6개의 128GB</td>
<td>3840GB</td>
<td>6TB</td>
<td>12TB</td>
<td>1:4</td>
</tr>
</tbody>
</table>

표 13. 애플리케이션 다이렉트 모드 구성(듀얼 및 쿼드 소켓)

<table>
<thead>
<tr>
<th>CPU당 음대인 DIMM</th>
<th>CPU당 DRAM DIMM</th>
<th>CPU당 총 용량</th>
<th>2소켓 OS 메모리 용량</th>
<th>4소켓 OS 메모리 용량</th>
<th>2소켓 애플리케이션 다이렉트 옵테인 용량</th>
<th>4소켓 애플리케이션 다이렉트 옵테인 용량</th>
</tr>
</thead>
<tbody>
<tr>
<td>6개의 128GB</td>
<td>6개의 32GB</td>
<td>960GB</td>
<td>384GB</td>
<td>768GB</td>
<td>384GB</td>
<td>768GB</td>
</tr>
<tr>
<td>6개의 128GB</td>
<td>6개의 64GB</td>
<td>1152GB</td>
<td>768GB</td>
<td>1.5TB</td>
<td>1.5TB</td>
<td>1.5TB</td>
</tr>
<tr>
<td>6개의 128GB</td>
<td>6개의 128GB</td>
<td>1536GB</td>
<td>1.5TB</td>
<td>3TB</td>
<td>1.5TB</td>
<td>3TB</td>
</tr>
<tr>
<td>4개의 256GB</td>
<td>6개의 32GB</td>
<td>1216GB</td>
<td>384GB</td>
<td>768GB</td>
<td>384GB</td>
<td>768GB</td>
</tr>
<tr>
<td>4개의 256GB</td>
<td>6개의 64GB</td>
<td>1408GB</td>
<td>768GB</td>
<td>1.5TB</td>
<td>2TB</td>
<td>4TB</td>
</tr>
<tr>
<td>4개의 256GB</td>
<td>6개의 128GB</td>
<td>1920GB</td>
<td>768GB</td>
<td>1.5TB</td>
<td>3TB</td>
<td>6TB</td>
</tr>
<tr>
<td>4개의 512GB</td>
<td>6개의 32GB</td>
<td>2304GB</td>
<td>1.5TB</td>
<td>3TB</td>
<td>3TB</td>
<td>6TB</td>
</tr>
<tr>
<td>4개의 512GB</td>
<td>6개의 64GB</td>
<td>2432GB</td>
<td>768GB</td>
<td>1.5TB</td>
<td>4TB</td>
<td>8TB</td>
</tr>
<tr>
<td>6개의 512GB</td>
<td>6개의 64GB</td>
<td>3456GB</td>
<td>768GB</td>
<td>1.5TB</td>
<td>6TB</td>
<td>12TB</td>
</tr>
<tr>
<td>6개의 512GB</td>
<td>6개의 128GB</td>
<td>3840GB</td>
<td>1.5TB</td>
<td>3TB</td>
<td>6TB</td>
<td>12TB</td>
</tr>
</tbody>
</table>

노트:
- DCPMM은 2400W PSU 구성이 포함된 시스템에서 지원됩니다.
- 최대 주위 온도는 30℃입니다.
- 최대 하드 드라이브는 8개의 2.5”입니다.
- DCPMM은 GPU 구성은 지원하지 않습니다.
- DCPMM은 NVMe 하드 드라이브를 지원하지 않습니다.
모드별 지침

허용되는 구성은 시스템 BIOS에서 선택한 메모리 모드에 따라 다릅니다.

표 14. 메모리 작동 모드

<table>
<thead>
<tr>
<th>메모리 작동 모드</th>
<th>설명</th>
</tr>
</thead>
</table>
| 최적화 모드 | Optimizer Mode(최적화 모드)가 활성화되면 DRAM 컨트롤러가 64비트 모드에서 독립적으로 작동하며 최적화된 메모리 성능을 제공합니다.
| 노트 | DCPMM은 최적화 모드만 지원합니다. |
| 미러 모드 | Mirror Mode(미러 모드)가 활성화되면 시스템이 메모리에 2개의 동일한 데이터 복사를 유지하고 사용 가능한 총 시스템 메모리는 설치된 총 물리적 메모리의 절반입니다. 설치된 메모리의 절반은 활성 상태의 메모리 모듈을 미러링하는 데 사용됩니다. 이 기능은 최대 안정성을 제공하며, 무리한 메모리 장애 중에도 시스템이 미러링된 복제본으로 전환하여 계속 작동할 수 있게 합니다. 미러 모드를 활성화하는 설치 지침을 준수하려면 메모리 모듈의 크기, 속도 및 기술이 동일하고 프로세서당 6개 세트로 채워져야 합니다. |
| 싱글 랭크 스페어 모드 | Single Rank Spare Mode(싱글 랭크 스페어 모드)는 채널당 하나의 랭크를 예비로 할당합니다. 랭크 또는 채널에서 수정 가능한 오류가 과도하게 발생하는 경우, 운영 체제가 실행되는 동안 해당 오류가 예비 영역으로 이동되어 수정할 수 없는 오류가 발생하지 않도록 방지합니다. 각 채널에 두 개 이상의 랭크가 장착되어야 합니다. |
| 멀티 랭크 스페어 모드 | Multi Rank Spare Mode(멀티 랭크 스페어 모드)는 채널당 2개의 랭크를 예비로 할당합니다. 랭크 또는 채널에서 수정 가능한 오류가 과도하게 발생하는 경우, 운영 체제가 실행되는 동안 해당 오류가 예비 영역으로 이동되어 수정할 수 없는 오류가 발생하지 않도록 방지합니다. 각 채널에 세 개 이상의 랭크가 장착되어야 합니다. |
| Dell 장애 복원 모드 | Dell Fault Resilient Mode(Dell 장애 복원 모드)가 활성화되면 BIOS가 장애 복원이 있는 메모리 영역을 구축합니다. 이 모드는 중요한 애플리케이션을 진단할 수 있는 기능을 지원하거나 OS 커널을 활성화하여 시스템 가용성을 극대화하는 OS에 의해 사용될 수 있습니다. |

최적화 모드

이 모드는 x4 디바이스 너비를 사용하는 메모리 모듈에 대해서만 SDDC(Single Device Data Correction)를 지원합니다. 특정한 방식의 솔루션 설치를 요구하지 않습니다.

- 유니 프로세서: 프로세서 1부터 라운드 로빈 순서로 슬롯을 채웁니다.
 ① 노트: 프로세서 1 및 프로세서 2 장착이 일치해야 합니다.
- 윌드 프로세서: 프로세서 1부터 라운드 로빈 순서로 슬롯을 채웁니다.
NOTA: 프로세서 1, 프로세서 2, 프로세서 3 및 프로세서 4 장착이 일치해야 합니다.

표 15. 메모리 장착 규칙

<table>
<thead>
<tr>
<th>프로세서</th>
<th>구성</th>
<th>메모리 장착</th>
<th>메모리 장착 정보</th>
</tr>
</thead>
</table>
| 듀얼 프로세서(프로세서 1부터 시작. 프로세서 1 및 프로세서 2 장착이 일치해야 함) | 최적화(독립 채널) 장착 순서 | A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, B6 | 프로세서당 DIMM 장착 개수가 홀수여도 됩니다.
| 노트: DIMM 개수가 홀수인 경우 메모리 구성의 균형이 맞지 않아 성능이 저하될 수 있습니다. 최고의 성능을 위해 동일한 DIMM으로 모든 메모리 채널을 동일하게 장착하는 것이 좋습니다. |
| 노트: 최적의 성능을 위해서는 프로세서 당 6개의 DIMM 또는 12개의 DIMM을 권장합니다. |
| | 미러링 장착 순서 | A1, 2, 3, 4, 5, 6, B1, 2, 3, 4, 5, 6, A7, 8, 9, 10, 11, 12, B7, 8, 9, 10, 11, 12 | 미러링은 프로세서당 6개 또는 12개의 DIMM 구성에서 지원됩니다. |
| | 싱글 랭크 스펙어링 장착 순서 | A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, B6 | DIMM은 지정된 순서대로 장착되어야 합니다. 채널당 2개 이상의 랭크가 필요합니다. |
| | 멀티 랭크 스펙어링 장착 순서 | A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, B6 | DIMM은 지정된 순서대로 장착되어야 합니다. 채널당 3개 이상의 랭크가 필요합니다. |
| | 장애 복원 장착 순서 | A1, 2, 3, 4, 5, 6, B1, 2, 3, 4, 5, 6, A7, 8, 9, 10, 11, 12, B7, 8, 9, 10, 11, 12 | 프로세서당 6개 또는 12개의 DIMM 구성에서 지원됩니다. |
| 워드 프로세서(프로세서 1부터 시작하여 프로세서 1. 프로세서 2. 프로세서 3 및 프로세서 4 장착이 일치해야 함) | 최적화 장착 순서(독립형 채널) | A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3, A4, B4, C4, D4 | 프로세서당 DIMM 장착 개수가 홀수여도 됩니다. |
| 노트: DIMM 개수가 홀수인 경우 메모리 구성의 균형이 맞지 않아 성능이 저하될 수 있습니다. 최고의 성능을 위해 동일한 DIMM으로 모든 메모리 채널을 동일하게 장착하는 것이 좋습니다. |
| 노트: 최적의 성능을 위해서는 프로세서 당 6개의 DIMM 또는 12개의 DIMM을 권장합니다. |
| 노트: 최적화 장착 순서는 듀얼 프로세서의 16개 및 32개 DIMM 설치에 일반적이지 않습니다. |

74 시스템 구성 요소 설치 및 제거
메모리 모듈 분리

전제조건

⚠ 경고: 시스템의 전원을 끄 후에 메모리 모듈이 냉각되도록 합니다. 메모리 모듈을 다룰 때는 카드 가장자리를 잡고 메모리 모듈의 구성 요소 또는 금속 접촉면을 만지지 않도록 하십시오.

⚠ 주의: 프로세서 1 및 2가 설치된 상태에서 시스템이 충분히 냉각되도록 하려면 메모리 모듈 보호물이 채워지지 않은 메모리 소켓에 메모리 모듈 보호물을 설치해야 합니다. 해당 소켓에 메모리를 설치하려는 경우에만 메모리 모듈 보호물을 분리하십시오.

1. 안전 지침에 따라 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 해당 공기 커버를 제거합니다.
 - 비 GPU 공기 커버
 OR
 - GPU 공기 커버
단계
1. 해당하는 메모리 모듈 소켓을 찾습니다.
 △주의: 메모리 모듈 가운데 부분 또는 금색 접촉면을 만지지 않고 카드 모서리로 메모리 모듈을 잡아야 합니다.
2. 소켓에서 메모리 모듈을 분리하려면 메모리 모듈 소켓의 양쪽 끝에 있는 배출기를 백각적으로 잡습니다.
3. 메모리 모듈을 시스템에서 들어 올려 분리합니다.

그림 44. 메모리 모듈 분리

①노트: 메모리 모듈을 영구적으로 분리하는 경우 메모리 모듈 보호물을 설치합니다. 메모리 모듈 보호물을 설치하는 절차는 메모리 모듈을 설치하는 절차와 유사합니다.

다음 단계
1. 메모리 모듈을 장착합니다.

메모리 모듈 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 해당 공기 커버를 제거합니다.
 • 비 GPU 공기 커버
 OR
 • GPU 공기 커버

단계
1. 해당하는 메모리 모듈 소켓을 찾습니다.
 △주의: 메모리 모듈 가운데 부분 또는 금색 접촉면을 만지지 않고 카드 모서리로 메모리 모듈을 잡아야 합니다.
 △주의: 설치 중에 메모리 모듈 또는 메모리 모듈 소켓의 손상을 방지하려면 메모리 모듈을 구부리거나 휘지 마십시오. 메모리 모듈은 양쪽 꼭을 동시에 삽입합니다. 하는 두 메모리 모듈의 양쪽 꼭을 동시에 삽입합니다. 반드시 메모리 모듈의 양쪽 꼭을 동시에 삽입합니다.
2. 메모리 모듈을 소켓에 삽입하려면 메모리 모듈 소켓의 배출기를 백으로 잡습니다.
3. 메모리 모듈의 에지 커넥터를 메모리 모듈 소켓의 맞춤 키와 맞추고 메모리 모듈을 소켓에 삽입합니다.
 △주의: 메모리 모듈의 중심부에 힘을 가하면 안됩니다. 메모리 모듈은 양쪽 꼭에 동일하게 힘을 가해야 합니다.
①노트: 메모리 모듈 소켓에는 메모리 모듈을 한 방향으로만 소켓에 설치할 수 있는 맞춤 키가 있습니다.
4. 소켓 레버가 제자리에 끼워질 때까지 염지 손가락으로 메모리 모듈을 단단히 누릅니다.
다음 단계
1. 해당 공기 커버를 설치합니다.
 - GPU 공기 커버
 OR
 - 비 GPU 공기 커버
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
3. \(<F2>\) 키를 누르고 System Setup Main Menu(시스템 설정 메뉴) > System BIOS(시스템 BIOS) > Memory Settings(메모리 설정)로 이동하여 메모리 모듈이 올바르게 설치되었는지 확인합니다. Memory Settings(메모리 설정) 화면에서 시스템 메모리 크기는 설치된 메모리의 업데이트된 용량을 반영해야 합니다. 값이 올바르지 않은 경우 메모리 모듈이 하나 이상 제대로 설치되지 않을 수 있습니다. 메모리 모듈이 해당 소켓에 단단히 장착되었는지를 확인합니다. 시스템 진단 프로그램에서 시스템 메모리 검사를 실행합니다.

확장 카드 및 확장 카드 라이저
시스템의 확장 카드는 시스템 보드의 확장 슬롯 또는 라이저의 슬롯에 설치하여 확장 버스를 통해 시스템의 기능을 강화할 수 있는 주 기능 카드입니다.

노트: SEL(System Event Log) 이벤트는 확장 카드 라이저가 지원되지 않거나 누락된 경우 기록됩니다. 시스템 전원이 켜지는 데 영향을 미치지 않습니다. 그러나 F1/F2 일시 중지가 발생하고 오류 메시지가 표시됩니다.

표 16. 확장 카드 라이저 사양

<table>
<thead>
<tr>
<th>PCIe 슬롯</th>
<th>라이저</th>
<th>프로세서 연결</th>
<th>높이</th>
<th>길이</th>
<th>슬롯 폭</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X8 PCIe 라이저 1</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>2</td>
<td>X16 PCIe 라이저 1</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
<tr>
<td>3</td>
<td>X8 PCIe 라이저 1</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>4</td>
<td>시스템 보드에 위치</td>
<td>프로세서 2</td>
<td>전체 길이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
<tr>
<td>5</td>
<td>X8 PCIe 라이저 2</td>
<td>프로세서 2</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>6</td>
<td>X16 PCIe 라이저 2</td>
<td>프로세서 2</td>
<td>전체 높이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
<tr>
<td></td>
<td>X8 PCIe 라이저 2</td>
<td>프로세서 2</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
</tbody>
</table>
확장 카드 설치 지침

냉각 및 기계적 설치를 올바르게 수행하도록 확장 카드를 설치하는 지침이 다음 표에 나와 있습니다. 표시된 슬롯 우선 순위를 사용하여 우선 순위가 가장 높은 확장 카드를 먼저 설치해야 합니다. 기타 모든 확장 카드는 카드 우선 순위 및 슬롯 우선 순위에 따라 설치해야 합니다.

⚠️ 노트: 확장 카드 슬롯은 핫 스왑할 수 없습니다.

표 17. x16 PCIe 라이저 1+ x16 PCIe 라이저 2 구성

<table>
<thead>
<tr>
<th>카드 종류</th>
<th>슬롯 우선 순위</th>
<th>슬롯 높이</th>
<th>지원되는 최대 카드 수</th>
<th>카드 높이</th>
<th>카드 길이</th>
<th>최대 PCIe 너비 지원</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>Nvidia</td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 길이</td>
<td>전체 높이 x16</td>
</tr>
<tr>
<td>FPGA</td>
<td>Intel</td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x16</td>
</tr>
<tr>
<td>PERC10</td>
<td>Dell 설계</td>
<td>3</td>
<td>로우 프로필</td>
<td>1</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td>Infiniband HCA EDR</td>
<td>Mellanox</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x16</td>
</tr>
<tr>
<td>100G NIC</td>
<td>Mellanox</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x16</td>
</tr>
<tr>
<td>Omni-Path HFI</td>
<td>인텔</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x16</td>
</tr>
<tr>
<td>BOSS</td>
<td>Dell 설계</td>
<td>2,6</td>
<td>전체 높이</td>
<td>1</td>
<td>절반 길이</td>
<td>전체 높이 x4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>1</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>1</td>
<td>절반 길이</td>
<td>로우 프로필 x4</td>
</tr>
<tr>
<td>외장형 RAID</td>
<td>Dell 설계</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td>Infiniband HCA FDR</td>
<td>Mellanox</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td>40Gb NIC</td>
<td>인텔</td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td>FC32 HBA</td>
<td>Emulex</td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td>25G NIC</td>
<td>Broadcom</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td>FC16 HBA</td>
<td>Emulex</td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td>10Gb NIC</td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td>FC8 HBA</td>
<td></td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필 x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x8</td>
</tr>
<tr>
<td>1Gb NIC</td>
<td></td>
<td>2,6</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이 x1</td>
</tr>
</tbody>
</table>
카드 종류 | 슬롯 우선 순위 | 라이저 높이 | 지원되는 최대 카드 수 | 카드 높이 | 카드 길이 | 최대 PCIe 너비 지원
---|---|---|---|---|---|---
비RAID | 3,4 | 로우 프로필 | 2 | 절반 길이 | 로우 프로필 | x1
2,6 | 전체 높이 | 2 | 절반 길이 | 전체 높이 | x4
비RAID | 3,4 | 로우 프로필 | 2 | 절반 길이 | 로우 프로필 | x4
2,6 | 전체 높이 | 2 | 절반 길이 | 전체 높이 | x8
NVMe PCIe SSD | 3, 4, 2, 6 | 전체 높이 또는 로우 프로파일 | 2 | 절반 길이 | 전체 높이 또는 로우 프로파일 | x8
rNDC | 내장형 슬롯 | 없음 | 1 | 없음 | rNDC | x8
내장형 슬롯 | 없음 | 1 | 없음 | rNDC | x1
내장형 슬롯 | 없음 | 1 | 없음 | rNDC | x4

표 18. x8 PCIe 라이저 1+ Null 라이저 구성을

<table>
<thead>
<tr>
<th>카드 종류</th>
<th>슬롯 우선 순위</th>
<th>라이저 높이</th>
<th>지원되는 최대 카드 수</th>
<th>카드 높이</th>
<th>카드 길이</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERC10</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>1</td>
<td>전체 높이</td>
<td>1</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>Infiniband HCA EDR</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>100G NIC</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>Omni-Path HFI</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x16</td>
</tr>
<tr>
<td>BOSS</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>1</td>
<td>전체 높이</td>
<td>x4</td>
</tr>
<tr>
<td>1.2</td>
<td>전체 높이</td>
<td>1</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>로우 프로필</td>
<td>1</td>
<td>로우 프로필</td>
<td>x4</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>로우 프로필</td>
<td>1</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>외장형 RAID</td>
<td>3.4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>1.2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>Infiniband HCA FDR</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>40Gb NIC</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>FC32 HBA</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>25G NIC</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>1.2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>FC16 HBA</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>10Gb NIC</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>1.2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x4</td>
<td></td>
</tr>
<tr>
<td>FC8 HBA</td>
<td>3,4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>카드 종류</td>
<td>슬롯 우선 순위</td>
<td>라이저 높이</td>
<td>지원되는 최대 카드 수</td>
<td>카드 높이</td>
<td>카드 길이</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1Gb NIC</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x1</td>
</tr>
<tr>
<td>비RAID</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>NVMe PCIe SSD</td>
<td>1, 2, 3, 4</td>
<td>전체 높이 또는 로우 프로파일</td>
<td>2</td>
<td>전체 높이 또는 로우 프로파일</td>
<td>x8</td>
</tr>
<tr>
<td>rNDC</td>
<td>내장형 슬롯</td>
<td>없음</td>
<td>1</td>
<td>rNDC</td>
<td>x8</td>
</tr>
<tr>
<td>100G NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>Omni-Path HFI</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>BOSS</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>1</td>
<td>전체 높이</td>
<td>x4</td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>1</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>1</td>
<td>로우 프로필</td>
<td>x4</td>
</tr>
<tr>
<td>외장형 RAID</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td>Infiniband HCA EDR</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>40Gb NIC</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>FC32 HBA</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>25G NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td>FC16 HBA</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>10Gb NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
</tbody>
</table>

표 19. x8 PCIe 라이저 1+ x8 PCIe 라이저 2 구성

<table>
<thead>
<tr>
<th>카드 종류</th>
<th>슬롯 우선 순위</th>
<th>라이저 높이</th>
<th>지원되는 최대 카드 수</th>
<th>카드 높이</th>
<th>카드 길이</th>
<th>최대 PCIe 너비</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERC10</td>
<td>1, 2</td>
<td>전체 높이</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>전체 높이</td>
<td>1</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>x8</td>
</tr>
<tr>
<td>Infiniband HCA EDR</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>100G NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>Omni-Path HFI</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>X16</td>
</tr>
<tr>
<td>BOSS</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>1</td>
<td>절반 길이</td>
<td>전체 높이</td>
<td>x4</td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>1</td>
<td>절반 길이</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>1</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>x4</td>
</tr>
<tr>
<td>외장형 RAID</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>전체 높이</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>2</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>Infiniband HCA FDR</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>절반 길이</td>
<td>로우 프로필</td>
<td>X8</td>
</tr>
<tr>
<td>40Gb NIC</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>FC32 HBA</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>25G NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>FC16 HBA</td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>10Gb NIC</td>
<td>3, 4</td>
<td>로우 프로필</td>
<td>2</td>
<td>로우 프로필</td>
<td>x8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 2, 5, 6</td>
<td>전체 높이</td>
<td>4</td>
<td>전체 높이</td>
<td>x8</td>
<td></td>
</tr>
</tbody>
</table>
확장 카드 라이저에서 확장 카드 제거

전제조건

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저를 제거합니다.

노트: 라이저에서 확장 카드를 제거하는 절차는 모든 라이저에서 동일합니다.

단계

1. 라이저의 검은색 확장 카드 렌치를 엽니다.
2. 라이저의 파란색 카드 흰색 렌치를 엽니다.
3. 확장 카드의 가장자리를 잡고 카드 에지 커넥터가 라이저의 커넥터에서 분리될 때까지 카드를 잡아당깁니다.

### 카드 종류	슬롯 우선 순위	라이저 높이	지원되는 최대 카드 수	카드 높이	카드 길이	최대 PCIe 너비 지원
FC8 HBA | 3,4 | 전체 높이 | 2 | 절반 길이 | 전체 높이 | x4
1Gb NIC | 1, 2, 5, 6 | 전체 높이 | 4 | 절반 길이 | 전체 높이 | x8
비RAID | 3,4 | 로우 프로필 | 2 | 절반 길이 | 로우 프로필 | x4
NVMe PCIe SSD | 1, 2, 5, 6, 3, 4 | 전체 높이 또는 로우 프로파일 | 2 | 절반 길이 | 전체 높이 또는 로우 프로파일 | x8
rNDC 내장형 슬롯 | 없음 | 없음 | 1 | 없음 | rNDC | x8
rNDC 내장형 슬롯 | 없음 | 없음 | 1 | 없음 | rNDC | x1
rNDC 내장형 슬롯 | 없음 | 없음 | 1 | 없음 | rNDC | x4
4. 확장 카드를 장착하지 않으려는 경우 필러 브래킷을 설치합니다.

네트: 시스템의 미국 연방 통신허가기관(FCC) 인증을 유지하려면 필러 브래킷을 비 확장 카드 슬롯에 설치해야 합니다. 브래킷은 또한 시스템 안으로 먼지 및 이물질이 들어오는 것을 막고 시스템 내부의 적절한 냉각 및 공기 흐름을 도와줍니다.

그림 47. 라이저에 필러 브래킷 설치
다음 단계
1. 확장 카드 라이저에 확장 카드를 설치합니다.

확장 카드 라이저에 확장 카드 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 새 확장 카드를 설치한 경우, 포장을 풀고 설치를 위한 카드를 준비합니다.
 노트: 지침을 보려면 카드와 함께 제공된 설명서를 참조하십시오.
4. 해당 공기 커버를 제거합니다.
5. 확장 카드 라이저를 제거합니다.
 노트: 라이저에서 확장 카드를 제거하는 절차는 모든 라이저에서 동일합니다.

단계
1. 라이저의 검은색 확장 카드 레치를 엽니다.
2. 라이저의 파란색 카드 홈 레치를 엽니다.
3. 해당되는 경우 필러 브래킷을 분리합니다.

그림 48. 라이저에서 필러 브래킷 제거

 노트: 해당하는 경우 케이블을 확장 카드에 연결합니다.
4. 카드의 가장자리를 참고 카드 에지 커넥터를 라이저의 커넥터에 맞춥니다.
5. 카드가 완전히 장착될 때까지 카드 에지 커넥터를 확장 카드 커넥터에 단단히 삽입합니다.
6. 확장 카드 고정 레치를 닫습니다.
다음 단계
1. 확장 카드 라이저를 설치합니다.
2. 해당하는 경우 케이블을 확장 카드에 연결합니다.
3. 해당 공기 커버를 설치합니다.
4. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
5. 카드 설명서에 설명된 대로 카드에 필요한 모든 장치 드라이버를 설치합니다.

확장 카드 라이저 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드에 연결되어 있는 케이블을 모두 분리합니다.

단계
1. Phillips #2 스크루 드라이버를 사용하여 라이저를 시스템에 고정하는 나사를 풀습니다.
2. 파란색 분리 탭을 누르고 라이저의 가장자리를 잡은 다음, 시스템 보드의 라이저 커넥터에서 라이저를 들어 올립니다.

시스템 구성 요소 설치 및 제거

84
그림 50. 확장 카드 x16 PCIe 라이저 1 제거

그림 51. 확장 카드 x16 PCIe 라이저 2 제거
다음 단계
1. 확장 카드 라이저를 설치합니다.

그림 52. 확장 카드 x8 PCIe 라이저 1 제거

그림 53. 확장 카드 x8 PCIe 라이저 2 제거
확장 카드 라이저 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.

단계
1. 제거되어 있는 경우, 확장 카드 라이저에 확장 카드를 설치합니다.
2. 접촉점을 잡고 라이저의 슬롯을 시스템 보드 및 공기 커버의 가이드에 맞춥니다.
3. 확장 카드 라이저 커넥터가 커넥터에 완전히 장착될 때까지 확장 카드 라이저를 제자리로 내립니다.
4. 라이저를 시스템에 고정하는 조임 나사를 조입니다.

그림 54. 확장 카드 x16 PCIe 라이저 1 설치
그림 55. 확장 카드 x16 PCIe 라이저 2 설치

그림 56. 확장 카드 x8 PCIe 라이저 1 설치
다음 단계
1. 카드 설명서에 설명된대로 카드에 필요한 모든 장치 드라이버를 설치합니다.
2. 공기 커버를 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

PCIE 확장 카드 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드에 연결되어 있는 케이블을 모두 분리합니다.

단계
1. 파란색 확장 카드 고정 레치 잠금 장치를 엽니다.
2. 확장 카드의 가정자리를 잡고 카드를 당겨 시스템 보드 커넥터에서 연결 해제합니다.
그림 58. 시스템 보드의 확장 카드 분리

3. 확장 카드를 장착하지 않을 경우 다음 단계를 수행하여 필러 브래킷을 설치합니다.
 a) 확장 카드 슬롯의 탭을 필러 브래킷의 슬롯에 맞춥니다.
 b) 필러 브래킷을 시스템의 슬롯에 맞춥니다.
 c) 아래로 단단히 장착될 때까지 필러 브래킷을 박니다.
 d) 파란색 확장 카드 고정 레치를 닫습니다.

그림 59. 필러 브래킷 설치

다음 단계
1. 확장 카드를 설치합니다.
PCIe 확장 카드 설치

전제조건
1. 나열되어 있는 안전 지침을 따릅니다(안전 지침).
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.

단계
1. 확장 카드의 포장을 풀고 설치를 준비합니다.
 지침을 보려면 카드와 함께 제공된 설명서를 참조하십시오.
2. 새 카드를 설치할 경우 필러 브래킷을 분리합니다.
 a) 파란색 확장 카드 고정 레치 잠금 장치를 엽니다.
 b) 필러 브래킷을 밀어 시스템에서 캐웁니다.

그림 60. 필러 브래킷 분리

노트: 나중에 사용할 수 있도록 필러 브래킷을 보관해 두십시오. 시스템의 FCC 인증 상태를 유지하려면 필러 브래킷을 비 확장 카드 슬롯에 설치해야 합니다. 브래킷은 또한 시스템 안으로 먼지 및 이물질이 들어오는 것을 막고 시스템 내부의 적절한 냉각 및 공기 흐름을 도와줍니다.

3. 카드의 가장자리를 잡고 카드를 시스템 보드의 확장 카드 커넥터에 맞춥니다.
4. 카드가 완전히 장착될 때까지 확장 카드를 시스템 보드의 확장 카드 커넥터에 단단히 삽입합니다.
5. 파란색 확장 카드 고정 레치를 닫습니다.
다음 단계
1. 필요한 케이블을 확장 카드에 연결합니다.
2. 공기 커버를 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

GPU 카드 설치 지침
- 양 프로세서가 제대로 설치되어 있는지 확인합니다.
- 프로세서는 GPU 카드로 프로파일 방열판을 사용해야 합니다.
- 하나 이상의 GPU가 설치되어 있는 경우 적절한 냉각 상태를 보장하기 위해 CPU 150W/8C, 165W/12C, 200W, 205W에 대해 주위 유입 온도가 30°C로 제한됩니다. 자세한 내용은 주위 온도 제한 사항 섹션을 참조하십시오.
- 모든 GPU 카드는 동일한 종류 및 모델이어야 합니다.
- GPU를 설치하기 전에 GPU 공기 커버를 제거해야 합니다.
- 고성능 팬 및 GPU 공기 커버가 설치되어 있는지 확인하십시오.

노트: GPU를 포함하는 시스템을 사용하는 경우, 1100W 이상의 PSU를 설치했는지 확인하고 PSU 구성의 비중복 모드로 설정하십시오.

GPU 분리
전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 전원을 꺼냅니다.
3. GPU 공기 커버 커버를 제거합니다.
4. 확장 카드 라이저를 제거합니다.

단계
1. PIB에서 GPU 전원 케이블을 연결 해제합니다.
2. 라이저의 확장 카드 레치 및 카드 홀더 레치를 열니다.
GPU에서 GPU 카드 제거
3. 카드의 가장자리를 참고 들어 올려 라이저의 커넥터에서 분리합니다.
4. GPU에서 GPU 전원 케이블을 연결 해제합니다.
5. GPU를 영구적으로 제거하는 경우 필러 브래킷을 설치합니다.

![그림 62. 라이저에서 GPU 카드 제거](image)

노트: 시스템의시스템 필러 브래킷을 빈 확장 카드 슬롯에 설치해야 합니다. 브래킷은 또한 시스템 안으로 먼지 및 이물질이 들어오는 것을 막고 시스템 내부의 적절한 냉각 및 공기 흐름을 도와줍니다. 필러 브래킷은 적절한 발열 상태를 유지하는 데 필요합니다.

다음 단계
GPU를 장착합니다.

GPU 설치
전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. GPU 공기 커버 커버를 제거합니다.
4. 확장 카드 라이져를 분리합니다.

단계
1. GPU 전원 케이블을 GPU의 커넥터에 연결합니다.
2. 라이저의 확장 카드 레치 및 카드 블록 레치를 엽니다.
3. 기존 확장 카드 또는 필러 브래킷을 라이저에서 제거합니다.

노트: 시스템의 미국 연방 통신위원회(FCC) 인증을 유지하려면 필러 브래킷을 빈 확장 카드 슬롯에 설치해야 합니다. 브래킷은 또한 시스템 안으로 먼지 및 이물질이 들어오는 것을 막고 시스템 내부의 적절한 냉각 및 공기 흐름을 도와줍니다.

노트: 필러 브래킷은 적절한 발열 상태를 유지하는 데 필요합니다.
4. GPU 전원 케이블을 라이저 브래킷의 솔롯을 통해 라우팅합니다.
5. 카드의 가장자리를 참고 카드가 확장 카드 커넥터에 맞춰지도록 카드를 배치합니다.
6. 카드가 완전히 장착될 때까지 카드를 확장 카드 커넥터에 단단히 삽입합니다.
7. 확장 카드 레치 및 카드 블록 레치를 닫습니다.
그림 63. 라이저에 GPU 카드 설치
8. GPU 전원 케이블의 다른 쪽 끝을 PIB에 연결합니다.

다음 단계
1. GPU 공기 커버의 상단 커버를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

M.2 SSD 모듈(옵션)

BOSS 카드는 서버의 운영 체제를 부팅하기 위해 특별히 설계된 단순한 RAID 솔루션 카드입니다. 이 카드는 최대 2개의 6Gbps M.2 SATA 드라이브를 지원합니다. BOSS 어댑터 카드에는 루프 프로파일 및 전체 높이 폼 팩터 모두에서 사용 가능한 PCIe Gen 2.0 x2 레 인 사용 x8 커넥터가 포함되어 있습니다.

M.2 SSD 모듈 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 설치되어 있는 경우, 후면 드라이브 케이지를 제거합니다.
5. BOSS 카드를 제거합니다.

노트: BOSS 카드를 제거하는 절차는 확장 카드를 제거하는 절차와 비슷합니다.

단계
1. 나사를 풀고 BOSS 카드에 M.2 SSD 모듈을 고정하는 고정 스트랩을 들어 올립니다.
2. M.2 SSD 모듈을 들어 올려 BOSS 카드의 커넥터 밖으로 밀어냅니다.
M.2 SSD 모듈 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 전기 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. BOSS 카드를 제거합니다.

노트: BOSS 카드를 제거하는 절차는 확장 카드를 제거하는 절차와 비슷합니다.

단계
1. M.2 BOSS 카드 모듈을 45도 각도로 M.2 BOSS 카드의 SATA 커넥터에 맞춘 뒤 밀어 넣습니다.
2. 모듈이 카드 위에 단단히 장착될 때까지 아래로 누릅니다.
3. 고정 스트랩으로 모듈을 카드에 고정하고 Phillips #1 스크루 드라이버로 나사를 조입니다.
다음 단계
1. BOSS 카드를 설치합니다.
 노트: BOSS 카드를 설치하는 절차는 확장 카드를 제거하는 절차와 비슷합니다.
2. 해당 공기 커버를 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

프로세서 및 방열판
프로세서는 메모리, 주변 장치 인터페이스 및 시스템의 기타 구성 요소가 제어합니다. 시스템에 두 이상의 프로세서 구성이 있을 수 있습니다.
방열판은 프로세서에서 발생되는 열을 흡수하고, 프로세서가 최적의 온도 수준을 유지하도록 도와줍니다.

표 20. 프로세서 와트 및 방열판 치수

<table>
<thead>
<tr>
<th>방열판 유형</th>
<th>방열판 크기</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U 방열판</td>
<td>길이 x 너비 x 높이: 128mm x 82mm x 25.5mm</td>
</tr>
<tr>
<td>GPU 구성</td>
<td></td>
</tr>
<tr>
<td>2U 방열판</td>
<td>길이 x 너비 x 높이: 110mm x 82mm x 61mm</td>
</tr>
<tr>
<td>비 GPU 구성</td>
<td></td>
</tr>
</tbody>
</table>

듀얼 프로세서 구성
CPU 1 및 2 소켓에 2개의 프로세서가 설치되어 있는 경우 시스템은 정상적으로 작동합니다. CPU 3 및 4와 연결된 프로세서 및 메모리 보호물은 쪽 설치되어야 하는 것은 아닙니다. 듀얼 프로세서에 지원되는 확장 카드 슬롯에 대한 자세한 내용은 확장 카드 라이저 사양 섹션을 참조하십시오.

쿼드 프로세서 구성
쿼드 프로세서 구성에서는 설치된 모든 라이저가 작동합니다.
프로세서 및 방열판 모듈 제거

전제조건

⚠️ 경고: 시스템의 전원을 꺼낸 후에도 방열판은 매우 뜨거우므로 만지지 마십시오. 방열판을 분리하기 전에 충분히 냉각시켜야 합니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 절차를 따릅니다.
3. 공기 덮개를 제거합니다.

단계

1. Torx #T30 스크루 드라이버를 사용하여 아래의 순서로 방열판의 나사를 풀니다.
 a) 첫 번째 나사를 3번 돌려 풀니다.
 b) 두 번째 나사를 완전히 풀니다.
 c) 첫 번째 나사로 돌아가 완전히 풀니다.
2. 두 파란색 고정 클립을 동시에 누르면서 PHM(Processor and Heat Sink Module)을 들어 올립니다.
3. 프로세서 쪽이 위를 향하도록 PHM을 놓습니다.

그림 66. 프로세서 및 방열판 모듈 1U 제거
다음 단계
1. 프로세서 및 방열판 모듈을 장착합니다.

프로세서 및 방열판 모듈에서 프로세서 제거

전제조건
⚠ 경고: 시스템의 전원을 끄 후에도 방열판이 매우 뜨거우므로 만지지 마십시오. 방열판을 분리하기 전에 충분히 냉각시켜야 합니다.

⚠ 노트: 프로세서나 방열판을 교체할 시에만 프로세서 및 방열판 모듈에서 프로세서만 분리합니다. 이 절차는 시스템 보드 교체 시에는 필요하지 않습니다.
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 프로세서 및 방열판 모듈을 제거합니다.

단계
1. 프로세서 쪽이 위를 향하도록 방열판을 놓습니다.
2. 평면 블레이드 드라이버를 노란색 레이블로 표시된 릴리스 슬롯에 삽입합니다. 트위스트(살짝 들여되지 않는) 드라이버가 파손을 엮 봉합을 복사해 붙여 넣으십시오.
3. 프로세서 브래킷의 고정 클립을 놓려 방열판에서 브래킷을 잠금 해제합니다.
그림 68. 프로세서 브래킷 풀기
4. 브래킷과 프로세서를 방열판에서 들어 올리고 프로세서 커넥터 쪽이 아래를 향하도록 프로세서 트레이에 놓습니다.
5. 브래킷의 바깥쪽 가장자리를 구부려 프로세서에서 브래킷을 분리합니다.

노트: 프로세서와 브래킷을 트레이에 배치되었는지 확인한 후 방열판을 분리합니다.

그림 69. 프로세서 브래킷 분리

다음 단계
1. 프로세서를 프로세서 및 방열판 모듈에 설치합니다.

프로세서 및 방열판 모듈에 프로세서 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 작업 절차를 따릅니다.
3. 프로세서 및 방열판 모듈을 제거합니다.
단계
1. 프로세서를 프로세서 트레이에 놓습니다.
 ◆노트: 프로세서 트레이의 핀 1 표시등이 프로세서의 핀 1 표시등과 정렬되었는지 확인합니다.
2. 프로세서가 브래킷의 클립에 잠기도록 프로세서 주변 브래킷의 바깥쪽 가장자리를 구부립니다.
 ◆노트: 프로세서에 브래킷을 놓기 전에 브래킷의 핀 1 표시등이 프로세서의 핀 1 표시등과 정렬되었는지 확인합니다.
 ◆노트: 방열판을 설치하기 전에 프로세서와 브래킷이 트레이에 배치되었는지 확인합니다.

그림 70. 프로세서 브래킷 설치
3. 기존 방열판을 사용하는 경우, 방열판에 존재하는 열 그리스를 깨끗하고 보풀이 없는 천을 사용하여 제거합니다.
4. 프로세서 키트에 포함된 열 그리스 주사기를 사용하여 프로세서 상단의 네모꼴 설계에 그리스를 바릅니다.
 ◼주의: 열 그리스를 지나치게 많이 사용하면 여분의 그리스가 프로세서 소켓에 묻이 더러워질 수 있습니다.
 ◆노트: 열 그리스 주사기는 일회용입니다. 사용한 주사기는 폐기하십시오.
그림 71. 프로세서 상단에 열 그리스 바르기
5. 프로세서에 방열판을 놓고 브래킷이 방열판에 고정될 때까지 방열판 바닥을 아래로 누릅니다.

노트:
- 브래킷의 2개 가이드 핀 구멍이 방열판의 가이드 구멍과 일치하는지 확인합니다.
- 방열판 핀을 누르지 마십시오.
- 프로세서와 브래킷에 방열판을 놓기 전에 브래킷의 핀 1표시등이 방열판의 핀 1표시등과 정렬되었는지 확인합니다.

그림 72. 방열판을 프로세서 1U에 설치
다음 단계
1. 프로세서와 방열판 모듈을 설치합니다.

프로세서 및 방열판 모듈 장착

전체조건

주의: 프로세서를 분리할 의도가 아니라면 프로세서에서 방열판을 분리하지 마십시오. 방열판은 적절한 열 상태를 유지하는 데 필요합니다.
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우 프로세서 보호물 및 CPU 먼지 커버를 제거합니다.

단계
1. 방열판의핀 표시등을 시스템 보드의 표시등에 맞춘 다음, 프로세서 및 방열판 모듈(PHM)을 프로세서 소켓에 놓습니다.

주의: 방열판에 여러 핀이 손상되지 않도록 하려면, 방열판을 여러 핀을 아래로 누르지 마십시오.

노트: phm이 병렬 있는지 확인하십시오. 시스템 보드 구성 요소를 손상을 방지하려면.

2. 파란색 고정 클립을 안쪽으로 밀어 방열판을 제자리에 끈습니다.
3. 아래 순서에 따라 심사 드라이버(Torx #T30)를 사용하여 방열판의 나사를 조입니다.
 a) 첫 번째 나사를 부분적으로 조입니다(약 3회).
 b) 두 번째 나사를 완전히 조입니다.
 c) 셋 번째 나사를 완전히 조입니다.

나사를 부분적으로 조일 때 PHM이 정색 고정 클립에서 빠져나오는 경우 PHM을 고정하려면 다음 단계를 수행하십시오.
a. 두 방열판 나사를 완전히 풀니다.
b. PHM을 파란색 고정 클립으로 내립니다.
c. PHM을 시스템 보드에 고정하고 위 단계에 나열된 교체 지침을 따릅니다.

노트: 프로세서 및 방열판 모듈 고정 나사를 0.13 kgf-m(1.35 N.m 또는 12 in-lbf) 이상 조여서는 안 됩니다.

![그림 74. 프로세서 및 1U 방열판 모듈 설치](image1)

![그림 75. 프로세서 및 2U 방열판 모듈 설치](image2)

다음 단계
1. 공기 커버를 설치합니다.
2. 의 절차를 따릅니다. 시스템 내부 작업을 마친 후
IDSDM 또는 vFlash 모듈 (옵션)

노트: 쓰기 방지 스위치는 IDSDM 또는 vFlash 모듈에 있습니다.

IDSDM 또는 vFlash 모듈 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.

단계
1. 라이저 1에서 IDSDM 또는 vFlash 커넥터를 찾습니다.
2. 당김 탭을 잡고 IDSDM 또는 vFlash 모듈을 시스템에서 들어 올립니다.

그림 76. IDSDM 또는 vFlash 모듈 제거

노트: 쓰기 보호를 위해 IDSDM 또는 vFlash 모듈에는 2개의 DIP 스위치가 있습니다.

노트: IDSDM 또는 vFlash 모듈을 장착하는 경우, microSD 카드를 제거합니다.

다음 단계
IDSDM 또는 vFlash 모듈을 설치합니다.

시스템 구성 요소 설치 및 제거
IDSDM 또는 vFlash 모듈 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.

단계
1. 라이저 1에서 IDSDM 또는 vFlash 커넥터를 찾아요.
2. IDSDM 또는 vFlash 모듈을 라이저에 있는 커넥터에 맞춥니다.
3. 라이저의 커넥터에 완전히 장착될 때까지 IDSDM 또는 vFlash 모듈을 밀니다.

그림 77. IDSDM 또는 vFlash 모듈 설치

다음 단계
1. microSD 카드를 설치합니다.
 ① 노트: 제거하는 동안 카드에 표시한 레이블에 따라 동일한 송곳에 microSD 카드를 다시 설치합니다.
2. 확장 카드 라이저 1을 설치합니다.
3. 공기 커버를 설치합니다.
4. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

SD 카드(선택 사양) 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.
5. IDSDM 또는 vFlash 모듈을 제거합니다.

단계
1. IDSDM 또는 vFlash 모듈에서 MicroSD 카드 슬롯을 찾은 다음 카드를 누르면 슬롯에서 카드 일부분이 분리되어 나옵니다.

그림 78. SD 카드(선택 사항) 분리
2. MicroSD 카드를 잡고 슬롯에서 분리합니다.
 노트: 분리한 후 해당 슬롯 번호와 함께 각 MicroSD 카드에 임시로 레이블을 부착합니다.

다음 단계
MicroSD 카드를 설치합니다.

MicroSD 카드 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.
5. IDSDM 또는 vFlash 모듈을 제거합니다.
 노트: 시스템에 MicroSD 카드를 사용하려면 시스템 설정에서 Internal SD Card Port(내부 SD 카드 포트)가 활성화되었는지 확인합니다.
 노트: 재설치할 경우에는 분리하는 동안 카드에 표시한 레이블에 따라 동일한 슬롯에 MicroSD 카드를 설치합니다.

단계
1. IDSDM 또는 vFlash 모듈에서 MicroSD 카드 커넥터를 찾습니다. MicroSD 카드의 방향을 적절히 맞추고 카드의 접촉 편 끝을 슬롯에 삽입합니다.
그림 79. MicroSD 카드 설치

1. 노트: 슬롯은 카드를 올바르게 삽입할 수 있도록 설계되어 있습니다.
2. 카드를 카드 슬롯 안으로 눌러 제자리에 고정합니다.

다음 단계
1. IDSDM 또는 vFlash 모듈을 설치합니다.
2. 확장 카드 라이저 1을 설치합니다.
3. 공기 커버를 설치합니다.
4. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

네트워크 도터 카드

네트워크 도터 카드 분리

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.

단계
1. 십자 드라이버(#2)를 사용하여 네트워크 도터 카드(NDC)를 시스템 보드에 고정하는 두 개의 조임 나사를 풀니다.
2. NDC의 모서리를 잡고 들어 올려 시스템 보드의 커넥터에서 분리합니다.
3. 이더넷 커넥터가 시스템 후면의 슬롯에서 분리될 때까지 시스템의 전면으로 NDC를 밑니다.
다음 단계
1. 네트워크 도터 카드를 장착합니다.

네트워크 도터 카드 설치

전체조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 확장 카드 라이저 1을 제거합니다.

단계
1. 이더넷 커넥터가 후면 패널의 솔롯에 맞게 들어갈 수 있도록 NDC의 각도를 조정합니다.
2. 카드의 조임 나사를 시스템 보드에 있는 나사 구멍에 맞춥니다.
3. 카드 커넥터가 시스템 보드 커넥터에 단단히 장착될 때까지 카드의 접촉점을 누릅니다.
4. #2 #2 심자 드라이버를 사용하여 NDC를 시스템 보드에 고정하는 두 개의 조임 나사를 조입니다.
다음 단계
1. 시스템의 구성에 따라 확장 카드 라이저 1 또는 후면 드라이브 케이지를 설치합니다.
2. 공기 커버를 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

드라이브 백플레인

PowerEdge R840에서 지원되는 드라이브 백플레인은 다음과 같습니다.

그림 82. 8개의 6.35cm(2.5인치) 백플레인
1. miniSAS 하드 드라이브 B 1
2. miniSAS 하드 드라이브 A 1
3. 전원 케이블 커넥터
4. 후면판 신호 커넥터
그림 83. 24개의 6.35cm(2.5인치)(24 NVMe) 백플레인
1. PCIe 케이블 커넥터
2. PCIe 케이블 커넥터
3. PCIe 케이블 커넥터
4. PCIe 케이블 커넥터
5. 후면판 신호 커넥터
6. 전원 케이블 커넥터
7. 전원 케이블 커넥터
8. 전원 케이블 커넥터

그림 84. NVMe 백플레인용 범용 슬롯 장착 6.35cm(2.5인치)(x24) SAS/SATA(확장기)
1. SAS 케이블 커넥터 A
2. SAS 케이블 커넥터 B
3. 백플레인 신호 커넥터(J_BP_SIG)
4. 전원 케이블 커넥터(J_PWR_A)
5. 전원 케이블 커넥터(J_PWR_B)
6. PCIe 케이블 커넥터
7. PCIe 케이블 커넥터
8. PCIe 케이블 커넥터
9. PCIe 케이블 커넥터
10. PCIe 케이블 커넥터

드라이브 매핑

표 21. 지원되는 드라이브 옵션

<table>
<thead>
<tr>
<th>세시 옵션</th>
<th>구성</th>
</tr>
</thead>
<tbody>
<tr>
<td>24개의 드라이브 세시</td>
<td>슬롯 0에서 23까지의 전면 액세스 가능한 최대 24개의 2.5" SAS/SATA 드라이브 + 후면 액세스 가능한 2개의 2.5" SAS/SATA 드라이브</td>
</tr>
<tr>
<td>세시 옵션</td>
<td>구성</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>슬롯 0에서 11까지의 전면 액세스 가능한 최대 12개의 2.5" SAS/SATA 드라이브 + 슬롯 12에서 23까지의 전면 액세스 가능한 12개의 SAS/SATA/NVMe 드라이브</td>
</tr>
<tr>
<td></td>
<td>슬롯 0에서 23까지의 전면 액세스 가능한 최대 24개의 2.5" NVMe 드라이브</td>
</tr>
<tr>
<td></td>
<td>슬롯 0에서 7까지의 전면 액세스 가능한 최대 8개의 2.5" SAS/SATA/NVMe 드라이브</td>
</tr>
<tr>
<td>8개의 하드 드라이브 세시</td>
<td>슬롯 0에서 7까지의 전면 액세스 가능한 최대 8개의 2.5" SAS/SATA 드라이브</td>
</tr>
<tr>
<td></td>
<td>슬롯 0에서 7까지의 전면 액세스 가능한 최대 8개의 2.5" SATA 드라이브</td>
</tr>
</tbody>
</table>

드라이브 후면판 분리

전제조건

⚠️ 주의: 드라이브 및 후면판의 손상을 방지하려면 후면판을 분리하기 전에 시스템에서 드라이브를 분리해야 합니다.

⚠️ 주의: 드라이브를 동일한 위치에 다시 장착할 수 있도록 제거하기 전에 각 드라이브의 번호를 기록하고 임시로 레이블을 표시해둡니다.

노트: 백플레인을 제거하는 절차는 모든 백플레인 구성이 유사합니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 해당하는 경우 전면 배켓을 제거합니다.
4. 전면 베이에서 모든 드라이브를 제거합니다.
5. 공기 덮개를 제거합니다.
6. 냉각 팬 어셈블리를 제거합니다.

단계

1. 모든 PERC 케이블을 어댑터 PERC 카드에서 연결 해제합니다.
2. 파란색 분리 탭을 길게 누르고 백플레인을 들어 올려 시스템의 후크에서 백플레인의 슬롯을 분리합니다.

노트: 백플레인에 확장기 보드가 있는 경우 제거하는 절차는 동일합니다.
그림 85. 드라이브 후면판 분리
3. 백플레인을 들어 올려 하드 드라이브 베이의 상단에 놓은 다음 전원 및 I2C 케이블을 연결 해제합니다.
4. 해당하는 경우, 모든 Slimline SAS 케이블을 시스템 보드에서 연결 해제합니다.

다음 단계
1. 드라이브 백플레인을 장착합니다.

드라이브 백플레인 설치

전제조건

노트: 백플레인을 설치하려는 절차는 모든 백플레인 구성에 대해 유사합니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 해당하는 경우, 전면 베젤을 제거합니다.
4. 전면 베이에서 모든 드라이브를 제거합니다.
5. 공기 덮개를 제거합니다.
6. 냉각 팬 어셈블리를 제거합니다.

단계
1. 케이블을 연결합니다.
 a. 해당하는 경우, Slimline SAS, I2C 및 전원 케이블을 백플레인에 연결합니다.
 b. I2C 및 전원 케이블을 시스템 보드에 연결합니다.
2. 파란색 분리 탭을 잡은 상태로 백플레인에 있는 슬롯을 시스템에 있는 고리에 맞춥니다.
3. 파란색 분리 탭이 제자리에 고정될 때까지 드라이브 백플레인을 내립니다.
그림 86. 드라이브 백플레인 설치

4. 해당하는 경우 시스템 보드에 Slimline SAS 케이블을 연결합니다.
5. 해당하는 경우 PERC 케이블을 어댑터 PERC 카드에 연결합니다.

다음 단계

1. 냉각 팬 어셈블리를 설치합니다.
2. 공기 커버를 설치합니다.
3. 드라이브를 설치합니다.
4. 해당하는 경우, 전면 베젤을 설치합니다.
5. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
케이블 배선

그림 87. 케이블 라우팅 - 8개의 6.35cm(2.5인치) SATA 드라이브 백플레인

그림 88. 케이블 라우팅 - GPU 및 단일 PERC 카드를 포함하는 8개의 6.35cm(2.5인치) SAS/SATA 드라이브 백플레인(로우 프로 파일 라이저)
그림 89. 케이블 라우팅 - 단일 PERC 카드를 포함하는 8개의 6.35cm(2.5인치) (SAS/SATA) 드라이브 백플레인

노트: GPU 카드가 설치된 경우 PERC 카드는 시스템 보드의 로우 프로파일 확장 카드 슬롯에 설치해야 합니다.

그림 90. 케이블 라우팅 - GPU 및 단일 PERC 카드가 포함된 x12 범용(SAS/SATA/NVMe) 슬롯을 지원하는 24개의 6.35cm(2.5인치) (SAS/SATA) 드라이브 백플레인
그림 91. 케이블 라우팅 - 단일 PERC 카드를 포함하는 24개의 6.35cm (2.5인치) (SAS/SATA) 드라이브 백플레인

그림 92. 케이블 라우팅 - 이중 PERC 카드를 포함하는 24개의 6.35cm (2.5인치) (SAS/SATA) 드라이브 백플레인
그림 93. 케이블 라우팅 - 단일 PERC 카드를 포함하는 26개의 6.35cm(2.5인치) (SAS, 전면 24개 + 후면 2개) 드라이브 백플레인

그림 94. 케이블 라우팅 - 24개의 6.35cm(2.5인치) (SAS 12개 + 범용 12개) 드라이브 백플레인
그림 95. 케이블 라우팅 - 단일 PERC 카드를 포함하는 24개의 6.35cm (2.5인치) (SAS 12개 + 범용 12개) 드라이브 백플레인

그림 96. 케이블 라우팅 - 단일 PERC 카드를 포함하는 24개의 6.35cm (2.5인치) (NVMe 16개 + 범용 8개) 드라이브 백플레인
시스템 전지

시스템 전지 교체

전제조건

⚠ 경고: 새 전지를 올바르게 설치하지 않으면 전자가 파열될 위험이 있습니다. 제조업체에서 권장하는 것과 동일하거나 동등한 종류의 전지로만 교체합니다. 자세한 내용은 시스템과 함께 제공된 안전 정보를 참조하십시오.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 해당하는 경우, 확장 카드 라이저 x16 PCIe 라이저 2 또는 x8 PCIe 라이저 2에서 전원 또는 데이터 케이블을 연결 해제합니다.
5. 설치되어 있는 경우, 확장 카드 라이저를 제거합니다.
6. 설치되어 있는 경우, PCIe 확장 카드를 제거합니다.

단계

1. 배터리 소켓을 찾아냅니다. 자세한 내용은 시스템 보드 점퍼 및 커넥터 색인을 참조하십시오.

⚠ 주의: 배터리 커넥터의 손상을 방지하려면 배터리를 설치하거나 분리하는 경우 커넥터를 단단히 잡아야 합니다.

2. 플라스틱 스크라이브로 시스템 배터리를 들어 올립니다.

사용자 설명서의 다음 페이지로 이동하기 위해 다음 단계의 번호를 클릭하세요.
3. 새 시스템 전지를 설치하려면 전지의 양극(+)이 위로 향하게 전지를 잡고 커넥터의 고정 탭 아래로 밀니다.
4. 배터리가 제자리에 끈적일 때까지 커넥터 안으로 누릅니다.

그림 99. 시스템 배터리 설치

다음 단계
1. 해당하는 경우 로우 프로파일 PCIe 카드를 설치합니다.
2. 해당하는 경우 확장 카드 라이저 x16 PCIe 라이저 2 또는 x8 PCIe 라이저 2를 설치합니다.
3. 전원 및 데이터 케이블을 확장 카드 라이저에 연결합니다.
4. 공기 커버를 설치합니다.
5. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
6. 부팅하는 동안 <F2> 키를 눌러 시스템 설치 프로그램을 실행하여 배터리가 올바르게 작동하는지 확인합니다.
7. 시스템 설정의 Time(시간) 및 Date(날짜) 필드에 정확한 시간과 날짜를 입력합니다.
8. 시스템 설정을 종료합니다.

USB 3.0 모듈(옵션)

USB 3.0 모듈 케이블은 시스템 보드의 내부 USB 포트에 연결됩니다.

주의: USB 3.0 모듈(옵션)은 8개의 6.35cm(2.5인치) 시스템 구성에서만 지원됩니다.

USB 3.0 모듈 제거

전제조건
1. 안전 지침에 따라 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 냉각 팬 어셈블리를 제거합니다.
5. 내부 USB 메모리 키를 제거합니다.

주: 케이블을 시스템 보드에서 분리할 때 케이블 배선 경로를 기록하십시오. 이러한 케이블을 장착할 때 조여지거나 구겨지지 않도록 적절하게 라우팅합니다.

단계
1. 케이블을 시스템 보드에서 분리합니다.
2. Phillips #2 스크루 드라이버를 사용하여 USB 3.0 모듈의 나사를 풀니다.
3. USB 3.0 모듈을 빼서 시스템에서 빼냅니다.
다음 단계
1. USB 3.0 모듈을 장착합니다.

USB 3.0 모듈 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 공기 덮개를 제거합니다.
4. 냉각 팬 어셈블리를 제거합니다.

단계
1. USB 3.0 모듈의 전원 및 USB 케이블이 시스템 전면의 USB 3.0 모듈 슬롯을 통하도록 라우팅합니다.
2. USB 3.0 모듈을 전면 패널의 슬롯에 삽입합니다.
3. 모듈의 나사를 시스템의 나사 구멍에 맞춥니다.
4. Phillips #2 스크루 드라이버를 사용하여 모듈을 시스템에 고정하는 나사를 조입니다.
5. USB 케이블을 내부 USB 포트로 라우팅하고 전원 케이블을 시스템 보드의 백플레인 전원 커넥터에 연결합니다. 커넥터를 찾아면 시스템 보드 점퍼 및 커넥터 섹션을 참조하십시오.
다음 단계
1. 내부 USB 메모리 카드 설치합니다.
2. 냉각 팬 어셈블리를 설치합니다.
3. 공기 커버를 설치합니다.
4. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

선택 사양인 내부 USB 메모리 카드 설치

선택 사항으로 시스템 내부에 설치된 USB 메모리 카드를 부팅 장치, 보안 키 또는 대용량 저장소 장치로 사용할 수 있습니다. USB 메모리 카드 부팅을 하려면 부팅 이미지로 USB 메모리 카드를 구성한 다음에 시스템 설정의 부팅 순서에서 USB 메모리 카드를 지정합니다.

내부 USB 3.0 포트에 선택사양인 USB 메모리 카드 설치할 수 있습니다.

노트: 시스템 보드에서 내부 USB 포트를 찾으려면 시스템 보드 점퍼 및 커넥터 섹션을 참조하십시오.

내부 USB 메모리 카드 설치

전제조건

주의: 서버 모듈의 다른 구성부품을 방해가 되지 않도록 하기 위해 USB 메모리 카드의 크기는 최대 15.9mm(폭) x 57.15mm(길이) x 7.9mm(높이)로 제한됩니다.
1. 안전 지침에 따라 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 공기 막개를 제거합니다.

단계
1. 시스템 보드에서 USB 포트 또는 USB 메모리 카드 찾아보십시오.
2. 시스템 보드에서 내부 USB 포트를 찾아내면 시스템 보드 점퍼 및 커넥터 섹션을 참조하십시오.
3. USB 메모리 카드가 설치되어 있으며 USB 포트에서 분리합니다.
4. USB 포트에 새 USB 메모리 카드를 삽입합니다.
다음 단계
1. 공기 커버를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
3. 부팅하는 동안 F2 키를 눌러 System Setup(시스템 설정)을 시작하고 시스템이 USB 메모리를 감지하는지 확인합니다.

옵티컬 드라이브(옵션)
옵티컬 드라이브는 CD, DVD 등의 옵티컬 디스크에서 데이터를 검색하고 저장합니다. 옵티컬 드라이브는 옵티컬 디스크 판독기와 옵티컬 라이터의 두 가지 기본 유형으로 분류할 수 있습니다.

주의: 옵티컬 드라이브는 8개의 6.35cm(2.5인치) 시스템 구성에서만 지원됩니다.

광학 드라이브 분리
전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 해당하는 경우 전면 베젤을 제거합니다.

단계
1. 분리 탭을 눌러 옵티컬 드라이브를 분리합니다.
2. 광학 드라이브의 커넥터에서 전원 케이블과 데이터 케이블을 분리합니다.

주의: 시스템 측면의 전원 및 데이터 케이블을 시스템 보드와 드라이브에서 제거할 때 케이블의 라우팅을 기록했는지 확인하십시오.
3. 광학 드라이브 슬롯에서 분리될 때까지 광학 드라이브를 밀어 시스템에서 빼냅니다.

주의: 광학 드라이브 분리
4. 새 옵티컬 드라이브를 설치하지 않는 경우에는 옵티컬 드라이브 보호물을 설치합니다.

주의: 옵티컬 보호물의 설치 절차는 옵티컬 드라이브와 유사합니다.
다음 단계
1. 옵티컬 드라이브를 장착합니다.

옵티컬 드라이브 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에 전원을 켜는 절차를 따릅니다.
3. 해당하는 경우 전면 베젤을 제거합니다.

단계
1. 광학 드라이브 보호물이 설치되어 있는지 확인합니다.
 - **노트:** 광학 드라이브 보호물 제거 절차는 광학 드라이브와 유사합니다.
2. 광학 드라이브를 시스템 전면의 광학 드라이브 슬롯에 맞춥니다.
3. 분리 탭이 제자리에 걸릴 때까지 광학 드라이브를 밀어 넣습니다.
4. 광학 드라이브의 커넥터에 전원 케이블과 데이터 케이블을 연결합니다.
 - **노트:** 케이블이 조여지거나 구겨지지 않도록 올바르게 라우팅합니다.

다음 단계

그림 103. 옵티컬 드라이브 설치

1. 해당하는 경우 전면 베젤을 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

전원 공급 장치

전원 공급 장치(PSU)는 시스템 구성 요소에 전원을 공급하는 내부 하드웨어 구성 요소입니다.
이 시스템은 다음 구성 중 하나를 지원합니다.
- 2400W, 2000W, 1600W, 1100W 또는 750W AC PSU 2개
• 1100W DC PSU 2개
• 1100W, 750W 또는 1100W HVDC PSU 2개

일시적 주의사항: 전원 공급 장치에 대한 자세한 내용은 기술 사양 섹션을 참조하십시오.

주의: 2개의 PSUs가 설치되어 있는 경우 두 PSU의 동일한 유형의 레이블을 가지고 있어야 합니다. 예를 들어, Extended Power Performance(epp) 레이블. 이전 세대 PowerEdge 서버상의 PSU를 함께 경우 PSU의 전원 정격이 같더라도 업그레이드를 지원되지 않습니다. PSU를 혼합할 경우 불일치 조건이 발생하거나 시스템 전원이 켜지지 않습니다.

일시적 주의사항: 두 개의 동일한 전원 공급 장치가 설치되어 있을 경우, 시스템 BIOS에 전원 공급 장치 중복성(1+1 - 중복성이 있을 경우, 2+0 - 중복성이 없을 경우)이 구성됩니다. 중복 모드에서는 효율성을 극대화하기 위해 두 전원 공급 장치에서 모두 동일하게 시스템에 전력을 공급합니다. 핫 스페어가 활성화되어 있는 경우 시스템 사용률이 낮으면 효율성을 극대화하기 위해 PSU 중 하나는 슬립 모드로 전환됩니다.

노트: 두 개의 PSU를 사용하는 경우 최대 출력 전원이 동일해야 합니다.

노트: 단일 PSU 구성에서는 PSU를 베이 1(하단 PSU 슬롯)에 설치하십시오.

핫 스페어 기능
시스템은 PSU(Power Supply Unit) 이중화와 관련된 전력 오버헤드를 크게 줄여 주는 핫 스페어 기능을 지원합니다.

핫 스페어 기능이 활성화되어 있는 경우 이중화된 PSU 중 하나가 절전 상태로 전환됩니다. 활성화된 PSU는 부하의 100%를 지원하므로 더욱 효율적으로 작동합니다. 절전 상태에 있는 PSU는 활성화된 PSU의 출력 전압을 모니터링합니다. 활성 PSU의 출력 전압이 멀어지면 절전 상태의 PSU가 활성 출력 상태로 되돌아갑니다.

2개의 PSU를 모두 활성화하는 것이 1개의 PSU를 절전 상태에 두는 것보다 더 효율적인 경우 활성화된 PSU가 절전 상태의 PSU를 활성화할 수도 있습니다.

기본 PSU 설정은 다음과 같습니다:
- 활성화된 PSU의 부하가 50%를 초과하면 중복 PSU가 활성 상태로 전환됩니다.
- 활성화된 PSU의 부하가 20% 미만이면 중복 PSU가 절전 상태로 전환됩니다.

전원 공급 장치 보호물 제거
전제조건
나열되어 있는 안전 지침을 따르십시오(안전 지침).

단계
두 번째 PSU를 설치하는 경우 PSU 보호물을 보호물의 바깥쪽으로 당겨 베이에서 분리합니다.

주의: 적절한 시스템 설계가 확보하려면 비중복 구성에서 두 번째 PSU 베이에 PSU 보호물이 설치되어야 합니다. 보조 PSU를 설치하는 경우에만 PSU 보호물을 제거하십시오.

![그림 104. 전원 공급 장치 보호물 제거](image-url)
다음 단계
PSU 또는 PSU 보호물을 설치합니다.

전원 공급 장치 보호물 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. PSU 보호물을 두 번째 PSU 베이에 설치합니다.

단계
PSU 보호물을 PSU 슬롯에 맞춘 다음 딸깍 소리가 나면서 제자리에 고정될 때까지 PSU 슬롯에 밀어 넣습니다.

그래 105 . 전원 공급 장치 보호물 설치

전원 공급 장치 제거
AC PSU와 DC PSU의 제거 절차는 동일합니다.

전제조건
주의: 시스템이 정상적으로 작동하려면 하나의 PSU(Power Supply Unit)가 필요합니다. 전원 이중화 시스템의 경우 전원이 커져 있는 시스템에서 한 번에 하나의 PSU만 제거하고 교체합니다.
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 전원 및 제거할 PSU에서 전원 케이블을 연결 해제한 후 PSU 핸들을 스트랩에서 케이블을 제거합니다.
3. PSU 제거에 방해가 되는 경우 PSU 제거를 위해 익선인 고정 완화 막대와 고정 완화 막대 장착 브래킷을 제거합니다.

단계
분리 레치를 누른 다음 PSU 핸들을 잡고 PSU를 밀어 시스템에서 깨냅니다.

126 시스템 구성 요소 설치 및 제거
다음 단계
1. PSU 또는 PSU 보호물을 설치합니다.

전원 공급 장치 설치
AC 및 DC PSU 설치를 위한 절차들은 동일합니다.

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 이중화된 PSU를 지원하는 시스템의 경우 두 PSU의 유형과 최대 출력 전원이 동일해야 합니다.
 (노트: 최대 출력 전력(와트 단위로 표기)은 PSU 레이블에 표시되어 있습니다.)

단계
PSU가 완전히 장착되고 본리 레치가 제자리에 걸릴 때까지 PSU를 새시에 밀어 넣습니다.
다음 단계
2. 전원 케이블을 PSU에 연결하고 케이블을 전원 콘센트에 연결합니 다.
 △ 주의: 전원 케이블을 연결할 때는 안전 끈으로 케이블을 고정합니다.
 ○ 주의: 시스템이 전원 공급 장치를 설치, 핫 스왑 또는 핫 에드우드 때는 시스템의 전원 공급 장치를 안식하고 상태를 확인할 때까지 15 초 동안 기다립니다. 새 PSU 설치가 완료되기 전까지만 전원 공급 장치 이중화가 발생하지 않을 수도 있습니다. 다른 PSU를 분리하기 전에 새 PSU가 인식되어 활성화될 때까지 기다리십시오. 전원 공급 장치가 올바르게 작동할 경우 전원 공급 장치 상태 표시등이 녹색으로 컷됩니다.

DC 전원 공급 장치의 배선 지침
이 시스템은 최대 2개의 -(48–60)V DC 전원 공급 장치(PSU)를 지원합니다.
 ○ 주의: 동선으로만 장치를 배선하고 달리 명시되지 않는 한, 소스 및 리턴에 대해 정격이 최소 90℃인 10 AWG(American Wire Gauge) 와이어만 사용합니다. 인터럽트 전류 정격이 높은 DC에 대해서는 정격 50A의 분기 회로 과전류 보호 기능으로 -(48–60)V DC(1 외이어)를 보호하십시오.
 ○ 주의: 현장 배선에서는 적절히 승인되고 등급이 지정되어 있으며 손쉽게 엑세스 가능한 연결 해제 장치가 포함되어야 합니다.

입력 요구 사항
- 공급 전압: -(48–60)V DC
- 전류 소비량: 32A(최대)

키트 내용물
- Dell 부품 번호 6RYJ9 터미널 블록 또는 이에 상응하는 부품(1개)
- 접지 외각이 장착된 #6-32 너트(1개)

필요한 도구
10 AWG 크기의 단선 또는 연선 절연 구리선으로부터 절연체를 제거할 수 있는 외이어 스트리퍼 플라이어
 ○ 주의: 알파 와이어 부품 번호 3080 또는 이에 상당하는 선(65/30 연선)을 사용합니다.

필요한 와이어
- UL 10 AWG, 최대 2m(연선) 간접색 와이어 1개 [(48–60)V DC]
- UL 10 AWG, 최대 2m(연선) 블랙색 와이어 1개(V DC 리턴)
- UL 10 AWG, 최대 2m 녹색/노란색, 노란색 줄이 있는 녹색, 연선 와이어(안전 접지)

안전 접지 와이어 조립 및 연결

전체조건
 ○ 주의: -(48–60)V DC PSU(Power Supply Unit)를 사용하는 장비의 경우 검증된 전기 기사가 DC 전원 및 안전 접지에 대한 모든 연결을 수행해야 합니다. 직접 DC 전원에 연결하거나 접지를 설치하도록 시도하지 마십시오. 모든 전기 배선은 해당 지역 또는
국가 코드와 규칙을 준수해야 합니다. Dell의 승인을 받지 않은 서비스 작업으로 인한 손상에 대해서는 보상을 받을 수 없습니다. 제품과 함께 제공된 안전 지침을 읽고 따르십시오.

단계
1. 구리선이 약 4.5mm(0.175인치)가 노출되도록 녹색/노란색 전선 끝에 있는 피복을 벗겨 낸다.
2. 압착기 공구(Tyco Electronics, 58433-3 또는 이와 동등)를 사용하여 ring-tongue 터미널(Jeeson Terminals Inc., R5-4SA 또는 이와 동등)의 양 끝을 녹색 또는 노란색 전선(안전 접지선)으로 끌어당긴다.
3. 잠금 와셔가 장착된 #6-32 너트를 사용하여 시스템의 뒷면에 있는 접지 기둥에 안전 접지선을 연결합니다.

DC 입력 전선 조립
전제조건

노트: -(48~60)V DC PSU(Power Supply Unit)를 사용하는 장비의 경우 검증된 전기 기사가 DC 전원 및 안전 접지에 대한 모든 연결을 수행해야 합니다. 직접 DC 전원에 연결하거나 접지를 설치하도록 시도하지 마십시오. 모든 전기 배선은 해당 지역 또는 국가 코드와 규칙을 준수해야 합니다. Dell의 승인을 받지 않은 서비스 작업으로 인한 손상에 대해서는 보상을 받을 수 없습니다. 제품과 함께 제공된 안전 지침을 읽고 따르십시오.

단계
1. 구리선이 약 13mm(0.5인치) 노출되도록 DC 전선 끝에 있는 피복을 벗겨 낸다.

노트: DC 전선을 연결할 때 극성을 서로 바꾸면 전원 공급 장치 또는 시스템이 영구적으로 손상될 수 있습니다.
2. 구리 끝부분을 메이팅 커넥터에 삽입하고 #2 십자 드라이버를 사용하여 메이팅 커넥터 상단에 있는 조임 나사를 조입니다.

노트: 전원 공급 장치가 방전되지 않도록 하려면 전원 공급 장치에 메이팅 커넥터를 삽입하기 전에 조임 나사를 고무 마개로 덮어야 합니다.
3. 고무 마개를 시계 반방향으로 돌려 조임 나사 위에 고정합니다.
4. 전원 공급 장치에 메이팅 커넥터를 삽입합니다.

전원 접속기 보드
PIB(Power Interposer Board)는 핫 스왑이 가능한 PSU(Power Supply Units)를 시스템 보드에 연결하는 보드입니다.

전원 접속기 보드 제거
전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 해당 공기 커버를 제거합니다.
 a. 비 GPU 공기 커버
 b. 확장 카드 라이저 2
 또는
 a. GPU 공기 커버
 b. 확장 카드 라이저 2
4. 전원 공급 장치를 제거합니다.
 주의: 전원 접속기 보드의 손상을 방지하려면 전원 접속기 보드 또는 배선 보드를 제거하기 전에 전원 공급 장치 모듈 또는 전원 공급 장치 보호물을 시스템에서 제거해야 합니다.

단계
1. PIB(Power Interposer Board)에 연결된 케이블을 시스템 보드에서 연결 해제하고, 케이블 고정 브래킷에서 케이블을 제거합니다.

노트: 시스템에서 케이블을 분리할 때 케이블의 라우팅을 관찰하십시오. 케이블이 조이거나 구거지지 않도록 케이블을 교체할 때 적절히 라우팅합니다.
2. Phillips #2 스크루 드라이버를 사용하여 PIB를 시스템에 고정하는 나사를 제거합니다.
3. PIB의 파란색 접촉점을 잡고 조심스럽게 들어 올려 PSU 케이지에서 분리한 다음 밀어내어 깨냅니다.
4. 시스템에서 PIB를 들어 올려 분리합니다.

그림 108. 전원 접속기 보드 분리

다음 단계
1. PIB(Power Interposer Board)를 장착합니다.

전원 접속기 보드 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따라합니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 해당 공기 커버를 제거합니다.
 a. 비 GPU 공기 커버
 b. 확장 카드 라이저 2
 또는
 a. GPU 공기 커버
 b. 확장 카드 라이저 2
4. 전원 공급 장치를 제거합니다.

주의: 전원 접속기 보드의 손상을 방지하려면 전원 접속기 보드 또는 배전 보드를 제거하기 전에 전원 공급 장치 모듈 또는 전원 공급 장치 보호물을 시스템에서 제거해야 합니다.

노트: 시스템 내부의 케이블이 적절히 라우팅되고 케이블 고정 레치를 사용하여 고정되도록 합니다.

단계
1. PIB를 PSU 케이지에 맞추고 제자리에 고정될 때까지 밀어 넣습니다.
2. Phillips #2 스크루 드라이버를 사용하여 PIB를 시스템에 고정하는 나사를 조입니다.
3. 케이블을 라우팅하고 시스템 보드에 연결합니다.
다음 단계
1. PSU(Power Supply Unit)를 설치합니다.
2. 해당 공기 커버를 설치합니다.
 a. GPU 공기 커버
 b. 확장 카드 라이저 2
 또는
 a. 확장 카드 라이저 2
 b. 비 GPU 공기 커버
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

시스템 보드

시스템 보드 분리

전제조건

주의: 암호화 키를 사용하여 TPM(Trusted Platform Module)을 사용하는 경우 프로그램 또는 시스템 설정 중에 복구 키를 작성 하라는 메시지가 표시될 수 있습니다. 이 복구 키를 생성하고 안전하게 보관해야 합니다. 이 시스템 보드를 교체하는 경우 시스템 또는 프로그램을 재시작할 때 복구 키를 입력해야 드라이브에 있는 암호화된 데이터에 액세스할 수 있습니다.

주의: 시스템 보드에서 신품 플랫폼 모듈(TPM)을 분리하려고 하지 마십시오. TPM 플러그인 모듈을 설치한 후에는 암호화되어 해당 특정 시스템 보드에 바인딩됩니다. 설치된 TPM 플러그인 모듈을 제거하려고 시도하면 암호화된 바인딩이 망가지며, 다시 설치하거나 다른 시스템 보드에 설치할 수 없습니다.

1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 내부에서 작업하기 전에의 절차를 따릅니다.
3. 다음을 분리합니다.
 a. 비 GPU 공기 커버 또는 GPU 공기 커버
 b. 냉각 팬 이집트리
 c. 프로세서 및 방열판 모듈
 d. 시스템 보드에 연결된 백플레인 케이블
e. PIB(Power Interposer Board).
 - 주의: 시스템 보드를 장착할 때, 시스템 보드에서 케이블을 연결 해제하되 PIB에 연결된 케이블은 연결 해제하지 마십시오.

f. 확장 카드 라이저

g. DSDM/vFlash 카드

h. 내부 USB 키(설치된 경우)

i. 시스템 보드에 연결된 USB 3.0 모듈 케이블

j. 프로세서 보호판(설치된 경우)
 - 주의: 흉이 있는 시스템 보드를 교체할 때 프로세서 소켓의 손상을 방지하려면 프로세서 소켓을 프로세서 먼지 커버로 덮어주는지 확인하십시오.

k. 네트워크 도터 카드

l. 드라이브 케이지(후면)(설치된 경우)

단계
1. 시스템 보드에서 모든 케이블을 분리합니다.
 - 주의: 시스템에서 시스템 보드를 제거하는 동안 시스템 ID 버튼이 손상되지 않도록 주의하십시오.
 - 주의: 메모리 모듈, 프로세서 또는 그 밖의 구성요소를 들고 시스템 보드를 들어올리지 마십시오.

2. 파란색 플런저를 잡고 시스템 보드를 시스템 전면으로 밀습니다.

3. 시스템 보드를 일정한 각도로 기울인 다음 시스템 보드를 들어 올려 시스템에서 빼냅니다.

그림 110. 시스템 보드 분리

다음 단계
1. 시스템 보드를 장착 또는 설치합니다.

시스템 보드 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 시스템 보드를 장착하는 경우, 시스템 보드 제거 섹션에 나와 있는 모든 구성 요소를 제거합니다.

단계
1. 새 시스템 보드 조립품의 포장을 풂니다.
 - 주의: 메모리 모듈, 프로세서 또는 그 밖의 구성요소를 들고 시스템 보드를 들어올리지 마십시오.
주의: 시스템 보드를 시스템에 배치하는 동안 시스템 ID 버튼이 손상되지 않도록 주의하십시오.

2. 시스템 보드 플런저를 참고 시스템 보드를 일정한 각도로 기울여 시스템 보드의 커넥터를 시스템의 슬롯에 맞춥니다. 그러고 나서 시스템 보드를 시스템에 내려놓습니다.

3. 플런저가 딸깍 소리를 내며 제자리에 고정될 때까지 시스템 보드를 시스템 후면으로 밑니다.

![그림 111. 시스템 보드 설치](image)

다음 단계

1. 다음을 장착합니다.
 a. 신뢰할 수 있는 플랫폼 모듈(TPM)

 노트: TPM은 새 시스템 보드를 설치하는 동안에만 교체해야 합니다.

 노트: TPM 플러그인 모듈이가 시스템 보드에 연결되어 있으며 분리할 수 없습니다. TPM 플러그인 모듈이 설치된 모든 시스템 보드에서 교체할 수 있도록 교체 TPM 플러그인 모듈이 제공됩니다.
 b. 네트워크 도터 카드.
 c. PIB(Power Interposer Board).
 d. USB 3.0 모듈 케이블(해당하는 경우)
 e. 백플레인 케이블(해당하는 경우)
 f. 프로세서 및 방열판 모듈
 g. 내부 USB 키(해당하는 경우)
 h. iDSOM/vFlash 모듈
 i. 확장 카드 라이저
 j. 냉각 팬 어셈블리.
 k. 공기 덮개.
 l. 드라이브 캐이지(후면)(해당되는 경우)
2. 시스템 전면에 있는 라기지 태그의 IDRAC MAC 주소 레이블을 교체 시스템 보드와 함께 제공된 새 IDRAC MAC 주소 레이블로 교체합니다.
3. 모든 케이블을 시스템 보드에 다시 연결합니다.

 노트: 시스템 내부의 케이블이 새시 벽을 따라 배선되고 케이블 고정 브레킷을 사용하여 고정되도록 합니다.
4. 시스템을 부팅합니다.
5. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
6. 다음과 같은 사항을 확인합니다.
 a. 간편 복원 기능을 사용하여 서비스 태그를 복원할 수 있습니다. 자세한 내용은 간편 복원을 사용하여 서비스 태그 복원 섹션을 참조하십시오.
 b. 서비스 태그를 백업 플래시 장치에 백업하지 않은 경우 시스템 서비스 태그를 수동으로 입력합니다. 자세한 정보는 서비스 태그 수동 업데이트 섹션을 참조하십시오.
 c. BIOS 및 IDRAC 버전을 업데이트합니다.
TPM(Trusted Platform Module)를 재활성화합니다. 자세한 내용은 TPM(Trusted Platform Module) 업그레이드 섹션을 참조하십시오.

7. 신규 또는 기존 iDRAC Enterprise 라이센스를 가져옵니다.
 자세한 내용은 Dell.com/iDRACmanuals에서 iDRAC 사용자 가이드를 참조하십시오.

간편한 복원을 사용하여 서비스 태그 복원
간편 복원 기능을 사용하면 시스템 보드를 장착한 후에 서비스 태그, iDRAC 라이센스, UEFI 구성 및 시스템 구성 데이터를 복원할 수 있습니다. 모든 데이터는 백업 플래시 드라이브 디바이스에 자동으로 백업됩니다. BIOS가 새 시스템 보드를 감지하고 백업 플래시 드라이브 디바이스의 서비스 태그가 다르면 BIOS는 사용자에게 백업 정보를 복원하라는 메시지를 표시합니다.

이 작업 정보
다음은 사용 가능한 옵션 목록입니다.
1. Y 키를 눌러 서비스 태그, iDRAC 라이센스 및 진단 정보를 복원합니다.
2. Lifecycle Controller 기반 복원 옵션으로 이동하고 N을 누릅니다.
3. F10 키를 눌러 이전에 생성된 Hardware Server Profile(하드웨어 서버 프로필)에서 데이터를 복원합니다.
 ![노트: 복구 프로세스가 완료되면 BIOS가 시스템 구성 데이터를 복구하라는 메시지를 표시합니다.]
4. 시스템 구성 데이터를 복구하려면 Y를 누릅니다.
5. 기본 구성 설정을 사용하려면 N을 누릅니다.
 ![노트: 복구 프로세스가 완료되면 시스템이 재부팅됩니다.]
6. 서비스 태그 복원에 성공하면 System Information(시스템 정보) 화면에서 서비스 태그 정보를 확인하고 시스템의 서비스 태그와 비교할 수 있습니다.

서비스 태그 수동 업데이트
시스템 보드를 교체한 후, 간편 복원에 오류가 발생한 경우에는 이 프로세스에 따라 System Setup(시스템 설정)을 사용하여 서비스 태그를 수동으로 입력합니다.

이 작업 정보
시스템 서비스 태그를 이는 경우 System Setup(시스템 설정) 메뉴를 사용하여 서비스 태그를 입력할 수 있습니다.

단계
1. 시스템의 전원을 켭니다.
2. System Setup(시스템 설정)을 시작하려면 F2 키를 누릅니다.
3. Service Tag Settings(서비스 태그 설정)을 클릭합니다.
4. 서비스 태그를 입력합니다.
 ![노트: Service Tag(서비스 태그) 필드가 비어있는 경우에만 서비스 태그를 입력할 수 있습니다. 서비스 태그를 올바르게 입력했는지 확인합니다. 서비스 태그를 입력한 다음에는 업데이트하거나 변경할 수 없습니다.]
5. OK(확인)를 클릭합니다.

TPM(Trusted Platform Module) 업그레이드

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 전원을 끊는 절차를 따릅니다.

![노트: 운영 체제가 설치된 TPM의 버전을 지원하는지 확인합니다.]
최신 BIOS 펌웨어를 다운로드하고 시스템에 설치해야 합니다.
· BIOS가 UEFI 부팅 모드를 활성화하도록 구성되어 있어야 합니다.

이 작업 정보

주의: TPM 플러그인 모듈을 설치한 후에는 암호화되어 해당 특정 시스템 보드에 바인딩됩니다. 설치된 TPM 플러그인 모듈을 제거하려고 시도하면 암호화된 바인딩이 망가지며, 제거된 TPM은 다시 설치하거나 다른 시스템 보드에 설치할 수 없습니다.

TPM 제거

단계
1. 시스템 보드에서 TPM 커넥터를 찾습니다.
 ① 노트: 시스템 보드에서 TPM 커넥터를 찾으려면 시스템 보드 점퍼 및 커넥터 섹션을 참조하십시오.
2. 모듈을 길게 누른 다음, TPM 모듈과 함께 제공된 보안 Torx 8비트를 사용하여 나사를 제거합니다.
3. 해당 커넥터에서 TPM 모듈을 밀어서 뽑습니다.
4. 플라스틱 리벳을 TPM 커넥터에서 놓리 분리하고 반시계 방향으로 90° 회전시켜 시스템 보드에서 분리합니다.
5. 플라스틱 리벳을 당겨 시스템 보드의 슬롯에서 깨냅니다.

TPM 설치

단계
1. TPM을 설치하려면 TPM의 가장자리 커넥터를 TPM 커넥터 슬롯에 맞춥니다.
2. 플라스틱 리벳이 시스템 보드의 슬롯에 맞춰지도록 TPM을 TPM 커넥터에 삽입합니다.
3. 리벳이 제자리에 고정될 때까지 플라스틱 리벳을 누릅니다.

그림 112 . TPM 설치

다음 단계
1. 시스템 보드를 설치합니다.
2. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

BitLocker 사용자를 위한 TPM 초기화

단계
TPM을 초기화합니다.
TPM Status(TPM 상태)는 Enabled, Activated(사용 가능, 활성화)로 변경됩니다.
TXT 사용자를 위한 TPM 1.2 초기화

단계
1. 시스템을 부팅하는 동안 F2 키를 눌러 시스템 설정으로 들어갑니다.
2. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS) > System Security Settings(시스템 보안 설정)을 클릭합니다.
3. TPM Security(TPM 보안) 옵션에서 On with Pre-boot Measurements(사전 부팅으로 켜기)를 선택합니다.
4. TPM Command(TPM 명령) 옵션에서 Activate(활성화)를 선택합니다.
5. 설정을 저장합니다.
6. 시스템을 재시작합니다.
7. System Setup(시스템 설정)으로 다시 전환됩니다.
8. System Setup Main Menu(시스템 설정 기본 메뉴) 화면에서 System BIOS(시스템 BIOS) > System Security Settings(시스템 보안 설정)을 클릭합니다.
9. Intel TXT 옵션에서 On(켜기)을 선택합니다.

제어판

컨트롤 패널을 사용하여 서버에 대한 입력을 수동으로 제어할 수 있습니다.

왼쪽 제어판 분리

전체조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 비 GPU 공기 커버 또는 GPU 공기 커버를 제거합니다.
4. 냉각 팬 어셈블리를 제거합니다.

노트: 케이블을 시스템 보드에서 분리할 때 케이블 배선 경로를 기억하십시오. 케이블이 조여지거나 구겨지지 않도록 장착시 적절하게 라우팅합니다.

단계
1. 케이블 래치를 열고 시스템 보드 커넥터에서 컨트롤 패널 케이블을 연결 해제합니다.
2. Phillips #1 스크루 드라이버를 사용하여 컨트롤 패널 및 리본 케이블을 시스템에 고정하는 나사를 제거합니다.
3. 컨트롤 패널 및 리본 케이블을 잡고 컨트롤 패널과 리본 케이블을 함께 시스템에서 제거합니다.
다음 단계
1. 왼쪽 컨트롤 패널을 설치합니다.

왼쪽 컨트롤 패널 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 비 GPU 공기 커버 또는 GPU 공기 커버를 제거합니다.
4. 냉각 팬 어셈블리를 제거합니다.

노트: 케이블을 시스템 보드에서 분리할 때 케이블 배선 경로를 기록하십시오. 케이블이 조여지거나 구겨지지 않도록 잘끔하게 라우팅해 주세요.

단계
1. 시스템의 측면 벽을 통해 제어판 케이블을 배선합니다.
2. 컨트롤 패널 어셈블리를 시스템의 컨트롤 패널 슬롯에 맞추고 컨트롤 패널 어셈블리를 시스템에 장착합니다.
3. 컨트롤 패널 케이블을 시스템 보드 콘넥터에 연결합니다.
4. 케이블 레치를 닫아 컨트롤 패널 케이블을 고정합니다.
5. Phillips #1 스크루 드라이버를 사용하여 컨트롤 패널 및 리본 케이블을 시스템에 고정하는 나사를 설치합니다.
다음 단계
1. 냉각 팬 어셈블리를 설치합니다.
2. 비 GPU 공기 커버 또는 GPU 공기 커버를 설치합니다.
3. 시스템 내부 작업을 마친 후의 절차를 따릅니다.

운전쪽 컨트롤 패널 제거

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에의 절차를 따릅니다.
3. 설치되어 있는 경우, 전면 베젤을 제거합니다.
4. 설치되어 있는 경우 드라이브, 옵티컬 드라이브 또는 드라이브 보호물을 제거합니다.
5. 비 GPU 공기 커버 또는 GPU 공기 커버를 제거합니다.
6. 냉각 팬 어셈블리를 제거합니다.

단계
1. 시스템 보드에서 VGA 케이블을 연결 해제합니다.
2. 케이블 레치를 열고 시스템 보드 커넥터에서 컨트롤 패널 케이블을 연결 해제합니다.
3. Phillips #1 스크루 드라이버를 사용하여 컨트롤 패널 및 리본 케이블을 시스템에 고정하는 나사를 제거합니다.
4. 컨트롤 패널 및 리본 케이블을 잡고 컨트롤 패널과 리본 케이블을 함께 시스템에서 제거합니다.
다음 단계
1. 오른쪽 컨트롤 패널을 장착합니다.

오른쪽 컨트롤 패널 설치

전제조건
1. 안전 지침에 나와 있는 안전 지침을 따릅니다.
2. 컴퓨터 내부 작업을 시작하기 전에 절차를 따릅니다.
3. 설치되어 있는 경우 전면 베젤을 제거합니다.
4. 설치되어 있는 경우 드라이브, 옵티컬 드라이브 또는 드라이브 보호물을 제거합니다.
5. 공기 덮개를 제거합니다.
6. 냉각 팬 어셈블리를 제거합니다.

노트: 케이블을 시스템 보드에서 분리할 때 케이블 배선 경로를 기록하십시오. 케이블이 조여지거나 구겨지지 않도록 장착 시 적절하게 라우팅해야 합니다.

단계
1. 컨트롤 패널 케이블과 VGA 케이블을 시스템 측면 벽을 통해 라우팅합니다.
2. 컨트롤 패널을 시스템의 컨트롤 패널 슬롯에 맞추고 컨트롤 패널을 시스템에 장착합니다.
3. VGA 케이블을 시스템 보드에 연결합니다.
4. 제어판 케이블을 시스템 보드에 연결하고 케이블 레치를 사용하여 고정합니다.
5. Phillips #1 스크루 드라이버를 사용하여 컨트롤 패널 및 리본 케이블을 시스템에 고정하는 나사를 설치합니다.
그림 116. 오른쪽 컨트롤 패널 설치

다음 단계
1. 냉각 팬 어셈블리 설치합니다.
2. 비 GPU 공기 커버 또는 GPU 공기 커버를 설치합니다.
3. 해당하는 경우 드라이브, 옵티컬 드라이브 또는 드라이브 보호물을 설치합니다.
4. 해당하는 경우, 전면 베젤을 설치합니다.
5. 시스템 내부 작업을 마친 후의 절차를 따릅니다.
이 항목은 점퍼에 대한 자세한 정보를 제공합니다. 또한, 점퍼 및 스위치에 대한 몇 가지 기본 정보를 제공하고 시스템 내 다양한 보드의 커넥터에 대해 설명합니다. 시스템 보드의 점퍼는 시스템 및 설정 암호를 비활성화하는 데 유용합니다. 구성 요소와 케이블을 올바르게 설치하려면 시스템 보드의 커넥터에 대해 알고 있어야 합니다.

주제:

- 시스템 보드 커넥터
- 시스템 보드 점퍼 설정
- 잊은 암호 비활성화
시스템 보드 커넥터

그림 117. 시스템 보드 커넥터

표 22. 시스템 보드 점퍼 및 커넥터

<table>
<thead>
<tr>
<th>항목</th>
<th>커넥터</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D7, D1, D8, D2, D9, D3</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>2</td>
<td>J_ODD</td>
<td>광학 드라이브 전원 커넥터</td>
</tr>
<tr>
<td>3</td>
<td>J_FAN_6</td>
<td>냉각 팬 6 커넥터</td>
</tr>
<tr>
<td>항목</td>
<td>커넥터</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>4</td>
<td>CPU4</td>
<td>CPU4 프로세서 및 방열판 모듈 소켓(먼지 커버 포함)</td>
</tr>
<tr>
<td>5</td>
<td>J_BP_PWR0</td>
<td>후면판 전원 커넥터</td>
</tr>
<tr>
<td>6</td>
<td>J_FAN_5</td>
<td>난각 팬 5 커넥터</td>
</tr>
<tr>
<td>7</td>
<td>J_BP_SIG_B</td>
<td>백플레인 B 신호 커넥터(후면)</td>
</tr>
<tr>
<td>8</td>
<td>D6, D12, D5, D11, D4, D10</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>9</td>
<td>J_FAN_4</td>
<td>난각 팬 4 커넥터</td>
</tr>
<tr>
<td>10</td>
<td>C7, C1, C8, C2, C9, C3</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>11</td>
<td>J_FAN_3</td>
<td>난각 팬 3 커넥터</td>
</tr>
<tr>
<td>12</td>
<td>CPU3</td>
<td>CPU3 프로세서 및 방열판 모듈 소켓(먼지 커버 포함)</td>
</tr>
<tr>
<td>13</td>
<td>J_FAN_2</td>
<td>난각 팬 2 커넥터</td>
</tr>
<tr>
<td>14</td>
<td>J_BP_SIG_A</td>
<td>백플레인 A 신호 커넥터(전면)</td>
</tr>
<tr>
<td>15</td>
<td>C6, C12, C5, C11, C4, C10</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>16</td>
<td>J_BP_PWR1</td>
<td>후면판 전원 커넥터</td>
</tr>
<tr>
<td>17</td>
<td>J_FAN_1</td>
<td>난각 팬 1 커넥터</td>
</tr>
<tr>
<td>18</td>
<td>PCIe_M3</td>
<td>PCIe 신호 M3 커넥터</td>
</tr>
<tr>
<td>19</td>
<td>PCIe_M1</td>
<td>PCIe 신호 M1 커넥터</td>
</tr>
<tr>
<td>20</td>
<td>PCIe_M2</td>
<td>PCIe 신호 M2 커넥터</td>
</tr>
<tr>
<td>21</td>
<td>CPU2</td>
<td>CPU2 프로세서 및 방열판 모듈 소켓(먼지 커버 포함)</td>
</tr>
<tr>
<td>22</td>
<td>B3, B9, B2, B8, B1, B7</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>23</td>
<td>B10, B4, B11, B5, B12, B6</td>
<td>메모리 모듈 소켓</td>
</tr>
<tr>
<td>24</td>
<td>J_PIB_SIG1</td>
<td>전원 인터포저 보드 신호 커넥터</td>
</tr>
<tr>
<td>25</td>
<td>J_RISER2</td>
<td>PCIe 라이저 2 커넥터</td>
</tr>
<tr>
<td>26</td>
<td>J_PIB_PWR 4</td>
<td>PIB 전원 커넥터 4</td>
</tr>
<tr>
<td>27</td>
<td>J_PIB_PWR 3</td>
<td>PIB 전원 커넥터 3</td>
</tr>
<tr>
<td>28</td>
<td>J_PIB_PWR 2</td>
<td>PIB 전원 커넥터 2</td>
</tr>
<tr>
<td>29</td>
<td>J_PIB_PWR 1</td>
<td>PIB 전원 커넥터 1</td>
</tr>
<tr>
<td>30</td>
<td>U_USB_RECONN</td>
<td>USB 클라이언트 전원 관리</td>
</tr>
<tr>
<td>31</td>
<td>J_BATT_PWR</td>
<td>NVDIMM-N 배터리 전원 커넥터</td>
</tr>
<tr>
<td>32</td>
<td>J_BATT_SIG</td>
<td>NVDIMM-N 배터리 신호 커넥터</td>
</tr>
<tr>
<td>33</td>
<td>J_TPM_MODULE</td>
<td>TPM 커넥터</td>
</tr>
<tr>
<td>34</td>
<td>CMOS</td>
<td>CMOS 배터리 커넥터</td>
</tr>
<tr>
<td>35</td>
<td>J_SLOT4</td>
<td>PCIex16 커넥터</td>
</tr>
<tr>
<td>36</td>
<td>J_SLOT3</td>
<td>PCIex16 커넥터</td>
</tr>
<tr>
<td>37</td>
<td>J_USB_INT</td>
<td>내부 USB 커넥터</td>
</tr>
<tr>
<td>38</td>
<td>J_SATA_1</td>
<td>x8 백플레인용 NPIO 커넥터 1</td>
</tr>
<tr>
<td>39</td>
<td>J_NDC</td>
<td>NDC 커넥터</td>
</tr>
</tbody>
</table>
항목 | 커넥터 | 설명
---|---|---
40 | J_RISER1 | PCIe 라이저 1 커넥터
41 | J_SATA_2 | x8 백플레인용 NPIO 커넥터
42 | J_PSWD | BIOS 암호 다시 설정
43 | NVRAM_CLR | NVRAM 지우기
44 | J_FRONT_VIDEO | 비디오 커넥터
45 | J_SATA_3 | SATA C 커넥터 - 옵티컬 드라이브 SATA 커넥터
46 | A3, A9, A2, A8, A1, A7 | 메모리 모듈 소켓
47 | A10, A4, A11, A5, A12, A6 | 메모리 모듈 소켓
48 | CPU1 | CPU1 프로세서 및 방열판 모듈 소켓(연지 커버 포함)
49 | PCIe_M5 | PCIe 신호 M5 커넥터
50 | PCIe_M6 | PCIe 신호 M6 커넥터
51 | PCIe_M4 | PCIe 신호 M4 커넥터

시스템 보드 점퍼 설정

암호 점퍼를 재설정하여 암호를 비활성화하는 방법에 대한 자세한 내용은 분실된 암호 비활성화 섹션을 참조하십시오.

표 23. 시스템 보드 점퍼 설정

<table>
<thead>
<tr>
<th>점퍼</th>
<th>설정</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWRD_EN</td>
<td></td>
<td>BIOS 암호 기능이 활성화됩니다.</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>NVRAM_CLR</td>
<td></td>
<td>BIOS 구성 설정이 시스템 부팅 시 보존됩니다.</td>
</tr>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

주의: BIOS 설정 변경 시 주의하십시오. BIOS 인터페이스는 고급 사용자들만에 설계되었습니다. 설정을 변경하면 컴퓨터가 올바르게 시작하지 못할 수 있고 잠재적인 데이터 손실 가능성이 있습니다.

1. 시스템 및 장착된 주변 장치를 모두 고고 콘센트에서 시스템을 분리합니다.
2. 시스템 덮개를 분리합니다.
3. 시스템 보드 점퍼의 점퍼를 편 3, 편 5에서 편 1, 편 3으로 이동하고 약 10초 정도 기다립니다.
4. 점퍼 플러그를 편 3 및 편 5에 장착합니다.
5. 시스템 덮개를 장착합니다. 시스템을 전원 콘센트에 다시 연결하고 시스템 및 시스템에 연결된 주변 장치의 전원을 모두 켜십시오.

잊은 암호 비활성화

시스템의 소프트웨어 보안 기능은 시스템 암호 및 설정 암호를 포함합니다. 암호 점퍼는 암호 기능을 활성화하거나 비활성화하고 현재 사용 중인 모든 암호를 지웁니다.
전제조건

단계
1. 시스템 및 장착된 주변 장치를 모두 고고 콘센트에서 시스템을 분리합니다.
2. 시스템 덮개를 분리합니다.
3. 시스템 보드 점퍼의 점퍼를 핀 2 및 4에서 핀 4 및 6으로 이동합니다.
4. 시스템 덮개를 장착합니다.
 기존 암호는 점퍼가 핀 4 및 6에 있는 상태에서 시스템을 부팅할 때까지 비활성화(삭제)되지 않습니다. 그러나 새 시스템 및/또는 설정 암호를 할당하기 전에 점퍼를 핀 2 및 4로 다시 이동해야 합니다.
 ① 노트: 점퍼가 핀 4 및 6에 있는 상태에서 새 시스템 및/또는 설정 암호를 지정하면 다음에 부팅할 때 새 암호가 비활성화됩니다.
5. 시스템을 전원 콘센트에 다시 연결하고 시스템 및 시스템에 연결된 주변 장치의 전원을 모두 켭니다.
6. 시스템 및 장착된 주변 장치를 모두 고고 콘센트에서 시스템을 분리합니다.
7. 시스템 덮개를 분리합니다.
8. 시스템 보드 점퍼의 점퍼를 핀 4 및 6에서 핀 2 및 4로 이동합니다.
9. 시스템 덮개를 장착합니다.
10. 시스템을 전원 콘센트에 다시 연결하고 시스템 및 시스템에 연결된 주변 장치의 전원을 모두 켭니다.
11. 새 시스템 및/또는 설정 암호를 할당합니다.
기술 사양

이 섹션에는 시스템의 기술 및 환경 사양이 설명되어 있습니다.

주제:

- 셔시 크기
- 셔시 무게
- 프로세서 사양
- 지원되는 운영 체제
- PSU 사양
- 시스템 전지 사양
- 확장 카드 라이저 사양
- 메모리 사양
- RAID 컨트롤러 사양
- 드라이브 사양
- 포트 및 커넥터 사양
- 비디오 사양
- 환경 사양

섀시 크기

![단면도](그림 118. PowerEdge R840 시스템의 크기)
표 24. PowerEdge R840 시스템의 크기

<table>
<thead>
<tr>
<th>Xa</th>
<th>Xb(브래킷 포함)</th>
<th>Xb(브래킷 미포함)</th>
<th>Y</th>
<th>Za(배젤 포함)</th>
<th>Za(배젤 미포함)</th>
<th>Zb*</th>
<th>Zc(PSU 핸들 포함)</th>
<th>Zc(씨시 후면 벽 핸들)</th>
</tr>
</thead>
<tbody>
<tr>
<td>482mm(18.97인치)</td>
<td>434mm(17.08인치)</td>
<td>444.0mm(17.48인치)</td>
<td>86.8mm(3.41인치)</td>
<td>37.84mm(1.41인치)</td>
<td>23.9mm(0.94인치)</td>
<td>812mm(33.14인치)</td>
<td>842mm(33.14인치)</td>
<td>902mm(35.51인치)</td>
</tr>
</tbody>
</table>

* - Zb는 시스템 보드 I/O 커넥터가 위치한 공칭 후면 벽 외부 표면을 나타냅니다.

새시 무게

表 25. 새시 무게

<table>
<thead>
<tr>
<th>시스템</th>
<th>최대 무게(모든 드라이브/SSD 포함)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.35cm(2.5인치)</td>
<td>36.6kg(80.68파운드)</td>
</tr>
</tbody>
</table>

프로세서 사양

PowerEdge R840 시스템은 4개의 프로세서(인텔 제온 확장 가능 프로세서 제품군)를 지원합니다.

지원되는 운영 체제

PowerEdge R840은 다음 운영 체제를 지원합니다.
- Canonical Ubuntu LTS Citrix XenServer
- Microsoft Windows Server(Hyper-V 포함)
- Red Hat Enterprise Linux
- SUSE Linux Enterprise Server
- VMware ESXi

특정 버전 및 추가 사항에 대한 자세한 내용은 https://www.dell.com/support/home/Drivers/SupportedOS/poweredge-r840을 참조하십시오.

PSU 사양

PowerEdge R840 시스템은 최대 2개의 AC 또는 DC PSU(Power Supply Units)를 지원합니다.

表 26. PSU 사양

<table>
<thead>
<tr>
<th>PSU</th>
<th>등급</th>
<th>열손실(최대)</th>
<th>주파수</th>
<th>전압</th>
<th>하이 라인 200V~240V</th>
<th>로우 라인 100V~140V</th>
<th>DC</th>
<th>전류</th>
</tr>
</thead>
<tbody>
<tr>
<td>750W AC</td>
<td>플래티넘</td>
<td>2891 BTU/hr</td>
<td>50/60Hz</td>
<td>100–240V AC, 자동 범위 조정</td>
<td>750W</td>
<td>750W</td>
<td>해당 없음</td>
<td>10A-5A</td>
</tr>
<tr>
<td>750W AC</td>
<td>티타늄</td>
<td>2843 BTU/hr</td>
<td>50/60Hz</td>
<td>200–240V AC, 자동 범위 조정</td>
<td>750W</td>
<td>해당 없음</td>
<td>해당 없음</td>
<td>5A</td>
</tr>
<tr>
<td>750W 혼합 모드 HVDC(중국 만 해당)</td>
<td>플래티넘</td>
<td>2891 BTU/hr</td>
<td>50/60Hz</td>
<td>100–240V AC, 자동 범위 조정</td>
<td>750W</td>
<td>750W</td>
<td>해당 없음</td>
<td>해당 없음</td>
</tr>
<tr>
<td>N/A(해당 없음)</td>
<td>2891 BTU/hr</td>
<td>N/A(해당 없음)</td>
<td>240V DC, 자동 범위 조정</td>
<td>해당 없음</td>
<td>해당 없음</td>
<td>750W</td>
<td>4.5A</td>
<td></td>
</tr>
<tr>
<td>1100W AC</td>
<td>플래티넘</td>
<td>4100 BTU/hr</td>
<td>50/60Hz</td>
<td>100–240V AC, 자동 범위 조정</td>
<td>1100W</td>
<td>1050W</td>
<td>해당 없음</td>
<td>12A-6.5A</td>
</tr>
</tbody>
</table>
시스템 전지 사양

PowerEdge R840 시스템은 CR 2032 3.0-V 리튬 코인 셀 시스템 배터리를 지원합니다.

확장 카드 라이저 사양

PowerEdge R840 시스템은 최대 6개의 PCI Express(PCIe) 3세대 확장 카드를 지원하며 이 카드는 시스템 보드 및 확장 카드 라이저에 설치할 수 있습니다.

![그림 119: 24개의 2.5\" 드라이브 시스템](https://example.com/image-url)
그림 120. 24개의 2.5" + 2개의 2.5"(후면) 드라이브 시스템

다음 표에는 확장 카드 라이저 사양에 대한 자세한 정보가 나와 있습니다.

표 27. 확장 카드 라이저 사양

<table>
<thead>
<tr>
<th>PCIe 슬롯</th>
<th>라이저</th>
<th>프로세서 연결</th>
<th>높이</th>
<th>길이</th>
<th>슬롯 폭</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X8 PCIe 라이저 1</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>2</td>
<td>X16 PCIe 라이저 1</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
<tr>
<td>3</td>
<td>시스템 보드 위</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>4</td>
<td>시스템 보드 위</td>
<td>프로세서 1</td>
<td>전체 높이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
<tr>
<td>5</td>
<td>X8 PCIe 라이저 2</td>
<td>프로세서 2</td>
<td>전체 높이</td>
<td>절반 길이</td>
<td>x8</td>
</tr>
<tr>
<td>6</td>
<td>X16 PCIe 라이저 2</td>
<td>프로세서 2</td>
<td>전체 높이</td>
<td>전체 길이</td>
<td>x16</td>
</tr>
</tbody>
</table>

메모리 사양

표 28. 메모리 사양

<table>
<thead>
<tr>
<th>메모리 모듈 소켓</th>
<th>DIMM 유형</th>
<th>DIMM 랭크</th>
<th>DIMM 용량</th>
<th>듀얼 프로세서 최소 RAM</th>
<th>듀얼 프로세서 최대 RAM</th>
<th>쿼드 프로세서 최소 RAM</th>
<th>쿼드 프로세서 최대 RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>48개의 288핀</td>
<td>LRDIMM</td>
<td>Octal 랭크</td>
<td>128GB</td>
<td>256GB</td>
<td>3072GB</td>
<td>512GB</td>
<td>6144GB</td>
</tr>
<tr>
<td></td>
<td>LRDIMM</td>
<td>4중 랭크</td>
<td>64GB</td>
<td>128GB</td>
<td>1536GB</td>
<td>256GB</td>
<td>3072GB</td>
</tr>
<tr>
<td></td>
<td>RDIMM</td>
<td>듀얼 랭크</td>
<td>64GB</td>
<td>128GB</td>
<td>1536GB</td>
<td>256GB</td>
<td>3072GB</td>
</tr>
<tr>
<td></td>
<td>RDIMM</td>
<td>듀얼 랭크</td>
<td>32GB</td>
<td>64GB</td>
<td>768GB</td>
<td>128GB</td>
<td>1536GB</td>
</tr>
<tr>
<td></td>
<td>RDIMM</td>
<td>듀얼 랭크</td>
<td>16GB</td>
<td>32GB</td>
<td>384GB</td>
<td>64GB</td>
<td>768GB</td>
</tr>
<tr>
<td></td>
<td>RDIMM</td>
<td>싱글 랭크</td>
<td>8GB</td>
<td>16GB</td>
<td>192GB</td>
<td>32GB</td>
<td>384GB</td>
</tr>
<tr>
<td></td>
<td>NVDIMM-N</td>
<td>싱글 랭크</td>
<td>16GB</td>
<td>RDIMM: 192GB</td>
<td>RDIMM: 384GB</td>
<td>RDIMM: 1152GB</td>
<td>RDIMM: 1152GB</td>
</tr>
</tbody>
</table>

노트: 8GB RDIMM과 16GB NVDIMM-N을 혼합하여 사용하지 마십시오.

노트: 64GB LRDIMM 및 128GB LRDIMM을 혼합하여 사용하지 마십시오.
表 29. DIMM 보호물 장착 규칙

<table>
<thead>
<tr>
<th>프로세서 구성</th>
<th>프로세서 1</th>
<th>프로세서 2</th>
<th>프로세서 3</th>
<th>프로세서 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>이중 프로세서</td>
<td>Required(필수)</td>
<td>Required(필수)</td>
<td>필요하지 않음</td>
<td>필요하지 않음</td>
</tr>
<tr>
<td>쿼드 프로세서</td>
<td>Required(필수)</td>
<td>Required(필수)</td>
<td>Required(필수)</td>
<td>Required(필수)</td>
</tr>
</tbody>
</table>

RAID 컨트롤러 사양

PowerEdge R840 시스템은 다음을 지원합니다.
- 내장형 스토리지 컨트롤러 카드: PERC(PowerEdge RAID Controller) H330, PERC H730P, H740P, HBA330 및 BOSS-S1(Boot Optimized Server Storage)
- 외부 스토리지 컨트롤러 카드: S140 및 12Gbps SAS HBA

드라이브 사양

드라이브

PowerEdge R840 시스템은 SAS, SATA, Nearline SAS 하드 드라이브/SSD 또는 NVMe 드라이브를 지원합니다.

표 30. PowerEdge R840 시스템에 지원되는 드라이브 옵션

<table>
<thead>
<tr>
<th>세시 옵션</th>
<th>구성</th>
</tr>
</thead>
<tbody>
<tr>
<td>8개의 하드 드라이브 세시</td>
<td>슬롯 0에서 7까지의 전면 액세스 가능한 최대 8개의 2.5* SAS/SATA 드라이브, 슬롯 0에서 7까지의 전면 액세스 가능한 최대 8개의 2.5* SATA 드라이브</td>
</tr>
<tr>
<td>24개의 드라이브 세시</td>
<td>슬롯 0에서 23까지의 전면 액세스 가능한 최대 24개의 2.5* SAS/SATA 드라이브, 슬롯 0에서 11까지의 전면 액세스 가능한 최대 12개의 2.5* SAS/SATA 드라이브 + 슬롯 12에서 23까지의 전면 액세스 가능한 12개의 SAS/SATA/NVMe 드라이브, 슬롯 0에서 23까지의 전면 액세스 가능한 최대 24개의 2.5* NVMe 드라이브</td>
</tr>
<tr>
<td>24개의 전면 + 2개의 후면 드라이브 세시</td>
<td>슬롯 0에서 23까지의 전면 액세스 가능한 최대 24개의 2.5* SAS/SATA 드라이브 + 후면 액세스 가능한 최대 2개의 2.5* SAS/SATA 드라이브</td>
</tr>
</tbody>
</table>

광학 드라이브

PowerEdge R840 시스템은 1개의 슬림형 SATA DVD-ROM 드라이브 또는 DVD+/-RW 드라이브를 옵션으로 지원합니다.

노트: DVD 장치는 데이터만 지원합니다.

테이프 드라이브

PowerEdge R840 시스템은 외부 테이프 백업 디바이스를 지원합니다.

노트: PowerEdge R840 시스템은 내부 테이프 드라이브를 지원하지 않습니다.

지원되는 외부 테이프 드라이브:
- 외부 RD1000 USB
- 외부 LTO-5, LTO-6, LTO-7 및 6Gb SAS 테이프 드라이브
- LTO-5, LTO-6 및 LTO-7, 6Gb SAS 테이프 드라이브가 있는 14x 렉마운트 세시
- LTO-5, LTO-6 및 LTO-7, 6Gb SAS 테이프 드라이브가 있는 SL1000
- LTO-5, LTO-6 및 LTO-7, 6Gb SAS 테이프 드라이브가 있는 T2000
- LTO-5, LTO-6 및 LTO-7, 8Gb FC 테이프 드라이브가 있는 T2000
- LTO-5, LTO-6 및 LTO-7, 6Gb SAS 테이프 드라이브가 있는 TL4000
- LTO-5, LTO-6 및 LTO-7, 8Gb FC 테이프 드라이브가 있는 TL4000

150 기술 사양
포트 및 커넥터 사양

USB 포트
PowerEdge R840 시스템은 USB 2.0 호환 포트 및 USB 3.0 호환 포트를 모두 지원합니다. 다음 표는 USB 사양에 대한 자세한 정보를 제공합니다.

表 31. USB 사양

<table>
<thead>
<tr>
<th>전면 패널</th>
<th>후면 패널</th>
<th>내부 USB</th>
</tr>
</thead>
</table>
| • 2개의 USB 2.0 호환 포트
• 1개의 iDRAC Direct용 마이크로 USB 2.0 호환 포트
① 노트: 마이크로 USB 2.0 호환 포트는 iDRAC Direct 또는 관리 포트로만 사용할 수 있습니다.
• 1개의 USB 3.0 호환 포트(옵션) | • 2개의 USB 3.0 호환 포트 | • 1개의 내부 USB 3.0 호환 포트 |

NIC 포트
PowerEdge R840 시스템은 NDC(Network Daughter Card)에 내장되어 있는 최대 4개의 NIC(Network Interface Controller) 포트를 지원하며 다음 구성에서 사용 가능합니다.

• 4개의 RJ-45 포트, 10Mbps, 100Mbps 및 1000Mbps 지원
• 4개의 RJ-45 포트, 100M, 1G 및 10Gbps 지원
• 4개의 RJ-45 포트, 2개의 포트는 최대 1G를 지원하고 다른 2개의 포트는 최대 10G를 지원
• 2개의 RJ-45 포트(최대 1Gbps 지원) 및 2개의 SFP+ 포트(최대 10Gbps 지원)
• 4개의 SFP+ 포트, 최대 10Gbps 지원
• 2개의 SFP28 포트, 최대 25Gbps 지원

VGA 포트
VGA(Video Graphic Array) 포트를 사용하면 시스템을 VGA 디스플레이에 연결할 수 있습니다. PowerEdge R840 시스템은 전면과 후면 시스템에서 각각 하나씩 2개의 15핀 VGA 포트를 지원합니다.

직렬 커넥터
시스템 후면에 있는 직렬 다이바이스 연결 및 콘솔 리디렉션용 직렬 커넥터입니다. PowerEdge R840 시스템은 후면 패널에 9핀 커넥터, DTE(Data Terminal Equipment), 16550과 호환되는 1개의 직렬 커넥터를 지원합니다.

IDSDM 또는 vFlash 모듈
PowerEdge R840 시스템은 IDSDM(Internal Dual SD Module)(옵션) 또는 vFlash 모듈을 지원합니다. 14세대 PowerEdge 서버에서 IDSDM 또는 vFlash 모듈은 단일 카드 모듈로 결합되고 다음 구성으로 사용 가능합니다.

• vFlash 또는
• vFlash 및 IDSDM
IDSDM 또는 vFlash 모듈은 시스템 후면의 슬롯에 있습니다. 모듈은 3개의 MicroSD 카드(2개의 IDSDM용 카드, 1개의 vFlash용 카드)를 지원합니다. 다음과 같은 용량이 지원됩니다.

• IDSDM: 16GB, 32GB, 64GB

기술 사양 151
비디오 사양

R840 서버는 16MB의 비디오 프레임 버퍼를 포함하는 내장형 Matrox G200eW3 그래픽 컨트롤러를 지원합니다.
다음 표는 지원되는 비디오 해상도 옵션을 설명합니다.

<table>
<thead>
<tr>
<th>해상도</th>
<th>재생률(hz)</th>
<th>색상 수준(비트)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 x 768</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1280 x 800</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1280 x 1024</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1360 x 768</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1440 x 900</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1600 x 900</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1600 x 1200</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1680 x 1050</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1920 x 1080</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
<tr>
<td>1920 x 1200</td>
<td>60</td>
<td>8, 16, 32</td>
</tr>
</tbody>
</table>

노트: 1920 x 1080 및 1920 x 1200 해상도는 귀선 소거 감소 모드에서만 지원됩니다.

환경 사양

노트: 환경 인증에 대한 추가 정보는 Dell.com/poweredgemanuals에서 매뉴얼 및 문서와 함께 있는 제품 환경 데이터시트를 참조하십시오.

<table>
<thead>
<tr>
<th>온도</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>보관 시</td>
<td>-40°C65°C(-40°F149°F)</td>
</tr>
<tr>
<td>연속 작동(950m 또는 3177ft 미만의 고도에서)</td>
<td>장비에 직사광선을 받지 않고 10°C35°C(50°F95°F)</td>
</tr>
<tr>
<td>최대 온도 변화(작동 및 보관 시)</td>
<td>20°C/h(36°F/h)</td>
</tr>
</tbody>
</table>

표 34. 상대 습도 사양

<table>
<thead>
<tr>
<th>상대 습도</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>보관 시</td>
<td>최대 이슬점이 33°C(91 °F)인 5% ~ 95% RH. 대기는 항상 비응축 상태여야 합니다.</td>
</tr>
<tr>
<td>작동 시</td>
<td>최대 이슬점이 29°C(84.2°F)인 경우 10%~80% RH.</td>
</tr>
</tbody>
</table>

표 35. 최대 진동 사양

<table>
<thead>
<tr>
<th>진동</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>작동 시</td>
<td>5Hz~350Hz에서 0.26G_rms(모든 작동 방향)</td>
</tr>
</tbody>
</table>
최대 진동 사양
보관 시 15분간 10Hz – 500Hz에서 1.88G_{rms}(6개 축면 모두 테스트)

표 36. 최대 충격 펄스 사양

<table>
<thead>
<tr>
<th>최대 충격 펄스</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>작동 시</td>
<td>최대 11ms 동안 (+/-) x, y, z축으로 6G의 연속 충격 펄스 6회</td>
</tr>
<tr>
<td>보관 시</td>
<td>최대 2ms 동안 (+/-) x, y, z축으로 71G의 연속 충격 펄스 6회(시스템 각 면에 1 회의 펄스)</td>
</tr>
</tbody>
</table>

최대 고도 사양
작동 시 3048m(10,000ft)
보관 시 12,000m(39,370ft).

표 37. 최대 고도 사양

<table>
<thead>
<tr>
<th>운영 온도 정격 감소 사양</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>최대 온도는 950m(3,117ft) 이상에서 1°C/300m(1°F/547ft)로 감소합니다.</td>
<td></td>
</tr>
<tr>
<td>최대 온도는 950m(3,117ft) 이상에서 1°C/175m(1°F/319ft)로 감소합니다.</td>
<td></td>
</tr>
<tr>
<td>최대 온도는 950m(3,117ft) 이상에서 1°C/125m(1°F/228ft)로 감소합니다.</td>
<td></td>
</tr>
</tbody>
</table>

표준 작동 온도

표 39. 표준 작동 온도 사양

<table>
<thead>
<tr>
<th>표준 작동 온도</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>연속 작동(950m 또는 3117ft 미만의 고도에서) 장비에 직사광선을 받지 않고 10°C35°C(50°F95°F)</td>
<td></td>
</tr>
</tbody>
</table>

확대된 작동 온도

표 40. 확대된 작동 온도 사양

<table>
<thead>
<tr>
<th>확대된 작동 온도</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>연속 작동 RH 5%85%에서 5°C40°C, 이슬점 29°C</td>
<td></td>
</tr>
</tbody>
</table>

노트: 표준 온도 범위(10°C~35°C)를 벗어나는 경우에도 시스템은 최저 5°C, 최고 40°C에서 연속적으로 작동할 수 있습니다.

온도가 35°C~40°C인 경우 허용되는 최대 건구 온도는 950m(3,117피트) 이상의 고도에서 1°C/175m(1°F/319피트)로 감소합니다.

연간 작동 시간의 ≤ 1% RH 5%~90%에서 -5°C~45°C, 이슬점 29°C

노트: 실외 표준 온도 범위(-5°C~45°C) 범위를 벗어나는 경우에도 (최저 -5°C 또는 최고 45°C) 연간 작동 시간의 최대 1% 동안 시스템이 계속 작동할 수 있습니다.

온도가 40°C~45°C인 경우 허용되는 최대 건구 온도는 950m(3,117피트) 이상의 고도에서 1°C/125m(1°F/228피트)로 감소합니다.

노트: 확대된 온도 범위에서 작동하는 경우 시스템 성능에 영향을 줄 수 있습니다.

노트: 확대된 온도 범위에서 작동하는 경우 주위 온도 경고가 LCD 패널 및 시스템 이벤트 로그에 보고될 수 있습니다.
확대된 운영 온도 제한 사항

- 외부 공기 냉각을 위한 운영 온도가 적용되는 최대 고도는 950m입니다.
- 하드 드라이브의 제약 조건으로 인해 5°C 미만에서 콜드 부팅을 하지 마십시오.
- Apache Pass DIMM, NVDIMM, PCIe SSD 및 NVMes는 지원되지 않습니다.
- 테이프 백업 장치(TBU)는 Fresh Air에서 지원되지 않습니다.
- LRDIMM > 32GB는 x4 소켓 구성에서 지원되지 않습니다.
- DCPMM는 지원되지 않습니다.
- 후면 설치 드라이브 및 GPU 구성은 지원되지 않습니다.
- 중복 전원 공급 장치가 필요합니다.
- Dell에서 공인하지 않은 주변 기기 카드 및/또는 25W를 넘는 주변 기기 카드는 지원되지 않습니다.
- 안테나 FPGA는 지원되지 않습니다.
- 205W SKU, 200W/18C, 165W/12C 및 150W_8C 프로세서는 일부 x4 소켓 프로세서 구성에서 지원되지 않습니다.
- 165W SKU, 130W/8C, 115W/6C 및 105W_4C는 전면 x8 인치 SAS/SATA 드라이브 구성용 4x4 소켓 프로세서 구성에서 지원되지 않습니다.

주위 온도 제한 사항

노트: 적절한 냉각을 확보하고 시스템 성능에 영향을 미칠 수 있는 과도한 프로세서 스로틀링을 방지하기 위해 주위 온도 제한을 준수해야 합니다.

표 41. GPGPU의 구성 기반 주위 온도 제한 사항

<table>
<thead>
<tr>
<th>TDP(W)</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>30</td>
<td>35</td>
<td>30</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C40E</td>
<td>45</td>
<td>C40E</td>
<td>45</td>
<td>C40E</td>
<td>45</td>
</tr>
<tr>
<td>205</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>200</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>165(골드 6146)</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>150(골드 6144 및 6244)</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>150(골드 6240Y)</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>165</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>150</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>140</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>130(골드 6134)</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>125</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>115(골드 6128)</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
<td>아니요</td>
</tr>
<tr>
<td>TDP (W)</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) NVMe</td>
<td>24개의 6.35cm(2.5인치) NVMe</td>
</tr>
<tr>
<td></td>
<td>2개의 CPU</td>
<td>4개의 CPU</td>
<td>2개의 GPGPU</td>
<td>4개의 CPU</td>
<td>2개의 GPGPU</td>
<td>4개의 CPU</td>
</tr>
<tr>
<td>C40E45</td>
<td>35</td>
<td>30</td>
<td>C40E45</td>
<td>35</td>
<td>30</td>
<td>C40E45</td>
</tr>
<tr>
<td>115</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>105(골드 5122 및 8156)</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>105(골드 5222 및 8256)</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>100</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>85</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>70</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

N = 지원되지 않음
Y = 지원됨

표 42. PCIe의 구성 기반 주변 온도 제한 사항

<table>
<thead>
<tr>
<th>TDP (W)</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
<th>R840</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) NVMe</td>
<td>24개의 6.35cm(2.5인치) NVMe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6개의 PCIe</td>
<td>4개의 CPU</td>
<td>6개의 PCIe</td>
<td>4개의 CPU</td>
<td>6개의 PCIe</td>
<td>4개의 CPU</td>
<td>6개의 PCIe</td>
</tr>
<tr>
<td>C40E45</td>
<td>35</td>
<td>30</td>
<td>C40E45</td>
<td>35</td>
<td>30</td>
<td>C40E45</td>
<td>35</td>
</tr>
<tr>
<td>205</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>200</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>165(골드 6146)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>165(골드 6144 및 6244)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>150(골드 6240Y)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>아니요</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>165</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>150</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>140</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>TDP(W)</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td>R840</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>8개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) SAS/SATA</td>
<td>24개의 6.35cm(2.5인치) NVMe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2개의 CPU</td>
<td>4개의 CPU</td>
<td>2개의 CPU</td>
<td>4개의 CPU</td>
<td>4개의 CPU</td>
<td>4개의 CPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6개의 PCIe</td>
<td>6개의 PCIe</td>
<td>6개의 PCIe</td>
<td>6개의 PCIe</td>
<td>6개의 PCIe</td>
<td>6개의 PCIe</td>
<td></td>
</tr>
<tr>
<td>C40E</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>C45E</td>
<td>45</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

N = 지원되지 않음
Y = 지원됨

미세 먼지 및 가스 오염 사양

다음 표는 미세 먼지 및 가스 오염으로 인한 모든 IT 장비 손상 및/또는 장애를 방지하는 데 도움이 되는 제한 사항을 정의합니다. 미세 먼지 또는 가스 오염 수준이 지정된 제한 사항을 초과하여 그 결과로 장비 손상 또는 장애가 발생하는 경우 환경 조건을 바로잡아야 합니다. 환경을 개선하는 것은 고객의 책임입니다.

표 43. 미세 먼지 오염 사양

<table>
<thead>
<tr>
<th>미세 먼지 오염</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>공기 여과</td>
<td>데이터 센터 공기 여과는 ISO Class 8 per ISO 14644-1의 규정에 따라 95% 상위 지수 제한됩니다.</td>
</tr>
<tr>
<td>노트: 이 조건은 데이터 센터 환경에만 적용됩니다. 공기 여과 요구사항은 사무실이나 공장 바닥과 같은 환경인 데이터 센터 외 공간에서의 IT 장비에는 적용되지 않습니다.</td>
<td></td>
</tr>
<tr>
<td>노트: 데이터 센터로 유입되는 공기는 MERV11 또는 MERV13 여과야 합니다.</td>
<td></td>
</tr>
</tbody>
</table>

전도성 먼지 | 공기에는 전도성 먼지, 야연 화스커, 또는 기타 전도성 입자가 없어야 합니다.
미세 먼지 오염	사양
부식성 먼지

- 공기에는 부식성 먼지가 없어야 합니다.
- 공기 내 잔여 먼지는 용해점이 60% 상대 습도 미만이어야 합니다.

노트: 이 조건은 데이터 센터 및 데이터 센터 외부 환경에 적 용됩니다.

기체 오염	사양
구리 쿠폰 부식 | ANSI/ISA71.04-1985의 규정에 따른 Class G1당 <300 Å/month
은 쿠폰 부식 | AHSRAE TC9.9의 규정에 따른 <200 Å/month

노트: ±50% 상대 습도에서 측정된 최대 부식성 오염 수치
시스템 진단 및 표시등 코드

시스템 전면 패널에 있는 진단 표시등은 시스템 시작 도중 시스템 상태를 표시합니다.

주제:

- 상태 LED 표시등
- 시스템 상태 및 시스템 ID 표시등 코드
- iDRAC Quick Sync 2 표시등 코드
- iDRAC Direct LED 표시등 코드
- NIC 표시등 코드
- 전원 공급 장치 표시등 코드
- 드라이브 표시등 코드
- PowerEdge R840 시스템 진단

상태 LED 표시등

<table>
<thead>
<tr>
<th>아이콘</th>
<th>설명</th>
<th>상태</th>
<th>수정 조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>하드 드라이브 표시등</td>
<td>하드 드라이브 오류가 발생한 경우 표시등이 황색으로 꺼진다.</td>
<td>시스템 이벤트 로그를 참조하여 오류 있는 하드 드라이브를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>온도 표시등 아이콘</td>
<td>온도 표시등 시스템에 열 관련 오류(예: 범위를 벗어난 온도 또는 팬 고장)가 있으면 이 표시등이 호박색으로 꺼진다.</td>
<td>다음과 같은 상태가 없는지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>전기 표시등 아이콘</td>
<td>전기 표시등 시스템에 전기 오류(예: 범위를 벗어난 전압, 전원 공급 장치(PSU) 또는 전압 조정기 고장)가 있으면 이 표시등이 호박색으로 꺼진다.</td>
<td>시스템 이벤트 로그 또는 시스템 메시지를 참조하여 특정 문제를 확인하십시오. 전원 공급 장치의 문제가 발생하면 전원 공급 장치의 LED를 점검하십시오. PSU를 재설치하십시오.</td>
<td></td>
</tr>
<tr>
<td>메모리 표시등 아이콘</td>
<td>메모리 표시등 메모리 오류가 발생하면 이 표시등이 호박색으로 꺼진다.</td>
<td>시스템 이벤트 로그 또는 시스템 메시지를 참조하여 오류 있는 메모리의 위치를 확인하십시오. 메모리 모듈 재설치 문제 해결되지 않으면, 도움말 얻기를 참조하십시오.</td>
<td></td>
</tr>
<tr>
<td>PCIe 표시등 아이콘</td>
<td>PCIe 표시등 PCIe에 오류가 있으면 이 표시등이 호박색으로 꺼진다.</td>
<td>시스템을 다시 시작하십시오. PCIe 카드에 필요한 드라이버를 업데이트 합니다. 카드를 다시 설치하십시오. 문제 해결되지 않으면, 도움말 얻기를 참조하십시오.</td>
<td></td>
</tr>
</tbody>
</table>
시스템 상태 및 시스템 ID 표시등 코드

시스템 상태 및 시스템 ID 표시등은 시스템의 왼쪽 컨트롤을 패널에 있습니다.

<table>
<thead>
<tr>
<th>아이</th>
<th>설명</th>
<th>상태</th>
<th>수정 조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>권</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[노트] 지원되는 PCIe 카드에 대한 자세한 내용은 확장 카드 설치 지침을 참조하십시오.

그림 121. 시스템 상태 및 시스템 ID 표시등

표 46. 시스템 상태 및 시스템 ID 표시등 코드

<table>
<thead>
<tr>
<th>시스템 상태 및 시스템 ID 표시등 코드</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>파란색으로 커짐</td>
<td>시스템이 커져 있고 시스템 상태가 양호하며 시스템 ID 모드가 활성 상태가 아님을 나타냅니다. 시스템 ID 모드로 전환하려면 시스템 상태 및 시스템 ID 버튼을 누릅니다.</td>
</tr>
<tr>
<td>파란색으로 감백임</td>
<td>시스템 ID 모드가 활성 상태임을 나타냅니다. 시스템 상태 모드로 전환하려면 시스템 상태 및 시스템 ID 버튼을 누릅니다.</td>
</tr>
<tr>
<td>황색으로 커짐</td>
<td>시스템이 패일 세이프 모드임을 나타냅니다. 문제가 지속되는 경우 도움말 양식을 참조하십시오.</td>
</tr>
<tr>
<td>황색 점멸</td>
<td>시스템에 장애가 발생했음을 나타냅니다. 시스템 이벤트 로그 또는 LCD 패널(매체에서 사용 가능한 경우)에서 특정 오류 메시지를 확인합니다. 오류 메시지에 대한 자세한 정보는 www.dell.com/openmanagemanuals에서 Dell 이벤트 및 오류 메시지 참조 가이드를 참조하십시오.</td>
</tr>
</tbody>
</table>

iDRAC Quick Sync 2 표시등 코드

iDRAC Quick Sync 2 모듈(옵션)은 시스템의 왼쪽 컨트롤을 패널에 있습니다.

그림 122. iDRAC Quick Sync 2 표시등

표 47. iDRAC Quick Sync 2 표시등 및 설명

<table>
<thead>
<tr>
<th>iDRAC Quick Sync 2 표시등 코드</th>
<th>상태</th>
<th>수정 조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>깨짐(기본 상태)</td>
<td>iDRAC Quick Sync 2가 가동되고 신호를 나타냅니다. iDRAC Quick Sync 2가 가동을 커려면 iDRAC Quick Sync 2 버튼을 누릅니다.</td>
<td>LED가 꺼지지 않으면 왼쪽 컨트롤 패널 플렉스 케이블을 다시 장착하고 확인합니다. 문제가 지속되는 경우 도움말 양식을 참조하십시오.</td>
</tr>
<tr>
<td>황색</td>
<td>iDRAC Quick Sync 2가 통신할 준비가 되었음을 나타냅니다.</td>
<td>LED가 꺼지지 않으면 시스템을 재시작합니다. 문제가 지속되는 경우 도움말 양식을 참조하십시오.</td>
</tr>
<tr>
<td>황색으로 빠르게 감백임</td>
<td>데이터 전송 작업을 나타냅니다.</td>
<td>표시등이 무기한으로 꺼박박이는 경우 도움말 양식을 참조하십시오.</td>
</tr>
</tbody>
</table>
iDRAC Quick Sync 2 표시등 코드

<table>
<thead>
<tr>
<th>상태</th>
<th>수정 조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>화색으로 천천히 깜박임</td>
<td>펌웨어 업데이트 진행 중임을 나타냅니다.</td>
</tr>
<tr>
<td>빠르게 다섯 번 깜빡인 후 깨짐</td>
<td>iDRAC Quick Sync 2 기능이 비활성화되어 있음을 나타냅니다.</td>
</tr>
<tr>
<td>황색으로 켜짐</td>
<td>시스템이 패일 세이프 모드임을 나타냅니다.</td>
</tr>
<tr>
<td>황색 점멸</td>
<td>iDRAC Quick Sync 2 하드웨어가 올바르게 응답하지 않음을 나타냅니다.</td>
</tr>
<tr>
<td>화색으로 천천히 깜박임</td>
<td>iDRAC Quick Sync 2 기능이 iDRAC에 의해 비활성화 되도록 구성되어 있는지 확인합니다. 문제가 지속되는 경우 도움말 얻기 섹션을 참조하십시오. 자세한 정보는 Integrated Dell Remote Access Controller 사용자 가이드(www.dell.com/idracmanuals) 또는 Dell OpenManage Server Administrator 사용자 가이드(www.dell.com/openmanagemanuals)를 참조하시십시오.</td>
</tr>
<tr>
<td>황색으로 켜짐</td>
<td>시스템이 패일 세이프 모드임을 나타냅니다.</td>
</tr>
<tr>
<td>황색 점멸</td>
<td>iDRAC Quick Sync 2 하드웨어가 올바르게 응답하지 않음을 나타냅니다.</td>
</tr>
</tbody>
</table>

iDRAC Direct LED 표시등 코드

iDRAC Direct LED 표시등이 포트가 연결되어 있고 iDRAC 하위 시스템의 일부로 사용되고 있음을 표시하기 위해 켜집니다.
마이크로 USB(유형 AB) 케이블을 사용하여 연결할 수 있습니다. 또는 Tablet USB를 사용하여 iDRAC Direct를 구성할 수 있습니다. 다음 표는 iDRAC Direct 포트에 활성 상태인 경우 iDRAC Direct 활동을 보여주어야 한다고 설명합니다.

표 48. iDRAC Direct LED 표시등 코드

<table>
<thead>
<tr>
<th>iDRAC Direct LED 표시등 상태 코드</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>2초 동안 녹색으로 계속 켜져 있음</td>
<td>연결된 컴퓨터가 인식되었습니다.</td>
</tr>
<tr>
<td>녹색으로 깜박임(2초간 켜졌다 2초간 꺼짐)</td>
<td>연결된 컴퓨터가 인식되었습니다.</td>
</tr>
</tbody>
</table>

NIC 표시등 코드

시스템의 각 NIC에는 활동 및 링크 상태에 대한 정보를 제공하는 표시등이 있습니다. 작동 LED 표시등은 데이터가 NIC를 통해 이동하는지 여부를 나타내고 링크 LED 표시등은 연결된 네트워크의 속도를 나타냅니다.

그림 123. NIC 표시등 코드

1. 링크 LED 표시등
2. 작동 LED 표시등

표 49. NIC 표시등 코드

<table>
<thead>
<tr>
<th>상태</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>링크 및 작동 표시등이 꺼졌습니다.</td>
<td>NIC가 네트워크에 연결되어 있지 않습니다.</td>
</tr>
<tr>
<td>링크 표시등이 녹색이고 작동 표시등이 녹색으로 감박임.</td>
<td>NIC가 최대 포트 속도로 유호한 네트워크에 연결되어 있고, 데이터 전송 또는 수신 중입니다.</td>
</tr>
</tbody>
</table>
상태 | 상태
--- | ---
링크 표시등이 주황색이고 작동 표시등이 녹색으로 깜박임. | NIC가 최대 포트 속도보다 낮은 속도로 유효한 네트워크에 연결되어 있고, 데이터 전송 또는 수신 중입니다.
링크 표시등이 녹색이고 작동 표시등이 깜빡임. | NIC가 최대 포트 속도로 유효한 네트워크에 연결되어 있고, 데이터 전송 또는 수신 중이 아닙니다.
링크 표시등이 주황색이고 작동 표시등이 깜빡임. | NIC가 최대 포트 속도보다 낮은 속도로 유효한 네트워크에 연결되어 있고, 데이터 전송 또는 수신 중이 아닙니다.
링크 표시등이 녹색으로 깜빡이고 작동 표시등이 깜빡임. | NIC 쇼 별이 NIC 구성 유필리티를 통해 활성화됩니다.

전원 공급 장치 표시등 코드

AC PSU(Power Supply Unit)에는 표시등 역할을 하는 조명이 달린 반투명 핸들이 있습니다. DC PSU에는 표시등으로 사용되는 LED가 있습니다.

PSU 사양에 대한 자세한 내용은 기술 사양을 참조하십시오.

표시등은 전원의 유무나 전원 장애 발생 여부를 나타냅니다.

표 50. AC PSU 상태 표시등 코드

<table>
<thead>
<tr>
<th>전원 표시등 코드</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹색</td>
<td>PSU에 유효한 전원이 연결되어 있으며 해당 PSU가 작동 중입니다.</td>
</tr>
<tr>
<td>황색 점멸</td>
<td>PSU 문제가 있음을 나타냅니다.</td>
</tr>
<tr>
<td>커지지 않음</td>
<td>전원이 PSU에 연결되어 있지 않습니다.</td>
</tr>
<tr>
<td>녹색으로 깜빡이질</td>
<td>PSU 폼웨어 업데이트하는 경우 PSU 핸들이 녹색으로 깜빡입니다.</td>
</tr>
<tr>
<td>주의: 폼웨어 업데이트 중에는 전원 케이블을 연결 해제하거나 PSU를 분리하지 마십시오. 폼웨어 업데이트가 실행 도중 중단되면 PSU가 작동하지 않게 됩니다.</td>
<td></td>
</tr>
<tr>
<td>녹색으로 깜밝은 후 꺼짐</td>
<td>PSU를 첫 플러그할 때 PSU 핸들이 4Hz 속도의 녹색으로 5회 깜박이 후 캐짐. 이는 PSU가 효율성, 기능 점검, 상태 또는 지원의 진단과 관련해 불일치감을 의미합니다.</td>
</tr>
<tr>
<td>주의: 2개의 PSU가 설치된 경우 두 PSU는 모두 동일한 유형의 레이블(EPP(Extended Power Performance) 레이블)을 가지고 있어야 합니다. 이전 세대 PowerEdge 서버상의 PSU를 함께 경우 PSU의 전원 정격과 같이 도로는 래그레이드는 지원되지 않습니다. 이로 인해 PSU 불일치 조건 또는 시스템의 전원 커플 장애가 발생합니다.</td>
<td></td>
</tr>
</tbody>
</table>
전원 표시등 코드 | 상태
---|---
△ 주의: PSU 불일치를 수정하는 경우 표시등이 깜박임 상태인 PSU만 교체하십시오. 쌍을 맞추기 위해 다른 쪽 PSU를 바꾸면 오류가 발생하여 시스템이 예기치 않게 종료될 수 있습니다. 고출력 구성에서 저출력 구성으로 또는 이와 반대로 변경하려면 시스템의 전원을 꺼야 합니다.
△ 주의: AC PSU에서는 240V 및 120V 입력 전압이 지원됩니다 (240V만 지원되는 티타늄 PSU는 예외). 두 개의 동일한 PSU에 서로 다른 입력 전압이 공급되면 출력되는 와트수가 서로 달라 불일치가 발생합니다.
△ 주의: 두 개의 PSU를 사용하는 경우 종류와 최대 출력 전원이 동일해야 합니다.
△ 주의: AC와 DC PSU를 결합하여 사용할 수 없으며 이러한 경우 불일치가 발생합니다.

그림 125. DC PSU 상태 표시등
1. DC PSU 상태 표시등

표 51. DC PSU 상태 표시등 코드

<table>
<thead>
<tr>
<th>전원 표시등 코드</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹색</td>
<td>PSU에 유효한 전원이 연결되어 있으며 해당 PSU가 작동 중입니다.</td>
</tr>
<tr>
<td>황색 점멸</td>
<td>PSU 문제가 있음을 나타냅니다.</td>
</tr>
<tr>
<td>커지지 않음</td>
<td>전원이 PSU에 연결되어 있지 않습니다.</td>
</tr>
<tr>
<td>녹색으로 깜빡거림</td>
<td>PSU를 합 폴러그할 때 PSU 표시등이 녹색으로 깜박입니다. 이는 PSU에서 효율성, 기능 집합, 상태 또는 지원되는 전압과 관련해 불일치가 발생했음을 의미합니다.</td>
</tr>
</tbody>
</table>
△ 주의: 2개의 PSU가 설치된 경우 두 PSU는 모두 동일한 유형의 레이블 (예: EPP(Extended Power Performance) 레이블)을 가지고 있어야 합니다. 이전 세대 PowerEdge 서버상의 PSU를 함께 경우 PSU의 전원 정격과 결과는 올바르지 않습니다. 이로 인해 PSU 불일치 조건 또는 시스템의 전원 켜짐 장애가 발생합니다.
△ 주의: PSU 불일치를 수정하는 경우 표시등이 깜박임 상태인 PSU만 교체하십시오. 쌍을 맞추기 위해 다른 쪽 PSU를 바꾸면 오류가 발생할 수 있습니다. |
전원 표시등 코드 | 상태
--- | ---
| | 주면 오류가 발생하여 시스템이 예기치 않게 종료될 수 있습니다. 고출력 구성에서 저출력 구성으로 또는 이와 반대로 변경하려면 시스템의 전원을 꺼야 합니다.
| 주의: 두 개의 PSU를 사용하는 경우 종류와 최대 출력 전원이 동일해야 합니다.
| 주의: AC와 DC PSU를 결합하여 사용할 수 없으며 이러한 경우 불안정게 발생합니다.

드라이브 표시등 코드
드라이브 캐리어의 LED는 각 드라이브의 상태를 나타냅니다. 시스템의 각 드라이브 캐리어에는 작동 LED(녹색) 및 상태 LED(2색, 녹색/주황색)에 해당하는 2개의 LED가 있습니다. 드라이브에 액세스할 때마다 작동 LED가 깜빡입니다.

주의: 두 개의 PSU를 사용하는 경우 종류와 최대 출력 전원이 동일해야 합니다.

주의: AC와 DC PSU를 결합하여 사용할 수 없으며 이러한 경우 불안정하게 발생합니다.

드라이브 표시등 코드

<table>
<thead>
<tr>
<th>드라이브 상태 표시등 코드</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹색으로 초당 2번 깜빡임</td>
<td>드라이브를 제거할 수 있는 상태입니다.</td>
</tr>
<tr>
<td>노트: 시스템 전원이 켜진 후 모든 드라이브가 초기화될 때까지 드라이브 상태 표시등이 깜빡임 상태로 유지됩니다. 이 상태에서는 드라이브를 제거할 수 없습니다.</td>
<td></td>
</tr>
<tr>
<td>꺼짐</td>
<td>다시 같은 표시등 코드로 갱신될 때까지 재구축 중입니다.</td>
</tr>
<tr>
<td>3초 동안 녹색으로 깜빡이고 3초 동안 호박색으로 깜빡이 6초 후에 꺼짐</td>
<td>재구축이 중지되었습니다.</td>
</tr>
</tbody>
</table>

그림 126. 드라이브 및 중간 드라이브 트레이 백플레인의 드라이브 표시등
1. 드라이브 작동 LED 표시등
2. 드라이브 상태 LED 표시등
3. 드라이브 용량 레이블

노트: 드라이브가 AHCI(Advanced Host Controller Interface) 모드에 있는 경우 상태 LED 표시등이 커지지 않습니다.

표 52. 드라이브 표시등 코드

<table>
<thead>
<tr>
<th>지시사항</th>
<th>상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>녹색으로 조명 2번 깜빡임</td>
<td>드라이브를 제거할 수 있는 상태입니다.</td>
</tr>
<tr>
<td>노트: 시스템 전원이 켜진 후 모든 드라이브가 초기화될 때까지 드라이브 상태 표시등이 깜빡임 상태로 유지됩니다. 이 상태에서는 드라이브를 제거할 수 없습니다.</td>
<td></td>
</tr>
<tr>
<td>꺼짐</td>
<td>다시 같은 표시등 코드로 갱신될 때까지 재구축 중입니다.</td>
</tr>
<tr>
<td>3초 동안 녹색으로 깜빡이고 3초 동안 호박색으로 깜빡이 6초 후에 꺼짐</td>
<td>재구축이 중지되었습니다.</td>
</tr>
</tbody>
</table>
PowerEdge R840 시스템 진단

시스템에 문제가 발생하면 기술 지원에 문의하기 전에 시스템 진단 프로그램을 실행합니다. 시스템 진단은 추가 장비를 사용하지 않거나 또는 데이터를 손실할 위험이 없이 시스템 하드웨어를 탐지하기 위해 실행됩니다. 자체적으로 문제를 해결할 수 없는 경우에는 서비스 및 지원 담당 직원이 진단 검사 결과를 사용하여 문제 해결을 지원할 수 있습니다.

Dell 내장형 시스템 진단 프로그램

노트: Dell 내장형 시스템 진단 프로그램은 ePSA(Enhanced Pre-boot System Assessment) 진단 프로그램이라고도 합니다.

내장형 시스템 진단 프로그램은 특정 장치 그룹 또는 장치에 대해 일련의 음성을 제공하여 사용자가 다음을 수행할 수 있게 합니다.

• 자동으로 테스트 또는 상호 작용 모드를 실행합니다.
• 테스트를 반복합니다.
• 오류가 발생한 장치에 대한 추가 정보를 제공하기 위해 추가 테스트 옵션으로 세부 검사를 실행합니다.
• 테스트 중 발생하는 문제를 알리는 오류 메시지를 봅니다.

부팅 관리자에서 내장형 시스템 진단 프로그램 실행

시스템이 부팅되지 않는다면 내장형 시스템 진단 프로그램(ePSA)을 실행하십시오.

단계
1. 시스템 부팅 시, F11 키를 누릅니다.
2. 위쪽 및 아래쪽 화살표 키를 사용하여 System Utilities(시스템 유틸리티) > Launch Diagnostics(진단 프로그램 시작)을 선택합니다.
3. 또는 경우, 시스템이 부팅 중 또는 F10 키를 눌러 > Run Hardware Diagnostics(하드웨어 진단) Hardware Diagnostics(하드웨어 진단)을 선택합니다.
 ePSA Pre-boot System Assessment(ePSA 사전 부팅 시스템 평가) 창이 표시되고, 시스템에서 검색된 모든 장치가 이 창에 나열됩니다. 진단 프로그램은 검색된 모든 장치에 대해 검사를 실행합니다.

결과

Dell Lifecycle Controller에서 내장형 시스템 진단 프로그램 실행

단계
1. 시스템 부팅 시 <F10> 키를 누릅니다.
2. Hardware Diagnostics(하드웨어 진단) > Run Hardware Diagnostics(하드웨어 진단 실행)를 선택합니다.
 ePSA Pre-boot System Assessment(ePSA 사전 부팅 시스템 평가) 창이 표시되고, 시스템에서 검색된 모든 장치가 이 창에 나열됩니다. 진단 프로그램은 검색된 모든 장치에 대해 검사를 실행합니다.

시스템 진단 제어

메뉴 설명
구성 감지된 모든 장치의 구성 및 상태 정보를 표시합니다.
결과 실행된 모든 검사의 결과를 표시합니다.
시스템 상태 시스템 상태에 대한 한 시점의 개요를 제공합니다.
이벤트 로그 시스템에서 실행된 모든 테스트의 결과를 타임스탬프와 함께 보여 주는 로그를 표시합니다. 이벤트 설명이 하나 이상 기록되어 있으면 이 로그가 표시됩니다.
Dell은 다양한 온라인 및 전화 기반의 지원 및 서비스 옵션을 제공합니다. 인터넷 연결을 사용할 수 없는 경우에는 제품 구매서, 포장 명세서, 청구서 또는 Dell 제품 카탈로그에서 연락처 정보를 찾을 수 있습니다. 제공 여부는 국가/지역 및 제품에 따라 다르며 일부 서비스는 소재 지역에 제공되지 않을 수 있습니다. 판매, 기술 지원 또는 고객 서비스 문제에 대해 Dell에 문의하려면

단계
2. 페이지 우측 하단에 있는 드롭다운 메뉴에서 국가를 선택합니다.
3. 맞춤화된 지원:
 a) Enter your Service Tag(서비스 태그 입력) 필드에 시스템 서비스 태그를 입력합니다.
 b) 제출을 클릭합니다.
 여러 가지 지원 범주가 나열되어 있는 지원 페이지가 표시됩니다.
4. 일반 지원:
 a) 제품 범주를 선택합니다.
 b) 제품 세그먼트를 선택합니다.
 c) 제품을 선택합니다.
 여러 가지 지원 범주가 나열되어 있는 지원 페이지가 표시됩니다.
5. Dell 전역 기술 지원에 대한 연락처 세부 정보를 보려면:
 a) 전역 기술 지원을 클릭합니다.
 b) 기술 지원 팀에 연락 페이지가 Dell 전역 기술 지원 팀의 전화, 채팅, 또는 이메일에 대한 세부 정보를 표시합니다.

설명서에 대한 사용자 의견
Dell EMC 설명서 페이지에서 설명서를 평가하거나 Send Feedback(피드백 보내기)를 클릭해 피드백을 남길 수 있습니다.

QRL을 사용하여 시스템 정보에 액세스

QRL(quick Resource Locator)를 사용하여 시스템에 대한 정보에 즉시 액세스할 수 있습니다.

전제조건
스마트폰 또는 태블릿에 QR 코드 스캐너가 설치되어 있는지 확인합니다.

QRL에는 시스템에 대한 다음 정보가 포함되어 있습니다.
- 방법 동영상
- 소유자 매뉴얼, LCD 진단 및 기계 개요를 포함한 참조 자료
- 특정 하드웨어 구성 및 보증 정보에 따르게 액세스하기 위한 서비스 태그
- 기술 지원 및 영업팀에 직접 연락할 수 있는 Dell 링크
단계
1. www.dell.com/qrl 페이지로 이동하여 특정 제품을 탐색하거나
2. 스마트폰 또는 태블릿을 사용하여 Dell 시스템 또는 Quick Resource Locator 섹션에서 모델별 QR(Quick Resource) 코드를 스캔합니다.

SupportAssist를 사용하여 자동화된 지원을 수신

Dell EMC SupportAssist는 Dell EMC 서버, 스토리지 및 네트워킹 디바이스에 대한 기술 지원을 자동화하는 Dell EMC Services(옵션)입니다. SupportAssist 애플리케이션을 IT 환경에 설치 및 설정하면 다음과 같은 이점을 얻을 수 있습니다.

- 자동 문제 감지 - SupportAssist는 Dell EMC 데바이스를 모니터링하고 하드웨어 문제를 사전 예방적으로 예측하여 자동으로 감지합니다.
- 자동 케이스 생성 - 문제가 감지되면 SupportAssist가 Dell EMC 기술 지원으로 지원 케이스를 자동으로 업니다.
- 자동 진단 수집 - SupportAssist는 데바이스에서 자동으로 시스템 상태 정보를 수집하고 Dell EMC에 안전하게 업로드합니다. Dell EMC 기술 지원에서 이 정보를 사용하여 문제를 해결합니다.
- 사전 예방적 연락 - Dell EMC 기술 지원 에이전트가 지원 케이스에 대해 연락하고 문제를 해결할 수 있도록 도와드립니다.

PowerEdge R840 시스템용 QRL(Quick Resource Locator)

그림 127. PowerEdge R840 시스템용 QRL(Quick Resource Locator)

재활용 또는 EOL(End-of-Life) 서비스 정보

특정 국가에서 이 제품에 대한 회수 및 재활용 서비스가 제공됩니다. 시스템 구성 요소를 폐기하려면 www.dell.com/recyclingworldwide 페이지를 방문하여 해당 국가를 선택하십시오.
설명서 리소스

이 섹션은 시스템의 설명서 리소스에 대한 정보를 제공합니다.
 문서 자료 리소스 표에 나열된 문서를 보려면 다음을 수행하십시오.

- Dell EMC 지원 사이트:
 1. 표의 위치 열에 있는 문서 자료 링크를 클릭합니다.
 2. 필요한 제품 또는 제품 버전을 클릭합니다.

 ![노트: 제품 이름 및 모델을 찾아보면 시스템의 전면을 참조하십시오.](https://example.com/notice)

 3. 제품 지원 페이지에서 메뉴얼 및 문서를 클릭합니다.

- 검색 엔진 사용:
 1. 검색 상자에 문서 이름 및 버전을 입력합니다.

<table>
<thead>
<tr>
<th>작업</th>
<th>설명서</th>
<th>위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>시스템 설정</td>
<td>레이어 시스템을 설치하고 고정하는 방법에 대한 자세한 정보는 레이어 설계가이드를 참조하십시오. 시스템 설정에 대한 정보는 시스템과 함께 제공되는 시스템 가이드 문서를 참조하십시오.</td>
<td>www.dell.com/poweredgemanuals</td>
</tr>
<tr>
<td>시스템 구성</td>
<td>iDRAC 기능, iDRAC 구성 및 로그인, 원격 시스템 관리에 대한 정보는 Integrated Dell Remote Access Controller 사용 설명서를 참조하십시오. RACADM(Remote Access Controller Admin) 하위 명령 및 지원되는 RACADM 인터페이스에 대한 자세한 정보는 iDRAC용 RACADM CLI 가이드를 참조하십시오. Redfish 및 해당 프로토콜, 지원되는 스키마, iDRAC에 구현된 Redfish 이벤트에 대한 정보는 Redfish API 가이드를 참조하십시오. iDRAC 속성 데이터베이스 그룹 및 오브젝트 설명에 대한 정보는 속성 레지스트리 가이드를 참조하십시오.</td>
<td>www.dell.com/poweredgemanuals</td>
</tr>
<tr>
<td></td>
<td>이전 버전의 iDRAC 문서에 대한 정보는 다음을 참조하십시오. 시스템에서 사용할 수 있는 iDRAC의 버전을 식별하려면 iDRAC 웹 인터페이스에서 ? > About을 클릭합니다.</td>
<td>www.dell.com/idracmanuals</td>
</tr>
<tr>
<td></td>
<td>운영 체제를 설치하는 방법에 대한 자세한 내용은 운영 체제 설명서를 참조하십시오.</td>
<td>www.dell.com/operatingsystemmanuals</td>
</tr>
<tr>
<td></td>
<td>드라이버 및 플레이어 업데이트에 대한 자세한 내용은 이 문서의 멤버웨어 및 각 페이터 다운로드 방법 섹션을 참조하십시오.</td>
<td>www.dell.com/support/drivers</td>
</tr>
<tr>
<td>시스템 관리</td>
<td>Dell에서 제공하는 시스템 관리 소프트웨어에 대한 자세한 내용은 Dell OpenManage 시스템 관리 개요 안내서를 참조하십시오.</td>
<td>www.dell.com/poweredgemanuals</td>
</tr>
<tr>
<td>작업</td>
<td>설명서</td>
<td>위치</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>OpenManage 설정, 사용, 문제 해결에 대한 자세한 내용은 Dell OpenManage Server Administrator 사용 설명서를 참조하십시오.</td>
<td>www.dell.com/openmanagemanuals > OpenManage Server Administrator</td>
<td></td>
</tr>
<tr>
<td>Dell OpenManage Essentials 설치, 사용, 문제 해결에 대한 자세한 내용은 Dell OpenManage Essentials 사용 설명서를 참조하십시오.</td>
<td>www.dell.com/openmanagemanuals > Dell OpenManage Essentials</td>
<td></td>
</tr>
<tr>
<td>Dell SupportAssist 설치 및 사용에 대한 정보는 Dell EMC SupportAssist Enterprise 사용자 가이드를 참조하십시오.</td>
<td>www.dell.com/serviceabilitytools</td>
<td></td>
</tr>
<tr>
<td>파트너 프로그램 엔터프라이즈 시스템 관리에 대한 자세한 내용은 OpenManage Connections 엔터프라이즈 시스템 관리 설명서를 참조하십시오.</td>
<td>www.dell.com/openmanagemanuals</td>
<td></td>
</tr>
<tr>
<td>Dell PowerEdge RAID 컨트롤러 작업</td>
<td>Dell PowerEdge PERC(PowerEdge RAID Controllers), 소프트웨어 RAID 컨트롤러 또는 BOSS 카드의 기능 이해 및 카드 배포에 대한 정보는 스토리지 컨트롤러 문서 자료를 참조하십시오.</td>
<td>www.dell.com/storagecontrollermanuals</td>
</tr>
<tr>
<td>이벤트 및 오류 메시지 이해</td>
<td>시스템 구성 요소를 모니터링하는 시스템 펌웨어 및 에이전트에서 생성된 이벤트 및 오류 메시지에 대한 정보는 Error Code Lookup 페이지를 참조하십시오.</td>
<td>www.dell.com/qrl</td>
</tr>
<tr>
<td>시스템 문제 해결</td>
<td>PowerEdge 서버 문제를 식별하여 해결하는 방법에 대한 자세한 내용은 서버 문제 해결 설명서를 참조하십시오.</td>
<td>www.dell.com/poweredgemanuals</td>
</tr>
</tbody>
</table>