Dell EMC PowerVault ME4 シリーズ ストレージシステム
導入ガイド
メモ、注意、警告

メモ: 製品を使いやすくするための重要な情報を説明しています。

注意: ハードウェアの損傷やデータの損失の可能性を示し、その危険を回避するための方法を説明しています。

警告: 物的損害、けが、または死亡の原因となる可能性があることを示しています。

© 2018 – 2019 Dell Inc. またはその子会社。無断転載を禁じます。Dell、EMC、およびその他の商標は、Dell Inc. またはその子会社の商標です。その他の商標は、それぞれの所有者の商標である場合があります。

2019 - 09
Rev. A04
目次

1 作業を開始する前に

- プロトコルの開部
- 安全に関するガイドライン
- 安全な処理
- 安全な動作
- 電気的安全性
- ラックシステムの安全に関する注意
- 取り付けのチェックリスト
- 取り付けの計画
- インストールの準備
 - 設置場所とホストサーバーの準備
 - 必要なツール
 - ラックマウントの取り付けの要件
- ディスクドライプモジュール
 - 2Uシャーシのドライプキャリアモジュール
 - ドライブステータスインジケータ
 - ダミードライプキャリアモジュール
 - 5Uエンクロージャ内のDDIC
 - ドローアへのDDICの取り付け

2 ラックへのエンクロージャのマウント

- ラックマウントレールキット
- 2Uエンクロージャの取り付け
- 2Uエンクロージャの前面ベゼルの取り付け
- 5U84エンクロージャの取り付け
- オプションの拡張エンクロージャを接続する
- 拡張エンクロージャのケーブルの要件

3 管理ネットワークへの接続

4 ストレージシステムへのホストサーバーのケーブル接続

- ケーブル接続に関する考慮事項
- ホストへのエンクロージャの接続
 - CNCテクノロジー
 - ファイバチャネルプロトコル
 - iSCSIプロトコル
 - SASプロトコル
- ホストの接続
 - 16Gb Fibre Channelホスト接続
 - iSCSIホスト接続
 - 12Gb HDミニSASホスト接続
 - 10Gbase-Tホスト接続
- 直接接続構成の接続
- シングルコントローラモジュール構成
5 電源ケーブルを接続して、ストレージシステムの電源を入れる... 31
電源ケーブルコネクタ.. 31

6 システムとストレージのセットアップの実行.. 34
ストレージシステムの情報の記録.. 34
ガイド付きセットアップの使用... 34
Webブラウザの要件とセットアップ... 34
ME Storage Managerへのアクセス.. 34
ファームウェアのアップデート... 35
ME Storage Managerの[Welcome]パネルにあるガイド付きセットアップの使用............................... 35

7 ホストのセットアップの実行.. 43
ホストシステムの要件.. 43
マルチバス構成について.. 43
ホストサーバの接続.. 43
Windowsホスト... 43
　Windows Server用のFibre Channelホストサーバ設定... 43
　Windows ServerのiSCSIホストサーバの設定.. 45
　Windows Server用のSASホストサーバ設定... 48
Linuxホスト.. 49
　Linuxのファイバーチャネルホストサーバの設定... 49
　Linux用のiSCSIホストサーバ設定.. 51
　Linux用のSASホストサーバ設定... 54
VMware ESXiホスト... 56
　VMware ESXi用のファイバーチャネルホストサーバ設定... 56
　VMware ESXi用のiSCSIホストサーバ設定... 58
　VMware ESXi用のSASホストサーバ設定.. 60
iSCSIボリュームでのマルチバスの有効化... 62
Citrix XenServerホスト.. 62

8 トラブルシューティングと問題解決... 63
サービスタグを確認する.. 63
オペレーター（Ops）パネルのLED.. 63
　2UエンクロージャOpsパネル... 63
　5UエンクロージャのOpsパネル... 64
初期スタートアップ時の問題.. 65
　2UエンクロージャのLED... 65
　5UエンクロージャのLED... 67
モジュールLED.. 71
　2Uエンクロージャのトラブルシューティング.. 72
　5Uエンクロージャのトラブルシューティング.. 74
障害の切り分け方法.. 75
基本手順の実行に利用可能なオプション... 75
基本的な手順の実行.. 76
エンクロージャが初期化されない場合.. 77
エンクロージャIDの修正... 77
ホストI/O.. 77
ハードウェア障害の対処..77

付録 A: レプリケーションのためのケーブル接続.. 81
 2台のストレージシステムの接続によるボリュームのレプリケート.. 81
 ホストポートとレプリケーション... 81
 レプリケーションのケーブル接続の例.. 82
 レプリケーションのためのシングルコントローラモジュール構成.. 82
 レプリケーションのためのデュアルコントローラモジュール構成.. 83
 レプリケーション障害の分離... 85
 レプリケーションセットアップの診断手順.. 86

付録 B: FC/iSCSIポートのSFP+トランシーバ... 89

付録 C: システム情報ワークシート... 91

付録 D: CLIポートとシリアルケーブルを使用したネットワークポートのIPアドレスの設定......... 94
 ミニUSBデバイスの接続.. 96
 Microsoft Windowsドライバ.. 97
 Linuxドライバ... 97
作業を開始する前に

エンクロージャの開梱

作業を開始する前に、輸送中の不適切な取り扱いによる破壊、損傷、水害などがないか確認します。損傷の疑いがある場合は、後で確認できるように開梱前に梱包の写真を撮影してください。元の梱包材は返品時に使用するため残しておいてください。

1. 2Uストレージシステムを開梱して、同梱されている物品を確認します。
 - メモ: エンクロージャで使用するケーブルは、図1.2U12および2U24エンクロージャの開梱には示されていません。レールキットと付属品ボックスは、2Uエンクロージャ梱包箱のふたの下にあります。

図1.2U12および2U24エンクロージャの開梱

1. ストレージシステムエンクロージャ
2. ラックマウント右側レール（2U）
3. ラックマウント右側レール（2U）
4. ラックマウント右側レール（2U）
5. エンクロージャの前面パネルペゼルオプション
6. ラックマウント耳部

- 2UエンクロージャにはコントローラモジュールまたはI/Oモジュール（IOM）が付属しています。使用しないドライプスロットにはダミードライプキャリモジュールを取り付ける必要があります。
- CNCコントローラモジュールで構成されたエンクロージャの場合は、同梱のSFP+トランシーバーを確認してください。「FC/iSCSIポートのSFP+トランシーバー」を参照してください。
- 5U84ストレージシステムを開梱して、同梱されている物品を確認します。
 - メモ: エンクロージャで使用するケーブルは、図2.5U84エンクロージャの開梱には示されていません。レールキットと付属品ボックスは、5U84エンクロージャ梱包箱のふたの下にあります。
図 2. 5U84 エンクロージャの開梱
1. ストレージシステムエンクロージャ
2. DDIC（キャリア内ディスクドライブ）
3. マニュアル
4. ラックマウント左側レール (5U84)
5. ラックマウント右側レール (5U84)
6. Drawers (ドロワー)

・ DDIC は別のコンテナで出荷され、製品設置時にエンクロージャドロワーに取り付ける必要があります。ラックマウント取り付けの場合は、エンクロージャをラックにマウントした後で DDIC を取り付けます。「ドロワーへの DDIC の取り付け」を参照してください。
・ CNC コントローラ モジュールで構成されたエンクロージャの場合は、同梱の SFP+トランシーバを確認してください。「FC/iSCSI ポートの SFP+トランシーバ」を参照してください。

注意:
- 5U エンクロージャの場合、出荷時に DDIC は取り付けられていませんが、背面パネル コントローラ モジュールまたは IOM は取り付けられています。一部のメディアが装着されたこのエンクロージャの重量は、約 64 kg (142 ポンド) です。ポックスからエンクロージャを取り出す作業には、2 人以上の人員が必要です。
- エンクロージャを持ち上げるときは、ストラップが確実にラッピングされバックル止めされていることを確認し、エンクロージャの両側に 1 人ずつ配置してください。その後、ループを持ってしっかりとストラップを握り、適切な持ち上げ技術を用いてエンクロージャをポックスから取り出します。エンクロージャは、静電気から保護された領域に置いてください。

安全に関するガイドライン

けがを防ぎ、ME4 シリーズのコンポーネントへの損傷を避けるため、常にこれらの安全に関するガイドラインに従ってください。

Dell EMC が指定する以外の方法でこの機器を使用した場合、機器によって提供される保護機能が損なわれることがあります。お客様の安全と予防措置のため、以下の項目に従ってください。

メモ: 製品の安全および認可機関に関する情報については、Dell EMC PowerVault ME4 シリーズ Storage System Getting Started Guide を参照してください。保証に関する情報は、別の文書として同梱されています。

安全な処理

Dell EMC では、ラックへのエンクロージャの取り付けは、ラック取り付け経験のある方のみに行っていただくことをお勧めします。

注意: Dell EMC が指定する方法でこの機器を使用してください。それ以外の方法で使用した場合、機器によって提供される保護が失われることがあります。
- エンクロージャを移動する前、またはエンクロージャに何らかの損傷があると思われる場合は、プラグを外してください。
- 安全に持ち上げられる高さは 20U です。
エンクロージャを移動する前に重量を最小限に抑えるために、必ず電源冷却モジュール（PCM）を取り外してください。
PCM のハンドルでエンクロージャを持ち上げないでください。これらは重いものを支えるように設計されていません。

注意: エンクロージャを 1 人で持ち上げないでください。

フル構成の 2U12 エンクロージャの重量は、最大 32 kg (71 ポンド) になることがあります。
フル構成の 2U24 エンクロージャの重量は、最大 30 kg (66 ポンド) になることがあります。
フル構成の 5U84 エンクロージャの重量は、最大 135 kg (288 ポンド) になることがあります。空のエンクロージャの重量は 46 kg (101 ポンド) です。

注意: エンクロージャを持ち上げる際には、エンクロージャ内の空のドライブスロット(ベイ)にはダミーのドライブキャリアモジュールを装着する必要があります。エンクロージャの重量は、最大 266 kg (588 ポンド) になることがあります。エンクロージャを持ち上げないでください。これらは重いものを支えるようには設計されていません。

安全な動作

モジュールが取り付けられていない状態でエンクロージャを動作させると、通気が妨げられて、エンクロージャを十分に冷却できなくなることがあります。

注意: 5U84 エンクロージャのみ

全重量に貼られたモジュール ベイ注意ラベルの指示に従います。
欠陥のある PCM は、24 時間以内に完全に動作する PCM に交換します。挿入準備の整った正しいタイプの交換用モデルがあるので限り、欠陥のある PCM を取り外さないでください。

PCM または PSU を取り外す/交換する前に、交換するモジュールから供給電力を遮断します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」を参照してください。

電源冷却モジュールに貼られた危険電圧警告ラベルの指示に従います。

注意: 5U84 エンクロージャのみ

ラックの転倒を防ぐため、ドロワーのインターロックによって、ユーザーや他方のドロワーを同時に開けることはできない構造になっています。エンクロージャ内の他のあるドロワーがすでに開いているときに、ドロワーを無理に開こうとしないでください。

ドロワーの重さは、最大 135 kg (288 ポンド) に達することがあります。ドロワーを開けて DDIC を取り外すときはご注意ください。

製品が騒音が発生するため、動作中製品を長期間使用するときは、防音保護具を選用する必要があります。

ドロワーの注意ラベルに従います。他のものや機器を支えるために、開いたドロワーを使用しないでください。

電気的安全性

2U エンクロージャは、100~240 VAC、50/60Hz の電源電圧範囲から動作させる必要があります。
5U エンクロージャは、200~240 VAC、50/60Hz の電源電圧範囲から動作させる必要があります。
技術仕様の要件を満たすために、電気過負荷保護機能が備わった電源を使用してください。
電源コードには安全な電気接地接続が必要です。PSU をオンにする前に、エンクロージャの接地接続を確認してください。

注意: 電源を投入する前に、エンクロージャを接地する必要があります。

電源ケーブルのプラグは、主な切断デバイスとして使用されます。コンセントが装置の近くにある、アクセス可能であることを確認してください。
2U エンクロージャは、2 台の PCM で動作するように意図されています。
5U84 エンクロージャは、2台の PSU で動作するように意図されています。
電源冷却モジュールに貼られている電源装置切断注意ラベルに記載された手順に従ってください。

注意: エンクロージャまたはいかなるモジュールからもカバーを取り外さないでください。内部で感電する危険性があります。

ラック システムの安全に関する注意
エンクロージャをラックにマウントする際は、次の安全要件を考慮する必要があります。

1. ラックは、取り付けられたエンクロージャの総重量をサポートできる構造になっている必要があります。設計には、取り付け時や通常使用時にラックが傾いたり押し倒されたりするのを防止する安定化機能を組み込むようにしてください。
2. エンクロージャをラックに取り付けるときは、必ずすべての PSU モジュールを取り外して、重量を最小限に抑えてください。
3. エンクロージャを1人で持ち上げないでください。
4. エンクロージャをラックに取り付ける際は下段から上段の順に、取り外すときは上段から下段の順に行ってください。
5. ラックドアと障害物によって生じる背圧は、システムの設計にあたっては考慮する必要があります。最大動作温度を考慮する必要があります。最大動作温度はコントローラで 35ºC (95ºF)、拡張エンクロージャで 40ºC (104ºF) です。
6. ラックには、安全に配電システムが搭載されている必要があります。システムは、エンクロージャに対して過電流保護を提供する必要があります。ラック内各エンクロージャの最大動作環境温度を考慮する必要があります。
7. 電源冷却モジュールに貼られている電源装置切断注意ラベルに記載された手順に従ってください。

注意: ラックが倒れるのを防ぐため、キャビネットからエンクロージャを取り出す際は、必ず一度につき1台のみ行うようにしてください。

取り付けのチェックリスト
ここでは、エンクロージャシステムを業界標準の19インチラックキャビネットに正しく取り付けるための計画の方法と、実際の取り付け方法を紹介します。

注意: ストレージシステムを取り付ける際は、付属の電源ケーブルのみを使用してください。

エンクロージャの取り付けと、ストレージシステムの初期設定およびプロビジョニングに必要なステップについて、次の表で概説します。

メモ: 正しい取り付けを確実に行うために、提示どおりの順序でタスクを実行してください。

表1. 取り付けのチェックリスト

<table>
<thead>
<tr>
<th>バス</th>
<th>タスク</th>
<th>手順の参照先</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>エンクロージャを開梱します。</td>
<td>「エンクロージャの開梱」を参照してください。</td>
</tr>
<tr>
<td>2</td>
<td>コントローラ エンクロージャとオプションの拡張エンクロージャをラックに取り付けます。</td>
<td>「必要なツール」を参照してください。</td>
</tr>
<tr>
<td></td>
<td>「ラックマウントの取り付けの要件」を参照してください。</td>
<td>「2U エンクロージャの取り付け」を参照してください。</td>
</tr>
<tr>
<td></td>
<td>2U エンクロージャの取り付け」を参照してください。</td>
<td>「5U84 エンクロージャの取り付け」を参照してください。</td>
</tr>
<tr>
<td>3</td>
<td>5U84 エンクロージャ ドロワーにディスク (DDIC) を挿入します。2Uのエンクロージャにはディスクが取り付けられています。</td>
<td>「ドロワーへの DDIC の取り付け」を参照してください。</td>
</tr>
<tr>
<td>4</td>
<td>オプションの拡張エンクロージャのケーブル配線をします。</td>
<td>「オプションの拡張エンクロージャを接続する」を参照してください。</td>
</tr>
</tbody>
</table>
取り付けの計画

エンクロージャの取り付けを開始する前に、システム構成要件を十分に理解しておいてください。

表2. システム設定

<table>
<thead>
<tr>
<th>モジュールタイプ</th>
<th>場所</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドライブキャリアモジュール</td>
<td>2U前方パネル</td>
<td>すべてのドライブスロットに、ドライブキャリアカフのドライブキャリアモジュールのいずれかを装着する必要があります。スロットを空にすることができません。少なくとも1台のディスクを取り付ける必要があります。</td>
</tr>
<tr>
<td>DDIC</td>
<td>5U前方パネルのドロワー</td>
<td>最大84台のディスク（ドロワーごとに42台のディスク）を取り付けます。少なくとも28台のディスクが必要です。「ドロワーへのDDICの取り付け」に記載されているドロワーへの取り付けルールに従ってください。</td>
</tr>
<tr>
<td>電源冷却モジュール</td>
<td>2U背面パネル</td>
<td>2つのPCMにより、電源の完全な冗長性が提供され、故障したPCMの交換中もシステムの動作を継続できます。</td>
</tr>
<tr>
<td>電源装置ユニットモジュール</td>
<td>5U背面パネル</td>
<td>2台のPSUにより、電源の完全な冗長性が提供され、故障したPSUの交換中もシステムの動作を継続できます。</td>
</tr>
<tr>
<td>ファン冷却モジュール</td>
<td>5U背面パネル</td>
<td>5つのFCMによりエアフローの循環が提供され、システム各コンポーネントが許容最高温度を超える状態を維持できます。</td>
</tr>
<tr>
<td>コントローラモジュール</td>
<td>背面パネル</td>
<td>2U12および2U24エンクロージャには、1台または2台のコントローラモジュールを取り付けることができます。</td>
</tr>
<tr>
<td></td>
<td>IOM</td>
<td>5U84エンクロージャには、2台のコントローラモジュールを取り付ける必要があります。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2U12、2U24、および5U84エンクロージャには、2台のIOMを取り付ける必要があります。</td>
</tr>
</tbody>
</table>

インストールの準備

1. メモ：エンクロージャの構成：
・2U エンクロージャーは、CRU およびすべてのドライプキャリアモジュールが取り付けられた状態で出荷されます。
・5U84 エンクロージャーは、CRU が取り付けられた状態で出荷されますが、DDIC の取り付けはシステムセットアップ中に行う必要があります。
・5U84 エンクロージャを動作させるには 200〜240VAC が必要です。詳細については、『Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual』の『Environmental requirements』のトピックを参照してください。

注意: エンクロージャーの持ち上げ:
・すべてのコンポーネント部品が含まれている 2U エンクロージャーはかなりの重量になるため、1 人で持ち上げてラックキャビネットに取り付けることはできません。2U エンクロージャーの安全な移動には 2 人が必要です。
・5U エンクロージャ（DDIC が取り付けられている状態で出荷されます）をボックスから持ち上げる作業には、2 人の人員が必要です。エンクロージャを持ち上げてラック内で位置決めするには、機械リフトを使用する必要があります。

設置場所とホストサーバの準備
エンクロージャの取り付けを開始する前に、ストレージシステムの設置場所に次のものが準備されていることを確認します。
・各冗長電源モジュールには、独立した電源または無停電電源装置（UPS）を備えたラック配電ユニットからの電源が必要です。
・適切なソフトウェア、BIOS、およびドライプで設定されたホストコンピューター。正しいソフトウェアの設定については、サプライヤーにお問い合わせください。

ME4 シリーズエンクロージャを取り付けるには、次のツールが必要です。
・プラスドライバー
・ロック用の Torx T20 ビットおよび厳選された CRU 交換品

ラックマウントの取り付けの要件
エンクロージャは、2U フォームファクタを保持できる業界標準の 19 インチキャビネットに取り付けることができます。
・最小深さ：ラックポストからエンクロージャの最端まで 707 mm（27.83 インチ）（背面パネルのケーブル接続とケーブルの曲げ半径を含む）。
・重量:
・最大 32 kg（71 ポンド）（2U エンクロージャあたり、構成によって異なる）
・最大 128 kg（282 ポンド）（5U エンクロージャあたり、構成によって異なる）
・ラックに起因する最大 5 バスカル（0.5 mm ウォーターゲージ）の背圧が生じます。
・作業を開始する前に、レールを取り付けるための十分な空間がラックの前面にあることを確認してください。
ディスク ドライブ モジュール

ME4シリーズ ストレージシステムでは、2Uおよび5U84エンクロージャ内で、異なるディスクドライブモジュールを使用することができます。

- 2Uエンクロージャで使用されるディスクドライブモジュールは、ドライブキャリアモジュールと呼ばれています。
- 5U84エンクロージャで使用されるディスクドライブモジュールは、キャリア内ディスクドライブ（DDIC）モジュールと呼ばれています。

2U シャーシのドライブキャリアモジュール

ドライブキャリアモジュールは、キャリアモジュールに取り付けられたディスクドライブで構成されています。

- 各2U12ドライブスロットが、そのキャリア内に、高さ1.0インチの薄型3.5インチフォームファクターディスクドライブを1台保持します。ディスクドライブは水平です。2.5インチディスクドライブに対応するために、2.5インチを3.5インチに変換するキャリアアダプタを使用できます。
- 各2U24ドライブスロットが、そのキャリア内に、高さ5/8インチの薄型2.5インチフォームファクターディスクドライブを1台保持します。ディスクドライブは垂直です。

キャリアには以下のデバイスを取り付ける場所があります。

- ダイレクトドックSASドライブ。

シート鋼キャリアは熱伝導、無線周波数、および電磁誘導保護を提供する各ドライブを持ち、ドライブを物理的に保護します。前面のキャップには、以下の機能を提供するエルゴノミクスハンドルもあります。

- キャリアをドライブスロットから出し入れする安全な場所。
- ドライブ/ミッドプレーンコネクタの押し込み式のばね荷重。

キャリアはこのインターフェイスを使用できます。

- デュアルパスのダイレクトドックSerialAttachedSCSI。

サポートされるドライブキャリアモジュールを、次の図に示します。

図3. デュアルパスLFF3.5インチドライブキャリアモジュール

図4. デュアルパスSFF2.5インチドライブキャリアモジュール
図 5. 2.5 インチから 3.5 インチへのハイブリッド ドライブ キャリア アダプタ

ドライブ ステータス インジケータ
各ドライブ キャリア モジュールの前面にある緑色とオレンジ色の LED は、ディスクドライブのステータスを示します。

ダミーのドライブ キャリア モジュール
ダミーのドライブ キャリア モジュール（ドライブ ダミーとも呼ばれ）は、3.5 インチ（2U12）と 2.5 インチ（2U24）のフォームファクターで提供されます。バランスの良いエアフローを作るために、これらを空のディスクスロットに取り付ける必要があります。

図 6. ダミーのドライブ キャリア モジュール: 3.5 インチ ドライブ スロット（左）, 2.5 インチ ドライブ スロット（右）

5U エンクロージャ内の DDIC
各ディスクドライブは、適切な SAS キャリア移行カードを使用してディスクドライブをドローにしっかりと挿入できるようにする DDIC に取り付けられます。

DDIC には、方向を指示する矢印の付いたスライドラッチボタンが備えられています。スライドラッチによって、DDIC をドロー内のディスクスロットに取り付けて固定することができます。スライドラッチはまた、DDIC をスロットから外してドローから取り外すためにも使用できます。DDIC にはドライブ障害 LED が1個付いており、ディスクドライブに障害が発生すると橙色に点灯します。

次の図は、3.5 インチ ディスクドライブを搭載した DDIC を示しています。
次の図は、ハイブリッドドライブキャリアアダプタと2.5インチディスクドライブが入ったDDICを示しています。

図7. DDIC内の3.5インチディスクドライブ

次の図は、ハイブリッドドライブキャリアアダプタを搭載した3.5インチDDIC内の2.5インチドライブドロワーへのDDICの取り付け

ドロワーへのDDICの取り付け

5U84エンクロージャは、出荷時にDDICが取り付けられていません。ドロワーにDDICを取り付ける前に、次のガイドラインに合致していることを確認してください。

- エンクロージャでサポートされる最小ディスク数は、28台（各ドロワーに14台）です。
- DDICは行を埋めるようにディスクスロットに追加する必要があります（一度に14台のディスク）。
- 各ドロワーの前に起點として、DDICを番号順に、上部ドロワーと下部ドロワーに交互に取り付けます。たとえば、最初に上部ドロワーのスロット0〜13に取り付け、次に下部ドロワーの42〜55に取り付け、それからスロット14〜27に取り付ける、などとなります。
- 取り付ける行の数は、上部ドロワーと下部ドロワーの間で複数行違うないようにする必要があります。
- ハードディスクドライブ(HDD)とソリッドステートドライブ(SDD)を同じドロワー内に混在させることができます。
- 同じ行に取り付けるHDDは、回転速度が同じものにしてください。
- 3.5インチディスクを装着したDDICと2.5インチディスクを装着したDDICをエンクロージャ内で混在させることができます。ただし、列ごとにディスクのフォームファクターを統一して装着してください(すべて3.5インチまたは2.5インチディスク)。

次の図は、DDICを完全に装着したドロワーを示しています。

- 3.5インチディスクを装着するDDICの詳細については、図7. DDIC内の3.5インチディスクドライブを参照してください
3.5インチアダプタを使用して2.5インチディスクを装着するDDICの詳細については、図8ハイブリッドドライブキャリアアダプタを搭載した3.5インチDDIC内の2.5インチドライブを参照してください。

図9. DDICを完全に装着した5U84エンクロージャのドロワー
ラックへのエンクロージャのマウント

この項では、ME4 シリーズストレージシステム機器を開梱し、取り付け準備を行い、安全にエンクロージャをラックにマウントする方法について説明します。

トピック:
- ラックマウント レール キット
- 2U エンクロージャの取り付け
- 5U4 エンクロージャの取り付け
- オプションの拡張エンクロージャを接続する

ラックマウント レール キット

19 インチラックキャビネットではラック ウォーミング クリップを使用できます。

レールはエンクロージャの最大重量に合わせて設計およびテストされています。ラック内のスペースを無駄にせず複数のエンクロージャを取り付けることができます。これ以外のマウントング ハードウェアを使用すると、ラックのスペースが無駄になる場合があります。使用予定のラックに適したマウントングレールが入手可能か確認するには、Dell EMC にお問い合わせください。

2U エンクロージャの取り付け

2U エンクロージャは、ディスクを取り付けられた状態で出荷されます。

レールの取り付け手順を実行する際は、図 10. ブラケットのレールへの固定（図は 2U の左側レール）を参照してください。

1. ラック取り付け用リール キットを付属品ボックスから取り出し、損傷がないか点検します。
2. レール キット ブラケットをラック ポストに取り付けるには、次の手順を実行します。
 a. レール背面にある位置ビンを、背面ラック ポストの穴に配置します。
 b. 付属のワッシャーとネジを使用して、ブラケットを背面ラック ポストに取り付けます。ネジは緩めたままにしておきます。
 c. レールを伸ばして、前面と背面ラック ポストの間にフィットするよう合わせます。
 d. 付属のワッシャーとネジを使用して、ブラケットを前面ラック ポストに取り付けます。ネジは緩めたままにしておきます。
 e. ラックブラケットの後部に沿って付いている 2 本のクランプネジを締めます。
 f. もう一方のレールに上記の手順を繰り返します。
3. エンクロージャを取り付けます。
 a. エンクロージャを持ち上げ、水平を維持するように注意しながら、取り付けたラック レールと位置合わせをします。
 b. シャーシ スライドをラック レールへ慎重に挿入し、完全に押し込みます。
 c. 背面のレール キット ブラケットのマウント ネジを締めます。
 d. エンクロージャを取り外し、約 400 mm (15.75 インチ) の位置にあるハード ストッパまで到達させ、前面 レール キット ブラケットのマウント ネジを締めます。
 e. エンクロージャをホーム位置に戻します。
図10. ブラケットのレールへの固定（図は2Uの左側レール）
1. 前面ラックポスト（角穴）
2. レールのロケーションピン（各レールあたり2個）
3. 左レール
4. 背面ラックポスト（角穴）
5. クランプネジ（B）
6. クランプネジ（B）
7. 締め付けネジ（A）
8. 2U Opsパネル取り付けの詳細（分解組立図）
9. 左レールの位置固定ネジ
10. 2Uエンクロージャ締め付けネジ（C）
11. キー：ラックマウントの取り付けに使用するレールキットファスナー

2U エンクロージャの前面ベゼルの取り付け
エンクロージャにベゼルが付属している場合は、ベゼルを取り付けます。
ベゼルを手に持ちながら、2U12または2U24エンクロージャの前面パネルの正面に向き合います。
1. ベゼルの右端をシャーシの右側耳部のカバーに掛けます。

図11. 2U エンクロージャ前面へのベゼルの取り付け
2. ベゼルの左端を、リリースラッチが所定の位置にカチッと取まるまで、固定スロットに挿入します。
3. 図11. 2U エンクロージャ前面へのベゼルの取り付けの詳細図に示されているように、キーロックでベゼルを固定します。

メモ: 2U エンクロージャ前面パネルからベゼルを取り外すには、前述の手順を、順序を逆にして実行します。

5U84 エンクロージャの取り付け
5U84 エンクロージャは、ディスクが取り付けられていない状態で出荷されます。
メモ: 重量の関係により、エンクロージャはDDICを取り付けない状態でラックに取り付けてください。また、エンクロージャの重量を軽減するため、背面パネルのCRUを取り外してください。
前面ポストから背面ポストまでのレールキットの調整範囲は、660 mm〜840 mmです。この範囲は、ラック仕様 IEC 60297に収まる、奥行きが1メートルのラックに適しています。

1. 作業をしやすくするため、ラックから扉を外します。
2. 事前組み立て済みのレールが最短の長さになっていることを確認します。

メモ: レールの参照ラベルを参照してください。

3. ラックの前面内側にあるレール位置ピンの位置を確認し、レールアセンブリの長さを背面位置ピンの位置まで伸ばします。ピンがラックポストの角穴または丸穴に完全に差込まれることを確認します。

図12. レールへのブラケットの固定（図は5U84エンクロージャの左側のレール）

<table>
<thead>
<tr>
<th>アイテム</th>
<th>説明</th>
<th>アイテム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>締め付けネジ（A）</td>
<td>8</td>
<td>前面ラックポスト（角穴）</td>
</tr>
<tr>
<td>2</td>
<td>左レール</td>
<td>9</td>
<td>中央スライドの止めネジ</td>
</tr>
<tr>
<td>3</td>
<td>背面ラックポスト（角穴）</td>
<td>10</td>
<td>5U84のシャーシセクション（参照用）</td>
</tr>
<tr>
<td>4</td>
<td>クランプネジ（B）</td>
<td>11</td>
<td>締め付けネジ（C）</td>
</tr>
<tr>
<td>5</td>
<td>クランプネジ（B）</td>
<td>12</td>
<td>キー：ラックマウント取り付けに使用するレールキットファスナー</td>
</tr>
<tr>
<td>6</td>
<td>レール位置ピン（レールあたり4本）</td>
<td></td>
<td>(A=締め付け、B=クランプ、C=締め付け)</td>
</tr>
<tr>
<td>7</td>
<td>5U84のシャーシセクション（参照用）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. すべてのクランプネジと中央スライドの止めネジを完全に締めます。
5. 背面の4つのスペーサークリップ（図外）がラックポストのエッジにはまっているか確認します。
6. レールに完全に装着されるまでエンクロージャをスライドさせます。
7. 「図12. レールへのブラケットの固定（図は5U84エンクロージャの左側のレール）」に示すように、エンクロージャの締め付けネジ（x4）を使用してエンクロージャの前面を固定します。
8. エンクロージャの背面の締め付けネジを使用して、エンクロージャの背面をスライドブラケットに固定します。

注意: エンクロージャをラックに取り付けたら、持ち上げストラップは破棄してください。このストラップは、エンクロージャをラックから取り外す目的には使用できません。

背面パネルモジュールを再度挿入し、DDICをドロワーに取り付けます。「Dell EMC PowerVault ME4 シリーズStorage System Owner's Manual」内の手順を参照してください。

- コントローラモジュールの取り付け
- IOMの取り付け
- ファン冷却モジュールの取り付け
- PSUの取り付け
- DDICの取り付け
オプションの拡張エンクロージャを接続する

ME4 シリーズ コントローラ エンクロージャは 2U12、2U24、および 5U84 拡張エンクロージャをサポートします。同じストレージシステム内で、2U12 拡張エンクロージャと 2U24 拡張エンクロージャは混在可能ですが、2U 拡張エンクロージャを 5U84 拡張エンクロージャと混在させることはできません。

1. 拡張エンクロージャを既存のストレージシステムに追加する場合、拡張エンクロージャを接続する前に、コントローラエンクロージャの電源をオフにしてください。

- ME4 シリーズの 2U コントローラ エンクロージャは、最大 10 台の 2U エンクロージャ（コントローラ エンクロージャを含む）する
 なわち最大 240 台のディスクドライブをサポートします。
- ME4 シリーズの 2U コントローラ エンクロージャは、最大 4 台の 2U エンクロージャ（コントローラ エンクロージャを含む）する
 なわち最大 336 台のディスクドライブをサポートします。
- ME4 シリーズ拡張エンクロージャには、デュアル IOM が装備されています。これらの拡張エンクロージャは、シングル IOM を
 備えたコントローラ エンクロージャにはケーブル接続できません。
- エンクロージャは、拡張エンクロージャを追加するためのリバースの SAS ケーブル接続をサポートします。リバース ケーブル接
 続では、他のエンクロージャへのアクセスを維持しながら、任意のドライブ エンクロージャを無効にする(または取り外す)ことが
 できます。フォールト トレランスとパフォーマンスの要件によって、ケーブル接続の際高可用性または高性能のどちらを優先して設定を最適化するかが決まります。

拡張エンクロージャのケーブルの要件

ME4 シリーズは 2U12、2U24、および 5U84 のフォーム ファクターをサポートしており、それそれぞれコントローラ エンクロージャま
たは拡張エンクロージャとして設定できます。エンクロージャの主な特性は次のとおりです。

1. 拡張エンクロージャを既存のストレージシステムに追加する場合、拡張エンクロージャを接続する前に、コントローラエンクロージャの電源をオフにしてください。

- SAS ケーブルを IOM に接続する場合、サポートされている HD ミニ SAS x4 ケーブルのみを使用します。
- 認定された HD ミニ SAS - HD ミニ SAS 0.5 m (1.64 フィート) ケーブルは、ラック内のカスクード接続のエンクロージャを接続する未だ
 ために使用されます。
- どのような構成においても、許容されるエンクロージャケーブルの長さは、最長 2 m (6.56 フィート) です。
- 2 個を超える拡張エンクロージャを追加する場合、エンクロージャの数および使用するケーブル接続方法によって、追加のケ
 ーブルを購入しなければならない場合があります。
- フォールト トレランス構成でリバースケーブル接続する場合、追加またはより長いケーブルを注文しなければならない場合があ
 ります。

ケーブル接続図に共通の規則に従って、コントローラ エンクロージャは、接続された拡張エンクロージャのスタックの上に示して
います。実際には、ラックに最適な重量と配置の安定性のためにスタックの順序を逆にすることができます。ケーブル接続の概略
図は変更されません。詳細については、「ラックへのエンクロージャのマウント」を参照してください。

1つの拡張エンクロージャに複数の拡張エンクロージャを接続する場合は、リバース ケーブル接続を使用して最高レベルのフォールト
トレランスを確保するようにしてください。

ME4 シリーズでは、コントローラ モジュールと IOM をエンクロージャID と IOM ID で識別しています。次の図では、コントローラ
モジュールが OA および OB として識別され、最初の拡張エンクロージャの IOM が IA および IB として識別され、以下同様に続いて
います。コントローラ モジュール OA は IOM IA に接続されており、連続した接続がカスクードダウンしています (青)。コントローラ
モジュール OB は、最後の拡張エンクロージャの、下段の IOM (9B) に接続されており、接続が逆方向に動いています (緑)。リバース
ケーブル接続を使用すると、いずれかの拡張エンクロージャが故障したり取り外されたりした場合でも、その他のエンクロージ
ャへのアクセスは維持されます。

1. ケーブル接続図には、モジュールのフェース プレートのアウトラインや拡張ポートなど、関連性のある詳細のみが示され
 ています。

図 13. 2U コントローラ エンクロージャと 2U 拡張エンクロージャ間のケーブル接続 は、2U 拡張エンクロージャを搭載した 2U コン
 トローラ エンクロージャの最大限のケーブル接続構成を示しています。
図13. 2Uコントローラ エンクロージャと 2U 拡張エンクロージャ間のケーブル接続
1. コントローラ モジュール A (0A)
2. コントローラ モジュール B (0B)
3. IOM (1A)
4. IOM (1B)
5. IOM (2A)
6. IOM (2B)
7. IOM (3A)
8. IOM (3B)
9. IOM (4A)
10. IOM (4B)

図14. 5U コントローラ エンクロージャと 5U 拡張エンクロージャ間のケーブル接続 は、5U84 拡張エンクロージャを搭載した 5U84 コントローラ エンクロージャの最大限のケーブル接続構成を示しています (コントローラ エンクロージャを含めて4個のエンクロージャ)。

図14. 5U コントローラ エンクロージャと 5U 拡張エンクロージャ間のケーブル接続
1. コントローラ モジュール A (0A)
2. コントローラ モジュール B (0B)
3. IOM (1A)
4. IOM (1B)
5. IOM (2A)
6. IOM (2B)
7. IOM (3A)
8. IOM (3B)
図 15. 2U コントローラ エンクロージャと 5U84 拡張エンクロージャ間のケーブル接続 は、5U84 拡張エンクロージャを搭載した 2U コントローラ エンクロージャの最大限のケーブル接続構成を示しています（コントローラ エンクロージャを含めて 4 個のエンクロージャ）。

図 15. 2U コントローラ エンクロージャと 5U84 拡張エンクロージャ間のケーブル接続
1. コントローラ モジュール A (0A) 2. コントローラ モジュール B (0B)
3. IOM (1A) 4. IOM (1B)
5. IOM (2A) 6. IOM (2B)
7. IOM (3A) 8. IOM (3B)

バックエンドケーブルのラベル付け

コントローラ エンクロージャと拡張エンクロージャを接続するバックエンド SAS ケーブルには必ずラベル付けを行ってください。
管理ネットワークへの接続

コントローラ エンクロージャを管理ネットワークに接続するには、次の手順を実行します。

1. 各コントローラ モジュール上のネットワーク ポートに Ethernet ケーブルを接続します。
2. 各 Ethernet ケーブルのもう一方の端を、管理ホストからアクセス可能なネットワークに接続します (できれば同じサブネット上)。

メモ: iSCSI と管理ポートと同じ物理スイッチに接続する場合、Dell EMC は、別個の VLAN を使用することを推奨します。

図 16. 管理ネットワークへの 2U コントローラ エンクロージャの接続

1. スロット A のコントローラ モジュール
2. スロット B のコントローラ モジュール
3. スイッチ
4. SAN

図 17. 管理ネットワークへの 5U コントローラ エンクロージャの接続

1. スロット A のコントローラ モジュール
2. スロット B のコントローラ モジュール
3. スイッチ
4. SAN

メモ: 『Dell EMC PowerVault ME4 シリーズ Storage System Administrator’s Guide』の、コントローラ モジュール上のネットワーク ポートの設定に関するトピックも参照してください。
ストレージシステムへのホストサーバのケーブル接続

この項では、ホストサーバをストレージシステムに接続できるさまざまな方法について説明します。

トピック:
- ケーブル接続に関する考慮事項
- ホストへのエンクロージャの接続
- ホストの接続

ケーブル接続に関する考慮事項

ME4シリーズコントローラエンクロージャのホストインタフェイスポートは、直接接続またはスイッチ接続方式を使用してそれぞれのホストに接続できます。

ケーブル接続に関するもう1つの重要事項として、コントローラエンクロージャをケーブル接続してレプリケーション機能を有効にすることを考慮する必要があります。FCおよびiSCSI製品モデルはレプリケーションをサポートしていますが、SAS製品モデルはレプリケーションをサポートしていません。レプリケーションのためのケーブル接続を参照してください。

ホスト接続にはDell EMCケーブルのみを使用してください。

認定された16 Gb FC SFP+トランシーバおよびケーブルオプション

認定された10 GbE iSCSI SFP+トランシーバおよびケーブルオプション

認定された10GbEベース-Tケーブルオプション

認定された12 GbミニSAS HDケーブルオプション

ホストへのエンクロージャの接続

「ホスト」は、ストレージシステムの接続先である外部ポートを識別します。外部ポートは、サーバのI/Oアダプタ（FC HBAなど）のポートである場合があります。ケーブル接続は構成によって異なります。ここでは、ME4シリーズコントローラエンクロージャでサポートされているホストインターフェイスプロトコルについて説明し、共通のケーブル配線構成をいくつか示します。ME4シリーズコントローラではUnified LUN Presentation（ULP）が使用されます。ULPにより、ホストから、任意のコントローラのホストポートを経由して、マップされたボリュームにアクセスすることが可能になります。

ULPでは、両方のコントローラにあらゆるポートを介してすべてのLUNを表示することができ、相互接続情報はコントローラのファームウェアによって管理されます。ホストではULPはアクティブ-アクティブのストレージシステムとして認識されるため、ホストはディスクグループの所有権に関係なく、使用可能な任意のパスを選択してLUNにアクセスできます。

CNCテクノロジー

ME4シリーズのFC/iSCSIモデルには、コンバージョンネットワークコントローラ（CNC）テクノロジーが採用されています。

CNCテクノロジーでは、ストレージシステムで使用するホストインタフェイスプロトコルを選択することが可能です。CNCポートで使用されるスモールフォームファクタープラグ可能（SFP+）コネクタについては、以降のサブセクションで詳しく説明します。

メモ:

・ コントローラモジュールは、必ずしもSFP+トランシーバが取り付けられた状態で出荷されるわけではありません。コントローラモジュールにSFPトランシーバを取り付けなければならない場合もあります。プロダクトキットで認定SFP+トランシーバを見つけて、CNCポートに取り付けてください。「FC/iSCSIポートのSFP+トランシーバ」を参照してください。

・ ME Storage Managerを使用して、認定SFP+トランシーバを使用するCNCポートにホストインタフェイスプロトコルを設定します。ME4シリーズモジュールは、CNCポートがFC向けに設定された状態で出荷されます。CNCポートをiSCSIホストに接続する場合、これらのポートをiSCSI向けに設定する必要があります。
ホスト接続に使用される CNC ポート

ME4 シリーズの CNC ポートは、FC 用に設定された CNC ポートが付属しています。

CNC ポートを変更する必要がある場合は、ME Storage Manager を使用して実施できます。
あるいは、ME4 シリーズの CNC ポートに FC プロトコルと iSCSI プロトコルを組み合わせて使用させる設定を行うこともできます。ホストインタフェースプロトコルの組み合わせを設定する場合、ホストポート 0 および 1 を FC 用に設定し、ホストポート 2 および 3 を iSCSI 用に設定する必要があります。CNC ポートは、選択されたホストインタフェースプロトコル向けの設定 SFP+コネクタおよびケーブルを使用する必要があります。詳細については、「FC/iSCSI ポートの SFP+トランシーバ」を参照してください。

ファイバーチャネル プロトコル

ME4 シリーズの CNC ポートは、CNC ホストインタフェースポートを備えたコントローラモジュールをサポートしています。

認定された FC SFP+トランシーバ/ケーブルオプションを使用して、これらの CNC ポートに 4 基または 2 基の CNC ポートでファイバーチャネルプロトコルをサポートさせる設定を行うことができます。サポートされるデータ転送レートは、8 Gb/秒または16 Gb/秒です。

ME Storage Manager を使用して FC ポート速度およびオプションを設定します。「Dell EMC PowerVault ME4 シリーズ Storage System Administrator's Guide」のホストポートの設定に関するトピックを参照してください。また、CLI コマンドを使用して次のアクションを実行することもできます。

- CLI コマンド set host-parameters を使用して FC ポートオプションを設定する。
- CLI コマンド show ports を使用して、ホストポートに関する情報を表示する。

iSCSI プロトコル

ME4 シリーズの CNC ポートは、CNC ホストインタフェースポートを備えたコントローラモジュールをサポートしています。

CNC ポートは、4 基または 2 基の CNC ポートで iSCSI プロトコルをサポートするよう設定することができます。CNC ポートでは、10 GbE はサポートされますが、1 GbE はサポートされません。

10 GbE iSCSI ポートは次の目的に使用されます。
- 10 GbE iSCSI ホストに直接接続する、または 10 GbE iSCSI トラフィックに使用されるスイッチを介して接続する。
- レプリケーション用にスイッチを介して 2 台のストレージシステムを接続する。「リプレッキャーションのためのケーブル接続」も参照してください。

最初のオプションでは、ホストコンピューターが FC(およびオプションでマルチバス I/O)をサポートしている必要があります。

ME Storage Manager を使用して FC ポート速度およびオプションを設定します。「Dell EMC PowerVault ME4 シリーズ Storage System Administrator's Guide」のホストポートの設定に関するトピックを参照してください。また、CLI コマンドを使用して次のアクションを実行することもできます。

- CLI コマンド set host-parameters を使用して iSCSI ポートオプションを設定する。
- CLI コマンド show ports を使用して、ホストポートに関する情報を表示する。

iSCSI 設定

冗長性を確保するためには、異なる 2 つの Ethernet スイッチにホストを接続する必要があります。
混合トラフィック (LAN/iSCSI) でスイッチを使用する場合は、VLAN を作成して、iSCSI トラフィックをその他のスイッチトラフィックから分離する必要があります。

iSCSI ポートアドレスの割り当て例

2台の冗長スイッチと2つのIPv4サブネットを使用したiSCSIポートアドレスの割り当ての例を、次の図と付表に示します。

| メモ: 各コールアウト番号について、表の各列でデータパスのアドレスを確認してください。

図18. 2つのサブネットスイッチの例 (IPv4)

表3. 2つのサブネットスイッチの例

<table>
<thead>
<tr>
<th>い え。</th>
<th>デバイス</th>
<th>IPアドレス</th>
<th>サブネット</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A0</td>
<td>192.68.10.200</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>192.68.11.210</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>A2</td>
<td>192.68.10.220</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>A3</td>
<td>192.68.11.230</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>B0</td>
<td>192.68.10.205</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>B1</td>
<td>192.68.11.215</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>B2</td>
<td>192.68.10.225</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>B3</td>
<td>192.68.11.235</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>スイッチA</td>
<td>該当なし</td>
<td>該当なし</td>
</tr>
<tr>
<td>10</td>
<td>スイッチB</td>
<td>該当なし</td>
<td>該当なし</td>
</tr>
<tr>
<td>11</td>
<td>ホストサーバ1、ポート0</td>
<td>192.68.10.20</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>ホストサーバ1、ポート1</td>
<td>192.68.11.20</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>ホストサーバ2、ポート0</td>
<td>192.68.10.21</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>ホストサーバ2、ポート1</td>
<td>192.68.11.21</td>
<td>11</td>
</tr>
</tbody>
</table>

CHAPを有効化する方法については、「Dell EMC PowerVault ME4 シリーズStorage System Administrator’s Guide」のCHAPの設定に関するトピックを参照してください。
SAS プロトコル

ME4 シリーズ SAS モデルでは、ホスト接続のために、12 Gb/秒のホスト インターフェイスプロトコルおよび認定されたケーブルオプションを使用します。

12Gb HD ミニ SAS ホストポート

ME4 シリーズ12 Gb SAS コントローラー エンクロージャーは、2つのコントローラー モジュールをサポートします。12 Gb/秒 SAS コントローラー モジュールには、4つの SFF-8644 HD ミニ SAS ホスト ポートがあります。これらのホスト ポートは最大 12 Gb/秒のデータ転送レートをサポートします。HD ミニ SAS ホスト ポートは、SAS ホストに直接接続するために使用されます。ホスト ポートは、SAS とマルチバス I/O (オプション) をサポートする必要があります。ホストに接続する場合は、認定されたケーブル オンジョンを使用します。

ホストの接続

ME4 シリーズ コントローラー エンクロージャーは、最大8 系統の直接接続サブサーサーバ接続（コントローラー モジュール1台につき4 系統）をサポートします。

以降の項の説明に従って、サーバ HBA からコントローラー モジュール ホスト ポートに適切なケーブルを接続してください。

16 Gb Fibre Channel ホスト接続

FC ホスト インターフェイス ポートをサポートするコントローラー モジュールを、コントローラーの CNC ポートと使用して、サーバのHBA またはスイッチに接続するには、認定された FC SFP+ トランシーバーを選択してください。HBA の設定に関する情報については、「ホストサーバの接続」の下にある Fibre Channel のトピックを参照してください。

ケーブル接続図を使用して、ホスト サーバをスイッチに接続します。サポートされているファイバチャネル HBA については、Dell EMC ストレージ サポート マニュアルを参照してください。

- 各 FC HBA を、図26. ホストの接続：ME4 シリーズ 2U のスイッチ接続 – 2台のサーバ、2 個のスイッチおよび図27. ホストの接続：ME4 シリーズ 5U のスイッチ接続 – 2台のサーバ、2 個のスイッチに示されている 2つのコントローラー上のホスト ポートに接続されたスイッチに取り付けて接続します。
- ハイブリッドの例では、1 組のサーバとスイッチが FC トラフィックを管理し、もう1 組のサーバとスイッチが iSCSI トラフィックを管理します。
- FC では、各イニシエータは単一のホストポートまたは複数のホストポートのみとゾーニングされている必要があります（シングル イニシエータ、同じ種類の複数ターゲット）。

ストレージシステムへのホスト サーバの直接接続もサポートされています。

認定されたオプションは、OM4 マルチモード オプティカル ケーブルと OM3 マルチモード FC ケーブルに対して、1 m (3.28')、2 m (6.56')、5 m (16.40')、15 m (49.21')、30 m (98.43')、50 m (164.04') のケーブル長をサポートします。OM3 では0.5 m (1.64') のケーブル長もサポートされます。ホスト接続の提供に関わって、これらのケーブルは、スイッチを介して 2つのストレージシステムを接続するために使用され、オプションのレプリケーション機能が使えやすくなります。

iSCSI ホスト接続

コントローラの CNC ポートを使用して、10 GbE iSCSI ホスト インターフェイス ポートをサポートするコントローラー モジュールをサーバのHBA またはスイッチに接続するには、認定された 10 GbE SFP+ トランシーバーを選択します。iSCSI イニシエータ/HBA の設定に関する情報については、「ホストサーバの接続」の下にある iSCSI のトピックを参照してください。

ケーブル接続図を使用して、ホスト サーバをスイッチに接続します。

- 各-Ethernet NIC を、図26. ホストの接続：ME4 シリーズ 2U のスイッチ接続 – 2台のサーバ、2 個のスイッチおよび図27. ホストの接続：ME4 シリーズ 5U のスイッチ接続 – 2台のサーバ、2 個のスイッチに示されている 2つのコントローラー上のホスト ポートに接続されたスイッチに取り付けて接続します。
- ハイブリッドの例では、1 組のサーバとスイッチが iSCSI トラフィックを管理し、もう1 組のサーバとスイッチが FC トラフィックを管理します。

ストレージシステムへのホスト サーバの直接接続もサポートされています。

12 Gb HD ミニ SAS ホスト接続

コントローラの SFF-8644 デュアル HD ミニ SAS ホスト ポートを使用して、HD ミニ SAS ホスト インターフェイス ポートをサポートするコントローラー モジュールをサーバのHBA に接続するには、認定された HD ミニ SAS ケーブル オプションを選択します。SAS
HBA の設定に関する情報については、「ホストサーバの接続」の下にある SAS のトピックを参照してください。ケーブル接続図に従って、ホストサーバを接続してください。

12Gb/sの有効ホストへの接続には、認定された SFF-8644/SFF-8088間ケーブルオプションを使用します。一方、6 Gb/sのホストへの接続に、認定された SFF-8644/SFF-8088間ケーブルオプションを使用します。認定された SFF-8644/SFF-8088間オプションは、0.5 m (1.64')、1 m (3.28')、2 m (6.56')、4 m (13.12') のケーブル長をサポートします。認定された SFF-8644/SFF-8088間オプションは、1 m (3.28')、2 m (6.56')、3 m (9.84')、4 m (13.12') のケーブル長をサポートします。

10Gbase-T ホスト接続

10Gbase-T iSCSI ホスト インタフェースポート接続が完了するまでは、ホストはストレージシステムへの接続を提供します。この構成は、高可用性が必要とされない環境のみを想定しています。コントローラは、デュアルまたはシングルコントローラを選択してください。

ネットワークアダプタと iSCSI HBA の設定に関する情報については、「ホストサーバの接続」の iSCSI のトピックを参照してください。「ISCSI ホスト接続」のケーブル接続手順も参照してください。

直接接続構成の接続

デュアルコントローラ構成によって、アプリケーションの可用性が向上します。コントローラの障害が発生しても、障害の影響を受けたコントローラが正常なバートナーコントローラにフェールオーバーし、データフローはほとんど中断しません。

障害が発生したコントローラの交換は、ストレージシステムをシャットダウンせずに実施できます。

メモ: 次の例では、ME4 シリーズコントローラ エンクロージャ用 CNC、SAS、および 10Gbase-T ホスト接続を 1つの図で表しています。ホストポートの位置とサイズは非常に似ています。青色のケーブルはコントローラ A のパスを示し、緑色のケーブルはコントローラ B のホスト接続用パスを示しています。

シングルコントローラ モジュール構成

シングルコントローラモジュール構成では、コントローラモジュールに障害が発生した場合に冗長性は提供されません。

この構成は、高可用性が必要とされない環境のみを想定しています。コントローラモジュールに障害が発生した場合、障害復旧アクションが完了するまで、ホストはストレージデータにアクセスできません。

メモ: 拡張エンクロージャはシングルコントローラモジュール構成ではサポートされていません。

図 19. ホストの接続：ME4 シリーズ 2U の直接接続：1 台のサーバ、1 個の HBA、シングルパス

1. サーバー
2. スロット A 内のコントローラモジュール
3. スロット B のコントローラモジュールダミー

メモ: ME4 シリーズの 2U コントローラ エンクロージャが単一のコントローラモジュールで構成される場合、コントローラモジュールを上部スロットに設置し、コントローラモジュールのダミーを下部スロットに設置する必要があります。この構成は、動作中にエンクロージャで十分なエアフローを確保するために必要となります。

デュアルコントローラ モジュール構成

デュアルコントローラモジュール構成によって、アプリケーションの可用性が向上します。

コントローラモジュールに障害が発生した場合でも、障害の影響を受けたコントローラモジュールがバートナーコントローラモジュールにフェールオーバーして、データフローはほとんど中断しません。障害が発生したコントローラモジュールをリプレースする際も、ストレージシステムをシャットダウンせずに実施できます。

デュアルコントローラモジュールシステムでは、ホストが両方のコントローラモジュールからの LUN 識別情報を使用して、ポリュームに使用可能なデータパスを判断します。MPIOソフトウェアがインストールされている場合は、ホストは、利用可能な任意のデータパスを使用して、いずれかのコントローラモジュールに所有されているポリュームにアクセスすることができます。最も良いパフォーマンスが提供されるのは、ポリュームを所有するコントローラモジュールのホストポートを経由するパスを使用した場合で
デュアルコントローラモジュール構成 - 直接接続

次の図では、青色のケーブルがコントローラモジュールAのパスを示し、緑色のケーブルがコントローラモジュールBのホスト接続用パスを示しています。

図20. ホストの接続: ME4シリーズ2Uの直接接続 - 1台のサーバ、1個のHBA、デュアルパス
1. サーバー
2. ケーブルA内コントローラモジュール
3. ケーブルB内コントローラモジュール

図21. ホストの接続: ME4シリーズ5Uの直接接続 - 1台のサーバ、1個のHBA、デュアルパス
1. サーバー
2. ケーブルA内コントローラモジュール
3. ケーブルB内コントローラモジュール

図22. ホストの接続: ME4シリーズ2Uの直接接続 - 2台のサーバ、サーバごとに1個のHBA、デュアルパス
1. サーバー1
2. サーバー2
3. ケーブルA内コントローラモジュール
4. ケーブルB内コントローラモジュール

図23. ホストの接続: ME4シリーズ5Uの直接接続 - 2台のサーバ、サーバごとに1個のHBA、デュアルパス
1. サーバー1
2. サーバー2
3. ケーブルA内コントローラモジュール
4. ケーブルB内コントローラモジュール
デュアルコントローラモジュール構成 - スイッチ接続

スイッチ接続ソリューション（SAN）では、ストレージシステム内のサーバとコントローラエンクロージャの間にスイッチを配置します。スイッチを使用して、SANは複数のサーバ間でストレージシステムを共有するため、特定の環境に必要なストレージシステムの数が削減されます。スイッチを使用すると、ストレージシステムに接続できるサーバの数が増加します。

図24. ホストの接続：ME4シリーズ2Uの直接接続 - 4台のサーバ、サーバごとに1個のHBA、デュアルパス

1. サーバー1 2. サーバー2
3. サーバー3 4. サーバー4
5. コントローラモジュールA 6. コントローラモジュールB

図25. ホストの接続：ME4シリーズ5Uの直接接続 - 4台のサーバ、サーバごとに1個のHBA、デュアルパス

1. サーバー1 2. サーバー2
3. サーバー3 4. サーバー4
5. コントローラモジュールA 6. コントローラモジュールB

メモ：スイッチ接続構成について：

- コントローラエンクロージャに同梱の『Setting Up Your Dell EMC PowerVault ME4シリーズStorage System』に記載されているホスト接続用の推奨スイッチ接続例を参照してください。
- IPv4ネットワークにおけるホストポートとコントローラポートのアドレス設定を示す例については、図18.2つのサブネットスイッチの例（IPv4）を参照してください。
図26. ホストの接続：ME4 シリーズ 2U のスイッチ接続 – 2 台のサーバ、2 個のスイッチ

1. サーバー 1 2. サーバー 2
3. スイッチ A 4. スイッチ B
5. コントローラモジュール A 6. コントローラモジュール B

図27. ホストの接続：ME4 シリーズ 5U のスイッチ接続 – 2 台のサーバ、2 個のスイッチ

1. サーバー 1 2. サーバー 2
3. スイッチ A 4. スイッチ B
5. コントローラモジュール A 6. コントローラモジュール B

フロントエンド ケーブルのラベル付け

各ケーブルの接続先であるコントローラモジュールおよびホスト インターフェイスポートを識別するために、フロントエンドケーブルには必ずラベルを付けてください。
電源ケーブルを接続して、ストレージシステムの電源を入れる

エンクロージャシステムの電源を投入する前に、すべてのモジュールが正しいスロットにしっかりと装着されていることを確認します。

「取り付けのチェックリスト」の手順が正常に完了したことを確認します。ステップ1〜7が完了したら、Webブラウザを使用して管理インターフェイスにアクセスし、システムセットアップを完了できます。

トピック:
・ 電源ケーブルコネクタ

電源ケーブルコネクタ

次の図に示すように、エンクロージャの背面パネルにある各PCMまたはPSUからPDU（配電ユニット）への電源ケーブルを接続します。

図28. PDUからPCM（2U）への一般的なAC電源ケーブル接続
1. 冗長PCM付きコントローラー エンクロージャ
2. 冗長PCMとPDU（AC UPSを示す）の接続

図29. PDUからPSU（5U）への一般的なAC電源ケーブル接続
1. 冗長PSU付きコントローラー エンクロージャ
2. 冗長PSUとPDU（AC UPSを示す）の接続

メモ: 電源ケーブルは、少なくとも2つを分離独立した電源装置に接続して、冗長性を確保する必要があります。ストレージシステムの使用準備ができたら、各PCMまたはPSUの電源スイッチがオンの位置に設定されていることを確認します。「電源投入」も参照してください。

注意: エンクロージャからPCM（2U）またはPSU（5U84）を取り外す前に、必ず電源接続を取り外してください。
エンクロージャ接続のテスト

「電源投入」を参照してください。電源投入シーケンスが成功すると、「ホストへのエンクロージャの接続」に記載されているように、ストレージシステムは接続する準備ができています。

接地のチェック

エンクロージャシステムは、安全な電気接地接続のある電源に接続する必要があります。

注意: 複数のエンクロージャをラックに収納する場合は、ラックでの接地漏れ電流（接触電流）が大きくなるため、ラックへの接地接続が一層重要になります。電源をオンにする前に、ラックへの接地接続が行われているか検査してください。検査は、当該地域および国内規格に関する資格を持った電気技師が行う必要があります。

電源投入

注意: 周囲温度が『Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual』のシステム仕様の項で指定されている動作範囲内になるまでは、エンクロージャシステムを操作しないでください。最近取り付けたドライブモジュールに関しては、I/Oの本番データで使用する前に、環境条件に適応できるだけの時間が経過していることを確認してください。

電源投入時には、エンクロージャおよび関連デバイスホストの電源を、必ず下記の順番で投入してください。

1. 最初に、ドライブエンクロージャの電源を入れます。これにより、ドライブエンクロージャ内のディスクがコントローラエンクロージャ内のコントローラモジュールによってスキャンされる前に、完全にスピンアップする時間が十分に確保されます。エンクロージャの電源投入時には、LEDが点滅します。LEDの点滅が停止したあと、エンクロージャの前面と背面のLEDが橙色になっていなければ、電源投入シーケンスが完了し、障害が検出されなかったことを意味します。
2. 次に、コントローラエンクロージャの電源を入れます。システム内のディスクの数とタイプによって、システムの準備ができまるまで数分かかる場合があります。
3. 最後に、ホストの電源を入れます（メンテナンスのために電源が切断されている場合）。

電源をオフにする場合は、電源投入時に使用したステップの順序を逆にします。

メモ: 何らかの理由で主電源が失われている場合、電源が回復するとシステムは自動的に再起動します。

エンクロージャのOpsパネル

2U OpsパネルのLEDおよび関連する障害状況に関する詳細については、2UエンクロージャOpsパネルを参照してください。

5U84エンクロージャの電源をオフにするためのガイドライン

1. PCM（2U）またはPSU（5U84）を挿入または取り外す前に、ACコードを取り外します。
2. AC電源ケーブルを接続または取り外す前に、PCMまたはPSUのスイッチをオフの位置に移動します。
3. PCMまたはPSUの電源オフから電源オンまで15秒待ちます。
4. システム内のPSUまたはPCMの電源を投入して、他のPCMまたはPSUの電源をオフにする前に15秒待ちます。
5. パートナーのPCMまたはPSUでオレンジ色のLEDが点灯している間は、PCMまたはPSUの電源をオフにしないでください。
6. 5U84エンクロージャを再度スタンバイ状態に戻すには、スタンバイからの再開後、エンクロージャを30秒間電源オンの状態に保つ必要があります。
エンクロージャはスタンバイに対応していますが、拡張モジュールはスタンパイ中に完全に遮断され、電源を再びオンにするユーザーコマンドを受信することができません。AC電源を入れ直すことでのみ、5U84をスタンパイからフルパワーに戻すことができます。
システムとストレージのセットアップの実行

ストレージシステムの情報の記録
システム情報ワークシートを使用して、ME4シリーズのストレージシステムを取り付けるために必要な情報を記録します。

ガイド付きセットアップの使用
ハードウェアの設置が完了したら、ME Storage Managerを使用して、ストレージシステムの構成、プロビジョニング、監視、管理を行います。

Webブラウザの要件とセットアップ
MESMに初めてアクセスするときは、システムを設定する前に、ファームウェアのアップデートを実行してください。ファームウェアのアップデートが完了したら、ガイド付きセットアップを使用してWebブラウザの要件を確認し、その後、MESMにアクセスします。

MESMのWebインタフェースには、Mozilla Firefox 57以降、Google Chrome 57以降、Microsoft Internet Explorer 10もしくは11、Apple Safari 10.1以降が必要です。

メモ: Windows 10に付属のMicrosoft Edgeブラウザを使用している場合は、MESMのヘルプコンテンツを表示することができません。

・ ヘルプウィンドウを表示させるには、ポップアップウィンドウを有効にする必要があります。
・ ディスプレイを最適化するには、カラー・モニターを使用し、最高設定のカラー品質にします。
・ ブラウザの[Back]、[Forward]、[Reload]、または[Refresh]ボタンを使用しないでください。

ME Storage Managerへのアクセス
IPの競合を避けるため、複数の未設定コントローラーエンクロージャの電源を同時にオンにしてください。

1. 管理ホストのNICを10.0.0.xのアドレスまたは同じIPv6サブネットに一時的に設定して、ストレージシステムとの通信を有効にします。
2. サポートされるWebブラウザで次の操作を行います。
 - https://10.0.0.2にアクセスして、IPv4ネットワーク上のコントローラモジュールAにアクセスします。
 - https://fd6:e23e:fed3:19d1::1にアクセスして、IPv6ネットワーク上のコントローラモジュールAにアクセスします。
3. ストレージシステムがG275ファームウェアを実行している場合は、ユーザー名manageおよびパスワード!manageを使用してME Storage Managerにサインインします。

メモ: メモ:システムを設定する際に10.0.0.xネットワークを使用できない場合は、「CLIポートとシリアルケーブルを使用したネットワークポートのIPアドレスの設定」を参照してください。
ファームウェアのアップデート

ストレージシステムの電源を初めて入れた後には、コントローラモジュール、拡張モジュール、およびディスクドライブで最新リリースのファームウェアが使用されていることを確認してください。

メモ: 拡張モジュールファームウェアは、コントローラモジュールのアップデートと同時に自動的にアップデートされます。

1. ME Storage Managerを使用して、[System]トピックで、Action > Update Firmwareの順に選択します。

 Update Firmwareパネルが開きます。[Update Controller Modules]タブで、各コントローラモジュールにインストールされているファームウェアのバージョンが表示されます。

 サポートで、ファームウェアアップデートを検索します。新しいバージョンのファームウェアが利用可能な場合は、バンドルファイルまたは関連するファームウェアコンポーネントファイルをダウンロードします。

3. 参照をクリックし、インストールするファームウェアのバンドルファイルまたはコンポーネントファイルを選択して、OKをクリックします。

アップデートが完了すると、システムが再起動します。

ME Storage Managerの[Welcome]パネルにあるガイド付きセットアップの使用

[Welcome]パネルには、設定およびプロビジョニングのプロセスを案内することでシステムの迅速なセットアップを支援するオプションが用意されています。

ガイド付きセットアップでは、まず[System Settings]パネルにアクセスし、必要なすべてのオプションを完了することによって、システム設定を行う必要があります。これらのオプションを完了した後、[Storage Setup]パネルと[Host Setup]パネルにアクセスし、ウィザードを完了することによって、システムをプロビジョニングできます。

[Welcome]パネルには、システムの正常性も表示されます。システムの状態が縮退または障害となっている場合は、System Informationをクリックして[System]トピックにアクセスできます。[System]トピックでは、各エンクロージャ(物理コンポーネントを含む)に関する情報を、正面図、背面図、表形式で表示することができます。

コントローラーが1つしかないことをシステムが検出した場合、その正常性は縮退と表示されます。コントローラー1台でシステムを動作させている場合、このメッセージはパネルに表示されます。

ガイド付きセットアップを使用するには、次の手順を実行します。

1. [ようこそ]パネルから、システム設定をクリックします。

 メモ: 横に赤のアスタリスクが付いているタブには、必須の設定が含まれています。

2. システムを設定するためのオプションを選択します。

3. 設定を保存し、[システム設定]を終了して、[ようこそ]パネルに戻ります。

4. ストレージのセットアップをクリックして、ストレージのセットアップウィザードにアクセスし、プロンプトに従ってシステムのプロビジョニングを開始し、ディスクグループとプールを作成します。ストレージのセットアップウィザードの使用の詳細については、「ストレージセットアップの設定」を参照してください。

5. 設定を保存し、[ストレージのセットアップ]を終了して、[ようこそ]パネルに戻ります。

6. ホストのセットアップをクリックして、ホストのセットアップウィザードにアクセスし、プロンプトに従ってシステムのプロビジョニングを続け、ホストを接続します。

詳細については、ホストシステムの要件を参照してください。

システムの設定

[System Settings]パネルには、システムを迅速に設定するためのオプションが用意されています。

パネル左側にあるタブをクリックして、オプションを移動します。隣に赤いアスタリスク記号が付いているタブは必須の項目です。変更内容を適用して保存するには、Applyをクリックします。変更内容を適用してパネルを閉じるには、Apply and Closeをクリックします。

Dell EMCは、少なくとも次の設定を変更するよう推奨しています。

- ネットワークのネットワークポートの設定（たとえば、管理ポート）
- ネットワークのネットワークポートの設定
- ネットワークのネットワークポートの設定

システムとストレージのセットアップの実行 35
【ネットワーク】タブ: コントローラのネットワークポートの設定

固定IPアドレスパラメーターを使ってネットワークポート向けに手動設定することもできますし、IPアドレスの自動設定を指定することも可能です。IPアドレスは、DHCP(IPv4 の場合) またはAuto(IPv6)を使用して自動設定できます。これは、DHCPv6 やSLAACが使用されます。

1. メモ: ガイド付きセットアップにアクセスする際にデフォルトの10.0.0.2/10.0.0.3アドレスを使用した場合、ネットワーク上に複数のME4 シリーズアレイが存在しているのであれば、IPの競合を避けるためにこれらのIPアドレスの変更を検討してください。

IP値を設定するときは、コントローラごとにIPv4 またはIPv6 のいずれかの形式を選択できます。また、各コントローラーに異なるアドレス指定モードおよびIP パラメーターを設定し、これらを同時に使用することもできます。たとえば、コントローラーAのIPv4をManualに設定して固定IPアドレスを有効化し、コントローラーBのIPv6をAutoに設定して自動IPアドレスを有効化するという設定も可能です。

DHCPモードを使用する場合、システムはDHCPサーバ(使用できる場合)からネットワークポートIPアドレス、サブネットマスク、およびゲートウェイの値を取得します。DHCPサーバが使用できない場合、現在のアドレスは変更されません。DHCPサーバー上でのバインディングのリストなど、どのアドレスが割り当てられたかを決定する他の手段を持っている必要があります。自動モードを使用する場合、アドレスはDHCPとスルーパスアドレス自動設定(SLAAC)の両方から取得されます。DNSの設定はネットワークからも自動的に取得されます。

各コントローラは工場出荷時に次のようにデフォルトIP設定されています。

- IPアドレスソース:手動
- コントローラAのIPアドレス:10.0.0.2
- コントローラBのIPアドレス:10.0.0.3
- IPサブネットマスク:255.255.255.0
- ゲートウェイIPアドレス:10.0.0.1

ストレージシステムでDHCPが有効な場合、次の初期値が設定されます。システムがDHCPサーバにアクセスして新しいアドレスを取得できるようになるまでは、その設定が保持されます。

- コントローラのIPアドレス:169.254.x.x (x x の値はコントローラのシリアル番号の最下位 16 ビット)
- IPサブネットマスク:255.255.255.0
- ゲートウェイIPアドレス:10.0.0.1

169.254.x.xのアドレス(ゲートウェイ169.254.0.1を含む)がプライベートサブネット上にあり、そのサブネットが未設定のシステム用に予約されている場合、アドレスはルーティングできません。このため、DHCPサーバーはアドレスの再割り当てができます。2つのコントローラが同じIPアドレスを競合し生じる可能性があります。これらのIPの値はできるだけ速やかにネットワークで適切な値に変更してください。

IPv6でManualモードが有効の場合、各コントローラに最大4個の固定IPアドレスを入力できます。Autoモードが有効の場合、次の初期値が設定されます。システムがDHCPv6とSLAACのどちらかまたは両方にアクセスして新しいアドレスを取得できるようになるまでは、その設定が保持されます。

- コントローラAのIPアドレス:fd6e:23ce:fed3:19d1::1
- コントローラBのIPアドレス:fd6e:23ce:fed3:19d1::2
- ゲートウェイIPアドレス:fd6e:23ce:fed3:19d1::3

![注意: IP設定を変更した場合は、確認手順で変更を適用した後に、管理ホストからストレージシステムにアクセスできなくなることがある。]

ネットワークポートのIPv4アドレスの設定

ネットワークポートのIPv4アドレスを設定するには、次の手順を実行します。

1. 次のいずれかの手順を実行して、ネットワークオプションにアクセスします。
 - [Home] トピックで、Action] > [System Settings]を選択し、Networkタブをクリックします。
 - [System] トピックで、Action] > [System Settings]を選択し、Networkタブをクリックします。
2. [IPv4] タブを選択します。
3. 各コントローラーで使用するIPアドレスのタイプを選択します。Source] > [manualを選択して、静的IPアドレスを入力するか、またはSource] > [DHCPを選択して、システムがDHCPサーバから自動的にIPアドレスを取得するようにします。
4. manualを選択した場合は、各コントローラーの固有のIPアドレス、IPマスク、およびゲートウェイアドレスを入力し、入力したIPアドレスを記録します。
次のIPアドレスは、ストレージシステムの内部使用のために予約されています：169.254.255.1、169.254.255.2、169.254.255.3、169.254.255.4、および127.0.0.1。これらのアドレスはルーティング可能なので、ネットワーク内では決して使用しないでください。

ネットワークポートのIPv6値の設定
ネットワークポートのIPv6アドレスを設定するには、次の手順を実行します。

1. 次のいずれかの手順を実行して、ネットワークオプションにアクセスします。
 - [Home] トピックで、Action > [System Settings] を選択し、Network タブをクリックします。
 - [System] トピックで、Action > [System Settings] を選択し、Network タブをクリックします。

2. [IPv6] タブを選択します。IPv6では128ビットアドレスを使用します。

3. 各コントローラーで使用するIPアドレスのタイプを選択します。Source > [manual] を選択して、各コントローラーに最大4個の静的IPアドレスを入力するか、またはSource > [auto] を選択して、システムが自動的に値を取得するようにします。

4. 手動を選択した場合は、次の手順を実行します。
 - 固有のIPアドレス、ゲートウェイの値、および各コントローラーのアドレスを入力します。
 - 入力したIPアドレスを記録します。
 - 追加をクリックします。

5. [Add Address] をクリックして、最大4個のIPアドレスを追加します。各コントローラーのアドレスに各IPアドレスを記録し、システムから通知が送信される最小レベルの重大度を次から選択します。

6. 次のいずれかの手順を実行してください。
 - 設定を保存してシステムの設定を続行するには、適用をクリックします。
 - 設定を保存してパネルを閉じるには、適用して閉じるをクリックします。

7. はいをクリックして変更を保存します。それ以外の場合は、いいえをクリックします。

8. サインアウトし、新しいIPアドレスを使用してMESMにアクセスします。

【Notifications】タブ：システム通知の設定
Dell EMC は、システム監視のために少なくとも1つの通知サービスを有効にするよう推奨しています。

Eメール通知の送信
メール通知を有効にするには、次の手順を実行します。

1. [Welcome] ページで、System Settings を選択し、Notifications タブをクリックします。

2. [Email] タブを選択し、[SMTP Server] オプションと[SMTP Domain] オプションが設定されていることを確認します。

3. メール通知を設定します。
 - メール通知を有効にするには、Enable Email Notifications オプションとチェックボックスをオンにします。
 - メール通知を無効にするには、Enable Email Notifications オプションとチェックボックスをオフにします。

4. メール通知が有効となっている場合、システムからの通知が送信される最小レベルの重大度を次から選択します。Critical（これのみ）、Error（およびCritical）、Warning（およびError）とCritical）、Resolved（およびError）、Critical）、Warning）、Informational（すべて）。

5. メール通知が有効となっている場合、1つまたは複数の[Email Address] フィールドに、システムからの通知の送信先とするメールアドレスを入力します。各メールアドレスは、user-name@domain-name の形式を使用する必要があります。各メールアドレスには、最大320バイトまで入力できます。例：Admin@mydomain.comまたはIT-team@mydomain.com。
6. 次のいずれかの手順を実行してください。
 - 設定を保存してシステムの設定を続行するには、適用をクリックします。
 - 設定を保存してパネルを閉じるには、適用して閉じるをクリックします。
 確認パネルが表示されます。
7. OKをクリックして変更を保存します。それ以外の場合は、キャンセルをクリックします。

テスト通知の設定
通知をテストするには、次の手順を実行します。
1. トラブルおよびメール通知を受信するようシステムを設定します。
2. Send Test Event をクリックします。設定済みの各トラップホストおよびメールアドレスにテスト通知が送信されます。
3. 設定済みの各メールアドレスにテスト通知が届いていることを確認します。
4. はいをクリックして変更を保存します。それ以外の場合は、いいえをクリックします。
5. いいえをクリックして変更を保存します。それ以外の場合は、いいえをクリックします。

ポータルタブ: ホストポート設定の変更
4ポート SAS コントローラモジュールまたは10Gbase-T iSCSI コントローラモジュールを搭載していないシステムでは、コントローラホストインタフェイス設定をポート用に設定することができます。
システムとホスト間の通信を可能にするには、システムでホストインターフェイスオプションを設定する必要があります。
4ポート SAS コントローラモジュールまたは10Gbase-T iSCSI コントローラモジュール搭載システムには、ホストインターフェイスオプションはありません。
4ポート SFP+コントローラモジュール(CNC)搭載システムの場合、工場出荷時にはすべてのホストポートがFibre Channel（FC）モードになっています。ただし、ポートをFCポートまたはiSCSIポートの組み合わせとして設定することが可能です。FCポートは、認定された16 Gb/秒SFP トランシーバの使用をサポートしています。FCポートは、リンク速度を自動ネゴシエートするか、特定のリンク速度を使用するように設定できます。iSCSIポートは、認定された10 Gb/秒SFP トランシーバの使用をサポートしています。
FCポートトポロジーなどのホストパラメーターの設定およびホストポートモードに関する情報については、「Dell EMC PowerVault ME4 シリーズ Storage System CLI Reference Guide」を参照してください。
MEMO: 現在の設定が正しい場合は、ポートの設定は省略可能です。

FCポートの設定
次の手順に従ってFCポートを設定します。
1. 次のいずれかの手順を実行して、ポートタブのオプションにアクセスします。
 - [ホーム]トピックで、アクション] > [システム設定を選択し、ポートをクリックします。
 - [システム]トピックで、アクション] > [システム設定を選択し、ポートをクリックします。
 - [Welcome]パネルで、System Settings を選択し、Portsタブをクリックします
2. [Host Post Mode]リストで、FCを選択します。
3. ポート設定タブから、ポート固有のオプションを設定します。
 - [Speed]オプションを適切な値に設定してポートと通信するか、自動に設定して適切なリンク速度を自動ネゴシエートします。ポートとホストの間で、速度が一致していないと通信できません。ポートに既知の速度を使用する場合にのみ速度を設定します。
 - [FC Connection Mode]をポイント・ツー・ポイントまたは automodeに設定します。
 - ポイントツーポイント: Fibre Channel ポイントツーポイント。
 - auto: 検出された接続タイプに基づいてモードを自動的に設定します。
MEMO:
4. 次のいずれかの手順を実行してください。
 - 設定を保存してシステムの設定を続行するには、適用をクリックします。
 - 設定を保存してパネルを閉じるには、適用して閉じるをクリックします。
 確認パネルが表示されます。
5. はいをクリックして変更を保存します。それ以外の場合は、いいえをクリックします。
iSCSI ポートの設定

iSCSI ポートを設定するには、次の手順を実行します。

1. [Welcome] パネルで、System Settings を選択し、Notifications タブをクリックします。
2. [ホスト ポート モード] リストから、iSCSI を選択します。
3. ポート設定タブから、ポート固有のオプションを設定します。
 - IP アドレス：IPv4 または IPv6 の場合、ポートの IP アドレスです。各コントローラ内の対応するポートで、1 個目はサブネットに 1 個のポートを割り当て、2 個目はサブネットに他のポートを割り当てます。ストレージシステムの各 iSCSI ホストポートに異なる IP アドレスが割り当てられていることを確認します。例えば、IPv4 を使用するシステムの場合は次の通りです。
 - コントローラA ポート 2：10.10.10.100
 - コントローラA ポート 3：10.11.10.120
 - コントローラB ポート 2：10.10.10.110
 - コントローラB ポート 3：10.11.10.130
 - ネットマスク：IPv4 の場合、割り当てられたポートの IP アドレスのサブネットマスク。
 - ゲートウェイ：IPv4 の場合、割り当てられたポートの IP アドレスのゲートウェイ IP アドレス。
 - デフォルトルート：IPv6 の場合、割り当てられたポートの IP アドレスのデフォルトルート。
4. パネルの [詳細設定] セクションで、すべての iSCSI ポートに適用するオプションを設定します。

表 4. iSCSI ポートのオプション

<table>
<thead>
<tr>
<th>認証を有効にする (CHAP)</th>
<th>チャレンジ ハンドシェイク認証プロトコルの使用を有効または無効にします。このパネルで CHAP を有効または無効にすると、[Configure CHAP] バンル ([Hosts] トピックで Action > Configure CHAP の順に選択することでアクセス可能) の設定がアップデートされます。</th>
</tr>
</thead>
<tbody>
<tr>
<td>リンク速度</td>
<td></td>
</tr>
<tr>
<td>ジャンボフレームを有効にする</td>
<td>ジャンボフレームのサポートを有効または無効にします。通常のフレームは 100 バイトのオーバーヘッドに加えて 1400 バイトのペイロードを持つことができるのに対して、ジャンボフレームは最大 8900 バイトのペイロードを持つことができ、より大きなデータ転送に使用されます。メモ：ジャンボフレームの使用は、データパス内のすべてのネットワークコンポーネントでジャンボフレームのサポートが有効になっている場合にのみ可能。</td>
</tr>
<tr>
<td>iSCSI の IP バージョン</td>
<td>IP の値がインターネットプロトコルバージョン 4 (IPv4) またはバージョン 6 (IPv6) ファームのどちらを使用するか指定します。IPv4 は 32 ビットアドレスを使用します。IPv6 は 128 ビットアドレスを使用します。</td>
</tr>
<tr>
<td>iSNS を有効にする</td>
<td>指定されたインターネットストレージネットワーク サービス サーバの登録を有効または無効にします。これにより、名前と IP アドレスのマッピングが提供されます。</td>
</tr>
<tr>
<td>iSNS のアドレス</td>
<td>iSNS サーバの IP アドレスを指定します。</td>
</tr>
<tr>
<td>代替 iSNS アドレス</td>
<td>別のサブネット上の代替 iSNS サーバの IP アドレスを指定します。</td>
</tr>
</tbody>
</table>

5. 次のいずれかの手順を実行してください。
 - 設定を保存してシステムの設定を継続するには、適用をクリックします。
 - 設定を保存してパネルを開じるには、適用して閉じるをクリックします。

6. はいをクリックして変更を保存します。それ以外の場合は、いいえをクリックします。

コントローラごとに 2 つのポートを FC として設定し、2 つのポートを iSCSI として設定する

2 つのポートを FC として設定し、2 つのポートを iSCSI として設定するには、各コントローラで次の手順を実行します。

1. [Welcome] パネルで、System Settings を選択し、Ports タブをクリックします。
2. [ホストポストモード]リストで、FC-and-iSCSIを選択します。

3. [ポートの設定]タブで、FCポート固有のオプションを設定します。

 - **Speed**:オプションを適切な値に設定してホストと通信します。または、[auto]に設定して適切なリンク速度を自動でネゴシエートします。速度の不一致は、ポートとホストの間の通信を妨げます。速度の設定は、既知の速度をポートに強制使用させる必要がある場合のみ行うようにしてください。

 - **FC接続モード**:、ポートツーポイントまたは自動のいずれかに設定します。

 - point-to-point: Fibre Channel ポイントツーポイント。

 - auto: 検出された接続タイプに基づいてモードを自動的に設定します。

4. ポート固有のオプションを設定します。

表 5. ポート固有のオプション

| IP アドレス | IPv4 または IPv6 では、ポートの IP アドレスです。各コントローラの対応するポートについて、一方のポートを 1 つ目のサブネットに割り当て、もう一方のポートを 2 つ目のサブネットに割り当てます。ストレージシステムの各 iSCSI ホストポートにそれぞれ異なる IP アドレスが割り当てられていることを確認します。たとえば、IPv4 を使用しているシステムでは次の例のようになります。
| | 1. コントローラ A ポート 2: 10.10.10.100
| | 2. コントローラ A ポート 3: 10.11.10.120
| | 3. コントローラ B ポート 2: 10.10.10.110
| | 4. コントローラ B ポート 3: 10.11.10.130
| ネットマスク | IPv4 の場合は、割り当てられたポートの IP アドレスのサブネットマスク。
| ゲートウェイ | IPv4 の場合は、割り当てられたポートの IP アドレスのゲートウェイ IP アドレス。
| デフォルトルーター | IPv6 の場合は、割り当てられたポートの IP アドレスのデフォルトルーター。

5. パネルの [詳細設定] セクションで、すべての iSCSI ポートに適用されるオプションを設定します。

 - **認証**: (CHAP) を有効にします。チャレンジハンドシェイク認証プロトコルの使用を有効または無効にします。このパネルで CHAP を有効または無効にすると、[Configure CHAP] パネルの設定がアップデートされます (Action > Configure CHAP)。

 - リンクトイプに基づいてモードとホストの間の通信を妨げます。速度の設定は、既知の速度をポートに強制使用させる必要がある場合のみ行うようにしてください。

 - 自動：適切な速度を自動的にネゴシエートします。

 - 1 Gbps: この設定は 10 Gbps の HBA には適用されません。

 - ジャンボフローを有効にする：ジャンボフレームのサポートを有効または無効にします。100 バイトのオーバヘッドを考慮すると、通常のフレームと比較して最大 8000 バイトのフレームを扱うことができます。ジャンボフレームには大量のデータ転送用に最大 8000 バイトのフレームを有するシステムが提供されます。

 - 自動: チャレンジハンドシェイク認証プロトコルの使用を有効または無効にします。100 バイトのオーバヘッドを考慮すると、通常のフレームと比較して最大 8000 バイトのフレームを扱うことができます。ジャンボフレームには大量のデータ転送用に最大 8000 バイトのフレームを扱うことができます。

6. 次のいずれかの手順を実行してください。

 - 設定内容を保存してシステムの設定を続行するには、適用をクリックします。

 - 設定内容を保存してパネルを開じるには、適用して閉じるをクリックします。

ストレージ セットアップ の設定

[Storage Setup] ウィザードの各ステップに従い、ホストとボリュームを接続する準備としてディスク グループおよびプールを作成します。

注意: IP 設定を変更すると、データ・ホストでストレージシステムへのアクセスがなくななることがあります。

7. 変更を保存するには OK をクリックします。それ以外の場合は戻りをクリックします。
ストレージタイプの選択

初めてウィザードにアクセスするときは、ご使用の環境で使用するストレージのタイプを選択するためのブロントが表示されます。

オプションを一通り確認して選択し、[Next]をクリックして続行します。

- パーチャルストレージは次の機能をサポートします。
 - 階層性
 - スナップショット
 - レプリケーション
 - シンプロビジョニング
 - インストールされているRAIDコントローラーごとに1つのブール、ブールあたり最大16のディスクグループ
 - 大規模ブール機能が有効なブールあたり最大1PBの有効容量
 - RAIDレベル1、5、6、10、およびNRAID
 - RAID容量を増やすための個々のディスクの追加は、ADAPTディスクグループでのみサポートされています。
 - RAIDディスクグループを追加することで容量を増やすことができます。
 - ベージサイズは固定（4MB）
 - SSD読み取りキャッシュ
 - グローバルおよびまたは動的ホットスペア
 - リニアストレージは次の機能をサポートします。
 - インストールされているRAIDコントローラーあたり最大32のブール、ブールあたり1つのディスクグループ
 - RAIDレベル0、1、3、5、6、10、50、およびNRAID
 - RAID容量を増やすための個々のディスクの追加は、RAID0、3、5、6、10、50、およびADAPTディスクグループでサポートされています。
 - ディスクグループごとに設定可能なチャンクサイズ
 - グローバル、専用、およびまたは動的ホットスペア

メモ: Dell EMCは、パーソナルストレージの使用を推奨しています。

メモ: あるストレージタイプを使用してディスクグループを作成すると、システムでは追加のディスクグループでそのストレージタイプが使用されます。他のストレージタイプに切り替えるには、最初にすべてのディスクグループを削除する必要があります。

ディスクグループとブールの作成

ディスクグループとブールを作成するときに表示されるパネルは、動作環境が仮想ストレージ環境であるかリニアストレージ環境であるかによって異なります。

仮想ストレージ環境

動作環境が仮想ストレージ環境である場合、システムが、使用可能なすべてのディスクをスキャンし、最適なストレージ構成を1つ推奨し、推奨ディスクグループのレイアウトをパネル内に表示します。

仮想ストレージ環境では、ストレージシステムによって、ディスクグループが自動的にブールおよび階層別にグループ化されます。

ディスクグループには、プロビジョニングされるディスクの合計サイズと数の記録（スペアおよび未使用ディスクの構成を含む）も含まれています。

有効なストレージ構成をシステムが判断できない場合は、ウィザードが、その理由を表示して、適切な構成の実現方法に関する指示を提供します。システムが正常でない場合は、エラーおよびその修正方法の説明が表示されます。ウィザードの推奨に従ってエラーを修正した後、[Rescan]をクリックして、最適化された構成を表示してください。

プロビジョニング済みのプールがないシステムの場合、推奨されている構成で問題がなければ、[Create Pools]をクリックしてパネルの表示どおりにシステムをプロビジョニングし、ホストの接続を進めます。プールが含まれているシステムの場合は、推奨されている構成で問題がなければ、[Expand Pools]をクリックしてパネルの表示どおりにシステムをプロビジョニングします。
お使いの環境に独自の設定が必要な場合は、Go To Advanced Configuration をクリックして [Create Advanced Pools] パネルにアクセスします。[Add Disk Group] を選択し、手順に従って手動で一度に1つずつディスクを作成します。[Manage Spares] を選択し、手順に従って手動でグローバル スペアを選択します。

リニア ストレージ環境
動作環境がリニア ストレージ環境である場合、[Create Advanced Pools] パネルが開きます。

Add Disk Groups を選択し、手順に従ってディスク グループを手動の1つずつ作成します。[Manage Spares] を選択し、手順に従ってグローバル スペアを手動で選択します。提示されるオプションの詳細については、アイコンをクリックしてください。

ディスク グループとプールの作成ガイド付きウィザードを開く
ディスク グループおよびプール作成ウィザードを開くには、次の手順を実行します。

1. 次のいずれかのアクションを実行して、[Storage Setup] にアクセスします。
 - [Welcome] パネルから、Storage Setup をクリックします。
 - [Home] ページから、Action > Storage Setup の順にクリックします。

2. 画面の指示に従って、システムをプロビジョニングします。

42 システムとストレージのセットアップの実行
ホストのセットアップの実行

ホストシステムの要件
ME4 シリーズ コントローラー・エンクロージャーに接続されるホストは、次の要件を満たしている必要があります。

システム構成によっては、ホストオペレーティングシステムでマルチパスがサポートされていることが必要になる場合があります。

フォルトトレランスが必要な場合、マルチパスソフトウェアが必要になる場合があります。ホストベアスのマルチパスソフトウェアは、ホストと任意のストレージボリューム間に2つの論理パスが同時に存在可能な構成で使用する必要があります。ホストに対する接続が複数存在する構成、またはスイッチとストレージの間に複数の接続が存在する構成のほとんどが、これに該当します。

Server Managerまたはmpclaim CLIツールのいずれかを使用してインストールを実行してください。

マルチパス構成について
ME4 シリーズのストレージシステムは、非対称論理ユニットアクセス(ALUA)のSCSI-3標準に準拠しています。

ALUA準拠のストレージシステムは、デバイスの検出中、最適なパスと最適ではないパスの情報をホストに提供します。ALUAを実装するには、サーバーにマルチパスI/O(MPIO)を使用させる設定を行う必要があります。

ホストサーバの接続

1. メモ: これらのME4 シリーズストレージシステムのセットアップタスクについて:
 - サポートされるHBAまたはiSCSIのネットワークアダプタのリストについては、「Dell EMC Storage Support Matrix」を参照してください。
 - ホストの設定は、一度につき1つのみ行うようにしてください。

詳細については、「Dell EMC PowerVault ME4シリーズStorage System Administrator’s Guide」のインシエータ、ホスト、ホストグループに関するトピックおよび、ホストとボリュームの接続に関するトピックを参照してください。

Windowsホスト

HBAまたはネットワークアダプタが取り付けられていること、ドライバがインストールされていること、サポートされている最新のBIOSとファームウェアがインストールされていることを確認します。

Windows Server用のFibre Channelホストサーバ設定

以降の項では、Windows Serverを実行しているFibre Channelホストサーバの設定方法について説明します。

前提条件
- ME Storage Managerのガイド付きシステムおよびストレージセットアッププロセスを完了します。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。綿密に計画することにより、導入の成功が確保されます。

ストレージシステムへのFCホストの接続

ストレージシステムにFCホストを接続するには、次の手順を実行します。
1. Dell.com のサポートでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべてのHBAにインストールされていることを確認します。サポートされるFC HBAのリストについては、Dell.com のサポートにある「Dell EMC ME4 Series Storage System Support Matrix」を参照してください。

2. FCのケーブル接続図に従ってホストをストレージシステムにケーブル接続します。その際、スイッチを使用するか、ホストをストレージシステムに直接接続します。

3. FCホストにMPIOをインストールします。
 a) サーバーマネージャを開きます。
 b) Add Roles and Features をクリックし、Features ページが表示されるまでNext をクリックします。
 c) Multipath IO を選択します。
 d) Next をクリックし、Install をクリックし、Close をクリックし、ホストサーバーを再起動します。

4. FC HBA WWN を特定して記録します。
 a) Windows PowerShell コンソールを開きます。
 b) Get-InitiatorPort と入力し、Enter を押します。
 c) FC HBA WWN を特定して記録します。WWN はボリュームをホストにマッピングするために必要になります。

5. FC スイッチを使用してホストをストレージシステムに接続している場合は、ゾーニングを実装して各HBAのトラフィックを分離します。

メモ: ホストがストレージシステムに直接接続されている場合は、このステップをスキップしてください。

a) FC スイッチの管理インターフェースを使用して、サーバのHBAごとにゾーニングを作成します。各ゾーニングにはHBA WWNを1つだけ含める必要があり、すべてのストレージポート WWNを含める必要があります。

b) 各FCスイッチについて繰り返します。

メモ: ME4シリーズストレージシステムは、シングルイニシアータ/マルチゲットのゾーニングをサポートしています。

ホストの登録とボリュームの作成
ME Storage Manager を使用してホストを登録しボリュームを作成するには、次の手順を実行します。

1. ME Storage Manager にログインします。
2. Host Setup ウィザードにアクセスします。
 a) [ようこそ] 画面から、ホストセットアップをクリックします。
 b) [Home] トピックから、Action > Host Setup の順にクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. Host Name フィールドにホスト名を入力します。
5. 「ストレージシステムへの FC ホストの接続」のステップ4に記された情報を利用して、設定中のホストのFCイニシアータを選択し、Next をクリックします。
6. クラスタ内の他のホストとまとめてホストをグループ化します。
 a) クラスタ構成の場合、グループ内のすべてのホストが同じストレージを共有できるようにホストをまとめてグループ化します。
 • このホストがクラスタ内の最初のホストである場合は、Create a new host group を選択してホストグループの名前を入力し、Next をクリックします。
 • すでに存在するホストグループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 b) スタンダローンホストの場合は、Do not group this host オプションを選択し、Next をクリックします。
7. [Attach Volumes] ページで、各ボリュームの名前、サイズ、プールを指定し、Next をクリックします。

ボリュームを追加するには、Add Row をクリックします。ボリュームを削除するには、Remove をクリックします。

メモ: Dell EMC、名称について、ボリュームを識別しやすいhostnameにアップデートすることをお勧めしています。

8. [Summary] ページで、ホスト設定の内容を確認し、Configure Host をクリックします。

Windows サーバ上のボリュームの MPIO の有効化
Windows サーバ上のボリュームの MPIO を有効化するには、次の手順を実行します。
1. サーバーマネージャを開きます。
2. Tools > MPIO の順に選択します。
3. Discover Multi-Patha タブをクリックします。
4. Device Hardware Id リストで DellEMC ME4を選択します。
Device Hardware Id リストに DellEMC ME4 が表示されない場合:
a) マルチパス用に、1つのボリュームに複数の接続があることを確認します。
b) MPIO Devices タブの Devices リストに Dell EMC ME4 がまだ表示されていないことを確認します。

5. Add をクリックし、Yes をクリックして Windows サーバを再起動します。

Windows サーバ上のボリュームのフォーマット

Windows サーバ上のボリュームをフォーマットするには、次の手順を実行します。
1. Server Manager を開きます。
2. Tools > Computer Management の順に選択します。
3. Disk Management を右クリックし、Rescan Disks を選択します。
4. 新しいディスクを右クリックし、Online を選択します。
5. 新しいディスクをもう一度右クリックし、Initialize Disk を選択します。
6. ダイアログボックスが開きます。
7. 未割り当て領域を右クリックして、作成するボリュームのタイプを選択し、ウィザードの手順に従ってボリュームを作成します。

Windows Server の iSCSI ホスト サーバの設定

下記の手順では、ネットワークの冗長性とフェールオーバーを目的とした、デュアル スイッチのサブネットによる IPv4 の設定について説明しています。IPv6 の設定については説明していません。

前提条件
- ME Storage Manager のガイド付きセットアップの手順とストレージのセットアップの手順を実行します。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。綿密に計画することにより、導入の成功が確保されます。
- 使用する iSCSI ネットワークの IP アドレスを計画ワークシートに記入します。記入例については、下記の表を参照してください。

表6. デュアル ポート iSCSI NIC を使用したホスト サーバ用のワークシートの例

<table>
<thead>
<tr>
<th>管理</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>サーバ管理</td>
<td>10.10.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラーA の管理</td>
<td>10.10.96.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB の管理</td>
<td>10.10.96.129</td>
</tr>
<tr>
<td>サブネット1</td>
<td></td>
</tr>
<tr>
<td>サーバの iSCSI NIC 1</td>
<td>172.1.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラーA のポート0</td>
<td>172.1.100.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB のポート0</td>
<td>172.1.200.129</td>
</tr>
<tr>
<td>ME4024 コントローラーA のポート2</td>
<td>172.1.102.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB のポート2</td>
<td>172.1.202.129</td>
</tr>
<tr>
<td>Subnet Mask (サブネットマスク)</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>サブネット2</td>
<td></td>
</tr>
<tr>
<td>サーバの iSCSI NIC 1</td>
<td>172.2.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラーA のポート1</td>
<td>172.2.101.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB のポート1</td>
<td>172.2.201.129</td>
</tr>
<tr>
<td>ME4024 コントローラーA のポート3</td>
<td>172.2.103.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB のポート3</td>
<td>172.3.203.129</td>
</tr>
<tr>
<td>Subnet Mask (サブネットマスク)</td>
<td>255.255.0.0</td>
</tr>
</tbody>
</table>

ホストのセットアップの実行 45
ストレージシステムへのiSCSIホストの接続

ストレージシステムにiSCSIホストを接続するには、次の手順を実行します。

1. Dell.comのサポートでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべてのネットワークアダプタにインストールされていることを確認します。

2. iSCSIのケーブル配線図に従ってホストをストレージシステムに接続します。その際、スイッチを使用するか、ホストをストレージシステムに直接接続します。

3. iSCSIホストにMPIOをインストールします。
 a. Server Managerを開きます。
 b. 管理 > 役割と機能の追加 をクリックします。
 c. [Features]ページが表示されるまでNextをクリックします。
 d. Multipath IOを選択します。
 e. Nextをクリックし、Installをクリックして、Closeをクリックします。
 f. Windowsサーバーを再起動します。

iSCSIネットワークに接続しているネットワークアダプタごとに、IPアドレスを割り当てます。

次の手順を実行して、iSCSIネットワークに接続するネットワークアダプタにIPアドレスを割り当てます。

注意: IPアドレスは、各ネットワークのサブネットと一致している必要があります。必ず正しいIPアドレスを選択してください。間違ったネットワークの設定をおこなうと、接続の問題が発生する場合があります。

メモ: ジャンボフレームを使用する場合は、データパス、アダプタポート、スイッチ、およびストレージシステムにあるすべてのデバイスで、ジャンボフレームを有効にして設定を行う必要があります。

1. Network and Sharing CenterでChange adapter settingsをクリックします。
2. ネットワークアダプタを右クリックし、Propertiesを選択します。
3. Internet Protocol Version 4を選択し、Propertiesをクリックします。
4. Use the following IP addressをクリックし、「前提条件」の項で説明した計画ワークシートに記録されている、対応するIPを入力します（例: 172.196.46）。
5. ネットワークマスクを設定します。
6. 必要に応じてゲートウェイを設定します。
7. OKとCloseをクリックします。選択したアダプタに設定が適用されます。
8. 必要なiSCSIインタイチエイティブは、「表6. デュアルポートiSCSI NICを使用したホストサーバ用のワークシートの例」のNIC1とNC1を選択し、ステップ1〜7を繰り返します。
9. コマンドプロンプトから、各コンポーネントのIPアドレスについてpingを実行し、ホストの接続性を確認してから先に進めます。

iSCSIイニシエータの設定

ホスト上のiSCSIイニシエータを設定するには、次の手順を実行します。

1. サーバマネージャーを開きます。
2. Tools > iSCSI Initiatorの順に選択します。iSCSI Initiator Propertiesダイアログボックスが開きます。
3. Discoveryタブを開き、Discover Protocolダイアログボックスが開きます。
4. 「前提条件」の項で作成した計画ワークシートを使用して、1番目のサブネット上のコントローラAのポートのIPアドレスを入力し、OKをクリックします。
5. ステップ3〜4を繰り返して、コントローラBからの2番目のサブネット上のポートのIPアドレスを追加します。
6. Targetsタブを開き、検出されたターゲットを選択して、Connectをクリックします。
7. Enable multi-pathチェックボックスをオンにして、Advancedをクリックします。Advanced Settingsダイアログボックスが開きます。
 - Local adapter ドロップダウンメニューからMicrosoft ISCSI initiatorを選択します。
 - Initiator IP ドロップダウンメニューからNIC1のIPアドレスを選択します。
Target portal IP ドロップダウンメニューから、同じサブネットに一覧表示されている1つ目のIPを選択します。
OK を2回クリックして、iSCSI Initiator Properties ダイアログボックスに戻ります。

8. NIC についてステップ6~7を繰り返し、サブネット上の各ポートへの接続を確立します。

メモ：複数パス設定の場合はステップ10が必須です。

9. NIC2についてステップ3~8を繰り返し、2番目のサブネット上のターゲットに接続させます。

メモ：すべての接続が完了したら、Favorite Targets タブをクリックしてそれぞれのパスを確認できます。Detail をクリックすると、選択したパスの具体的な情報を確認できます。

10. Configuration tab をクリックし、Initiator Name フィールドにイニシエータの名前を記録します。イニシエータ名は、ボリュームをホストにマッピングする際に必要になります。

11. OK をクリックしてiSCSI Initiator Properties ダイアログボックスを閉じます。

ホストの登録とボリュームの作成

ME Storage Manager を使用してホストを登録しボリュームを作成するには、次の手順を実行します。

1. ME Storage Manager にログインします。
2. Host Setup ウィンドウにアクセスします。
 - [ようこそ] 画面から、ホストセットアップをクリックします。
 - [Home] ドキュメントから、Action > Host Setup の順に選択します。
3. 提案された前提条件を満たしていることを確認して、Next をクリックします。
4. Host Name フィールドにホスト名名を入力します。
5. 「iSCSI イニシエータの設定」のステップ10の情報を利用して、設定中のホストのiSCSI イニシエータを選択し、Next をクリックします。
6. クラスタ内の他のホストをまとめてホストをグループ化します。
 - クラスタ構成の場合、グループ内のすべてのホストが同じストレージを共有できるようにホストをまとめてグループ化します。
 - このホストがクラスタ内の最初のホストである場合は、Create a new host group を選択してホストグループの名前を入力し、Next をクリックします。
 - すでに存在するホストグループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 - クラスタ構成の場合、Do not group this host オプションを選択し、Next をクリックします。
7. Attach Volumes ページで、各ボリュームの名前、サイズ、プールを指定し、Next をクリックします。
 - ボリュームを追加するには、Add Row をクリックします。ボリュームを削除するには、Remove をクリックします。
 - システムが複数の接続があることを確認し、Next をクリックします。
 - ステップ10の情報を利用して、設定中のホストのiSCSI イニシエータを選択し、Next をクリックします。

8. [Summary] ページで、ホスト設定の内容を確認し、Configure Host をクリックします。

Windows サーバ上でのボリュームの MPIO の有効化

Windows サーバ上のボリュームの MPIO を有効化するには、次の手順を実行します。

1. Server Manager を開きます。
2. Tools > MPIO の順に選択します。
3. Discover Multi-Paths タブをクリックします。
4. Device Hardware Id リストでDellEMC ME4を選択します。
 - Device Hardware Id リストに DellEMC ME4 が表示されない場合：
 a. マルチパス用に、1つのボリュームに複数の接続があることを確認します。
 b. MPIO Devices タブの Devices リストに Dell EMC ME4 がまだ表示されていないことを確認します。
5. Add をクリックし、Yes をクリックして Windows サーバ上に再起動します。

Windows サーバ上のボリュームのフォーマット

Windows サーバ上のボリュームをフォーマットするには、次の手順を実行します。

1. Server Manager を開きます。
2. Tools > Computer Management の順に選択します。
3. Disk Management を右クリックし、Rescan Disks を選択します。
4. 新しいディスクを右クリックし、**Online** を選択します。
5. 新しいディスクをもう一度右クリックし、**Initialize Disk** を選択します。**Initialize Disk** ダイアログボックスが開きます。
6. ディスクのパーティションスタイルを選択し、OK をクリックします。
7. 未割り当て領域を右クリックして、作成するボリュームのタイプを選択し、ウィザードの手順に従ってボリュームを作成します。

iSCSI イニシエーターの更新

Windows サーバーで使用可能なすべてのボリュームとデバイスを設定するには、次の手順を実行します。
1. Server Manager を開きます。
2. Tools > iSCSI Initiator の順にクリックします。
3. Volumes and Devices タブをクリックします。
4. Auto Configure をクリックします。
5. OK をクリックして iSCSI Initiator Properties ウィンドウを閉じます。

Windows Server 用の SAS ホスト サーバ設定

以降の項では、Windows Server を実行している SAS ホスト サーバの設定方法について説明します。

前提条件
- ME Storage Manager のガイド付きシステムおよびストレージセットアップ プロセスを完了します。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。詳細に計画することにより、導入の成功が確保されます。

ストレージシステムへの SAS ホストの接続

ストレージシステムに SAS ホストを接続するには、次の手順を実行します。
1. Dell.com のサポートでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべての HBA にインストールされていることを確認します。サポートされる SAS HBA のリストについては、Dell.com のサポートにある「Dell EMC ME4 Series Storage System Support Matrix」を参照してください。
2. SAS ケーブル接続図に従って、ストレージシステムにホストを直接ケーブル接続します。
3. SAS ホストに MPIO をインストールします。
 a. 1. Server Manager を開きます。
 2. 管理 > 役割と機能の追加をクリックします。
 3. [Features] ページが表示されるまで Next をクリックします。
 4. Multipath I/O を選択します。
 5. Next をクリックし、Install をクリックして、Close をクリックします。
 6. Windows サーバを再起動します。
4. SAS HBA WWN を特定して記録します。
 a. Windows PowerShell コンソールを開きます。
 b. Get-InitiatorPort と入力し、Enter を押します。
 c. SAS HBA WWN を特定して記録します。WWN はボリュームをサーバにマッピングするために必要になります。

ホストの登録とボリュームの作成

ME Storage Manager を使用してホストを登録しボリュームを作成するには、次の手順を実行します。
1. ME Storage Manager にログインします。
2. Host Setup ウィザードにアクセスします。
 a. [よこそ] 画面から、ホストセットアップをクリックします。
 b. [Home] トピックから、Action > Host Setup の順にクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. Host Name フィールドにホスト名を入力します。
5. 「ストレージシステムへのホストの接続」のステップ 4 に記された情報を使用して、設定中のホストの SAS イニシエータを選択し、Next をクリックします。
6. クラスタ内の他のホストとまとめてホストをグループ化します。
クラスタ構成の場合、グループ内のすべてのホストが同じストレージを共有できるようにホストをまとめてグループ化します。

このホストがクラスタ内の最初のホストである場合は、Create a new host group を選択してホストグループの名前を入力し、Next をクリックします。

すでに存在するホストグループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。

スタンドアロンホストの場合は、Do not group this host オプションを選択します。

Windows サーバ上でのボリュームの MPIO の有効化

Windows サーバ上のボリュームの MPIO を有効化するには、次の手順を実行します。

1. Server Manager を開きます。
2. Tools > MPIO の順に選択します。
3. Discover Multi-Paths タブをクリックします。
4. Device Hardware Id リストで DellEMC ME4 を選択します。

 Device Hardware Id リストに DellEMC ME4 が表示されない場合:

 a. マルチパス用に、1つのボリュームに複数の接続があることを確認します。

 b. MPIO Devices タブの Devices リストに Dell EMC ME4 がまだ表示されていないことを確認します。

5. Add をクリックし、Yes をクリックして Windows サーバを再起動します。

Windows サーバー上のボリュームのフォーマット

Windows サーバ上のボリュームをフォーマットするには、次の手順を実行します。

1. Server Manager を開きます。
2. Tools > Computer Management の順に選択します。
3. Disk Management を右クリックし、Rescan Disks を選択します。
4. 新しいディスクを右クリックし、Online を選択します。
5. 新しいディスクをもう一度右クリックし、Initialize Disk を選択します。Initialize Disk ダイアログボックスが開きます。
6. ディスクのパーティションスタイルを選択し、OK をクリックします。
7. 未割り当て領域を右クリックして、作成するボリュームのタイプを選択し、ウィザードの手順に従ってボリュームを作成します。

Linux ホスト

HBA またはネットワークアダプタが取り付けられていること、ドライバがインストールされていること、サポートされる最新の BIOS がインストールされていることを確認します。

Linux のファイバーチャネルホストサーバの設定

以下の項では、Linux を実行している Fibre Channel ホストサーバの設定方法について説明します。

前提条件

- ME Storage Manager のガイド付きシステムおよびストレージセットアッププロセスを完了しました。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。最密に計画することにより、導入の成功が確保されます。
- システムレベルの変更を行うには管理者またはプリビレッジッドユーザーのアクセス許可が必要です。下記の手順では root レベルのアクセスを前提としており、すべての必要なソフトウェアパッケージ（DM マルチパスなど）がすでにインストールされていることを前提としています。
ストレージシステムへのホストの接続
Fibre Channel ホストをストレージシステムに接続するには、次の手順を実行します。
1. デルサポートポータルでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべての HBA にインストールされていることを確認します。サポートされる標準の FC HBA のリストについては、デルの Web サイトの『Dell EMC PowerVault ME4 シリーズ storage Matrix』を参照してください。OEM の場合は、お使いのハードウェアのプロバイダーにお問い合わせください。
2. FC のケーブル配線図に従ってホスト サーバのケーブル配線をします。その際、スイッチを使用するか、ストレージシステムに直接接続します。
3. 次の操作を行って Fibre Channel WWN を識別し、ストレージシステムに接続します。
 a) ターミナルセッションを開きます。
 b) ls –l /sys/class/fc_host コマンドを実行します。
 c) more /sys/class/fc_host/host?/port_name コマンドを実行し、?の部分を、データ出力で提供されたホスト番号にリプレースします。
 d) WWN の数値名を記録します。
4. FC スイッチを使用してホストをストレージシステムに接続している場合は、ゾーニングを実装して各 HBA のトラフィックを分離します。ホストがストレージシステムに直接接続されている場合はこのステップをスキップしてください。
 a) FC スイッチの管理インターフェイスを使用して、サーバの HBA ごとにゾーンを作成します。各ゾーンには HBA WWN を 1つだけ含める必要があり、すべてのストレージポート WWN を含める必要があります。
 b) 各 FC スイッチについて繰り返します。
メモ: ME4 シリーズストレージシステムは、シングル インシエーター/マルチ ターゲットのゾーンをサポートしています。
ホストの登録およびボリュームの作成とマッピング
ホストの登録、ボリュームの作成、ボリュームのマッピングを行うには、次の手順を実行します。
1. ME Storage Manager にログインします。
2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 - [ようこそ] 画面から、ホストセットアップをクリックします。
 - [Home] トピックから、Action > Host Setup の順にクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. hostname を入力します。
5. 「ストレージシステムへのホストの接続」のステップ3 の情報を利用して正しいイニシエータを選択し、設定中のホストの FC インシエータを選択して、Next をクリックします。
6. 他のホストと一緒にホストをグループ化します。
 a) クラスタ構成の場合は、「ホスト グループ」の設定を使用してクラスタ内のホストをグループ化します。
 - このホストがクラスタ内の最初のホストである場合は、Create a new host group を選択して名前を入力し、Next をクリックします。
 - すでに存在するホスト グループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 b) スタンドアロンホストの場合は、Do not group this host オプションを選択し、Next をクリックします。
7. [Attach volumes] ページで、ボリュームの名前とサイズを変更するオプションを使用して、そのボリュームのプールを選択し、ボリュームを追加または削除します。Next をクリックします。
 ①メモ: Dell EMC は、ボリューム名について、ボリュームを識別しやすい hostname にアップデートするようお勧めしています。
8. [Summary] ページで、変更した内容を確認し、Configure Host をクリックします。
 - はいをクリックしてウィザードの[ホストの選択]ページに戻るか、いいえを選択してウィザードを開閉します。
 - 前に戻って設定を変更するには Previous をクリックします。
DM マルチパスの有効化と設定
DM マルチパスを有効化して設定するには、次の手順を実行します。
①メモ: 内蔵サーバーディスクリブリドライブをマルチパス構成ファイルから保護してブラックリストの設定をします。これらの手順は、ストレージシステムに対する DM マルチパスを有効化する基本的な設定です。DM マルチパスのパッケージがインストールされていることが前提です。
RHEL 7/SLES 12 の場合:

1. multipath –t コマンドを実行して、DM マルチパスのステータスを表示します。
2. 設定が存在していない場合は、ステップ 1 のコマンド実行で表示された情報を使用して、デフォルトのテンプレートを /etc ディレクトリにコピーします。
3. DM マルチパス カーネル ドライバがロードされていない場合:
 a) systemctl enable multipathd コマンドを実行して、サービスを自動的に実行できるようにします。
 b) サービスを開始するには、systemctl start multipathd コマンドを実行します。
4. 設定ファイルとともにストレージデバイスをロードするには、multipath コマンドを実行します。
5. 設定ファイルと一緒にストレージデバイスを一覧表示します。

ME4 シリーズ ボリュームでのファイル システムの作成

ボリュームとしてマウントするシンプルな XFS ファイルシステムを設定するには、次の手順を実行します。

1. multipath -l コマンドの出力から、ファイルシステムを作成しているターゲットへのデバイス マルチパスを特定します。この例では、初めてマルチパスを設定するときに、1番目のデバイスが /dev/mapper/mpatha となり、sg ブロックデバイス /dev/sdb and /dev/sdd と関連付けられます。
2. Xfs タイプのファイルシステムを作成するには、mkfs.xfs /dev/mapper/mpatha コマンドを実行します。
3. このファイルシステムのマウントポイントを VolA などの参照名で作成するには、mkdir /mnt/VolA コマンドを実行します。
4. ファイルシステムをマウントするには、mount /dev/mapper/mpatha /mnt/VolA コマンドを実行します。
5. ME Storage Manager でプロビジョニングした各ボリュームについて、ステップ 1〜5 を繰り返します。たとえば、/dev/mapper/mpathb へのマルチパスを作成して、sg block devices /dev/sdc および /dev/sde に関連付けます。

Linux 用の iSCSI ホスト サーバー設定

以降の項では、Linux を実行している iSCSI ホスト サーバの設定方法について説明します。

前提条件

- ME Storage Manager のガイド付きシステムおよびストレージ セットアップ プロセスを完了しました。
- ストレージ システムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。綿密に計画することにより、導入の成功率が確保されます。
- システムレベルの変更を行うには管理者権限またはブリビレッジ ユーザー権限が必要です。以降の項では root レベルのアクセスを前提としており、必要なすべてのソフトウェア パッケージ (iSCSI イニシエーターや DM マルチバスなど) がすでにインストールされていることを前提としています。
- 使用する iSCSI ネットワークの IP アドレスを計画ワークシートに記入します。記入例については、下記の表を参照してください。

表7. デュアル ポート iSCSI NIC を使用したシングル ホスト サーバ用のワークシートの例

<table>
<thead>
<tr>
<th>管理</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>サーバ管理</td>
<td>10.10.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラ A の管理</td>
<td>10.10.96.128</td>
</tr>
<tr>
<td>ME4024 コントローラ B の管理</td>
<td>10.10.96.129</td>
</tr>
<tr>
<td>サブネット 1</td>
<td></td>
</tr>
<tr>
<td>サーバの iSCSI NIC 1</td>
<td>172.1.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラ A のポート 0</td>
<td>172.1.100.128</td>
</tr>
<tr>
<td>ME4024 コントローラ B のポート 0</td>
<td>172.1.200.129</td>
</tr>
</tbody>
</table>

ホストのセットアップの実行 51
管理	IP
ME4024 コントローラ A のポート 2 | 172.1.102.128
ME4024 コントローラ B のポート 2 | 172.1.202.129
Subnet Mask (サブネットマスク) | 255.255.0.0

サブネット 2
サーバの iSCSI NIC 1 | 172.2.96.46
ME4024 コントローラ A のポート 1 | 172.2.101.128
ME4024 コントローラ B のポート 1 | 172.2.201.129
ME4024 コントローラ A のポート 3 | 172.3.203.129
Subnet Mask (サブネットマスク) | 255.255.0.0

下記の手順では、ネットワークの冗長性とフェールオーバーを目的とした、デュアルスイッチのサブネットによるIPv4の設定について説明しています。IPv6の設定については説明していません。

ストレージシステムへのホストの接続

1. デルサポートポータルでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべてのネットワークアダプタにインストールされていることを確認します。
2. iSCSIのケーブル配線図に従って、ホストサーバーをスイッチに接続するか、またはストレージシステムに直接接続します。iSCSIネットワークに接続しているネットワークアダプタごとに、IPアドレスを割り当てます。

注意: IPアドレスは、各ネットワークのサブネットと一致している必要があります。必ず正しいIPアドレスをネットワークアダプタに割り当ててください。間違ったポートにIPアドレスを割り当てると接続の問題が発生する場合があります。

メモ: ジャンボフレームを使用する場合は、データバス、アダプタポート、スイッチ、およびストレージシステムにあるすべてのデバイスで、ジャンボフレームを有効にして設定を行う必要があります。

RHEL 7の場合

1. サーバ端末またはコンソールからnmtuiコマンドを実行して、NIC設定ツール（NetworkManager TUI）にアクセスします。
2. 接続を編集を選択してインストールされているEthernetインタフェースのリストを表示します。
3. IPアドレスを割り当てているiSCSI NICを選択します。
4. IPv4設定オプションを手動に変更します。
5. 「前提条件」の項で作成した計画ワークシートを使用して、サブネットマスクを入力します。それには、x.x.x.x/16という形式を使用してNICのIPアドレスを入力します。たとえば、172.1.96.46/16などと入力します。
6. 必要に応じてゲートウェイを設定します。
7. IPv6の設定で無視を選択します。
8. システムの起動時にNICが起動するように、自動的に接続するオンにします。
9. OKを選択して接続の編集を終了します。
10. 戻るを選択してメインメニューに戻ります。
11. 終了を選択してNetworkManager TUIを終了します。
12. 新しいネットワークインタフェースを関連するストレージホストポートに対してpingを実行し、IP接続を確認します。
13. IPアドレスを割り当てている各NICについて、手順1~12を繰り返します。

SLES 12の場合

1. サーバ端末またはコンソールからyastコマンドを実行して、YaSTControlCenterにアクセスします。
2. システム】>【ネットワーク設定を選択します。
3. IPアドレスを割り当てているiSCSI NICを選択して、編集を選択します。
4. 静的に割り当てたIPアドレスを選択します。
「前提条件」の項で作成した計画ワークシートを使用して、NICのIPアドレスを入力します。たとえば、172.1.96.46などと入力します。次へを選択します。
「前提条件」の項で作成した計画ワークシートを使用して、NICのサブネットマスクを入力します。たとえば、255.255.0.0などと入力します。
IPアドレスを割り当てる各NIC（「前提条件」の項で作成した計画ワークシートのNIC1およびNIC2）について、手順1～8を繰り返します。
OKを選択してネットワークの設定を終了します。
OKを選択してYaSTを終了します。

ME4 シリーズストレージシステムに接続するためのiSCSIインシエーターの設定

RHEL 7の場合
1. サーバ端末またはコンソールからiscsiadmコマンドを実行して、ターゲット（ポートA0）を探す。
 iscsiadm --m discovery --t sendtargets --p <IP>
 <IP>はIPアドレスです。例：iscsiadm --m discovery --t sendtargets --p 172.1.100.128
2. 探索の出力を使用し、iscsiadmコマンドを実行して各ポータルにログインします。
 a) iscsiadm --m node --T <完全IQN> -p <IP>を実行します。<完全IQN>は、手順1の出力でリストされた完全IQNです。<IP>はIPアドレスです。例：iscsiadm --m node --T iqn.1988-11.com.abcc:01.array.bc305bb0b841-p 172.1.100.128
 b) 各コントローラのポートについて、手順1の探索コマンドの出力を使用してログインを繰り返します。
 c) ホストを再起動して、すべてのターゲットが自動的に接続されていることを確認します。

SLES 12の場合
1. サーバ端末またはコンソールからyastコマンドを実行して、YaST Control Centerにアクセスします。
2. ネットワークサービス] > [iSCSIインシエーターを選択します。
3. [サービス]タブで、起動時を選択します。
4. 接続されたターゲットタブを選択します。
5. 追加を選択します。iSCSIインシエーターの[探索]画面で表示されます。
6. 以前に作成したデュアルポートiSCSI NICを使用したシングルホストサーバ用のワークシートの例を使用して、[IP Address]フィールドにポートA0のIPアドレス（例：172.1.100.128.）を入力し、Nextをクリックします。
7. 接続を選択します。
8. iSCSIインシエーターの[探索]画面で、次のアダプタを選択し、接続を選択します。
9. プロンプトが表示されたら、Continueを選択して、「Warning target with TargetName is already connected.（TargetNameのターゲットはすでに接続されています。）」という警告メッセージをバイパスします。
10. 起動時に自動]を選択し、次へをクリックします。
11. 残りのすべてのアダプタについて、手順2～10を繰り返します。
12. ターゲットが接続したら、Next>Quitの順にクリックしてYaSTを終了します。
13. ホストを再起動して、すべてのターゲットが自動的に接続されていることを確認します。

ホストの登録およびボリュームの作成とマッピング
1. ME Storage Managerにログインします。
2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 • [ようこそ]画面から、ホストセットアップをクリックします。
 • [ホーム]のトピックから、アクション] > [ホストセットアップをクリックします。
3. 提案された前提条件を満たしていることを確認して、Nextをクリックします。
4. hostnameを入力します。
5. 「SLES 12の場合」のステップ12の情報を利用して正しいインシエーターを識別し、設定中のホストのiSCSIインシエーターを選択して、Nextをクリックします。
6. 他のホストと一緒にホストをグループ化します。

ホストのセットアップの実行 53
クラスタ構成の場合は、ホストグループの設定を使用してクラスタ内のホストをグループ化します。

- このホストがクラスタ内の最初のホストである場合は、create a new host groupを選択して前後に入力し、Nextをクリックします。
- すでに存在するホストグループにこのホストを追加する場合は、Add to existing host groupを選択し、ドロップダウンリストからグループを選択して、Nextをクリックします。

スタンドアローンホストの場合は、このホストをグループ化しないオプションを選択し、次へをクリックします。

7. [ボリュームの接続]ページで、ボリュームの名前とサイズを変更するオプションを使用します(デフォルトでは、100 GBのボリュームが2個作成される)。ボリュームが存在するボリュームを選択して、ボリュームを追加または削除します。次へをクリックします。

DMマルチパスの有効化と設定

- DMマルチパスパッケージがインストールされていることを前提としています。
- RHEL 7/SLES 12の場合:
 1. multipath -t コマンドを実行して、DMマルチパスのステータスを表示します。
 2. 現在設定が存在しない場合は、手順1で表示されたコマンド情報を使用して、デフォルトのテンプレートをディレクトリ/etcにコピーします。
 3. DMマルチパスカーネルドライバがロードされていない場合:
 a) systemctl enable multipathd コマンドを実行して、サブスクリプションを自動的に実行できるようにします。
 b) サブスクリプションを開始するには、systemctl start multipathd コマンドを実行します。
 4. multipath コマンドを実行して、ストレージデバイスを設定ファイルと一緒にロードします。
 5. multipath -l コマンドを実行して、DMマルチパス配下に設定されているDell EMC PowerVault ME4シリーズストレージデバイスを一覧表示します。

ME4シリーズボリュームでのファイルシステムの作成

- 前述のmultipath -lコマンドの出力から、ファイルシステムを作成しているターゲットへのデバイスマルチパスを特定します。この例では、初めてマルチパスを設定するときに、1番目のデバイスを/dev/mapper/mpathaとし、sgブロックデバイス/dev/sdbおよび/dev/sddに関連付けます。
- コントローラターゲットパス/LUNマップから、すべてのSCSIデバイスを一覧表示するには、lsscsiコマンドを実行します。これによってコントローラごとにブロックデバイスも特定されます。

Linux用のSASホストサーバー設定

以降の項では、Linuxを実行しているSASホストサーバーの設定方法について説明します。

- ME Storage Managerのガイド付きシステムおよびストレージセットアッププロセスを完了します。
ストレージシステムへの SAS ホストの接続

ストレージシステムに SAS ホストを接続するには、次の手順を実行します。

1. Dell サポートWeb サイトでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべてのHBAにインストールされていることを確認します。サポートされるSAS HBAのリストについては、Dell サポート Web サイトにある「Dell EMC ME4 Series Storage System Support Matrix」を参照してください。
2. SAS ケーブル配線ダイアグラムを使用して、ホストサーバーをストレージシステムに直接ケーブル接続します。
3. 次の操作を行って SAS HBA イニシエーターを識別し、ストレージシステムに接続します。
 a. ターミナルセッションを開きます。
 b. dmesg|grep scsi|grep slot コマンドを実行します。
 c. WWN の数値名を記録します。

ホストの登録およびボリュームの作成とマッピング

1. ME Storage Manager にログインします。
2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 a. [ようこそ] 画面から、ホストセットアップをクリックします。
 b. [ホーム] のトピックから、[アクション] > [ホストセットアップ] をクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. hostname を入力します。
5. 「ストレージシステムへの SAS ホストの接続」のステップ3の情報を利用して、正しいイニシエーターを選択し、設定中のホストの SAS イニシエーターを選択して、Next をクリックします。
6. 他のホストと一緒にホストをグループ化します。
 a. クラスタ構成の場合は、ホストグループの設定を使用してクラスタ内のホストをグループ化します。
 - このホストがクラスタ内の最初のホストである場合は、create a new host group を選択して名前を入力し、Next をクリックします。
 - すでに存在するホストグループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 b. スタンダードホストの場合は、Do not group this host オプションを選択し、Next をクリックします。
7. Attach volumes ページで、ボリュームの名前とサイズを変更するオプションを使用します(デフォルトでは、100 GBのボリュームが2個作成されます)。ボリュームのプールを選択して、ボリュームを追加または削除します。Next をクリックします。
8. [Summary] ページで、変更した内容を確認し、Configure Host をクリックします。
 - 前に戻って設定を変更するには Previous をクリックします。
 - はいをクリックしてウィザードの [ホストの選択] ページに戻るか、いいえを選択してウィザードを開じます。

DM マルチバスの有効化と設定

メモ: 内蔵サーバディスクドライブをマルチバス構成ファイルから保護してブラックリストの設定をします。これらの手順は、ストレージシステムに対する DM マルチバスを有効化する基本的な設定です。DM マルチバスのパッケージがインストールされていることが前提です。

RHEL 7/SLES 12 の場合：
1. multipath -t コマンドを実行して、DM マルチバスのステータスを表示します。
2. 設定が存在していない場合は、ステップ1で示したコマンド情報を利用し、デフォルトのテンプレートをディレクトリ/etc にコピーします。
3. DM マルチバス カーネル ドライバがロードされていない場合:
 a. systemct1 enable multipathd コマンドを実行して、サービスを自動的に実行できるようにします。
 b. サービスを開始するには、systemct1 start multipathd コマンドを実行します。
4. 設定ファイルと共にストレージデバイスをロードするには、multipath コマンドを実行します。
5. `multipath -l` コマンドを実行して、DM マルチパス配下に設定されている ME4 シリーズストレージデバイスを一覧表示します。

ME4 シリーズボリュームでのファイルシステムの作成

メモ: 下記のステップでは、ME4 シリーズストレージシステムからのボリュームとしてマウントするように、単純な XFSファイルシステムを設定します。

RHEL 7/SLES 12 の場合

1. `multipath -l` コマンドの出力から、ファイルシステムを作成しているターゲットへのデバイスマルチパスを特定します。この例では、初めてマルチパスを設定するときに、1番目のデバイスが`dev/mapper/mpatha`となり、`sg`ブロックデバイス`/dev/sdb`および`/dev/sdd`に関連付けられます。

メモ: コントローラ/ターゲット/パス/LUN マップから、すべてのSCSIデバイスを一覧表示するには、`lsscsi`コマンドを実行します。このコマンドによってコントローラごとにブロックデバイスも特定されます。

2. Xfsタイプのファイルシステムを作成するには、`mkfs.xfs/dev/mapper/mpatha`コマンドを実行します。

3. このファイルシステムのマウントポイントを`VolA`などの参照名で作成するには、`mkdir/mnt/VolA`コマンドを実行します。

4. ファイルシステムをマウントするには、`mount /dev/mapper/mpatha /mnt/VolA`コマンドを実行します。

5. ファイルシステムの使用を開始し、アプリケーションやファイルサービスをホストするための他のディレクトリと同様に使用します。

VMware ESXi ホスト

HBAまたはネットワークアダプタが取り付けられていたことも、サポートされている最新のBIOSがインストールされていることを確認します。

VMware ESXi 用のファイバチャネルホストサーバー設定

以降の項では、VMware ESXiを実行している Fibre Channel ホストサーバの設定方法について説明します。

前提条件

- ME Storage Managerのガイド付きシステムおよびストレージセットアッププロセスを完了します。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。詳細に計画することにより、導入的成功が確保されます。
- 必要なバージョンの VMware ESXi オペレーティングシステムをインストールして、ホスト上で設定します。

ストレージシステムへのホストの接続

Fibre Channel ホストをストレージシステムに接続するには、次の手順を実行します。

1. すべてのHBAで、サポートされている最新のファームウェアとドライバがデルサポートポータルでの説明のとおりにインストールされていることを確認します。サポートされている標準のFC HBAのリストについては、デルのWebサイトの Dell EMC ME4 ストレージマトリックスを参照してください。OEMの場合は、お使いのハードウェアのプロバイダーにお問い合わせください。

2. FCのケーブル配線図に従ってホストサーバのケーブル配線をします。その際、スイッチを使用するか、ストレージシステムに直接接続します。

3. VMware vCenter Serverにログインし、新しく設定した ESXi ホストを該当するデータセンターに追加します。

4. [設定]タブ上で、ストレージストレージアダプタの順に選択します。

5. 必要なFCストレージアダプタが表示されることを確認し、[プロパティ]に表示された HBA の WWN を控えておきます。

6. ホストが FC スイッチによってストレージシステムに接続されている場合は、次の手順を実行して各 HBA についてゾーニングを実装してトラフィックを分離します（ホストがストレージシステムに直接接続されている場合はこの手順を省略してくださ"

a) FC スイッチの管理インターフェイスを使用して、サーバのHBAごとにゾーンを作成します。各ゾーンにはHBA WWNを1つだけ含める必要があります。すべてのストレージポート WWN を含める必要があります。
b) 各 FC スイッチについて下位の手順を繰り返します。
メモ: Dell EMC PowerVault ME4 シリーズストレージシステムは、シングルイニシエータ/マルチゲットのゾーンをサポートしています。

ホストの登録およびボリュームの作成とマッピング

Fibre Channel ホストの登録、ボリュームの作成、およびボリュームストレージシステムのマッピングを行うには、次の手順を実行します。

1. ME Storage Manager にログインします。
2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 - [ようこそ] 画面から、ホストセットアップをクリックします。
 - [Home] トピックから、Action > Host Setup の順にクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. hostname を入力します。
5. 「ストレージシステムへのホストの接続」のステップ 5 の情報を利用して正しいイニシエータを識別し、設定中のホストの FC イニシエータを選択して、Next をクリックします。
6. 他のホストと一緒にホストをグループ化します。
 a) クラスタ構成の場合は、ホストグループの設定を使用してクラスタ内のホストをグループ化します。
 - このホストがクラスタ内の最初のホストである場合は、Create a new host group を選択して名前を入力し、Next をクリックします。
 - すでに存在するホストグループにこのホストを追加する場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 b) スタンドアロンホストの場合は、Do not group this host オプションを選択し、Next をクリックします。
7. [Attach volumes] ページで、ボリュームの名前とサイズを変更するオプションを使用して、そのボリュームのプールを選択し、ボリュームを追加または削除します。Next をクリックします。
8. [サマリー] ページで、変更した内容を確認し、ホストの設定をクリックします。
 - はいをクリックしてウィザードの [ホストの選択] ページに戻るか、いいえを選択してウィザードを開じます。
 - 前に戻って設定を変更するには戻るをクリックします。

FC ボリュームでのマルチパスの有効化

1. VMware vCenter Server にログインし、追加された ESXi ホストをクリックします。
2. [Configure] タブ上で、Storage Devices を選択します。
3. ストレージデバイスの再スキャンを実行します。
4. ホストの登録およびボリュームの作成とマッピングの手順で作成した FC ディスク (Dell EMC Fibre Channel ディスク) を選択し、画面の下にある [Properties] を選択します。
5. 下方向にスクロールして Edit Multipathing オプションを選択し、ドロップダウンリストから Round Robin (VMware) を選択します。
6. OK をクリックします。
7. Dell EMC PowerVault ME4 シリーズストレージシステムから ESXi ホストに提示されているすべてのボリュームについて、ステップ 4～6 を実行します。

VMware でのボリュームの再スキャンとデータストアの作成

ストレージ再スキャンしてデータストアを作成するには、次の手順を実行します。

1. VMware vCenter Server にログインし、設定済みの ESXi ホストをクリックします。
2. [Configure] タブで Storage Adapters を選択し、ソフトウェア FC アダプタ HBA を選択して、Rescan オプションをクリックします。
3. [Rescan Storage] ダイアログ ボックスで OK をクリックします。
 再スキャンが正常に完了すると、「Register the host and create and map volumes」の項で示されたボリュームが表示されます。
4. ME4 シリーズストレージシステムから提示されたボリュームに VMware データストアファイルシステムを作成するには、次の手順を実行します。
 a) [Configure] タブで、Datastore > Create new datastore (+記号の付いた円柱) の順に選択します。“
VMware ESXi 用の iSCSI ホスト サーバー設定

以降の項では、VMware ESXi を実行している iSCSI ホスト サーバーの設定方法について説明します。

前提条件
- ME Storage Manager のガイド付きシステムおよびストレージ セットアップ プロセスを完了します。
- ストレージ システムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。綿密に計画することにより、導入の成功が確保されます。
- 必要なバージョンの VMware ESXi オペレーティング システムをインストールして、ホスト上で設定します。
- 使用する iSCSI ネットワークの IP アドレスを計画ワークシートに記入します。記入例については、下記の表を参照してください。
- 使用する iSCSI ネットワークの IP アドレスを計画ワークシートに記入します。記入例については、下記の表を参照してください。

表 8. デュアル ポート iSCSI NIC を使用したシングル ホスト サーバー用のワークシートの例

<table>
<thead>
<tr>
<th>管理</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>サーバ管理</td>
<td>10.10.96.46</td>
</tr>
<tr>
<td>ME4024 コントローラーA の管理</td>
<td>10.10.96.128</td>
</tr>
<tr>
<td>ME4024 コントローラーB の管理</td>
<td>10.10.96.129</td>
</tr>
</tbody>
</table>

サブネット 1
- サーバの iSCSI NIC 1 | 172.1.96.46 |
- ME4024 コントローラーA のポート 0 | 172.1.100.128 |
- ME4024 コントローラーB のポート 0 | 172.1.200.129 |
- ME4024 コントローラーA のポート 2 | 172.1.102.128 |
- ME4024 コントローラーB のポート 2 | 172.1.202.129 |
- Subnet Mask (サブネットマスク) | 255.255.0.0 |

サブネット 2
- サーバの iSCSI NIC 1 | 172.2.96.46 |
- ME4024 コントローラーA のポート 1 | 172.2.101.128 |
- ME4024 コントローラーB のポート 1 | 172.2.201.129 |
- ME4024 コントローラーA のポート 3 | 172.2.103.128 |
- ME4024 コントローラーB のポート 3 | 172.3.203.129 |
- Subnet Mask (サブネットマスク) | 255.255.0.0 |

ストレージ システムへのホストの接続

ホストをストレージ システムに接続するには、次の手順を実行します。

1. デル サポート ポータルでの説明のとおりに、サポートされている最新のファームウェアとドライバがすべてのネットワーク アダプタにインストールされていることを確認します。

メモ: Dell EMC PowerVault ME4 シリーズ ストレージ システムでサポートされるのは、ソフトウェア iSCSI アダプタのみです。
スイッチを使用するか、1対1モードでストレージシステムに直接接続することによって、ホストサーバーをiSCSIケーブル接続図どおりにケーブル接続します。各ストレージシステムコントローラーについて、異なる2つのIPアドレス範囲を記録します。
例：172.2.15.x、172.3.20.x。

ホストサーバーがiSCSIスイッチでストレージシステムに接続されている場合は、異なる2つのIPアドレス範囲/サブネットを使用する設定をスイッチに行います。
異なる2つのIPアドレス範囲/サブネットをスイッチに設定することにより、高可用性が実現します。

VMware ESXi VMkernelの設定
VMware ESXi VMkernelの設定を行うには、次の手順を実行します。

1. VMware vCenter Serverから、Configure > Networking > Physical adaptersの順にクリックします。
2. iSCSIトラフィックに使用されるNICのデバイス名を検索して記録します。
3. VMkernelアダプタをクリックし、プラス(+)アイコンをクリックしてVMkernelアダプタを作成します。
4. [Select Connection Type]ページで、VMkernel Network Adapterと次に選択します。
5. [Select Target Device]ページで、New standard switchと次に選択します。
6. [Create Standard Switch]ページで、プラス(+)アイコンをクリックしてから、vmnic>OKの順に選択して、「ストレージシステムへのホストの接続」手順のステップ4で定義されているサブネットに接続します。

7. 次へをクリックします。
8. ネットワークラベルを入力してから、ポートのプロパティをアップデートします。
9. IPv4 settings設定ページで、Static IPを選択し、計画ワークシートを使用してIPを割り当てます。
10. 次へをクリックします。
11. [Ready to complete]ページで、設定を確認し、Finishをクリックします。
12. iSCSIトラフィックに使用する各NICについて、ステップ1~11を繰り返します。

メモ: ジャンボフレームを使用する場合は、データパス、アダプタポート、スイッチ、およびストレージシステムにおけるすべてのデバイスで、ジャンボフレームを有効にして設定を行う必要があります。

ESXiホスト上のソフトウェアiSCSIアダプタの設定
ESXiホスト上のソフトウェアiSCSIアダプタを設定するには、次の手順を実行します。

メモ: 10GBase-TコントローラでVMware ESXiの使用を予定している場合は、次のいずれかのタスクを実行する必要があります。

- ESXiホストをME4シリーズストレージシステムに接続する前に、コントローラのファームウェアを、Dell.comのサポートに掲載の最新バージョンにアップデートします。

OR

- ME4シリーズストレージシステムに接続する前に、すべてのESXiホストで次のESX CLIコマンドを実行します。

```bash
esxcli system settings advanced set --int-value 0 --option /VMFS3 /HardwareAcceleratedLocking
```

1. VMware vCenter Serverにログインします。
2. Configureタブ上で、Storage > Storage Adaptersの順に選択します。
3. プラス(+)アイコンをクリックし、software iSCSI adapter>OKの順に選択します。アダプタが、使用可能ストレージアダプタのリストに追加されます。
4. 新しく追加されたiSCSIアダプタをクリックし、Targets>Addの順にクリックします。
5. ストレージコントローラAのiSCSIホストポートに割り当てられているiSCSI IPアドレスを入力し、OKをクリックします。
6. ストレージコントローラBのiSCSIホストポートに、ステップ4~5を繰り返します。
7. 同じサブネット上で複数のVMkernelsを使用する場合は、ネットワークポートバインディングを設定します。
 a) ソフトウェアiSCSIアダプタで、Network Port Bindingタブをクリックしてから、プラス(+)アイコンをクリックし、iSCSIアダプタにバインドする仮想ネットワークポートを追加します。
 b) このステップは、「VMware ESXi VMkernelの設定」の手順で作成されたiSCSIアダプタとVMkernelアダプタの間のリンクを確立するために必要になります。
 c) このステップは、「VMware ESXi VMkernelの設定」の手順で作成されたiSCSIアダプタとVMkernelアダプタの間のリンクを確立するために必要になります。

8. ISCSIに使用する各VMkernelsが別々のサブネット上にある場合は、このステップをスキップします。
9. 「VMware ESXi VMkernelの設定」の手順で作成したVMKernelアダプタを選択し、OKをクリックします。
10. Rescan of storage adaptersを選択します。
ホストの登録およびボリュームの作成とマッピング

ホストの登録、ボリュームの作成、ボリュームのマッピングを行うには、次の手順を実行します。

1. Storage Manager にログインします。
2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 - [ようこそ] 画面から、ホストセットアップをクリックします。
 - [Home] トピックから、Action > Host Setup の順にクリックします。
3. 提示された前提条件を満たしていることを確認して、Next をクリックします。
4. hostname を入力します。
5. 「ストレージシステムへのホストの接続」の手順におけるステップ 5 の情報を利用して、正しいイニシエータを識別し、設定中のホストの FC イニシエータを選択して、Next をクリックします。
6. 他のホストと一緒にホストをグループ化します。
 a) クラスタ構成の場合は、「ホストグループ」の設定を実行してクラスタ内のホストをグループ化します。
 - がクラスタ内の最初のホストである場合は、Create a new host group を選択して名前を入力し、Next をクリックします。
 - すでに存在するホストグループの一部にこのホストを加える場合は、Add to existing host group を選択し、ドロップダウンリストからグループを選択して、Next をクリックします。
 b) スタンドアロンホストの場合は、Do not group this host オプションを選択し、Next をクリックします。
7. [Attach volumes] ページで、ボリュームの名前とサイズを変更するオプションを使用します。そのボリュームのプールを選択して、ボリュームを追加または削除します。
8. [Summary] ページで、変更した内容を確認し、Configure Host をクリックします。
 - はいをクリックしてウィザードの [ホストの選択] ページに戻るか、いいえを選択してウィザードを閉じます。
 - 前に戻って設定を変更するには、前へをクリックします。

VMwareでのボリュームの再スキャンとデータストアの作成

ボリュームを再スキャンしてデータストアを作成するには、次の手順を実行します。

1. VMware vCenter Server にログインし、「ストレージシステムへの SAS ホストの接続」のステップ 5 で設定した ESXi ホストをクリックします。
2. [Configure] タブで Storage > Storage Adapters の順に選択し、ソフトウェア iSCSI アダプタ HBA を選択して、Rescan オプションをクリックします。
3. [Rescan Storage] ダイアログボックスで OK をクリックします。
 再スキャンが正常に完了すると、「ホストの登録およびボリュームの作成とマッピング」の項で示されたボリュームが表示されます。
4. ME4 シリーズストレージシステムから提示されたボリューム上に、VMware データストアファイルシステムを作成します。
 a) [Configure] タブで、Datastore > Create new datastore (+記号の付いた円柱) の順に選択します。
 b) [New datastore] 画面で、タイプとして VMFS を選択し、Next をクリックします。
 c) 新しいデータストアの名前を入力し、right volume/Lun を選択して、Next をクリックします。
 d) データストアの VMFS バージョンとして VMFS6 を選択し、OK をクリックします。
 e) [Partition configuration] ページで、表示されているデフォルト値を選択し、Next をクリックします。
 f) Finish をクリックして、新規データストアの作成を完了します。

VMware ESXi用の SAS ホストサーバ設定

以降の項では、VMware ESXi を実行している SAS ホストサーバの設定方法について説明します。

前提条件
- ME Storage Manager のガイド付きシステムおよびストレージセットアッププロセスを完了します。
- ストレージシステムにホストを接続する前に、このガイド内のケーブル接続図を参照してください。綿密に計画することにより、導入の成功が確保されます。
- 必要なバージョンの ESXi オペレーティングシステムをインストールして、ホスト上で設定します。
ストレージシステムへのSASホストの接続

ストレージシステムにSASホストを接続するには、次の手順を実行します。

1. サポートされている最新のファームウェアとドライバがすべてのHBAにインストールされていることを、Dell Supportポータルの説明に従って確認します。サポートされる標準のSAS HBAの一覧については、DellのWebサイトにある「Dell EMC ME4 Support Matrix」を参照してください。OEMの場合は、ハードウェアプロバイダーにお問い合わせください。

2. SASケーブル接続図に従ってホストサーバケーブル接続します。その際、スイッチを使用するか、ストレージシステムに直接接続します。

3. VMware vCenter Serverにログインし、新しく設定したESXiホストをデータセンターに追加します。

4. [設定]タブ上で、ストレージストレージアダプタの順に選択します。

5. 必要なSASストレージアダプタが表示されることを確認し、[Properties]に表示されたHBAのWWNを控えておきます。

メモ: SAS HBAには2つのポートがあります。ポート0のワールドワイドポート名(WWPN)はゼロで終了し、ポート1のWWPNは1で終了します。

ホストの登録およびポリュームの作成とマッピング

ホストの登録、ポリュームの作成、ポリュームのマッピングを行うには、次の手順を実行します。

1. ME Storage Managerにログインします。

2. 次のいずれかの方法でホストのセットアップウィザードにアクセスします。
 - [ようこそ]画面から、ホストセットアップをクリックします。
 - [Home]のトピックから、Action→HostSetupの順にクリックします。

3. 提示された前提条件を満たしていることを確認して、Nextをクリックします。

4. hostnameを入力します。

5. 設定対象ホストのSASイニシエータを選択して、Nextをクリックします。

6. ストレージシステムへのSASホストの接続手順のステップ5の情報を使用して、正しいSASイニシエータを特定します。

7. ホストをクラスタ化します。

 a) クラスタ構成の場合は、「ホストグループ」の設定を使用してクラスタ内のホストをグループ化します。
 - このホストがクラスタ内の最初のホストである場合は、Create a new host groupを選択して名前を入力し、Nextをクリックします。
 - すでに存在するホストグループにこのホストを追加する場合は、Add to existing host groupを選択し、ドロップダウンリストからグループを選択して、Nextをクリックします。

 b) サポートアドオンホストの場合は、Do not group this hostオプションを選択し、Nextをクリックします。

8. [Summary]ページで、変更した内容を確認し、ConfigureHostをクリックします。

 1. はいをクリックしてウィザードの[ホストの選択]ページに戻るか、いいえを選択してウィザードを閉じます。
 2. 前に戻って設定を変更するにはPreviousをクリックします。

SASポリュームでのマルチパスの有効化

SASポリュームでマルチパスを有効にするには、次の手順を実行します。

1. VMwarevCenter Serverにログインし、ESXiホストをクリックします。

2. [設定]タブ上で、ストレージストレージアダプタの順に選択します。

3. SAS HBAを選択して、Rescan Storageをクリックします。
 Rescan Storageダイアログボックスが開きます。

4. OKをクリックします。

5. 「ホストの登録およびポリュームの作成とマッピング」でESXiホストに追加されたDell EMCディスクを選択します。

6. 選択したディスクの下にあるPropertiesタブをクリックします。

7. EditMultipathingをクリックします。
 EditMultipathingPoliciesダイアログボックスが開きます。

8. Path selection policyドロップダウンリストからポリュームのマルチパスポリシーを選択し、OKをクリックします。
VMwareのポリュームの再スキャンとデータストアの作成
ポリュームを再スキャンしてデータストアを作成するには、次の手順を実行します。
1. VMware vCenter Serverにログインし、ESXiホストをクリックします。
2. [設定]タブ上で、ストレージストレージアダプタの順に選択します。
3. SAS HBAを選択して、Rescan Storageをクリックします。
4. OKをクリックします。
5. ME4シリーズポリュームにVMwareデータストアファイルシステムを作成します。
 a) [Actions]メニューで、Datastore > New datastoreの順に選択します。
 b) [New Datastore]画面で、タイプとしてVMFSを選択し、Nextをクリックします。
 c) データストアの名前を入力し、right volume/Lunを選択して、Nextをクリックします。
 d) データストアのVMFSバージョンとしてVMFS6を選択し、OKをクリックします。
 e) パーティション構成を選択して、Nextをクリックします。
 f) 終了をクリックします。

iSCSIポリュームでのマルチパスの有効化
iSCSIポリュームでマルチパスを有効にするには、次の手順を実行します。
1. VMware vCenter Serverにログインし、追加されたESXiホストをクリックします。
2. [Configure]タブ上で、Storage Devicesを選択します。
3. ストレージデバイスの再スキャンを実行します。
4. 「ホストの登録およびポリュームの作成とマッピング」の項目で作成したiSCSIディスク（Dell EMC iSCSIディスク）を選択し、画面の下にあるPropertiesタブを選択します。
5. 下方向にスクロールしてEdit Multipathingオプションを選択し、ドロップダウンリストからRound Robin (VMware)を選択します。
6. OKをクリックします。
7. Dell EMC PowerVault ME4シリーズストレージシステムからESXiホストに提示されるすべてのポリュームについて、ステップ4～6を繰り返します。

Citrix XenServerホスト
HBAまたはネットワークアダプタが取り付けられていること、サポートされている最新のBIOSがインストールされていることを確認します。
Dell EMC PowerVault ME4シリーズストレージシステムに接続されているCitrix XenServerホストでホストのセットアップを実行するには、https://docs.citrix.com/en-us/xenserverでCitrix XenServerのドキュメントを参照してください。
トラブルシューティングと問題解決

これらの手順は、初期設定時にハードウェアの正常なセットアップを確認する目的で使用されることのみを想定しています。本番データおよびI/Oを使用する設定済みシステムのトラブルシューティング手順としての使用は意図されていません。

トピック：
- サービスタグを確認する
- オペレーター（Ops）パネルのLED
- 初期スタートアップ時の問題

サービススタグを確認する

ME4 シリーズ ストレージ システムは固有のサービススタグおよびエクスプレス サービス コードで識別されます。

サービススタグおよびエクスプレス サービス コードは、システム前面で情報タグを引き出して確認できます。または、ストレージ システムのシャーシの背面に貼られたシールに情報が記載されている場合があります。この情報は、サポートお問い合わせの電話を適切な担当者に転送するために使用されます。

オペレーター（Ops）パネルのLED

ME4 シリーズ エンクロージャでは、シャーシ左側耳部のフランジに Ops（オペレーターズ）パネルが配置されています。この項では、2U および 5U エンクロージャの Ops パネルについて説明します。

2U エンクロージャ Ops パネル

エンクロージャ前面の、2U シャーシ右側耳部のフランジに、Ops パネルがあります。

Ops パネルはエンクロージャシャーシの一部ですが、オンサイトでリプレースすることはできません。

Ops パネルでは、下図および表 9. Ops パネルの機能—2U エンクロージャの前面パネルに示した機能が提供されます。

表 9. Ops パネルの機能—2U エンクロージャの前面パネル

<table>
<thead>
<tr>
<th>いいえ</th>
<th>インジケータ</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>システム電源</td>
<td>緑色に常時点灯: 少なくとも 1 台の PCM が電力を供給中
消灯: AC の有無にかかわらずシステムは稼働していない</td>
</tr>
<tr>
<td>2</td>
<td>ステータス/正常性</td>
<td>青色に常時点灯: システムの電源がオンで、コントローラーは準備完了の状態</td>
</tr>
</tbody>
</table>
いいえ。
インジケーター
ステータス
青色 (2 Hz) に点滅：エンクロージャ管理がビジー
橙色に常時点灯：モジュールに障害がある
橙色に点滅：論理障害（2秒オン、1秒オフ）
3 ユニット IDディスプレイ
緑色 (7セグメントディスプレイ：エンクロージャシーケンス)。
4 ID 青色に点滅 (0.25 Hz)：システム ID ロケータがアクティブ
消灯：正常ステータス

システム電源 LED (緑色)
システムの電源が利用可能な場合、LED が緑色に表示されます。システムが動作していない場合、LED が消灯します。

ステータス/正常性 LED (青色/橙色)
システムが通電されて正常に機能している場合、LED は常に青色に点灯します。エンクロージャ管理がビジー状態の場合（例：起動中またはファームウェア アップデートの実行中）、LED は青色に点滅します。LED は障害の原因となっているコンポーネントを特定するのに役立ちます。コントロール モジュール、IOM、または PCM 上の障害 LED に関連する可能性のあるシステム ハードウェア障害が発生している場合、LED は常に橙色に点灯します。論理障害が発生している場合、LED は橙色に点滅します。

ユニット IDディスプレイ (緑色)
UID はデュアルセグメントディスプレイで、ケーブル接続シーケンスにおけるエンクロージャの数値的な位置を示します。UID は、エンクロージャ ID とも呼ばれます。

ID LED (青色)
アクティブ化されているときは、ID LED が1秒オン1秒オフの間隔で点滅し、データセンター内のシャーシの位置を示します。ロケータ機能の有効化と無効化は、SES を使用して切り替えることができる。このボタンを押すと、LED の状態が切り替わります。

メモ: [Identity] ボタンを使用してエンクロージャ ID を設定することはできません。

5U エンクロージャーの Ops パネル
エンクロージャ前面の、5U シャーシ左側耳部のフランジに、Ops パネルがあります。
Ops パネルはエンクロージャ シャーシの一部ですが、オンサイトでリプレースすることはできません。
Ops パネルでは、下図および表 10. Ops パネルの機能 – 5U エンクロージャの前面パネルに示した機能が提供されます。

図 31. Ops パネルの LED —5U エンクロージャの前面パネル
ユニット ID ディスプレイ

UID はデュアルセグメントディスプレイで、ケーブル接続シーンにおけるエンクロージャの数値的な位置を示します。UID は、エンクロージャ ID とも呼ばれます。

メモ：コントローラのエンクロージャ ID は 0 です。

システム電源オン/スタンバイ LED（緑色/橙色）

LED が橙色になるのは、スタンバイ電源のみが使用可能な場合です（非動作時）。LED が緑色になるのは、システムの電源が使用可能な場合です（動作可能）。

モジュール障害 LED（黄橙色）

システムにハードウェア障害が発生すると、LED が橙色になります。モジュールの障害 LED は、障害の原因となっているコンポーネントを特定するために役立ちます。モジュールの障害 LED は、コントローラモジュール、IOM、PSU、FCM、DDIC、またはドロワーの障害 LED と関係することがあります。

論理ステータス LED（橙色）

この LED は、エンクロージャ管理システム以外の障害またはステータスの変化を知らせます。論理状態 LED は、コントローラモジュールまたは外部 HBA から始動される可能性があります。通常この表示はドロワー内での各ディスク位置の LED や DDIC に関連しており、影響を受ける DDIC の特定に役立ちます。

ドロワー障害 LED（橙色）

この LED は、ドロワー内でのディスク、ケーブル、またはサイドプレーンの障害を示します：上部（ドロワー 0）または下部（ドロワー 1）。

初期スタートアップ時の問題

以降の項では、初期起動の問題をトラブルシューティングする方法について説明します。

LED

LED の色はステータスを示すために、エンクロージャとそのコンポーネント全体で一貫して使用されます。

- 緑色：良好なまたは肯定的なことを示す
- 緑色/橙色の点滅：重大ではない状態
- 橙色：重大な障害
ホスト側接続トラブルシューティング 10Gbase-T および SAS ホストポート編

次の手順は、ホスト インターフェイスポートに外部コネクタを採用している ME4 シリーズ コントローラ エンクロージャに適用されます。
1. ストレージシステムへのすべてのI/Oを停止します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の 「Stopping I/O」を参照してください。
2. ホストアクティビティ LEDを確認します。
 アクティビティがある場合は、ストレージシステムにアクセスするすべてのアプリケーションを停止します。
3. キャッシュ ステータス LEDを確認して、コントローラにキャッシュされたデータが、ディスクドライブにフラッシュされたことを確認します。
 - 点灯 - ディスクに書き込まれたデータがまだキャッシュにあります。
 - 点滅 - キャッシュデータは、コンパクトフラッシュに書き込まれています。
 - 1/10秒光って9/10秒消灯 - キャッシュがスケーラによってリフレッシュされています。
 - オフ - キャッシュに何もしない(未書き込みのデータがない)。
4. ホストケーブルを抜き差しして損傷を点検します。
 ホストリンクのステータス LEDが点灯していますか？
 • はい - 状態を監視して断続的なエラーが存在しないことを確認します。障害が発生する場合は、接続部を掃除して、コネクタの汚れによってデータパスが阻害されていないことを確認します。
 • いいえ - 次の手順に進みます。
5. ホストケーブルを既知のリンクステータスが良好なポートに移します。
 この手順では、問題を外部データパス(ホストケーブルとホスト側デバイス)かコントローラモジュールポートに切り分ける。
 ホストリンクのステータス LEDが点灯していますか？
 • はい - ハードウェアHBA、コントローラモジュールを交換するか、ホスト側のケーブルを既知の良好なHBAに移します。
 • いいえ - 次の手順に進みます。
6. スイッチがある場合は、スイッチが正しく動作していることを確認します。可能であれば、別のポートでテストします。
7. HBAが完全に装着され、PCIスロットに電源が入っていれば、動作可能であることを確認します。
8. HBAを既知の良品と交換するか、ホスト側のケーブルを既知の良好なHBAに移します。
 ホストリンクのステータス LEDが点灯していますか？
 • はい - ハードウェアHBAに切り分けます。HBAを交換します。
 • いいえ - コントローラモジュールを交換する必要があります。
9. ホストケーブルを元のポートに戻します。
 ホストリンクのステータス LEDが点灯していますか？
 • はい - コントローラモジュールを交換します。
 • いいえ - コントローラモジュールポートサポートが故障しました。コントローラモジュールを交換します。
 コントローラモジュールの拡張ポート接続の障害切り分け

通常の動作中では、コントローラモジュールの拡張ポートがドライブエンクロージャに接続されている場合、拡張ポートステータス LEDが緑色になります。拡張ポート LEDが点灯している場合は、リンクがダウンしています。次的手順を使用して、障害を切り分けてください。

メモ：一度に複数のステップを実行しないでください。一度に複数の変数を変更すると、トラブルシューティングプロセスが複雑になる場合があります。
1. ストレージシステムのすべてのI/Oを停止します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の 「Stopping I/O」を参照してください。
2. ホストアクティビティLEDを確認します。
 - アクティビティがある場合は、ストレージシステムにアクセスするすべてのアプリケーションを停止します。
3. キャッシュステータス LED を確認して、コントローラにキャッシュされたデータがディスクドライブにフラッシュされたことを確認します。
 - 点灯 - ディスクに書き込まれたデータがまだキャッシュにあります。
 - 点滅 - キャッシュデータは、コンパクトフラッシュに書き込まれています。
 - 0/10 秒光って9/10秒消灯 - キャッシュがスーパーキャッシュタによってリフレッシュされています。
 - オフ - キャッシュに何もない (未書き込みのデータがない。)

4. 拡張ケーブルを抜き差しして損傷を点検します。

拡張ポートステータス LEDが点灯していますか？
 - はい - 状態を監視して断続的なエラーが存在しないことを確認します。障害が再び発生する場合は、接続ケーブルを削除して、コンテクトの汚れによってデータパスが阻害されていないことを確認します。
 - いいえ - 次の手順に進みます。

拡張ケーブルを既知のリンクステータスが良好なコントローラエンクロージャのポートに移します。

この手順によって、問題が拡張ケーブルにあるかコントローラモジュールの拡張ポートにあるか特定されます。

拡張ポートステータス LEDが点灯していますか？
 - はい - これで、拡張ケーブルが良好であることが判明します。ケーブルを元のポートに戻してください。拡張ポートステータス LEDが消灯した場合は、障害がコントローラモジュールポートにあることが特定されます。コントローラモジュールを交換してください。
 - いいえ - 次の手順に進みます。

6. 拡張ケーブルをコントローラエンクロージャの元のポートに戻します。

7. ドライブエンクロージャの拡張ケーブルを、ドライブエンクロージャの既存の良好な拡張ポートに移します。

拡張ポートステータス LEDが点灯していますか？
 - はい - 問題が拡張エンクロージャのポートにあることが特定されました。拡張モジュールを交換してください。
 - いいえ - 次の手順に進みます。

8. 良好であると判断しているケーブルに交換し、このケーブルが元のポートに関接されていることを確認します。

ホストリンクのステータス LEDが点灯していますか？
 - はい - 元のケーブルを交換します。障害は切り分けられました。
 - いいえ - コントローラモジュールを交換する必要がありました。

2U エンクロージャの LED

2U エンクロージャの LED を使用して、初期起動の問題のトラブルシューティングに役立ててください。

PCM LED (580 W)

通常の状態では、PCM OK LED は緑色に点灯します。

表 11. PCM LED ステータス

<table>
<thead>
<tr>
<th>PCM OK (緑色)</th>
<th>ファンの障害 (橙色)</th>
<th>AC の障害 (橙色)</th>
<th>DC の障害 (橙色)</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>オフ</td>
<td>オフ</td>
<td>オフ</td>
<td>オフ</td>
<td>すべての PCM に AC 電源なし</td>
</tr>
<tr>
<td>オフ</td>
<td>オフ</td>
<td>点灯</td>
<td>点灯</td>
<td>この PCM のみ AC 電源なし</td>
</tr>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>オフ</td>
<td>AC が存在、PCM が正しく動作中</td>
</tr>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>点灯</td>
<td>PCM ファンの速度が許容範囲内</td>
</tr>
<tr>
<td>オフ</td>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>PCM ファンに障害が発生</td>
</tr>
<tr>
<td>オフ</td>
<td>点滅</td>
<td>点滅</td>
<td>点滅</td>
<td>PCM 障害 (温度超過、電圧超過、電流超過)</td>
</tr>
<tr>
<td>オフ</td>
<td>点滅</td>
<td>点滅</td>
<td>点滅</td>
<td>PCM のファームウェアのダウンロードが進行中</td>
</tr>
</tbody>
</table>

トラブルシューティングと問題解決 67
Ops パネルの LED

Ops パネルには、すべてのモジュールのステータスが集約されて表示されます。「2U エンクロージャ Ops パネル」も参照してください。

表 12. Ops パネルの LED の状態

<table>
<thead>
<tr>
<th>システムの電源</th>
<th>モジュールの障害 (緑色)</th>
<th>ID (青色)</th>
<th>LED ディスプレイ</th>
<th>関連 LED/アラーム</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>X</td>
<td>5 V のスタンバイ電源あり、全体の電源が故障または切断している</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>点灯</td>
<td>点灯</td>
<td>点灯</td>
<td>Ops パネル電源オン (5 秒) テストの状態</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>X</td>
<td>電源オン、すべての機能が正常</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>点灯</td>
<td>X</td>
<td>X</td>
<td>すべての PCM 障害、ファン障害、温度超過または不足</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>点灯</td>
<td>X</td>
<td>X</td>
<td>いずれかの SBB モジュールの障害</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>点灯</td>
<td>X</td>
<td>X</td>
<td>エンクロージャの論理障害</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>Blink (点滅)</td>
<td>X</td>
<td>X</td>
<td>取り付けられた SBB モジュールのタイプが不明 (無効または混合) PC バス障害 (SBB 間通信)、EBOD VPD 構成エラー</td>
<td></td>
</tr>
<tr>
<td>点灯</td>
<td>Blink (点滅)</td>
<td>X</td>
<td>X</td>
<td>取り付けられた PCM のタイプが不明 (無効または混合) または PC バス障害 (PCM 通信)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Blink (点滅)</td>
<td>X</td>
<td></td>
<td>エンクロージャ ID または無効な ID を選択</td>
<td></td>
</tr>
</tbody>
</table>

X= 無視する

処置:

- Ops パネル モジュール障害 LED がオンの場合、エンクロージャの背面パネルのモジュール LED をチェックして、障害を CRU、接続、のいずれかまたはその両方かを検査します。
- 障害に関する固有の情報については、イベントログを調べて、推奨処置を実行します。
- コントローラモジュールまたは IOM CRU を取り付ける場合:
 - 「Dell EMC PowerVault ME シリーズ Storage System Owner’s Manual」に従って、コントローラモジュールまたは IOM を取り外して再インストールします。
 - エラーの場合はイベントログをチェックします。
- CRU の障害 LED がオンの場合、障害状態が検出されています。
- ME Storage Manager または CLI を使用して、ポートノード制御パネルからコントローラーを再起動します。
- 再起動しても障害が解決しない場合は、コントローラモジュールまたは IOM を取り外して再挿入します。
- 前記のアクションで問題が解決しない場合は、Dell EMC に連絡してお問い合わせください。

ディスクドライブのキャリアモジュール LED

各ドライブキャリアモジュールの前面にマウントされている緑色の LED と橙色の LED は、ディスクドライブのステータスを示します。

- 通常の動作では、緑色の LED が点灯し、ドライブが作動するときには点滅します。
- 通常の動作では、橙色の LED は点灯します。
- ドライブが存在しない場合は消灯しています。
- ドライブが作動している場合は点滅しています。
- ドライブに障害がある場合は点灯します。
図32. LED: ドライブキャリア LED (SFFおよびLFFモジュール)

5U エンクロージャの LED

5U エンクロージャの LED を使用して、初期起動の問題のトラブルシューティングに役立ててください。

メモ: 5U84 エンクロージャに電源が入ると、作動確認として、すべての LED が短時間点灯します。この動作は障害を示していないわけではないが、数秒経っても LED が点灯し続けている場合は、その限りではありません。

PSU LED

次の表では、PSU の LED のステータスについて説明します。

表13. PSU LED の状態

<table>
<thead>
<tr>
<th>CRU の故障 (橙色)</th>
<th>AC 電源なし (橙色)</th>
<th>緑色の AC 電源</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>オフ</td>
<td>いずれの PSU にも AC 電源なし</td>
</tr>
<tr>
<td>点滅</td>
<td>点滅</td>
<td>オフ</td>
<td>PSU のファームウェアをダウンロード中</td>
</tr>
<tr>
<td>オフ</td>
<td>オフ</td>
<td>点滅</td>
<td>AC 電源がなく、PSU はスタンバイです (他の PSU が電力供給中)</td>
</tr>
<tr>
<td>点滅</td>
<td>点滅</td>
<td>オフ</td>
<td>ファームウェアと PSU モジュールとの通信が失われました。</td>
</tr>
<tr>
<td>点滅</td>
<td>点滅</td>
<td>オフ</td>
<td>PSU に障害が発生しました。『Dell EMC PowerVault ME4 シリーズストレージシステム オーナーズマニュアル』の「PSU の交換」手順に従います。</td>
</tr>
</tbody>
</table>

ファン冷却モジュールの LED

ファン冷却モジュール (FCM) フェースプレートの LED の説明を、次の表に示します。

表14. FCM の LED の説明

<table>
<thead>
<tr>
<th>LED</th>
<th>ステータス/説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>モジュール OK</td>
<td>緑色の点灯は、FCM が正常に動作していることを示します。消灯はファンモジュールに障害が発生したことを示します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Replacing an FCM」の手順に従ってください。</td>
</tr>
<tr>
<td>ファン障害</td>
<td>橙色は、ファンモジュールに障害が発生したことを示します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Replacing an FCM」の手順に従ってください。</td>
</tr>
</tbody>
</table>
Ops パネルの LED

Ops パネルには、すべてのモジュールのステータスが集約されて表示されます。

表 15. Ops パネルの LED の説明

<table>
<thead>
<tr>
<th>LED</th>
<th>ステータス/説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユニット ID ディスプレイ</td>
<td>通常はエンクロージャの ID 番号を表示しますが、他の目的（たとえば、エンクロージャの位置を確認するための点滅）でも使用できます。</td>
</tr>
<tr>
<td>電源オン/スタンバイ</td>
<td>システムがスタンバイの場合は橙色に、システムに全電力が投入されている場合は緑色に点灯します。</td>
</tr>
<tr>
<td>モジュール障害</td>
<td>橙色は、コントローラモジュール、IOM、PSU、または FCM の障害を示します。ドロワーの LED をチェックしてディスク障害の表示の有無を確認してください。「ドロワー障害 LED(橙色)」も参照してください。</td>
</tr>
<tr>
<td>論理ステータス</td>
<td>橙色はファームウェア以外の障害を示します（通常はディスク、HBA、または内蔵/外付け RAID コントローラ）。ドロワーの LED をチェックしてディスク障害の表示の有無を確認してください。「ドロワー LED」も参照してください。</td>
</tr>
<tr>
<td>ドロワー 0 の障害</td>
<td>橙色は、ドロワー 0 のディスク、ケーブル、サイドプレーンのいずれかの障害を示します。障害の場合は、ドロワーを開き、DDIC をチェックします。</td>
</tr>
<tr>
<td>ドロワー 1 の障害</td>
<td>橙色は、ドロワー 1 のディスク、ケーブル、サイドプレーンのいずれかの障害を示します。障害の場合は、ドロワーを開き、DDIC をチェックします。</td>
</tr>
</tbody>
</table>

ドロワー LED

次の表でドロワーの LED について説明します。

表 16. ドロワーの LED の説明

<table>
<thead>
<tr>
<th>LED</th>
<th>ステータス/説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイドプレーン OK/電源良好</td>
<td>サイドプレーン カードが帯電中で電源の問題がない場合は緑色に点灯します。</td>
</tr>
<tr>
<td>ドロワー障害</td>
<td>ドロワー コンポーネントで障害が発生した場合は、橙色に点灯します。障害コンポーネントがディスクの場合、障害が発生した DDIC の LED が橙色に点灯します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual」の「Replacing a DDIC」の手順に従ってください。ディスクが正常な場合は、サービス プロバイダーに連絡して障害の原因を特定し、問題を解決してください。</td>
</tr>
<tr>
<td>論理障害</td>
<td>橙色（点灯）は、ディスク障害を示しています。橙色（点滅）は、1 台または複数のストレージシステムが、影響を受けた状態にあることを示しています。</td>
</tr>
<tr>
<td>ケーブル障害</td>
<td>橙色は、ドロワーとエンクロージャ背面とのケーブル接続端でエラーがあったことを示しています。問題を解決するには、サービス プロバイダーにお問い合わせください。</td>
</tr>
<tr>
<td>アクティビティ棒グラフ</td>
<td>セグメント点灯（I/O なし）から 6 セグメントすべての点灯（最大 I/O）までデータ I/O の量を表示します。</td>
</tr>
</tbody>
</table>

DDIC LED

DDIC は、図 7. DDIC 内の 3.5 インチ ディスク ドライブと図 8. ハイブリッド ドライプ キャリア アダプタを搭載した 3.5 インチ DDIC 内の 2.5 インチ ドライブに示すように、LFF 3.5 インチ ディスクと SFF 2.5 インチ ディスクをサポートします。下の図は、ディスクをドロワースロットに挿入するために合わせると表示される DDIC の上部のパネルを示します。

図 33. LED : DDIC - ドロワーの 5U エンクロージャ ディスク スロット
1. ラッチをスライド（左にスライド）
2. ラッチ ボタン（ロック位置で表示）
3. ドライブ障害 LED

表17. DDICのLEDの説明

<table>
<thead>
<tr>
<th>障害LED（橙色）</th>
<th>ステータス/説明*</th>
</tr>
</thead>
<tbody>
<tr>
<td>オフ</td>
<td>オフ（ディスクモジュール/エンクロージャ）</td>
</tr>
<tr>
<td>オフ</td>
<td>なし</td>
</tr>
<tr>
<td>点滅：1秒オン/1秒オフ</td>
<td>識別</td>
</tr>
<tr>
<td>すべてのリンクがダウン：オン</td>
<td>ドライブのリンク（PHYレーン）ダウン</td>
</tr>
<tr>
<td>点灯</td>
<td>障害（Leftover/障害発生/ロックアウト）</td>
</tr>
<tr>
<td>オフ</td>
<td>使用可能</td>
</tr>
<tr>
<td>オフ</td>
<td>ストレージシステム：初期化</td>
</tr>
<tr>
<td>オフ</td>
<td>ストレージシステム：耐故障性</td>
</tr>
<tr>
<td>オフ</td>
<td>ストレージシステム：縮退（重要ではない）</td>
</tr>
<tr>
<td>点滅：3秒オン/1秒オフ</td>
<td>ストレージシステム：縮退（重要）</td>
</tr>
<tr>
<td>オフ</td>
<td>ストレージシステム：隔離</td>
</tr>
<tr>
<td>点滅：3秒オン/1秒オフ</td>
<td>ストレージシステム：オフライン（分離隔離）</td>
</tr>
<tr>
<td>オフ</td>
<td>ストレージシステム：再構築</td>
</tr>
<tr>
<td>オフ</td>
<td>I/O処理（ホストまたは内部動作のいずれか）</td>
</tr>
</tbody>
</table>

*複数の条件が同時に発生している場合、LED状態は、前の表に示したような動作を行います。

各DDICにはドライブ障害 LEDが1つあります。ドライブ障害 LEDが橙色に点灯している場合は、ディスク ドライブの障害を示しています。ディスクに障害が発生した場合は、「Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual」の「Replacing a DDIC」の手順に従ってください。

コントローラー モジュールまたは IOM の LED

- コントローラー モジュールの LED の詳細については、コントローラモジュール LED を参照してください。
- 拡張モジュールの LED に関する情報については、「IOM LED」を参照してください。

温度センサー

エンクロージャとそのコンポーネント全体の温度センサーは、ストレージシステムの温度の正常性を監視します。臨界値の限界を超えると通知が発せられます。

モジュール LED

モジュール LED は、コントローラ モジュールおよび IOM に関する情報を提供します。

コントローラ モジュール LED

フェースプレートのコントローラ モジュール LED は、コントローラモジュールのステータスを監視するために使用します。

表18. コントローラ モジュール LED のステータス

<table>
<thead>
<tr>
<th>CRU OK（緑色）</th>
<th>CRUの障害（橙色）</th>
<th>外部ホストポートアクティビティ（緑色）</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>コントローラー モジュール OK</td>
<td></td>
</tr>
<tr>
<td>オフ</td>
<td>点灯</td>
<td>コントローラー モジュールの障害 - 「Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual」の「Replacing a controller module」を参照してください。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>外部ホストポート接続なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>外部ホストポート接続 - アクティビティなし</td>
<td></td>
</tr>
</tbody>
</table>

トラブルシューティングと問題解決 71
CRU OK (緑色) CRUの障害 (橙色) 外部ホストポートアクティビティ (緑色) 外部ホストポート接続 - アクティビティ

表19. IOM LEDの状態

<table>
<thead>
<tr>
<th>CRU OK (緑色)</th>
<th>CRUの障害 (橙色)</th>
<th>外部ホストポートアクティビティ (緑色)</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>コントローラー・モジュール OK</td>
<td></td>
</tr>
<tr>
<td>オフ</td>
<td>点灯</td>
<td>IOM モジュールの障害 — 「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Replacing an IOM」を参照してください。</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>外部ホストポート接続なし</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>HD mini-SAS ポート接続 - アクティビティなし</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>HD mini-SAS ポート接続 - アクティビティ</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>EBOD VPD エラー</td>
<td></td>
</tr>
</tbody>
</table>

処理:
- CRU OK LED が点滅している場合は、システムが動作するまで待機します。
- コントローラー モジュールの電源が入っているのに CRU OK LED が消灯している場合は、モジュールが故障しています。
- コントローラー モジュールがしっかり挿入されて正しくラッチされていることと、エンクロージャの電源がオンになっていることを確認します。
- イベントログを調べて、障害に関する固有の情報を確認します。
- CRU の障害 LED がオンの場合は、障害状態が検出されています。
- ME Storage Manager または CLI を使用して、パートナーコントローラー モジュールからこのコントローラー モジュールを再起動します。
- 再起動しても障害が解決しない場合は、コントローラー モジュールを取り外して再挿入します。
- 上記のアクションで問題が解決しない場合は、サプライヤーに連絡してお問い合わせください。コントローラー モジュールの交換が必要になる場合があります。

IOM LED

フェースプレートの IOM LED は、IOM のステータスを監視するために使用します。

<table>
<thead>
<tr>
<th>CRU OK (緑色)</th>
<th>CRUの障害 (橙色)</th>
<th>外部ホストポートアクティビティ (緑色)</th>
<th>ステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>点灯</td>
<td>オフ</td>
<td>コントローラー・モジュール OK</td>
<td></td>
</tr>
<tr>
<td>オフ</td>
<td>点灯</td>
<td>IOM モジュールの障害 — 「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Replacing an IOM」を参照してください。</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>外部ホストポート接続なし</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>HD mini-SAS ポート接続 - アクティビティなし</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>HD mini-SAS ポート接続 - アクティビティ</td>
<td></td>
</tr>
<tr>
<td>点滅</td>
<td></td>
<td>EBOD VPD エラー</td>
<td></td>
</tr>
</tbody>
</table>

処理:
- CRU OK LED が消灯していて、IOM の電源が入っている場合は、モジュールが故障しています。
- IOM がしっかり挿入されて正しくラッチされていることと、エンクロージャの電源がオンになっていることを確認します。
- イベントログを調べて、障害に関する固有の情報を確認します。
- CRU の障害 LED がオンの場合は、障害状態が検出されています。
- ME Storage Manager または CLI を使用して、この IOM を再起動します。
- 再起動しても障害が解決しない場合は、IOM を取り外して再挿入します。
- 上記のアクションで問題が解決しない場合は、サプライヤーに連絡してお問い合わせください。IOM の交換が必要になる場合があります。

2U エンクロージャのトラブルシューティング

2U エンクロージャシステムで発生する可能性のある一般的な問題。

Ops パネルのモジュール障害 LED (図30. Ops パネルの LED—2U エンクロージャの前面パネルを参照) が橙色に点灯すると、次の表に記載した問題関連の障害があることが示されます。

メモ: アラームはすべて、SES 経由でも通知を行います。
表 20. 2U のアラームの状態

<table>
<thead>
<tr>
<th>ステータス</th>
<th>重大度</th>
<th>アラーム</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM アラーム - 単一 PCM の DC 電源の損失</td>
<td>障害 - 冗長性の喪失</td>
<td>S1</td>
</tr>
<tr>
<td>PCM ファン障害</td>
<td>障害 - 冗長性の喪失</td>
<td>S1</td>
</tr>
<tr>
<td>SBB モジュールでの PCM 障害検出</td>
<td>障害</td>
<td>S1</td>
</tr>
<tr>
<td>PCM が取り外された</td>
<td>構成エラー</td>
<td>なし</td>
</tr>
<tr>
<td>エンクロージャ構成エラー（VPD）</td>
<td>障害 - 重要</td>
<td>S1</td>
</tr>
<tr>
<td>低警告温度アラート</td>
<td>警告</td>
<td>S1</td>
</tr>
<tr>
<td>高警告温度アラート</td>
<td>警告</td>
<td>S1</td>
</tr>
<tr>
<td>温度超過アラーム</td>
<td>障害 - 重要</td>
<td>S4</td>
</tr>
<tr>
<td>PIC サブ障害</td>
<td>障害 - 冗長性の喪失</td>
<td>S1</td>
</tr>
<tr>
<td>Ops パネル通信エラー（PIC）</td>
<td>障害 - 重要</td>
<td>S1</td>
</tr>
<tr>
<td>RAID エラー</td>
<td>障害 - 重要</td>
<td>S1</td>
</tr>
<tr>
<td>SBB インタフェース モジュール障害</td>
<td>障害 - 重要</td>
<td>S1</td>
</tr>
<tr>
<td>SBB インタフェース モジュールが取り外された</td>
<td>警告</td>
<td>なし</td>
</tr>
<tr>
<td>ドライプ電力の制御障害</td>
<td>警告 - ディスク電源の損失なし</td>
<td>S1</td>
</tr>
<tr>
<td>ドライプ電力の制御障害</td>
<td>障害 - 重要 - ディスク電源の損失</td>
<td>S1</td>
</tr>
<tr>
<td>ドライプが取り外された</td>
<td>警告</td>
<td>なし</td>
</tr>
<tr>
<td>使用可能な電力の不足</td>
<td>警告</td>
<td>なし</td>
</tr>
</tbody>
</table>

モジュール交換の詳細については、「Dell EMC PowerVault ME4 シリーズ Storage System Owner's Manual」を参照してください。

メモ: ME Storage Manager を使用して、ストレージシステムのイベントログを監視してエンクロージャ関連イベントの情報を確認し、必要な推奨アクションを判断してください。

PCM 障害

<table>
<thead>
<tr>
<th>現象</th>
<th>原因</th>
<th>推奨処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ops パネルのモジュール障害 LED は橙色 1</td>
<td>何らかの電源障害</td>
<td>AC 主電源の PCM への接続が有効かを確認する</td>
</tr>
<tr>
<td>ファン障害 LED が PCM で点灯 2</td>
<td>ファン障害です</td>
<td>PCM を交換する</td>
</tr>
</tbody>
</table>

1. Ops パネルの LED の外観については、2U エンクロージャ Ops パネルを参照してください。
2. PCM LED の外観については、PCM LED (580 W) を参照してください。

温度の監視および制御

ストレージ エンクロージャは広範囲な温度モニタリングを使用して、コンポーネントの温度が低く保たれていることを確認するとともに音響ノイズも最小化するために、いくつかの処理を行います。エアフローは、エンクロージャの前面から背面に流れます。

メモ: この現象は障害状態ではありません。

1. エンクロージャの前面または背面のいずれかに、エアフローを制限するものがいかが確認します。最小間隔として、前面は 25 mm (1 インチ)、背面は 50 mm (2 インチ)を確保することを推奨します。
2. ダストの堆積による制限が生じていないかを確認します。必要に応じてクリーニングをしてください。
3. 過熱された空気が後方から前方へ逆流に再循環されていないかを確認します。完全に密閉されたラック内でのエンクロージャの使用は推奨されません。

トラブルシューティングと問題解決 73
現象	原因	推奨処置
1. | メモ：閾値は、取り付けたディスクと電源装置の数によって変わります。 | 4. すべてのダミー・モジュールが所定の位置にあることを確認します。
5. 周囲温度を下げます。

温度アラーム

<table>
<thead>
<tr>
<th>現象</th>
<th>原因</th>
<th>推奨処置</th>
</tr>
</thead>
</table>
| 1. Opsパネル・モジュールの障害LEDが橙色である。 | 内部温度が、エンクロージャに事前設定されたしきい値を超えてています。 | 1. その場所の周囲温度が許容範囲内にあることを確認します。「Dell EMC PowerVault ME4シリーズStorage System Owner's Manual」の技術仕様を参照してください。
2. エンクロージャの前面または背面のいずれかに、エアーフローを制限するものがないかを確認します。最小間隔として、前面は25mm（1インチ）、背面は50mm（2インチ）を確保することを推奨します。
3. ダストの堆積による制限が生じていないかを確認します。必要に応じてクリーニングをしてください。
4. 過熱された空気が後方から前方へ過剰に再循環されていないかを確認します。完全に密閉されたラック内でのエンクロージャの使用は推奨されません。
5. 可能な場合は、エンクロージャをシャットダウンして、問題を調査してから作業を続行します。 |

5U エンクロージャのトラブルシューティング

5Uエンクロージャシステムで発生する可能性のある一般的な問題。

Opsパネルのモジュール障害LED(図31. 5Uエンクロージャの前面パネルを参照)が橙色に点灯すると、次の表に記載した問題関連の障害があることが示されます。

メモ：アラームはすべて、SES経由でも通知を行います。

表21. 5Uアラームの状態

<table>
<thead>
<tr>
<th>ステータス</th>
<th>重大度</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSUアラート – 単一PSUのDC電源の喪失</td>
<td>障害 - 冗長性の喪失</td>
</tr>
<tr>
<td>冷却モジュールのファンの障害</td>
<td>障害 - 冗長性の喪失</td>
</tr>
<tr>
<td>SBB I/OモジュールのPSU障害検出</td>
<td>障害</td>
</tr>
<tr>
<td>PSUの取り外し</td>
<td>構成エラー</td>
</tr>
<tr>
<td>エンクロージャ構成エラー（VPD）</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>低温警告</td>
<td>警告</td>
</tr>
<tr>
<td>高温警告</td>
<td>警告</td>
</tr>
<tr>
<td>温度超過アラーム</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>温度低下アラーム</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>I2Cバス障害</td>
<td>障害 - 冗長性の喪失</td>
</tr>
<tr>
<td>Opsパネル通信エラー (I2C)</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>RAIDエラー</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>SBB I/Oモジュール障害</td>
<td>障害 - 重要</td>
</tr>
<tr>
<td>SBB I/Oモジュールの取り外し</td>
<td>警告</td>
</tr>
<tr>
<td>ドライブ電力の制御障害</td>
<td>障害 - 重要 - ドライブ電源の喪失</td>
</tr>
<tr>
<td>ドライブ電力の制御障害</td>
<td>障害 - 重大 - ドライブ電源の喪失</td>
</tr>
</tbody>
</table>
障害の切り分け方法

ME4 シリーズストレージシステムでは、障害を切り分ける多くの方法が提供されます。この項では、ストレージシステム内の障害の発見と、影響を受けた関連 CRU の特定に使用される、基本的な方法を説明します。

ガイド付きセットアップの使用に記載されているように、ハードウェアの設置完了後、ME Storage Manager を使用して、システム設定およびプロビジョニングします。設定した重大度以上の問題が発生した場合には通知が送られるようイベント通知を設定して有効化します。詳細については、「Dell EMC PowerVault ME4 シリーズストレージシステムのトラブルシューティング」を参照してください。

イベント通知を受信したら、通知メッセージに示された推奨アクションに従って、問題を解決してください。

障害の切り分け方法の基本手順

- 障害情報の収集の説明に従って、システム LED などを利用して、障害情報を収集します。
- 障害の発生箇所の決定の説明に従って、システムの障害発生箇所を特定してください。
- イベントログの確認の説明に従って、イベントログを確認します。
- 必要な場合は、障害の切り分けの説明に従って、障害をデタペースコンポーネントまたは構成に切り分けます。

レプリケーション機能の使用を有効化してボリュームをリプリケートするようにシステムをケーブル接続することは、システムの初期インストールに関して、もう一つの重要な障害切り分けの検討をすることです。初期セットアップ中のトラブルシューティングの詳細については、ホストポートとレプリケーションおよびレプリケーション障害の分離を参照してください。

基本手順の実行に利用可能なオプション

障害の切り分けおよびトラブルシューティングの手順を実行する際は、お使いのサイト環境に最適したオプションを選択してください。

あるオプションを使用することでそれ以外のオプションが使用不能になるわけではないのであればなりません。ME Storage Manager を使用して、システムの正常性アイコンを確認したり、問題のあるコンポーネントを調べたりすることができます。問題が検出された場合は、ME Storage Manager を使用して問題のあった各コンポーネントを特定してください。コンポーネントの [Recommendation] フィールドのアクションに従って問題を解決してください。

ME Storage Manager の使用

ME Storage Manager は、正常性アイコンを使用して、システムとそのコンポーネントのステータス（OK、縮退、障害、不明）を表示します。ME Storage Manager によって、システムとそのコンポーネントの正常性を監視できます。どこかのコンポーネントに問題があると、システムの正常性は縮退状態、障害状態、不明状態のいずれかとなります。ME Storage Manager を使用して、問題のある各コンポーネントを特定してください。コンポーネントの [Recommendation] フィールドのアクションに従って問題を解決してください。
ME Storage Manager を使用する代わりに、show system CLI コマンドを実行することでも、システムとそのコンポーネントの正常性を表示できます。どこかのコンポーネントに問題があると、システムの正常性が縮退状態、障害状態、不明状態のいずれかとなり、そのコンポーネントは [Unhealthy Components] として一覧表示されます。コンポーネントの [Health Recommendation] フィールドの推奨アクションに従って問題を解決してください。

イベント通知の監視

イベント通知を設定して有効化すると、イベントログを表示してシステムとそのコンポーネントの正常性を監視できるようになります。どこかのコンポーネントに問題があると、システムの正常性が縮退状態、障害状態、不明状態のいずれかとなり、そのコンポーネントは [Unhealthy Components] として一覧表示されます。コンポーネントの [Health Recommendation] フィールドの推奨アクションに従って問題を解決してください。

基本的な手順の実行

障害切り分け方法から成る基本的な手順を実行する際には、前項で説明した利用可能なオプションをどれでも使用できます。

基本的な手順の実行

障害切り分け方法から成る基本的な手順を実行する際には、前項で説明した利用可能なオプションをどれでも使用できます。

基本的な手順の実行

障害切り分け方法から成る基本的な手順を実行する際には、前項で説明した利用可能なオプションをどれでも使用できます。

基本的な手順の実行

障害切り分け方法から成る基本的な手順を実行する際には、前項で説明した利用可能なオプションをどれでも使用できます。
障害の切り分け

時には、障害の切り分けが必要になる場合があります。データパスは、多くのコンポーネントから構成されているため、切り分け作業が必要になります。たとえば、ホスト側のデータエラーが発生した場合、その原因は、データパス内のコンポーネント、つまり、コントローラ、ケーブル、データホストのいずれかにある可能性があります。

エンクロージャが初期化されない場合

すべてのエンクロージャを初期化するには、最大2分かかる場合があります。

エンクロージャが初期化されない場合:
- 再スキャンを実行する
- システムの電源サイクルを行う
- 電源コードが正しく接続されていることを確認し、それが接続されている電源ソースをチェックする
- エラーのイベントログをチェックする

エンクロージャIDの修正

拡張エンクロージャが接続されたシステムを取り付ける場合、エンクロージャIDが、物理的なケーブル接続順序と一致しないことがあります。この問題は、かつて別の構成のエンクロージャに接続されていたコントローラが以前のエンクロージャIDを保持しようと発生します。

メモ: 拡張エンクロージャIDの順序変更は、デュアルコントローラー・モードのみ適用されます。コントローラの障害によりコントローラが1台しか使用できない場合は、手動で再スキャンしても、拡張エンクロージャIDの順序変更は行われません。

- ME Storage Managerを使用して再スキャンを実行するには、
 a) 両方のコントローラーが正常に動作していることを確認します。
 b) [System]システムタブで、Actionをクリックし、Rescan Disk Channelsを選択します。
- CLIを使用して再スキャンを実行するには、次のコマンドを入力します。
 rescan

ホストI/O

ディスクドライブおよび接続の障害のトラブルシューティングを行うときには、データ保護のための予防措置として、影響を受けているディスクグループに対するすべてのホストからのI/Oを停止します。

データのバックドップを定期的なスケジュールで実行すると、データ保護のための追加の予防措置として役立ちます。『Dell EMC PowerVault ME4 シリーズStorage System Owner's Manual』の「Stopping I/O」を参照してください。

ハードウェア障害の対処

故障したモジュールを取り外す前に、同じタイプの交換用モジュールがあることを確認します。『Dell EMC PowerVault ME4 シリーズStorage System Owner's Manual』の「Module removal and replacement」を参照してください。

メモ: エンクロージャシステムに電源が入っている状態でいずれかのモジュールを取り外した場合は、直ちに交換してくださ。

メモ: 「電気的不安全性」に記載されているように、モジュールとコンポーネントを扱う際には、適切な/従来のESDに関する安全上の注意事項に従ってください。ミッドプレーンコンポーネント、モジュールコネクタ、リード線、ピン、露出している回路との接触を避けてください。
この手順では、技術者ができるという場合には、次の手順を使用します。この手順には、計画的なダウンタイムが必要となります。

メモ：一度に複数のステップを実行しないでください。一度に複数の変数を変更すると、トラブルシューティングプロセスが複雑になる場合があります。

ホスト側接続のトラブルシューティング CNCポート編

下記の手順は、8/16 Gb/s FC、または10 GbE iSCSIホストインターフェイスポートにスモールフォームファクタープラグ可能(SFP+)トランシーバコネクタを備えたコントローラエンクロージャに適用されます。

この手順では、SFP+ transceiver and host cableを使用して、I/Oまたはイベントログに使用されるCNCポートをサポートする認定SFP+トランシーバを参照します。

メモ：パフォーマンス問題の診断がうまくいかない場合は、パフォーマンスが向上するか調べるために、一度に1個のSFP+トランシーバを取り換えることを検討してください。

1. **ストレージシステムへのすべてのI/Oを停止します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Stopping I/O」を参照してください。**

2. **ホストリンクステータス/リンクアクティビティLEDを確認します。アクティビティがある場合は、ストレージシステムにアクセスするすべてのアプリケーションを停止します。**

3. **キャッシュステータスLEDを確認して、コントローラにキャッシュされたデータが、ディスクドライブにフラッシュされたことを確認します。**
 - 点灯 - ディスクに書き込まれたデータがまだキャッシュにあります。
 - 点滅 - キャッシュデータは、コントローラモジュールのコンパクトフラッシュに書き込まれています。
 - 1/10秒光って9/10秒消灯 - キャッシュがスイッチによってリフレッシュされています。
 - オフ - キャッシュに何もない(未書き込みのデータがない)。

4. **SFP+トランシーバおよびホストケーブルを取り外し、損傷を点検します。**

5. **SFP+トランシーバおよびホストケーブルをリセットします。**

6. **リンクステータスが良好であると判断しているポートに、SFP+トランシーバおよびホストケーブルを移します。**

 この手順によって、問題が外部ポート(SFP+トランシーバ、ホストケーブル、ホスト側デバイス)にあるかをコントローラモジュールポートのあるかが特定されます。

 ホストリンクのステータス/リンクアクティビティLEDは点灯していますか？
 - はい - 状態を監視して断続的なエラーが存在しないことを確認します。障害が再発する場合は、接続部を掃除して、コネクタの汚れによってデータバスが障害されていないことを確認します。
 - いいえ - 次の手順に進みます。

7. **リンクステータスが良好であると判断しているポートに、SFP+トランシーバおよびホストケーブルを交換します。**

8. **SFP+トランシーバを既知の良品と交換します。**

 ホストリンクのステータス/リンクアクティビティLEDは点灯していますか？
 - はい - 障害がSFP+トランシーバにあることが特定されました。SFP+トランシーバをリプレースしてください。
 - いいえ - 次の手順に進みます。

9. **スイッチがある場合は、スイッチが正しく動作していることを確認します。可能であれば、別のポートでテストします。**

10. **HBAが完全に接続され、PCIスロットに電源が入っていて、動作可能であることを確認します。**

11. **HBAを既知の良品とリプレースするか、ホスト側のケーブルとSFP+トランシーバを既知の良好なHBAに移します。**

 ホストリンクのステータス/リンクアクティビティLEDは点灯していますか？
 - はい - 障害をHBAに切り分けました。HBAを交換します。
 - いいえ - コントローラモジュールを交換する必要がありそうです。

12. **ケーブルおよびSFP+トランシーバを元のポートに戻します。**
ホストリンクのステータス/リンクアクティビティLEDは点灯していますか？

はい - しばらく接続を監視してください。問題は断続的に起きている可能性があり、これによって、SFP+トランシーバ、ケーブル、およびHBAの損傷を併発する場合があります。

なし - コントローラモジュールポートが故障しました。コントローラモジュールを交換します。

ホスト側接続トラブルシューティング 10Gbase-T および SAS ホストポート編

次の手順は、ホストインタフェイスポートで外部コネクタを使用しているME4シリーズコントローラーエンクロージャに適用されます。

iSCSIホストポートでは外付けコネクタに10Gbase-Tコネクタが含まれ、HDミニSASホストポートでは12Gb SFF-8644コネクタが含まれます。

1. ストレージシステムへのすべてのI/Oを停止します。「Dell EMC PowerVault ME4シリーズStorage System Owner’s Manual」の「Stopping I/O」を参照してください。

2. ホストアクティビティLEDを確認します。
アクティビティがある場合は、ストレージシステムにアクセスするすべてのアプリケーションを停止します。

3. キャッシュステータスLEDを確認して、コントローラにキャッシュされたデータが、ディスクリドライブにフラッシュされたことを確認します。

 • 点灯 - ディスクに書き込まれたデータがまだキャッシュにあります。
 • 点滅 - キャッシュデータは、コントローラモジュールのコンパクトフラッシュに書き込まれています。
 • 1/10秒光って9/10秒消灯 - キャッシュがスーパーキャッシュによってリフレッシュされています。
 • オフ - キャッシュに何も(未書き込みのデータがない)。

4. ホストケーブルを取り外して損傷を点検します。

5. ホストケーブルをリシートします。

 ホストリンクのステータスLEDが点灯していますか？

 • はい - 状態を監視して断続的なエラーが存在しないことを確認します。障害が再び発生する場合は、接続部を掃除して、コネクタの汚れによってデータパスが阻害されていないことを確認します。
 • いいえ - 次の手順に進みます。

6. ホストケーブルを既知のリンクステータスが良好なポートに移します。

 この手順では、問題を外部データパス(ホストケーブルとホスト側デバイス)かコントローラモジュールポートに切り分けます。

 ホストリンクのステータスLEDが点灯していますか？

 • はい - ホストケーブル、ホスト側デバイスが正しく機能していることが分かっています。ケーブルを元のポートに戻します。リンクステータスLEDが消灯のままの場合は、障害をコントローラモジュールポートに切り分けます。コントローラモジュールを交換します。
 • いいえ - 次の手順に進みます。

7. スイッチがある場合は、スイッチが正しく動作していることを確認します。可能であれば、別のポートでテストします。

8. HBAが完全に装着され、PCIスロットに電源が入っていて、動作可能であることを確認します。

9. HBAを既知の良品と交換するか、ホスト側のケーブルを既知の良好なHBAに移します。

 ホストリンクのステータスLEDが点灯していますか？

 • はい - 障害をHBAに切り分けました。HBAを交換します。
 • なし - コントローラモジュールを交換する必要がありそうです。

10. ホストケーブルを元のポートに戻します。

 ホストリンクのステータスLEDが点灯していますか？

 • はい - 一定期間接続を監視します。問題が断続的に起きている可能性があり、これによってケーブルとHBAの損傷を併発する場合があります。
 • なし - コントローラモジュールポートが故障しました。コントローラモジュールを交換します。

コントローラモジュールの拡張ポート接続の障害切り分け

通常の運用中は、コントローラモジュール拡張ポートが拡張エンクロージャに接続されていると拡張ポートのステータスLEDが緑色になります。拡張ポートのLEDが消灯している場合は、リンクがダウンしています。

障害の因子を特定するには、次の手順を実行します。この手順には、計画的なダウンタイムが必要となります。

トラブルシューティングと問題解決 79
メモ:一度に複数のステップを実行しないでください。一度に複数の変数を変更すると、トラブルシューティングプロセスが複雑になる場合があります。

1. ストレージシステムへのすべてのI/Oを停止します。「Dell EMC PowerVault ME4 シリーズ Storage System Owner’s Manual」の「Stopping I/O」を参照してください。

2. ホストアクティビティ LEDを確認します。

3. キャッシュステータス LEDを確認して、コントローラにキャッシュされたデータが、ディスクドライブにフラッシュされたことを確認します。
 - 点灯 - ディスクに書き込まれたデータがまだキャッシュにあります。
 - 点滅 - キャッシュデータは、コントローラモジュールのコンパクトフラッシュに書き込まれています。
 - 1/10秒光って9/10秒消灯 - キャッシュがスーパーキャッシュによってリフレッシュされています。
 - オフ - キャッシュに何もない（未書き込みのデータがない）。

4. 拡張ケーブルを取り外して損傷を点検します。

5. 拡張ケーブルをリシートします。

6. 拡張ポートステータス LEDが点灯していますか？
 - はい - 状態を監視して断続的なエラーが存在しないことを確認します。障害が再び発生する場合は、接続部を掃除して、コネクタの汚れによってデータバスが障害されていないことを確認します。
 - いいえ - 次の手順に進みます。

7. 拡張ケーブルの拡張エンクロージャの元のポートに戻します。

8. 拡張エンクロージャの拡張ケーブルを、良好であることがわかった拡張エンクロージャ上の拡張ポートに移します。

9. ホストリンクのステータス LEDが点灯していますか？
 - はい - 問題が拡張エンクロージャのポートにあることが特定されました。拡張モジュールのIOMをリプレースしてください。
 - いいえ - 次の手順に進みます。

80 トラブルシューティングと問題解決
レプリケーションのためのケーブル接続

2台のストレージシステムの接続によるボリュームのレプリケート

レプリケーション機能では、ブロックレベルのデータについて、プライマリーシステムのボリュームからセカンダリーシステムのボリュームへの非同期レプリケーションが実行されます。

レプリケーションによって、プライマリーボリュームの内部スナップショットが作成され、前回のレプリケーション以降のデータ変更が、FC または iSCSI リンクを使用してセカンダリーシステムにコピーされます。

関連する2台の標準ボリュームから1台のレプリケーションセットが形成されますが、サーバーアクセス用にマッピングできるのはプライマリーボリューム（データのソース）だけです。どちらのシステムもスイッチを介して同一のファブリックまたはネットワーク（直接接続なし）に接続する必要があります。レプリケーションセットにアクセスするサーバは、プライマリーシステムに接続されます。プライマリーシステムがオフラインになった場合、接続されたサーバは、セカンダリーシステムからのレプリケーションデータにアクセスできます。

システムをケーブル接続することにより、同じネットワーク上または異なるネットワーク上の CNC ベースおよび 10Gbase-T 系統を使用したレプリケーションをサポートすることができます。

メモ：SAS システムは、レプリケーションをサポートしていません。

お使いのシステムの物理的接続を検討する際には、重要ないくつかのポイントに留意してください。

- 双岐システムが同じロケーションにあるかリモートにあるかにかかわらず、システム間のコントローラの接続が確立されている必要があります。
- 認定されたコンソールリモート コントローラオプションを、ホスト I/O とレプリケーションのいずれかまたは両方に使用することができます。
- ストレージシステムは、レプリケーション用ポートの特定の割り当ては提供しません。ただしこのような設定は、iSCSI 用の仮想 LAN と FC 用のゾーンを使用するか、物理的に分かれたインフラストラクチャーを使用することで、実現できます。
- リモートレプリケーションの場合、レプリケーションに割り当てられたすべてのポートがクリエイティブ接続 CLI コマンドを使用してレプリケーションシステムと通信可能であることを確認してください。詳細については、「ME4 シリーズ Storage System CLI Reference Guide」を参照してください。
- I/O 需要は上下するので、システムがポート間で負荷を分散できるように、十分な数のレプリケーション用ポートを用意してください。レプリケートされたボリュームの一部をコントローラ A が、レプリケートされたその他のボリュームをコントローラ B が所有している場合は、各コントローラモジュールで少なくとも1基のポートをレプリケーション用に有効化してください。レプリケーショントラフィックの負荷によっては、コントローラモジュール1台につき複数のポートの有効化が必要になる場合があります。
- システムセキュリティーの観点から、コントローラーモジュールのネットワークポートは、外部ネットワーク接続に対して必要に露出させていただくと。

概念的なケーブル接続の例が、同じネットワークでのケーブル接続と異なるネットワークに関連したケーブル接続について解説してあります。

メモ：
コントローラモジュールのファームウェアは、レプリケーションに使用されるすべてのシステムで互換性がなければなりません。

ホストポートとレプリケーション

ME4 シリーズストレージシステムコントローラモジュールでは、認定された10Gbase-T コネクタまたは CNC ベースのポートを、レプリケーション用に使用できます。

CNC ポートは、認定された同一タイプの SFP+トランシーバを使用する必要があります。または、異なるインターフェイスブロットコールをサポートする認定済み SFP+トランシーバを組み合わせて使用することができます。異なるブロトコールの組み合わせを使用するには、ホストポート0および1でFCを使用するよう設定し、ポート2および3でiSCSIを使用するよう設定します。FCポートとiSCSIポートを使用して、ホストI/Oとレプリケーションのどちらかまたはその両方を実行できます。
メモ: ME4 シリーズ 5U84 エンクロージャは、デュアルコントローラ構成のみをサポートします。ME4 シリーズ 2U コントローラエンクロージャは、シングルコントローラおよびデュアルコントローラ構成をサポートします。

- バートナーコントローラモジュールに障害が発生するとストレージシステムがフェールオーバーし、冗長性が回復されるまで単一のコントローラモジュールで実行されます。
- デュアルコントローラモジュール構成の場合は、各スロットにコントローラモジュールを取り付けて、動作中のエンクロージャ内でのエアフローを十分に確保する必要があります。シングルコントローラモジュール構成の場合は、1つのコントローラモジュールをスロット A に取り付け、コントローラモジュールダミーをスロット B に取り付ける必要があります。

レプリケーションのためのシングルコントローラモジュール構成

レプリケーション用シングルコントローラモジュールを備えた 2 個の ME4 シリーズ コントローラ エンクロージャのケーブル接続。

複数のサーバ、複数のスイッチ、1つのネットワーク

次の図は、I/O とレプリケーションが同一ネットワーク上で行われる 2 個のコントローラエンクロージャの背面パネルを示しています。

図 34. レプリケーション用に 2 台のストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワーク

1. 2U コントローラーエンクロージャ
2. 2 台のスイッチ (I/O)
3. ホストサーバへの接続
4. スイッチ (レプリケーション)

最適な保護を実現するには、ホスト I/O とレプリケーション用に複数のスイッチを使用します。

- 左側のストレージエンクロージャのコントローラモジュールから左側のスイッチに、2つのポートを接続します。
- 右側のストレージエンクロージャのコントローラモジュールから右側のスイッチに、2つのポートを接続します。
- 各エンクロージャのコントローラモジュールから中央のスイッチに、2つのポートを接続します。

複数のスイッチを使用することで、スイッチ 1 台ののみの使用時につきものの単一障害点を回避し、レプリケーショントラフィックをI/O トラフィックから物理的に分離します。

レプリケーションのためのケーブル接続の例

ケーブル接続図では、I/O またはレプリケーションに使用されるホストポートを示すために、シンプルバージョンのコントローラエンクロージャが使用されています。

- レプリケーションは、FC および iSCSI ホストインタフェースプロトコルをサポートします。
- 2U エンクロージャ背面パネルは、ME4 シリーズ FC および iSCSI ホストインタフェースポートを表します。
- 5U84 エンクロージャ背面パネルは、ME4 シリーズ FC および iSCSI ホストインタフェースポートを表します。
- レプリケーションに使用されるホストポートは、同じプロトコル (FC または iSCSI) を使用する必要があります。
- 青色のケーブルはI/Oトラフィックを示し、緑色のケーブルはレプリケーショントラフィックを示します。

CNC ベースのシステムまたは 10Gbase-T システムを物理的にケーブル接続したら、レプリケーション機能の設定、プロビジョニング、および使用に関する詳細について、「Dell EMC PowerVault ME4 シリーズストレージシステム管理者ガイド」またはオンラインヘルプを参照してください。

図 34. レプリケーション用に 2 台のストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワーク

1. 2U コントローラーエンクロージャ
2. 2 台のスイッチ (I/O)
3. ホストサーバへの接続
4. スイッチ (レプリケーション)
レプリケーションのためのデュアルコントローラモジュール構成

レプリケーション用デュアルコントローラモジュールを備えた2つのME4シリーズコントローラエンクロージャのケーブル接続。

複数のサーバ、1台のスイッチ、1つのネットワーク

図35. レプリケーション用に2台のME4シリーズ2Uストレージシステムを接続：複数のサーバ、1台のスイッチ、1つのネットワークは、I/Oとレプリケーションが同一ネットワーク上で行われる2つの2Uエンクロージャの背面パネルを示しています。図36. レプリケーション用に2台のME4シリーズ5Uストレージシステムを接続：複数のサーバ、1台のスイッチ、1つのネットワークは、I/Oとレプリケーションが同一ネットワーク上で行われる2つの5Uエンクロージャの背面パネルを示しています。

この構成では、VLAN（仮想ローカルエリアネットワーク）とゾーニングを使用することで、iSCSIとFC用に別個のネットワークを提供できます。I/O用のVLANまたはゾーンと、レプリケーション用のVLANまたはゾーンを作成することで、I/Oトラフィックをレプリケーショントラフィックから分離します。どちらの構成も、物理的には単一のネットワークのように見えますが、論理的には複数のネットワークとして機能します。

図35. レプリケーション用に2台のME4シリーズ2Uストレージシステムを接続：複数のサーバ、1台のスイッチ、1つのネットワーク
1. 2Uコントローラーエンクロージャ
2. スイッチ(I/O、レプリケーション)
3. ホストサーバへの接続

図36. レプリケーション用に2台のME4シリーズ5Uストレージシステムを接続：複数のサーバ、1台のスイッチ、1つのネットワーク
1. 5Uコントローラーエンクロージャ
2. スイッチ(I/O、レプリケーション)
3. ホストサーバへの接続

複数のサーバ、複数のスイッチ、1つのネットワーク

図37. レプリケーション用に2台のME4シリーズ2Uストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワークは、I/Oとレプリケーションが同一ネットワーク上で行われる2つの2Uエンクロージャの背面パネルを示しています。図38. レプリケーション用に2台のME4シリーズ5Uストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワークは、I/Oとレプリケーションが同一ネットワーク上で行われる2つの5Uエンクロージャの背面パネルを示しています。

最適な保護を実現するには、ホストI/Oとレプリケーション用に複数のスイッチを使用します。
 • 左側のストレージエンクロージャの各コントローラモジュールから左側のスイッチに、2つのポートを接続します。
 • 右側のストレージエンクロージャの各コントローラモジュールから右側のスイッチに、2つのポートを接続します。
 • 各エンクロージャのコントローラモジュールから中央のスイッチに、2つのポートを接続します。
複数のスイッチを使用することで、スイッチ1台のみの使用時につきものの単一障害点を回避し、レプリケーショントラフィックを/I/Oトラフィックから物理的に分離します。

図37. レプリケーション用に2台のME4シリーズ2Uストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワーク

1. 2Uコントローラー エンクロージャー
2. 2台のスイッチ (I/O)
3. ホスト サーバへの接続
4. スイッチ (レプリケーション)

図38. レプリケーション用に2台のME4シリーズ5Uストレージシステムを接続：複数のサーバ、複数のスイッチ、1つのネットワーク

1. 5Uコントローラ エンクロージャー
2. 2台のスイッチ (I/O)
3. ホスト サーバへの接続
4. スイッチ (レプリケーション)

複数のサーバ、複数のスイッチ、2つのネットワーク

図39. レプリケーション用に2台のME4シリーズ2Uストレージシステムを接続：複数のサーバ、複数のスイッチ、2つのネットワークは、異なるネットワーク上でI/Oとレプリケーションが行われる2つの2Uエンクロージャの背面パネルを示しています。図40. レプリケーション用に2台のME4シリーズ5Uストレージシステムを接続：複数のサーバ、複数のスイッチ、2つのネットワークは、異なるネットワーク上でI/Oとレプリケーションが行われる2つの5Uエンクロージャの背面パネルを示しています。

- 左側にあるスイッチは、ローカルネットワークAへのI/Oトラフィックをサポートします。
- 右側にあるスイッチは、リモートネットワークBへのI/Oトラフィックをサポートします。
- 中央のEthernet WANは、レプリケーショントラフィックをサポートします。

ローカルネットワークまたはリモートネットワークのいずれかで障害が発生した場合は、使用可能なネットワークにフェールオーバーすることができます。

次の図は、2つの支社がディザスタリカバリおよびバックアップ用にケーブル接続されている様子を表しています。
図 39. レプリケーション用に 2 台の ME4 シリーズ 2U ストレージシステムを接続：複数のサーバ、複数のスイッチ、2つのネットワーク

1. 2U コントローラー エンクロージャー
2. 2 台のスイッチ (I/O)
3. ホスト サーバへの接続 (ネットワーク A)
4. ホスト サーバへの接続 (ネットワーク B)
5. Ethernet WAN

図 40. レプリケーション用に 2 台の ME4 シリーズ 5U ストレージシステムを接続：複数のサーバ、複数のスイッチ、2つのネットワーク

1. 5U コントローラー エンクロージャー
2. 2 台のスイッチ (I/O)
3. ホスト サーバへの接続 (ネットワーク A)
4. ホスト サーバへの接続 (ネットワーク B)
5. Ethernet WAN

レプリケーション障害の分離

レプリケーションは、ブロックレベルのデータについて、プライマリーストレージシステムのボリュームからセカンダリーストレージシステムのボリュームへの非同期レプリケーションを実行する、ディザスタリカバリ機能です。

レプリケーション機能により、プライマリーボリュームの内部スナップショットが作成され、前回のレプリケーション以降のデータ変更が、iSCSI または FC 接続を使用してセカンダリーシステムにコピーされます。プライマリーボリュームはプライマリーストレージシステムのプライマリーブールに存在します。レプリケーションは、ME Storage Manager または CLI のいずれかを使用して完了することができます。

レプリケーションのセットアップと検証

レプリケーション用のストレージシステムのケーブル接続の完了後、レプリケーション機能を使用するための準備は、ME Storage Manager を使用して行えます。あるいは SSH か telnet を使用してコントローラーモジュールの IP アドレスにアクセスし、CLI を使用してレプリケーション機能にアクセスすることも可能です。

レプリケーション用に ME4 シリーズ ストレージシステム コントローラー エンクロージャーを有効化するための基本情報は、後述するトラブルシューティング手順での予備知識としても役立ちます。

- 「Dell EMC PowerVault ME4 シリーズ ストレージシステム管理者ガイド」に記載されているレプリケーションに関する内容を参照してください。
- 仮想レプリケーションの場合に、既存ボリュームのレプリケーション先をプライマリーシステムまたはセカンダリーシステムのピア上のプールとするには、次の手順を実行します。
1. セカンダリシステムのポートアドレスを特定します。
 CLIを使用し、セカンダリシステムでshow portsコマンドを実行します。
2. 次のいずれかの方法で、セカンダリシステムのポートにプライマリシステムから到達できることを確認します。
 - show portsコマンドで出力させたポートアドレスを使用して、プライマリシステムでCLIコマンドのquery peer-connectionを実行します。
 - ME Storage Managerの[レプリケーション]トピックで、アクション＞[クエリピア接続]を選択します。
3. ピア接続を作成します。
 ピア接続を作成するには、CLIコマンドのcreate peer-connectionを使用するか、ME Storage Managerの[レプリケーション]トピックでアクション＞[アクション＞ピア接続作成]を選択します。
4. レプリケーションセットを作成します。
 レプリケーションセットを作成するには、CLIコマンドのcreate replication-setを使用するか、ME Storage Managerの[レプリケーション]トピックでアクション＞[レプリケーションセット作成]を選択します。
5. レプリケーションを実行します。
 レプリケーションを開始するには、CLIコマンドのreplicateを使用するか、ME Storage Managerの[レプリケーション]トピックでアクション＞[複製]を選択します。

メモ：これらの手順は、レプリケーションセットアップの概要をまとめたものです。レプリケーションセットアップの詳細については、次のマニュアルを参照してください。

- レプリケーションのセットアップと管理の手順については、「Dell EMC PowerVault ME4シリーズStorage SystemAdministrator's Guide」を参照してください。
- レプリケーションのコマンドと構文については、「Dell EMC PowerVault ME4シリーズStorage System CLI Guide」を参照してください。

メモ：コントローラーモジュールのファームウェアは、レプリケーションに使用されるすべてのシステムで互換性がなければなりません。

レプリケーションセットアップの診断手順
ME Storage Managerを使用した仮想レプリケーション用のメニュー・ナビゲーションを、次の項の表に示します。

メモ：SASコントローラーエンクロージャーは、レプリケーションをサポートしていません。

レプリケーション機能は正常に使用できますか？

<table>
<thead>
<tr>
<th>回答</th>
<th>考えられる理由</th>
<th>アクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>あり</td>
<td>システムは正常に機能しています。</td>
<td>処置の必要はありません。</td>
</tr>
<tr>
<td>無</td>
<td>レプリケーションに使用している各システムで、レプリケーション機能をサポートした互換性のあるファームウェアリビジョンが実行されていません。</td>
<td>仮想レプリケーションに使用する各システムで、次の操作を実行します。</td>
</tr>
</tbody>
</table>

- [System]トピックで、Action＞Update Firmwareの順に選択します。Update Firmwareパネルが開きます。[Update Controller Modules]タブに、各コントローラーにインストールされているファームウェアのバージョンが表示されます。
- 必要に応じて、コントローラーコントロールモジュールのファームウェアをアップデートし、他のシステムとの互換性を確保します。
- 互換性のあるファームウェアの詳細については、「Dell EMC PowerVault ME4シリーズStorage System Administrator's Guide」のファームウェアアップデートに関するトピックを参照してください。

| 無 | ケーブル接続が無効です（複数のエンドコネクターが使用されている場合は、各システムのケーブル接続を確認してください。） | コントローラーエンクロージャーのケーブル接続を確認します： |

- 適切なケーブルが使用されているかを確認します。
- ホスト接続に適切なケーブル接続パスが使用されているかを確認します。

メモ：コントローラーエンクロージャーのケーブル接続を確認します：
回答	考えられる理由	アクション
無 | 設定されたブールがシステムにありません。 | 各システムが1つのストレージブルールを持つように設定します。
無 | iSCSIホストインタフェースポートを装備したコントローラーエンクロージャで、CHAPの使用が起因してレプリケーションセットの作成に失敗します。 | 使用している場合は、「Dell EMC PowerVault ME4シリーズStorage System Administrator’s Guide」のCHAPの設定とレプリケーションでの作業に関するトピックを参照してください。
無 | セカンダリボリューム（プライマリボリュームからのデータのレプリケート先とするブール上の宛先ボリューム）を作成できません。 | イベントログを確認し、レプリケーションデータベースコンポーネント内での特定の障害を示すものを特定します。該当するすべての推奨処置に従ってください。
無 | 通信リンクがダウンしています。 | イベントログを確認し、ホストまたはレプリケーションデータベースコンポーネント内での特定の障害を示すものを特定します。

レプリケーションセットを作成できますか？

有効な接続を持ってネットワークが使用可能になった後で、[Replications]トピックからAction > Create Replication Setの順に選択して、レプリケーションセットを作成します。

ボリュームのレプリケーションが行えますか？

<table>
<thead>
<tr>
<th>回答</th>
<th>考えられる理由</th>
<th>アクション</th>
</tr>
</thead>
</table>
| あり | システムは正常に機能しています。 | 処置の必要はありません。
| 無 | が存在していません。 | プライマリーボリュームの存在を確認します。
| 無 | レプリケーション進行中にネットワークエラーが発生。 | イベントログを確認し、レプリケーションデータベースコンポーネント内での特定の障害を示すものを特定します。該当するすべての推奨処置に従ってください。

レプリケーションのためのケーブル接続

87
### 回答	考えられる理由	アクション
無 | 通信リンクがダウンしています。 | イベントログを確認し、ホストまたはレプリケーションデータベースコンポーネント内の特定の障害を示すものを特定します。

レプリケーションは正常に実行されましたか？

表 25. レプリケーションセットアップの診断：レプリケーションの成功の確認

<table>
<thead>
<tr>
<th>回答</th>
<th>考えられる理由</th>
<th>アクション</th>
</tr>
</thead>
<tbody>
<tr>
<td>あり</td>
<td>システムは正常に機能しています。</td>
<td>処置の必要はありません。</td>
</tr>
</tbody>
</table>
| 無 | [Last Successful Run] が N/A と表示されています。 | - [Volumes] トピックで、レプリケーションセットのメンバーであるボリュームをクリックします。
- レプリケーションセットテーブルを選択します。
- [最後の正常な実行] 情報を確認します。
- レプリケーションが正常に実行されなかった場合は、ME Storage Managerを使用して、「Dell EMC PowerVault ME4 シリーズストレージシステム管理者ガイド」のレプリケーションでの作業に関するトピックで説明されているように、レプリケーションを行ってください。 |
| 無 | 通信リンクがダウンしています。 | イベントログを確認し、ホストまたはレプリケーションデータベースコンポーネント内の特定の障害を示すものを特定します。 |
FC/iSCSI ポートの SFP+トランシーバ

本項では、ME4 シリーズ FC/iSCSI コントローラ モジュールとともにご注文いただいたスモールフォームファクターブラグ可能(SFP+)
トランシーバの取り付け方法について説明します。

SFP+トランシーバの位置の確認

コントローラ エンクロージャに付属の SFP+トランシーバの位置を確認します。このトランシーバは、次の図に示す汎用 SFP+トランシーバと外見が似ています。

1. CNC ベースのコントローラ モジュール面
2. CNC ポート
3. SFP+トランシーバ (位置合わせ)
4. 光ファイバーケーブル
5. SFP+トランシーバ (取り付け済み)

図 41. ME4 シリーズ FC/iSCSI コントローラ モジュールへの SFP+トランシーバの取り付け

SFP+トランシーバの取り付け

SFP+トランシーバを取り付けるには、次の手順を実行します。

1. SFP+トランシーバをポートの位置に向け、挿入できるように位置を合わせます。
2U コントローラ エンクロージャの場合、取り付け先がコントローラ モジュール A と B のどちらであるのかによって、トランシーバを右側上向きあるいは上下逆さのいずれかの向きに取り付けます。
2. SFP+トランシーバにプラグがある場合は、取り外してからトランシーバを取り付けます。プラグは保持しておきます。
3. アクチュエータをフリップして開きます。

メモ: SFP+トランシーバのアクチュエータは、に示されているものとは多少異なる場合があります。図 41. ME4 シリーズ FC/iSCSI コントローラ モジュールへの SFP+トランシーバの取り付け

4. 所定の位置にしっかりとロックされるまで、SFP+トランシーバをポートにスライドさせます。
5. アクチュエータをフリップして閉じます。
6. 認定された光ファイバインタフェイス ケーブルを SFP+トランシーバのデュプレックス ジャックに接続します。

SFP+トランシーバをすぐ使用する予定がない場合は、プラグを SFP+トランシーバのデュプレックス ジャックに再挿入して、光メディア部分に埃が入らないようにします。

コンポーネントの動作の確認

コントローラ モジュールのフェース プレート上にあるポートのリンク ステータス/リンク アクティビティ LED を確認します。緑色の LED は、ポートが接続されリンクが有効になっていることを示します。

メモ: SFP+トランシーバを取り外すには、「SFP+トランシーバの取り付け」で説明している取り付け手順を逆の順序で実行します。
システム情報ワークシート

システム情報ワークシートを使用して、ME4 シリーズ ストレージシステムを取り付けるために必要な情報を記録します。

ME4 シリーズ ストレージ システムの情報

ME4 シリーズ ストレージシステムネットワークおよび管理者ユーザーについての次の情報を集めて記録します。

表 26. ME4 シリーズ ストレージ システム ネットワーク

<table>
<thead>
<tr>
<th>アイテム</th>
<th>情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>サービスタグ</td>
<td></td>
</tr>
<tr>
<td>管理IPv4アドレス(ME4 シリーズ ストレージ システム管理アドレス)</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>上部コントローラモジュールのIPv4アドレス(コントローラAの管理ポート)</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>下部コントローラモジュールのIPv4アドレス(コントローラBの管理ポート)</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>サブネットマスク</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>ゲートウェイIPv4アドレス</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>ゲートウェイIPv6アドレス</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>ドメイン名</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>DNSサーバーアドレス</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>セカンダリDNSサーバーアドレス</td>
<td>______ . ______ . ______ . ______</td>
</tr>
</tbody>
</table>

表 27. ME4 シリーズ ストレージ システム管理者

<table>
<thead>
<tr>
<th>アイテム</th>
<th>情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>デフォルトのME4 シリーズ ストレージ システム管理者ユーザーのパスワード</td>
<td></td>
</tr>
<tr>
<td>デフォルトのME4 シリーズ ストレージ システム管理者ユーザーのEメールアドレス</td>
<td></td>
</tr>
</tbody>
</table>

iSCSI ネットワーク情報

iSCSIフロントエンドポート搭載のストレージシステムについて、iSCSIネットワークのネットワーク情報を計画して記録します。

メモ: 2つのEthernetスイッチを使用して導入されたストレージシステムの場合、Dell EMCは別々のサブネットを設定することをお勧めしています。

表 28. iSCSI サブネット1

<table>
<thead>
<tr>
<th>アイテム</th>
<th>情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>サブネットマスク</td>
<td>______ . ______ . ______ . ______</td>
</tr>
<tr>
<td>ゲートウェイIPv4アドレス</td>
<td>______ . ______ . ______ . ______</td>
</tr>
</tbody>
</table>
その他の ME4 シリーズ ストレージ・システムの情報

Network Time Protocol (NTP) および Simple Mail Transfer Protocol (SMTP) サーバの情報は任意です。プロキシ サーバの情報も任意ですが、未初期化の検出と構成ウィザードを完了するために必要な場合があります。

表 30. NTP、SMTP、およびプロキシ サーバ

<table>
<thead>
<tr>
<th>項目</th>
<th>情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP サーバー IPv4 アドレス</td>
<td>_____ • _____ • _____ • _____</td>
</tr>
<tr>
<td>SMTP サーバー IPv4 アドレス</td>
<td>_____ • _____ • _____ • _____</td>
</tr>
<tr>
<td>バックアップNTP サーバーIPv4 アドレス</td>
<td>_____ • _____ • _____ • _____</td>
</tr>
<tr>
<td>SMTP サーバーのログイン ID</td>
<td></td>
</tr>
<tr>
<td>SMTP サーバーのパスワード</td>
<td></td>
</tr>
<tr>
<td>プロキシ サーバー IPv4 アドレス</td>
<td>_____ • _____ • _____ • _____</td>
</tr>
</tbody>
</table>

ファイバ チャネル ジョーニング情報

Fibre Channel フロントエンド ポートのあるストレージシステムの場合、ファブリック1およびファブリック2にある Fibre Channel ポートの物理および仮想 WWN を記録してください。この情報は、Discover and Configure Uninitialized ウィザードの [Review Front-End] ページに表示されます。この情報を使用して、各 Fibre Channel スイッチのジョーニングを設定してください。

表 31. ファブリック 1 の WWN

<table>
<thead>
<tr>
<th>項目</th>
<th>FC スイッチ ポート</th>
<th>情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>ストレージ コントローラ A : ポート 0 の WWN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
アイテム | FC スイッチ ポート | 情報
--- | --- | ---
ストレージ コントローラ B：ポート 0 の WWN
ストレージ コントローラ A：ポート 2 の WWN
ストレージ コントローラ B：ポート 2 の WWN
サーバ HBA の WWN：

表 32. ファブリック 2 の WWN
アイテム	FC スイッチ ポート	情報
ストレージ コントローラ A：ポート 1 の WWN
ストレージ コントローラ B：ポート 1 の WWN
ストレージ コントローラ A：ポート 3 の WWN
ストレージ コントローラ B：ポート 3 の WWN
CLI ポートとシリアル ケーブルを使用したネットワーク ポートの IP アドレスの設定

各コントローラのデフォルトの固定 IP 値を、手動で変更できます。または、DHCP (Dynamic Host Configuration Protocol) サーバとの通信を介して、IP 値を両方のコントローラに自動的に設定するよう指定することも可能です。

ネットワーク エミュレータとシリアルケーブルを使用したネットワークポートの IP アドレスの設定

各コントローラのデフォルトの固定 IP 値を、手動で変更できます。または、DHCP (Dynamic Host Configuration Protocol) サーバと通信を介して、IP 値を両方のコントローラに自動的に設定するよう指定することも可能です。

ネットワークポートの IP アドレス設定

各コントローラのデフォルトの固定 IP 値を、手動で変更できます。または、DHCP (Dynamic Host Configuration Protocol) サーバと通信を介して、IP 値を両方のエミュレータに自動的に設定するよう指定することも可能です。

コントローラモジュールAとコントローラモジュールBのネットワークポートのIPアドレス設定

ネットワークポートのIPアドレス設定

コントローラモジュールAとコントローラモジュールBのネットワークポートのIPアドレス設定

ネットワークポートで設定されるIP アドレスは、次のデフォルト値です。

- ネットワークポートのIPアドレス: 10.0.0.2 (コントローラA)、10.0.0.3 (コントローラB)
- IPサブネットマスク: 255.255.255.0
- ゲートウェイIPアドレス: 10.0.0.1

デフォルトのIPアドレスとネットワークポートとの間の互換性がない場合は、CLIを使用して、各ネットワークポートに対してIPアドレスを設定する必要があります。CLIでは、3.5 mmステレオプラグCLIポートまたはUSB CLIポートおよびターミナルエミュレーショングラフィックを設定することができます。

メモ:

- ミニUSB CLIポートとケーブルを使用している場合は、「ミニUSBデバイスの接続」を参照してください。
- Windowsをご使用のお客様は、「USBドライバの取得」の説明に従ってデバイスドライバのダウンロードとインストールを行う必要があります。ただし、Windows10またはWindows Server 2016以降を使用している場合は、この作業は不要です。
- Linuxをご使用のお客様は、「Linuxドライバ」の説明に従って、USBポートを準備する必要があります。

次の手順で説明されているCLIコマンドを使用して、各コントローラモジュールのネットワークポートにIPアドレスを設定します。

メモ: 新しいIPアドレスが設定されている場合、ME Storage Managerを使用して、アドレスを必要に応じて変更することができます。IPアドレスの変更は、必ずネットワーク設定の変更より前に行ってください。

1. ネットワーク管理者から、コントローラAとコントローラBのIPアドレス、サブネットマスク、ゲートウェイアドレスを入手します。
2. ME Storage ManagerまたはCLIを使用してコントローラを管理するときにいつでもIPアドレスを指定できるように、IPアドレスを記録しておくます。
3. シリアルポート搭載コンピューターから、コントローラAの3.5 mmステレオプラグCLIポートに、3.5 mm/DB9シリアルケーブルを接続します。または、コンピューターからコントローラAのUSB CLIポートに、汎用のミニUSBCケーブル(付属していません)を接続します。

次の図に示されているように、ミニUSBコネクタをUSB CLIポートに差し込みます。

図42. USBケーブルのCLIポートへの接続
4. ミニUSBケーブルを使用する場合は、USB CLIポートを通信用として有効化します。

 メモ: 3.5 mm/DB9 シリアルケーブルを使用する場合は、このステップをスキップしてください。

 - 「Microsoft Windows ドライバ」の説明に従って、CLIポートのUSBデバイスドライバをダウンロードしてインストールします。ただし、Windows10またはWindows Server2016以降を使用している場合は、この作業は不要です。
 - Linuxコンピューターの場合は、「Linux ドライバ」に記載されているコマンドシンタクスを入力します。

5. ターミナルエミュレータを起動し、表33.ターミナルエミュレータの表示設定の表示設定と表34.ターミナルエミュレータの接続設定の接続設定を使用するための設定を行います。

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ターミナルエミュレーションモード</td>
<td>VT-100またはANSI（カラーサポート用）</td>
</tr>
<tr>
<td>フォント</td>
<td>端末</td>
</tr>
<tr>
<td>変換</td>
<td>なし</td>
</tr>
<tr>
<td>Columns（列）</td>
<td>80</td>
</tr>
</tbody>
</table>

表33. ターミナルエミュレータの表示設定

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>コネクタ</td>
<td>COM3（例）</td>
</tr>
<tr>
<td>ポーレート</td>
<td>115200</td>
</tr>
<tr>
<td>データビット</td>
<td>8</td>
</tr>
<tr>
<td>パリティ</td>
<td>なし</td>
</tr>
<tr>
<td>終了ビット</td>
<td>1</td>
</tr>
<tr>
<td>フロー制御</td>
<td>なし</td>
</tr>
</tbody>
</table>

表34. ターミナルエミュレータの接続設定

1ディスクアレイUSBポートに使用されるCOMポートの種類は、お使いのコンピューターの設定によって決まります。

2CLIで使用する適切なCOMポートを確認します。

6. ターミナルエミュレータで、コントローラAに接続します。

7. 必要であれば、Enterを押してログインプロンプトを表示します。

8. 未導入のG275ファームウェア搭載ストレージシステムに接続する場合は、次の手順を実行します。
 a) ログインプロンプトでmanageと入力し、Enterを押します。
 b) パスワードプロンプトで!manageと入力し、Enterを押します。

 導入済みのG275ファームウェア搭載ストレージシステムに接続する場合は、次の手順を実行します。
 a) ログインプロンプトで、管理ロールを持つユーザーのユーザー名を入力し、Enterを押します。
 b) パスワードプロンプトで、そのユーザーのパスワードを入力し、Enterを押します。

9. 未導入のG280ファームウェア搭載ストレージシステムに接続する場合は、次の手順を実行します。
 a) ログインプロンプトでsetupと入力し、Enterを押します。
 b) パスワードプロンプトで、何も入力せずにEnterを押します。

 導入済みのG280ファームウェア搭載ストレージシステムに接続する場合は、次の手順を実行します。
 a) ログインプロンプトで、管理ロールを持つユーザーのユーザー名を入力し、Enterを押します。
 b) パスワードプロンプトで、そのユーザーのパスワードを入力し、Enterを押します。

10. DHCPを使用してネットワークポートIP値を設定する場合は、プロンプトで次のコマンドを入力します。

```bash
    set network-parameters dhcp
```

カスタムの固定IPアドレスを使用したい場合は、次のCLIコマンドを入力し、ステップ1で取得した値を設定します。

メモ: 最初にコントローラAのコマンドを実行し、次にコントローラBのコマンドを実行します。

```bash
    set network-parameters ip address netmask gateway gateway controller a|b
```

ここで,
- `address`は、コントローラのIPアドレス
netmask は、サブネット マスク

gateway は、サブネットルータの IP アドレス

a|b は、ネットワーク パラメータを設定するコントローラを指

たとえば、次のとおりです。

set network-parameters ip 192.168.0.10 netmask 255.255.255.0 gateway 192.168.0.1
controller a

set network-parameters ip 192.168.0.11 netmask 255.255.255.0 gateway 192.168.0.1
controller b

11. 次の CLI コマンドを入力して、新しい IP アドレスを確認します。

show network-parameters

IP アドレス、サブネット マスク、ゲートウェイ アドレスなどのネットワーク パラメータが、コントローラごとに表示されます。

12. ホスト コンピューターのコマンド ウィンドウで、次のコマンドを入力して、最初にコントローラ A、次にコントローラ B の接続性を確認します。

ping controller-IP-address

IP アドレスを変更した後 3 分間以上システムにアクセスできない場合は、CLI を使用してコントローラを再起動してください。

管理コントローラを再起動すると、管理コントローラとの通信は、正常に再起動するまでは一時的に失われます。次の CLI コマンドを入力して両方のコントローラの管理コントローラを再起動します。

restart mc both

トピック:

- ミニ USB デバイスの接続

ミニ USB デバイスの接続

以降の項では、ミニ USB ポートへの接続について説明します。

エミュレートされたシリアル ポート

ミニ USB シリアル ケーブルを使用してコンピューターをコントローラ モジュールに接続している場合、コントローラは、エミュレートされたシリアル ポートをコンピューターに提示します。エミュレートされたシリアル ポートの名前は、カスタマー ベンダー ID と製品 ID を使用して表示されます。シリアル ポートの設定は不要です。

メモ: 特定のオペレーティングシステムでは、USB の CLI ポートが正常に機能できるようにするために、デバイス ドライバまたは特殊なオペレーションモードが必要となります。「デバイス ドライバ特殊なオペレーションモード」も参照してください。

サポート対象のホストアプリケーション

ME4 シリーズ コントローラ モジュールとの通信には、次のターミナル エミュレータ アプリケーションを使用できます。

<table>
<thead>
<tr>
<th>アプリケーション</th>
<th>オペレーティングシステム</th>
</tr>
</thead>
<tbody>
<tr>
<td>PuTTY</td>
<td>Microsoft Windows (すべてのバージョン)</td>
</tr>
<tr>
<td>Minicom</td>
<td>Linux (すべてのバージョン)</td>
</tr>
</tbody>
</table>

コマンドラインインタフェース

エミュレートされたシリアル ポートへの接続をコンピューターが検出した場合、コントローラは、コマンドライン インタフェイスを使用したコンピューターからの文字入力を待機します。CLI プロンプトを表示するには [Enter] を押す必要があります。

メモ: ミニ USB ボートへの直接的なケーブル接続は、帯域外接続と見なされます。ミニ USB ボートへの接続は、コントローラーエンクロージャへの通常のデータ パスの範囲外になります。
デバイス ドライバ/特殊なオペレーション モード

特定のオペレーティングシステムでは、デバイスドライバまたは特殊なオペレーションモードが必要になります。特定のオペレーティングシステムに必要な製品およびベンダー識別情報を、以下の表に示します。

<table>
<thead>
<tr>
<th>USBの識別コードタイプ</th>
<th>コード</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB ベンダーID</td>
<td>0x210c</td>
</tr>
<tr>
<td>USB 製品ID</td>
<td>0xa4a7</td>
</tr>
</tbody>
</table>

Microsoft Windows ドライバ

Windows環境で使用するME4シリーズUSBドライバは、Dell EMCから提供されます。

USBドライバの取得

1. Dell.comのサポートにアクセスして、ME4シリーズUSBドライバを検索します。
2. Dell EMCサポートサイトからME4シリーズStorage Array USB Utilityファイルをダウンロードします。
3. ダウンロードページの指示に従って、ME4シリーズUSBドライバをインストールします。

Microsoft WindowsでのCLIポートおよびMini USBケーブルに関する既知の問題

CLIポートとケーブルを使用してネットワークポートのIPアドレスを設定する場合は、次のような、Windowsでの既知の問題に注意してください。

問題

コントローラモジュールを再起動した後、またはUSBケーブルを外して再接続した後で、ターミナルエミュレータソフトウェアの再接続を妨げる問題がコンピュータに発生する可能性があります。

回避策

コントローラモジュールを再起動したときに応答を停止した接続を復元するには、次の手順を実行します。

1. ミニUSBポートへの接続を停止した場合は、ターミナルエミュレータプログラムを切断して終了します。
 a. デバイスマネージャを使用して、ミニUSBポートに割り当てられたCOMnポートを特定します。
 b. Disk Array USB Port (COMn)ポートを右クリックして、Disable deviceを選択します。
2. Disk Array USB Port (COMn)ポートを右クリックして、Enable deviceを選択します。
3. ターミナルエミュレータソフトウェアを起動し、COMポートに接続します。

Linuxドライバ

Linuxオペレーティングシステムでは、ME4シリーズUSBドライバのインストールは必要ありません。ただし、ME4シリーズコントローラモジュールのミニUSBポートを認識できるようにするために、ドライバのローディング中に一定のパラメーターを供給する必要があります。

- 次のコマンドを入力して、ミニUSBポートの認識に必要なパラメーターをLinuxデバイスドライバにロードします。

```
modprobe usbserial vendor=0x210c product=0xa4a7 use_acm=1
```

メモ: オプションとして、この情報を/etc/modules.confファイルに組込むことも可能です。